31. On Some Noncoercive Boundary Value
 Problems for the Laplacian

By Kazuaki TAira
Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kôsaku Yosida, m. J. A., March 12, 1975)

1. Introduction. Let Ω be a bounded domain in \boldsymbol{R}^{n} with boundary Γ of class $C^{\infty} . \quad \bar{\Omega}=\Omega \cup \Gamma$ is a C^{∞}-manifold with boundary. Let a, b and c be real valued C^{∞}-functions on Γ, let n be the unit exterior normal to Γ and let α and β be real C^{∞}-vector fields on Γ.

We shall consider the following boundary value problem: For given functions f defined on Ω and ϕ defined on Γ find u in Ω such that

$$
\left\{\begin{array}{l}
(\lambda-\Delta) u=f \quad \text { in } \Omega, \tag{*}\\
\mathscr{B} u \equiv a \frac{\partial u}{\partial \boldsymbol{n}}+(\alpha+i \beta) u+(b+i c) u=\phi \quad \text { on } \Gamma .
\end{array}\right.
$$

Here $\lambda \geqq 0$ and $\Delta=\partial^{2} / \partial x_{1}^{2}+\partial^{2} / \partial x_{2}^{2}+\cdots+\partial^{2} / \partial x_{n}^{2}$. The problem (*) in the case that $\beta(x) \equiv 0$ on Γ, i.e., the oblique derivative problem was investigated by many authors (cf. [2], [6], [7], [8]), but the problem (*) in the case that $\beta(x) \not \equiv 0$ on Γ was treated by a few authors, e.g., Vaǐnberg and Grušin [12] (see also [5]), whose results we shall first describe briefly. For each real s, we shall denote by $H^{s}(\Omega)$ (resp. $H^{s}(\Gamma)$) the Sobolev space on Ω (resp. Γ) of order s and by $\left\|\|_{s}\right.$ (resp. | $\left.\right|_{s}$) its norm.

If $a(x)>|\beta(x)|$ on Γ where $|\beta(x)|$ is the length of the tangent vector $\beta(x)$, then the problem (*) is coercive and the following results are valid for all $s>3 / 2$ (cf. [9]):
i) For every solution $u \in H^{t}(\Omega)$ of (*) with $f \in H^{s-2}(\Omega)$ and $\phi \in H^{s-3 / 2}(\Gamma)$ we have $u \in H^{s}(\Omega)$ and an a priori estimate :

$$
\begin{equation*}
\|u\|_{s} \leqq C_{1}\left(\|f\|_{s-2}+|\phi|_{s-3 / 2}+\|u\|_{t}\right) \tag{1}
\end{equation*}
$$

where $t<s$ and $C_{1}>0$ is a constant depending only on λ, s and t.
ii) If $f \in H^{s-2}(\Omega), \phi \in H^{s-3 / 2}(\Gamma)$ and ($\left.f, \phi\right)$ is orthogonal to some finite dimensional subspace of $C^{\infty}(\bar{\Omega}) \oplus C^{\infty}(\Gamma)$, then there is a solution $u \in H^{s}(\Omega)$ of (*).
iii) If $\lambda>0$ is sufficiently large, then we can omit $\|u\|_{t}$ in the right hand side of (1) and for every $f \in H^{s-2}(\Omega)$ and every $\phi \in H^{s-3 / 2}(\Gamma)$ there is a unique solution $u \in H^{s}(\Omega)$ of (*).

If $a(x) \geqq|\beta(x)|$ on Γ and $a(x)=|\beta(x)|$ holds at some points of Γ, then the problem (*) is noncoercive. Vaǐnberg and Grušin [12] treated the problem ($*$) in the case that $n=2, a(x) \equiv 1, \alpha(x) \equiv 0,|\beta(x)| \equiv 1$ on Γ. Under the assumption that $b(x)+i c(x) \neq 0$ on Γ, they proved smoothness, an a priori estimate and existence theorems for the solutions of
(*), which involve a loss of 1 derivative compared with the results i) and ii) (see [12], Theorem 19).

In this note we shall treat the problem (*) in the case that n is arbitrary and that $a(x) \geqq|\beta(x)|$ on Γ. Under the assumptions expressed in terms of differential geometry such as the second fundamental form of the hypersurface $\Gamma \subset R^{n}$, the mean curvature of Γ, the divergence of the vector field α and so on (see (B-1)s, (B-2)s, (B-1), (B-2) and (C)), we shall give smoothness, an a priori estimate and existence theorems for the solutions of ($*$), which involve a loss of 1 derivative compared with the results i), ii) and iii) (Theorem 1 and Theorem 2). Even in the case that $\beta(x) \equiv 0$ on Γ and hence that $\alpha(x) \geqq 0$ on Γ, these results are new (cf. [2], [7], [8]). The details will be given somewhere else.

The author is very much indebted to Prof. Daisuke Fujiwara and Mr. Kazuo Masuda for helpful conversations.
2. Preliminaries. Since $\lambda \geqq 0$, for every $\phi \in C^{\infty}(\Gamma)$ we can uniquely solve the Dirichlet problem:

$$
\begin{cases}(\lambda-\Delta) w=0 & \text { in } \Omega \\ w=\phi & \text { on } \Gamma\end{cases}
$$

hence we can define the Poisson operator $\mathcal{P}(\lambda)$ by $w=\mathcal{P}(\lambda) \phi$. The mapping $T(\lambda):\left.\phi \rightarrow \mathscr{B} \mathscr{P}(\lambda) \phi\right|_{\Gamma}$ is a first order pseudodifferential operator on Γ (cf. [5], [6], [12]) and the problem (*) can be reduced to the study of $T(\lambda)$ by the same argument as the proof of Theorem 2.2 of Taira [11] (cf. [6], [7], [12]). The principal symbol of $T(\lambda)$ is

$$
(a(x)|\xi|-\beta(x, \xi))+i \alpha(x, \xi)
$$

(see [5], § 3). Here $x=\left(x_{1}, x_{2}, \cdots, x_{n-1}\right)$ are some local coordinates in Γ and $\xi=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n_{-1}}\right)$ are the corresponding dual coordinates in the cotangent space $T^{*} \Gamma$ and $|\xi|$ is the length of ξ with respect to the Riemannian metric of Γ induced by the natural metric of \boldsymbol{R}^{n}, and $\alpha(x, \xi)$ (resp. $\beta(x, \xi)$) is the principal symbol of the vector field $\alpha(x) / i$ (resp. $\beta(x) / i$).

Let $\Lambda=\left(1-\Delta^{\prime}\right)^{1 / 2}$ where Δ^{\prime} is the Laplace-Beltrami operator corresponding to the Riemannian metric of Γ. To apply Theorem 3.1 of Melin [10] to $\operatorname{Re}\left(\Lambda^{2 s-3} T(\lambda)\right)$ where $s \geqq 3 / 2$ (see Proposition), we have to make a digression. Let $p_{1}(x, \xi)=\alpha(x)|\xi|-\beta(x, \xi)$. Then $p_{1}(x, \xi) \geqq 0$ on the space of non zero cotangent vectors $T^{*} \Gamma \backslash 0$ if and only if $\alpha(x) \geqq|\beta(x)|$ on Γ. Hence we assume that $p_{1} \geqq 0$ on $T^{*} \Gamma \backslash 0$. Let $\Sigma=\left\{\rho \in T^{*} \Gamma \backslash 0\right.$; $\left.p_{1}(\rho)=0\right\}$. For every tangent vector u of $T^{*} \Gamma$ at $\rho \in \Sigma$, let v be some vector field on $T^{*} \Gamma$ equal to u at ρ and define a quadratic form $a_{\rho}(u, u)$ by the equation:

$$
a_{\rho}(u, u)=\left(v^{2} p_{1}\right)_{\rho} .
$$

Since $p_{1} \geqq 0$ on $T^{*} \Gamma \backslash 0$, it follows that $a_{\rho}(u, u)$ is independent of the choice of v. Let $\tilde{T}_{\rho}\left(T^{*} \Gamma\right)$ be the complexification of the tangent space $T_{\rho}\left(T^{*} \Gamma\right)$ of $T^{*} \Gamma$ at $\rho \in \Sigma$. We consider the symplectic form

$$
\sigma=\sum_{1}^{n-1} d \xi_{j} \wedge d x_{j} \quad \text { on } T^{*} \Gamma
$$

and the quadratic form a_{ρ} as bilinear forms on $\tilde{T}_{\rho}\left(T^{*} \Gamma\right) \times \tilde{T}_{\rho}\left(T^{*} \Gamma\right)$. Since σ is non-degenerate, we can define for every $\rho \in \Sigma$ a linear map $A_{\rho}: \tilde{T}_{\rho}\left(T^{*} \Gamma\right) \rightarrow \tilde{T}_{\rho}\left(T^{*} \Gamma\right)$ by the equation:

$$
\sigma\left(u, A_{\rho} v\right)=a_{\rho}(u, v), \quad u, v \in \tilde{T}_{\rho}\left(T^{*} \Gamma\right) .
$$

It is easily seen that the spectrum of A_{ρ} is situated on the imaginary axis, symmetrically around the origin (see [10], § 2). For every $\rho \in \Sigma$, we shall denote by $\widetilde{\operatorname{Tr}} H_{p_{1}}(\rho)$ the sum of the positive elements in i. Spectrum (A_{ρ}) where each eigenvalue is counted with its multiplicity.

The subprincipal symbol of $\operatorname{Re}(T(\lambda))$ is

$$
b(x)-\frac{1}{2} \operatorname{div} \alpha(x)+\frac{1}{2} a(x)\left(|\xi|^{-2} \omega_{x}(\hat{\xi}, \hat{\xi})-(n-1) M(x)\right)
$$

(cf. [5], § 3). Here $\operatorname{div} \alpha$ is the divergence of the vector field α and $M(x)$ is the mean curvature at x of the hypersurface $\Gamma \subset R^{n}$ and ω_{x} is the second fundamental form at x of Γ, and $\hat{\xi} \in T_{x} \Gamma$ is the tangent vector of Γ at x corresponding to $\xi \in T_{x}^{*} \Gamma$ by the duality between $T_{x} \Gamma$ and $T_{x}^{*} \Gamma$ with respect to the Riemannian metric of Γ, where $T_{x} \Gamma$ (resp. $T_{x}^{*} \Gamma$) is the tangent (resp. cotangent) space of Γ at x. Further, the subprincipal symbol of $\operatorname{Re}\left(\Lambda^{2 s-3} T(\lambda)\right)$ on $\Sigma=\left\{(x, \xi) \in T^{*} \Gamma \backslash 0 ; a(x)|\xi|-\beta(x, \xi)\right.$ $=0\}$ is

$$
\begin{aligned}
& \left(b(x)-\frac{1}{2} \operatorname{div} \alpha(x)\right)|\xi|^{2 s-3}+\frac{1}{2} \alpha(x)\left(|\xi|^{-2} \omega_{x}(\hat{\xi}, \hat{\xi})-(n-1) M(x)\right)|\xi|^{2 s-3} \\
& \quad+\frac{1}{2}\left\{|\xi|^{2 s-3}, \alpha(x, \xi)\right\}-\frac{1}{2} \alpha(x, \xi) \operatorname{div} \delta_{\xi}(x) .
\end{aligned}
$$

Here

$$
\left\{|\xi|^{2 s-3}, \alpha(x, \xi)\right\}=\sum_{j=1}^{n-1}\left(\frac{\partial}{\partial \xi_{j}}\left(|\xi|^{2 s-3}\right) \frac{\partial}{\partial x_{j}} \alpha(x, \xi)-\frac{\partial}{\partial \xi_{j}} \alpha(x, \xi) \frac{\partial}{\partial x_{j}}\left(|\xi|^{2 s-3}\right)\right)
$$

and

$$
\delta_{\xi}(x)=\sum_{j=1}^{n-1} \frac{\partial}{\partial \xi_{j}}\left(|\xi|^{2 s-3}\right) \frac{\partial}{\partial x_{j}}
$$

is a real C^{∞}-vector field on Γ defined for $\xi \neq 0$ (cf. [1], Proposition 5.2.1).
3. Results. Applying Theorem 3.1 of Melin [10] to $\operatorname{Re}\left(\Lambda^{2 s-3} T(\lambda)\right)$ where $s \geqq 3 / 2$ and by the same argument as the proof of Theorem 6 of Fujiwara [4], we can obtain

Proposition. Let $s \geqq 3 / 2, t<s-3 / 2$. There exist constants $C_{3}>0$ and C_{3}^{\prime} depending only on λ, s and t such that the estimate
(3)

$$
\operatorname{Re}\left(\Lambda^{2 s-3} T(\lambda) \phi, \phi\right) \geqq C_{3}|\phi|_{s-3 / 2}^{2}-C_{3}^{\prime}|\phi|_{t}^{2}
$$

holds for all $\phi \in C^{\infty}(\Gamma)$ if and only if the following assumptions (A), (B-1)s and (B-2)s hold:
(A)

$$
a(x) \geqq|\beta(x)| \quad \text { on } \Gamma
$$

(B-1)s At every point $x \in \Gamma$ where $a(x)=0$, the inequality

$$
2 b(x)-\operatorname{div} \alpha(x)+\left\{|\xi|^{2 s-3}, \alpha(x, \xi)\right\}-\alpha(x, \xi) \operatorname{div} \delta_{\xi}(x)>0
$$

holds for all $\xi \in T_{x}^{*} \Gamma$ with $|\xi|=1$ (see (2)).
(B-2)s At every point $x \in \Gamma$ where $a(x)=|\beta(x)|>0$, the inequality

$$
\begin{aligned}
& \tilde{\operatorname{Tr}} H_{p_{1}}(x, \xi)+2 b(x)-\operatorname{div} \alpha(x)+\alpha(x)\left(\omega_{x}\left(\frac{\beta(x)}{a(x)}, \frac{\beta(x)}{a(x)}\right)-(n-1) M(x)\right) \\
& \quad+\left\{|\xi|^{2 s-3}, \alpha(x, \xi)\right\}-\alpha(x, \xi) \operatorname{div} \delta_{\xi}(x)>0
\end{aligned}
$$

holds for $\xi \in T_{x}^{*} \Gamma$ corresponding to $\beta(x) / a(x) \in T_{x} \Gamma$ by the duality between $T_{x}^{*} \Gamma$ and $T_{x} \Gamma$ with respect to the Riemannian metric of Γ (see (2)).

Furthermore, if $\lambda>0$ is sufficiently large, then we can omit $|\phi|_{t}$ in the right hand side of (3).

Remark 1. It follows from the assumption (A) that at every point $x \in \Gamma$ where $a(x)=0, \widetilde{\operatorname{Tr}} H_{p_{1}}(x, \xi)=0$ for all $\xi \in T_{x}^{*} \Gamma$ with $|\xi|=1$.

Remark 2. If the set $\Gamma_{0}=\{x \in \Gamma ; a(x)=|\beta(x)|\}$ is an ($n-2$)-dimensional regular submanifold of Γ and the vector field α is transversal to Γ_{0}, then for every $s \geqq 3 / 2$ we can construct a C^{∞}-function h_{s} on Γ such that $h_{s}(x)>0$ on Γ and that the estimate (3) hold with $\Lambda^{2 s-3} T(\lambda)$ replaced by $h_{s} \Lambda^{2 s-3} T(\lambda)$ (cf. [8], Lemma 4).

By the same argument as the proof of Theorem 2.2 of Taira [11], we can obtain from Proposition

Theorem 1. Assume that
(A) $\quad a(x) \geqq|\beta(x)| \quad$ on Γ
and that the assumptions $(\mathrm{B}-1)_{s}$ and (B-2) sold for some $s>3 / 2$.
Then we have:
i)' for every solution $u \in H^{s-1}(\Omega)$ of (*) with $f \in H^{s-2}(\Omega)$ and $\phi \in H^{s-3 / 2}(\Gamma)$ we have an a priori estimate :

$$
\begin{equation*}
\|u\|_{s-1} \leqq C_{4}\left(\|f\|_{s-2}+|\phi|_{s-3 / 2}+\|u\|_{t}\right) \tag{4}
\end{equation*}
$$

where $t<s-1$ and $C_{4}>0$ is a constant depending only on λ, s and t;
iii)' if $\lambda>0$ is sufficiently large, then we can omit $\|u\|_{t}$ in the right hand side of (4) and for every $f \in H^{s-2}(\Omega)$ and every $\phi \in H^{s-3 / 2}(\Gamma)$ there is a unique solution $u \in H^{s-1}(\Omega)$ of (*).

Remark 3. Further, we can prove that if $f \in H^{s-2}(\Omega), \phi \in H^{s-3 / 2}(\Gamma)$ and (f, ϕ) is orthogonal to some finite dimensional subspace of $H_{0}^{-s+2}(\Omega)$ $\oplus H^{-s+3 / 2}(\Gamma)$ where $H_{0}^{-s+2}(\Omega)$ is the dual space of $H^{s-2}(\Omega)$, then there is a solution $u \in H^{s-1}(\Omega)$ of (*).

Remark 4. If the assumptions (B-1)s and (B-2)s hold for all $s>3 / 2$, then by the same argument as the proof of Theorem 7.4 of Egorov and Kondrat'ev [2] we can prove that every solution $u \in H^{s-1}(\Omega)$ of (*) with $f \in H^{s-1}(\Omega)$ and $\phi \in H^{s-1 / 2}(\Gamma)$ belongs to $H^{s}(\Omega)$.

Further, applying Theorem 1 of Fediǐ [3] to $T(\lambda)$, we can obtain
Theorem 2. Assume that

(A)

$$
a(x) \geqq|\beta(x)| \quad \text { on } \Gamma
$$

and that the following assumptions (B-1), (B-2) and (C) hold:
(B-1) At every point $x \in \Gamma$ where $a(x)=0, b(x)>0$.
(B-2) At every point $x \in \Gamma$ where $a(x)=|\beta(x)|>0$, the inequality
$\operatorname{Tr} H_{p_{1}}(x, \xi)+2 b(x)-\operatorname{div} \alpha(x)$

$$
\begin{equation*}
+a(x)\left(\omega_{x}\left(\frac{\beta(x)}{a(x)}, \frac{\beta(x)}{a(x)}\right)-(n-1) M(x)\right)>0 \tag{5}
\end{equation*}
$$

holds for $\xi \in T_{x}^{*} \Gamma$ corresponding to $\beta(x) / a(x) \in T_{x} \Gamma$.
(C) There exists a constant $C_{0}>0$ such that the inequality

$$
|d \alpha(x, \xi)|^{2} \leqq C_{0}(\alpha(x)-\beta(x, \xi))
$$

holds for all $x \in \Gamma$ and all $\xi \in T_{x}^{*} \Gamma$ with $|\xi|=1$. Here d α is the exterior derivative of $\alpha(x, \xi)$ and $|d \alpha|$ is the length of the cotangent vector $d \alpha$ of $T^{*} \Gamma$ with respect to the natural metric of $T^{*} \Gamma$ induced by the Riemannian metric of Γ.

Then the assumptions (B-1)s and (B-2)s hold for all s (hence by Theorem 1 we have for all $s>3 / 2$ the results i)' and iii)') and we have for all $s>3 / 2$:
i)" for every solution $u \in H^{t}(\Omega)$ of (*) with $f \in H^{s-2}(\Omega)$ and $\phi \in H^{s-3 / 2}(\Gamma)$ where $t<s-1$, we have $u \in H^{s-1}(\Omega)$;
ii) if $f \in H^{s-2}(\Omega), \phi \in H^{s-3 / 2}(\Gamma)$ and (f, ϕ) is orthogonal to some finite dimensional subspace of $C^{\infty}(\bar{\Omega}) \oplus C^{\infty}(\Gamma)$, then there is a solution $u \in H^{s-1}(\Omega)$ of (*).

Remark 5. The example of Kato [8] shows that the assumption (C) is necessary for Theorem 2 to be valid.

Remark 6. In the case that $n=2$, the inequality (5) is reduced to the following inequality (6):
(6)

$$
\widetilde{\operatorname{Tr}} H_{p_{1}}(x, \xi)+2 b(x)-\operatorname{div} \alpha(x)>0,
$$

since

$$
\omega_{x}\left(\frac{\beta(x)}{a(x)}, \frac{\beta(x)}{a(x)}\right)-(n-1) M(x)=0 .
$$

References

[1] Duistermaat, J. J., and L. Hörmander: Fourier integral operators. II. Acta Math., 128, 183-269 (1972).
[2] Egorov, Ju. V., and V. A. Kondrat'ev: The oblique derivative problem. Math. USSR Sb., 7, 139-169 (1969).
[3] Fediǐ, V. S.: Estimates in $H_{(s)}$ norms and hypoellipticity. Soviet Math. Dokl., 11, 940-942 (1970).
[4] Fujiwara, D.: On some homogeneous boundary value problems bounded below. J. Fac. Sci. Univ. Tokyo, 17, 123-152 (1970).
[5] Fujiwara, D., and K. Uchiyama: On some dissipative boundary value problems for the Laplacian. J. Math. Soc. Japan, 27, 625-635 (1971).
[6] Hörmander, L.: Pseudo-differential operators and non-elliptic boundary problems. Ann. of Math., 83, 129-209 (1966).
[7] Kaji, A.: On the degenerate oblique derivative problems. Proc. Japan Acad., 50, 1-5 (1974).
[8] Kato, Y.: On a class of non-elliptic boundary problems. Nagoya Math. J., 54, 7-20 (1974).
[9] Lions, J. L., and E. Magenes: Problèmes aux limites non homogènes et applications, Vol. 1. Dunod, Paris (1968).
[10] Melin, L.: Lower bounds for pseudo-differential operators. Ark. för Mat., 9, 117-140 (1971).
[11] Taira, K.: On non-homogeneous boundary value problems for elliptic differential operators. Kôdai Math. Sem. Rep., 25, 337-356 (1973).
[12] Vaǐnberg, B. R., and V. V. Grušin: Uniformly noncoercive problems for elliptic equations. I, II. Math. USSR Sb., 1, 543-568 (1967); 2, 111-134 (1967).

