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Abstract. The purpose of this paper is to study a class of semilinear
elliptic boundary value problems with degenerate boundary conditions which
include as particular cases the Dirichlet and Robin problems. By making use
of the Morse and Ljusternik–Schnirelman theories of critical points, we prove
existence theorems of non-trivial solutions of our problem. The approach here
is distinguished by the extensive use of the ideas and techniques characteristic
of the recent developments in the theory of semilinear elliptic boundary value
problems with degenerate boundary conditions. The results here extend earlier
theorems due to Ambrosetti–Lupo and Struwe to the degenerate case.

1. Statement of main results.

Let Ω be a bounded domain of Euclidean space RN , N ≥ 2, with smooth boundary
∂Ω; its closure Ω = Ω∪ ∂Ω is an N -dimensional, compact smooth manifold with bound-
ary. Let A be a second-order, elliptic differential operator with real coefficients such
that

Au = −
N∑

i=1

∂

∂xi

( N∑

j=1

aij(x)
∂u

∂xj

)
+ c(x)u. (1.1)

Here:

(1) aij ∈ C∞(Ω) and aij(x) = aji(x) for all x ∈ Ω and 1 ≤ i, j ≤ N , and there exists a
positive constant a0 such that

N∑

i,j=1

aij(x)ξiξj ≥ a0|ξ|2 for all (x, ξ) ∈ Ω×RN .

(2) c ∈ C∞(Ω) and c(x) ≥ 0 in Ω.

Let B be a first-order, boundary condition with real coefficients such that

Bu = a(x′)
∂u

∂ν
+ b(x′)u. (1.2)
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Here:

(3) a ∈ C∞(∂Ω) and a(x′) ≥ 0 on ∂Ω.
(4) b ∈ C∞(∂Ω) and b(x′) ≥ 0 on ∂Ω.
(5) ∂/∂ν =

∑N
i,j=1 aij(x′)nj∂/∂xi is the conormal derivative associated with the op-

erator A, where n = (n1, n2, . . . , nN ) is the unit exterior normal to the boundary
∂Ω.

Our fundamental hypotheses on the boundary condition B are the following:

(H.1) a(x′) + b(x′) > 0 on ∂Ω.
(H.2) b(x′) 6≡ 0 on ∂Ω.

It is easy to see that the boundary condition B is non-degenerate if and only if either
a(x′) > 0 on ∂Ω (the Robin case) or a(x′) ≡ 0 and b(x′) > 0 on ∂Ω (the Dirichlet case).
Therefore, our boundary condition B is a degenerate boundary value problem from an
analytical point of view. This is due to the fact that the so-called Shapiro–Lopatinskii
complementary condition is violated at each point of the set M = {x′ ∈ ∂Ω : a(x′) = 0}
(cf. [14]). Amann and Zehnder [3] studied the boundary condition B in the non-
degenerate case.

The intuitive meaning of condition (H.1) is that the absorption phenomenon occurs
at each point of the set M , while the reflection phenomenon occurs at each point of the
set ∂Ω \ M = {x′ ∈ ∂Ω : a(x′) > 0} (see [26]). On the other hand, condition (H.2)
implies that the boundary condition B is not equal to the purely Neumann condition.

In this paper we study the following semilinear homogeneous elliptic boundary value
problem: Given a real-valued function g(s) defined on R, find a function u(x) in Ω such
that





Au = λu− g(u) in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω,

(1.3)

where λ is a real parameter.
The approach here is based on the extensive use of the ideas and techniques char-

acteristic of the recent developments in the theory of semilinear elliptic boundary value
problems with degenerate boundary conditions ([28]–[31]). For example, in the case
where N = 3, a(x′) may be a function such that, in terms of local coordinates (x1, x2)
of ∂Ω,

a(x′) = e−1/x2
1 sin2 1

x1
e−1/x2

2 sin2 1
x2

.

Therefore, the crucial point in our approach is how to generalize the classical variational
approach to the degenerate case (see Subsection 5.1).

In order to study the semilinear problem (1.3), we consider the linear elliptic bound-
ary value problem
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{
Au = f in Ω,

Bu = 0 on ∂Ω
(1.4)

in the framework of the Hilbert space L2(Ω). We associate with problem (1.4) a densely
defined, closed linear operator

A : L2(Ω) −→ L2(Ω)

as follows:

(1) D(A) = {u ∈ W 2,2(Ω) : Bu = 0 on ∂Ω}.
(2) Au = Au for every u ∈ D(A).

Here and in the following the Sobolev space W k,p(Ω) for k ∈ N and 1 < p < ∞ is defined
as follows:

W k,p(Ω) = the space of functions u ∈ Lp(Ω) whose derivatives Dαu,
|α| ≤ k, in the sense of distributions are in Lp(Ω).

Then we have the following fundamental spectral results (i), (ii), (iii) and (iv) of the
operator A (see [27, Theorem 5.1]):

( i ) The operator A is positive and selfadjoint in L2(Ω).
( ii ) Let λj be the eigenvalues of the operator A that are arranged in an increasing

sequence

λ1 < λ2 ≤ · · · ≤ λj ≤ λj+1 . . . ,

each eigenvalue being repeated according to its multiplicity. The first eigenvalue
λ1 is positive and algebraically simple, and its corresponding eigenfunction φ1 ∈
C∞(Ω) may be chosen to be strictly positive in Ω. Namely, we have the assertions





Aφ1 = λ1φ1 in Ω,

φ1 > 0 in Ω,

Bφ1 = 0 on ∂Ω.

(iii) No other eigenvalues λj , j ≥ 2, have positive eigenfunctions.
(iv) The family {φj}∞j=1 of eigenfunctions of A

{
Aφj = λjφj in Ω,

Bφj = 0 on ∂Ω

forms a complete orthonormal system of L2(Ω).

In this paper we assume that the nonlinear term g : R → R satisfies the following
two assumptions (A) and (B):
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(A) g ∈ C1(R) and g(0) = g′(0) = 0.
(B) The limits g′(±∞) satisfy the conditions

g′(±∞) = lim
s→±∞

g(s)
s

= +∞.

Example 1.1. A simple example of the nonlinear term g(s) is given by the formula

g(s) =

{
sp for s ≥ 0,

s |s|q−1 for s < 0,

where p > 1 and q > 1. It is easy to verify that g(s) satisfies conditions (A) and (B).

Since g(0) = 0, then u = 0 is a solution of the semilinear problem (1.3) for all λ.
In this paper we establish existence theorems of non-trivial solutions (i.e., u 6= 0) of the
semilinear problem (1.3). More precisely, our main purpose is to prove the following
existence theorem, which is a generalization of Ambrosetti–Lupo [6, Theorem] to the
degenerate case:

Theorem 1.1. Assume that conditions (A) and (B) are satisfied. Then we have
the following two assertions:

( i ) For each λ > λ1, the semilinear problem (1.3) has at least two non-trivial solutions
u1, u2 with u1 > 0 in Ω and u2 < 0 in Ω.

( ii ) For each λ > λ2, the semilinear problem (1.3) has at least a third non-trivial
solution u3 different from u1 and u2.

Rephrased, assertion (i) of Theorem 1.1 states that the semilinear problem (1.3) has
at least two non-trivial solutions provided that the derivative f ′(s) = λ − g′(s) of the
function

f(s) = λs− g(s)

crosses the first eigenvalue λ1 if |s| goes from 0 to ∞ (see Remark 1.1 below):

f ′(∞) = −∞ < λ1 < λ = f ′(0).

Similarly, assertion (ii) of Theorem 1.1 states that the semilinear problem (1.3) has
at least three non-trivial solutions provided that the derivative f ′(s) = λ− g′(s) of f(s)
crosses the two eigenvalues λ1 and λ2 if |s| goes from 0 to ∞:

f ′(∞) = −∞ < λ1 < λ2 < λ = f ′(0).

Remark 1.1. It is worth pointing out that the bifurcation solution curve (λ, u) of
problem (1.3) is “formally” given by the formula
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λ = λ1 +
g(u)
u

, (1.5)

since the first eigenvalue λ1 is the unique eigenvalue corresponding to a positive eigen-
function of the operator A. Indeed, if we write problem (1.3) in the form





Au = λu− g(u) =
(

λ− g(u)
u

)
u,

u > 0 in Ω,

then it follows that λ1 = λ − g(u)/u. This proves formula (1.5). The situation may be
represented schematically by Figure 1.1.

Figure 1.1.

Our proof of Theorem 1.1 is based on Morse theory on Hilbert spaces developed by
Palais [18], Palais–Smale [20] and Marino–Prodi [16].

Remark 1.2. (a) If λ ≤ λ1, then the semilinear problem (1.3) in the Dirichlet
case could have only the trivial solution u = 0. This is the case if sg′′(s) > 0 for all
s 6= 0 (cf. [4, Example 3.5]).

(b) The existence of a positive solution and a negative solution of the semilinear problem
(1.3) for all λ > λ1 is well known in the Dirichlet case (cf. [21]).

(c) Struwe [25] considered the Dirichlet problem under the condition that the function
g(s) is Lipschitz continuous. He proved assertion (ii) if the function s 7→ g(s)/s is
increasing ([25, Propositions 1 and 2]). Hence Theorem 1.1 is a generalization of
Struwe’s result to the degenerate case. Moreover, under the condition that

g(s)
s

< g′(s) for almost all s 6= 0, (1.6)

Ambrosetti–Mancini [7] proved that the semilinear problem (1.3) in the Dirichlet
case has precisely two non-trivial solutions for λ1 < λ < λ2 ([7, Theorem 1.7]).

If g(s) is an odd function of s, then we can improve assertion (ii) of Theorem 1.1.
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In fact, the next existence theorem is a generalization of Ambrosetti [4, Theorem 3.1],
Hempel [13, Theorem 2] and Thews [32, Theorem 3] to the degenerate case:

Theorem 1.2. Let g(s) be a function as in Theorem 1.1. Moreover, if g(s) is an
odd function of s, then the semilinear problem (1.3) has at least k pairs of non-trivial
solutions for all λ > λk.

Example 1.2. A simple example of the nonlinear term g(s) is given by the formula

g(s) = s|s|p−1, p > 1.

Rephrased, Theorem 1.2 asserts that the semilinear problem (1.3) has at least k

pairs of non-trivial solutions provided that the derivative f ′(s) = λ−g′(s) of f(s) crosses
the eigenvalues λ1 through λk if |s| goes from 0 to ∞:

f ′(∞) = −∞ < λ1 < λ2 ≤ · · · ≤ λk < λ = f ′(0).

Our proof of Theorem 1.2 is based on the Ljusternik–Schnirelman theory on Hilbert
spaces developed by Schwartz [22], Palais [19] and Clark [10].

The rest of this paper is organized as follows. Our proof will be carried out by
looking for the solutions of the semilinear problem (1.3) as critical points of a suitable
energy functional F on some Hilbert space H, which will be studied by means of Morse
theory. Section 2 is devoted to minimax methods. First, we introduce a notion of
compactness due to Palais and Smale (Definition 2.1) which plays an essential role in
the calculus of variations in the large. By virtue of Ekeland’s variational principle and
the Palais–Smale condition, we can make use of the minimization method (Theorem
2.2). In Section 3 we prove a four-solution theorem based on Morse theory on Hilbert
spaces (Theorem 3.8). Theorem 3.8 is an existence theorem of critical points of an energy
functional f on a Hilbert space H, which will be studied by means of Morse theory. Morse
theory is concerned with relating the structure of the critical point set of f with relative
homology types of the pair (H, f) (see [17]). Theorem 3.8 is based on the so-called Morse
inequalities (Theorem 3.6). Section 4 is devoted to the Ljusternik–Schnirelman theory
on Hilbert spaces which is used in the proof of Theorem 1.2. We mention that the notion
of genus introduced by Krasnosel’skii is a topological invariant for the estimate of the
lower bound of the number of critical points. In fact, we state an analytic version of
the multiplicity theorem of the Ljusternik–Schnirelman theory specialized to the case
of an even functional on a Hilbert space (Theorem 4.2). In Section 5 we introduce the
notion of weak solutions of the semilinear problem (1.3) (Definition 5.1), and prove that
any weak solution of the semilinear problem (1.3) is a classical solution in the usual
sense (Theorem 5.3). This section is the heart of the subject. In Subsection 5.1 we
introduce an underlying Hilbert space H for the study of the semilinear problem (1.3)
(Theorems 5.1 and 5.2). The crucial point in our variational approach is how to use the
theory of fractional powers of selfadjoint operators as in [28]. In Subsection 5.2 we prove
Theorem 5.3. The proof of Theorem 5.3 is essentially based on the regularity, existence
and uniqueness theorems for the linear elliptic boundary value problem (1.4) developed
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by [26] and [27]. In Section 6 we prove assertion (i) of Theorem 1.1. Since we have not
assumed any growth condition on g(s), we truncate the right-hand side in the semilinear
problem (1.3) and make use of the maximum principle for the Dirichlet problem. By using
Theorem 2.2, we can find a positive solution u1 and a negative solution u2 of problem
(1.3). In Section 7 we prove assertion (ii) of Theorem 1.1. This section is divided into
four subsections. To handle the general case, the proof is based on a Lyapunov–Schmidt
procedure and a slight modification of the classical Morse inequalities. More precisely,
the main idea of Subsections 7.1 and 7.2 is to rewrite the semilinear problem (1.3) in
a suitable bifurcation system (7.8) and (7.9) (the Lyapunov–Schmidt procedure) and to
solve the first (infinite-dimensional) equation (7.8), by using the global inversion theorem
(Proposition 7.1). In Subsection 7.3 we deal with functionals which may have degenerate
critical points, by using a perturbation argument and Sard’s lemma (Lemma 7.2). In
Subsection 7.4, by using Lemma 7.2 and applying Theorem 3.8 to our situation we can
find a third non-trivial solution u3 different from u1 and u2 constructed in Subsection
6.2. The last Section 8 is devoted to the proof of Theorem 1.2. By virtue of Theorem
5.3, we have only to prove Theorem 1.2 for weak solutions. The proof of Theorem 1.2
is based on the multiplicity theorem specialized to the case of an even functional on a
Hilbert space (Theorem 4.2).

2. Minimax methods.

This section is devoted to minimax methods. It is known that the direct method does
not work in the lack of compactness. Indeed, we can find only approximate minimizers.
To do so, we make use of the following Ekeland variational principle (cf. [9, Theorem
4.8.1]):

Theorem 2.1 (Ekeland). Let (X, d) be a complete metric space and f : X →
R∪{+∞}, but f 6≡ +∞. Assume that f is bounded from below and lower semi-continuous
on X. If there exist a constant ε > 0 and a point xε ∈ X such that

f(xε) < inf
x∈X

f(x) + ε,

then we can find a point yε ∈ X which satisfies the following three conditions:

(a) f(yε) ≤ f(xε).
(b) d(xε, yε) ≤ 1.
(c) f(x) > f(yε)− ε d(yε, x) for all x 6= yε.

First, we introduce a notion of compactness due to Palais–Smale [20] which plays
an essential role in the calculus of variations in the large:

Definition 2.1. Let H be a Hilbert space and f ∈ C1(H, R). We say that f

satisfies (PS)c condition (the Palais–Smale condition) for a constant c ∈ R if every
sequence {uj}∞j=1 in H such that f(uj) → c and ∇f(uj) → 0 as j →∞ contains a con-
vergent subsequence. If f satisfies (PS)c condition for every constant c ∈ R, then we say
that f satisfies (PS) condition. Here and in the following ∇f denotes the gradient of f .
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By virtue of Ekeland’s theorem and the Palais–Smale condition, we can make use of
the minimization method. In fact, we obtain the following (cf. [9, Corollary 4.8.4]):

Theorem 2.2. Let H be a Hilbert space and f ∈ C1(H, R). Assume that f is
bounded from below on H and satisfies (PS)c condition with the constant

c = inf
x∈H

f(x).

Then f has a minimum.

3. Morse theory on Hilbert spaces.

In this section we state two results of Morse theory on Hilbert spaces which will be
used later on. First, we establish the famous Morse inequalities between relative homol-
ogy groups and critical groups (Theorem 3.6). Secondly, by using Morse inequalities we
prove a four-solution theorem (Theorem 3.8). For more details, the reader might refer to
Palais [18], Marino–Prodi [16, Section 2], Schwartz [23, Section 4] and also Chang [9].

3.1. Non-degenerate critical points and the splitting theorem.
Let H be a real Hilbert space with inner product (·, ·)H . If f ∈ C1(H, R) and u ∈ H,

then its Fréchet derivative df(u) at u is a bounded linear functional on H. Moreover, it
follows from an application of the Riesz representation theorem ([34, Chapter III, Section
6, Theorem]) that there exists a unique element ∇f(u) of H such that

df(u)(v) = (∇f(u), v)H for all v ∈ H.

The element ∇f(u) of H is called the gradient of f at u. We can identify df(u) with
∇f(u). If ∇f(u) 6= 0, then u is called a regular point of f and if ∇f(u) = 0, then u is
called a critical point of f . If c ∈ R, then f−1(c) = {z ∈ H : f(p) = c} is called a level of
f and it is called a regular level of f if it contains only regular points of f and a critical
level of f if it contains at least one critical point of f .

Furthermore, if f ∈ C2(H, R), then there is a dichotomy of the critical points of f

into degenerate and non-degenerate critical points. To do this, we define the derivative
D2f(u) of ∇f at u by the formula

d2f(u)(v, w) = (D2f(u)v, w)H for all v, w ∈ H.

Then we find that the linear operator D2f(u) is selfadjoint on H:

(D2f(u)v, w)H = (v, D2f(u)w)H for all v, w ∈ H.

A critical point u of f is said to be non-degenerate if D2f(u) has a bounded inverse;
otherwise it is said to be degenerate. We also define the Morse index of D2f(u) to be
the supremum of the dimensions of linear subspaces of H on which D2f(u) is negative
definite.

The finite-dimensional version of the following canonical form theorem is due to M.
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Morse (cf. [9, Theorem 5.1.13]):

Theorem 3.1 (the splitting theorem). Let H be a Hilbert space. Let U be a convex
neighborhood of 0 in H and f ∈ C2(U,R). Assume that 0 is the only critical point of
f . If A = D2f(0) is a Fredholm operator with N = Ker A, then there exist an open
ball B ⊂ U about 0, an origin-preserving homeomorphism ϕ defined on B and a C1-map
h : B ∩N → N⊥ such that

(f ◦ ϕ)(y + ξ) =
1
2
(Aξ, ξ)H + f(y + h(y)) for all y ∈ B ∩N and ξ ∈ B ∩N⊥.

3.2. Relative homology groups.
Let G be an Abelian group. The rank of G, denoted by rankG, is the maximal

number k for which

k∑

i=1

nigi = 0 with ni ∈ Z and gi ∈ G =⇒ ni = 0 for every i.

Given a pair (X, Y ) of topological spaces with Y ⊂ X and a non-negative integer
q, we consider the relative singular homology group Hq(X, Y ;G) where G is a coefficient
Abelian group.

We let

βq(X, Y ) = rankHq(X, Y ;G),

χ(X, Y ) =
∞∑

q=0

(−1)qβq(X, Y ).

The number βq(X, Y ) is called the q-th Betti number of (X, Y ) and χ(X, Y ) is called the
Euler–Poincaré characteristic of (X, Y ), respectively.

3.3. Deformation retract and the non-trivial interval theorem.
In the degree theory, the excision property and the Kronecker existence theorem are

useful in the study of fixed points. In the relative homology theory, the excision property
is related to deformation argument.

Let X be a topological space. A deformation of X is a continuous map η : X×[0, 1] →
X such that η(·, 0) = id on X. Let (X, Y ) be a pair of topological spaces with Y ⊂ X

and let i : Y → X be the injection. A continuous map r : X → Y is called a deformation
retract if it satisfies the conditions

r ◦ i = id on Y ,

i ◦ r ' id on X,

where the relation ' denotes the homotopy equivalence. In this case, Y is called a
deformation retraction of X.

A deformation retract r : X → Y is called a strong deformation retract if there exists
a deformation η : X × [0, 1] → X such that
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η(·, t) = id on Y for all 0 ≤ t ≤ 1,

η(·, 1) = i ◦ r on X.

The next theorem asserts that the excision property is related to a deformation
argument (cf. [9, Theorem 5.1.6]):

Theorem 3.2 (the non-critical interval theorem). Let f : H → R be a C1 function
satisfying (PS)c condition for all c ∈ [a, b], and let K be the set of critical points of f .
If f−1([a, b]) ∩ K = ∅, then fa = f−1((−∞, a]) = {x ∈ H : f(x) ≤ a} is a strong
deformation retraction of f b = f−1((−∞, b]) = {x ∈ H : f(x) ≤ b}.

It should be emphasized that if Y is a strong deformation retraction of X, then it
follows that

Hq(X, Y ;G) = 0, q = 0, 1, 2, . . . .

Therefore, by using the long exact sequence

· · · −→ Hr+1(X, Y ;G) −→ Hr(Y ;G) −→ Hr(X;G) −→ Hr(X, Y ;G) −→ · · · ,

we obtain the formulas

Hq(X;G) ∼= Hq(Y ;G), q = 0, 1, 2, . . . .

The next theorem asserts that the non-triviality of H∗(f b, fa;G) implies the exis-
tence of a critical point of f in f−1([a, b]) (cf. [9, Theorem 5.1.2]):

Theorem 3.3 (the non-trivial interval theorem). Let f : H → R be a C1 function.
If there exist a non-negative integer q and a pair (a, b) of numbers with a < b such that the
relative homology group Hq(f b, fa;G) is non-trivial, then it follows that f−1([a, b])∩K 6=
∅.

3.4. Critical groups and Morse type numbers.
In this subsection we study the local behavior of non-degenerate critical points. To

do this, we introduce the following (cf. [9, Definition 5.1.11]):

Definition 3.1. Let f ∈ C1(H, R) and let z be an isolated critical point of f . If
U is a neighborhood of z such that U ∩K = {z}, then we let

Cq(f, z) = Hq(fc ∩ U, (fc \ {z}) ∩ U ;G), q = 0, 1, 2, . . . ,

fc = f−1((−∞, c]) = {x ∈ H : f(x) ≤ c}, c = f(z),

where

K = {x ∈ H : ∇f(x) = 0}
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is the set of critical points of f .
The relative homology group Cq(f, z) is called the q-th critical group of f at z.

By virtue of the excision property of relative homology groups, the Definition 3.1
is well-defined. Namely, the group Cq(f, p) is independent of the neighborhood U of p

chosen.
First, we have the following (see Remark 3.1 in Subsection 3.5):

Example 3.1. Let f ∈ C1(H, R) and let z be an isolated local minimum of f .
Then we have the formula

Cq(f, z) =

{
G if q = 0,

0 if q ≥ 1.

By using the splitting theorem (Theorem 3.1), we can study the local behavior of
non-degenerate critical points (cf. [9, Subsection 5.1.3, Example 3]):

Example 3.2. Let f ∈ C2(H, R) and let z be a non-degenerate critical point of f

with Morse index j. Then we have the formula

Cq(f, z) =

{
G if q = j,

0 if q 6= j.

Assume that f ∈ C1(H, R) has only isolated critical values ci, and further that each
value ci corresponds to a finite number of critical points, say

· · · < c−2 < c−1 < c0 < c1 < c2 < · · · , (3.1)

f−1(ci) ∩K = {zi
1, z

i
2, . . . , z

i
mi
}, i = 0,±1,±2, . . . . (3.2)

For a pair (a, b) of regular values of f with a < b, we let

Mq(a, b) =
∑

a<ci<b

rankHq(fci+εi , f ci−εi ;G), q = 0, 1, 2, . . . .

where

0 < εi < min{ci+1 − ci, ci − ci−1}, i = 0,±1,±2, . . . .

If the function f(x) satisfies (PS) condition, then it follows from an application of the
non-critical interval theorem (Theorem 3.2) that the numbers M∗(a, b) are independent
of {εi} chosen. The number Mq(a, b) is called the q-th Morse type number of f on (a, b).

More precisely, we have the following (cf. [9, Theorem 5.1.27]):

Theorem 3.4. Assume that f ∈ C1(H, R) satisfies (PS) condition, and has an
isolated critical value c corresponding to a finite number of critical points, say
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f−1(c) ∩K = {z1, z2, . . . , zm}.

Then we have, for ε > 0 sufficiently small,

Hq(fc+ε, f c−ε;G) ∼=
m⊕

j=1

Cq(f, zj), q = 0, 1, 2, . . . .

In view of Example 3.2, the next corollary asserts that the number Mq(a, b) is equal
to the number of critical points of f in (a, b) with Morse index q (cf. [9, Corollary 5.1.28]).

Corollary 3.5. Let f : H → R be a C2 function satisfying (PS) condition all
of whose critical points are given by the formulas (3.1) and (3.2). For a pair (a, b) of
regular values of f with a < b, we have the formula

Mq(a, b) =
∑

a<ci<b

mi∑

j=1

rankCq(f, zi
j), q = 0, 1, 2, . . . .

3.5. Morse inequalities.
In this subsection we establish the famous Morse inequalities between relative ho-

mology groups H∗(f b, fa;G) and critical groups C∗(f ; z).
Let f : H → R be a C2 function satisfying (PS) condition all of whose critical

points are non-degenerate. Let (a, b) be a pair of regular values of f with a < b, and let
fa = f−1((−∞, a]) and f b = f−1((−∞, b]), respectively. For each non-negative integer
q, let βq(a, b) denote the q-th Betti number of (f b, fa):

βq(a, b) = rankHq(f b, fa;G), q = 0, 1, 2, . . . .

Then we have the following ([18, Theorem (7)]):

Theorem 3.6 (Morse inequalities). Let f : H → R be a C2 function satisfying
(PS) condition all of whose critical points are non-degenerate. For a pair (a, b) of regular
values of f with a < b, we have the inequalities

β0(a, b) ≤ M0(a, b),

β1(a, b)− β0(a, b) ≤ M1(a, b)−M0(a, b),

k∑
m=0

(−1)k−mβm(a, b) ≤
k∑

m=0

(−1)k−mMm(a, b), k = 2, 3, . . . ,

and

χ(f b, fa) =
∞∑

m=0

(−1)mβm(a, b) =
∞∑

m=0

(−1)mMm(a, b).
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By combining Corollary 3.5 and Example 3.1, we can obtain the following (cf. [18,
Corollary (2)]):

Corollary 3.7. Let f : H → R be a C2 function satisfying (PS) condition.
Assume that f is bounded from below on H and further that f has only isolated local
minima and non-degenerate critical points of positive Morse index. For a regular value
b of f , we let

βk(b) = rankHq(f b;G) = the k-th Betti number of f b, k = 0, 1, 2, . . . ,

C0(b) = the number of isolated, local minima of f,

Cm(b) = the number of non-degenerate critical points of f

with Morse index m in f b, m = 1, 2, . . . .

Then we have the inequalities

β0(b) ≤ C0(b),

β1(b)− β0(b) ≤ C1(b)− C0(b), (3.3)

k∑
m=0

(−1)k−mβm(b) ≤
k∑

m=0

(−1)k−mCm(b), k = 2, 3, . . . ,

and

χ(f b) =
∞∑

k=0

(−1)kβk(b) =
∞∑

k=0

(−1)kCk(b).

Remark 3.1. Ambrosetti [5] observed for the first time that it is possible to include
in C0(b) the possibly degenerate, isolated, local minima of f as in Corollary 3.7. More
precisely, the justification relies on the following fact: If u0 is a local, isolated minimum
of f , then we let (see Definition 3.1)

U− = {u ∈ H : ‖u− u0‖H < ε, f(u) ≤ f(u0)},

and evaluate the relative homology groups Hq(U−, U− \ {u0};G). Here it should be
emphasized that u0 need not be non-degenerate with finite Morse index (cf. [16, Theorem
1.2]). Indeed, it suffices to take a positive constant ε so small that U− = {u0}. Then we
have the formula

rankCq(f, u0) = rankHq(U−, U− \ {u0};G) =

{
1 if q = 0,

0 if q ≥ 1.
(3.4)

This fact may be used to show that the Leray–Schauder index of such a point is equal
to one (cf. [2]).
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By using Morse inequalities, we can prove the following four-solution theorem (see
[6, Lemma 2.2]):

Theorem 3.8. Assume that f ∈ C2(H, R) is bounded from below and satisfies (PS)
condition. Assume further that the following two conditions (i) and (ii) are satisfied :

( i ) u = 0 is a non-degenerate critical point of f with Morse index q0 ≥ 2.
( ii ) f has two local minima u1 and u2.

Then f has at least another non-zero critical point u3.

Proof. Assume, to the contrary, that f has only three critical points u1, u2 and
0. We may assume that local minima are isolated, for otherwise we are done. Then, by
applying Corollary 3.7 with

b > max{f(u1), f(u2), f(0)}

and by using formula (3.4) with u0 := u1, u2 and Example 3.2 with z := 0, we obtain
from conditions (ii) and (i) that

Cq(b) =





2 if q = 0,

0 if q ≥ 1 with q 6= q0,

1 if q = q0.

This implies that C1(b) = 0, since q0 ≥ 2. Hence we have the formula

C1(b)− C0(b) = −2. (3.5)

On the other hand, in light of the non-critical interval theorem (Theorem 3.2) we
find that f b is a strong deformation retraction of H. Hence it follows that

βq(b) = rankHq(f b;G) = rankHq(H;G) =

{
1 if q = 0,

0 if q ≥ 1.

In particular, we have the formula

β1(b)− β0(b) = −1. (3.6)

Therefore, we obtain from formulas (3.5) and (3.6) that

C1(b)− C0(b) = −2 < −1 = β1(b)− β0(b). (3.7)

This contradicts inequality (3.3).
The proof of Theorem 3.8 is complete. ¤
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4. Ljusternik–Schnirelman theory on Hilbert spaces.

This section is devoted to the Ljusternik–Schnirelman theory on Hilbert spaces which
is used in the proof of Theorem 1.2 in Section 8. More precisely, we state an analytic
version of the multiplicity theorem of the Ljusternik–Schnirelman theory specialized to
the case of an even functional on a Hilbert space (Theorem 4.2). For more details, the
reader might refer to Palais [19], Schwartz [22] and Chang [9].

4.1. The Krasnosel’skii genus.
In this subsection we introduce the notion of genus due to Krasnosel’skii.
Let H be a real Hilbert space. A subset A of H is said to be symmetric with respect

to the origin 0 if it satisfies the condition

u ∈ A =⇒ −u ∈ A.

A map f : A → Rn is said to be odd if it satisfies the condition

f(−x) = −f(x) for all x ∈ A.

Definition 4.1. Let

A = {A ⊂ H \ {0} : A is symmetric}.

If A ∈ A, then we define its Krasnosel’skii genus γ(A) by the formula

γ(A) =





the least integer n such that there is an odd map φ ∈ C(A,Rn \ {0}),
+∞ if there is no such odd map φ,

0 if A = ∅.
(4.1)

Remark 4.1. If A is a closed subset of H, then we may replace the condition that
there is an odd map φ ∈ C(A,Rn \ {0}) in formula (4.1) by the condition that there is
an odd map ψ ∈ C(H, Rn) such that

ψ(x) 6= 0 for all x ∈ A.

Indeed, we can construct an extension map φ̂ ∈ C(H, Rn) of φ if we make use of the
Tietze extension theorem ([11, Theorem 4.1]).

We list some basic properties of the Krasnosel’skii genus:
(1) If A, B ∈ A and if there exists an odd continuous map f : A → B, then it follows

that

γ(A) ≤ γ(B).

In particular, if A ⊂ B, then we have the monotonicity

γ(A) ≤ γ(B). (4.2)
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(2) If A and B ∈ A, then we have the subadditivity

γ(A ∪B) ≤ γ(A) + γ(B). (4.3)

(3) If η is an odd continuous map of A into H, then we have the deformation non-
decreasing property

γ(A) ≤ γ(η(A)). (4.4)

(4) If A ∈ A is compact, then it follows that γ(A) < +∞. Furthermore, we can find
an open symmetric neighborhood UA of A such that the closure UA of UA belongs to A
and satisfies the continuity condition

γ
(
UA

)
= γ(A). (4.5)

(5) If p is an non-zero element of H, then [p] = {p,−p} ∈ A and we have the
normality

γ([p]) = 1. (4.6)

(6) If A ∈ A and if γ(A) = m, then there exist at least m distinct points in A.
This property follows by combining the subadditivity (4.3) and the normality (4.6).
(7) If A ∈ A and if there exists an odd homeomorphism of the n-sphere Sn onto A,

then it follows that

γ(A) = γ(Sn) = n + 1.

4.2. The multiplicity theorem.
We mention that the notion of genus introduced by Krasnosel’skii is a topological

invariant for the estimate of the lower bound of the number of critical points. In fact,
the next multiplicity theorem is the main theorem of the Ljusternik–Schnirelman theory
specialized to the case of an even functional on a Hilbert space (see [10, Theorem 8];
[19, Theorem 7.1]; [9, Theorem 5.2.18]):

Theorem 4.1 (the multiplicity theorem). Let H be a real Hilbert space. If f ∈
C1(H, R) is an even function, then we let

cn(f) = inf
γ(A)≥n

sup
x∈A

f(x), n = 1, 2, . . . . (4.7)

Assume that

c = ck+1(f) = · · · = ck+m(f)

is finite and that f(x) satisfies (PS)c condition. Then it follows that



Semilinear elliptic boundary value problems via Morse theory 355

γ(Kc) ≥ m,

where

Kc = {x ∈ H : f(x) = c, ∇f(x) = 0}

is the set of critical points of f at level c.

By virtue of assertion (6) of the Krasnosel’skii genus in Subsection 4.1, we obtain
that there exist at least m distinct points in the set Kc of critical points of f at level c.

Moreover, we can obtain the following analytic version of Theorem 4.1 (see [9, The-
orem 5.2.23]):

Theorem 4.2. Let H be a real Hilbert space, f ∈ C1(H, R) and a < b. Assume
that f(0) > b and that f is an even function and satisfies (PS) condition. Moreover, we
assume that the following three conditions (i), (ii) and (iii) are satisfied :

( i ) There exist an m-dimensional linear subspace V of H and a constant ρ > 0 such
that

sup
x∈V ∩Sρ(0)

f(x) ≤ b, (4.8)

where Sρ(0) = {x ∈ H : ‖x‖H = ρ}.
( ii ) There exists a j-dimensional linear subspace W of H such that

inf
x∈W⊥

f(x) > a, (4.9)

where W⊥ is the orthogonal complement of W in H.
(iii) m > j.

Then f has at least (m− j) pairs of distinct critical points.

5. Regularity of weak solutions of problem (1.3).

In this section we introduce the notion of weak solutions of the semilinear problem
(1.3) (Definition 5.1), and prove that any weak solution of the semilinear problem (1.3)
is a classical solution in the usual sense (Theorem 5.3). This section is the heart of the
subject. In Subsection 5.1 we introduce an underlying Hilbert spaceH for the study of the
semilinear problem (1.3) (Theorems 5.1 and 5.2). The crucial point in our variational
approach is how to use the theory of fractional powers of selfadjoint operators as in
[28]. In Subsection 5.2 we prove Theorem 5.3. The proof of Theorem 5.3 is based on
the regularity theorem and the existence and uniqueness theorem for the linear elliptic
boundary value problem (1.4) ([26, Theorem 8.2 and Theorem 9.1]), and may be proved
just as in [31, Theorem 3.3].
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5.1. Hilbert space H.
Since the operator A is positive and selfadjoint in the Hilbert space L2(Ω), we can

define its square root

C = A1/2 : L2(Ω) −→ L2(Ω)

as follows ([34, Chapter XI, Section 5, Theorem 2]):

Cu =
∞∑

m=1

√
λm(u, φm)L2(Ω)φm (5.1)

where the domain D(C) is the set

D(C) =
{

u ∈ L2(Ω) :
∞∑

m=1

λm

∣∣(u, φm)L2(Ω)

∣∣2 < ∞
}

.

Moreover, we can introduce an underlying Hilbert space H with inner product (·, ·)H as
follows:

H = the domain D(C) with the inner product

(u, v)H = (Cu, Cv)L2(Ω) for all u, v ∈ D(C).

The next theorem gives a more concrete and useful characterization of the Hilbert
space H (see [28, Theorem 3.1]):

Theorem 5.1. The Hilbert space H coincides with the completion of the domain

D(A) = {u ∈ W 2,2(Ω) : Bu = 0 on ∂Ω}

with respect to the inner product

(u, v)H = (Au, v)L2(Ω)

=
N∑

i,j=1

∫

Ω

aij(x)
∂u

∂xi

∂v

∂xj
dx +

∫

Ω

c(x)u · v dx

+
∫

{a(x′) 6=0}

b(x′)
a(x′)

u · v dσ for all u, v ∈ D(A). (5.2)

Here the last term on the right-hand side is an inner product of the Hilbert space L2(∂Ω)
with respect to the surface measure dσ of ∂Ω.

Our approach is based on the following imbedding result for the Hilbert space H
(see [28, Corollary 3.2]):
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Theorem 5.2. We have the inclusions

D(A) ⊂ H ⊂ W 1,2(Ω) (5.3)

with continuous injections.

Remark 5.1. The following diagram gives a bird’s eye view of the right Hilbert
space H for the variational approach (see [12, Theorems 1 and 2]):

B H a(x′) and b(x′)

The Dirichlet case W 1,2
0 (Ω) a(x′) ≡ 0 and b(x′) > 0

The Robin case W 1,2(Ω) a(x′) > 0 and b(x′) 6≡ 0

The degenerate case D(A1/2) (H.1) and (H.2)

First, we have, by formula (5.1),

(u, u)H =
∞∑

m=1

λm(u, φm)2L2(Ω). (5.4)

Indeed, it suffices to note the following:

(u, u)H = (Cu, Cu)L2(Ω)

=
( ∞∑

m=1

√
λm(u, φm)L2(Ω)φm,

∞∑

`=1

√
λ`(u, φ`)L2(Ω)φ`

)

L2(Ω)

=
∞∑

m=1

λm(u, φm)2L2(Ω). (5.5)

Secondly, since we have the Fourier series expansion formula

u =
∞∑

m=1

(u, φm)L2(Ω) φm in L2(Ω),

it follows that

(u, u)L2(Ω) =
( ∞∑

m=1

(u, φm)L2(Ω)φm,

∞∑

`=1

(u, φ`)L2(Ω)φ`

)

L2(Ω)

=
∞∑

m=1

(u, φm)2L2(Ω). (5.6)

Thirdly, we have, by formulas (5.5) and (5.6),
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(u, u)L2(Ω) ≤
1
λ1

(u, u)H for all u ∈ L2(Ω). (5.7)

If J is a positive integer, we let

X = span {φ1, φ2, . . . , φJ},

and

Y = X⊥ = {v ∈ H : (v, u)H = 0 for all u ∈ X}.

From formulas (5.4) and (5.6), we obtain the inequality

(v, v)H ≥ λJ+1(v, v)L2(Ω) for all v ∈ Y . (5.8)

Indeed, it follows that

(v, v)H =
∞∑

m=1

λm(v, φm)2L2(Ω) =
∞∑

m=J+1

λm(v, φm)2L2(Ω)

≥ λJ+1

∞∑

m=N+1

(v, φm)2L2(Ω) = λJ+1

∞∑
m=1

(v, φm)2L2(Ω)

= λJ+1(v, v)L2(Ω) for all v ∈ Y .

Similarly, we have the inequality

(u, u)H ≤ λJ(u, u)L2(Ω) for all u ∈ X. (5.9)

Indeed, it follows that

(u, u)H =
∞∑

m=1

λm(u, φm)2L2(Ω) =
J∑

m=1

λm(u, φm)2L2(Ω)

≤ λJ

J∑
m=1

(u, φm)2L2(Ω) = λJ

∞∑
m=1

(u, φm)2L2(Ω)

= λJ(u, u)L2(Ω) for all u ∈ X.

5.2. Weak solutions of a general semilinear problem.
First, we introduce the notion of a weak solution of a general semilinear boundary

value problem in the framework of the Hilbert space H:

Definition 5.1. Let p(t) be a real-valued function on R. We consider the following
semilinear boundary value problem:
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Au = p(u) in Ω,

Bu = a(x′)
∂u

∂ν
+ b(x′)u = 0 on ∂Ω.

(5.10)

A function u ∈ H is called a weak solution of problem (5.10) if it satisfies the condition

(u,w)H −
∫

Ω

p(u)w dx =
N∑

i,j=1

∫

Ω

aij(x)
∂u

∂xi

∂w

∂xj
dx +

∫

Ω

c(x)u · w dx−
∫

Ω

p(u) · w dx

+
∫

{a(x′) 6=0}

b(x′)
a(x′)

u · w dσ

= 0 for all w ∈ H. (5.11)

The next theorem asserts that any weak solution u of problem (5.10) is a classical
solution:

Theorem 5.3. Assume that p(t) is a Lipschitz continuous function on R. If u ∈ H
is a weak solution of problem (5.10), then it follows that

u ∈ C2+α(Ω)

with an exponent 0 < α < 1. In particular, u is a classical solution.

Proof. The proof of Theorem 5.3 is divided into two steps. We make use of a
standard “bootstrap argument”.

Step 1: First, we assume that a function u ∈ H satisfies condition (5.11). Then we
have, for all w ∈ D(A) ⊂ D(A1/2) = H,

(u, Aw)L2(Ω) = (u,w)H = (p(u), w)L2(Ω).

This proves that

{
u ∈ D(A),

Au = p(u),
(5.12)

since the operator A is selfadjoint in L2(Ω). In particular, it follows from assertion (5.3)
that

u ∈ W 1,2(Ω) ⊂ L2(Ω).

Step 2: Now we assume that u ∈ Lq(Ω) for some q ≥ 2. Since p(t) is Lipschitz
continuous on R, it follows that

f(x) := p(u(x)) ∈ Lq(Ω).
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Moreover, we obtain from formula (5.12) that u is a weak solution of the linear boundary
value problem

{
Au = f in Ω,

Bu = 0 on ∂Ω.

Therefore, it follows from an application of the regularity theorem ([26, Theorem 8.2])
that

u ∈ W 2,q(Ω).

Case A: If 2q ≥ N , then it follows from an application of the Sobolev imbedding
theorem ([1, Theorem 4.12, Part I, Case A]) that

u ∈ Lr(Ω) for all r ≥ 1.

Case B: If 2q < N , then it follows from an application of the Sobolev imbedding
theorem ([1, Theorem 4.12, Part I, Case C]) that

u ∈ Lr(Ω) for r = q∗ =
Nq

N − 2q
> q.

By repeating this procedure, we have, after a finite number of steps,

u ∈ W 2,r(Ω) for all r >
N

1− α
,

and so

u ∈ W 2,r(Ω) ⊂ C1+β(Ω)

with the exponent

β = 1− N

r
> α.

Since p(t) is Lipschitz continuous on R, it follows that

f(x) = p(u(x)) ∈ Cα(Ω).

However, by applying the existence and uniqueness theorem ([26, Theorem 9.1]) we can
find a unique classical solution v ∈ C2+α(Ω) of the boundary value problem

{
Av = f in Ω,

Bv = 0 on ∂Ω.
(5.13)
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Since u and v are both solutions of problem (5.13) in W 2,r(Ω), by applying the uniqueness
theorem ([26, Theorem 8.6]) we obtain that

u = v ∈ C2+α(Ω).

Summing up, we have proved that any weak solution u of problem (5.10) is a classical
solution.

The proof of Theorem 5.3 is complete. ¤

6. Proof of Theorem 1.1, Part 1.

In this section we prove assertion (i) of Theorem 1.1. By virtue of Theorem 5.3, we
have only to prove the existence of weak solutions of problem (1.3).

6.1. Existence of classical solutions of problem (1.3).
Since we have not assumed any growth condition on the nonlinear term g(s), we

truncate the right-hand side

f(u) = λu− g(u)

of the semilinear problem (1.3) in the following way: By condition (B), we can find two
real numbers s± such that

s− < 0 < s+,

f(s+) = λs+ − g(s+) ≤ 0 ≤ f(s−) = λs− − g(s−).

Let p(s) be a C1 function on R such that

p(s)





< 0 for s > s+,

= f(s) = λs− g(s) for s ∈ [s−, s+],

> 0 for s < s−.

(6.1)

Moreover, we may assume that there exists a positive constant L such that p(s) satisfies
the following two conditions:

(C.1) |p(s)| ≤ L for all s ∈ R.
(C.2) |p′(s)| ≤ L for all s ∈ R.

Example 6.1. If the nonlinear term g(s) is given by the formula

g(s) =

{
sp for s ≥ 0,

s|s|q−1 for s < 0

as in Example 1.1, then we may take
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s+ = λ1/(p−1), s− = −λ1/(q−1).

Now we consider instead of the semilinear problem (1.3) the following semilinear
problem:

{
Au = p(u) in Ω,

Bu = 0 on ∂Ω.
(6.2)

Then, by using the maximum principle (see [33]) we have the following:

Claim 6.1. Every classical solution u(x) of problem (6.2) satisfies the condition

s− ≤ u(x) ≤ s+ in Ω.

In particular, it is a solution of the original problem (1.3).

Proof. First, we recall that

p(s) < 0 for s > s+.

Assume, to the contrary, that the open set

Ω+ = {x ∈ Ω : u(x) > s+}

is non-empty. Then it follows that

{
Au = p(u) < 0 in Ω+,

u = s+ > 0 on ∂Ω+.

Hence, by using the maximum principle for the Dirichlet problem we obtain that

u(x) ≤ s+ on Ω+,

so that

s+ < u(x) ≤ s+ in Ω+.

This contradiction proves that Ω+ = ∅.
Similarly, we can prove that the open set

Ω− = {x ∈ Ω : u(x) < s−}

is empty.
The proof of Claim 6.1 is complete. ¤
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6.1.1. Energy functionals.
In order to solve problem (6.2), we introduce an energy functional

F (u) =
1
2
(u, u)H −

∫

Ω

P (u) dx for all u ∈ H, (6.3)

where

P (s) =
∫ s

0

p(t) dt,

and look for the critical points of F on H.

Step 1: First, we prove the following:

Claim 6.2. A function u ∈ H is a critical point of F if and only if it is a weak
solution of problem (6.2).

Proof. We have, by formula (6.3),

(∇F (u), v)H = (u, v)H −
∫

Ω

p(u)v dx for all v ∈ H, (6.4)

and also

(D2F (u)v, w)H = (v, w)H −
∫

Ω

p′(u)vw dx for all v, w ∈ H.

Hence it follows from formula (6.4) that ∇F (u) = 0 if and only if u satisfies the condition

(u, v)H −
∫

Ω

p(u)v dx = 0 for all v ∈ H. (6.5)

In view of Definition 5.1, we find that u satisfies condition (6.5) if and only if it is a weak
solution of problem (6.2).

Summing up, we have proved that ∇F (u) = 0 if and only if u is a weak solution of
problem (6.2).

The proof of Claim 6.2 is complete. ¤

Step 2: Secondly, we show that F (u) is bounded from below on H. More precisely,
we prove the following:

Claim 6.3. There exists a positive constant C0 such that

F (u) ≥ −1
2
C2

0 for all u ∈ H. (6.6)

For example, we may take
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C0 =
L|Ω|1/2

√
λ1

where |Ω| denotes the volume of Ω.

Proof. Indeed, since we have, by condition (C.1),

|P (u)| =
∣∣∣∣
∫ u(x)

0

p(s) ds

∣∣∣∣ ≤ L|u(x)|,

by using Schwarz’s inequality and inequality (5.7) we obtain that

∣∣∣∣
∫

Ω

P (u) dx

∣∣∣∣ ≤
∫

Ω

|P (u)|dx ≤ L

∫

Ω

|u(x)|dx

≤ L|Ω|1/2

( ∫

Ω

|u(x)|2dx

)1/2

= L|Ω|1/2‖u‖L2(Ω)

≤ L|Ω|1/2

√
λ1

‖u‖H = C0‖u‖H for all u ∈ H. (6.7)

This proves that

F (u) =
1
2
(u, u)H −

∫

Ω

P (u) dx ≥ 1
2
‖u‖2H − C0‖u‖H

≥ −1
2
C2

0 for all u ∈ H.

The proof of Claim 6.3 is complete. ¤

6.1.2. The Palais–Smale condition.
Now we show that the energy functional F (u) satisfies (PS) condition, that is, F (u)

satisfies (PS)c condition for every constant c ∈ R. Indeed, we have the following:

Claim 6.4. Let {uj}∞j=1 be an arbitrary sequence in H such that

F (uj) −→ c in R as j →∞, (6.8)

∇F (uj) −→ 0 in L(H,R) as j →∞. (6.9)

Then the sequence {uj} contains a convergent subsequence.

Proof. The proof of Claim 6.4 is divided into four steps.

Step 1: First, by formula (6.3) and assertion (6.8) we can find a positive constant
C1 such that

−C1 ≤ F (uj) =
1
2
(uj , uj)H −

∫

Ω

P (uj) dx ≤ C1.
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Hence we have, by inequality (6.7),

1
2
‖uj‖2H ≤ C1 +

∫

Ω

P (uj) dx ≤ C1 + C0‖uj‖H.

This proves that

‖uj‖H ≤ C := C0 +
√

C2
0 + 2C1. (6.10)

Step 2: Secondly, we have the following three assertions (a), (b) and (c):

(a) The injections

H ⊂ W 1,2(Ω) ⊂ Lq(Ω), 1 ≤ q ≤ 2∗ =
2N

N − 2
, (6.11)

are continuous, while the injection

W 1,2(Ω) ⊂ Lq(Ω), 1 ≤ q < 2∗ =
2N

N − 2
, (6.12)

is compact (see the Rellich–Kondrachov theorem [1, Theorem 6.3, Part I]).
(b) The Nemytskii operator

N : Lq(Ω) −→ L2N/(N+2)(Ω)

u(x) 7−→ p(u(x))
(6.13)

is continuous (see [8, Chapter 1, Theorem 2.2]).
(c) It follows from an application of Hölder’s inequality that

u(x) · p(u(x)) ∈ L1(Ω)

and

‖u · p(u)‖L1(Ω) ≤ ‖u‖L2∗ (Ω) · ‖p(u)‖L2N/(N+2)(Ω) for all u ∈ H, (6.14)

since we have the relation

1
2∗

+
1

2N/(N + 2)
= 1.

Step 3: By inequality (6.10), it follows that the sequence {uj} is bounded in the
Hilbert space H. Hence, by applying the local sequential weak compactness of Hilbert
spaces ([34, Chapter V, Section 2, Theorem 1]) we may assume that {uj} itself converges
weakly to some element u in H, that is,
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uj ⇀ u in H as j →∞. (6.15)

Therefore, it follows from assertion (6.12) that {uj} converges strongly to u in Lq(Ω) for
1 ≤ q < 2∗:

uj −→ u in Lq(Ω) as j →∞. (6.16)

Moreover, we have, by assertion (6.13),

N(uj) = p(uj) −→ N(u) = p(u) in L2N/(N+2)(Ω) as j →∞. (6.17)

However, we obtain from formula (6.4) with u := uj that

(∇F (uj), v)H = (uj , v)H −
∫

Ω

p(uj) · v dx for all v ∈ H. (6.18)

By assertions (6.15), (6.17) and (6.9), it follows from formula (6.18) that

(u, v)H −
∫

Ω

p(u) · v dx = lim
j→∞

(
(uj , v)H −

∫

Ω

p(uj) · v dx

)

= lim
j→∞

(∇F (uj), v)H = 0 for all v ∈ H.

This proves that

(u, v)H =
∫

Ω

p(u) · v dx for all v ∈ H. (6.19)

Step 4: Finally, we can prove that

uj −→ u in H as j →∞. (6.20)

Indeed, we have, by formulas (6.18) and (6.19),

(uj − u, v)H = (∇F (uj), v)H +
∫

Ω

p(uj) · v dx−
∫

Ω

p(u) · v dx. (6.21)

However, we obtain from inequality (6.14) and assertion (6.11) with q := 2∗ that, for
some positive constant C2,

‖(p(uj)− p(u))v‖L1(Ω)

≤ ‖p(uj)− p(u)‖L2N/(N+2)(Ω) · ‖v‖L2∗ (Ω)

≤ ‖p(uj)− p(u)‖L2N/(N+2)(Ω) · C2‖v‖H for all v ∈ H. (6.22)

Hence, by formula (6.21) and inequality (6.22) it follows that
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|(uj − u, v)H|

≤ |(∇F (uj), v)H|+
∣∣∣∣
∫

Ω

(p(uj)− p(u))v dx

∣∣∣∣

≤ ‖∇F (uj)‖H‖v‖H + C2‖p(uj)− p(u)‖L2N/(N+2)(Ω)‖v‖H for all v ∈ H.

In view of the Riesz representation theorem ([34, Chapter III, Section 6, Theorem]), we
have proved that

‖uj − u‖H ≤ ‖∇F (uj)‖H + C2‖p(uj)− p(u)‖L2N/(N+2)(Ω). (6.23)

Therefore, the desired assertion (6.20) follows from inequality (6.23) by using assertions
(6.9) and (6.17).

The proof of Claim 6.4 is complete. ¤

6.1.3. Proof of existence of classical solutions of problem (1.3).
The proof of existence of classical solutions of problem (1.3) is carried out in the

following way:

(I) By Claims 6.3 and 6.4, we can apply Theorem 2.2 to obtain a critical point u ∈ H
of the energy functional F .

(II) By Claim 6.2, it follows that the critical point u is a weak solution of problem (6.2).
(III) By applying Theorem 5.3, we obtain that the weak solution u of problem (6.2) is

a classical solution.
(IV) By Claim 6.1, it follows that the classical solution u of problem (6.2) is a classical

solution of the original problem (1.3).

6.2. End of Proof of Theorem 1.1, Part 1.
To find a positive solution u1 and a negative solution u2 of the semilinear problem

(1.3), we need another truncation of the nonlinear term

f(s) = λs− g(s).

We let

p+(s) = max{p(s), 0},
p−(s) = p(s)− p+(s),

and

P±(s) =
∫ s

0

p±(t) dt.

It should be noticed that the functions p±(s) are Lipschitz continuous and satisfy the
following two conditions:

(D.1) |p±(s)| ≤ L for all s ∈ R.
(D.2) |p±′(s)| ≤ L for almost all s ∈ R.
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If we introduce two energy functionals F± by the formulas (cf. formula (6.3))

F±(u) =
1
2
(u, u)H −

∫

Ω

P±(u) dx, u ∈ H,

then it is easy to verify that the functionals F±(u) are bounded from below on H and
satisfy (PS) condition (see Claims 6.3 and 6.4). Therefore, by applying Theorems 2.2
and 5.3 just as in Section 6.1 we obtain that the minima u1 and u2 of F+(u) and F−(u)
exist and hence that u1 and u2 are classical solutions of problem (6.2) with p(s) replaced
by p+(s) and p−(s), respectively:

{
Au1 = p+(u1) in Ω,

Bu1 = 0 on ∂Ω

and
{

Au2 = p−(u2) in Ω,

Bu2 = 0 on ∂Ω.

Moreover, by using the maximum principle just as in the proof of Claim 6.1 we find that

0 ≤ u1(x) ≤ s+ in Ω,

s− ≤ u2(x) ≤ 0 in Ω.

This proves that u1 and u2 are solutions of problem (6.2) and hence of the original
problem (1.3).

Now the proof of Theorem 1.1, Part 1 is complete. ¤

Remark 6.1. For the positive solution u1, we obtain that F (u1) < F (u) for all
u > 0 in Ω if 0 < ‖u − u1‖ is sufficiently small. We remark also that if u1 is not an
isolated minimum, we have infinitely many solutions of the semilinear problem (1.3), and
we are done. A similar remark remains valid for the negative solution u2.

7. Proof of Theorem 1.1, Part 2.

In this section we prove assertion (ii) of Theorem 1.1. The proof is based on a
Lyapunov–Schmidt procedure and a slight modification of the classical Morse inequalities.
This section is divided into four subsections. The main idea of Subsections 7.1 and 7.2
is to rewrite the semilinear problem (1.3) in a suitable bifurcation system (7.8) and
(7.9) and to solve the first equation (7.8), by using the global inversion theorem. In
Subsection 7.3 we deal with functionals which may have degenerate critical points, by
using a perturbation argument and Sard’s lemma (Lemma 7.2). In Subsection 7.4, by
using Lemma 7.2 and applying Theorem 3.8 to our situation we can find a third non-
trivial solution u3 different from u1 and u2 constructed in Subsection 6.2.
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7.1. Lyapunov–Schmidt procedure.
Since p′(s) is bounded and limj→∞ λj = +∞, we can choose a positive integer n

such that

p′(s) < λn for all s ∈ R. (7.1)

First, we let

V = span[φ1, φ2, . . . , φn].

Then we have the following orthogonal decomposition in the Hilbert space L2(Ω):

L2(Ω) = V ⊕ V ⊥ = span[φ1, φ2, . . . , φn]⊕ V ⊥, (7.2)

where

V ⊥ =
{

w ∈ L2(Ω) :
∫

Ω

w(x)φj(x) dx = 0, j = 1, 2, . . . , n

}
.

Moreover, it follows from an application of the regularity theorem ([26, Theorem 8.2])
that

n⊕

j=1

N(A− λjI) = span[φ1, φ2, . . . , φn] ⊂ C∞(Ω).

If we define the orthogonal projection Q from L2(Ω) onto V ⊥ by the formula

Qu = u−
n∑

j=1

( ∫

Ω

u(x)φj(x) dx

)
φj ,

then we obtain the formula

Q(Y ) = Y ∩ V ⊥ =
{

w ∈ Y :
∫

Ω

w(x)φj(x) dx = 0, j = 1, 2, . . . , n

}
.

Therefore, by restricting decomposition (7.2) to the subspace Y = Cα(Ω) of L2(Ω) we
obtain the orthogonal decomposition

Y = Cα(Ω) = span[φ1, φ2, . . . , φn]⊕ (Y ∩ V ⊥). (7.3)

Similarly, if we let

X = C2+α
B (Ω) =

{
u ∈ C2+α(Ω) : Bu = 0

}
,

then we have the formula



370 K. Taira

Q(X) = X ∩ V ⊥ =
{

w ∈ X :
∫

Ω

w(x)φj(x) dx = 0, j = 1, 2, . . . , n

}
.

By restricting the decomposition (7.3) to the subspace X = C2+α
B (Ω) of Y , we obtain

the orthogonal decomposition

X = C2+α
B (Ω) = span[φ1, φ2, . . . , φn]⊕ (X ∩ V ⊥). (7.4)

In other words, every function u ∈ X can be written uniquely in the form

u = v(t) + w(t), t = (t1, t2, . . . , tn) ∈ Rn, (7.5)

v(t) =
n∑

j=1

tjφj ∈ V, tj =
∫

Ω

u(x)φj(x) dx, (7.6)

w(t) ∈ X ∩ V ⊥. (7.7)

Then, in view of formulas (7.5), (7.6) and (7.7) it is easy to verify that

{
Au = p(u) in Ω,

Bu = 0 in ∂Ω
⇐⇒





u = v(t) + w(t),

Aw(t) = Q(p(v(t) + w(t))), w(t) ∈ X ∩ V ⊥,

Av(t) = (I −Q)(p(v(t) + w(t))), v(t) ∈ V.

However, we remark the formulas

Av(t) =
n∑

j=1

tjAφj =
n∑

j=1

λjtjφj

and

(I −Q)(p(v(t) + w(t))) =
n∑

j=1

( ∫

Ω

p(v(t) + w(t))φj(x) dx

)
φj .

Summing up, we are reduced to the infinite-dimensional equation

Aw(t) = Q(p(v(t) + w(t))), w(t) ∈ X ∩ V ⊥, (7.8)

and the system of n-dimensional equations

∫

Ω

p(v(t) + w(t))φj(x) dx = λjtj , j = 1, 2, . . . , n. (7.9)

7.2. Infinite-dimensional equation.
In this subsection we solve the first infinite-dimensional equation (7.8), by using the

global inversion theorem (Proposition 7.1). To do this, we introduce a nonlinear map
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Φ : Rn × (X ∩W ) −→ W, W = Y ∩ V ⊥,

as follows:

Φ(t, w) = Aw −Q(p(v(t) + w)) for all (t, w) ∈ Rn × (X ∩W ), (7.10)

where

v(t) =
n∑

j=1

tjφj ∈ V, t = (t1, t2, . . . , tn) ∈ Rn.

Then it is easy to see that Φ ∈ C1(Rn × (X ∩W ),W ).
The next proposition plays an essential role in the Lyapunov–Schmidt procedure:

Proposition 7.1. Assume that the function p(s) satisfies conditions (C.1) and
(C.2). Then, for every function h ∈ Y = Cα(Ω) there exists a unique function w(t) =
w(t,Qh) ∈ W ∩X which satisfies the following two conditions:

( i ) Φ(t, w(t)) = Qh for each t ∈ Rn.
( ii ) The function w(t) is of class C1 on Rn.

Proposition 7.1 can be proved just as in the proof of [29, Proposition 3.1].

7.3. Resolution of isolated critical points.
In some cases we can deal with functionals which may have degenerate critical points,

by using a perturbation argument and Sard’s theorem ([24]). The next lemma is essen-
tially due to Marino–Prodi [16, Lemma 2.1]:

Lemma 7.2. Assume that f ∈ C2(Rn,R) satisfies (PS) condition and has x0 as
an isolated, possibly degenerate, critical point. Then, for any given small constant ε > 0
we can construct a function g ∈ C2(Rn,R) which satisfies the following four conditions:

(a) The function g(x) satisfies (PS) condition.
(b) g(x) = f(x) for ‖x− x0‖ ≥ ε.
(c) The function g(x) has a finite number of non-degenerate critical points in the open

ball {‖x− x0‖ < ε}.
(d) The Hessians D2f(x) and D2g(x) satisfy the inequality

‖D2g(x)−D2f(x)‖ < ε for all x ∈ Rn. (7.11)

Proof. The proof of Lemma 7.2 is divided into four steps.

Step 1: The construction of the function g(x). Without loss of generality, we may
assume that x0 = 0. Let θ(t) be a C∞ function on the closed interval [0,∞) such that

θ(t) =

{
1 for 0 ≤ t ≤ ε/2,

0 for t ≥ ε.
(7.12)
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We remark that the function ω(x), defined by the formula

ω(x) = θ(‖x‖) = θ
(√

x2
1 + x2

2 + · · ·+ x2
n

)
, x ∈ Rn,

is of class C∞.
For a point y ∈ Rn, we consider a function

g(x) = f(x)− ω(x)(x, y)

= f(x)− θ
(√

x2
1 + x2

2 + . . . + x2
n

) n∑

j=1

xjyj , x ∈ Rn. (7.13)

Then we have the assertions

g ∈ C∞(Rn),

and

g(x) =

{
f(x)− (x, y) for ‖x‖ ≤ ε/2,

f(x) for ‖x‖ ≥ ε.
(7.14)

This verifies condition (b). The point y will be chosen later on (see inequality (7.20)
below).

Step 2: The verification of condition (d). The proof is divided into three steps.
(1) First, it follows from formulas (7.12) and (7.13) that

|f(x)− g(x)| ≤ |(x, y)| ≤ ε‖y‖ for all x ∈ Rn.

This proves that

sup
x∈Rn

|f(x)− g(x)| < ε provided that ‖y‖ ≤ 1
2
. (7.15)

(2) For the gradient ∇g(x) of g, we have the formula

∇g(x) = ∇f(x)−∇(ω(x)(x, y))

= ∇f(x)− θ′(‖x‖)(x, y)
x

‖x‖ − θ(‖x‖)y. (7.16)

Hence it follows from formula (7.12) that

‖∇g(x)−∇f(x)‖ =
∥∥∥∥− θ′(‖x‖)(x, y)

x

‖x‖ − θ(‖x‖)y
∥∥∥∥

≤ |θ′(‖x‖)|‖x‖‖y‖+ ‖y‖
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≤
(

ε sup
ε/2≤t≤ε

|θ′(t)|+ 1
)
‖y‖ for all x ∈ Rn. (7.17)

If we let

α1(ε) =
ε

2(ε supε/2≤t≤ε |θ′(t)|+ 1)
,

then we have, by inequality (7.17),

sup
x∈Rn

‖∇g(x)−∇f(x)‖ < ε provided that ‖y‖ ≤ α1(ε). (7.18)

(3) For the Hessian D2g(x) of g, we have the formula

(D2g(x)h, k) = (D2(f(x)− ω(x)(x, y))h, k)

= (D2f(x)h, k)− θ′′(‖x‖)
(

x

‖x‖ , h

)(
x

‖x‖ , k

)
(x, y)

− θ′(‖x‖)
(

x

‖x‖ , h

)
(k, y)− θ′(‖x‖)

(
x

‖x‖ , k

)
(h, y)

− θ′(‖x‖)(h, k)
(

x

‖x‖ , y

)
+ θ′(‖x‖)

(
x

‖x‖ , h

)(
x

‖x‖ , k

)(
x

‖x‖ , y

)

for all h, k ∈ Rn.

Therefore, just as in Step 2 we can find a constant α2(ε) > 0 such that

∥∥(D2g(x)h, k)− (D2f(x)h, k)
∥∥ ≤ ε

2
‖h‖‖k‖ provided that ‖y‖ ≤ α2(ε).

This proves that

sup
x∈Rn

‖D2g(x)−D2f(x)‖ < ε provided that ‖y‖ ≤ α2(ε). (7.19)

The desired inequality (7.11) follows by combining inequalities (7.15), (7.18) and
(7.19) if the point y is chosen so small that

‖y‖ ≤ min
{

1
2
, α1(ε), α2(ε)

}
. (7.20)

Step 3: The proof of condition (c). Since the point 0 is an isolated critical point of
f , we can find a positive constant m such that

‖∇f(x)‖ ≥ m on the annulus
{

ε

2
≤ ‖x‖ ≤ ε

}
. (7.21)
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Then it follows from formula (7.16) and inequality (7.21) that

‖∇g(x)‖ ≥ ‖∇f(x)‖ −
∥∥∥∥− θ′(‖x‖)(x, y)

x

‖x‖ − θ(‖x‖)y
∥∥∥∥

≥ ‖∇f(x)‖ − |θ′(‖x‖)|‖x‖‖y‖ − ‖y‖

≥
(

m−
[
ε sup

ε/2≤t≤ε

|θ′(t)|+ 1
]
‖y‖

)
on the annulus

{
ε

2
≤ ‖x‖ ≤ ε

}
. (7.22)

Hence, if we let

α3(ε) =
m

2
(
ε supε/2≤t≤ε |θ′(t)|+ 1

) ,

we obtain from inequality (7.22) that

max
ε
2≤‖x‖≤ε

‖∇g(x)‖ ≥ m

2
provided that ‖y‖ ≤ α3(ε). (7.23)

This proves that the function g(x) does not have any critical point in the annulus {ε/2 ≤
‖x‖ ≤ ε}. More precisely, the function g(x) has its critical points only in the closed ball
Bε/2(0) = {‖x‖ ≤ ε/2} and we have, by formula (7.14),

∇g(x) = ∇f(x)− y on the ball Bε/2(0),

D2g(x) = D2f(x) on the ball Bε/2(0),

where

‖y‖ ≤ min
{

1
2
, α1(ε), α2(ε), α3(ε)

}
. (7.24)

Therefore, we have the following equivalent assertions:

x ∈ Rn is a degenerate critical point of g in the ball Bε/2(0)
⇐⇒ {∇g(x) = 0 for ‖x‖ ≤ ε/2,

The Hessian D2g(x) at x is not invertible
⇐⇒ {∇f(x) = y for ‖x‖ ≤ ε/2,

The Hessian D2f(x) at x is not invertible
⇐⇒

y ∈ Rn is a critical value of ∇f in the ball Bε/2(0).

However, by virtue of Sard’s lemma ([24]) we can find a point y ∈ Rn which satisfies
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condition (7.24) and is not a critical value of ∇f . Namely, the critical points of g(x) =
f(x) − (x, y) in the closed ball Bε/2(0) are all non-degenerate. We remark that the
non-degenerate critical points of g are isolated.

Summing up, we have constructed the function g(x) which has a finite number of
non-degenerate critical points in the closed ball Bε/2(0), since its critical points are
isolated. This verifies condition (c).

Step 4: The proof of condition (a). Finally, it remains to show that the function
g(x) satisfies (PS)c condition for every constant c ∈ R.

Let {xj}∞j=1 be an arbitrary sequence in Rn such that

g(xj) −→ c in R as j →∞,

∇g(xj) −→ 0 in Rn as j →∞.

However, we remark that f(x) satisfies (PS) condition and that g(x) = f(x) for ‖x‖ ≥ ε.
Moreover, it follows from inequality (7.23) that

‖∇g(x)‖ ≥ m

2
on the annulus

{
ε

2
≤ ‖x‖ ≤ ε

}
.

Hence, without loss of generality we may assume that

‖xj‖ ≤ ε

2
.

Then, by applying the Bolzano–Weierstrass theorem we can find a subsequence {xj′} of
{xj} and a point x0 ∈ Rn such that

xj′ −→ x0 in Rn.

This verifies condition (a).
The proof of Lemma 7.2 is complete. ¤

7.4. End of Proof of Theorem 1.1, Part 2.
The proof of Theorem 1.1, Part 2 is divided into four steps.

Step 1: First, by applying Proposition 7.1 with h = 0 we can solve equation (7.8).
Namely, for any given function

v(t) =
n∑

j=1

tjφj ∈ V, t = (t1, t2, . . . , tn) ∈ Rn,

we can find a function w(t) ∈ X ∩W such that

Aw(t) = Q(p(v(t) + w(t))), w(t) ∈ X ∩W.

By substituting w = w(t) into equation (7.9), we obtain the following equations:



376 K. Taira

λjtj =
∫

Ω

p(v(t) + w(t))φj(x)dx, j = 1, 2, . . . , n. (7.25)

We introduce a function Ψ : Rn → R by the formula

Ψ(t) =
1
2
(w(t), w(t))H +

1
2

n∑

j=1

λjt
2
j −

∫

Ω

P (v(t) + w(t))dx. (7.26)

Since w(t) is a solution of equation (7.8) for v(t), it is easy to see that

∂Ψ
∂tj

= λjtj −
∫

Ω

p(v(t) + w(t))φj(x)dx, 1 ≤ j ≤ n. (7.27)

Therefore, we have proved that ∇Ψ(t) = 0 if and only if equations (7.25) are satisfied.
By formulas (6.3), (7.5), (7.6) and (7.7), we find that the function Ψ is of class C2

and further that

Ψ(t) =
1
2
(w(t) + v(t), w(t) + v(t))H −

∫

Ω

P (v(t) + w(t)) dx

= F (v(t) + w(t)) for all t ∈ Rn. (7.28)

Moreover, we have the following:

Claim 7.1. The function Ψ(t) is bounded from below on Rn and satisfies (PS)
condition.

Proof. (i) Indeed, by formula (7.28) and inequality (6.6) it follows that

Ψ(t) = F (v(t) + w(t)) ≥ −1
2
C2

0 = −L2|Ω|
2λ1

for all t ∈ Rn.

This proves that Ψ(t) is bounded from below on Rn.
(ii) Now let {t(k)}∞k=1 = {(t(k)

1 , t
(k)
2 , . . . , t

(k)
n )}∞k=1 be an arbitrary sequence in Rn

such that

Ψ(t(k)) −→ c in R as k →∞,

∇Ψ(t(k)) −→ 0 in Rn as k →∞.

Then it follows from formula (7.27) that, as k →∞,

λjt
(k)
j −

∫

Ω

p
(
v(t(k)) + w(t(k))

)
φj(x) dx −→ 0, 1 ≤ j ≤ n. (7.29)

On the other hand, we have, by condition (C.1) and Schwarz’s inequality,
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∣∣∣∣
∫

Ω

p
(
v(t(k)) + w(t(k))

) · φj(x) dx

∣∣∣∣ ≤
∫

Ω

∣∣p(
v(t(k)) + w(t(k))

)∣∣ · |φj(x)|dx

≤ L

∫

Ω

|φj(x)|dx ≤ L|Ω|1/2

( ∫

Ω

|φj(x)|2dx

)1/2

= L|Ω|1/2. (7.30)

Therefore, we obtain from assertion (7.29) and (7.30) that the sequence

t
(k)
j =

1
λj

(
λjt

(k)
j −

∫

Ω

p
(
v(t(k)) + w(t(k))

)
φj(x) dx

)

+
1
λj

∫

Ω

p
(
v(t(k)) + w(t(k))

)
φj(x) dx, 1 ≤ j ≤ n,

is bounded in R. By applying the Bolzano–Weierstrass theorem, we can find a subse-
quence {t(k′)} of {t(k)} and a point t0 ∈ Rn such that

t(k
′) −→ t0 in Rn as k′ →∞.

This verifies (PS) condition for the function Ψ(t).
The proof of Claim 7.1 is complete. ¤

Step 2: Now we study the function Ψ defined by formula (7.26). Let u1 and u2 be re-
spectively the positive and negative solutions of the semilinear problem (1.3) constructed
in Subsection 6.2. Then we have the following:

Proposition 7.3. Let t1 be a point of Rn such that v(t1) + w(t1) = u1 and let t2
be a point of Rn such that v(t2) + w(t2) = u2, respectively. Then the points t1 and t2
are local minima of Ψ on Rn.

Proof. We only prove Proposition 7.3 for t1, since the proposition is similarly
proved for t2.

As we have seen in Step 1, we have the assertions

‖w(t)− w(t1)‖C1(Ω) −→ 0,

‖v(t)− v(t1)‖C1(Ω) −→ 0,

provided that

|t− t1| −→ 0 in Rn.

Hence, since u1 = v(t1) + w(t1) > 0 in Ω, we have, for |t− t1| < ε,

v(t) + w(t) > 0 in Ω,
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if ε is sufficiently small. In view of Remark 6.1, it follows that

F (u1) < F (v(t) + w(t)) for 0 < |t− t1| < ε.

Therefore, we obtain from formula (7.28) that

Ψ(t1) = F (u1) < F (v(t) + w(t)) = Ψ(t) for 0 < |t− t1| < ε.

This proves that the point t1 is a local minimum of Ψ on Rn.
The proof of Proposition 7.3 is complete. ¤

Step 3: The case where λ > λ2 and λ 6= λk for all k ≥ 3. In order to apply Theorem
3.8, we show that t = 0 is a non-degenerate critical point of Ψ on Rn with Morse index
q0 ≥ 2.

By differentiating in formula (7.27) and setting t = 0, we obtain that

∂2Ψ
∂ti∂tj

(0) = λjδij −
∫

Ω

p′(w(0))φj(x)
(

φi(x) +
∂w

∂ti
(0)

)
dx, i, j = 1, 2, . . . , n, (7.31)

where δij is Kronecker’s delta.
However, since we have the assertions

p′(w(0)) = p′(0) = λ,

∂w

∂ti
(0) ∈ W = V ⊥ ∩ Y,

it follows from formula (7.31) that

∂2Ψ
∂ti∂tj

(0) = λjδij − λ

∫

Ω

φi(x)φj(x) dx

= (λj − λ)δij , i, j = 1, 2, . . . , n. (7.32)

Since λ > λ2 and λ 6= λk for all k ≥ 3, we find from formula (7.32) that t = 0 is a
non-degenerate critical point of Ψ with Morse index q0 ≥ 2.

Therefore, by using Proposition 7.3 and then applying Theorem 3.8 to Ψ we can
find a non-zero point t3 of Rn, different from t1 and t2, such that ∇Ψ(t3) = 0. Then it
follows that the function

u3 = v(t3) + w(t3)

is a third non-trivial solution of the semilinear problem (1.3) different from u1 = v(t1) +
w(t1) and u2 = v(t2) + w(t2).

Step 4: The case λ = λk for some k ≥ 3.
Assume, to the contrary, that the function Ψ(t) has only t1, t2 and 0 as critical

points. By Claim 7.1, we know that the function Ψ(t) is bounded from below on Rn and
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satisfies (PS) condition. Hence, by applying Lemma 7.2 to Ψ with x0 := 0 we can find a
constant ε > 0 and a function Ψ̃ ∈ C2(Rn,R) such that:

(a) The function Ψ̃(t) is bounded from below on Rn and satisfies (PS) condition.
(b) The function Ψ̃(t) has only the two critical points t1 and t2 in the closed set {|t| ≥ ε}.
(c) In the open ball {|t| < ε}, the function Ψ̃(t) has only a finite number of

non-degenerate critical points, say β1, β2, . . . , β` ∈ Rn with finite Morse index
q1, q2, . . . , q`, respectively.

By using inequality (7.11) with f := Ψ and g := Ψ̃ and formula (7.32), we have, for
the Morse index qj of βj ,

qj ≥ 2, j = 1, 2, . . . , `.

By arguing just as in the proof of Theorem 3.8, we get a contradiction (cf. inequality
(3.7)).

Therefore, we can find a non-zero point t3 of Rn, different from t1 and t2, such that
∇Ψ(t3) = 0. Then it follows that the function

u3 = v(t3) + w(t3)

is a third non-trivial solution of the semilinear problem (1.3) different from u1 = v(t1) +
w(t1) and u2 = v(t2) + w(t2).

Now the proof of Theorem 1.1, Part 2 is complete. ¤

8. Proof of Theorem 1.2.

This last section is devoted to the proof of Theorem 1.2. By virtue of Theorem 5.3,
we have only to prove Theorem 1.2 for weak solutions. The proof of Theorem 1.2 is based
on the Ljusternik–Schnirelman theory of critical points specialized to the case of an even
functional on a Hilbert space (Theorem 4.2). The proof of Theorem 1.2 is divided into
four steps.

Step 1: First, we recall (see formula (6.3) and inequality (6.6)) that the energy
functional

F (u) =
1
2
(u, u)H −

∫

Ω

P (u) dx =
1
2
‖u‖2H −

∫

Ω

∫ u(x)

0

p(t) dt dx

is bounded from below on H:

F (u) ≥ −1
2
C2

0 = −L2|Ω|
2λ1

for all u ∈ H.

This verifies condition (4.9) with W := 0 and W⊥ := H.
Moreover, by Claim 6.4 it follows that F (u) satisfies (PS) condition.

Step 2: Secondly, if g(t) is an odd function of t, then we can construct the function
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p(t) as an odd function of t (see formula (6.1)). Hence we may assume that the energy
functional F (u) is an even function of u:

F (−u) = F (u) for all u ∈ H.

Step 3: If λ > λk, we let

V = span[φ1, φ2, . . . , φk], dimV = k.

Let u be an arbitrary element of V such that

u =
k∑

j=1

cjφj , cj ∈ R,

‖u‖2H =
k∑

j=1

λjc
2
j = ρ2.

Then we have, for ρ sufficiently small,

F (u) =
1
2
(u, u)H −

∫

Ω

P (u) dx

=
1
2
‖u‖2H −

∫

Ω

∫ u(x)

0

(λt− g(t))dt dx

=
1
2
‖u‖2H −

λ

2

∫

Ω

u(x)2 dx +
∫

Ω

∫ u(x)

0

g(t) dt dx

=
1
2

( k∑

j=1

λjc
2
j − λ

k∑

j=1

c2
j

)
+

∫

Ω

∫ u(x)

0

g(t) dt dx

≤ 1
2

(
1− λ

λk

) k∑

j=1

λjc
2
j +

∫

Ω

∫ u(x)

0

g(t) dt dx

=
1
2

(
1− λ

λk

)
ρ2 +

∫

Ω

∫ u(x)

0

g(t) dt dx. (8.1)

Moreover, since we have the assertion

g(t) = o(t) as t → 0,

it follows that

∫

Ω

∫ u(x)

0

g(t) dt dx = o(‖u‖2H) = o(ρ2) as ρ → 0. (8.2)
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Indeed, it suffices to note that all norms on the finite-dimensional space V are equivalent.

Step 4: By combining inequality (8.1) and assertion (8.2), we obtain that

F (u) ≤ 1
2

(
1− λ

λk

)
ρ2 + o(ρ2) as u ∈ V and ‖u‖H = ρ → 0. (8.3)

However, we remark that

1− λ

λk
< 0 for λ > λk.

In view of assertion (8.3), we can find a small constant ρ > 0 such that

sup
u∈V ∩Sρ(0)

F (u) ≤ 1
4

(
1− λ

λk

)
ρ2.

This verifies condition (4.8) with V := V and

b :=
1
4

(
1− λ

λk

)
ρ2.

Therefore, Theorem 1.2 follows by applying Theorem 4.2 with

H := H, f := F, V := V, W := 0, W⊥ := H,

m := k, j := 0, b :=
1
4

(
1− λ

λk

)
ρ2, a := −1

2
C2

0 + b.

The proof of Theorem 1.2 is now complete. ¤
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