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Abstract
This paper is devoted to the functional analytic approach to the prob-

lem of existence of Markov processes in probability theory. More precisely,
we construct Feller semigroups with Dirichlet conditions for second-order,
uniformly elliptic integro-differential operators with discontinuous coeffi-
cients. Rephrased, we prove that there exists a Feller semigroup corre-
sponding to such a diffusion phenomenon that a Markovian particle moves
both by jumps and continuously in the state space until it dies at the time
when it reaches the boundary.

1 Introduction

Let Ω be a bounded domain in Euclidean space RN , N ≥ 3, with boundary ∂Ω
of class C1,1. In this paper we assume that the domain Ω is convex.

Now we consider a second-order, elliptic integro-differential operator W with
real discontinuous coefficients of the form

Wu(x) = Au(x) + Su(x)

:=

⎛⎝ N∑
i,j=1

aij(x)
∂2u

∂xi∂xj
(x) +

N∑
i=1

bi(x)
∂u

∂xi
(x) + c(x)u(x)

⎞⎠
+
∫

Ω

s(x, dy)

⎡⎣u(y) − u(x) −
N∑

j=1

(yj − xj)
∂u

∂xj
(x)

⎤⎦ . (1.1)

Here:

(1) aij(x) ∈ VMO ∩ L∞(RN), aij(x) = aji(x) almost all x ∈ Ω and there
exists a constant λ > 0 such that

λ−1|ξ|2 ≤
N∑

i,j=1

aij(x)ξiξj ≤ λ|ξ|2 for almost all x ∈ Ω and all ξ ∈ RN .
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(2) bi(x) ∈ L∞(Ω).

(3) c(x) ∈ L∞(Ω) and c(x) ≤ 0 for almost all x ∈ Ω.

(4) {s(x, dy)}x∈Ω is a family of non-negative, Borel measures on the closure
Ω = Ω ∪ ∂Ω which satisfy the following four conditions:

(4-a) For each Borel subset E of Ω, the function x �→ s(x, E) is Borel measurable
on Ω.

(4-b) s(x, {x}) = 0 for all x ∈ Ω.

(4-c) For every small ε > 0, there exists a bounded function ω(ε) such that

sup
x∈Ω

∫
{y∈Ω:|y−x|≤ε}

s(x, dy)|y − x|2 ≤ ω(ε) (1.2)

and that
lim
ε↓0

ω(ε) = 0. (1.3)

(4-d) For every small ε > 0, the quantity

Cε = sup
x∈Ω

∫
{y∈Ω:|y−x|>ε}

s(x, dy)|y − x| (1.4)

is finite.

The integro-differential operator W is called a second-order Waldenfels op-
erator (see [1, Chapter 2]). The differential operator A is called a diffusion
operator which describes analytically a strong Markov process with continuous
paths in the interior Ω such as Brownian motion. The integral operator S is
called a second-order Lévy operator which is supposed to correspond to the
jump phenomenon in the closure Ω. In this context, conditions (1.2), (1.3) and
(1.4) imply that any Markovian particle does not move by jumps so far.

Remark 1.1. Since the domain Ω is convex, the Lévy operator S may be glob-
ally defined by using Taylor’s formula as in formula (1.1).

The first purpose of this paper is to prove an existence and uniqueness
theorem for the following non-homogeneous Dirichlet problem in the framework
of Sobolev spaces of Lp style:{

Wu = f in Ω,
γ0u = ϕ on ∂Ω. (1.5)

The next theorem is a generalization of Bony [2, Corollaire 2] to the VMO
case:

Theorem 1.1. Let N < p < ∞. Then the mapping

W = (W, γ0) : W 2,p(Ω) −→ Lp(Ω)
⊕

B2−1/p,p(∂Ω)

is an algebraic and topological isomorphism. In particular, for any f ∈ Lp(Ω)
and any ϕ ∈ B2−1/p,p(∂Ω), there exists a unique solution u ∈ W 2,p(Ω) of
problem (1.5).
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Remark 1.2. If the leading coefficients aij(x) are continuous on Ω, then results
similar to Theorem 1.1 are obtained by Gimbert–Lions [3, Theorem III.1] and
Garroni–Menaldi [4, Theorem 3.1.22].

The second purpose of this paper is devoted to the functional analytic ap-
proach to the problem of existence of Markov processes in probability theory.
More precisely, we construct Feller semigroups with Dirichlet conditions for
second-order, uniformly elliptic integro-differential operators with VMO coeffi-
cients. Rephrased, we prove that there exists a Feller semigroup corresponding
to such a diffusion phenomenon that a Markovian particle moves both by jumps
and continuously in the state space until it dies at the time when it reaches the
boundary ∂Ω where the particle is definitely absorbed.

Let C(Ω) be the Banach space of all real-valued, continuous functions on
the closure Ω = Ω ∪ ∂Ω, equipped with the maximum norm

‖f‖ := max
x∈Ω

|f(x)|, f ∈ C(Ω).

We introduce a subspace of C(Ω), which is associated with Dirichlet condition,
by the formula

C0(Ω) = {u ∈ C(Ω) : u = 0 on ∂Ω}.
A strongly continuous semigroup Tt on the space C0(Ω) is called a Feller semi-
group if it is non-negative and contractive on C0(Ω), that is,

f ∈ C0(Ω), 0 ≤ f(x) ≤ 1 on Ω =⇒ 0 ≤ Ttf(x) ≤ 1 on Ω.

It is known (see [5,6]) that if Tt is a Feller semigroup on C0(Ω), then there exists
a unique Markov transition function pt(x, ·) on Ω such that

Ttf(x) =
∫

Ω

pt(x, dy)f(y), f ∈ C0(Ω). (1.6)

Furthermore, it can be shown that the function pt(x, ·) is the transition function
of some strong Markov process; hence the value pt(x, E) expresses the transition
probability that a Markovian particle starting at position x will be found in the
set E at time t.

The next theorem is a generalization of Bony [2, Théorème 4] to the VMO
case:

Theorem 1.2. If N < p < ∞, we define a linear operator W from C0(Ω) into
itself as follows:

(1) The domain D(W) is the space

D(W) = {u ∈ W 2,p(Ω) ∩ C0(Ω) : Wu ∈ C0(Ω)}.

(2) Wu = Wu = Au + Su, u ∈ D(W).

Here Wu is taken in the sense of distributions.
Then the operator W is the infinitesimal generator of a Feller semigroup

{Tt}t≥0 on C0(Ω).

Remark 1.3. The domain D(W) does not depend on p, for N < p < ∞ (see
Subsection 6.3).
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Remark 1.4. If the leading coefficients aij(x) are continuous on Ω, then results
similar to Theorem 1.2 are obtained by Komatsu [7, Theorem 5.2], Stroock [8,
Theorem 2.2] and Garroni–Menaldi [9, Chapter VIII, Theorem 3.3]).

The rest of this paper is organized as follows. In Section 2 we recall some
basic definitions and results concerning BMO and VMO functions on RN . Sec-
tion 3 provides a brief description of the basic definitions and results about
Feller semigroups and a version of the Hille–Yosida theorem adapted to the
present context (Theorem 3.1), which forms a functional analytic background
for the proof of Theorem 1.2. In Section 4 we consider the Dirichlet problem
for the diffusion operator A in the framework of Sobolev spaces of Lp style, and
prove an existence and uniqueness theorem for the Dirichlet problem with VMO
coefficients (Theorem 4.1). The uniqueness result in Theorem 4.1 follows from
a variant of the Bakel’man–Aleksandrov maximum principle in the framework
of Sobolev spaces due to Bony [10] (Theorem 4.4). In Section 5 we consider
the Dirichlet problem for the Waldenfels operator W = A+S in the framework
of Sobolev spaces of Lp style, and prove Theorem 1.1. The essential point in
the proof is how to estimate the Lévy integral operator S in terms of Sobolev
norms (Lemma 5.2). We show that the operator W = (W, γ0) may be consid-
ered as a perturbation of a compact operator to the operator A = (A, γ0) in the
framework of Sobolev spaces. Therefore, the proof of Theorem 1.1 is reduced
to the differential operator case which is studied in Section 4. It should be
emphasized that the uniqueness result in Theorem 1.1 follows from a variant of
the Bakel’man–Aleksandrov maximum principle for the Waldenfels operator W
due to Bony [2] (Theorem 5.3). The final Section 6 is devoted to the proof of
Theorem 1.2. We make use of an L∞ estimate for the Green operator G0

α of the
Dirichlet problem to verify all the conditions in Theorem 3.1 for the operator
W (see estimate (6.10)).

2 BMO and VMO functions

In this section we recall some basic definitions and results concerning BMO
and VMO functions on RN . For more thorough treatments of this subject, the
reader might be referred to Garnett [11] and Torchinsky [12].

A function f ∈ L1
loc(R

N) is said to be of bounded mean oscillation, f ∈ BMO,
if it satisfies the condition (see [13])

‖f‖∗ := sup
B

1
|B|

∫
B

|f(x) − fB | dx < ∞,

where the supremum is taken over all balls B in RN and fB is the average of f
over B

fB :=
1
|B|

∫
B

f(x) dx.

It should be noticed that the quantity ‖f‖∗ defines a norm on the quotient space
BMO/R. For example, we have

L∞(RN) ⊂ BMO.

Next we introduce a subspace of BMO functions whose BMO norm over a
ball vanishes as the radius of the ball tends to zero. More precisely, if f ∈ BMO
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and r > 0, then we let

η(r) := sup
ρ≤r

1
|B|

∫
B

|f(x) − fB | dx,

where the supremum is taken over all balls B with radius ρ ≤ r. A function
f ∈ BMO has vanishing mean oscillation, f ∈ VMO, if it satisfies the condition
(see [14])

lim
r↓0

η(r) = 0.

The function η(r) will be referred as the VMO modulus of f . The assump-
tion that f ∈ VMO means a kind of continuity in the average sense, not in
the pointwise sense. This property guarantees that VMO functions may be ap-
proximated by smooth functions. The next proposition collects some important
results concerning VMO functions:

Proposition 2.1. (i) If f ∈ VMO with VMO modulus η(r), then the usual
Friedrichs mollifiers fh converge to f in the BMO norm as h ↓ 0, with VMO
moduli ηh(r) such that ηh(r) ≤ η(r). In particular, for any ε > 0 there exists a
uniformly continuous function gε on RN such that ‖f − gε‖∗ < ε.

(ii) VMO is a closed subspace of BMO and uniformly continuous functions
that belong to BMO are VMO functions.

(iii) W θ,N/θ(RN) ⊂ VMO, for 0 < θ ≤ 1.

Example 2.1. (i) ln |x| ∈ BMO, but ln |x| �∈ VMO.

(ii) ln |ln |x|| ∈ VMO.

3 Feller semigroups and Markov processes

This section provides a brief description of the basic definitions and results about
a class of semigroups, Feller semigroups, associated with Markov processes in
probability theory, which forms a functional analytic background for the proofs
of Theorems 1.1 and 1.2 (see [6, 15]).

3.1 Markov transition functions

First, we give the precise definition of a transition function which is adapted to
our analysis. From the viewpoint of functional analysis, the transition function
is something more convenient than the Markov process itself.

Let (K, ρ) be a locally compact, separable metric space and B the σ-algebra
of all Borel sets in K. A function pt(x, E), defined for all t ≥ 0, x ∈ K and
E ∈ B, is called a (temporally homogeneous) Markov transition function on K
if it satisfies the following four conditions:

(a) pt(x, ·) is a non-negative measure on B and pt(x, K) ≤ 1 for each t ≥ 0
and x ∈ K.

(b) pt(·, E) is a Borel measurable function for each t ≥ 0 and E ∈ B.

(c) p0(x, {x}) = 1 for each x ∈ K.
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(d) (The Chapman-Kolmogorov equation) For any t, s ≥ 0, x ∈ K and E ∈ B,
we have

pt+s(x, E) =
∫

K

pt(x, dy)ps(y, E). (3.1)

It should be emphasized that equation (3.1) expresses the idea that a transition
from the position x to the set E in time t+s is composed of a transition from x
to some position y in time t, followed by a transition from y to the set E in the
remaining time s; the latter transition has probability ps(y, E) which depends
only on y.

We add a point ∂ to the locally compact space K as the point at infinity
if K is not compact, and as an isolated point if K is compact; so the space
K∂ = K ∪ {∂} is compact.

Let C(K) be the space of real-valued, bounded continuous functions f on
K. The space C(K) is a Banach space with the supremum norm

‖f‖ = sup
x∈K

|f(x)|.

We introduce a closed subspace of C(K) as follows:

C0(K) =
{

f ∈ C(K) : lim
x→∂

f(x) = 0
}

.

It should be noticed that the space C0(K) may be identified with the subspace
of C(K∂) which consists of all functions f satisfying f(∂) = 0:

C0(K) = {f ∈ C(K∂) : f(∂) = 0} . (3.2)

3.2 Feller semigroups

We can associate with each Markov transition function pt(x, ·) by formula (1.6)
a family {Tt}t≥0 of bounded linear operators acting on the space C0(K), and
the Chapman–Kolmogorov equation (3.1) implies that this family {Tt}t≥0 forms
a semigroup.

A family {Tt}t≥0 of bounded linear operators acting on C0(K) is called a
Feller semigroup on K if it satisfies the following three conditions:

(i) Tt+s = Tt · Ts, t, s ≥ 0; T0 = I.

(ii) The family {Tt} is strongly continuous in t for each t ≥ 0:

lim
s↓0

‖Tt+sf − Ttf‖ = 0, f ∈ C0(K).

(iii) The family {Tt} is non-negative and contractive on C0(K):

f ∈ C0(K), 0 ≤ f(x) ≤ 1 on K =⇒ 0 ≤ Ttf(x) ≤ 1 on K.

If {Tt}t≥0 is a Feller semigroup on K, we define its infinitesimal generator
A by the formula

Au = lim
t↓0

Ttu − u

t
, (3.3)

provided that the limit (3.3) exists in C0(K). More precisely, the infinitesimal
generator A is a linear operator from the space C0(K) into itself defined as
follows.
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(1) The domain D(A) is the set

D(A) = {u ∈ C0(K) : the limit (3.3) exists} .

(2) Au = limt↓0 Ttu−u
t

, u ∈ D(A).

The next theorem is a version of the Hille–Yosida theorem [16] adapted to
the present context (see [6, Theorem 9.3.1 and Corollary 9.3.2]):

Theorem 3.1. (i) Let {Tt}t≥0 be a Feller semigroup on K and A its infinites-
imal generator. Then we have the following four assertions:

(a) The domain D(A) is dense in the space C0(K).

(b) For each α > 0, the equation (αI − A)u = f has a unique solution u in
D(A) for any f ∈ C0(K). Hence, for each α > 0, the Green operator
(αI − A)−1 : C0(K) → C0(K) can be defined by the formula

u = (αI − A)−1f, f ∈ C0(K).

(c) For each α > 0, the operator (αI − A)−1 is non-negative on the space
C0(K):

f ∈ C0(K), f ≥ 0 on K =⇒ (αI − A)−1f ≥ 0 on K.

(d) For each α > 0, the operator (αI − A)−1 is bounded on the space C0(K)
with norm

‖(αI − A)−1‖ ≤ 1
α

.

(ii) Conversely, if A is a linear operator from C0(K) into itself satisfying
condition (a) and if there is a constant α0 ≥ 0 such that, for all α >
α0, conditions (b) through (d) are satisfied, then A is the infinitesimal
generator of some Feller semigroup {Tt}t≥0 on K.

4 The Dirichlet problem

In this section we consider the Dirichlet problem for the diffusion operator A
in the framework of Sobolev spaces of Lp style, and prove an existence and
uniqueness theorem for the Dirichlet problem with VMO coefficients.

4.1 Formulation of a boundary value problem

If 1 < p < ∞, we define the Sobolev space

W 2,p(Ω) = the space of (equivalence classes of) functions
u ∈ Lp(Ω) whose derivatives Dαu, |α| ≤ 2, in the
sense of distributions are in Lp(Ω),

and the boundary space

B2−1/p,p(∂Ω) = the space of the boundary values γ0u of functions
u ∈ W 2,p(Ω).
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In the boundary space B2−1/p,p(∂Ω), we introduce a norm

|ϕ|B2−1/p,p(∂Ω) = inf
{‖u‖W2,p(Ω) : u ∈ W 2,p(Ω), γ0u = ϕ on ∂Ω

}
.

It is known (see [17–19]) that the space B2−1/p,p(∂Ω) is a Besov space.
We consider the following non-homogeneous Dirichlet boundary value prob-

lem: Given functions f and ϕ defined in Ω and on ∂Ω, respectively, find a
function u in Ω such that {

Au = f in Ω,
γ0u = ϕ on ∂Ω. (4.1)

In this framework our main result is a generalization of Bony[10, Théorème 3]
to the VMO case:

Theorem 4.1. Let N < p < ∞. Then the mapping

A = (A, γ0) : W 2,p(Ω) −→ Lp(Ω)
⊕

B2−1/p,p(∂Ω)

is an algebraic and topological isomorphism. In particular, for any f ∈ Lp(Ω)
and any ϕ ∈ B2−1/p,p(∂Ω), there exists a unique solution u ∈ W 2,p(Ω) of
problem (4.1).

Remark 4.1. Theorem 4.1 will play an essential role in the study of the exis-
tence of positive solutions of semilinear Dirichlet eigenvalue problems for diffu-
sive logistic equations with discontinuous coefficients which model population
dynamics in environments with spatial heterogeneity (see [20, Theorem 1.1]).

4.2 Proof of Theorem 4.1

In this subsection we prove Theorem 4.1. To do this, it suffices to show that
the mapping

A = (A, γ0) : W 2,p(Ω) −→ Lp(Ω)
⊕

B2−1/p,p(∂Ω)

is bijective. Indeed, the continuity of the inverse of A follows immediately from
an application of Banach’s closed graph theorem.

The proof is divided into four steps.
Step 1: Our proof of Theorem 4.1 is essentially based on the following

existence and uniqueness theorem for the homogeneous Dirichlet problem due
to Chiarenza–Frasca–Longo [21, Theorems 4.3 and 4.4] (see also [22, 23]):

Theorem 4.2. If we let

A0u =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
,

then, for any f ∈ Lp(Ω) with 1 < p < ∞ there exists a unique solution u ∈
W 2,p(Ω) of the Dirichlet problem{

A0u = f in Ω,
γ0u = 0 on ∂Ω. (4.2)
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Now, for any ϕ ∈ B2−1/p,p(∂Ω), we can find a function v ∈ W 2,p(Ω) such
that γ0v = ϕ on ∂Ω. Hence we obtain the following existence and uniqueness
theorem for the non-homogeneous Dirichlet problem:

Corollary 4.3. Let 1 < p < ∞. For any f ∈ Lp(Ω) and any ϕ ∈ B2−1/p,p(∂Ω),
there exists a unique solution u ∈ W 2,p(Ω) of the Dirichlet problem{

A0u = f in Ω,
γ0u = ϕ on ∂Ω. (4.3)

If we associate with problem (4.3) a continuous linear operator

A0 = (A0, γ0) : W 2,p(Ω) −→ Lp(Ω)
⊕

B2−1/p,p(∂Ω),

then Corollary 4.3 asserts that the mapping A0 is an algebraic and topological
isomorphism. In particular, we have, for 1 < p < ∞,

indA0 = 0. (4.4)

Step 2: If we let

Bu =
N∑

i=1

bi(x)
∂u

∂xi
+ c(x)u,

then it is clear that the operator

B : W 2,p(Ω) −→ W 1,p(Ω)

is continuous. Moreover, it follows from an application of the Rellich–Kondra-
chov theorem (see [24, Theorem 7.26]) that the injection W 1,p(Ω) → Lp(Ω) is
compact. Hence we find that the mapping

B : W 2,p(Ω) −→ Lp(Ω)

is compact.
Therefore, we obtain that the mapping

A = (A0 + B, γ0) = A0 + (B, 0) : W 2,p(Ω) −→ Lp(Ω)
⊕

B2−1/p,p(∂Ω)

is a Fredholm operator with index zero, since we have, by assertion (4.4),

indA = indA0 = 0.

Step 3: On the other hand, the uniqueness result in Theorem 4.1 follows
from a variant of the Bakel’man–Aleksandrov maximum principle in the frame-
work of Sobolev spaces due to Bony [10, Théorème 2] (see also [25, Lemma 3.25]):

Theorem 4.4. Let N < p < ∞. If a function u ∈ W 2,p(Ω) satisfies the
condition

Au(x) ≥ 0 for almost all x ∈ Ω,

then it follows that
max

Ω
u ≤ max

∂Ω
u+,

where
u+(x) = max{u(x), 0}, x ∈ Ω.
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Remark 4.2. In fact, Bony proved this maximum principle under the weaker
condition that aij ∈ L∞(Ω) (see the proof of [10, Théorème 1]).

Here it should be noticed that we have, by Sobolev’s imbedding theorem,

W 2,p(Ω) ⊂ C1(Ω),

since N < p < ∞ and so 2−N/p > 1. By applying Theorem 4.4 to the functions
±u(x), we find that{

Au = 0 almost everywhere in Ω,
γ0u = 0 on ∂Ω =⇒ u = 0 in Ω.

This implies that the mapping

A = (A, γ0) : W 2,p(Ω) −→ Lp(Ω)
⊕

B2−1/p,p(∂Ω)

is injective for N < p < ∞. Hence it is also surjective for N < p < ∞, since we
have indA = 0 for 1 < p < ∞.

Step 4: Summing up, we have proved that the mapping

A = (A, γ0) : W 2,p(Ω) −→ Lp(Ω)
⊕

B2−1/p,p(∂Ω)

is an algebraic and topological isomorphism for N < p < ∞.
Now the proof of Theorem 4.1 is complete.

5 Proof of Theorem 1.1

In this section we consider the Dirichlet problem for the Waldenfels operator
W = A + S in the framework of Sobolev spaces of Lp style, and prove Theo-
rem 1.1. The essential point in the proof is how to estimate the Lévy integral
operator

Su(x) =
∫

Ω

s(x, dy)

⎡⎣u(y) − u(x) −
N∑

j=1

∂u

∂xj
(x)(yj − xj)

⎤⎦
in terms of Sobolev norms. We show that the operator W = (W, γ0) may be
considered as a perturbation of a compact operator to the operator A = (A, γ0)
in the framework of Sobolev spaces. Therefore, the proof of Theorem 1.1 is
reduced to the differential operator case which is studied in Section 4.

The proof is divided into three steps.
Step 1: First, we study the integral operator S in the framework of Sobolev

spaces. To do this, we need the following lemma from real analysis (see [2,
Lemme 1]):

Lemma 5.1. If u ∈ W 2,p(RN) with N < p < ∞, we let

U(x) = sup
t∈RN

t�=0

∣∣∣u(x + t) − u(x) −∑N
j=1

∂u
∂xj

(x)tj
∣∣∣

|t|2 , x ∈ RN .

Then it follows that U ∈ Lp(RN ). More precisely, we have the estimate

‖U‖Lp(RN ) ≤ C1‖u‖W2,p(RN ),

with some constant C1 > 0 depending on N and p.
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By virtue of Lemma 5.1, we can estimate the integral term Su in terms of
Sobolev norms, just as in Bony [2, Théorème 1]:

Lemma 5.2. For every ε > 0, there exist constants c0 > 0 and C1 > 0, inde-
pendent of ε, such that we have, for all u ∈ W 2,p(Ω),

‖Su‖Lp(Ω) ≤ c0 ω(ε) ‖u‖W2,p(Ω) + Cε

(
1 +

C1

εN/p

)
‖∇u‖Lp(Ω). (5.1)

Here
Cε = sup

x∈Ω

∫
{y∈Ω:|y−x|>ε}

s(x, dy)|y − x|.

Step 2: We have, by Theorem 4.1,

indA = ind (A, γ0) = 0. (5.2)

On the other hand, inequality (5.1) tells us that the integral operator S is a
compact operator from W 2,p(Ω) into Lp(Ω), since limε↓0 ω(ε) = 0.

Therefore, we obtain that the operator

W = (A + S, γ0) = (A, γ0) + (S, 0) : W 2,p(Ω) −→ Lp(Ω)
⊕

B2−1/p,p(∂Ω)

is a perturbation of a compact operator to the operator A = (A, γ0). In partic-
ular, we have

indW = indA = 0.

Step 3: Hence, in order to show the bijectivity of W = (W, γ0) it suffices to
prove its injectivity :{

u ∈ W 2,p(Ω), Wu = 0 in Ω, γ0u = 0 on ∂Ω
=⇒ u = 0 in Ω.

(5.3)

However, this is an immediate consequence of the following maximum prin-
ciple due to Bony [2, Théorème 3]):

Theorem 5.3. Let N < p < ∞. If a function u ∈ W 2,p(Ω) satisfies the
condition

Wu(x) ≥ 0 for almost all x ∈ Ω,

then it follows that the function u(x) may take its positive maximum only on
the boundary ∂Ω.

Remark 5.1. It should be emphasized that Bony proved this maximum prin-
ciple under the weaker condition that aij ∈ L∞(Ω) (see the proof of [10,
Théorème 1]).

Indeed, the desired assertion (5.3) follows by applying Theorem 5.3 to the
functions ±u(x).

Step 4: Finally, the continuity of the inverse of W follows immediately from
an application of Banach’s closed graph theorem.

The proof of Theorem 1.1 is now complete.
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6 Proof of Theorem 1.2

In this section we apply a version of the Hille–Yosida theorem (Theorem 3.1)
to prove Theorem 1.2. We make use of an L∞ estimate for the Green operator
G0

α of the Dirichlet problem to verify all the conditions in Theorem 3.1 for the
operator W.

6.1 The space C0(Ω)

First, we consider a one-point compactification K∂ = K ∪ {∂} of the locally
compact space K = Ω. We say that two points x and y of Ω are equivalent
modulo ∂Ω if either x = y or x, y ∈ ∂Ω. We denote by Ω/∂Ω the totality
of equivalence classes modulo ∂Ω. On the set Ω/∂Ω we define the quotient
topology induced by the projection

q : Ω −→ Ω/∂Ω.

Then it is easy to see that the topological space Ω/∂Ω is a one-point compact-
ification K∂ of the space Ω and that the point at infinity ∂ corresponds to the
boundary ∂Ω:

K∂ := Ω/∂Ω, ∂ := ∂Ω.

Furthermore, we have the following two assertions:

(i) If ũ is a continuous function defined on Ω/∂Ω, then the function ũ ◦ q is
continuous on Ω and constant on ∂Ω.

(ii) Conversely, if u is a continuous function defined on Ω and constant on ∂Ω,
then it defines a continuous function ũ on Ω/∂Ω.

In other words, we have the isomorphism

C(K∂) ∼= {u ∈ C(Ω) : u is constant on ∂Ω
}

. (6.1)

Now we introduce a closed subspace of C(K∂) as follows (cf. formula (3.2)):

C0(K) = {u ∈ C(K∂) : u(∂) = 0} .

Then we have, by assertion (6.1), the isomorphism

C0(K) ∼= C0(Ω) =
{
u ∈ C(Ω) : u = 0 on ∂Ω

}
.

6.2 Proof of Theorem 1.2

In order to prove Theorem 1.2, it suffices to verify all conditions (a) through (d)
in Theorem 3.1 for the operator W. The proof is divided into four steps.

Step 1: (b) For each α > 0, the equation (αI − W)u = f has a unique
solution u ∈ D(W) for any f ∈ C0(Ω).

Since we have

c(x) − α ≤ −α for almost all x ∈ Ω,

applying Theorem 1.1 to the operator W − α we obtain that the Dirichlet
problem {

(α − W )u = f almost everywhere in Ω,
γ0u = 0 on ∂Ω
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has a unique solution u ∈ W 2,p(Ω) for any f ∈ Lp(Ω) with N < p < ∞. In
particular, for any f ∈ C0(Ω) there exists a function u ∈ W 2,p(Ω)∩C0(Ω) such
that

(α − W )u = f in Ω.

Hence we have
Wu = αu − f ∈ C0(Ω).

This proves that {
u ∈ D(W),
(αI − W)u = f.

Step 2: (c) For each α > 0, the Green operator G0
α = (αI − W)−1 is

non-negative on the space C0(Ω):

f ∈ C0(Ω), f(x) ≥ 0 in Ω =⇒ u(x) = G0
αf(x) ≥ 0 in Ω.

Indeed, if we let
v(x) = −u(x) = −G0

αf(x),

then it follows that {
(W − α)v = f ≥ 0 in Ω,
γ0v = 0 on ∂Ω.

Therefore, applying Theorem 5.3 to the operator W − α with α > 0 we obtain
that

v(x) ≤ 0 in Ω,

so that
u(x) = −v(x) ≥ 0 in Ω.

Step 3: (d) For each α > 0, the Green operator G0
α = (αI − W)−1 is

bounded on the space C0(Ω) with norm 1/α: ‖G0
α‖ ≤ 1/α.

Let f(x) be an arbitrary function in C0(Ω). If we let

u±(x) = ±αG0
αf(x) − ‖f‖ ∈ W 2,p(Ω),

we have only to prove that

u±(x) ≤ 0 in Ω. (6.2)

Indeed, it follows that

(W − α)u±(x) = ∓αf(x) + (α − c(x))‖f‖
= α(‖f‖ ∓ f(x)) + (−c(x))‖f‖
≥ 0 in Ω.

Thus, applying Theorem 5.3 to the operator W − α with α > 0 we obtain that
the function u±(x) may take its positive maximum only on ∂Ω. This proves
assertion (6.2), since we have

γ0(u±) = −‖f‖ ≤ 0 on ∂Ω.

Step 4: (a) The domain D(W) is dense in C0(Ω). More precisely, we prove
that, for each u ∈ C0(Ω), we have the assertion

lim
α→+∞ ‖αG0

αu − u‖ = 0. (6.3)
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Since the space
C2

0(Ω) := C2(Ω) ∩ C0(Ω)

is dense in C0(Ω), it suffices to prove assertion (6.3) for any u ∈ C2
0(Ω).

Step 4-1: To prove assertion (6.3) for any u ∈ C2
0(Ω), we shall introduce

an extension G̃0
α of the Green operator G0

α to the space L∞(Ω):

L∞(Ω)
�G0

α−−−−→ C0(Ω)�⏐⏐ ⏐⏐�
C0(Ω)

G0
α−−−−→ D(A)

By applying Theorem 1.1 the operator W − α with α > 0, we find that the
Dirichlet problem{

(α − W )u = f almost everywhere in Ω,
γ0u = 0 on ∂Ω

has a unique solution u ∈ W 2,p(Ω) ∩ C0(Ω) for any f ∈ L∞(Ω). If we let

u = G̃0
αf,

then it is easy to verify that the operator G̃0
α is an extension of G0

α to L∞(Ω).
Moreover, just as in Steps 2 and 3, we can prove the following two assertions:

(A) The operator G̃0
α : L∞(Ω) → C0(Ω) is non-negative.

(B) The operator G̃0
α : L∞(Ω) → C0(Ω) is bounded with norm 1/α: ‖G̃0

α‖ ≤
1/α.

Step 4-2: First, since all the coefficients of the operator A belong to L∞(Ω),
it follows that

Au =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑
i=1

bi(x)
∂u

∂xi
+ c(x)u ∈ L∞(Ω), (6.4)

u ∈ C2
0(Ω).

Furthermore, we can obtain an L∞-version of Lemma 5.2 as follows:

Lemma 6.1. For every ε > 0, there exists a constant C2 > 0, independent of
ε, such that we have, for all u ∈ C2

0(Ω),

‖Su‖L∞(Ω) ≤ 1
2
ω(ε)‖∇2u‖L∞(Ω) + Cε

(
1 +

C2

εN/p

)
‖∇u‖L∞(Ω). (6.5)

Proof. For each ε > 0, we decompose the integral term Su(x) into the two terms
S

(1)
ε u and S

(2)
ε u as follows:

Su(x) =
∫
{y∈Ω:|y−x|≤ε}

s(x, dy)

⎡⎣u(y) − u(x) −
N∑

j=1

∂u

∂xj
(x)(yj − xj)

⎤⎦
+
∫
{y∈Ω:|y−x|>ε}

s(x, dy)

⎡⎣u(y) − u(x) −
N∑

j=1

∂u

∂xj
(x)(yj − xj)

⎤⎦
:= S(1)

ε u(x) + S(2)
ε u(x).
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(1) First, we have, by Taylor’s formula,

|S(1)
ε u(x)|

≤
∫
{y∈Ω:0<|y−x|≤ε}

s(x, dy)

∣∣∣∣∣∣u(y) − u(x) −
N∑

j=1

∂u

∂xj
(x)(yj − xj)

∣∣∣∣∣∣
=

∫
{y∈Ω:0<|y−x|≤ε}

s(x, dy)|y − x|2 ·

∣∣∣u(y) − u(x) −∑N
j=1

∂u
∂xj

(x)(yj − xj)
∣∣∣

|y − x|2

≤ 1
2

∫
{y∈Ω:0<|y−x|≤ε}

s(x, dy)|y − x|2 · ‖∇2u‖L∞(Ω)

≤ 1
2
ω(ε)‖∇2u‖L∞(Ω),

so that
‖S(1)

ε u‖L∞(Ω) ≤ 1
2
ω(ε)‖∇2u‖L∞(Ω). (6.6)

(2) Secondly, we rewrite the term S
(2)
ε u in the form

S(2)
ε u(x) =

∫
{y∈Ω:|y−x|>ε}

s(x, dy) [u(y) − u(x)]

+
N∑

j=1

∫
{y∈Ω:|y−x|>ε}

s(x, dy)
∂u

∂xj
(x)(yj − xj)

:= A(x) + B(x).

Then, by using condition (1.4) we can estimate the term B(x) as follows:

|B(x)| ≤
∫
{y∈Ω:|y−x|>ε}

s(x, dy)|y − x| ·
N∑

j=1

∣∣∣∣ ∂u

∂xj
(x)
∣∣∣∣ ≤ Cε |∇u(x)|.

Hence we have
‖B‖L∞(Ω) ≤ Cε‖∇u‖L∞(Ω). (6.7)

On the other hand, by Morrey’s imbedding theorem (see [24, Theorem 7.17])
we can find a constant C > 0 such that

|u(y) − u(x)| ≤ C|y − x|1−N/p‖∇u‖Lp(Ω).

Hence it follows that

|A(x)| ≤
∫
{y∈Ω:|y−x|>ε}

s(x, dy)|u(y) − u(x)|

≤ C

∫
{y∈Ω:|y−x|>ε}

s(x, dy)|y − x|1−N/p · ‖∇u‖Lp(Ω)

= C

∫
{y∈Ω:|y−x|>ε}

s(x, dy)|y − x| · 1
|y − x|N/p

‖∇u‖Lp(Ω)

≤ C

εN/p

(∫
{y∈Ω:|y−x|>ε}

s(x, dy)|x − y|
)
‖∇u‖Lp(Ω)

≤ CCε

εN/p
‖∇u‖Lp(Ω).
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This proves that

‖A‖L∞(Ω) ≤ CCε

εN/p
‖∇u‖Lp(Ω) ≤ CCε

εN/p
|Ω|1/p‖∇u‖L∞(Ω), (6.8)

where |Ω| is the volume of the domain Ω.
By estimates (6.7) and (6.8), it follows that

‖S(2)
ε u‖L∞(Ω) ≤ ‖A‖L∞(Ω) + ‖B‖L∞(Ω)

≤ Cε

(
1 +

C|Ω|1/p

εN/p

)
‖∇u‖L∞(Ω). (6.9)

(3) The desired estimate (6.5) follows by combining estimates (6.6) and (6.9):

‖Su‖L∞(Ω) ≤ ‖S(1)
ε u‖L∞(Ω) + ‖S(2)

ε u‖L∞(Ω)

≤ 1
2
ω(ε)‖∇2u‖L∞(Ω) + Cε

(
1 +

C2

εN/p

)
‖∇u‖L∞(Ω),

with
C2 := C|Ω|1/p.

The proof of Lemma 6.1 is complete.

Therefore, we obtain from assertion (6.4) and estimate (6.5) that

Wu = Au + Su ∈ L∞(Ω), u ∈ C2
0(Ω).

Step 4-3: Now, if we let

w = αG0
αu − G̃0

α(Wu),

then we have {
w ∈ W 2,p(Ω) ∩ C0(Ω),
(W − α)w = −αu + Wu = (W − α)u in Ω,

and so {
w − u ∈ W 2,p(Ω) ∩ C0(Ω),
(W − α)(w − u) = 0 in Ω.

By Theorem 1.1, this implies that w − u = 0 in Ω, that is,

u = w = αG0
αu − G̃0

α(Wu).

Therefore, the desired assertion (6.3) for any u ∈ C2
0(Ω) follows from an appli-

cation of assertion (B), since we have, for all α > 0,

‖u − αG0
αu‖ = ‖G̃0

α(Wu)‖L∞(Ω) ≤ 1
α
‖Wu‖L∞(Ω). (6.10)

Now the proof of Theorem 1.2 is complete.
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6.3 Proof of Remark 1.3

Finally, we prove that the domain

D(W) =
{
u ∈ C0(Ω) ∩ W 2,p(Ω) : Wu ∈ C0(Ω)

}
is independent of N < p < ∞ (cf. the proof of [26, Lemma 4.2]).

We let
Dp :=

{
u ∈ W 2,p(Ω) ∩ C0(Ω) : Wu ∈ C0(Ω)

}
.

In order to prove Remark 1.3, it suffices to show that

Dp1 = Dp2 for N < p1 < p2 < ∞.

First, it follows that
Dp2 ⊂ Dp1 ,

since we have Lp2(Ω) ⊂ Lp1(Ω) for p2 > p1.
Conversely, let v be an arbitrary element of Dp1 :

v ∈ W 2,p1(Ω) ∩ C0(Ω), Wv ∈ C0(Ω).

Then, since we have v, Wv ∈ C0(Ω) ⊂ Lp2 (Ω), it follows from an application
of Theorem 1.1 with p := p2 that there exists a unique function u ∈ W 2,p2(Ω)
such that {

Wu = Wv in Ω,
γ0u = 0 on ∂Ω.

Hence we have ⎧⎨⎩u − v ∈ W 2,p1(Ω),
W (u − v) = 0 in Ω,
γ0(u − v) = 0 on ∂Ω.

Therefore, by applying again Theorem 1.1 with p := p1 we obtain that u−v = 0,
so that v = u ∈ W 2,p2(Ω). This implies that v ∈ Dp2 .
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