131. On a Degenerate Oblique Derivative Problem with Interior Boundary Conditions

By Kazuaki Taira
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kôsaku Yosida, m. J. A., Nov. 12, 1976)

1. Introduction. In this note we shall give the unique solvability theorem for a degenerate oblique derivative problem with a complex parameter, by introducing an extra boundary condition and adding an error term to the original boundary condition. The background is some work of Egorov and Kondrat'ev [4] and Sjöstrand [6]. In the nondegenerate case such theorem was obtained by Agranovič and Višic [2]. As an application of this theorem, we shall state some results on the angular distribution of eigenvalues and the completeness of eigenfunctions of a degenerate oblique derivative problem having an extra boundary condition. In the non-degenerate case such results were obtained by Agmon [1].

Let Ω be a bounded domain in $\boldsymbol{R}^{n}(n \geqq 3)$ with boundary Γ of class $C^{\infty} . \bar{\Omega}=\Omega \cup \Gamma$ is a C^{∞}-manifold with boundary. Let a, b and c be real valued C^{∞}-functions on Γ, \boldsymbol{n} the unit exterior normal to Γ and α a real C^{∞}-vector field on Γ. We shall consider the following oblique derivative problem : For given functions f and ϕ defined in Ω and on Γ respectively, find a function u in Ω such that

$$
\left\{\begin{array}{l}
(\lambda+\Delta) u=f \quad \text { in } \Omega \tag{*}\\
\mathscr{B} u \equiv a \frac{\partial u}{\partial \boldsymbol{n}}+\alpha u+\left.(b+i c) u\right|_{\Gamma}=\phi \quad \text { on } \Gamma .
\end{array}\right.
$$

Here $\lambda=r e^{i \theta}$ with $r \geqq 0$ and $0<\theta<2 \pi$ and $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2}$.
If $a(x) \neq 0$ on Γ, then the problem (*) is coercive and the unique solvability theorem was obtained by Agranovič and Višik [2].

If $\alpha(x)$ vanishes at some points of Γ, then the problem (*) is noncoercive. Egorov and Kondrat'ev [4] studied the problem (*) under the following assumptions (A) and (B) :
(A) The set $\Gamma_{0}=\{x \in \Gamma ; a(x)=0\}$ is an ($n-2$)-dimensional regular submanifold of Γ.
(B) The vector field α is transversal to Γ_{0}.

In the case that $\alpha(x)$ changes signs on Γ, they proved the nonexistence and non-regularity theorem for the problem (*) and, by introducing an extra boundary condition and adding an error term to the original boundary condition $\mathscr{B} u=\phi$, they succeeded in getting a problem for which they could obtain the existence and regularity theorem,
though the unique solvability theorem is not obtained. On the other hand, in the case that $a(x)$ does not change signs on Γ, i.e., in the case that $a(x) \geqq 0$ on Γ, the unique solvability theorem for the problem (*) was obtained by Taira [7].
2. Results. In this note, in addition to the assumptions (A) and (B), we introduce the following assumption (C):
(C) On every connected component Γ_{0}^{i} of $\Gamma_{0}(i=1,2, \cdots, N)$, we have

$$
a=\alpha(\alpha)=\cdots=\alpha^{k_{i}-1}(\alpha)=0 \quad \text { and } \quad \alpha^{k_{t}}(\alpha) \neq 0
$$

for some positive integer k_{i}.
We divide the set $\{1,2, \cdots, N\}=I^{0} \cup I^{+} \cup I^{-}$where

$$
\begin{cases}i \in I^{0} & \text { if and only if } k_{i} \text { is even; } \\ i \in I^{+} & \text {if and only if } k_{i} \text { is odd and } \alpha^{k_{i}}(\alpha)>0 \text { on } \Gamma_{0}^{i} ; \\ i \in I^{-} & \text {if and only if } k_{i} \text { is odd and } \alpha^{k_{i}}(\alpha)<0 \text { on } \Gamma_{0}^{i},\end{cases}
$$

and we put

$$
\Gamma_{0}^{0}=\bigcup_{i \in I_{0}} \Gamma_{0}^{i} ; \quad \Gamma_{0}^{+}=\bigcup_{i \in I^{+}} \Gamma_{0}^{i} ; \Gamma_{0}^{-}=\bigcup_{i \in I^{-}} \Gamma_{0}^{i},
$$

hence $\Gamma_{0}=\Gamma_{0}^{0} \cup \Gamma_{0}^{+} \cup \Gamma_{0}^{-}$. Further we put

$$
k^{0}=\max _{i \in I^{0}} k_{i} ; k^{+}=\max _{i \in I^{+}} k_{i} ; k^{-}=\max _{i \in I^{-}} k_{i},
$$

and

$$
\delta^{0}=1 /\left(k^{0}+1\right) ; \delta^{+}=1 /\left(k^{+}+1\right) ; \delta^{-}=1 /\left(k^{-}+1\right) ; \quad \delta=\min \left(\delta^{0}, \delta^{+}, \delta^{-}\right)
$$

For each $s \in \boldsymbol{R}$, we denote the Sobolev spaces on $\Omega, \Gamma, \Gamma_{0}^{+}$and Γ_{0}^{-}of order s by $H^{s}(\Omega), H^{s}(\Gamma), H^{s}\left(\Gamma_{0}^{+}\right)$and $H^{s}\left(\Gamma_{0}^{-}\right)$and their norms by $\left\|\|_{H^{*}(\Omega)}\right.$, $\left.\left|\left.\right|_{H^{s}(\Gamma)},| |_{H^{s}\left(\Gamma_{0}^{+}\right)}\right.$and $|\right|_{H^{s}\left(\Gamma_{0}^{-}\right)}$respectively.

Now we can state the main result:
Theorem. Let $\lambda=r e^{i \theta}$ with $r \geqq 0$ and $0<\theta<2 \pi$ and let s be any integer $\geqq 2$. Assume that the conditions (A), (B) and (C) hold. Then we can find the properly supported continuous linear operators $R^{+}: H^{\circ}(\Gamma)$ $\rightarrow H^{\sigma-1 / 2}\left(\Gamma_{0}^{+}\right)$and $R^{-}: H^{o}\left(\Gamma_{0}^{-}\right) \rightarrow H^{\sigma-1 / 2}(\Gamma)$ for all $\sigma \in \boldsymbol{R}$ such that if $|\lambda|$ $=r \geqq r_{1}(\theta)$ for some constant $r_{1}(\theta)>0$ depending only on θ and s then for any $\left(f, \phi, u^{+}\right) \in H^{s-2}(\Omega) \oplus H^{s-3 / 2}(\Gamma) \oplus H^{s-3 / 2+\delta-\delta+/ 2}\left(\Gamma_{0}^{+}\right)$the problem

$$
\left\{\begin{array}{l}
(\lambda+\Delta) u=f \quad \text { in } \Omega, \\
\mathscr{B} u+\left.R^{-} w^{-} \equiv\left(a \frac{\partial u}{\partial \boldsymbol{n}}+\alpha u+(b+i c) u\right)\right|_{\Gamma}+R^{-} w^{-}=\phi \quad \text { on } \Gamma, \\
R^{+}\left(\left.u\right|_{\Gamma}\right)=u^{+} \quad \text { on } \Gamma_{0}^{+}
\end{array}\right.
$$

has a unique solution $\left(u, w^{-}\right) \in H^{s-1+\delta}(\Omega) \oplus H^{s-3 / 2+\delta-/ 2}\left(\Gamma_{0}^{-}\right)$and that the a priori estimate

$$
\begin{aligned}
& \|u\|_{H^{s-1+\delta(\Omega)}}^{2}+|\lambda|^{s-1+\delta}\|u\|_{L^{2}(\Omega)}^{2}+\left|w^{-}\right|_{H^{s-3 / 2+\delta-12\left(\Gamma_{0}\right)}}^{2} \\
& +|\lambda|^{s-3 / 2+\delta-/ 2}\left|w^{-\mid}\right|_{L^{2}\left(\Gamma_{0}^{-}\right)}^{2} \leqq C_{1}(\theta)\left(\|f\|_{H^{s-2(\Omega)}}^{2}+|\lambda|^{s-2}\|f\|_{L^{2}(\Omega)}^{2}\right. \\
& +|\phi|_{H^{8-3 / 2}(\Gamma)}^{2}+\lambda^{\delta-3 / 2}|\phi|_{L^{2}(\Gamma)}^{2}+\left|u^{+}\right|_{H^{8-3 / 2+\delta-\delta+/ 2\left(\Gamma_{0}^{+}\right)}}^{2} \\
& \left.+|\lambda|^{s-3 / 2+\delta-\delta+/ 2}\left|u^{+}\right|_{L^{2}\left(\Gamma_{0}^{+}\right)}^{2}\right)
\end{aligned}
$$

holds for some constant $C_{1}(\theta)>0$ depending only on θ and s.
Remark 1. In the case that $\Gamma_{0}=\Gamma_{0}^{0}$, the condition (C) can be weak-
ened (see [7], the condition (C)).
Corollary. Assume that the conditions (A), (B) and (C) hold with $\Gamma_{0}^{-}=\phi$. Let us introduce the linear unbounded operator \mathfrak{A} in the Hilbert space $L^{2}(\Omega)$ as follows:
a) The domain of \mathfrak{A} is $\mathscr{D}(\mathfrak{H})=\left\{u \in H^{1+\delta}(\Omega) ; \Delta u \in L^{2}(\Omega), \quad \mathscr{B} u\right.$ $\equiv a(\partial u / \partial \boldsymbol{n})+\alpha u+\left.(b+i c) u\right|_{\Gamma}=0$ and $\left.R^{+}\left(\left.u\right|_{\Gamma}\right)=0\right\} .\left(\delta=\min \left(\delta^{0}, \delta^{+}\right).\right)$
b) For $u \in \mathscr{D}(\mathfrak{H})$, $\mathfrak{A} u=-\Delta u$.

Then the operator \mathfrak{V} is closed and has the following properties:

1) The spectrum of \mathfrak{X} is discrete and the eigenvalues of \mathfrak{A} have finite multiplicities.
2) For any $\varepsilon>0$ there is a constant $r_{2}(\varepsilon)>0$ depending only on ε such that the resolvent set of $\mathfrak{2}$ comprises the set $\left\{\lambda=r e^{i \theta} ; r \geqq r_{2}(\varepsilon), \varepsilon \leqq \theta\right.$ $\leqq 2 \pi-\varepsilon\}$ and that there the resolvent $(\lambda I-\mathfrak{H})^{-1}$ satisfies the estimate

$$
\left\|(\lambda I-\mathfrak{U})^{-1}\right\| \leqq \frac{C_{2}(\varepsilon)}{|\lambda|^{1+\delta) / 2}}
$$

for some constant $C_{2}(\varepsilon)>0$ depending only on ε. In particular, there are only a finite number of eigenvalues outside any angle: $|\arg \lambda|<\varepsilon$, $\varepsilon>0$.
3) The positive axis is a direction of condensation of eigenvalues.
4) The generalized eigenfunctions are complete in $L^{2}(\Omega)$; they are also complete in $\mathscr{D}(\mathfrak{V})$ in the $\left\|\|_{H^{1+\delta}(\Omega)}\right.$-norm.

Remark 2. Combining the result 2) with Theorema 1-1 of [3], we obtain that the operator-2 generates an exponential distribution semigroup $U(t)$ which is holomorphic in any sector: $\{z=t+i s ; z \neq 0,|\arg z|$ $<\zeta\}, 0<\zeta<\pi / 2$. Further, arguing as in the proof of Theorem 3.4 in Chap. 1 of [5], it follows that in this sector the estimate $\|U(z)\|$ $\leqq M e^{\omega t} t^{(\delta-1) / 2}$ holds for some positive constants M and ω depending only on ζ (cf. [3], Theorema 2-1). Since $0<\delta<1$, the semi-group $U(t)$ is unbounded near $t=0$. But, by using Theorem 3.3 and Theorem 6.8 in Chap. 1 of [5], we can apply Corollary to a mixed problem for the heat equation and obtain the existence and uniqueness theorem.
3. Idea of Proofs. The proof of Theorem is similar to that of Theorem of [7]. First we reduce the problem (*) to the study of a first order pseudodifferential equation $T(\lambda) \varphi=\psi$ on the boundary Γ by means of the Dirichlet problems. Next, by introducing an extra boundary condition $R^{+}: \mathscr{D}^{\prime}(\Gamma) \rightarrow \mathscr{D}^{\prime}\left(\Gamma_{0}^{+}\right)$and adding an error term $R^{-}: \mathscr{D}^{\prime}\left(\Gamma_{0}^{-}\right)$ $\rightarrow \mathscr{D}^{\prime}(\Gamma)$ to the equation $T(\lambda) \varphi=\psi$, we get a problem

$$
\tau(\lambda)\binom{\varphi}{w^{-}} \equiv\left(\begin{array}{cc}
T(\lambda) & R^{-} \\
R^{+} & 0
\end{array}\right)\binom{\varphi}{w^{-}}=\binom{\psi}{u^{+}}
$$

for which we have the existence and regularity theorem. This is the essential step in the proof and proved exactly as in Theorem 1 of [6] (cf. [6], Remark 4.19). Further, using a method of Agmon and Nirenberg as in [7], we show that for $|\lambda|$ sufficiently large the mapping $\tau(\lambda)$ is
one to one and onto. Finally we combine these results to get Theorem. The proof of Corollary is the same as that of Corollary of [7].

The details will be given elsewhere.

References

[1] Agmon, S.: On the eigenfunctions and on the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 119-147 (1962).
[2] Agranovič, M. S., and M. I. Višik: Elliptic problems with a parameter and parabolic problems of general type. Russian Math. Surveys, 19, 53157 (1964).
[3] Da Prato, G., and U. Mosco: Regolarizzazione dei semigruppi distribuzioni analitici. Ann. Sc. Norm. Sup. Pisa, 19, 563-576 (1965).
[4] Egorov, Ju. V., and V. A. Kondrat'ev: The oblique derivative problem. Math. USSR Sb., 7, 139-169 (1969).
[5] Kreĭn, S. G.: Linear differential equations in a Banach space. Moscow (1967) (in Russian).
[6] Sjöstrand, J.: Operators of principal type with interior boundary conditions. Acta Math., 130, 1-51 (1973).
[7] Taira, K.: On a degenerate oblique derivative problem of Egorov and Kondrat'ev (to appear in J. Fac. Sci. Univ. Tokyo).

