重金属環境のドクゼリ(Cicuta virosa L.)における 内生細菌の関与した Zn 吸収促進機構の解明

筑波大学大学院

生命環境科学研究科

持続環境学専攻

博士 (環境学) 学位論文

2014年1月

長田 賢志

目次

略語

第1章 緒論	1
1-1 重金属による土壌汚染	1
1-2 植物を利用した重金属汚染土壌の修復	3
1-3 根圏及び内生細菌	4
1-4 日立鉱山沼の優占種・ドクゼリ(<i>Cicuta virosa</i>)	6
1-5 本研究の目的	7
第2章 ドクゼリ実生への内生細菌の接種試験	11
2-1 目的	11
2-2 材料及び方法	11
2-2-1 滅菌ドクゼリの作製	11
2-2-2 滅菌土壌の作製	11
2-2-3 接種試験	12
2-2-4 IAA 産生能力試験	13
2-2-5 統計解析	14
2-3 結果	14
2-3-1 P. putida 接種におけるドクゼリ実生への影響	14
2-3-2 Rhodopseudomonas sp.接種におけるドクゼリへの影響	15
2-4 考察	15
2-5 要約	18

第3	章 Pseude	omonas putidaの産生する不溶性 Zn 可溶化物質の単離と同定	26
3-1	目的		26
3-2	材料及び	方法	26
	3-2-1	使用した試薬	26
	3-2-2	Pseudomonas putida 培養濾液の作製	26
	3-2-3	酢酸エチルによる抽出	27
	3-2-4	アンバーライト XAD-4 による分画	27
	3-2-5	強陰イオン交換樹脂アンバーライト IRA 400J による分画	28
	3-2-6	高速液体クロマトグラフィー (HPLC) 用いた分取	29
	3-2-7	Zn可溶化試験	30
	3-2-8	ガスクロマトグラフィー (GC/MS) を用いた分析	30
	3-2-9	核磁気共鳴分光分析 (NMR)	31
	3-2-10	Electrospray ionization time-of-flight 型質量分析 (ESI-TOF-MS) 32
3-3	結果		32
3-4	考察		35
3-5	要約		39
第4	章 総合者	芳察	49
摘要	Ī		62
引用	文献		64
謝辞	1		75

略語

ACCD	Amino cyclopropane carboxylate deaminase
ALA	5-aminolevulinic acid
COSY	Correlation spectroscopy
DEPT	Distorsionless enhancement by polarization transfer
EI-MS	Electron ionization mass spectrometry
ESI-TOF-MS	Electron spray ionization time of flight mass spectrometry
Fr.	Fraction
GC/MS	Gas chromatography-mass spectrometry
HCl	Hydrochloric acid
HPLC	High performance liquid chromatography
IAA	Indole-3-acetic acid
ICP	Inductively coupled plasma emission spectrometry
MeOH	Methanol
min.	Minutes
MSTFA	2,2,2- trifluoro-N-methyl-N- (trimethylsilyl) acetamide
NB	Nutrient broth
NBA	Nutrient broth agar
nm	Nanometer
NMR	Nuclear magnetic resonance spectrometry
PGPR	Plant growth promoting rhizobacteria
PTFE	Polytetrafluoroethylene
RSM	Rhizosphere medium
TFA	Trifluoroacetic acid
TMS	Trimethylsilyl
YG	Yeast glucose
YGA	Yeast glucose agar

第1章 緒言

1-1 重金属による土壌汚染

重金属とは比重が 4-5 g/cm³以上の金属の総称であり、精錬が比較的容易であ るため古代より様々な道具素材として用いられてきた。現代においても多様な 用途で用いられており、現代社会で必須の鉱物となっている。また、動物、植 物、そしてヒトにおいても体内の恒常性の維持に必須である重金属が確認され ている。一方で、重金属が過剰量で環境中に存在することで生物に対して様々 な負の影響を及ぼすことが知られている(浅見 2010)。また、Cd や Pb のよう に必須元素ではなく体内に蓄積することで害を及ぼす重金属が存在することも 知られていることから、環境中の過剰な重金属による人類及び生態系への悪影 響は無視できない。

重金属による環境汚染は日本のみの問題ではなく、世界的な問題であること が知られている(畑 2008)。日本においては特に明治以降の工業化の時代に公 害という形でヒトの生活に影響を及ぼしていることが知られている。重金属に よる公害として有名なものとしては栃木県足尾鉱山周辺及び渡良瀬川流域で発 生した足尾銅山鉱毒事件、または富山県神通川流域で発生したイタイイタイ病 が挙げられる。足尾銅山は明治期において日本最大の銅鉱山であり、明治期の 日本の鉱山産業に重きをなした存在であったが、同時に日本の公害の原点であ ることが知られている。足尾銅山より排出された排煙、排水、鉱滓などには高 濃度の Cu や Cd を中心とした重金属が含まれており、鉱山周辺の農地や渡良瀬 川の水資源に甚大な被害を与えたことが知られている(川名 1989)。また精錬の 燃料にするために周辺の森林樹木を乱伐したため、鉱山周辺は完全な裸地とな った。このような荒れ地にも Cu は極めて高濃度で存在しており、現在において も植生のない原因の一つとなっている。イタイイタイ病は鉱山の排煙及び精錬 排水が未処理で排出されたことによって土壌及び河川が Cd によって汚染され (柳沢 1984)、Cd による慢性中毒が引き起こされた (畑 2001)。こういった状 況を鑑みて日本政府は公害対策基本法 (1968年; 現 環境基本法に統合1994年) 、 「農用地の土壌の汚染防止等に関する法律」(1970 年)、土壌汚染対策法(2003 年施行、2010年改訂)などを制定し、土壌の洗浄や使用の制限などといった対 策を行ってきた結果、農用地に関しては対処の必要な土壤は減少してきている。 しかし、この対策は客土が中心であり、客土処理地や工場跡地といった土壌を 中心に汚染地域は未だに存在しているのが現状である(畑 2001)。日本におい て盛んに行われている土壌浄化法は物理化学的方法である。この物理化学的方 法には重金属の不溶化と土壌洗浄の二つが挙げられる (地盤環境技術研究会 2003)。土壌から重金属を除去する方法は土壌にフラッシング液を投入して重金 属を除去する土壌洗浄であるが、大量処理が可能なことや複数の重金属に同時 に対応可能である半面、土壌の性質に左右される、工程から発生する高濃度の 重金属が含まれる土壌の処理が難しいなどの問題がある (吉村 2003) 。また、環 境省、水・大気環境局による土壌汚染対策法に基づいた「平成 22 年度 土壌汚 染対策法の施行状況及び土壌汚染調査・対策事例等に関する調査結果」 (環境省 水・大気環境局 2010 a. b) によると、土壌汚染として届け出のあるうち、重金 属汚染は平成 22 年度届け出の 75 %、平成 14 年から 22 年までの累計届け出の 72%を占め、その大半の事例において汚染原因が不明とされており、根深い問 題であることが伺える。このような汚染土壌を修復する方法として客土や洗浄 といった物理的、化学的な手法のみならず、近年はより環境負荷の少なく、低 コストな方法として植物や微生物を用いた生物的手法に関する研究がなされて いる。こういった研究の進展により、さらに効率的な重金属汚染浄化手法の確 立が期待される。

2

1-2 植物を利用した重金属汚染土壌の修復

重金属の中には植物にとっての必須金属元素が存在する。Fe, Cu, Zn, Mo, Ni, 及び Mn などの重金属は植物内での酵素やタンパク質の産生に関与しており、欠 乏することによってクロロシスの発現など成長阻害を引き起こすが(間藤ら 2010)、過剰量の場合も植物に対して成長阻害など負の影響を及ぼす(Påhlson 1989)。一例として、Zn は一般作物では 20-100 µg/g (Fox and Guerinot 1998)、 一般植物では 10-400 µg/g (Larcher, 2003)の濃度で存在し、地上部において 300 µg/g を超えるとクロロシス及び成長阻害が生じることが知られている (Broadley *et al.* 2007)。また、重金属が誘導するストレスとして活性酸素種の産 生の増加が報告されている (Schützendübel and Polle 2002)。

過剰量の重金属が引き起こす毒性に対して植物は無力なわけではなく、細胞 壁での不動化、細胞膜透過性の減少、ポリペプチドとの錯体化、液胞への隔離、 及び細胞外への能動的な排出といった方法を用いて、重金属の毒性から個体を 防御していることが知られている(Hall 2002)。このような防御機構を有した植 物の中には、過剰量の重金属を体内に蓄積させても正常に生育できる植物種が 存在する(Macnair *et al.* 2000)が、そのような植物を利用して重金属汚染土壌を 浄化する手法は Phytoremediation と定義される(Salt *et al.* 1998)。重金属を対象と した Phytoremediation には土壌中の重金属を植物内に吸収させる Phytoextraction、 及び重金属耐性植物を生育させることで汚染土壌の流亡を防ぐ Phytostabilization が知られている(Charny *et al.* 1997)。特に、汚染土壌から植物体内へ重金属を 移行・蓄積させた後植物を刈り取ることで、汚染土壌を直接浄化できる Phytoextraction は盛んに研究が行われているが、Phytoextraction は前述した物理 化学的手法と比べて土壌中からの重金属の除去量が極めて低く、効率が悪いこ とが知られている。従って、これらの方法を用いるためには、過剰量の重金属 に対して耐性を有し、より重金属を蓄積する植物を用いることが必要である。 特に着目されているのが、一般的な植物に含まれる各重金属濃度を超過して重 金属を高濃度で植物体中に蓄積できる能力を有する植物 Hyperaccumulator であ る (McGrath and Zhao 2003; Rascio and Navari-izzo 2011)。Hyperaccumulator は植物 の地上部に Zn 及び Ni を 10,000 μ g/g 以上、Co, Cr, Cu, 及び Pb を 1,000 μ g/g 以 上、Cd を 100 μ g/g 以上、そして Hg を 10 μ g/g 以上蓄積させる植物と定義されて いる (Lasat 2002)。また、高濃度で重金属を蓄積できたとしても植物のバイオマ ス量が小さい場合、土壌中から吸収できる重金属総量は少量であることから、 重金属耐性を有しつつバイオマス量の大きな植物を選抜することも必要である という指摘もある (Bhargava *et al.* 2012)。

このように Phytoremediation は植物の能力に着目して研究が進められてきたが、 植物の重金属耐性及び蓄積能は、根圏環境に生息する微生物の働きによって付 与されることも知られている(Glick 2010)。根圏に生息する微生物は根圏微生 物と定義され植物の生育に密接に関与していることが知られているが(Giller *et al.* 2009)、近年、根圏微生物の中でも植物根の内部に生息している内生菌とい う微生物に注目が集まっている(Doty 2008)。

1-3 根圏及び内生細菌

植物の根の周辺約 1-2 mm の領域は根圏 (Rhizosphere) と定義されている (Rovia and Bowen 1966; Pinton *et al.* 2001) 。根圏は植物根より滲出される糖、ア ミノ酸やフェノール性物質などの影響を直接受けるため非根圏土壌とは化学的 な環境が異なることが知られている (Brimecombe *et al.* 2001) 。そのような特殊 な根圏環境は、根圏土壌に生息する微生物の種や数 (Kroon and Visser 2003)、微

生物活性、及び有機物量(木村 1998)に影響を及ぼすことが知られており、その影響を根圏効果と言う (Curl and Truelove 1986)。

根圏効果を受けた細菌(根圏細菌)の中には植物の生育に有用な根圏細菌が 存在していることが知られ、そのような根圏細菌は PGPR (Plant Growth Promoting Rhizobacteria)と定義される (Ryan et al. 2008)。PGPR の植物に対する 働きとして、1)植物ホルモンの産生、2)siderophore の産生、3)窒素固定能、4) 酵素及び低分子量物質の産生、及び 5)無機化合物の可溶化が挙げられ (Glick 1995)、作物の生産の向上やストレス環境での生育改善といった影響があること が知られている (Sturz et al. 2000)。そういった根圏細菌の中でも、植物組織内 部に生息する内生細菌は、植物ホルモンの産生、窒素固定能、そして栄養元素 の吸収促進を誘導することで植物の環境ストレス耐性を誘導することが知られ ている (Vessey 2003)。また、内生細菌は、顕著に病原性や共生を示さず植物の 組織内に生息する (木村 1998)ことで植物の防御機構を誘導し、結果として植 物の環境ストレス耐性を増強させていると考えられる (Schulz and Boyle 2006)。 こういった内生細菌の中には siderophore や有機酸といった低分子量の二次代謝 産物を産生することで植物の重金属吸収促進に関与しているものも存在する (Ma et al. 2011)。

近年、Phytoremediation の研究において、重金属蓄積性を促進させるような内 生細菌を接種し、植物の重金属吸収を促進させる研究が注目されている (Newman and Reynolds 2005)。内生細菌の Phytoremediation への利用は他の根圏 微生物と比べて報告例は少ないが、植物に内生することが可能である内生細菌 は根圏に定着することが容易であることから、Phytoremediation にとって有用で ある可能性が考えられる (Doty 2008)。近年、有用な内生細菌を発見するために 鉱山の様な重金属濃度の高い地域に生息している Hyperaccumulator から内生細 菌を分離し、その植物の重金属吸収能力促進に内生細菌が関与しているかを検 証した研究が行われている。例として Sheng *et al.* (2008) は Pb 汚染土壌に生息 する Zn 及び Pb の Hyperaccumulator として有名な *Brassica napus* の根より分離し た *Pseudomonas fluorescens と Microbacterium* sp.を非滅菌条件で *B. napus* に接種す ることで、地上部における Pb の蓄積が促進されたと報告している。また、Souza *et al.* (1999) は Se を含む土壌で生育させた *Brassica napus* の根より分離した内生 細菌を滅菌した *B. napus* へ接種することで、Se の蓄積が高まったと報告してい る。以上のことから、実際の重金属環境で生育する植物の中には内生細菌の能 力によって重金属蓄積が促進されている植物が存在している可能性が高いと考 えられる。重金属環境で優占的に生息している植物には有用な内生菌が定着し ていることが推測される。

1-4 日立鉱山沼の優占種・ドクゼリ (Cicuta virosa L.)

日立鉱山は日本有数の銅鉱山であり、日本の明治期から昭和期において大規 模な採掘がおこなわれた (嘉屋 1952)。特に大規模に開発が始まったのは 1905 年以降で大量の銅を産出した (長島 1994)。しかし、開発が始まると同時に大量 の排煙及び鉱毒を有する排水によって市街や田畑に大きな損害を与えた。特に 精錬所から排出される排煙は鉱山周辺の森林に甚大な被害を与えた。森林を回 復するためにクロマツ (3,648,000 本)、オオシマザクラ (725,000 本)、スギ (393,000 本)、クヌギ (120,000 本)、ヒノキ (120,000 本)、ナラ (10,000 本)、 ヤシャブシ (59,000 本)、そして他の樹木 (2,000 本)が植林された (長島 1994)。 こういった植林の努力によって現在では周辺の森林は回復したものの、土壌は 排煙に含まれていた重金属によって高濃度に汚染されていることが知られてい る。久保田ら (1986) によると日立鉱山周辺の土壌は Cu, Ni, Zn, Cd, 及び Pb が 特に高濃度で存在していると報告している。また、神賀・田切 (2003) は宮田川 の河川堆積物にも Cu, Zn, As,及び Ni が高濃度で存在していると報告している。 以上の報告から、日立鉱山は植林された木本以外の植物が侵入し生育するには 厳しい環境であるといえる。

その一方で、近年、植栽植物以外も生育していることが確認されている。日 立鉱山の中腹の沼の優占種であるドクゼリ(*Cicuta virosa*) もその一つである(長 田 2008)(図 1.1)。ドクゼリはセリ科(*Apiaceae*)、ドクゼリ属(*Cicuta*)に属す る多年生植物であり、最大では全長 2.5 m まで成長することが知られている (Schep et al. 2009)。日本においては中部地方以西では絶滅の危機にある植物と して 15 の府県でレッドデータブックに掲載されている(上赤 2012)。ドクゼリ は各部位に神経性の毒性物質を有することが知られているが、特に節状の根茎 に高濃度で存在することが知られている(Jacobson 1915; Schep et al. 2009)。ド クゼリの根茎に含まれている主要な毒性物質はポリアセチルアルコール類とア リルヒドロキシル類であり、他にも cicutoxin と呼ばれる毒性物質を含むことが 知られている(Wittstock et al. 1995; Schep et al. 2009)。以上のように、ドクゼリ の薬効成分に関する報告は多いが、重金属汚染土壌におけるドクゼリの生態化 学的研究に関する報告はない。

1-5 本研究の目的

長田 (2008) はドクゼリが優占的に生息する日立鉱山沼の土壌に含まれる年 間の含有重金属濃度(最小値-最大値)を調べたところ、Cu は 760-993 μg/g dry weight (D.W.)、Ni は 20-26 μg/g D.W.、Zn は 273-454 μg/g D.W.、Cd は 16-27 μg/g D.W.、Pb は 670-798 μg/g D.W.であり、特に Cu, Zn,及び Pb が高濃度で含まれて いることを明らかにした。He *et al.* (2005) は、一般的な非汚染土壌に含まれる重 金属量を、Cu は 20 µg/g D.W.、Ni は 10-150 µg/g D.W.、Zn は 40 µg/g D.W.、Cd は 0.06 µg/g D.W.、Pb は 10-150 µg/g D.W.であると報告している。He et al. (2005) の報告による非汚染土壌と比較して、日立鉱山沼の土壌は Cu, Zn, そして Pb に よって高濃度で汚染されていることが確認された。日立鉱山沼で生育している ドクゼリは6月から8月にかけて成長し、8月に最大に達したが、9月には虫害 によって地上部が減退していることが明らかになった。また、成長が最大であ った8月のドクゼリの節根においては、Zn 濃度(7,542 µg/g)が最大となってい ることが明らかとなった。この濃度は植物の成長阻害を起こす Zn 濃度であるに もかかわらず、ドクゼリは顕著な生育阻害を受けることなく成長を続けていた ことが野外観察により確認された。また、Zn 濃度が最も高かった8月のドクゼ リの節根から内生細菌を1% Nutrient broth agar (1% NBA) 及び1% Yeast glucose agar 培地 (1% YGA) で分離したところ 54 菌株が分離され、そのうち 20 菌株が 土壌中の不溶態 Zn を可溶化させる能力を有することが明らかになった。これら の菌株は極端な pH 低下無しに土壌中の不溶態 Zn を可溶化していたことから、 このZnの可溶化はプロトン放出によるものではなく、菌株により産生された化 学物質によるものである可能性が高いことが示唆された。以上のことから、ド クゼリにおける高濃度のZn吸収に内生細菌の産生する化学物質が関与している 可能性が示唆された (長田 2008)。さらに、16S rRNA 遺伝子に基づく系統学的 分類の結果より、最も高い Zn 可溶化能力を示した株は Pseudomonas putida 及び Rhodopseudomonas sp. であることが確認された (加藤 2010)。

以上の結果を踏まえ本研究では、内生細菌の関与したドクゼリにおける Zn 吸 収メカニズムを解明することを目的とした。最初に、高い Zn 可溶化能力を示し た P. putida 及び Rhodopseudomonas sp.をドクゼリの実生に接種することによって Zn の吸収促進が確認されるかを検証した。接種試験の結果、P. putida が土壌中

8

の交換態 Zn 量を増加させ、ドクゼリ実生における Zn 吸収を促進させたことが 確認されたことから、次に、*P. putida* が産生する Zn 可溶化物質を単離・同定す ることで、内生細菌による Zn 可溶化機構を明らかにした。本研究で得られた基 礎知見は、重金属汚染環境での植物及び内生細菌を利用した浄化手法の発展に 資することができると考えられる。

図 1.1. 日立鉱山中腹の沼 (2012 年 7 月撮影)

第2章 ドクゼリ実生への内生細菌の接種試験

2-1 目的

長田 (2008) 及び加藤 (2010) の結果より、ドクゼリ節根より分離された内生 細菌で土壌中の不溶態 Zn を最も可溶化させる能力を有していた内生細菌は P. putida と Rhodopseudomonas sp.であった。しかし、これらの内生細菌がドクゼリ に対してどのような影響を及ぼしているかは明らかではない。本章では、これ らの内生細菌を滅菌条件下においてドクゼリ実生に接種し現地の重金属土壌に おいて生育させることで、実生の Zn 吸収における内生細菌の影響を明らかにす ることを目的とした。

2-2 材料及び方法

2-2-1 滅菌ドクゼリの作製

ドクゼリ種子は北海道・名寄市・智恵文沼(北緯:44°45', 東経:142°40')よ り 2006年10月2日に採取し、4℃で保存したものを医薬基盤総合センターより 提供して頂き、使用した。種子を15%過酸化水素水に浸漬し、23℃、150 rpm で 6時間振とうした後、オートクレーブ滅菌した脱塩水で23℃、150 rpm で 30分 間振とう洗浄した。洗浄は滅菌水を新しく交換しながら4回行った。その後、 滅菌種子を1/3 Hoagland 培地の上に置き、25℃/20℃(昼/夜:14時間/10時間) で静置培養した。発芽直後の実生は新しい1/3 Hoagland 培地の上に静置後、30 日生育させ、茎葉長が約20 mm、本葉が2枚になるように生育させたものを試 験に供した。

2-2-2 滅菌土壌の作製

2008年7月に日立鉱山の沼で無作為に選定した20箇所から表層のリターを除

いて合計 2,500 cm³の土壌を採取した。採取した土壌はプラスチックバットの上 で混合した後風乾し、2 mm の篩いを通した。これらの土壌はオートクレーブ可 能な熱耐性を有する袋に入れ、シーリングをした後、30 kGy のγ線を 2 度間欠 照射(計 60 kGy)して滅菌を行った。γ線照射は日本照射サービス株式会社東 海センターにおけるγ線照射装置 JS10000HD (Nordion, Ottawa, Canada)を用い て行った。

2-2-3 接種試験

間欠滅菌したアグリポット(Kirin, Tokyo, Japan)に γ 線滅菌した日立鉱山沼の土 壌を 20 g 入れ、滅菌水を 17 ml 加えた。そこに、滅菌ドクゼリ実生を 1 ポット 当たり 3 個体移植した。実生 1 個体の根圏に *P. putida* 及び *Rhodopseudomonas* sp. の細菌液を 1 ml (10⁷/ml) 接種した。対照区として、実生 1 個体の根圏にオート クレーブした各細菌液 (死菌液) を 1 ml を接種した区、及び土壌のみの区を設 定した。各処理区につき、4 反復準備した。各処理区は 25℃/20℃ (昼/夜:14 時 間/10 時間) (照度 50.38 ±0.58 µmol/s m²; Model LI-250 Light meter, Li-Cor, Lincoln, NE, U.S.A.) で培養し、14 日及び 28 日に滅菌水を 10 ml ずつ加えた。40 日間生 育させた後、実生及び土壌を回収した。

実生は葉の数、茎の分岐数、及び茎葉長を測定した後、地上部と地下部に分けて新鮮重量を測定した。植物試料は 80℃で 48 時間乾燥させた後粉砕し、地上部は 10 mg、地下部は 2 mg を試験管(内径 10 mm x 75 mm x 1.0 mm)に入れ、 硝酸 1 ml を加えて Dry Thermo unit DTU-2C (TAITEC, Saitama, Japan)によって 130℃で熱分解した。ICP 発光分光分析装置 (Optima 7300 DV, PerkinElmer, Waltham, U.S.A) によって分解液に含まれる重金属量 (Cu, Ni, Zn, Cd, 及び Pb) と栄養元素量 (P, Mg, K, Na, Ca, 及び Fe) を測定した。1 個体のみでは分析可能 な容量に達しなかったため、同じポット内の2個体を合わせて分析に供した。

各ポットの土壌は回収後、冷暗所にて風乾し以下の実験に供した。土壌3gに 対し、0.05 M 硝酸カルシウム溶液を加え、30 °C、150 rpm で 24 時間振とうし、 5B 濾紙(ADVANTEC, Tokyo, Japan) で濾過して Cu, Ni, Zn, 及び Cd の交換態を抽 出した(土壌環境分析法編集委員会 1997)。また、Pb の交換態は、土壌2gに 対して 10%アンモニア水で pH 4.5 に調整した酢酸アンモニウム溶液を 20 ml 加 えて室温(25°C)、150 rpm で 1 時間振とうし、5B 濾紙で濾過することで抽出し た(土壌環境分析法編集委員会 1997)。また、各ポットの土壌の pH は土壌と脱 塩水を 1:4 で混和し測定した。各分析につき 4 反復行った。

2-2-4 IAA 産生能力試験 (Gordon and Weber 1951)

Pseudomonas putida 及び *Rhodopseudomonas* sp. は1% NBA 培地、もしくは1% YGA 培地で3日間静置培養したものをコルクポーラー (内径 5.5 mm) で打ち抜 き、50 ml 三角フラスコに入れた30 ml の NB 液体培地、もしくは YG 液体培地 に接種し、23 °C、150 rpm、及び暗条件で一晩培養した。培養した各菌液300 µl をトリプトファン濃度が100 µg/ml になるように調製した30 ml の NB 液体培地、 もしくは YG 液体培地に接種し、23 °C、150 rpm、及び暗条件で4日間培養した。 これらの培養液は13,000 rpm で30分間遠心分離した後、0.2 µm polytetrafluoroethylene (PTFE) フィルター (ADVANTEC, Tokyo, Japan)を用いて 濾過を行い内生細菌を除去した。濾液2 ml を4 ml の鉄反応液(1 ml の 0.5 M 塩 化鉄水溶液を35% 過塩素酸を用いて50 ml にメスアップした反応液)と混和し、 Dry Thermo unit DTU-2C (Dry Thermo unit DTU-2C, Taitec, Saitama, Japan)を用い て28 °C で25分間反応させた。この混合液を紫外可視分光光度計 (UV-visible spectrometer, SHIMADZU, Kyoto, Japan)を用いて50 nm で測定し、IAA の産生 量を測定した。これらの測定は3反復で行った。

検量線は0,1,4,8.16,及び32 mg/l に調製した IAA 水溶液2 ml に4 ml の上記 の鉄反応液を混和し、Dry Thermo unit DTU-2C を用いて28°C で25 分間反応さ せ、紫外可視分光光度計を用いて530 nm で測定した。これらの検量線試料は3 反復で行った。

2-2-5 統計解析

葉の数、茎の分岐数、茎葉長、実生の地上部及び根部の新鮮重量、重金属濃度、栄養元素濃度、そして実生個体あたりの重金属量は Smirnov-Grubbs' outlier test によって検定し、はずれ値を除外した。実生の成長、重金属濃度、栄養元素 濃度、及び実生個体あたりの重金属量は接種区と死菌接種区の結果を PASW Statistics Version 18 for Windows (IBM, Armonk, New York, U.S.A.) を用いて Student's *t*-test によって解析した。解析は 5% 有意水準で行った (*P* < 0.05)。

2-3 結果

2-3-1 P. putida 接種におけるドクゼリ実生への影響

ドクゼリ実生は P. putida の接種によって地上部、及び根部の新鮮重量、葉の 枚数、茎の分岐数、及び茎葉長の増加が死菌接種区と比較して有意に確認され た(図 2.1 及び表 2.1)。栄養元素濃度は地上部では K と Na が、根部では Mg の濃度が死菌接種区と比較して有意に増加した(表 2.2)。IAA 産生試験の結果、 P. putida は IAA 産生能力を有していることが確認された(1.53 mg/l±0.00)。実 生の重金属濃度は P. putida の接種によって死菌接種区と比べて有意な増加は確 認されなかったが(表 2.3)、実生一個体当たりの重金属吸収量では全ての重金 属で P. putida の接種によって根部における有意な増加が確認された(表 2.4)。 また、*P. putida* の接種によって土壌中の交換態 Zn 及び Pb が有意な増加が確認 されたが、pH の極端な変動は確認されなかった (表 2.5)

2-3-2 Rhodopseudomonas sp. 接種におけるドクゼリへの影響

ドクゼリ実生は Rhodopseudomonas sp. の接種によって、根部の新鮮重量、葉の枚数、茎の分岐数、及び茎葉長の増加が対照区と比較して有意に確認されたが、地上部の新鮮重量の増加は確認されなかった(図 2.1 及び表 2.1)。また、 栄養元素濃度においては根部における Mg の濃度が有意に増加したことが確認 された(表 2.2)。IAA 産生試験の結果、Rhodopseudomonas sp.は IAA 産生能力を 示すことが確認された(32.47 mg/l ± 1.11)。 実生の重金属濃度は Rhodopseudomonas sp.の接種においても P. putidaの接種と同様に死菌接種区と 比較して有意な増加は確認されなかったが(表 2.3)、実生一個体当たりの吸収 量では実生根部でNi及びPbが Rhodopseudomonas sp.の接種によって有意に増加 したことが確認された(表 2.4)。また、土壌中の交換態 Zn 及び Cd 量は Rhodopseudomonas sp.の接種によって有意に増加

2-4 考察

Pseudomonas 属細菌は PGPR としての影響を有する菌株が多数知られている (Ryan *et al.* 2008)。PGPR の能力の中で *P. putida* は重金属ストレス環境下で IAA 産生、ACCD 活性、また siderophore 産生を示すことが知られている (Glick 2010)。 Tripathi *et al.* (2005)は Cd 及び Pb 添加土壌で *P. putida* KNP9 を *Phaseolus vulgaris* へ接種したところ、IAA 産生、ACCD 活性、及び siderophore の産生が確認され たと報告している。また、Rodriguez *et al.* (2008)は Ni 汚染土壌において *Brassica* *nups* に *P. putida* HS-2 を接種したところ、IAA 産生、ACCD 活性、及び siderophore の産生が確認されたと報告している。本章において *P. putida* をドクゼリの実生 に接種することによって、IAA 産生、地上部での K 及び地下部で Mg の吸収促 進が生じた結果、実生の成長促進が有意に確認されたと考えられた (図 2.1, 表 2.1, 及び表 2.2)。

また、P. putida の接種によって土壤中の交換態 Zn 及び Pb が有意に増加した ことが確認された(表 2.5)。重金属は一般的に pH が低下することによって可溶 化することが知られている(Larcher 2003)。本研究において P. putida の接種に よって土壤中の pH は有意な変動が確認されなかったにも拘らず、土壤中の Zn 及び Pb の交換態は増加したことが確認されたため、pH の低下以外の要因が交 換態 Zn 及び Pb 量の有意な増加に関与したと考えられる。プロトン放出による pH の低下以外に土壤中の不溶態重金属を可溶化させる PGPR の能力としては siderophore の産生及び有機酸の産生が挙げられる(Lugtenberg and Kamilova 2009)。Siderophore や有機酸は重金属と錯体構造を形成することによって不溶 態重金属を可溶化させ、植物が利用可能な形態にすることが知られている。本 章においても、P. putida が産生した siderophore や有機酸が土壤中の不溶態重金 属と錯体構造を形成することで、不溶態重金属が可溶化された可能性が示唆さ れた。

P. putida の接種によって実生地上部及び根部の全重金属濃度の有意な増加は 確認されなかったが (表 2.3)、実生個体あたりの重金属量では P. putida の接種 によって実生根部の全重金属において有意な増加が確認された (表 2.4)。本研 究で着目している Zn の濃度は一般的な作物では 20 - 100 μg/g (Fox and Guerinot, 1998)、陸上植物全般では 10 - 400 μg/g (Larcher, 2003)と報告されており、実生 地上部及び根部の Zn 濃度は成長阻害を起こしうる濃度であることが確認された。

16

また、本章における死菌接種区の実生には強い成長阻害及びクロロシスが確認 され、強い重金属ストレスを受けていることが目視において確認された(図 2.1)。また、実生個体あたりのZn量の有意な増加が確認されたことから(表 2.4)、 *P. putida*によるZnの吸収促進は確認されたが、実生中のZn濃度に有意な差が 確認されなかった理由として希釈効果が考えられた。希釈効果とは植物の生育 が急速であるとき、植物中の無機元素濃度が減少する現象と定義される (Larcher 2003)。本章における*P. putida*を接種したドクゼリ実生はIAAの産生及 び栄養元素吸収促進によって急速に生育したため、ドクゼリの各含有重金属濃 度が希釈効果によって見掛け上希釈されることで、接種区と死菌接種区の実生 の各含有重金属濃度には有意な差が確認されなかったと考えられた。

Rhodopseudomonas 属細菌は植物ホルモンを産生し、植物の生育を促進させる ことが報告されている。例として、Rhodopseudomonas sp. KL9 及び Rhodopseudomonas sp. BL6はIAA及びALAを産生する細菌であることが報告さ れている(Koh and Song 2007)。また、Rhodopseudomonas sp. KL9をトマトの苗 に接種することで地上部及び根部において成長の促進が確認されたと報告され ている(Lee et al. 2008)。本章においてもRhodopseudomonas sp.の接種によって 実生根部の成長が有意に促進されたことが確認された(表 2.1)。また、地上部 の新鮮重量には有意な増加は確認されなかったが、葉の数、茎の分岐数、及び 茎葉長においてはRhodopseudomonas sp.の接種によって有意な増加が確認され た(表 2.1)。この成長促進にはRhodopseudomonas sp.の接種による実生根部の Mg 吸収促進(表 2.2)、及びIAAの産生が影響していると考えられた。

実生の地上部及び根部の含有重金属濃度は *P. putida* と同様に有意な増加は確認されず (表 2.3)、個体あたりの重金属量においては Ni 及び Pb 量の有意な増加が確認されたが、Zn 量は増加の傾向のみが確認された (p = 0.07) (表 2.4)。

土壌中の pH の低下無しに交換態 Zn 及び Cd 量の有意な増加が確認されたこと から(表 2.5)、*Rhodopseudomonas* sp.の接種においても siderophore や有機酸の産 生によって土壌中の交換態 Zn 量及び Cd 量が増加したことが示唆された。 *Rhodopseudomonas* 属細菌は既存の研究において、土壌中の金属を可溶化させる ような物質を産生するという報告はなく、土壌中の不溶態 Zn の可溶化について の知見は本研究が初であると考えられた。

本研究において P. putida 及び Rhodopseudomonas sp. はドクゼリの実生に対 して 2 種類の影響を示すことが確認された。一つは IAA 産生及び栄養元素の吸 収促進することによる実生成長の促進への寄与であり(図 2.1 及び表 2.1)、も う一つは土壌中の不溶態 Zn の可溶化による実生根部への Zn 吸収促進であった (表 2.5)。日立鉱山に生息しているドクゼリはこのような内生細菌によって成長 を促進させ、Zn を根部に蓄積させている可能性が本章の結果より明らかになっ た。本章で使用した内生菌の中で顕著な影響を示したのは P. putida であり、P. putida の産生する Zn 可溶化物質を明らかにすることで、内生菌の関与したドク ゼリにおける Zn 吸収メカニズムを明らかにすることができると考えられた。

2-5 要約

ドクゼリ根部より分離された内生細菌で最も土壌中の不溶態Znを可溶化させる能力を有していた内生細菌 *P. putida* と *Rhodopseudomonas* sp.を現地の重金属土 壌条件下においてドクゼリの滅菌実生に接種し、実生のZn 吸収における内生細 菌の影響を明らかにすることを目的とした。

γ線滅菌した風乾沼土壌に滅菌ドクゼリ実生を移植し P. putida と
Rhodopseudomonas sp.をそれぞれ接種したところ、ドクゼリ実生の成長は有意に
増加した。特に P. putida を接種することによってドクゼリ実生の成長は大幅に

18

増加した。これらの成長促進は P. putida と Rhodopseudomonas sp.による IAA 産 生及び栄養元素吸収促進が寄与することが示唆された。また、 P. putida と Rhodopseudomonas sp.の接種によって土壤中の交換態 Zn 量の増加が有意に確認 された。ドクゼリ実生の含有重金属濃度は P. putida と Rhodopseudomonas sp.の接 種によって有意な差は確認されなかったが、P. putida の接種によって個体根部に あたりの Zn 量では有意な増加が確認された。Rhodopseudomonas sp.の接種では 増加の傾向が確認された。この現象は各菌株接種によるドクゼリ実生の成長促 進が急激だったため生じた希釈効果に起因すると考えられた。

以上の結果より、P. putida と Rhodopseudomonas sp.のドクゼリ実生への影響は 1) IAA 産生及び一部の栄養元素吸収促進による成長促進、2) 土壌中の不溶態 Zn の可溶化による Zn の吸収促進であることが確認された。

+ P. putida

+dead + Rhodopseudomonas sp. P. putida + Rhodopseudomonas sp.

図 2.1 接種試験におけるドクゼリ実生

+ P. putida 及び+ Rhodopseudomonas sp.は各菌株の接種した区 (接種区)を表す。 + dead P. putida 及び+ dead Rhodopseudomonas sp.は各菌株をオートクレーブを行ったも のを接種した区 (死菌接種区) を示す。実験は + P. putida 区 は n = 9、+ dead P. putida, + Rhodopseudomonas sp., 及び+ dead Rhodopseudomonas sp.は n=12 で行った。図中の 棒線は 50 mm を示す。

	Pseudomonas putida		Rhodopseud	<i>lomonas</i> sp.
	+ bac	+ bac + dead bac		+ dead bac
葉の枚数	13±1***	6±1	9±1*	6±1
茎の分岐数	4±0***	2 ± 0	3±0 *	2 ± 0
茎葉長	62.9±6.1**	25.7±3.5	37.2±3.8**	22.4±2.7
地上部の F.W.	73.4±11.5***	19.7±2.8	46.7±7.1	31.6±3.3
根部の F.W.	52.6±9.4***	9.6±2.5	31.6±3.3***	6.8 ± 2.7

表 2.1 接種試験におけるドクゼリ実生の成長

+ bac は各菌株の接種した区(接種区)を表す。 + dead bac は各菌株をオートクレーブ を行ったものを接種した区(死菌区)を表す。. 茎高長は mm 表す。地上部と根部の新 鮮重量 (F.W.)は mg で表す。結果中の±は標準誤差を表す。実験は *P. putida* (+ bac) 区、*P.putida* (+ dead bac), *Rhodopseudomonas* sp. (+ bac), 及び *Rhodopseudomonas* sp. (+ dead bac) は n=4 で行った。 各値は Student t-test を用いて+ bac と + dead bac を解 析した (*: p <0.05, **: p <0.01, ***: p <0.001)。

	Pseudomonas putida					
	地上	:部	栀	 十部		
	+ bac	+ dead bac	+ bac	+ dead bac		
Р	10526.98 ± 1075.42	19334.86±969.75**	11386.74±403.00	14821.02±532.72*		
Mg	2647.31±244.06	2644.15±136.83	3596.17±178.55*	2076.06 ± 276.00		
Κ	24831.75±2028.36**	7794.57±1296.78	18992.55±3478.94	10102.37 ± 2888.41		
Na	7113.61±698.59*	4095.89±214.03	14466.64±1819.82	12042.84 ± 3134.89		
Ca	8328.75 ± 807.88	10644.82±3151.18	6208.79±675.63	15939.30±2458.31*		
Fe	136.70±26.28	556.89±194.05	1271.65±199.41	1831.17±330.66		

表 2.2 接種試験におけるドクゼリ実生の栄養元素濃度

Rhot	lopseudomonas	sp.
------	---------------	-----

_	地上部			根部	
_	+ bac	+ dead bac	_	+ bac	+ dead bac
Р	13790.90±1756.66	19702.03±4148.15		14851.71±1713.16	14328.00±1159.75
Mg	2685.24 ± 204.85	3106.30±295.50		2704.28±171.01*	2186.67 ± 28.06
Κ	11581.19 ± 3988.45	11677.37±1167.01		17004.28 ± 5624.15	9761.66±3491.02
Na	4492.23±1172.47	4865.15±866.07		13068.55±3321.96	10330.14 ± 1791.40
Ca	7536.61±1368.86	8906.40±1202.42		8423.42 ± 1029.18	14188.59 ± 5789.18
Fe	182.86 ± 55.42	375.66±139.22		842.90±104.13	1790.98 ± 700.85

全ての値は $\mu g/g$ を示す。結果中の±は標準誤差を表す。実験は *P. putida* (+ bac) 区、 *P.putida* (+ dead bac), *Rhodopseudomonas* sp. (+ bac),及び *Rhodopseudomonas* sp. (+ dead bac) は n=4 で行った。 各値は Student t-test を用いて+ bac と + dead bac を解析 した (*: p <0.05, **: p <0.01, ***: p <0.001)。

	Pseudomonas putida					
	地	上部				
+bac		+ dead bac	+ bac	+ dead bac		
Cu	N.D.	42.98±37.24	219.50 ± 42.08	293.78±124.82		
Ni	230.42 ± 7.50	488.12±69.92*	311.32±17.89	413.94±89.29		
Zn	64.51±8.96	165.39±73.48	503.32±89.44	$736.04{\pm}128.99$		
Cd	1.68 ± 0.00	24.62±8.15*	80.54±16.99	114.30±45.06		
Pb	499.27±42.57	961.78±96.00*	738.03±59.07	1000.21±263.59		

表 2.3 接種試験におけるドクゼリ実生の含有重金属濃度

Rhodopseudomonas sp.

	地上部		根部		
	+ bac	+ dead bac	+ bac	+ dead bac	
Cu	4.08 ± 2.06	28.56±18.03	152.30±48.03	133.70±14.98	
Ni	470.44 ± 21.61	432.71±41.89	523.73±23.98	564.71±137.17	
Zn	111.53 ± 8.07	157.73 ± 21.40	554.06±184.16	$359.40{\pm}13.50$	
Cd	$25.84{\pm}6.97$	3.55 ± 4.54	56.77±25.52	19.92 ± 9.99	
Pb	890.32±35.67	$818.05{\pm}65.14$	1053.30 ± 22.31	1140.53 ± 255.31	

全ての値は μ g/g を示す。結果中の±は標準誤差を表す。実験は *P. putida* (+ bac) 区、*P.putida* (+ dead bac), *Rhodopseudomonas* sp. (+ bac),及び *Rhodopseudomonas* sp. (+ dead bac) は n=4 で行った。 各値は Student t-test を 用いて+ bac と + dead bac を解析した (*: p <0.05, **: p <0.01, ***: p <0.001)。N.D. は ICP 分析における検出限界未満を示す (Cu < 5.4 ppb, Ni < 15 ppb, Zn < 1.8 ppb, Cd < 3.4 ppb, Pb < 42 ppb)。

	Pseudomonas putida					
	地」	上部	根剖	ζ		
_	+bac	+ dead bac	+bac	+ dead bac		
Cu	N.D.	0.15±0.13	2.56±0.40**	0.43 ± 0.09		
Ni	4.77±0.81	2.28 ± 0.52	3.70±0.39**	0.66 ± 0.02		
Zn	1.38 ± 0.36	0.66 ± 0.20	6.05±1.37*	1.21 ± 0.12		
Cd	0.03 ± 0.01	0.12 ± 0.04	0.94±0.17*	0.17 ± 0.03		
Pb	10.47 ± 2.16	4.48 ± 0.90	8.74±0.84**	1.57 ± 0.04		

表 2.4 接種試験におけるドクゼリ実生の個体あたりの重金属量

Rhodopseudomonas sp.

	地上部		根	语
	+bac	+ dead bac	+bac	+ dead bac
Cu	0.03 ± 0.04	0.28±0.13	1.25±0.58	0.28 ± 0.09
Ni	5.68 ± 1.28	3.21±0.09	3.98±0.70*	1.03 ± 0.01
Zn	1.34 ± 0.33	1.17 ± 0.12	4.71±2.19	$0.74{\pm}0.18$
Cd	0.33±0.13	0.02 ± 0.03	0.48 ± 0.28	0.05 ± 0.03
Pb	10.72 ± 2.35	6.08 ± 0.11	8.10±1.58*	2.09 ± 0.06

全ての値はµg 個体⁻¹を示す。結果中のエラーバーは標準誤差を表す。実験は *P. putida* (+ bac) 区、*P.putida* (+ dead bac), *Rhodopseudomonas* sp. (+ bac),及び *Rhodopseudomonas* sp. (+ dead bac) は n=4 で行った。 各値は Student t-test を用いて+ bac と + dead bac を解析した (*: p <0.05, **: p <0.01, ***: p <0.001)。 N.D. は ICP 分析における検出限界未満を示す (Cu < 5.4 ppb, Ni < 15 ppb, Zn < 1.8 ppb, Cd < 3.4 ppb, Pb < 42 ppb)。

		Pseudomon	Pseudomonas putida		omonas sp.
	滅菌土壤	+ bac	+ dead bac	+ bac	+ dead bac
Cu	2.71±0.07	2.88 ± 0.08	$2.57{\pm}0.05$	2.53±0.09	2.31±0.05
Ni	3.59±0.21	$4.47 {\pm} 0.08$	4.73±0.07*	6.19±0.07	6.35 ± 0.14
Zn	31.61±0.43	34.64±0.56**	30.10 ± 0.21	33.21±1.06**	28.63 ± 0.46
Cd	3.38±0.10	3.08 ± 0.06	2.99±0.13	3.14±0.11*	2.70 ± 0.10
Pb	140.09 ± 2.58	144.72±4.52*	123.07 ± 5.31	140.96±7.37	133.87±7.66
pН	5.45 ± 0.01	5.52 ± 0.01	5.58 ± 0.08	5.61±0.01	5.62 ± 0.05

表 2.5 接種試験における土壌中の交換態重金属及び pH

全ての値は $\mu g/g$ を示す。結果中の±は標準誤差を表す。実験は*P. putida* (+ bac) 区、*P.putida* (+ dead bac), *Rhodopseudomonas* sp. (+ bac),及び *Rhodopseudomonas* sp. (+ dead bac) は n=4で行った。 各値はStudent t-testを用いて+ bac と + dead bac を解析した (*: p <0.05, **: p <0.01, ***: p <0.001)。

第3章 Pseudomonas putida の産生する不溶態 Zn 可溶化物質の単離と同定 3-1 目的

第2章の接種試験によって P. putida は土壌中の不溶態 Zn を可溶化させたこと が確認された。P. putida の接種によって土壌中の pH は低下しなかったにも拘ら ず、土壌中の交換態 Zn 量には有意な増加が確認されたことから、P. putida は何 らかの Zn 可溶化物質を産生することによって土壌中の交換態 Zn 量を増加させ た可能性が示唆された。また、可溶化した Zn はドクゼリに吸収されることによ って、ドクゼリの含有 Zn 量が増加したと考えられた。以上の結果を踏まえ本章 では、P. putida の産生する土壌中の不溶態 Zn の可溶化物質を単離・同定するこ とで、どのような化学物質が土壌中の Zn の可溶化メカニズムに関与しているの かを明らかにすることを目的とする。

3-2 材料及び方法

3-2-1 使用した試薬

メタノール (特級)、アセトニトリル (特級)、酢酸エチル (特級)、無水硫酸 ナトリウム (特級)、重水 (NMR用)、トリフルオロ酢酸 (TFA)(特級)、L-leucine (特級)は和光純薬 (大阪)から、N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) は Thermo Fisher Scientific (Waltham, U.S.A.) から、重トリフルオロ酢酸 (重 TFA) 及び Urocanic acid (98%) は東京化成 (東京) から購入した。

3-2-2 Pseudomonas putida 培養濾液の作製

*Pseudomonas putida*は1% NBA 培地にて5日間静置培養したものをコルクポー ラー (内径 5.5 mm) で3ヵ所打ち抜き、50 ml 三角フラスコに入れた 30 ml の NB 液体培地に接種して23℃、150 rpm、暗条件で一晩振とう培養した。この前培養 液 300 µl を 500 ml 三角フラスコに入れた 300 ml の RSM 液体培地に接種し、23 $^{\circ}$ 、 150 rpm、暗条件で 2 日間振とう培養した。培養液は遠心機 (Hi-mac CR22E, Hitachi, 東京) を用いて 13,000 rpm で 30 分間遠心分離し、得られた上清を 0.2 µm polytetrafluoroethylene (PTFE) フィルターを用いて濾過することで培養濾液を得 た。培養濾液はロータリーエバポレーター (REN-1000, Iwaki, 千葉) を用いて 35-40 $^{\circ}$ で減圧乾固し、乾燥重量を測定した後、-20 $^{\circ}$ で保存した。培養濾液は Zn 可溶化物質の分画スキーム (図 3-1) に基づき、処理した。

3-2-3 酢酸エチルによる抽出

300 ml の分液漏斗を使用し、3-2-2 で得られた培養濾液 100 ml を 120 ml の酢酸エチルを用いて酢酸エチル層と水層に分液した。酢酸エチルによる抽出は 40 ml ずつ、計 3 回行った。得られた水層はロータリーエバポレーターを用いて 35-40℃で減圧乾固を行い、乾燥重量を測定した後、脱塩水 30 ml で溶解し、-20℃ で保存した (3.3 倍濃縮液)。酢酸エチル層は分液漏斗を使用し、120 ml の飽和食塩水を用いて脱水を行った。飽和食塩水は 40 ml ずつ、計 3 回行った。脱水後、 無水硫酸マグネシウムを加え一晩暗所で保存し、脱水した。脱水後、綿栓濾過を行い、硫酸マグネシウムを除去した。その後、ロータリーエバポレーターを 用いて 30℃で減圧乾固を行い、乾燥重量を測定した後、脱塩水 30 ml で溶解し、-20℃で保存した

3-2-4 アンバーライト XAD-4 による分画

3-2-3 で得られた水層をアンバーライト XAD-4 (XAD-4; Dow Chemical, Midland, U.S.A.) を用いて分画した。XAD-4 を充填したガラスカラム (i.d. 30 x 280 mm) を、メタノール 400 ml、アセトニトリル 400 ml、酢酸エチル 400 ml で

洗浄した。その後、再度、メタノール 400 ml で洗浄し、最終的には脱塩水で置換した。そこへ、3-2-3 で得られた水層濃縮液 28 ml をチャージし、600 ml の脱塩水を約 0.1 ml/秒の流速で通液した。ここで得られた画分を XAD-4 通過画分とし、ロータリーエバポレーターを用いて 35-40 ℃で減圧乾固を行い、乾燥重量を測定した後、脱塩水 28 ml で溶解し、-20 ℃で保存した (3.3 倍濃縮液)。さらに、600 ml のメタノールで XAD-4 吸着成分を溶出することで得られた画分を XAD-4 吸着画分とし、ロータリーエバポレーターを用いて 30℃で減圧乾固を行い、乾燥重量を測定した後、脱塩水 28 ml で溶解し、-20 ℃で保存した (3.3 倍濃縮液)。

3-2-5 強陰イオン交換樹脂アンバーライト IRA 400J による分画

3-2-4 で得られた XAD-4 通過画分をアンバーライト IRA 400J (IRA 400J; Dow Chemical, Midland, U.S.A.) を用いて分画した。脱塩水に一晩浸漬した IRA 400J を充填したガラスカラム (i.d. 30 x 280 mm) を 2,000 ml の 1 M 水酸化ナトリウ ムで平衡化し、OH型 IRA 400J として再生した。最終的には、IRA 400J は十分 な脱塩水で置換した。そこへ、3-2-4 で得られた XAD-4 通過画分濃縮液 26 ml をチャージし、600 ml の脱塩水で通液することで得られた画分を IRA 400J 通過 画分とした。ロータリーエバポレーターを用いて 30℃で減圧乾固を行い、乾燥 重量を測定した後、脱塩水 26 ml で溶解し、-20 ℃で保存した (3.3 倍濃縮液)。 脱塩水で通液後、1 M 塩酸 600 ml で IRA 400J 吸着成分を溶出することで得られ た画分を IRA400J 吸着画分とし、ロータリーエバポレーターを用いて 30℃で減 圧乾固を行い乾燥重量を測定した後、脱塩水 26 ml で溶解し、-20 ℃で保存した (3.3 倍濃縮液)。

3-2-6 高速液体クロマトグラフィー (HPLC) 用いた分取

3-2-5 で得られた IRA 400J 吸着画分を、下記の条件で高速液体クロマトグラフィー (HPLC) 及び分取カラムを用いて精製を行った。

分析システム:高速液体クロマトグラフィー; LC-10 AVP series (島津製作所,京都)

分取カラム: Mightysil RP-18 GP 250-20; 粒径 5 µm、20 x 250 mm (関東化学,東京) カラムオーブン温度: 30 ℃

検出器:フォトダイオードアレイ紫外可視検出器 (SPD-M 10AVP 島津製作所, 京都)

検出波長 : 200-400 nm

移動相 : 0.1% トリフルオロ酢酸 (0.1% TFA)

流速 : 9.0 ml/min

試料導入量:400 μl

時間 : 90 min

IRA 400J 吸着画分 26 ml (3.3 倍濃縮液)を用いて HPLC 分取カラムによる精製 を行った。試料は1回当たり 400 µl を導入し、その操作を 60 回 (培養濾液 200 ml 分)行った。その結果、図 3.2 a, b, c のクロマトグラムにおいて、4 つの主要ピ ークを確認した。保持時間 7.74 min のピークを Fraction 1 (Fr. 1),保持時間 25.03 min のピークを Fr. 2,保持時間 43.93 min のピークを Fr. 3,保持時間 55.92 min の ピークを Fr. 4 として分取した。また、これらの画分以外の全ての時間に溶出し た成分についても分取し、Fr. 5 とした。これらの画分はロータリーエバポレー ターを用いて 35-40 ℃で減圧乾固を行い、乾燥重量を測定した後、脱塩水 26 ml で溶解し、-20 ℃で保存した (3.3 倍濃縮液)。

3-2-7 Zn 可溶化試験

3-2-2 の培養濾液及び 3-2-3~3-2-6 で得られた各画分は、日立鉱山の風乾沼土 壌を用いた Zn 可溶化試験に供した。各画分の濃縮液を通常の培養濾液濃度にな るように脱塩水で希釈・調製した後、培養濾液の pH と同様になるように、1 M 水 酸化ナトリウム (NaOH) 水溶液によって pH を 5.7 に調整した。その後、各画分 1 ml をプラスチックチューブ(1.5 ml)内で 0.2 g の風乾沼土壌と混和し、2 時間、 150 rpm で振とうした。振とう後、卓上遠心機 (CHIBITAN-R; 日立工機, 東京) を 用いて 6,200 rpm で遠心分離を行い、土壌を沈降させ上清を得た。対照区として、 RSM 液体培地と風乾沼土壌を混和し同様に処理したものを設定した。上記の処 理により得られた上清は ICP 発光分析装置 (ICP)を使用して Zn を定量し、可溶 化した Zn 量を土壌の重量当たりに換算し算出した。また、対照区における Zn 溶出量と比較することで、各画分に含まれる物質による Zn 可溶化活性を評価し た。各画分につき 3 反復測定し、平均と標準誤差を算出した。また、各処理間 における Zn 可溶化活性は PASW Statistics Version 18 for Windows (IBM, Armonk, New York, U.S.A.)を用いて、Tukey-Kramer 法によって解析を行った。解析は 5 % の有意水準で行った (P < 0.05)。

3-2-8 ガスクロマトグラフィー (GC/MS) を用いた分析

精製した Fr. 2、3、及び4(20 µg)を、trimethylsilyl (TMS) 化剤である 50 µl の N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) とミクロ試験管中でそれぞれ溶解し、37 °C で 30 分間反応させた。反応後、以下の GC/MS 条件で TMS 化した Fr. 2、3、及び4の EI-MS スペクトルを測定し、ライブラリー検索により化学構造を推定した。TMS 化した各画分及び試薬は-TMS を付けて示す(例;

Fr.2-TMS)。Fr. 2 及び 3 の標準物質として urocanic acid 及び L-leucine (500 µg) を 200 µl の MSTFA とミクロ試験管内でそれぞれ溶解し、37 ℃で 30 分間反応させ た。反応後、以下の GC/MS 条件で urocanic acid-TMS 及び L-leucine -TMS の保持 時間及び Electron ionization mass spectrometry (EI-MS) スペクトルを Fr. 2-TMS 及 び Fr. 3-TMS と比較した。

分析システム: SHIMADZU GC/MS-QP2010 (島津製作所, 京都)

カラム : Rtx®-5MS (内径 0.25 mm x 30 m) (島津製作所, 京都)

カラムオーブン温度: 80 ℃ (2 分保持), -250 ℃ (昇温速度:5℃/分)

試料導入量:2.0 μl

キャリアーガス:He

カラム流量:1.77 ml/min.

気化室温度:250℃

スプリット比:25

イオン源温度:200℃

検出器電圧:1.5 keV

分析時間:60分

使用したライブラリー: Wiley Registry[™] of Mass spectral library, 9th Edition (Wiley, Hoboken, U.S.A.)

3-2-9 核磁気共鳴分光分析 (NMR)

Fr. 4の NMR 分析には図 3.1 に従い培養濾液 200 ml を処理し得られた 7.4 mg を使用した。Fr. 4 (7.4 mg) を 600 µl の重水に溶解させた後、パスツールピペッ トで約 1 滴の重 TFA を添加し pH を低下させ、NMR 試料管 (スタンダードチュ ーブ 5 mm、草野科学、東京) に入れ、テフロンキャップで封入した。試料は核 磁気共鳴装置 (Bruker AVANCE-600, Billerica, Massachusetts, U.S.A.) を用いて ¹H-NMR (600.133 MHz)、¹³C-NMR (150.90 MHz) 、DEPT、二次元 NMR として ¹H-¹H COSY、及び HMQC 測定を行った。化学シフトは溶媒のシグナルを基準と して決定した。本実験で用いた器具は充分に乾燥し、水の混入を最小限にした。

3-2-10 Electrospray ionization time-of-flight 型質量分析 (ESI-TOF-MS)

3-2-9 で NMR 分析に用いた試料 (Fr. 4, 7.4 mg) を回収し、VD-250F FREEZE DRYER (TAITEC, 埼玉) を用いて凍結乾燥を行った後、5 mlの水に再溶解し、 以下の条件で分析を行った。

分析システム: Waters Synapt G2 (Waters, Milford, Massachusetts, U.S.A.)

試料流量: 10 μl/min

試料コーン電圧 : 40 V

分析時間:10 min

走查時間:1.0 second

イオン源温度:40℃

測定モード:ポジティブモード及びネガティブモード

測定分子領域: 50-1200 m/z

3-3 結果

酢酸エチルによる抽出の結果、Zn 可溶化活性は水層に移行したことが確認された (図 3.1 及び 3.3)。この水層を XAD-4 を用いて通過画分と吸着画分に分画した結果、Zn 可溶化活性は XAD-4 通過画分に移行したことが確認された (図
3.1 及び 3.3) 。XAD-4 の通過画分を IRA 400J を用いて通過画分と吸着画分に分 画した結果、Zn 可溶化物質は IRA 400J 吸着画分に移行したことが確認された (図 3.1.及び 3.3)。以上の結果より、Zn 可溶化活性は最終的に IRA 400J 吸着画 分に移行したことから、高極性の酸性化合物であると考えられた (図 3.1 及び 図 3.3)。HPLC 分取カラムを用いて IRA 400J 吸着画分を精製した結果、4 つの 主要なピークが確認された (図 3.2)。3-2-6 に示した方法に従い Fr. 1, 2, 3, 4,及 び5として分画し、Zn 可溶化試験に供したところ、Fr. 1, 2, 3, 4, 及び5単独で はZn 可溶化活性は確認されなかったが(図3.4)、Fr. 1, 2, 3, 4, 及び5 を再度混 和して Zn 可溶化試験に供したところ、Zn 可溶化活性が確認された (図 3.4)。 次に画分を一つずつ減らすことで、Zn 可溶化試験を行ったところ、Fr. 1, 2, 3, 及 び4の混和区に Zn 可溶化活性が確認され、Fr. 2, 3, 及び4の混和区にも Zn 可溶 化活性が確認された (図 3.4)。次に Fr. 2 及び 3 を混和して Zn 可溶化試験を行 ったところ、Zn 可溶化活性は消失した (図 3.4)。また、Fr. 2 及び 4 を混和し Zn 可溶化試験を行ったところ、Zn 可溶化活性は消失した (図 3.4)。以上の結果 から、Fr. 2.3. 及び4の3 画分を混和するときにのみ Zn 可溶化活性が示される ことが明らかとなった (図 3.4) 。 また、Fr. 2, 3, 及び4はそれぞれ異なる特徴 的な UV スペクトルを示した(図 3.2 d, e, f)。3-2-6 での精製の結果、100 ml の 培養濾液から Fr. 2 は 2.2 mg、Fr. 3 は 6.5 mg、そして Fr. 4 は 4.3 mg を単離する ことができた。

3-2-8における GC/MS 分析の結果、Fr.-2-TMS は保持時間 26.6 分に確認され(図 3.5 a)、本ピークの EI-MS スペクトル(図 3.6 a)をライブラリー検索した結果、 Fr. 2-TMS は urocanic acid-TMS と 90 %の類似性が確認された。Fr. 2-TMS の EI-MS スペクトルにおける各分子イオンピークの基準ピーク (*m*/*z*:73.1)に対する%は 267.1 (58.3%), 282.1 (29.0%), 147.1 (27.5%), 193.1 (25.3%), 165.1 (18.5%), 180.1

(16.0%), 268.1 (13.4%), 及び 75.1 (10.5%) であ-った。標品の urocanic acid を TMS
化し、GC/MS に供したところ、urocanic acid-TMS は保持時間 26.5 分に確認され
(図 3.5 b) このピークの EI-MS (図 3.6 b) における各分子イオンピークの基準ピ ーク (m/z: 73.1) に対する割合は 267.1 (70.8%), 282.1 (35.3%), 147.1 (31.2%),
193.1 (29.7%), 165.1 (20.1%), 180.1 (17.7%), 268.1 (15.5%), 及び 75.1 (11.7%) で あった。保持時間及び EI-MS スペクトルの類似性より、Fr.-2-TMS は urocanic
acid-TMS と同定された。

3-2-8 における GC/MS 分析の結果、Fr. 3-TMS は保持時間 10.2 分にピークが確認され(図 3.7 a)、このピークの EI-MS スペクトル(図 3.8 a)をライブラリー検索した結果、Fr. 3-TMS は L-leucine-TMS と 95 %の類似性が確認された。Fr. 3-TMS のスペクトルにおける各分子イオンピークの基準ピーク (*m*/*z*: 158.1) に対する割合は 73.1 (31.3%), 159.1 (17.1%), 102.1 (6.9%),及び 147.1 (6.8%)であった。標品のL-leucineをTMS 化し、GC/MS に供したところ、L-leucine -TMS は保持時間 10.2分に確認され(図 3.7.b.)、このピークの EI-MS スペクトル(図 3.8 b) における各分子イオンピークの基準ピーク (*m*/*z*: 158.1) に対する%は 73.1 (31.1%), 159.1 (18.5%), 102.05 (7.2%),及び 147.05 (6.8%)であった。保持時間及び EI-MS スペクトルの類似性より、Fr. 3-TMS は L-leucine -TMS であると同定された。

Fraction 4 は GC/MS 装置の試料導入部で結晶化したため、GC/MS 分析での 分析が不可能であった。従って、種々の NMR 分析及び ESI-TOF-MS を使用し構 造解析を試みたが、構造決定には至らなかった。しかしながら、各分析によっ て部分構造の類推は可能となった。ESI-TOF-MS 分析の結果、Fr. 4 の分子量は 260.13 と推定され、分子式 $C_{11}H_{20}N_2O_5$ の計算値 260.18 に最も近い値を示した。 $C_{11}H_{20}N_2O_5$ の不飽和度は 2 であった。また、NMR 分析の結果 (表 3.1) より、 ¹H-NMR において 9.38 ppm にシングレット (s) のシグナルが確認された。また

¹H-NMR より、6.58 ppm にダブレット(d)、6.81 ppm にダブレット (d)、7.11 ppm にダブレット (d)、及び 7.43 ppm にダブレット (d) のシグナルが確認された。 ¹H-¹H COSY の結果及び¹H-NMR のカップリング定数より、6.58 ppm と 7.43 ppm、 6.81 ppm と 7.11 ppm は隣接するカーボンに直結するプロトンであることが確認 され、¹³C-NMR、HMQC び DEPT の結果を踏まえると、2 重結合性のプロトン が存在することが考えられた。また¹H-NMR より、2.79 ppm にトリプルダブレ ット (td) 、2.97 ppm にダブルダブレット (dd) 、3.24 ppm にダブルトリプレッ ト (dt) 、そして 3.46 ppm にダブルトリプレット (dt) のシグナルが確認された (表 3.1)。また、¹H-¹H COSY の結果より、2.79 ppm と 2.97 ppm、3.24 ppm と 3.46 ppm は接したプロトンであることが確認され(表 3.1)、¹³C-NMR、¹³C-¹H COSY 及び DEPT の結果を踏まえると、単結合性の炭素鎖の存在が示唆された。他の 4.60 ppm、3.96 ppm のプロトンはシングレットであることから、構造内に炭素と 窒素の直結した結合を有する可能性も示唆された。長距離の¹³Cと¹Hの相関が 確認できる Heteronuclear Multiple Bond Coherence (HMBC)の分析を行うことで、 さらなる構造解析が行えると考えられたが、分析量の不足のため HMBC は測定 できなかった。また、Fr.4のシリカゲル薄層板にスポットし、0.2% ニンヒドリ ンエタノール溶液を噴霧し加熱たところ(Merck株式会社, 2006)、ニンヒドリ ン反応の呈色が確認されたことから、アミノ基の存在が確認された。以上の結 果を総合すると、Fr.4は二重結合、単結合性の鎖状炭素、C-N 結合、およびア ミノ基を有する物質であると考えられた。

3-4 考察

Pseudomonas putida は複数の siderophore を産生することが知られている (Varma and Chincholkar 2007)。Siderophore とは微生物や植物が産生する不溶態

の Fe と錯体化し可溶化させる低分子量の化学物質の総称であるが、siderophore の中にはpyridine-2,6-bis (thiocarboxylic acid) (PDTC) のようにFe以外の元素と錯 体化し可溶化させる物質も確認されている (Cornelis 2010)。一般的に、 siderophore は Fe と 1:1、もしくは 2:1 の割合で結合すること知られている (Miethke and Marahiel 2007; Stolworthy et al. 2001)。例として、Pseudomonas 属細 菌が産生する siderophore で最も有名なペプチド系化合物である pyoverdine は1: 1 で強固に Fe と錯体化することが知られている (Meyer 2000)。一方、PDTC は Feとは2:1で錯体化するにもかかわらず、Znとは1:1、もしくは2:1で錯体 化することが確認されている (Cortese et al. 2002)。また、単一の物質ではなく、 複数の物質が錯体形成に関与している事例として cepabactin 及び pyochelin が挙 げられる。CepabactnはPseudomonas cepacia が産生する siderophore であり (Meyer et al. 1989)、cepabactin 単独でも 3:1 の割合で Fe と錯体を形成する (Klumpp et al. 2005)。Pyochelin はサリチル酸由来の sderophore であり (Bultreys 2007)、 Pseudomonas 属細菌では P. aeruginosa, P. fluorescens, 及び P. cepacia が産生する ことが知られている (Cox et al. 1981; Meyer et al. 1989)。 Pyochelin は Fe と 1:1、 もしくは 2:1 で錯体を形成する (Brandel et al. 2012) 。このように cepabacton 及 び pyochelin は単独でも Fe と錯体を形成することが報告されているが、Klumpp et al. (2005) は Fe、cepabactin、及び pyochelin は 1:1:1 で 錯体を 形成 すると報告 している。本章において Fr. 2、Fr. 3、及び Fr. 4 は其々単独では土壌中の Zn を可 溶化させなかったが、3種の化合物が混和することによって、初めて Zn の可溶 化が確認された (図 3.4)。これら3種の物質は HPLC 分析の UV スペクトルの 結果から、構造は異なることが確認された (図 3.1 e, f, g)。

Fraction 2はGC/MSの結果、urocanic acidであることが明らかになった。Urocanic acidはHistidineの異化代謝経路の代謝産物であり (Norval *et al.* 1989)、*P. putida*

においても産生することが知られている (Wheelis and Stanier 1970)。この urocanic acidはZnと1:1、もしくは2:1で結合することが報告されている (Okabe and Sasaki 1995)。

Fraction 3はGC/MSの結果、L-leucineであることが明らかになった。一般的にα-アミノ酸は自身の持つアミノ基やヒドロキシル基を用いて金属、特にアルカリ 金属と弱い五員環錯体構造を形成することが知られている(Shimazaki *et al.* 2009)。例としてCaはアミノ酸 (glycine, alanine, valine, leucine, methionine, 及び proline)と1:2の割合で結合することが報告されている (Fox *et al.* 2007; Daniele *et al.* 2008)。また、アミノ酸単体で錯体形成するのみではなく、ペプチドとな ることでCu, Ni, 及びZnといった重金属と結合することが知られている (Rajković *et al.* 2008)。例として、histidine-histidine-valine-glycine-asparagineのペ プチドはZnと結合することが報告されている(Kállay *et al.* 2007)。本章で明ら かになったFr. 3のL-leucineは、Znと2:1で結合することが知られている(Wargner and Baran 2009; Auld, 2001)。

Fraction 4 の構造決定はできなかったが、種々の解析の結果、分子量は 260、 分子式は $C_{11}H_{20}N_2O_5$ と推定され、部分構造として二重結合、単結合性の鎖状炭 素、C-N 結合、およびアミノ基を有する物質であると考えられた。Fr. 4 の解析 が困難であった理由として、類縁体の混在が考えられたが、このような現象に 類似した低分子量物質としてアミノ酸系代謝産物である mugineic acid があげら れる。mugineic acid は大麦の根の洗液より単離された強い Fe キレート能を有す る物質であることが知られている (Takemoto *et al.* 1978)。また mugineic acid は Fe のみではなく、Zn, Cu, 及び Ni と錯体構造を形成することが知られており (Haydon and Cobbett 2007; Suzuki *et al.* 2006)、Al とも錯体形成する可能性が指摘 されている (Yoshimura *et al.* 2011)。Mugineic acid の一種であり、Co と錯体構造 を形成する 2'-deoxymugineic acid において類縁体は 5 種類存在する。(西丸 2006)。本研究においてもこのような類縁体の存在が NMR の結果に大きな影響 を及ぼした可能性が示唆された。また、構造決定の解析が困難であったもう一 つの理由として、K の混入の可能性が考えられる。Zn の可溶化試験において直前に pH 調整を行うが、その際に本研究では 1 M NaOH を使用した(3-2-7)。 予備試験時に、1 M 水酸化カリウム (KOH) で pH 調整を試みたところ、Zn 可溶 化活性が確認されるはずの IRA 400J 吸着画分においても Zn 可溶化活性が消失した。この現象は K と Zn の可溶化物質が強く結合することに起因すると推測された。本実験で使用した脱塩水は Elix UV 純水装置 (Elix UV3; Merck Millipore, Billerica, U.S.A.) により作製したが、この装置で作製される純水は超純水ではないため、分離操作の段階で使用した脱塩水に含まれていた微量の K が最終的に 濃縮され、NMR の結果に影響を及ぼした可能性も考えられた。

以上のことから、*P. putida*の産生するurocanic acid, L-leucine 及び未同定のFr. 4 が協力的に作用することでZn可溶化活性が示されたことが明らかとなった。構 造が明らかになったFr. 2 のurocanic acid及びFr. 3 のL-leucineは単独でZnと錯体 構造を形成することが報告されている (Okabe and Sasaki 1995; Auld 2001) が、こ れらの物質とZnの錯体形成についての実験で使用されているZnはZnCl₂やZnSO₄ といった可溶性のZnであり不溶態Znではない。一般的に知られている土壌中の Znの形態は交換態Znが1~2%, 無機結合態が2~3%, 有機結合態が5~10%, 遊離酸 化物吸蔵態が10~30%, 残差画分が60~80%と言われ (Tessier *et al.* 1979; 定本 1994)、可溶性Zn (交換態Zn)の割合が圧倒的に低いことが知られているため、 urocanic acid、L-leucine、未同定のFr. 4の関与したZnの可溶化には既往の報告と は別のメカニズムが推測される。

3-5 要約

接種試験によって P. putida は土壌中の不溶態 Zn を可溶化させたことが確認さ れた。P. putida の接種によって土壌中の pH は低下しなかったにも拘らず、土壌 中の交換態 Zn 量には有意な増加が確認されたことから、P. putida は何らかの化 学物質を産生することによって土壌中の不溶態 Zn を可溶化させたと考えられた。 そこで、P. putida の産生する土壌中の不溶態 Zn の可溶化物質を培養液より単 離・同定を試みた。

P. putida 培養濾液を酢酸エチル抽出、XAD-4、及び IRA 400J によって分画し、 HPLC 分取カラムによって Zn 可溶化物質の精製を行ったところ、3 種の化学物 質が単離された。これら 3 種の物質が同時に存在するときのみ Zn 可溶化活性が 確認された。GC/MS 分析によって Fr. 2 は urocanic acid、Fr. 3 は L-leucine と同定 された。Fr. 4 の構造を決定することはできなかったが、*P. putida* の関与するドク ゼリの Zn 吸収メカニズムには、*P. putida* の産生する urocanic acid, L-leucine 及び 未同定の Fr. 4 が関与していると考えられた。

図 3.1 Zn 可溶化物質の分画スキーム 各画分は(1)-(6)で便宜上示す。数値は各画分の乾燥重量を示す。

図 3.2 HPLC クロマトグラム及び Fr. 2, 3, 及び4の UV スペクトル HPLC クロマトグラム及び各ピークの UV スペクトルを示す。(a) は 200 nm のクロマトグラム、(b) は 220 nm のクロマトグラム、(c) は 280 nm のクロマトグラムを示す。主要な4つのピークを Fr. 1 (7.74 min), Fr. 2 (25.03 min), Fr. 3 (43.93 min), 及び Fr. 4 (55.92 min) とし、それ以外のす べての溶出部を Fr. 5 とした。(d)は Fr.2、(e)は Fr.3、(f)は Fr.4 の UV ス ペクトルを示す。

図 3.1 の各画分の Zn 可溶化活性の結果を示す。RSM は RSM 液体培地のみの Zn 可溶化活性を対照区として示し、培養濾液は *P. putida* の培養液(分画前) の Zn 可溶化活性を示す。(1) から (6) の数字は図 3.1 の各画分を示す。棒グ ラフ上のアルファベットは、ANOVA post-hoc test (Tukey-Kramer method) によ る解析結果を示す (*P* < 0.05)。図中のエラーバーは標準誤差を示す。

図 3.4 HPLC 分取カラムによって得られた各分画の Zn 可溶化活性 図 3.1 のスキームに従い、分離した各画分の Zn 可溶化活性を示す。RSM は RSM 液体培地のみの Zn 可溶化活性を示す。IRA400J は IRA400J の吸着画 分 (図 3.1 及び 3.2 における (5) に相当)の Zn 可溶化活性を示す。Fr. 1-5 は図 3.2 a, b, 及び c における Fr. 1 から 5 を示す。図中の All Fractions は Fr. 1 から 5 を再度混和したものを示す。図中のエラーバーは標準誤差を示す。

図 3.5 Fr. 2-TMS 及び urocanic acid-TMS の GC クロマトグラム

(a) は Fr. 2-TMS の GC クロマトグラム (矢印は Fr. 2-TMS のピーク、保持時間
26.6 min) を示し、
(b) は urocanic acid-TMS の GC クロマトグラム (矢印は urocanic acid-TMS のピーク、保持時間
26.5 min) を示す。

(a) はFr. 2-TMSのEI-MSスペクトルを示し、(b) はurocanic acid-TMSのEI-MS スペクトルを示す。

図 3.7 TMS 化した Fr. 3 及び L-leucine の GC スペクトル

(a) はFr. 3-TMSのGCクロマトグラム (矢印はFr. 3-TMSのピーク、保持時間10.2 min)
 を示し、(b) はL-leucine -TMSのGCクロマトグラム (矢印はL-leucine -TMSのピーク、
 保持時間10.2 min) を示す。

図 3.8 Fr. 3-TMS 及び L-leucine -TMS の EI-MS スペクトル (a) はFr. 3-TMS のEI-MS スペクトルを示し、(b) はL-leucine -TMS のEI-MS スペクトルを示す。

	¹ H-NMR	¹³ C-NMR	DEPT	¹ H- ¹ H COSY
1	9.36 (s)	181.80	СН	—
2	7.43 (d, <i>J</i> = 3.7)	128.09	СН	6.58
3	7.11 (d, <i>J</i> = 8.5)	132.10	СН	6.81
4	6.81 (d, <i>J</i> = 8.5)	117.22	СН	7.11
5	6.58 (d, <i>J</i> = 3.7)	112.25	СН	7.43
6	4.60 (s)	57.35	CH ₂	_
7	3.96 (s)	48.83	CH ₂	_
8	3.91 (s)	53.39	СН	3.62
9	3.62 (s)	53.69	СН	3.91
10	3.46 (dt)*	44.49	CH ₂	3.24
11	3.24 (dt)*	47.72	CH ₂	3.46
12	2.97 (dd)*	44.49	CH ₂	2.79
13	2.79 (td)*	44.49	CH ₂	2.97
14	1.33 (d)*	20.49	CH	4.30

表 3.1. Fraction 4 の NMR データ $(D_2O + D-TFA)$

*微小シグナルであり、重水中の分析であったため、シグナルがブ ロードとなった。そのため、カップリング定数については正確な 値を示したとはいえなかったため、表からは割合した。 第4章 総合考察

重金属による土壌汚染は日本のみの問題ではなく、世界的な問題である(畑 2008)。日本においても重金属汚染は平成22年度届け出の75%、平成14年から 22年までの特定有害物質別の要措置区域等指定件数累計届け出の72%を占め、 その大半の事例において汚染原因が不明とされており、根深い問題であること が伺える(環境省水・大気環境局 2010a)。このような汚染土壌を修復する方 法として客土の様な物理的な手法のみならず、近年はより環境負荷の少なく、 低コストな方法として植物や微生物を用いた生物的手法について研究がなされ ている。一つの例として植物を利用した phytoremediation が挙げられる。重金属 を対象とした phytoremediation として、土壌中の重金属を植物内に吸収させる phytoextraction、及び重金属耐性植物を生育させることで汚染土壌の流亡を防ぐ phytostabilization が定義されている(Charny *et al.* 1997)。中でも、汚染土壌から 植物体内へ重金属を移行・蓄積させた後植物を刈り取ることで、汚染土壌を直 接浄化できる phytoextraction は、盛んに研究が行われているが、phytoextraction は土壌中からの重金属の吸収量が極めて低く、効率が悪いとされるため、これ を改善するために根圏に生息する微生物を利用する手法が探られている。

植物の根の周辺約 1-2 mm の領域は根圏 (Rhizosphere) と定義されている (Rovia and Bowen 1966; Pinton *et al.* 2001) 。根圏は植物根より滲出される糖、ア ミノ酸やフェノール性物質などの影響を直接受けるため非根圏土壌とは化学的 な環境が異なる (Brimecombe *et al.* 2001) 。そのような特殊な根圏環境は、根圏 土壌に生息する微生物の種や数 (Kroon and Visser 2003)、微生物活性、及び有機 物量 (木村 1998) に影響を及ぼすことが報告されており、その影響を根圏効果 と言う (Curl and Truelove 1986) 。根圏効果を受けた細菌(根圏細菌)の中には 植物の生育に有用な根圏細菌が存在していること確認されており、そのような 根圏細菌は PGPR (Plant Growth Promoting Rhizobacteria) と定義される (Ryan et al. 2008)。 PGPR の植物に対する性の影響として、1) 植物ホルモンの産生、2) siderophore の産生、3) 窒素固定能、4) 酵素及び低分子量物質の産生、及び 5) 無機化合物の可溶化が挙げられ (Glick 1995)、作物の生産の向上やストレス環境 での生育改善といった影響があることが知られている (Sturz et al. 2000)。そう いった根圏細菌の中でも、植物組織内部に生息する内生細菌は、植物ホルモン の産生、窒素固定能、そして栄養元素の吸収促進を誘導することで植物の環境 ストレス耐性を誘導することが知られている (Vessey et al. 2003)。また、内生 細菌は、顕著に病原性や共生を示さず植物の組織内に生息する (木村 1998) こ とで植物の防御機構を誘導し、結果として植物の環境ストレス耐性を増強させ ていると考えられる (Schulz and Boyle 2006)。こういった内生細菌の中には siderophore や有機酸といった低分子量の二次代謝産物を産生することで植物の 重金属吸収促進に関与していることが知られている (Ma et al. 2011)。

実際の重金属環境で生育する植物の中には内生細菌の能力によって重金属蓄 積が促進されている植物が存在している可能性が高いと考えられたことから、 本研究ではこのような内生細菌を探索するために、重金属汚染環境である日立 鉱山中腹の沼で優占的に生育しているドクゼリ着目した。長田 (2008) によると、 ドクゼリが優占的に生息する日立鉱山沼の土壌に含まれる年間の有重金属濃度 (最小値-最大値) は Cu は 760-993 µg/g dry weight (D.W.)、Ni は 20-26 µg/g D.W.、 Zn は 273-454 µg/g D.W.、Cd は 16-27 µg/g D.W.、Pb は 670-798 µg/g D.W.であり、 特に Cu, Zn, 及び Pb が高濃度で含まれていることを報告した。He *et al.* (2005) は、 一般的な非汚染土壌に含まれる重金属量を、Cu は 20 µg/g D.W.、Ni は 10-150 µg/g D.W.、Zn は 40 µg/g D.W.、Cd は 0.06 µg/g D.W.、Pb は 10-150 µg/g D.W.であると 報告している。He *et al.* (2005) の報告による非汚染土壌と比較して、日立鉱山沼

の土壌は Cu, Zn, そして Pb によって高濃度で汚染されていることが確認された。 日立鉱山沼で生育しているドクゼリは6月から8月にかけて生育を行い、8月に 成長は最大に達し、9月に虫害によって生育が減退していることが明らかになっ た。また、成長が最大であった8月のドクゼリの節根においては、Zn 濃度 (7,542 µg/g) が最大となっていることが明らかとなった。この濃度は植物の成長阻害を 起こす Zn 濃度であるにもかかわらず、ドクゼリは顕著な生育阻害を受けること なく生育を続けていたことが野外観察により確認された。また、Zn 濃度が最も 高かった8月のドクゼリの節根から内生細菌を1% Nutrient broth agar 及び1% Yeast glucose agar 培地で分離したところ 54 菌株が分離され、そのうち 20 菌株 が土壌中の不溶態 Zn を可溶化させる能力を有することが明らかになった。これ らの菌株は極端な pH 低下無しに土壌中の不溶態 Zn を可溶化していたことから Zn の可溶化はプロトン放出によるものではなく、菌株により産生された化学物 質によるものである可能性が高いことが示唆された。以上のことから、ドクゼ リにおける高濃度のZn吸収にこれらの内生細菌の産生する化学物質が関与して いる可能性が示唆された (長田 2008) 。さらに、16S rRNA 遺伝子に基づく系統 学的分類の結果より、最も高い Zn 可溶化能力を示した株は Pseudomonas putida 及び Rhodopseudomonas sp.であることが確認された (加藤 2010)。

以上の結果を踏まえ本研究では、内生細菌の関与したドクゼリにおける Zn 吸 収メカニズムを解明することを目的とした。最初に、高い Zn 可溶化能力を示し た P. putida 及び Rhodopseudomonas sp.をドクゼリの実生に接種することによって Zn の吸収促進が起こるかを検証した。接種試験の結果、P. putida が土壌中の交 換態 Zn 量を増加させ、ドクゼリ実生における Zn 吸収を促進させたことが確認 されたことから、P. putida が産生する Zn 可溶化物質の単離・同定を行った。

本研究では第2章で P. putida 及び Rhodopseudomonas sp.を滅菌条件下でドクゼ

リの滅菌実生に接種し、現地の重金属土壌において生育させることで滅菌実生 のZn吸収における内生細菌の影響を明らかにすることを目的とした試験を行っ た。その結果、P. putidaの接種によって実生の地上部及び根部の新鮮重量、葉の 数、茎の分岐、及び茎長の有意な増加が確認された (図 2.1 及び表 2.1) 。また、 地上部において K、根部において Mg の有意な吸収促進 (表 2.2) 及び P. putida による IAA の産生が確認された。Pseudomonas putida を接種することで、実生地 上部及び根部の全重金属濃度の有意な増加は確認されなかったが(表 2.3)、実 生根部において Zn 量の有意な吸収促進が確認された(表 2.4)。また、接種によ って土壌中の pH の変動なしに交換態 Zn 及び Pb 量が増加したため (表 2.5)、 P. putida は土壌中の不溶態 Zn を可溶化することで実生の Zn 吸収を促進をする ことが確認された。実生の Zn 濃度に有意な差が確認されなかった理由として、 希釈効果が考えられた。希釈効果とは植物の生育が急速であるとき、植物中の 無機元素濃度が減少する現象と定義される (Larcher 2003)。Pseudomonas putida を接種した実生は IAA 及び栄養元素吸収促進によって急速に生育したため、実 生の各含有重金属濃度が希釈効果によって見掛け上希釈された結果、接種区と 対照区の実生の含有 Zn 濃度には有意な差が確認されなかったと考えられた。

一方、*Rhodopseudomonas* sp.の接種によっては実生の根部の新鮮重量、葉の数、 茎の分岐、及び茎長の有意な増加が確認されたが、地上部の新鮮重量では有意 な増加は確認されなかった(図 2.1 及び表 2.1)。また、実生根部における Mg の 有意な吸収増加(表 2.2) 及び *Rhodopseudomonas* sp. による IAA の産生が確認さ れた。*Rhodopseudomonas* sp.を接種することで、実生地上部及び根部の有意な増 加は確認されず(表 2.3)、根部において Ni 及び Pb の重金属量の有意な吸収促 進は確認された(表 2.4)。実生根部における Zn 量の有意な吸収増加は確認され なかった(p = 0.07)。また、接種によって土壌中の pH の変動なしに不溶態重金 属が可溶化され、交換態 Zn 及び Cd の増加が確認された(表 2.5)。交換態 Zn が増加しているのにもかかわらず、実生中の Zn 濃度に有意な差が確認されなかった理由として P. putida と同様に希釈効果が考えられた。

本研究においてP. putida及びRhodopseudomonas sp. はドクゼリの実生に対 して2種類の影響を示すことが確認された。一つはIAA産生及び栄養元素を吸収 促進することによる実生成長の増加への寄与であり(図 2.1及び表2.1)、もう一 つは土壤中の不溶態Znの可溶化による実生根部へのZn吸収促進であった (表 2.5)。Pseudomonas属細菌にはPGPRとしての機能を有する菌株が多数知られて いる (Ryan et al. 2008) 。PGPRの機能としてP. putidaは重金属ストレス環境下で IAA産生、ACCD活性、またSiderophore産生を示すことが知られている (Glick 2010)。例として、Tripathi et al. (2005) はCd及びPb添加土壌でP. putida KNP9を Phaseolus vulgarisへ接種したところ、IAA産生、ACCD活性、及びSiderophoreの 産生が確認されたと報告している。また、Rodriguez et al. (2008) はNi汚染土壌に おいてBrassica napusにP. putida HS-2を接種したところ、IAA産生、ACCD活性、 及びSiderophoreの産生が確認されたと報告している。Rhodopseudomonas属細菌 においては、Rhodopseudomonas sp. KL9及びRhodopseudomonas sp. BL6がIAA及び 5-aminolevulinic acid (ALA) を産生したことが報告されている (Koh and Song 2007)。また、*Rhodopseudomonas* sp. KL9をトマトの苗に接種することで地上部 及び根部において成長促進が確認されたと報告されている (Lee et al. 2008)。第 2章においても、重金属土壌において生育するドクゼリ実生にP. putida及び Rhodopseudomonas sp.を接種した際に、PGPRとしての能力によってドクゼリ実 生の成長促進及びZn吸収量の増加が確認されたと考えられた。

第2章において、実生個体当たりのZn吸収量の増加は確認されたが、濃度の顕著な増加は確認されなかったことを希釈効果(Larcher 2003)によって考察して

きた。重金属耐性の点から推測を含め考察すると、この希釈効果による実生体 内のZn濃度の減少はZnの毒性低下に関与する可能性が高い。接種試験において 実生の含有Zn濃度は503.32 µg/gであったが(表 2.3)、一般的な植物に対して毒 性を示すZn濃度は20 - 100 µg/gであり(Fox and Guerinot 1998)、陸上植物全般で は10 - 400 µg/g (Larcher 2003)であると報告されていることから、ドクゼリ実生 におけるZn濃度の減少は間接的にZn耐性に寄与していると示唆された。一方、 日立鉱山沼に生息する成熟個体のドクゼリの節根には7,542 µg/gという高濃度で Znが蓄積されていたが正常に生育していたことから(長田 2008)、成熟個体に は高濃度のZn蓄積に対して植物自体が何らかの耐性機構を有する可能性が考え られる。一般的に幼植物は成熟個体に比べて重金属耐性が低いと言われている が(Li et al. 2005)、第2章で確認された内生細菌接種による実生成長の増加は、 成熟個体の耐性機構を有していない実生にとって生残への大きな寄与となる可 能性も考えられた。

また、一般的に植物の重金属耐性は細胞壁での不動化、細胞膜透過性の減少、 ポリペプチドとの錯体化、液胞への隔離、及び細胞外への能動的な排出といっ たメカニズムで、重金属の毒性から個体を防御していることが知られている (Hall 2002)。*Pseudomonas putida*の産生するurocanic acid及びL-leucineは可溶性Zn とは錯体構造を形成することが報告されている (Okabe and Sasaki, 1995; Auld, 2001)。節根組織内に生息する*P. putida*がこれらの化合物を根から外に放出する だけではなく、組織内部へも放出する可能性があることから、組織内に蓄積し たZnと錯体構造を形成することによる解毒効果も推測される。*Pseudomonas putida*の培養濾液にはZnやFeの可溶化活性のみならず、Cd及びPbの可溶化活性も 確認されており(長田 2008)、*P. putida*が産生する化合物の中にはCdやPbとも錯 体構造を形成するものの可能性も示唆されていることから、Cd及びPbの解毒効 果も推測される。第2章において確認された*P. putida*接種によるドクゼリ実生の 重金属耐性には*P. putida*が産生する化合物の関与する解毒メカニズムの可能性 が考えられた。

生態化学的見地からドクゼリ成熟個体がZnを高濃度で蓄積する利点を考察す ると、Elemental defense による虫害や病害に対する耐性機構が考えられる。例え ば、Hyperaccumulator は植物体内に高濃度の重金属を吸収させることが知られて いるが、体内の重金属濃度を増加させることによって昆虫による摂食や病原菌 感染を防除することが知られている (Poschenrieder *et al.* 2006) 。Zn の Hyperaccumulator である *Thlaspi caerulescens* はZn を蓄積することによって *Pseudomonas syringae* pv. maculicola が引き起こすうどん粉病の病兆を抑制でき たと報告している (Fones *et al.* 2010) 。ドクゼリの節根に生息する内生細菌は根 組織内の高濃度のZn に対して耐性を有することで、他の土壌糸状菌や細菌など の定着・感染を抑制し、生息領域を獲得している可能性も考えられた。

第2章でドクゼリのZn吸収に有意に関与していると考えられたのはP. putida であった。またP. putida は土壌中のpHの低下無しに不溶態Znを可溶化し、交 換態Zn量を増加させていたことが確認された。プロトン放出によるpHの低下 以外に土壌中の不溶態重金属を可溶化させるPGPRの能力としては siderophore の産生及び有機酸の産生が挙げられる(Lugtenberg and Kamilova 2009)。 Siderophore や有機酸は不溶態重金属と錯体構造を形成することによって重金属 を可溶化させ、植物が利用可能な形態にすることが知られている。第2章にお いても、P. putida が産生した siderophore や有機酸が土壌中の不溶態重金属と錯 体構造を形成することで、不溶態重金属が可溶化されたことが示唆された。そ こで第3章において、P. putida の産生する土壌中の不溶態Znの可溶化物質を単 離・同定することで、どのような化学物質が土壌中のZnの可溶化メカニズムに 関与しているのかを検証した。

Pseudomonas putida 培養濾液を、酢酸エチル抽出、XAD-4、及び IRA400J によ って分画した。その結果、Zn 可溶化物質は酢酸エチル抽出の水層、XAD-4の通 過画分、そして最終的に IRA400J の吸着画分に移行した (図 3.1 及び図 3.3) 。 最終的に IRA400J の吸着画分に移行したことが確認されたことから高極性の酸 性化合物であると考えられた。IRA400J 吸着画分に含まれる Zn 可溶化物質を HPLC 分取カラムを用いて精製した結果、4 つの主要なピークが確認された(図 3.2)。これらのピークを Fr. 1, 2, 3, 4, 及びその他の溶出部を 5 として分画し、 Zn 可溶化試験に供したところ、Fr. 1, 2, 3, 4, 及び5 単独では Zn 可溶化活性は確 認されなかったが、 Fraction 2.3. 及び4を混和した区にのみ Zn 可溶化活性が 確認され、これらの3画分が同時に存在しないと Zn 可溶化活性は消失した (図 3.4)。HPLC 及び分取カラムによる精製の結果、100 ml の培養濾液から Fr. 2 は 2.2 mg、Fr. 3 は 6.5 mg、そして Fr. 4 は 4.3 mg を単離することができた。 Pseudomonas putida は様々な代謝産物を産生することが知られている細菌であ るが、特に複数の siderophore を産生することが知られている (Varma and Chincholkar 2007)。Siderophore とは微生物や植物が産生する不溶態の Fe と錯体 化し可溶化させる低分子量の化学物質の総称であるが、siderophore の中には pyridine-2,6-bis (thiocarboxylic acid) (PDTC) のように Fe 以外の元素と錯体化し 可溶化させる物質も確認されている (Cornelis 2010) 。一般的に、このような siderophore は Fe と 1:1、もしくは 2:1 の割合で結合すること知られている (Miethke and Marahiel 2007)。例として、Pseudomonas 属細菌が産生する siderophore で最も有名なペプチド系化合物である pyoverdine は1:1 で強固に Fe と錯体化することが知られている (Meyer 2000)。一方、PDTC は Fe とは 2:1 で錯体化するにもかかわらず、Znとは1:1、もしくは2:1で錯体化することが

確認されている (Cortese *et al.* 2002)。しかし、本研究で Zn 可溶化活性を示した
Fr. 2, 3, 及び 4 は HPLC 分析の UV スペクトルの結果から、構造は異なることが
確認された (図 3.1 e, f, g)。複数の物質が siderophore として作用する事例として、
Klumpp *et al.* (2005) は Fe、cepabactin、及び pyochelin は 1:1:1 で錯体を形成す
ると報告している。本研究においても、こういった事例と同様に 3 種の化学物
質が Zn 可溶化に関与していると考えられた。

GC/MSの結果、Fr. 2はurocanic acidであることが明らかになった。Urocanic acid はHistidineの異化代謝経路の代謝産物であり (Norval et al. 1989)、P. putidaにお いても産生することが知られている (Wheelis and Stanier 1970)。Urocanic acidは Znと1:1、もしくは2:1で結合することが報告されている (Okabe and Sasaki, 1995)。また、GC/MSの結果、Fr. 3はL-leucineであることが明らかになった。一 般的にα-アミノ酸は自身の持つアミノ基やヒドロキシル基を用いて金属、特にア ルカリ金属と弱い五員キレート環構造を形成することが知られている (Shimazaki et al. 2009)。例としてCaはアミノ酸 (glycine, alanine, valine, leucine, methionine, 及びproline) と1:2の割合でと結合することが報告されている (Fox et al. 2007; Daniele et al. 2008)。また、アミノ酸単体で錯体形成するのみではな く、ペプチドとなることでCu, Ni, 及びZnといった重金属と結合することが知ら (Rajković et al. 2008) 。 例 と し て histidine-histidine-valine れている -glycine-asparagineのペプチドはZnと結合することが報告されている (Kállay et al. 2007)。第3章で明らかになったFr. 3のL-leucineは、Znと2:1で結合すること が知られている (Wargner and Baran 2009; Auld, 2001)。

Fraction 4 の構造決定はできなかったが、種々の解析の結果、分子量は 260、 分子式は C₁₁H₂₀N₂O₅ と推定され、部分構造として二重結合、単結合性の鎖状炭 素、C-N 結合、およびアミノ基を有する物質であると考えられた。Fr. 4 の解析

が困難であった理由として、類縁体の混在が考えられたが、このような現象に 類似した低分子量物質としてアミノ酸系代謝産物である mugineic acid あげられ る。Mugineic acid の一種であり、Coと錯体構造を形成する 2'-deoxymugineic-acid において類縁体は 5 種類存在する (西丸 2006)。本研究においてもこのような 類縁体の存在が NMR の結果に大きな影響を及ぼした可能性が示唆された。また、 構造決定の解析が困難であったもう一つの理由として、K の混入の可能性が考 えられる。Zn の可溶化試験において直前に pH 調整を行うが、その際に本研究 では1 M NaOH を使用した。予備試験時に、1 M 水酸化カリウム (KOH) で pH 調整を試みたところ、Zn 可溶化活性が確認されるはずの IRA 400J 吸着画分にお いても Zn 可溶化活性が消失した。この現象は K と Zn が可溶化物質と強く結合 することに起因すると推測された。実験に供した脱塩水は超純水ではなかった ため、分離操作の段階で使用した脱塩水に含まれていた微量の K が最終的に濃 縮され、NMR の結果に影響を及ぼした可能性も考えられた。

Fr. 2の urocanic acid 及び Fr. 3のL-leucine は単独で Zn と錯体構造を形成する ことが報告されている (Okabe and Sasaki 1995; Auld 2001) が、これらの物質と Znの錯体形成についての実験で使用されている Zn は ZnCl₂や ZnSO₄ といった水 溶性の Zn である。一般的に知られている土壤中の Zn の形態は交換態 Zn が 1~2%, 無機結合態が 2~3%, 有機結合態が 5~10%, 遊離酸化物吸蔵態が 10~30%, 残差画 分が 60~80%であり (Tessier *et al.* 1979; 定本 1994)、可溶性 Zn (交換態 Zn)の 割合が圧倒的に低い。Whiting *et al.* (2001) を参考に、第3章では日立鉱山沼土 壤をそのまま用いた Zn の可溶化試験を行い urocanic acid、L-leucine、未同定の Fr. 4 を分離したが、これらの物質は土壤中の無機結合態 Zn の可溶化に関与して いると考えられ、既往の報告とは別の可溶化メカニズムが推測される。不溶態 Zn であるリン酸亜鉛 [Zn₃(PO₄)₂]、炭酸亜鉛 (ZnCO₃)、及び酸化亜鉛 (ZnO) を 用いた Zn 可溶化物質に関する研究も複数報告されており、不溶態 Zn の種類に よっては同じ物質でも Zn の可溶化活性が異なるという結果が報告されている (Saravanan *et al.* 2007a; Saravanan *et al.* 2007b; Iqbal *et al.* 2010; Xinxian *et al.* 2011)。

ドクゼリ節根の Zn 蓄積に関与していると考えられる P. putida が産生する Zn 可溶化物質は urocanic acid、L-leucine、及びアミノ酸系代謝産物と推察される Fr. 4 であり、これら3 種類の物質が同時に存在することによって初めて Zn 可溶化 活性を示すことが確認された(図 3.4)。このようなアミノ酸、もしくはペプチ ドと低分子量有機酸が協力的に作用することで重金属と錯体を形成する例とし て Pyoverdine が挙げられる (Meyer 2000)。 Pyoverdine はキノリン骨格、6から 12 個アミノ酸で構成されたペプチド鎖、及びアミノ側鎖から構成されている (Bultreys 2007) 。キノリン骨格及びペプチド鎖由来のヒドロキシル基は Fe と結 合することが知られ (Tappe et al. 1993) 、本結合は高い親和性を示すことが報告 されている (Bultreys 2007)。一方、アミノ酸やペプチド単体での Fe や重金属と の親和性はとても低いことが報告されているため (Hirota and Yamauchi 2001)、 個々の物質の Zn との親和性は低くとも、可溶化活性物質が複数存在することに よって土壌中の Zn と強固な錯体形成を構築し、土壌中の不溶態 Zn を可溶化さ せている可能性が考えられる。第3章では P. putida に着目し Zn 可溶化能につい て考察したが、実際の根圏では他の内生細菌が産生する複数の可溶化物質との 協力作用が存在する可能性もある。内生細菌間の可溶化物質を検討することで、 新たな土壌中の Zn の可溶化メカニズムが確認されるかもしれない。また、単一 の物質ではなく、複数の物質の関与によって土壌中の重金属が可溶化するとい う新たな知見は、他の様々な重金属の可溶化メカニズムに影響を与える意義深 いものであると考えられる。

本研究では、内生細菌である P. putida が関与するドクゼリにおける Zn 蓄積メ カニズムには、P. putida 産生する urocanic acid、L-leucine、及び Fr. 4 の 3 つの物 質による不溶態 Zn の可溶化が寄与していることを解明した (図 4.1)。本研究の 基礎的知見は、内生細菌を利用した Phytoremediation の発展という点において意 義深いものであったと考えられる。植物と内生細菌の相互作用、内生細菌が及 ぼす土壌中の重金属に対する影響、そして Phytoremediation などの諸研究に対す る一つの知見として、本研究がそれらの一助になれば幸いである。

図4.1日立鉱山沼におけるFputidaによる不溶性Znの可溶化及びドクゼリのZn吸収観略図

摘要

植物を用いた重金属土壤汚染の修復方法のひとつとして、土壌の重金属を植物内に吸収させる phytoextraction がある。本修復手法は重金属の回収効率が低いことが指摘されており、これを改善するために植物組織内部に生息する機能的な内生細菌の利用が注目されている。既往報告により、重金属環境である日立鉱山に自生するドクゼリ (*Cicuta virosa* L.)は節根に高濃度のZn (7,542 µg/g)を蓄積することが明らかとなっている。また節根より分離された複数の内生細菌のうち、高いZn 可溶化能力を示した株は *Pseudomonas putida、Rhodopseudomonas* sp. と同定された。以上の結果を踏まえ本研究では、内生細菌 *P. putida、Rhodopseudomonas* sp.の関与したドクゼリにおけるZn 吸収メカニズムを解明することを目的とした。

まず、高いZn可溶化能力を示した P. putida 及び Rhodopseudomonas sp.をドク ゼリ実生に接種することにより、本実生におけるZnの吸収促進及び成長への影 響を検証した。 γ 線滅菌した現地土壌に滅菌ドクゼリ実生を移植した後、P. putida と Rhodopseudomonas sp.をそれぞれ実生へ接種・培養後、実生の含有Zn濃度及 び個体あたりのZn吸収量を分析した。その結果、実生の含有Zn濃度には両菌 株の接種によって統計学的に有意な差は確認されなかったが、P. putidaの接種に よって個体根部にあたりのZn量に有意な増加が確認された。また、P. putida と Rhodopseudomonas sp.の接種によって土壌 pHが低下することなく、交換態Zn量 の増加が有意に確認されたことから、特にP. putida においては本菌が産生する 物質が土壌における交換態Zn量を増加させた結果、本実生のZn吸収増加に影 響したと推測された。また、本実生の成長は両菌の接種により有意に増加した。 特にP. putida を接種した場合、その増加は顕著であった。これらの成長促進は P. putida と Rhodopseudomonas sp.による植物ホルモン産生(IAA 産生)及び一部 の栄養元素吸収促進が関与したと示唆された。以上の結果より、内生細菌 P. putida と Rhodopseudomonas sp.の機能は、1) 土壌の不溶態 Zn を可溶化することによる、実生における Zn 吸収促進、2) IAA 産生及び一部の栄養元素吸収促進による実生の成長促進、であると示唆された。

次に、P. putida の産生する Zn と錯体形成する物質(Zn 可溶化物質)の単離・ 同定を試みた。P. putida 培養濾液を酢酸エチル抽出した後、スチレンポリマー樹 脂(XAD-4)、弱陰イオン交換樹脂(IRA 400J)、HPLC 逆相分取カラム(RpC18) によって Zn 可溶化物質の精製を行った。Zn 可溶化活性の確認された画分を TMS 化後、GC/MS 分析に供した結果、3 種の化学物質(urocanic acid、L-leucine、未 同定の物質)が確認された。これら3 種の物質が同時に存在するときのみ Zn 可 溶化活性が確認されたことから、複数の可溶化物質の関与した、土壌における 不溶態 Zn 可溶化メカニズムが示唆された。

以上の結果から、本研究では、内生細菌、特に P. putida の関与したドクゼリ における Zn 吸収メカニズムの一端が明らかとなった。本菌の産生する Zn 可溶 化物質により土壌の不溶態 Zn が溶解され、植物が吸収可能な形態となった Zn がドクゼリに吸収されるメカニズムが示唆される一方、IAA 産生や栄養元素の 吸収促進を行うことで本植物の成長を促進し重金属ストレス環境下において、 共生的に本植物に寄与すると推測された。

引用文献

- Auld, D.S. 2001. Zinc coordination sphere in biochemical zinc sites. *Biometals* 14 271-313.
- Bhargava, A., Carmona, F.F., Bhargava, M., and Srivastava, S. 2012. Approaches for enhanced phytoextraction of heavy metals. *J. Environ. Manage*. 105 103-120.
- Brandel, J., Humbert, N., Elhabiri, M., Schalk, I.J., Mislin, G.L., and Albrecht-Gary, A.M. 2012. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. 41 2820-2834.
- Brimecombe, M.J., De Lelj, F.A., and Lynch, J.M. 2001. The rhizosphere. The effect of root exudates on rhizosphere microbial populations. In Pinton, R., Varanini, Z., and Nannipieri, P. (eds.) The rhizosphere. Biochemistry and organic substances at the soil-plant interface. Marcel Dekker. New York, U.S.A. pp. 95-140.
- Broadley, M.R., White, P.J., Zelko, I., and Lux, A. 2007. Zinc in plants. *New Phytol.* 173 677-702.
- Bultreys, A. 2007. Siderotyping, a tool to characterize, classify and identify fluorescent Pseudomonas. in Varma, A. and Chincholkar, S. (eds.) Microbial siderophores. Springer. Berlin, Germany. pp. 67-90.
- Chaney, R.L., Malikz, M., Li, Y.M., Brown, S.L., Brewer, E.P., Angle, J.S., and Baker, A.J.M. 1997. Phytoremediation of soil metals. *Curr. Opin. Biotechnol.* 8 279-284.
- Cornelis, P. 2010. Iron uptake and metabolism inpseudomonads. *Appl. Microbiol. Biothechnol.* 86 1637-1645.

Cortese, M.S., Paszcynski, A., Lewis, T.A., Sebat, J.L., Borek, V., and Crawford, R.L.

2002. Metal chelating properties of pyridine-2,6-bis(thiocarboxylic acid) produced by Pseudomonas spp. and the biological activities of the formed complexes. *Biometals* 15 103-120.

Curl, E.A. and Truelove, B. 1986. The rhizosphere. Springer. Berlin, Germany.

- Cox, C.D., Rinehart, Jr, K.L., Moore, M.L., and Cook, Jr, J.C. 1981. Pyochelin: novel structure of an iron-chelating growth promoter for *Pseudomonas aeruginosa*. 78 4256-4260.
- Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., and Sammartano, S. 2008. Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. *Cood. Chem. Rev.* 252 1093-1107.
- Doty, S.L. 2008. Enhancing phytoremediation through the use of transgenics and endophytes. *New Phytol.* 179 318-333.
- Fones, H., Davis, C.A., Rico, A., Fang, F., Smith, J.A., and Preston, G.M. 2010. Metal hyperaccumulation armors plants against disease. *PLoS Pathog*. 6 1-13.
- Fox, S., Büsching, I., Barklage, W., and Strasdeit, H. 2007. Coordination of biologically important alpha-amino acids to calcium (II) at high pH: insights from crystal structures of calcium alpha-aminocarboxylates. *Inorg. Chem.* 46 818-824.
- Fox, T.C. and Guerinot, M.L. 1998. Molecular biology of cation transport in plants. *Ann. Rev. Plant Physiol.* 49 669-96.
- Giller, K.E., Witter, E., and McGrath, S.P. 2009. Heavy metals and soil microbes. Soil Biol. Biochem. 41 2031-2037.
- Glick, B.R. 1995. The enhancement of plant growth by free-living bacteria. *Can. J. Microbiol.* 41 109-117.

Glick, B.R. 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol. Adv. 28

367-374.

- Gordon, S.A. and Weber, R.P. 1951. Colorimetric estimation of indole acetic acid. *Plant Physiol.* 26 192-195.
- Hall, J.L. 2002. Cellular mechanism for heavy metals detoxification and tolerance. *J. Exp. Bot.* 53 1-11.
- Haydon, M.J. and Cobbett, C.S. 2007. Transporters of ligands for essential metal ions in plants. *New Phytol.* 174 499-506.
- He, Z.L., Yang, X.E., and Stoffella, P.J. 2005. Trace elements in agroecosystems and impacts on the environment. *J. Trace. Elem. Med. Biol.* 19 125-140.
- Hirota, S. and Yamauchi, O. 2001. Weak interactions and molecular recognition in systems involving electron transfer proteins. *Chem. Rec.* 1 290-9.
- Iqbal, U., Jamil, N., and Ali, I., and Hasnain, S. 2010. Effect of zinc -phosphate -solubilizing bacterial isolates on growth of *Vigna radiata*. Ann. Microbiol. 60 243-248.
- Jacobson, C.A. 1915. Cicutoxin: The poisonous principle in water hemlock (*Cicuta*). J. Am. Chem. Soc. 37 916-934.
- Kállay, C., Ősz, K., Dávid, A., Valastyán, Z., Malandrinos, G., Hadjiliadis, N., and Sóvágó, I. 2007. Zinc(II) binding ability of tri-, tetra- and penta-peptides containing two or three histidyl residues. *Dalton Trans.* 28 4040-4047.
- Klumpp C., Burger A., Mislin G.L., and Abdallah M.A. 2005. From a total synthesis of cepabactin and its 3:1 ferric complexto the isolation of a 1:1:1 mixed complex between iron (III), cepabactin and pyochelin. *Bioorg. Med. Chem. Lett.* 15 1721-1724.

Koh, R.H. and Song, H.G. 2007. Effects of application of Rhodopseudomonas sp. on

seed germination and growth of tomato under axenic conditions. *J. Microbiol. Biotechnol.* 17 1805-1810.

Larcher, W. 2003. Physiological plant ecology. Springer. Berlin, Germany.

- Lasat, M.M. 2002. Phytoextraction of toxic metals: A review of biological mechanisms. *J. Environ. Qual.* 31 109-120.
- Lee, K.H., Koh, R.H., and Song, H.G., 2008. Enhancement of growth and yield of tomato by *Rhodopseudomonas* sp. under greenhouse conditions. *J. Microbiol.* 46 641-646.
- Li, W., Khan, M.A., Yamaguchi, S., and Kamiya, Y. 2005. Effects of heavy metals on seed germination and early seedling growth of *Arabidopsis thaliana*. *Plant Growth Regul.* 46 45-50.
- Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63 541-556.
- Ma, Y., Prasad, M.N., Rajkumar, M., and Freitas, H. 2011. Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. *Biotechnol. Adv.* 29 248-258.
- Macnair, M.R., Tilstone, G.H., and Smith, S.E. 2000. The genetics of metal tolerance and accumulation in higher plants. In Terry, N. and Banuelos, G. (eds.)
 Phytoremediation of contaminated soil and water. CRC Press LLC, Boca Raton, U.S.A. pp. 235-250.
- McGrath, S.P. and Zhao, F.J. 2003. Phytoremediation of metals and metalloids from contaminated soils. *Curr. Opin. Biotechnol.* 14 277-282.
- Meyer, J.M., Hohnadel, D., and Hallé, F. 1989. Cepabactin from *Pseudomonas cepacia*, a new type of siderophore. *J Gen Microbiol*. 135 1479-1487.

- Meyer, J.M. 2000. Pyoverdine; pigments, siderophores and potential taxonomic markers of fluorescent *Pseudomonas* species: Minireview. *Arch. Microbiol.* 174 135-142.
- Miethke, M. and Marahiel, M.A. 2007. Siderophore-based iron aquisition and pathogen control: Review. *Microbiol. Mol. Biol. Rev.* 71 413-451.
- Newman, L.A. and Reynolds, C.M. 2005. Bacteria and phytoremediation: new uses for endophytic bacteria in plants. *Trends Biotechnol.* 23 6-8.
- Norval, M., Simpson, J., and Ross, A. 1989. Urocanic acid and immunosuppression. *Photochem. Photobiol.* 50 267-275.
- Okabe, N. and Sasaki, Y. 1995. Zinc(II) complex of urocanic acid. Acta Cryst. 51 5-67.
- Påhlsson, A.M.B. 1989. Toxicity of heavy metals (Zn, Cu Cd, Pb) to vascular plants. *Water Air Soil Pollut.* 47 287-319.
- Pinton, R., Varanini, Z., and Nannipieri, P. 2001. The rhizosphere as a site of biochemical interactions amongs soil components, plants, and microorganisms.
 In: Pinton, R., Varanini, Z., and Nannipieri, P. (eds.) The rhizosphere Biochemistry and organic substances at the soil-plant interface. Marcel Dekker. New York, U.S.A.
- Poschenrieder, C., Tolrà, R., and Barcelò, J. 2006. Can metals defend plants against biotic stress? *Trends Plant Sci.* 11 288-294.
- Rajković, S., Kállay, C., Serényi, R., Malandrinos, G., Hadjiliadis, N. Sannad, D., and Sóvágó, I. 2008. Complex formation processes of terminally protected peptides containing two or three histidyl residues. Characterization of the mixed metal complexes of peptides. *Dalton Trans.* 37 5059-5071.
- Rascio, N. and Navari-Izzo, F. 2011. Heavy metal hyperaccumulating plants: How and why do they do it ? and ehat makes them so interesting ? *Plant Sci.* 180 169-181.
- Rodriguez, H., Vessely, S., Shah, S., and Glick B.R. 2008. Effect of a Nickel tolerant ACC deaminase producing *Pseudomonas* strain on growth of nontransformed and transgenic Canola plants. *Curr. Microbiol.* 57 170-174.
- Rovira, A.D. and Bowen, G.D. 1966. The effects of microorganisms upon plant growth. *Plant Soil* 25 129-142.
- Ryan, R.P., Germaine, K., Franks, A., Ryan, D.J., and Dowling, D.N. 2008 Bacterial endophytes : recent developments and applications. *FEMS Microbiol. Lett.* 278 1-9.
- Salt, D.E., Smith, R.D., and Raskin, I. 1998. Phytoremediation. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49 643-668.
- Saravanan, V.S., Kalaiarasan, P., Madhaiyan, M., and Thangaraju, M. 2007a. Solubilization of insoluble zinc compounds by *Gluconacetobacter diazotrophicus* and the detrimental action of zinc ion (Zn²⁺) and zinc chelates on root knot nematode *Meloidogyne incognita*. *Lett. Appl. Microbiol.* 44 235-241.
- Saravanan, V.S., Madhaiyan, M., and Thangaraju, M. 2007b. Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium *Gluconacetobacter diazotrophicus*. *Chemosphere* 66 1794-1798.
- Schep, L.J., Slaughter, R.J., Becket, G., and Beasley, M.G. 2009. Poisoning due to water hemlock. *Clin. Toxicol.* 47 270-278.

- Schultz, B.J.E. and Boyle, C.J.C. 2006. What are endophytes ? In Schultz, B.J.E., Boyle, C.J.C., and Sieber, T.N. (eds.) Microbial root endophytes. Springer. Berlin, Germany.
- Schützendübel, A. and Polle, A. 2002. Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53 1351-1365.
- Sheng, X.F., Xia, J.J., Jiang, C.Y., He, L.Y., and Qian, M. 2008. Characterization of heavy metal-resistant endophytic bacteria from rape (*Brassica napus*) roots and their potential in promoting the growth and lead accumulation of rape. *Environ. Pollut.* 156 1164-1170.
- Shimazaki, Y., Takani, M., and Yamauchi, O. 2009. Metal complexes of amino acids and amino acid side chain groups. Structures and properties. *Dalton Trans.* 38 7854-7869.
- Souza, M.P.D., Chu, D., Zhao, A.M., Ruzin, S.E., Schichnes, D., and Terry, N. 1999. Rhizosphere Bacteria Enhance Selenium Accumulation and Volatilization by Indian Mustard. *Plant Physiol.* 119 565-574.
- Stolworthy, J.C., Paszczynsk, A., Korus, R., and Crawford, R.L. 2001. Metal binding by pyridine-2,6-bis(monothiocarboxylic acid), a biochelator produced by *Pseudomonas stutzeri* and *Pseudomonas putida*. *Biodegrad*.12 411-418.
- Sturz, A.V., Christie, B.R., and Nowak, J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. *Crit. Rev. Plant Sci.* 19 1-30.
- Suzuki, M., Takahashi, M., Tsukamoto, T., Watanabe, S., Matsuhashi, S., Yazaki, J., Kishimoto, N., Kikuchi, S., Nakanishi, H., Mori, S., and Nishizawa, N.K. 2006.

Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. *Plant J.* 48 85-97.

- Takemoto, T., Nomoto, K., Fushiya, S., Ouchi, R., Kusano, G., Hikino, H., Takagi, S., Matsuura, Y., and Kakudo, M. 1978. Structure of mugineic acid, a new amino acid possessing an iron-chelating activity from roots washings of water-cultured *Hordeum vulgare* L.. *Proc. Jpn. Acad.* 54 469-473.
- Tappe, R., Taraz, K., Budzikiewicz, H., Meyer, J.M., and Lefevre, J.F. 1993. Structure elucidation of a pyoverdine produced by Pseudomonas aeruginosa ATCC 27853. J. Prakt. Chem. 335 83–87
- Tessier, A., Campbell, P.G.C., and Bisson, M. 1979. Sequential extraction procedure for the speciation of particulate trace elements. *Anal. Chem.* 51 844-851.
- Tripathi, M., Munot, H.P., Shouche, Y., Meyer, J.M., and Goel, R. 2005. Isolation and functional characterization of siderophore-producing Lead- and Cadmium-resistant *Pseudomonas putida* KNP9. *Curr. Microbiol.* 50 233-237.
- Varma, A. and Chincholkar, S. 2007 Microbial siderophore. Springer. Berlin, Germany.
- Vessey, K.V. 2003. Plant growth promoting rhizobacteria as biofertilizers. *Plant Soil*. 255 571-586.
- Wagner, C.C. and Baran, E.J. 2009. Vibrational spectra of Zn (II) complexes of the amino acids with hydrophobic residues. *Spectrochim. Acta Part A*. 72 936-940.
- Wheelis, M.L. and Stanier, R.Y. 1970. The genetic control of dissimilatory pathways in *Pseudomonas putida*. *Genetics* 66 245-266.
- Whiting, S.N., de Souza, M.P., and Terry, N. 2001. Rhizosphere bacteria mobilize Zn f or hyperaccumulation by Thlaspi caerulescens. *Environ. Sci. Technol.* 35 3144-3150.

- Wittstock, U., Hadacek, F., Wurz, G., Teuscher, E., and Greger, H. 1995. Polyacetylenes from water hemlock, *Cicuta virosa*. *Planta*. *Med*. 61 439-445.
- Xinxian, L., Xuemei, C., Yagang, C., Woon-Chung, W.J., Zebin, W., and Qitang, W. 2011. Isolation and characterization endophytic bacteria from hyperaccumulator *Sedum alfredii* Hance and their potential to promote phytoextraction of zinc polluted soil. *World J. Microbiol. Biotechnol.* 27 1197-1207.
- Yoshimura, E., Kohdr, H., Mori, S., and Hider, R.C. 2011. The binding of aluminum to mugineic acid and related compounds as studied by potentiometric titration. *Biometals.* 24 723-727.
- 浅見輝男 2010. [改訂増補] データで示す-日本土壌の有害金属汚染. アグネ技術センター (東京).

土壤環境分析法編集委員会 1997. 土壤環境分析法. 博友社 (東京).

畑昭郎 2001. 土壌・地下水汚染. 有斐閣選書 (東京).

畑昭郎, 田倉直彦 2008. アジアの土壌汚染. 世界思想社 (京都).

地盤環境技術研究会 2003. 土壤汚染対策技術. 日本科技連出版 (東京).

神賀誠,田切美智雄 2003. 渡良瀬川流域および宮田川流域の河川堆積物と土壌

の汚染の現状. 地質学会誌 109 533-547.

- 上赤博文 2012. 佐賀平野に於けるドクゼリの分布~2009年ドクゼリ調査隊活動 のまとめ~. 佐賀自然史研究 17 1-8.
- 加藤大輔 2010. 日立鉱山に自生するドクゼリ (Cicuta virosa L.) の二次代謝産物 が根部の内生細菌と内生糸状菌の生育に与える影響について. 修士論文.

筑波大学大学院生命環境科学研究科.

嘉屋実 1952. 日立鉱山史. 日立鉱業株式会社日立鉱業所 (日立).

川名英之 1989. ドキュメント日本の公害 第4巻 足尾, 水俣, ビキニ. 緑風出版

(東京).

- 環境省水・大気環境局 2010a. 平成22年度 土壌汚染対策法の施行状況及び土壌 染調査・対策事例等に関する調査結果.
- 環境省水・大気環境局 2010b. 平成22年度 農用地土壌汚染防止法の施行状況. 木村眞人. 1998. 根圏の微生物. 「根の辞典」. 根の辞典編集委員会 (編). 朝倉書

店 (東京). pp. 299-302.

- 久保田正亜, 折笠清人, 浅見輝男 1986. 日立鉱山および日立士風変市町村の道路わき粉じんおよび土壌の重金属分布. 日本土壌肥料学会誌. 57 142-148.
- 森田茂樹, 田島亮介訳. 2003. 根の生態学. Kroon, H.D. and Visser, E.J.W. (原著) Springer. Berlin, Germany.

間藤徹, 馬建鋒, 藤原徹 2010. 植物栄養学 第2版. 文永堂出版 (東京).

Merck 株式会社 2006. 薄層クロマトグラフィー用 呈色試薬ガイドブック. (東

京).

- 長田賢志 2008. 日立鉱山に自生するドクゼリとその重金属吸収に関与する根圏 微生物. 修士論文. 筑波大学大学院生命環境科学研究科.
- 長島一成 1994. 大煙突の記録 -日立鉱山煙害対策史-. 株式会社ジャパンエナジ ー.(東京).
- 西丸貴弘 2006. 植物シデロフォアの一種ムギネ酸の構造活性相関に関する研究. 薬学雑誌 126 473-479.
- 定本裕明,飯沼康二,本名俊正,山本定博 1994. 土壌中重金属の形態分別法の 検討、土壌肥料学会誌, 65 645-653.

柳沢宗男 1984. 神通川流域における重金属汚染の実態調査と土壌復元工法に関

する研究. 富山県農業試験場研究報告 151-110.

吉村隆 2003. 初歩から学ぶ土壌技術と浄化技術.(株) 土壌調査会 (東京).

謝辞

本研究を遂行するにあたり、研究全般にわたって懇切丁寧なご指導頂いた上、 様々な相談に乗って頂いた指導教官筑波大学生命環境科学研究科持続環境学専 攻准教授の山路恵子先生に深く感謝致します。また、本論文を御校閲賜り有益 な御助言を頂きました生命環境科学研究科生物機能科学専攻教授の松本宏先 生、、生命環境科学研究科持続環境学専攻教授の張振亜先生、及び同准教授の野 村暢彦先生に深く感謝いたします。

本研究における GC/MS 分析による Fr. 2 及び Fr. 3 の解析を指導して頂きまし た独立行政法人森林総合研究所東北支所生物被害研究グループ市原優博士に心 より感謝致します。博士研究及び論文執筆にあたり様々な御助言を頂きました 三井化学アグロ株式会社石本洋博士に心より感謝致します。また、長きに渡る 博士生活で相談に乗って頂き、激励を頂きました友人各位に心より感謝致しま す。

最後に、小生の博士進学を後押し頂き、研究を行い続ける機会を与えて頂い た両親に心から感謝致します。

75