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��������� This paper is devoted to the study of the following degenerate Neumann

problem for a quasilinear elliptic integro-differential operator

�
Wu(x) = f(x, u, Du) in Ω,

Lu(x) = ϕ(x) on Γ.

Here W is a second-order elliptic integro-differential operator of Waldenfels type and

Lu = a(x)∂u
∂�

+ b(x)u is a first-order Ventcel’ operator with a(x) and b(x) being non-

negative smooth functions on Γ such that a(x) + b(x) > 0 on Γ. Classical existence
and uniqueness results in the framework of Hölder spaces are derived under suitable

regularity and structure conditions on the nonlinear term f(x, u, Du).

1. Introduction and Main Results

This paper is a continuation of the previous note [11] where we studied a degen-
erate Neumann problem for quasilinear second-order elliptic differential operators
and proved classical existence and uniqueness results in the framework of Hölder
spaces under suitable regularity and structure conditions on the nonlinear term.
The purpose of this paper is to extend these results to the integro-differential op-
erator case.

Let Ω be a bounded and convex domain of Euclidean space R
n, n ≥ 2, with

smooth boundary Γ; its closure Ω = Ω ∪ Γ is an n-dimensional, compact smooth
manifold with boundary.

Let W be a second-order, elliptic integro-differential operator with real coeffi-
cients such that

Wu(x) = Au(x) + Su(x)

:=
n∑

i,j=1

aij(x)
∂2u

∂xi∂xj
(x)

+
∫

Rn\{0}


u(x + z) − u(x) −

n∑
j=1

zj
∂u

∂xj
(x)


 s(x, z)m(dz).

Here:
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(1) aij ∈ C∞(Ω), aij(x) = aji(x) and there exists a constant a0 > 0 such that

n∑
i,j=1

aij(x)ξiξj ≥ a0|ξ|2, x ∈ Ω, ξ ∈ R
n.

(2) s(x, z) ∈ C(Ω×R
n) and 0 ≤ s(x, z) ≤ 1 in Ω×R

n, and there exist constants
C0 > 0 and 0 < θ0 < 1 such that

|s(x, z) − s(y, z)| ≤ C0|x − y|θ0 , x, y ∈ Ω, z ∈ R
n,

and

s(x, z) = 0 if x + z �∈ Ω. (1.1)

Condition (1.1) implies that the integral operator S may be considered as an oper-
ator acting on functions u defined on the closure Ω.

(3) The measure m(dz) is a Radon measure on R
n \ {0} which satisfies the

moment condition ∫
{|z|≤1}

|z|2 m(dz) +
∫
{|z|>1}

|z|m(dz) < ∞.

The operator W = A + S is called a second-order Waldenfels operator. The
differential operator A is called a diffusion operator which describes analytically a
strong Markov process with continuous paths in the interior Ω such as Brownian
motion. The integral operator S is called a second-order Lévy operator which is
supposed to correspond to the jump phenomenon in the closure Ω (see [2], [7], [8]).
In this context, condition (1.1) implies that any Markovian particle does not move
by jumps from x ∈ Ω to the outside of Ω.

Let L be a first-order, boundary operator with real coefficients such that

Lu(x) = a(x)
∂u

∂ν
(x) + b(x)u(x).

Here:
(1) a(x) ∈ C∞(Γ) and a(x) ≥ 0 on Γ.
(2) b(x) ∈ C∞(Γ) and b(x) ≥ 0 on Γ.
(3) ν is the unit exterior normal to Γ.
The boundary operator L is called a first-order Ventcel’ boundary operator. The

terms a∂u/∂ν and bu of L are supposed to correspond to the reflection phenomenon
and the absorption phenomenon, respectively (see [2], [8]).

In this paper we study the following quasilinear elliptic boundary value problem:
Given a continuous function f(x, z, p) defined on Ω × R × R

n, find a function u(x)
in Ω such that { Wu(x) = f(x,u, Du) in Ω,

Lu(x) = 0 on Γ.
(1.2)

Here Du stands for the gradient (∂u/∂x1, ∂u/∂x2, . . . , ∂u/∂xn) of u. The interest
to the problems of type (1.2) is prompted by their importance in the theory of
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stochastic processes. The nonlinear term f(x,u, Du) represents such a branching
phenomenon as in Brownian motion (cf. [5]).

The linear problem { Wu(x) = f(x) in Ω,

Lu(x) = ϕ(x) on Γ
was studied by Taira [10] in the framework of Hölder spaces. The first purpose of
this paper is to extend the existence and uniqueness result [10, Theorem 1] to the
quasilinear problem (1.2).

Now we formulate our fundamental hypotheses on the nonlinear term f(x,u, Du):
Regularity conditions:{

f(x, z, p) ∈ Cθ0(Ω × R × R
n), 0 < θ0 < 1,

f(x, z, p) is continuously differentiable with respect to p.
(1.3)

Monotonicity condition:


f(x, z, p) is a monotone increasing and differentiable function

with respect to z ∈ R for any (x, p) ∈ Ω × R
n and there exist

constants f0 > 0 and M1 > 0 such that
∂f

∂z
(x, z, p) ≥ f0 for any (x, p) ∈ Ω × R

n and z ∈ R with |z| ≥ M1.

(1.4)

Quadratic gradient growth condition: one can find a positive and non-decreasing
function f1(t) on the interval [0,∞) such that

|f(x, z, p)| ≤ f1(|z|)
(
1 + |p|2

)
for all (x, z, p) ∈ Ω × R × R

n. (1.5)

Our final hypothesis concerns the behavior of the functions a and b on Γ:

a(x) ≥ 0, b(x) ≥ 0, a(x) + b(x) > 0 for all x ∈ Γ. (1.6)

We should point out that problem (1.2) is a singular boundary value problem in view
of condition (1.6), since the so-called Shapiro-Lopatinskii complementary condition
is violated at the points x ∈ Γ where a(x) = 0.

Our main result is the following existence theorem of classical solutions in the
framework of Hölder spaces:

Theorem 1.1. Suppose that conditions (1.3) through (1.6) are satisfied. Then the
homogeneous problem (1.2) admits a unique classical solution u ∈ C2+θ(Ω) for each
θ satisfying 0 < θ < θ0.

The second purpose of this paper is to extend Theorem 1.1 to the non-homogene-
ous case. To do so, following Taira [9] and [10], we introduce the next interpolation
Banach space

C1+θ
∗ (Γ) =

{
ϕ = a(x)ϕ1 + b(x)ϕ2 : ϕ1 ∈ C1+θ(Γ), ϕ2 ∈ C2+θ(Γ)

}
, 0 < θ < 1,

equipped with the norm

‖ϕ‖C1+θ
∗ (Γ) = inf

{
‖ϕ1‖C1+θ(Γ) + ‖ϕ2‖C2+θ(Γ) : ϕ = a(x)ϕ1 + b(x)ϕ2

}
.

We note that the space C1+θ∗ (Γ) is an “interpolation space” between C2+θ(Γ) and
C1+θ(Γ); more precisely, it is easy to see that{

C1+θ∗ (Γ) = C2+θ(Γ) if a(x) ≡ 0 on Γ,

C1+θ
∗ (Γ) = C1+θ(Γ) if a(x) > 0 on Γ.

Then we have the following generalization of [11, Theorem 1.1] to the integro-
differential operator case:
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Theorem 1.2. Suppose that conditions (1.3) through (1.6) are satisfied. Then the
non-homogeneous problem

{ Wu(x) = f(x,u, Du) in Ω,

Lu(x) = ϕ(x) on Γ
(1.7)

admits a unique classical solution u ∈ C2+θ(Ω) for any ϕ ∈ C1+θ∗ (Γ).

The monotonicity condition (1.4) will play an important role in the proof of
uniqueness of solutions of problems (1.2) and (1.7), and also in the proof of an
a’priori estimate for the C(Ω)-norm of these solutions. It turns out that, in some
special cases we may replace the requirement on differentiability of f(x, z, p) with
respect to z by a weaker structure condition. Thus, instead of condition (1.4) we
impose the following monotonicity condition:




f(x, z, p) is a monotone increasing function with respect

to its second argument z ∈ R for any (x, p) ∈ Ω × R
n, and

there exists a constant M2 > 0 such that
sign z·f(x, z, 0) ≥ 0 for any x ∈ Ω and z ∈ R with |z| ≥ M2.

(1.8)

Then Theorems 1.1 and 1.2 can be generalized as follows:

Theorem 1.3. If conditions (1.3), (1.5), (1.6) and (1.8) are satisfied, then we
have the following:

(i) The homogeneous problem (1.2) possesses a unique classical solution u ∈
C2+θ(Ω) for each θ satisfying 0 < θ < θ0.

(ii) In addition to the above requirements, suppose that b(x) > 0 on Γ. Then the
non-homogeneous problem (1.7) is uniquely solvable in the space C2+θ(Ω) for any
ϕ ∈ C1+θ∗ (Γ).

We give two simple examples for the function f(x, z, p):

Examples 1.4. (i) The function f(x, z, p) = g(x)z2k+1(1+ |p|2) satisfies condition
(1.4) if g(x) > 0 on Ω. Here k is a non-negative integer.
(ii) The function f(x, z, p) = g(x)zez(1 + |p|2) satisfies condition (1.8) if g(x) ≥ 0
on Ω.

The rest of the paper is organized as follows. In Section 2 we prove a compari-
son principle for quasilinear integro-differential operators (Lemma 2.1), and derive
C1+θ(Ω)-a’priori estimates for the solutions to problems (1.2) and (1.7) (Lemmas
2.2, 2.3 and 2.5). Section 3 is devoted to the proof of Theorems 1.1, 1.2 and
1.3. The uniqueness result is an immediate consequence of the comparison princi-
ple. The solvability of problems (1.2) and (1.7) follows from an application of the
Leray-Schauder fixed point theorem, by making use of the a’priori estimates for
the solutions u ∈ C2+θ(Ω) to problem (1.2) or problem (1.7).

Throughout the paper the letter C will denote a generic positive constant in-
dependent of the solutions to the relative problem under consideration. Any such
constant may vary from a line into another.
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2. A’priori Estimates

In order to prove our results, we shall apply the Leray-Schauder fixed point
theorem (see [4, Theorem 11.3]). So we must establish a’priori estimates for the
C1+θ(Ω)-norm of every solution u ∈ C2+θ(Ω) to problem (1.2) or problem (1.7).

To begin with, the following comparison principle for quasilinear operators will
be established.

Lemma 2.1. Suppose that conditions (1.3) and (1.6) are fulfilled and that f(x, z, p)
is monotone increasing in z for each (x, p) ∈ Ω×R

n and is differentiable with respect
to p for each (x, z, p) ∈ Ω×R×R

n. If u, v ∈ C2(Ω)∩C1(Ω) satisfy the conditions{ Wu(x) − f(x,u, Du) ≥ Wv(x) − f(x, v,Dv) in Ω,

Lu(x) ≤ Lv(x) on Γ,

then we have u(x) ≤ v(x) on Ω.

Proof. Let w = u − v, and suppose to the contrary that the set

Ω+ = {x ∈ Ω : w(x) > 0} = {x ∈ Ω : u(x) > v(x)}

is non-empty. Then it follows that

Ww(x) + f(x,u, Dv) − f(x,u, Du) ≥ f(x,u, Dv) − f(x, v,Dv) > 0 on Ω+,

since f(x, z, p) increases with respect to its second argument z. Thus, by letting

bi(x) = −
∫ 1

0

∂f

∂pi
(x,u(x), tDw(x) + Dv(x))dt,

we obtain that

Ww(x) +
n∑

i=1

bi(x)
∂w

∂xi
(x) > 0 on Ω+.

If x0 is a point of Ω such that w(x0) = maxΩ w(x) > 0, then it follows from an
application of the strong interior maximum principle [2, Théorème VII] that

x0 ∈ ∂Ω+ ∩ Γ.

Therefore we have, by the boundary point lemma [2, Théorème VIII],

∂w

∂ν
(x0) > 0.

However it follows from condition (1.6) that

Lw(x0) = a(x0)
∂w

∂ν
(x0) + b(x0)w(x0) > 0.

This contradicts the boundary condition Lw(x) ≤ 0 on Γ.
Summing up, we have proved that the set Ω+ is empty and the statement fol-

lows. �
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2.1 A’priori estimate for ‖u‖C(Ω). As a first step, we establish an a’priori es-
timate for the norm ‖u‖C(Ω) of every solution u ∈ C2+θ(Ω) to the homogeneous
problem (1.2):

Lemma 2.2. Suppose that conditions (1.3), (1.4) and (1.6) are fulfilled. If u ∈
C2(Ω) ∩ C1(Ω) is a solution to problem (1.2), then we have

‖u‖C(Ω) = max
Ω

|u(x)| ≤ M1 +
maxΩ |f(x,M1 , 0)|

f0
, (2.1)

where M1 > 0 is the constant given in condition (1.4).

Proof. By letting

K1 = M1 +
maxΩ |f(x,M1 , 0)|

f0
,

we obtain from condition (1.4) that

Wu(x) − f(x,u, Du) = 0 ≥ (M1 −K1)f0 − f(x,M1 , 0)

≥ (M1 −K1)
∫ 1

0

∂f

∂z
(x, t(K1 − M1) + M1, 0)dt

− f(x,M1 , 0)

= −f(x,K1 , 0) = WK1(x) − f(x,K1 ,DK1) in Ω,

and
Lu(x) = 0 ≤ b(x)K1 = LK1(x) on Γ.

Therefore it follows from an application of Lemma 2.1 that u(x) ≤ K1 for each
x ∈ Ω.

Repeating the same procedure with u(x) replaced by −u(x) and f(x, z, p) re-
placed by −f(x,−z,−p), we obtain that −u(x) ≤ K1 for each x ∈ Ω.

This completes the proof of Lemma 2.2. �
The next result makes use of the monotonicity condition (1.8) instead of the

monotonicity condition (1.4):

Lemma 2.3. Suppose that conditions (1.3), (1.6) and (1.8) are satisfied. Then we
have the following:

(i) If u ∈ C2(Ω) ∩ C1(Ω) is a solution to the homogeneous problem (1.2), then
we have the estimate

‖u‖C(Ω) ≤ M2,

where M2 > 0 is the constant given in condition (1.8).
(ii) Furthermore suppose that b(x) > 0 on Γ. If u ∈ C2(Ω)∩C1(Ω) is a solution

to the non-homogeneous problem (1.7), then we have, with b0 = minΓ b(x) > 0,

‖u‖C(Ω) ≤ M2 +
maxΓ |ϕ(x)|

b0
.

Proof. (i) If u solves the homogeneous problem (1.2), it follows from condition (1.8)
that

WM2(x) − f(x,M2 ,DM2) = −f(x,M2 , 0) ≤ 0 in Ω.



A DEGENERATE NEUMANN PROBLEM 7

Hence we have

Wu(x) − f(x,u, Du) = 0 ≥ WM2(x) − f(x,M2 ,DM2) in Ω,

and also
Lu(x) = 0 ≤ b(x)M2 = LM2(x) on Γ.

Therefore, by applying Lemma 2.1 we obtain that |u(x)| ≤ M2.
(ii) If u solves the non-homogeneous problem (1.7), we let

K2 = M2 +
maxΓ |ϕ(x)|

b0
.

Then we have, just as in part (i),

Wu(x) − f(x,u, Du) = 0 ≥ −f(x,K2 , 0)

= WK2(x) − f(x,K2 ,DK2) in Ω,

and also

Lu(x) = ϕ(x) ≤ max
Γ

|ϕ(x)| ≤ b(x)
maxΓ |ϕ(x)|

b0

≤ b(x)K2 = LK2(x) on Γ.

Hence it follows from an application of Lemma 2.1 that |u(x)| ≤ K2.
The proof of Lemma 2.3 is complete. �

2.2 A’priori estimate for [u]C1+θ(Ω). After having the a’priori estimate (2.1),
the desired bound on ‖u‖C1+θ(Ω) will follow immediately if we have a uniform
estimate for the Hölder seminorm

[u]C1+θ(Ω) := [Du]Cθ(Ω) = sup
x,y∈Ω

|Du(x) −Du(y)|
|x − y|θ .

On the other hand, the Morrey lemma assures the imbedding of the Sobolev space
W 2,p(Ω) into C1+θ(Ω) with p = n/(1 − θ). Therefore the bound on [Du]Cθ(Ω)

becomes equivalent to a uniform (with respect to u) estimate for the Sobolev norm
‖u‖W2,p(Ω) of every solution to problem (1.2). According to [10, Theorem 3] (see
Proposition 2.4 below also) and condition (1.5), we obtain that

‖u‖W2,p(Ω) ≤ Cf1

(
‖u‖C(Ω)

)(
1 + ‖Du‖2

L2p(Ω)

)
.

In order to estimate the norm ‖Du‖2
L2p(Ω), we shall use an approach due to Amann-

Crandall [1]. In this way, we will conclude that there exists a non-negative and
increasing function γ(t) on the interval [0,∞), which depends only on known quan-
tities, such that

‖u‖W2,p(Ω) ≤ γ(‖u‖C(Ω)),

and hence the desired bound on [u]C1+θ(Ω) will follow from an application of the
Morrey lemma.

For the later purposes, we need the following version of [10, Theorem 3.1]:
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Proposition 2.4. There exists a constant λ > 0 such that the linear problem{ Wu(x) − λu(x) = g(x) in Ω,

Lu(x) = 0 on Γ

admits a unique strong solution u ∈ W 2,p(Ω) for any g ∈ Lp(Ω). Moreover we have
the estimate

‖u‖W2,p(Ω) ≤ C‖g‖Lp(Ω),

with a constant C > 0 independent of the solution u.

To proceed further, we fix a constant λ > 0 as in Proposition 2.4. The next
lemma is an essential step in the proof of the a’priori estimate for the seminorm
[u]C1+θ(Ω) of every solution u ∈ C2+θ(Ω) to the homogeneous problem (1.2):

Lemma 2.5. Let p = n/(1 − θ) and suppose that conditions (1.3) through (1.6)
are fulfilled. Then there exists a constant C > 0, depending on the data of problem
(1.2) and on ‖u‖C(Ω), such that

‖Du‖L2p(Ω) ≤ C (2.2)

for every solution u ∈ C2+θ(Ω) to problem (1.2).

Proof. (I) Let u ∈ C2+θ(Ω) be an arbitrary solution to problem (1.2), and let

B(x) = −f(x,u(x),Du(x))
1 + |Du(x)|2 , (2.3a)

F (x) =
f(x,u(x),Du(x))

1 + |Du(x)|2 − λu(x), (2.3b)

just as in Amann-Crandall [1]. Then it follows that B(x), F (x) ∈ Cθ(Ω). Hence
the function u(x) solves the problem{ Wu(x) + B(x)|Du(x)|2 − λu(x) = F (x) in Ω,

Lu(x) = 0 on Γ.
(2.4)

Now, for the fixed function u(x), we imbed problem (2.4) into one-parameter family
of problems{ Wu(x;σ) + B(x)|Dxu(x;σ)|2 − λu(x;σ) = σF (x) a.e. in Ω,

Lu(x;σ) = 0 on Γ,
(2.5)

depending on the parameter σ ∈ [0, 1].
(II) Our aim will be to study problem (2.5) in the framework of Sobolev spaces

W 2,p(Ω) with p = n/(1 − θ). Indeed, at this stage of our investigation, we do
not know any existence or uniqueness result concerning problem (2.5). However it
should be noted that, setting σ = 0, problem (2.5) has at least one solution and it
is the trivial one. Further on, problem (2.5) with σ = 1 coincides with the original
problem (1.2) and an eventual uniqueness result would imply that u(x; 1) ≡ u(x).
The strategy we are going to follow consists of estimating ‖Dxu(x;σ2)‖L2p(Ω) in
terms of ‖Dxu(x;σ1)‖L2p(Ω) whenever the difference σ2−σ1 > 0 is sufficiently small.
Then, an additional solvability result for problem (2.5) in the space W 2,p(Ω) for each
σ ∈ [0, 1] would assure estimate (2.2) by iteration of the norms ‖Dxu(x;σ)‖L2p(Ω)

for σ < 1.
(II-a) We start to realize our aim by inferring the continuous dependence of

problem (2.5) on the parameter σ:
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Proposition 2.6. Let u(x;σ1), u(x;σ2) ∈ W 2,p(Ω) solve problem (2.5) with cor-
responding parameters σ1 ≤ σ2. Then we have the inequality

‖u(x;σ1) − u(x;σ2)‖C(Ω) ≤ (σ2 − σ1)f̃λ(‖u‖C(Ω)), (2.6)

where f̃λ(t) is a positive and non-decreasing function on the interval [0,∞) defined
by the formula

f̃λ(t) =
f1(t) + λt

λ
.

Proof. The difference

v(x) = u(x;σ1) − u(x;σ2) ∈ W 2,p(Ω)

solves the linear problem


 Wv(x) +

∑n
i=1 Bi(x)

∂v

∂xi
(x) − λv(x) = (σ1 − σ2)F (x) a.e. in Ω,

Lv(x) = 0 on Γ,

where

Bi(x) = 2B(x)
∫ 1

0

(
t

∂v

∂xi
(x) +

∂u

∂xi
u(x;σ2)

)
dt ∈ Cθ(Ω).

Therefore we have, by condition (1.5) and Lemma 2.2,

‖v‖C(Ω) ≤ (σ2 − σ1)f̃λ(‖u‖C(Ω)).

Indeed, in order to apply Lemma 2.2 we must show that v ∈ C2(Ω)∩C1(Ω), while
we only know that v ∈ W 2,p(Ω). However, standard bootstrapping arguments infer
that v ∈ C2(Ω) ∩ C1(Ω). In fact, the function v solves the problem


 Wv(x) − λv(x) = (σ1 − σ2)F (x) −

∑n
i=1 Bi(x)

∂v

∂xi
(x) a.e. in Ω,

Lv(x) = 0 on Γ,

with

(σ1 − σ2)F (x) −
n∑

i=1

Bi(x)
∂v

∂xi
(x) ∈ Cθ(Ω).

Hence it follows that v ∈ C2+θ(Ω), since the mappings W −λI : W 2,p(Ω) → Lp(Ω)
and W − λI : C2+θ(Ω) → Cθ(Ω) are both bijective (see Proposition 2.4 and [10,
Theorem 1]). �

Corollary 2.7. Problem (2.5) has at most one solution u(x;σ) ∈ W 2,p(Ω) for each
σ ∈ [0, 1].

Proof. The statement is a trivial consequence of estimate (2.6) if we take σ1 = σ2

therein. �
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(II-b) To proceed further with the proof of Lemma 2.5, let σ1 < σ2 be two
arbitrary values of the parameter σ ∈ [0, 1] and let u(x;σ1), u(x;σ2) ∈ W 2,p(Ω) be
the corresponding solutions to problem (2.5). Then it follows that the difference

v(x) = u(x;σ1) − u(x;σ2) ∈ W 2,p(Ω)

is a solution to the problem


Wv(x) − λv(x) = (σ1 − σ2)F (x)
−B(x)

(
|Dxu(x;σ1)|2 − |Dxu(x;σ2)|2

)
a.e. in Ω,

Lv(x) = 0 on Γ.

Hence it follows from an application of Proposition 2.4 that

‖v‖W2,p(Ω) ≤ C
∥∥(σ1 − σ2)F − B

(
|Dxu(·; σ1)|2 − |Dxu(·; σ2)|2

)∥∥
Lp(Ω)

,

so that, in view of condition (1.5), definitions (2.3) and estimate (2.1)

‖v‖W2,p(Ω) ≤ C
(
1 + ‖Dv‖2

L2p(Ω) + ‖Dxu(·; σ1)‖2
L2p(Ω)

)
. (2.7)

However, by combining the Gagliardo-Nirenberg inequality (see [3], [6]) and in-
equality (2.6) we can estimate the second term on the right of inequality (2.7) as
follows:

‖Dv‖2
L2p(Ω) ≤ C‖D2v‖Lp(Ω)‖v‖L∞(Ω)

≤ C(σ2 − σ1)‖v‖W2,p(Ω)f̃λ

(
‖u‖C(Ω)

)
.

Therefore we have, with a constant C1 > 0 independent of σ2 − σ1,

‖Dv‖2
L2p(Ω) ≤ C1

(
1 + (σ2 − σ1)‖Dv‖2

L2p(Ω) + ‖Dxu(·; σ1)‖2
L2p(Ω)

)
.

In particular, taking an ε > 0 so small that C1ε < 1/2 we derive that

‖Dxv(·;σ2)‖2
L2p(Ω) ≤ C2 + C3‖Dxu(·; σ1)‖2

L2p(Ω), (2.8)

whenever σ2 − σ1 ≤ ε. Here C2 > 0, C3 > 0 are some constants. On the other
hand, Corollary 2.7 tells us that u(x;σ1) ≡ 0 if σ1 = 0.

Therefore, if we take σ1 = 0 and σ2 = ε, we obtain from estimate (2.8) that

‖Dxu(·; ε)‖2
L2p(Ω) ≤ C2 (2.9)

for every solution u(x; ε) ∈ W 2,p(Ω) to problem (2.5) with σ = ε.
(III) In order to complete the proof of Lemma 2.5, it remains to prove the

W 2,p(Ω) solvability of problem (2.5) for σ = ε. We will make use of the Leray-
Schauder fixed point theorem. To do so, we introduce a compact nonlinear operator

T : W 1,2p(Ω) −→ W 2,p(Ω) ↪→↪→
compactly

W 1,2p(Ω)
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as follows: For each function w ∈ W 1,2p(Ω), the function T w ∈ W 2,p(Ω) is the
unique solution to the linear problem

{ W(T w)(x) − λT w(x) = εF (x) −B(x)|Dw(x)|2 a.e. in Ω,

L(T w)(x) = 0 on Γ.
(2.10)

Here we note that |Dw|2 ∈ Lp(Ω) and that problem (2.10) is uniquely solvable in
the space W 2,p(Ω) as a consequence of Proposition 2.4. The same result ensures
the continuity of the mapping T , while the Rellich theorem implies that T is a
compact operator considered as a mapping of W 1,2p(Ω) into itself. Further on, the
bound (2.9) supplies a uniform (with respect to w and τ ) a’priori estimate for every
solution to the equation w = τT w, τ ∈ [0, 1], which is equivalent to the problem

{ Ww(x) − λw(x) = τ
(
εF (x) − B(x)|Dw(x)|2

)
a.e. in Ω,

Lw(x) = 0 on Γ.

Therefore, by virtue of the Leray-Schauder fixed point theorem one can find a fixed
point w = T w ∈ W 1,2p(Ω) of the mapping T , w ∈ W 2,p(Ω) and it solves problem
(2.5) with σ = ε.

(IV) Now we cover the interval [0, 1] by a finite number of intervals of length
ε, and set σ1 = mε, σ2 = (m + 1)ε, m = 1, 2, . . . , in estimate (2.8). The desired
estimate (2.2) for u(x) ≡ u(x; 1) follows by applying finitely many times the above
procedure and using Corollary 2.7 at each step.

The proof of Lemma 2.5 is complete. �

Bearing in mind Proposition 2.4, we derive the following:

Corollary 2.8. Under the assumptions of Lemmas 2.2 and 2.5, there exists a
constant C > 0, independent of u, such that

‖u‖W2,p(Ω) ≤ C

for every solution u ∈ W 2,p(Ω) to problem (1.2).

Corollary 2.9. If conditions (1.3) through (1.6) are fulfilled, then there exists a
constant C > 0, independent of u, such that

‖u‖C1+θ(Ω) ≤ C (2.11)

for every solution u ∈ C2+θ(Ω) to problem (1.2).

Proof. Estimate (2.11) is an immediate consequence of the Morrey lemma (i.e.,
W 2,p(Ω) ⊂ C1+θ(Ω) with p = n/(1 − θ)) and Corollary 2.8. �

3. Proof of Main Results

This section is devoted to the proof of Theorems 1.1, 1.2 and 1.3.

3.1 Proof of Theorem 1.1. The uniqueness assertion of Theorem 1.1 follows im-
mediately from the monotonicity of f(x, z, p) with respect to z and the comparison
principle (Lemma 2.1).
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In order to prove the solvability of problem (1.2), take an arbitrary function
v ∈ C1+θ(Ω), 0 < θ < θ0, and consider the linear problem{ Wu(x) = f(x, v,Dv) in Ω,

Lu(x) = 0 on Γ.
(3.1)

By virtue of condition (1.3), it follows that f(x, v,Dv) ∈ Cθ(Ω). Therefore [10,
Theorem 1] asserts that problem (3.1) possesses a unique solution u ∈ C2+θ(Ω) for
any v ∈ C1+θ(Ω). Define a nonlinear operator

H : C1+θ(Ω) −→ C2+θ(Ω) ↪→↪→
compactly

C1+θ(Ω)

by the formula Hv = u. Then it is easy to see that H is a compact operator from
C1+θ(Ω) into itself. Further on, the continuity of H follows in a standard way from
the fact that the operator (W,L) is a topological isomorphism between the Banach
spaces C2+θ(Ω) and Cθ(Ω) ⊕ {0} (see [10, Theorem 1]).

Now, for each ρ ∈ [0, 1] we consider the equation u = ρHu, that is, the problem{ Wu(x) = ρf(x,u, Du) in Ω,

Lu(x) = 0 on Γ.
(3.2)

As it was already shown by Corollary 2.9, one can find a constant C > 0, which
depends only on the data of problem (3.2) but not on u and ρ, such that

‖u‖C1+θ(Ω) ≤ C (3.3)

for every solution u ∈ C2+θ(Ω) to problem (3.2).
In this way, the properties of H and estimate (3.3) imply, through the Leray-

Schauder theorem, the existence of a fixed point u ∈ C1+θ(Ω) of the mapping H.
The function u becomes a solution to problem (1.2) in view of the definition of H.
Finally, the smoothing properties of H yield that

u = Hu ∈ C2+θ(Ω).

The proof of Theorem 1.1 is now complete. �
3.2 Proof of Theorem 1.2. According to [10, Theorem 1], the linear problem{ Wv(x) − v(x) = 0 in Ω,

Lv(x) = ϕ(x) on Γ

possesses a unique classical solution v ∈ C2+θ(Ω). In this way, if u is a solution to
problem (1.7), then the function w = u − v solves the homogeneous problem{ Ww(x) = f(x,w, Dw) in Ω,

Lw(x) = 0 on Γ,

with
f(x, z, p) = f(x, z + v(x), p + Dv(x)) − v(x).

It is easy to verify that the function f(x, z, p) satisfies conditions of types (1.3)
through (1.6), and we are in a position to apply Theorem 1.1. Indeed, it suffices
to note that condition (1.4) is fulfilled by the function f(x, z, p) with the constant
M ′

1 = M1 + maxΩ |v(x)|, and that estimate (2.11) remains valid for every solution
u ∈ C2+θ(Ω) to the non-homogeneous problem (1.7), with some constant C ′ > 0
depending on ‖ϕ‖C1+θ

∗ (Γ) in addition. �
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3.3 Proof of Theorem 1.3. The proof of Theorem 1.3 may be carried out just as
in the proof of Theorem 1.1 if we use Lemma 2.3 instead of Lemma 2.2. Further-
more, slight modifications should be done in the proof of the second statement of
Theorem 1.3. Namely, one must consider one-parameter family of non-homogeneous
boundary value problems{ Wu(x;σ) + B(x)|Dxu(x;σ)|2 − λu(x;σ) = σF (x) a.e. in Ω,

Lu(x;σ) = σϕ(x) on Γ,

instead of problems (2.5) (cf. the proof of [11, Theorem 1.1]). �
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