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4.1 Abstract 

 

Bacteria in the natural ecosystem frequently live as adherent communities 

called biofilms.  Some chemical compounds are known to affect biofilm formation.  

The effects of exogenous small molecules, N-acylhomoserine lactones (AHLs), 

β-lactam antibiotics, and adenosine, on biofilm formation in the β-lactam 

antibiotic-resistant bacterium Acidovorax sp. strain MR-S7 were investigated.  Biofilm 

formation was induced by the addition of various types of AHL isomers and β-lactam 

antibiotics, whereas the addition of adenosine strongly interfered with the biofilm 

formation.  A gene (macP) encoding adenosine deaminase (that converts adenosine to 

inosine controlling intracellular adenosine concentration) was successfully cloned from 

MR-S7 genome and heterologously expressed in Escherichia coli.  The purified MacP 

protein clearly catalyzed the deamination of adenosine to produce inosine.  A 

transcriptional analysis revealed that biofilm-inducing molecules, an AHL and a 

β-lactam antibiotic, strongly induced not only biofilm formation but also adenosine 

deaminase gene expression, suggesting that an elaborate gene regulation network for 

biofilm formation is present in the β-lactam antibiotic-resistant bacterium studied here. 

 

 

4.2 Introduction 

 

Bacterial biofilms are generally described as surface-attached bacterial 

communities comprised of mixed microorganisms surrounded by a self-produced 

extracellular polymeric substance (EPS) that contains polysaccharides, DNAs and 

proteins (De Kievit, 2009).  Biofilms are widely distributed in natural environments 

and are frequently found in a variety of places.  The biofilm formation can be regarded 

as a basic life path among bacteria.  Lerchner et al. estimated that 90% of bacteria 

dwell in biofilm communities rather than planktonic states (Lerchner et al., 2008).  An 

advantage of biofilm formation is that it eases environmental stresses and fluctuations 

such as temperature, pH and UV light (Cotton et al., 2009).  In pathogenic bacteria, 

biofilm formation helps avoid an attack by the biofilm host’s immune system (Donlan 
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and Costerton, 2002), as an effective survival strategy. 

Various small molecules work as a trigger to form biofilms (De Kievit, 2009).  

These signaling molecules are mainly produced and released by a biofilm-forming 

bacterium itself, and these events prompt the biofilm formation.  Biofilm formation is 

known to be closely associated with cell density and the concentration of signal 

molecules.  This population density-dependent cell-to-cell communication mechanism 

is referred to as the quorum sensing system.  Among the molecules that work as a 

trigger to form biofilms, N-acylhomoserine lactones (AHLs) are the most studied signal 

molecules in the quorum sensing system for biofilm formation among Gram-negative 

bacteria (De Kievit et al., 2001; Singh et al., 2000). 

In the common bacterium Pseudomonas aeruginosa, biofilm formation is under 

the control of AHLs, and it was found that AHLs induce the production of the main 

constituents of the biofilm matrix, e.g., exopolysaccharides and extracellular DNA 

(Allesen-Holm et al., 2006; Sakuragi and Kolter, 2007) and rhamnolipids (Pamp and 

Tolker-Nielsen, 2007).  AHLs also promote the swarming motility that is essential to 

adhesion in the early stage of biofilm formation (Shrout et al., 2006). 

Some antibiotics are also known to affect biofilm formation (Linares et al., 

2006).  The addition of various β-lactam antibiotics at sub-inhibitory concentrations 

induced biofilm formation in Staphylococcus aureus (Haddadin et al., 2010; Kaplan et 

al., 2012; Mirani and Jamil, 2011).  In addition, β-lactam antibiotics at sub-inhibitory 

concentrations induced biofilm formation in the Gram-negative bacteria Salmonella 

enterica serotype Typhimurium (Majtan et al., 2008) and Acinetobacter baumannii 

(Nucleo et al., 2009).  Biofilm formation clearly seems to be advantageous to the cells 

within it, because the surrounding matrix, i.e., the EPS, prevents antibiotic agents from 

penetrating into the cells.  However, the manner in which antibiotics induce biofilm 

formation is largely unknown. 

Small molecules that are neither an AHL nor an antibiotic can have significant 

effects on biofilm formation.  Sheng et al. (Sheng et al., 2012) found that exogenous 

adenosine nearly abolished static biofilm formation in P. aeruginosa and that 

exogenous inosine, a structural analogue of adenosine, did not interfere with it.  

Adenosine, one of the common components essential to life, is constantly synthesized in 
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the cells and occasionally converted to inosine by adenosine deaminase (Heurlier et al., 

2006).  Little is known about the mechanism underlying the inhibition of biofilm 

formation by adenosine, and questions remain regarding role of adenosine in biofilm 

formation and what controls the adenosine concentration in cells. 

Even in a β-lactam antibiotic-resistant bacterium, Acidovorax sp. strain MR-S7, 

recently isolated from a penicillin-containing wastewater treatment process (Zhang et al., 

unpublished data), such biofilm formation is occasionally observed and AHLs, 

antibiotics and adenosine likely affects it.  In this chapter, the effects of these small 

molecules on the biofilm formation of the strain were minutely investigated.  In 

addition, adenosine deaminase gene was also cloned and its expression examined by a 

transcriptional assay to know the mechanisms underlying biofilm formation in strain 

MR-S7. 

 

 

4.3 Materials and Methods 

 

4.3.1 Bacterial strains, culture media, and growth conditions. 

 

The bacterium Acidovorax sp. strain MR-S7 was isolated from an activated 

sludge sample in a treatment system for penicillin G-polluted wastewater (Zhang et al., 

unpublished data).  Escherichia coli strain DH5α (TaKaRa, Tokyo) was used as the 

host strain for DNA manipulation.  E. coli strain Origami
™

 2 (DE3) (Novagen, 

Madison, WI) was used as the host strain for expression of the cloned gene.  Strain 

MR-S7 and E. coli strains were cultured on Luria-Bertani (LB) agar or in LB broth at 

30°C and 37°C, respectively.  When necessary, kanamycin was added to the LB media 

at the final concentration of 100 mg/L. 

 

 

4.3.2 Bioassay of AHLs-production activity. 

 

The AHL-production assay of strain MR-S7 was performed using GFP-based 
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biosensor strains, E.coli strain MT102 harboring plasmid pJBA132 and Pseudomonas 

putida F117 harboring plasmid pKR-C12 (Andersen et al., 2001; Steidle et al., 2001).  

These biosensor strains yield GFP fluorescence when AHL-like compound is present.  

Briefly, the overnight culture fluid of MR-S7 was harvested by centrifugation at 1,500 

×g for 1min and washed with potassium phosphate buffer (pH 7.0).  In addition, the 

overnight culture fluid of MR-S7 was extracted with equal volumes of ethyl acetate for 

three times and the combined organic phases were resuspended in sterilized water.  

These liquid solutions were dispensed into a well of a 96-well microtitre plate (Becton 

Dickinson, Franklin Lakes).  Then, 50 μl of a five-fold-diluted overnight culture of the 

reporter strains were added in equivalent numbers into each well of the 96-well 

microtiter plates and statically incubated at 30°C for 4h to induce detectable GFP 

expression from the reporter cells.  Sterilized water was mixed with biosensor strains 

and used as a non-GFP-fluorescence control.  A SpectraMax Gemini XS Microplate 

spectrofluorometer (Molecular Devices, Sunnyvale, CA) was used to measure GFP 

fluorescence at an excitation wavelength of 485 nm and an emission wavelength of 538 

nm. 

 

 

4.3.3 Biofilm formation assay. 

 

Strain MR-S7 was grown in LB broth overnight, and 8 µL of culture was 

inoculated to fresh LB broth (1% inoculation) with or without small molecules, i.e., 

N-acylhomoserine lactones (AHLs), β-lactam antibiotics, adenosine and inosine, in 

48-well polystyrene tissue culture plates (Becton Dickinson Labware, Franklin Lakes, 

NJ).  After static incubation for 5 days at 30°C, all culture fluid was removed and each 

well was carefully washed with sterilized distilled water.  The culture plates were then 

stained with 1% crystal violet (Wako, Osaka, Japan) in 33% acetic acid.  After static 

incubation for 20min at room temperature, the crystal violet solution was removed and 

the culture plates were carefully washed twice with sterilized distilled water as 

described previously (Irie et al., 2004; Irie et al., 2005; Pedersen, 1982).  For the 

quantification of attached cells, the dye bound to the adherent cells was solubilized with 
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95% ethanol.  To quantify the biofilm mass remaining after treatment, the absorbance 

of the crystal violet solution was measured on a spectrophotometer (Beckman 

Instruments, Fullerton, CA) at 595 nm.  The concentrations of small molecules in the 

cultures were as follows: AHLs (1, 5, 10, 20 and 50 μM), β-lactam antibiotics (1, 5, 10, 

50 and 100 mg/L), adenosine (1, 5 and 10 mM) and inosine (1, 5 and 10 mM). 

For the confocal laser scanning microscopy (CLSM) analysis, bacterial 

biofilm was grown on glass surfaces (76 × 26 mm, Matsunami, Osaka, Japan) for 5 days 

in LB medium at 30°C.  After the incubation, the glasses were washed and stained 

with 1% crystal violet solution.  Confocal images were collected using an LSM 5 

PASCAL microscope (Carl Zeiss Microscopy, Thornwood, NY).  A He-Ne laser (633 

nm) was used for sample excitation. 

 

 

4.3.4 Antibiotics susceptibility testing. 

 

The minimum inhibitory concentrations (MICs) of non-supplemented, 

OC8-HSL-supplemented and penicillin G-supplemented strain MR-S7 were determined 

by an agar dilution technique with an inoculum of 10
4 

colony-forming units (CFU) per 

plate.  Strain MR-S7 was cultivated in LB broth with OC8-HSL or penicillin G.  After 

cultivation, each culture of MR-S7 cells was equated and inoculated on an LB agar plate 

with the selected antibiotic.  All of the plates were incubated at 30°C for 3 days at 

ambient atmosphere.  The MICs were defined as the lowest concentration of 

antibiotics at which the strains showed no visible growth on the agar.  The tested 

antibiotics were neomycin and gentamicin, which are classified as aminoglycoside 

antibiotics, and tetracycline and chloramphenicol.  The tested concentrations of 

neomycin were 1, 5, 10, 25, 50 and 100 mg/L; those of gentamicin were 2.5, 6.25, 12.5, 

18.75, 25 and 50 mg/L, tetracycline 2, 5, 10, 15, 20 and 40 mg/L, and chloramphenicol 

1.25, 6.25, 12.5, 25, 50 and 75 mg/L. 
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4.3.5 Cloning and protein expression of the putative adenosine 

4.3.4 deaminase gene (macP). 

 

The genomic DNA of strain MR-S7 was purified according to the method 

described previously (Kimura et al., 2006) and used it as the template for the 

polymerase chain reaction (PCR)-based cloning.  The macP gene coding region was 

amplified using the following PCR primers. For_adaP, 

5’-GGAATTCCATATGTACAAGGTCCCGCCCATC-3’ (NdeI site underlined) and 

Rev_adaP 5’-CGGAATTCCTAGTCGTTCTCGACGTAGCG-3’ (EcoRI site 

underlined) with PrimeSTAR HS DNA Polymerase (TaKaRa).  The PCR amplification 

was performed with initial denaturation at 98°C for 5min, followed by 40 cycles at 98°C 

for 10s, 68°C for 1min.  The PCR product was then gel-purified using the QIAquick 

gel extraction kit (Qiagen, Valencia, CA), digested by each restriction enzyme, and 

cloned into expression vector pET-28b (Novagen, Madison, WI).  The resulting 

plasmid, termed pAD28, was transformed into E. coli Origami
™

 2 (DE3). 

Protein expression was induced by adding 0.1 mM of 

isopropyl-β-D-thiogalactopyranoside (IPTG).  After 18h of cultivation at 18°C, the 

cells were harvested by centrifugation at 5,800 ×g for 10min, washed with suspension 

buffer (50 mM Na2PO4, 300 mM NaCl, 10% glycerol, pH 7.5), resuspended in the same 

buffer, and disrupted using an ultrasonic disintegrator (Sonicator BRANSON sonifer 

250).  Cell debris was removed by centrifugation at 5,800 ×g for 10min.  The 

supernatant was applied to HIS-Select Nickel Affinity Gel (Sigma-Aldrich, Saint Louis, 

MO), and the His-tagged protein was purified based on the manufacturer's instructions. 

 

 

4.3.6 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

4.3.5 (SDS-PAGE) analysis. 

 

His-tagged crude cell extract was treated with marker dye (1% SDS, 1% 

2-mercaptoethanol, 10 mM Tris-HCl (pH 6.8), 20% glycerin, and 1 mg/ml bromophenol 

blue), and then heated for 5min at 98°C.  For the SDS-PAGE analysis, the samples 
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were subjected to 10% PAGE gels under 30mA for 80min using 10 × SDS-PAGE 

running buffer (1% SDS, 3% Tris, and 14.4% glycine).  Proteins were detected by 

staining with a Rapid Stain CBB kit (Nacalai Tesque, Kyoto, Japan).  The resulting 

His-tagged MacP protein was dialyzed to the ten-thousandth by dialysis buffer (20 mM 

Tris, 300 mM NaCl, 30% glycerol, pH 8.0). 

 

 

4.3.7 Enzymatic activity assay of MacP protein. 

 

The ammonia concentration was determined using an Ammonia-Test-Wako kit 

(Wako Pure Chemical Industries, Osaka, Japan) in accord with the manufacturer’s 

instructions.  Briefly, 10 mM adenosine solution was mixed with 100 μg MacP protein 

and incubated statically for 24h at 30°C.  After the addition of deproteinizing solution, 

the solution was mixed with coloring reagent A (containing phenol and sodium 

pentacyanonitrosylferrate [III] dihydrate), coloring reagent B (containing potassium 

hydroxide) and coloring reagent C (containing potassium carbonate and sodium 

hypochlorite).  After allowing the mixture to stand at 37°C for 20min, the absorbance 

of the reaction mixtures were measured on a spectrophotometer (Beckman Instruments) 

at 630 nm wavelength.  Indophenol was produced after ammonia was mixed with 

coloring reagents A, B and C.  As a negative control, 10 mM adenosine solutions was 

mixed with 100 μg heat-denatured MacP protein (98°C for 30min) and with dialysis 

buffer, respectively. 

 

 

4.3.8 Reverse transcriptase PCR (RT-PCR) analyses of macP gene. 

 

Strain MR-S7 was grown in LB medium with or without OC8-HSL and 

penicillin G to exponential phase, and the total RNAs were isolated using the RNeasy 

Mini Kit (Qiagen).  The concentration and quality of the RNA samples were 

determined by using the Agilent 2100 Bioanalyzer Nano Chip (Agilent Technologies, 

Santa Clara, CA).  Reverse transcription reactions were performed using 1 µg DNase 
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I-treated total RNA samples, random hexamers, dNTPs, and ReverTra Ace in a 20-μL 

reaction volume.  Reverse transcription reactions were performed with the following 

cycling parameters: 30°C for 10min, 42°C for 50min, 98°C for 5min.  The resulting 

cDNA samples were used as the PCR template with the relevant PCR primer set, 

For_adaP and Rev_adaP, amplified by the 1,053 bp of macP gene (see above).  The 

presence of chromosomal DNA was checked by PCR using the 16S rRNA gene 

universal PCR primers 8F and 1492R. 

 

 

4.3.9 Chemicals. 

 

The following chemicals were purchased from Sigma-Aldrich: 

N-decanoyl-L-homoserine lactone (C10-HSL), N-dodecanoyl-L-homoserine lactone 

(C12-HSL), N-3-oxo-hexanoyl-L-homoserine lactone (OC6-HSL), 

N-3-oxo-octanoyl-L-homoserine lactone (OC8-HSL), ampicillin sodium salt, adenosine 

and inosine.  N-3-oxo-tetradecanoyl-L-homoserine lactone (OC14-HSL) was purchased 

from Nottingham University, University Park, Nottingham, UK.  The following 

antibiotics were purchased from Wako: penicillin G sodium salt, amoxicillin trihydrate, 

carbenicillin sodium salt and cefalexin. 

 

 

4.4 Results 

 

4.4.1 Strain MR-S7 does not produce AHLs. 

 

GFP-based biosensor strains were used to confirm whether strain MR-S7 

produce AHL-isomers.  The ethyl acetate extracts and culture fluid of MR-S7 showed 

low values of GFP fluorescence as well as negative control.  Based on the draft 

genome sequence data of Acidovorax sp. strain MR-S7 (Miura et al., 2013), luxI-like 

homologue gene (which encodes the AHL synthase) did not present in the MR-S7 

genome, whereas four luxR-like homologue genes (which encode the transcriptional 
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regulator) were found in MR-S7 genome (locus_tags; AVS7_01953, AVS7_03407, 

AVS7_03923 and AVS7_04716).  These low values of GFP fluorescence and genomic 

information indicated that strain MR-S7 does not possess the ability to produce 

biosensors-detectable AHL-like compounds. 

 

 

4.4.2 Effect of small molecules on biofilm formation in strain MR-S7. 

 

To investigate the effect of one of the most common and available AHL 

isomers, N-3-oxo-octanoyl-L-homoserine lactone (OC8-HSL), on biofilm formation in 

strain MR-S7, the biofilm mass of strain MR-S7 culture in the presence of OC8-HSL 

was quantified.  According to the effect of several concentrations of OC8-HSL on 

biofilm formation in strain MR-S7, the largest amount of biofilm formation occurred 

when the cells were treated with OC8-HSL at 5 μM (Fig. 4.1 A).  When several 

concentrations of penicillin G were supplemented to the culture of wild-type strain 

MR-S7, the largest amount of MR-S7 biofilm was observed at the penicillin G 

concentration 5 mg/L (Fig. 4.1 A).  The following experiments were thus conducted to 

unify the OC8-HSL concentration at 5 μM and the penicillin G concentration at 5 mg/L, 

respectively. 

The CLSM analysis revealed biofilm-like aggregation on glass surfaces in the 

culture of OC8-HSL- and penicillin G-supplemented strain MR-S7 (Fig. 4.1 B, center 

and right), whereas a mature aggregation was not observed in non-supplemented strain 

MR-S7 (Fig. 4.1 B, left).  In addition, the crystal violet absorbance of strain MR-S7 

supplemented with the β-lactam antibiotics (ampicillin, amoxicillin, carbenicillin and 

cefalexin) and that of the AHLs with different acyl side chain lengths and 3’-carbon 

substitutions (OC4-HSL, OC6-HSL, OC8-HSL, C10-HSL, C12-HSL and OC14-HSL) 

showed approximately 2.5- to 5-fold higher values than that with non-supplemented 

strain MR-S7 (Fig. 4.1 C).  These spectroscopic results indicated that the various 

β-lactam antibiotics and a broad range of AHLs act as biofilm formation inducers in this 

strain. 
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4.4.3 Effect of small molecules on antibiotics resistance. 

 

The MICs of biofilm-forming strain MR-S7 against four selected non-β-lactam 

antibiotics (neomycin, gentamicin, tetracycline and chloramphenicol) were determined 

to test whether biofilm formation affects the antibiotic resistance in strain MR-S7.  As 

shown in Table 4.1, the MICs of OC8-HSL-supplemented strain MR-S7 showed 5- to 

10-fold higher resistance to all four tested antibiotics compared to that of 

non-supplemented strain MR-S7.  In addition, the MICs of penicillin G-supplemented 

strain MR-S7 developed 2.5-fold higher tolerance to gentamicin compared to 

non-biofilm-forming strain MR-S7 (Table 4.1). 

 

 

4.4.4 Adenosine inhibits biofilm formation. 

 

To confirm the effects of adenosine and inosine on the MR-S7 biofilm 

formation, the biofilm masses induced by 5 μM OC8-HSL or 5 mg/L penicillin G were 

quantified.  The concentrations of adenosine and inosine (each 1, 5 and 10 mM) were 

established according to the Sheng's experiments (Sheng et al., 2012).  As shown in 

Figure 4.2, adenosine markedly reduced the crystal violet absorbance of both OC8-HSL- 

and penicillin G-supplemented strain MR-S7 biofilm formation in a concentration 

dependent manner in 48-well plates (Fig. 4.2, white bar).  These spectroscopic 

decreases indicated that adenosine works as a biofilm formation inhibitor in strain 

MR-S7.  In addition, it was examined whether inosine (an adenosine metabolite) could 

also affect biofilm formation, and found that 1, 5 and 10 mM inosine did not interfere 

with the biofilm formation (Fig. 4.2, gray bar). 

 

 

4.4.5 Cloning and heterologous expression of the adenosine deaminase 

4.4.2 gene (macP). 

 

Using the draft genome sequence data of Acidovorax sp. strain MR-S7 (Miura 
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et al., 2013), the putative adenosine deaminase gene (terms macP gene; locus_tag 

AVS7_00616) was cloned and heterologously expressed.  The macP gene was cloned 

into the pET-28b vector (pAD28) and constructed the heterologous expression system 

using E. coli strain Origami
™

 2 (DE3).  The SDS-PAGE analysis revealed a single 

band for His6-MacP fusion protein (Fig. 4.3A).  The molecular weight for MacP was 

estimated as approx. 40.0 kDa, consistent with the predicted molecular mass of MacP 

protein (40.5 kDa) based on the deduced amino acid sequence (351 amino acids). 

 

 

4.4.6 macP gene codes for a adenosine deaminase. 

 

To determine whether MacP enzyme is capable of converting adenosine to 

inosine, the ammonia concentration in the reaction mixture was quantified.  Adenosine 

deaminase enzyme catalyzes the hydrolytic breakdown of adenosine to inosine and free 

ammonia.  As shown in Figure 4.3 B, the absorbance unit of 10 mM adenosine 

solution mixed with 100 μg MacP protein was 0.0149, and the ammonia concentration 

was 0.2224 μg/μL according to the value of the absorption wavelength, whereas the 

absorbance unit of 10 mM adenosine solution mixed with heat-denatured MacP was 

0.0007, and the ammonia concentration was 0.0010 μg/μL. 

 

 

4.4.7 Transcriptional analyses of macP gene. 

 

To confirm how macP gene was transcribed in strain MR-S7, RT-PCR analysis 

was performed with total RNA extracted from strain MR-S7 cells from OC8-HSL- and 

penicillin G-supplemented LB medium cultures, respectively.  Total RNA extracted 

from MR-S7 cells grown on LB medium was used as a control.  With the use of a PCR 

primer set, For_adaP and Rev_adaP, 1,053-bp fragments were amplified from the total 

RNA originated in both OC8-HSL- and penicillin G-supplemented cells (Fig. 4.4, lanes 

3 and 4).  A similar band was also observed in control using genomic DNA (Fig. 4.4, 

lane 1).  However, this fragment was not amplified from total RNA extracted from 
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LB-grown cells (Fig. 4.4, lane 2). 

 

 

4.5 Discussion 

 

According to the draft genome sequencing of the multiple β-lactam 

antibiotic-resistant bacterium Acidovorax sp. strain MR-S7, several gene candidates that 

appear to be involved in multiple β-lactam antibiotic-resistant activity were found; that 

is, β-lactamase domain-containing proteins, multidrug efflux pump proteins, and 

penicillin-binding proteins were annotated (Miura et al., 2013).  Strain MR-S7 can 

degrade β-lactam antibiotics, and therefore shows resistance to these agents.  In 

addition, the strain seems to have another counterplot to antibiotics. 

It was found here that penicillin G at concentrations between 5 and 50 mg/L 

caused the formation of biofilm-like aggregates in strain MR-S7 (Fig. 4.1 A and B).  

The culture forming a biofilm supplemented with penicillin G showed 2.5 times higher 

tolerance to gentamicin compared to the non-biofilm-forming culture (Table 4.1).  

Since gentamicin in an aminoglycoside but not a β-lactam antibiotic, this tolerance 

would be due to the biofilm formation as a result of the response to penicillin G.  

Similar biofilm formation was also found in the presence of several β-lactam antibiotics 

other than penicillin G, i.e., cephem-related β-lactam antibiotics with a fundamental 

skeleton that differs from those of penicillin-related β-lactam antibiotics (Fig. 4.1C). 

Biofilm formation is known to be induced by N-acylhomoserine lactones 

(AHLs) in a large number of bacteria (De Kievit, 2009; Huber et al., 2001; Lynch et al., 

2002).  In the present study, the addition of N-3-oxo-octanoyl-L-homoserine lactone 

(OC8-HSL) at concentrations from 1 to 50 μM caused biofilm formation in strain 

MR-S7 (Fig. 4.1A).  Not only OC8-HSL but also various AHLs with different acyl side 

chain lengths with or without 3-oxo substitutions also worked as a trigger to form 

biofilms in strain MR-S7 (Fig. 4.1C).  Biofilm-grown strain MR-S7 in the presence of 

OC8-HSL developed 5- to 10-fold tolerance to non-β-lactam antibiotics, neomycin, 

gentamicin, tetracycline and chloramphenicol (Table 4.1). 

These results indicate that biofilm formation mediated by AHLs is also an 
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effective defense against multiple antibiotic agents in strain MR-S7.  The biofilm 

formation by AHLs appears to be driven by a quorum sensing system.  AHLs-LuxR 

complex directly induce EPS synthesis and promote biofilm formation.  In contrast, it 

is still unclear whether β-lactam antibiotics directly regulate the transcription of EPS 

synthesis, although β-lactam antibiotic-mediated biofilm formation is widely observed 

among Gram-positive and -negative bacteria (Haddadin et al., 2010; Kaplan et al., 2012; 

Majtan et al., 2008; Mirani and Jamil, 2011; Nucleo et al., 2009). 

Sheng et al. (Sheng et al., 2012) reported that adenosine strongly inhibited 

biofilm formation in P. aeruginosa, and as shown in the present study using strain 

MR-S7, an exogenous adenosine prevented biofilm formation, and an inosine (an 

adenosine metabolite) did not inhibit the formation (Fig. 4.2).  Despite their 

phylogenetic distance, the inhibition by adenosine was evident in both P. aeruginosa 

(which belongs to the class Gammaproteobacteria) and the Acidovorax sp. strain 

MR-S7 (which belongs to the class Betaproteobacteria).  These findings suggest that 

adenosine may act as a biofilm formation inhibitor in all proteobacteria.  Adenosine is 

one of the general constituents involved in energy transfer and signal transduction, and 

the intracellular adenosine concentrations are controlled by the biosynthetic/metabolic 

pathways.  Adenosine deaminase is one of the enzymes involved in those pathways; it 

catalyzes the conversion of adenosine to inosine (the deamination of adenosine) and 

ammonia. 

A putative adenosine deaminase gene (macP) found in the strain MR-S7 genome 

was cloned and heterologously expressed in E. coli Origami
™

 2 (DE3).  The molecular 

weight for purified MacP protein was coincident with that based on the deduced amino 

acid sequence (Fig. 4.3 A), and the protein showed activity to release ammonia from 

adenosine, showing that it is adenosine deaminase (Fig. 4.3 B).  RT-PCR analysis 

disclosed that the transcription of macP gene was remarkably induced in the presence of 

OC8-HSL and penicillin G (Fig. 4.4).  This finding strongly suggests that intracellular 

adenosine suppresses the biofilm formation in the planktonic state of strain MR-S7.  In 

addition, AHL and penicillin G each directly induced the expression of macP (adenosine 

deaminase), which released the suppression of biofilm formation by adenosine. 

Based on the present findings, a new biofilm formation mechanism in strain 
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MR-S7 was proposed (Fig. 4.5).  Both AHLs and β-lactam antibiotics induce biofilm 

formation in several bacteria such as P. aeruginosa and S. aureus.  Generally, each 

induction has been thought to be driven by different mechanisms: AHLs, an 

auto-inducer in the quorum sensing system, combines with a regulatory protein, LuxR, 

and the AHL-LuxR complex directly switches on the synthetic genes for extracellular 

polymeric substances (Allesen-Holm et al., 2006; Sakuragi and Kolter, 2007) and 

changes the gene expression involved in swarming motility (Shrout et al., 2006) in order 

to form a biofilm.  By contrast, biofilm formation caused by β-lactam antibiotics 

occurs as a result of various responses to the antibiotic agents (Haddadin et al., 2010; 

Kaplan et al., 2012; Majtan et al., 2008; Mirani and Jamil, 2011; Nucleo et al., 2009).  

The most important finding in this study, however, is that both AHLs and β-lactam 

antibiotics induce the expression of adenosine deaminase.  Adenosine deaminase 

catalyzes the deamination of adenosine and can decrease the concentration of 

intracellular adenosine.  It is very likely that the intracellular level of adenosine, a 

potent inhibitor of biofilm formation (Sheng et al., 2012), suppresses the formation in 

the planktonic state and the concentration is controlled by expressing adenosine 

deaminase.  AHLs and β-lactam antibiotics strongly increase the expression level of 

adenosine deaminase.  This is a previously unknown induction pathway for biofilm 

formation by AHLs as well as β-lactam antibiotics via the regulation of adenosine 

deaminase.  In conclusion, these findings demonstrate that AHLs and β-lactam 

antibiotics induced not only biofilm formation but also adenosine deaminase gene 

expression, suggesting that a previously unknown gene regulation network for biofilm 

formation is present in β-lactam antibiotic-resistant bacteria, and perhaps in other 

bacteria. 
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Table 4.1  Antibiotics resistant assay in Acidovorax sp. MR-S7. 

Strains 

Minimum Inhibitory Concentrations (mg/L) 

Antibiotics 

Nm Gm Tc Cm 

Non-supplemented 10 2.5 <2 1.25 

OC
8
-HSL-supplemented 50 12.5 2 12.5 

Penicillin G-supplemented 10 6.25 <2 1.25 

 

Abbreviated as Nm: neomycin, Gm: gentamicin, Tc: tetracycline, Cm: 

chloramphenicol.  The tested concentrations of Nm was 1, 5, 10, 25, 50 and 100 mg/L, 

Gm was 2.5, 6.25, 12.5, 18.75, 25 and 50 mg/L, Tc was 2, 5, 10, 15, 20 and 40 mg/L, 

and Cm was 1.25, 6.25, 12.5, 25, 50 and 75 mg/L.  Note, increased MICs by 

supplemented OC8-HSL and penicillin G are indicted by underlined. 
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Figure 4.1  Effects of small molecules on biofilm formation in Acidovorax sp. 

MR-S7. 

 

(A) Total biofilm formation was assayed as described in the Materials and 

Methods section with 1, 5, 10, 20 and 50 μM OC8-HSL (white bar), and 1, 5, 10, 50 and 

100 mg/L penicillin G (gray bar) in LB media.  (B) The CLSM analysis of biofilms 

which were constructed by non-supplemented (left), OC8-HSL-supplemented (middle) 

and penicillin G-supplemented strain MR-S7 (right) at 30°C after 5 days in glass 

surfaces without shaking after stained by crystal violet solution.  A He-Ne laser (633 

nm) was used for sample excitation.  (C) Total biofilm formation was assayed as 

described with 5 μM AHLs with different acyl side chain lengths with or without 3-oxo 

substitutions (white bar) and 5 mg/L various β-lactam antibiotics (gray bar) in LB media.  

Dark gray bars indicate non-supplemented with AHLs or β-lactam antibiotics. 
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Figure 4.2  Biofilm formation with adenosine and inosine. 

 

Total biofilm formation was assayed at 30°C after 5 days in 48-well plates 

without shaking with 5 μM OC8-HSL (A), 5 mg/L penicillin G (B), 1, 5 and 10 mM 

adenosine (white bar) or 1, 5 and 10 mM inosine (gray bar) in LB media.  Dark gray 

bars indicate non-supplemented with adenosine or inosine. 
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Figure 4.3  SDS-PAGE analysis and enzymatic property of MacP protein. 

 

(A) Lane 1 and lane 2 are soluble cell extracts of E. coli Origami
™

 2 (DE3) 

(pET-28b vector) and E. coli Origami
™

 2 (DE3) (pAD28), respectively.  A fraction 

after Ni-NTA affinity purification of soluble extract of E. coli Origami
™

 2 (DE3) 

(pAD28) is indicated in lane 3.  A single band for His6-MacP fusion protein is 

indicated by an arrow.  The sizes of the molecular marker are indicated at the left, 

Lanes: M. Molecular size-marker (BIO-RAD).  (B) The absorbance of indophenol 

produced by ammonia which was converted from adenosine by MacP protein.  The 

wavelength of each solution was measured at 630 nm (absorbance maxima of 

indophenol).  1: 0.5 μg ammonia solution used as a positive control, 2: 10 mM 

adenosine solution mixed with 100 μg MacP protein, 3: 10 mM adenosine solution 

mixed with heat-denatured MacP, and 4: 10 mM adenosine solution mixed with dialysis 

buffer used as a negative control. 
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Figure 4.4  RT-PCR analysis of adenosine deaminase gene in strain MR-S7. 

 

Genomic DNA of strain MR-S7 was used as a positive control (Lane 1).  A 

cDNA from total RNA isolated from LB grown strain MR-S7 cell was used as the 

template (Lane 2).  The product of reverse transcription from total RNA of penicillin 

G-supplemented strain MR-S7 cells were used as the templates (lanes 3).  The product 

of reverse transcription from total RNA of OC8-HSL-supplemented strain MR-S7 cells 

was used as the templates (lanes 4).  The objective PCR-amplified gene fragment 

(right; 1,053 bp) was indicated by arrow.  The PCR-amplified internal standard (16S 

rRNA) gene fragment (left; 1,484 bp) was indicated by dashed arrow.  Lane M, 

molecular size markers. 
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Figure 4.5  A hypothesized diagram of biofilm formation and the antibiotic 

resistant mechanism in strain MR-S7 inferred from this study. 

 

Genes and proteins are represented as open arrows and ovals, respectively.  

Experimentally-verified positive and negative regulations are represented by solid 

arrows and blunt-ended lines, respectively.  In particular, new insights into adenosine 

metabolism are indicated by heavy arrows. 
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