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Abstract 

 Forest thinning plays a great role in regulating the hydrological cycle at multiple temporal 

and spatial scales. Moreover, different management practices could result in different effects on 

components of forest water cycle. Evapotranspiration (ET) is an important component in water 

balance and is used to evaluate forest hydrological functions. The quantification of changes in 

partitioning of ET response to thinning could help to understand the changes in forest stand water 

balance. Strip thinning requires less time and skill needed for tree selection and has been widely 

adopted in these abandoned Japanese coniferous plantations. Despite numerous studies on the 

relations between forest practice and water cycle, few studies attempt to elucidate the effect of strip 

thinning on partitioning of ET. Thus the major objectives of this study were: 1) to examine the effect 

of strip thinning on partitioning of ET; and 2) to get an integrated finding for optimizing water and 

forest management in forested watersheds.  

The study was conducted in an unmanaged 32-year-old Japanese cypress stand on Mt. 

Karasawa, located in Tochigi Prefecture in Central Japan. Intensive field measurements were 

employed to monitor open rainfall (Pg), throughfall (TF), stemflow (SF), tree transpiration (Et), and 

evaporation from forest floor (Ef). Strip thinning which includes each interval of two lines of trees 

that were felled, was performed in a catchment in October 2011. Stand density decreased 50% 

corresponding basal area reduced 48%. Monitoring period was divided into pre-thinning period 

(November 2010 – October 2011) and post-thinning period (November 2011 – October 2012).  

 These results demonstrated that strip thinning resulted in an increase in TF (from 61.4-

73.0%) and decreases in SF (from 9.8-6.1%) and canopy interception (Ei) rate (from 28.7-20.8%). 

Water availability in the soil matrix increased after thinning, particularly in dry season. Based on 

summarizing the findings of previous studies, the degree of decline in Ei loss/rate caused by 

thinning was related to Pg and ratio of thinning. These results can be used for researchers to get a 
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general understanding to manage and implement hydrology-based silviculture.  

 Xylem sap flow densities (Fd) were elucidated before and after thinning. Fd at the outer 

xylem (0-20 mm) increased remarkably, whereas the Fd at the inner xylem (20-40 mm) had no 

significant change after thinning. Mean stand sap flow density values were higher in the post-

thinning period, and the differences significantly increased with increasing vapor pressure deficit 

values. Furthermore, daily single tree Et increased, particularly in the small tree class. Unlike the 

daily tree Et, the daily stand Et decreased from 1.23±0.48 to 0.74±0.42 mm d
-1

. Annual stand Et 

decreased by 38.3% from 441.0 to 272.1 mm. These results can improve the understanding for the 

Et responses at individual tree and stand levels to strip thinning.    

The changes in Ef were examined before and after thinning. Daily variations in Ef located at 

different points had no significant differences and corresponded to solar radiation under the forest 

canopy in both periods. These results could improve the understanding of changes in spatial 

variations of Ef and solar radiation by thinning, and will be used to analyze and model the energy 

balance at the forest floor. Additionally, daily Ef increased from 0.34±0.23 to 0.68±0.47 mm d
-1

. 

Annual Ef increased by 97.6% from 124.0 to 245.0 mm. The quantification of changes in Ef by 

thinning can help understand hydrological processes at the forest floor, and develop predictive and 

management tools to improve water use and water-use efficiency in forest ecosystems.  

The changes in partitioning of ET by thinning were quantified. Thinning caused the annual 

ET decreased by 15.5% from 980.2 to 780.1 mm. Thinning efficiently increased the water 

availability, and highlighted the positive thinning effects on water resources in forested watersheds. 

Thinning resulted in decreases in Ei (from 42.3-33.7%) and Et (from 45.3-34.9%) and an increase in 

Ef (from 12.4-31.4%).  Although stand Et was the dominant component of ET in both periods, the 

relative contribution of each flux to ET were changed to be very close after thinning. These findings 

could guide us for predicting the changes in stand water balance by thinning, and achieving an 

optimized water and forest management in forested watersheds. 
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Chapter 1 Introduction 

1-1 Relationship between forest and water 

Forest and water are inseparable. Forests and water occur together and they interact. Plant a 

tree and it will use water; cut a tree and its water use ceases. Forest hydrology is the study of water 

in forests: its distribution, storage, movement, and quality; hydrologic processes within forested 

areas; and the delivery of water from forested areas. Forest hydrology research used field 

measurements, experiments, and modeling to characterize and predict hydrologic processes and 

their response to natural disturbance and management of forests. It draws upon disciplinary 

knowledge from several branches of hydrological sciences, water resources engineering, and 

forestry to address primary questions of forests and water: What are the flow paths and storage 

reservoirs of water in forests and forest watersheds? How do modifications of forest vegetation 

influence water flow paths and storage? How do changes in forests affect water quantity and quality 

(Anderson et al., 1976)? 

The changes in vegetation cover by forest management will have an impact on catchment 

water balance and hence water yield and groundwater recharge (Llorens and Domingo, 2007; Zhang 

et al., 2001). The quantification of hydrological processes in forests is an important component of 

studies aiming to increase water yields in forests (Bosch and Hewlett, 1982; Stednick, 1996)  

because a reduction in forest covers increases water yield due to the subsequent reduction in 

evapotranspiration (Zhang et al., 2001). The degrees to which the effects of forest management 

modify water quantify and quality over the long term has been the subject of forest hydrology for 

the past century (National Research Council, 2008). Forest hydrologists use concepts of ―balance‖ 

or ―budgets‖ of water, energy, sediment, and nutrients, to understand how forests affect water 

quantity and quality. The water balance traces the transformation of precipitation (input) to runoff 

(output), which is of interest to the general public and water managers (Fig. 1-1). The amount of 



Chapter 1 Introduction 

2 

precipitation is the dominant control on the amount of runoff. The timing and type of precipitation 

(e.g., rain, snow, or fog drip) also affect the amount and timing of runoff. A second major control on 

runoff is the transfer of water to the atmosphere by evapotranspiration from vegetation, and a third 

control on runoff is the amount of water that can be infiltrated and stored.  A third control on runoff 

is the amount of water that is stored or flows as groundwater, i.e., water that infiltrates into the soil 

surface; water that is stored in the soil profile, and water that moves laterally as groundwater flow 

(Fig. 1-1). 

 

Fig. 1-1 Elements of the water balance in a forest: 1 = precipitation (rain, snow, cloudwater 

deposition); 2 = net precipitation; 2-1 = throughfall; 2-2 = stemflow; 3 = evapotranspiration; 3-1 = 

canopy interception; 3-2 = tree transpiration; 3-3 = forest floor evaporation; 4 = infiltration; 5 = 

surface runoff, or infiltration excess (Horton) overland flow;  6 = subsurface flow, or lateral 

subsurface flow; 7 = groundwater recharge; 8 = groundwater flow; 9 = saturation excess overland 

flow; 10 = discharge or streamflow; 11 = precipitation intensity; 12 = peak flow or peak discharge. 

Although it is not shown, understory vegetation also contributes to these processes. 
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Forest management (e.g., thinning)  plays a great role in regulating the hydrological cycle, as 

runoff and evapotranspiration, at multiple temporal and spatial scales by altering ecosystem water 

balances (Andreassian, 2004; Breda et al., 1995; Dung et al., 2012; Simonin et al., 2007). Thinning 

is a common silvicultural practice to manage between-tree competition, aimed at increasing the 

dimensions and quality of trees harvested at the end of a rotation. Removal of trees alters the cover 

and structure of the forest canopy (Crockford and Richardson, 1990; Dung et al., 2012; Lesch and 

Scott, 1997; Stogsdill et al., 1989) and then leads to increase the amount and density of understory 

vegetation and the growth rate of residual trees by changing the light conditions under the forest 

canopy (Aussenac et al., 1982; Dodson et al., 2008; Maleque et al., 2007b; Thomas et al., 1999). 

These changes can also enhance biodiversity of forest ecosystems (Maleque et al., 2007a; Nagaike 

et al., 2006). Furthermore, forest thinning alters the hydrological processes of forested watershed by 

reducing canopy interception (Breda et al., 1995; Crockford and Richardson, 1990; Limousin et al., 

2008; Molina and del Campo, 2012; Teklehaimanot et al., 1991), decreasing the evapotranspiration 

rate (Breda et al., 1995; Serengil et al., 2007) and increasing runoff generation (Dung et al., 2012; 

Dung et al., 2011; Lane and Mackay, 2001; Lesch and Scott, 1997). Therefore, examining changes 

in components of forest water cycle by forestry practice has been a critical topic in forest hydrology 

and could improve the understanding of changes in water resources in forested watersheds.   

1-2 Forest conditions in Japan 

In Japan, forests cover 67% of total land area, and approximately 40% of forested land area 

or 25% of the national land area is composed of coniferous plantation forests (National 

Astronomical Observatory, 2009). The two species in the family Cupressaceae, Japanese cedar 

(Cryptomeria japonica D. Don) and Japanese cypress (Chamaecyparis obtusa Endl.), are dominant 

coniferous plantation species in Japan. These plantations were planted mainly after the Second 

World War to meet the high demand for timber in Japan (Iwamoto, 2002). However, these 

plantations are now approaching harvesting age, but they have not been managed properly because 
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of an increase in import of cheap timbers and woody products from other countries and an increase 

in employment cost (Iwamoto, 2002). As a result, many overstocked stands of these plantations are 

abandoned. And they have sparse or no understory vegetation cover due to the low light conditions 

that occur under the dense forest canopy, particularly Japanese cypress forests (Onda et al., 2010).  

Therefore, these plantations pose major environmental problems, even if a forest appears 

healthy from a distance (Fig. 1-2a) (Onda et al., 2010; Teramage et al., 2013). The direct impact of 

throughfall raindrops decreases the infiltration rate (Nanko et al., 2010), causes splash erosion 

(Mizugaki et al., 2010; Nanko et al., 2008) and soil surface sealing (Onda and Yukawa, 1994), 

increases suspended sediment sources (Mizugaki et al., 2008) and nutrient loss (Zhang et al., 2008) 

from the watershed. Besides, forests cover most mountainous regions upstream of agricultural and 

urban areas, and are considered water resources in Japan (Sawano et al., 2005). Kuraji (2003) 

reported that abandoned plantations could consume more water by evapotranspiration (ET) from 

dense canopies, and reduce catchment runoff and water resources. Komatsu et al. (2008a) 

summarized 43 annual ET observations in Japanese forest catchments from earlier publications. 

They reported that the annual ratio of ET to Pg ranged from 15.1 to 74.6% with a mean of 41.3% 

based on different forest types and meteorological conditions around Japan. Canopy interception, a 

major component of ET, is crucial in regulating water resources for forests, and comprised 12-30% 

of gross precipitation in Japanese cypress plantations (Komatsu et al., 2007). Overall, an 

examination of hydrological processes in forested watersheds is particularly critical for water 

resources management in Japan. Such examinations on components of forest water cycle (e.g., 

runoff, ET, canopy interception, tree transpiration, and forest floor evaporation) could enhance the 

understanding of water resources of forested watershed, and can also provide a basis for future 

studies of forest management (e.g., thinning). 
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Fig. 1- 2 Abandoned Japanese cypress plantations (a) general view (b) inside of the forest. 

In Japan, it is highly required to clarify the effect of thinning on components of forest water 

cycle especially for coniferous plantations (Komatsu et al., 2013). These plantations need to be 

thinned twice or three times before they are harvested. Recently, they are subjected to management 

such as thinning because of many environmental issues in these dense and mature Japanese 

coniferous plantations (Onda et al., 2010; Teramage et al., 2013). Recovery of understory vegetation 

is also a management goal during thinning. In general, the 40-60% thinning induced changes in 

biomass of understory vegetation is caused by increased radiation. Therefore, there has been a 

partial removal of trees in mature (30-60 years old) plantations. Many studies have been examined 

changes in various components of forest water cycle (e.g., runoff, canopy interception and 

transpiration) by forestry practice (e.g., Dung et al., 2011, 2012; Sado and Kurita, 2004; Morikawa 

et al., 1986). For example, Dung et al. (2011, 2012) reported that heavy thinning of 58.3% in a 

Japanese cypress plantation resulted in a 2.1 mm increase in overland flow in response to individual 

storms and a 240.7 mm increase in catchment annual runoff. These examinations could enhance the 

understanding of underlying processes of the changes in catchment runoff, and will help guide 

integrated forest and water management.  

(a) (b) 
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1-3 Evapotranspiration  

1-3-1 Partitioning of evapotranspiration 

Precipitation on forested hill slopes can be partitioned into two basic components: one is the 

water infiltrated to soil, the other is the evapotranspiration (ET) returned to atmosphere. ET is 

composed of three sub-components: canopy interception (Ei), tree transpiration (Et) and forest floor 

evaporation (Ef). ET is an important component in water balance and is used to evaluate forest 

hydrological functions. In general, ET is in the range of 15-75 % of total precipitation in temperate 

forest (Komatsu et al., 2008a). The variability of ET related to the amount of precipitation (Laio et 

al., 2001), land-atmosphere interactions influence weather and climate (Eltahir, 1998; Pielke, 2001), 

and plant physiology (Lauenroth and Sala, 1992; Porporato et al., 2001; Rodriguez-Iturbe, 2000).  

In ecosystem studies, understanding of partitioning of ET helps researchers to identify the 

influences of biotic and abiotic factors that are involved in the evaporation pathway of the 

hydrological cycle (Williams et al., 2004). Several studies have focused on partitioning of ET for 

different forest species and climates. In Abies fabri (Mast.) Craib in subalpine climate, ET 

accounted for 61.4% of gross precipitation (Pg) of 1,199 mm. Ei was the dominant component and 

represented > 70% of ET, while Ef was the smallest component and only accounted for 6% of ET 

(Lin et al., 2012). In Pinus caribaea Morelet in a tropical climate, ET accounted for > 80% of 

annual Pg (Pg = 2,054 mm); Et was the dominant component, accounting for about 70% of ET, while 

Ei and Ef only accounted for about 20% and 8.5%, respectively (Waterloo et al., 1999). In Pinus 

halepensis Miller in a semi-arid climate, ET sometimes exceeded precipitation and accounted for 

85-102% of annual Pg (Pg = 285 mm). Et and Ef were the main two components, accounting for 

approximately 49, and 39% of ET, respectively (Raz-Yaseef et al., 2012). 

Shimizu et al. (2003) and Kosugi and Katsuyama (2007) focused on the total ET using eddy 

covariance method in a Japanese cypress plantation and found that the ratio of ET to Pg was in the 

range of 37.5–62.3%. However, the current information has limited usefulness in drawing concrete 
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comparisons and conclusions. For example, Hattori (1983) measured the seasonal variation of Ef 

using soil evaporimeters in a Japanese cypress stand and found that Ef accounted for 8.9% of annual 

Pg with a mean value of 0.38 mm d
–1

. Tanaka et al. (2005) observed Ei in mature Japanese 

coniferous stands and reported that total Ei represented approximate 15.0% of total Pg during a 4-

year period. Takagi (2013) quantified the partitioning of ET in a small catchment covered by a 

mature Japanese cypress plantation, but the study mainly focused on deep percolation into 

underlying rock. Until now, few data has been available to document all the components of ET at a 

time and to make comparisons related to its partitioning. The combined monitoring of Ei, Et and Ef 

could reveal the partitioning of ET in plantation and could provide better a better understanding of 

water cycle in forests.  

1-3-2 Canopy interception 

Precipitation (Pg) partitioning into throughfall (TF), stemflow (SF) and canopy interception 

(Ei) after it reaches the canopy represents the initial interaction between water cycle and forest. Ei is 

the proportion of incident precipitation that is intercepted, stored and subsequently evaporated from 

forest leaves, branches and stems during and after rainfall events. It is a major component of 

evapotranspiration (Price and Carlyle-Moses, 2003; Schellekens et al., 1999; Viville et al., 1993), 

and strongly influences the generation of runoff and sediment from forest stands (Wallace and 

McJannet, 2006). Ei has been investigated in different species, including coniferous forests (Gash, 

1979; Llorens et al., 1997; Shi et al., 2010), broad-leaved forest (Andre et al., 2011; Deguchi et al., 

2006; Price and Carlyle-Moses, 2003), tropical rainforests (Dykes, 1997; Lloyd et al., 1988; 

Wallace and McJannet, 2006), cultural cropping system (van Dijk and Bruijnzeel, 2001), and agro-

forestry system (Jackson, 2000). In general, Ei is between 9% and 48% of Pg for different canopies 

(Hormann et al., 1996). The Ei varies greatly, and is determined by forest structural parameters 

(forest density, canopy structure, and leaf area index) (Deguchi et al., 2006; Komatsu and Hotta, 
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2007; Staelens et al., 2006) and climatic parameters (evaporation rate and rainfall rate) (Gash, 1979; 

Link et al., 2004; Wallace and McJannet, 2006). 

Previous studies have shown that Ei comprised 12–30% of Pg in Japanese coniferous 

plantations (Komatsu et al., 2007). Most investigations lack sufficiently high-resolution TF and 

detailed within-canopy weather data to assess the influence of temporal changes in canopy structure 

and within-event weather variations on evaporation of intercepted water. Link et al. (2004) reported 

that Ei in closed canopies is largely controlled by the direct throughfall proportion (p), the fraction 

that drains from the canopy, and the canopy storage capacity (S). Determination of these Ei 

parameters is therefore needed to improve understanding of the interception process and test 

generalized models (Link et al., 2004; Loustau et al., 1992a). However, few interception studies 

have attempted to determine S and/or p for coniferous forests in Japan. 

TF is known to be extremely variable in space, even at the plot scale. Spatial patterns of TF 

input can affect the heterogeneity of hydrological, biogeochemical, and ecological processes on the 

forest floor and in the mineral soil (Staelens et al., 2006). The spatial distribution of TF has been 

reported to either increase (Frost and Edinger, 1991; Nanko et al., 2011) or to be invariant (Loustau 

et al., 1992b; Shachnovich et al., 2008; Vellak et al., 2003) with distance from the trunk. The spatial 

distribution is also related to canopy cover, and is greater during leafed periods than leafless periods 

(Staelens et al., 2006). Nanko et al. (2011) conducted an indoor experiment using 9.8 m-tall 

transplanted Japanese cypress to evaluate TF spatial variability under a single canopy. They 

indicated that the spatial distribution was dominated by canopy shape and position of branches 

inside the canopy; TF rate varied greatly adjacent to the trunk and increased with radial distance 

from it. However, little is known about the spatial variability in abandoned Japanese cypress forests.  

 Models of Ei have been developed to assess and predict the magnitude of interception based 

on rainfall and canopy characteristics (Gash, 1979; Gash et al., 1995; Rutter et al., 1971). The first 

conceptual interception model, called the Rutter model (Rutter et al., 1971; Rutter and Morton, 1977; 
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Rutter et al., 1975), calculates water balance for the wetted canopy-derived canopy parameters p and 

S, and wet-canopy evaporation is computed with the Penman method. The Rutter model was a 

fundamental, representative model requiring much data. A simpler, storm-based version based on 

that model, originally called the Gash analytical model, was proposed by Gash (1979). It requires 

fewer data and has been demonstrated effective for a wide range of canopies. However, the original 

Gash model overestimates for sparse forest areas (Gash et al., 1995; Valente et al., 1997) since it 

assumes that the evaporation area extends to the entire plot area. Therefore, the original Gash model 

was reformulated by introducing a canopy cover fraction for application to sparse forests, by Gash 

et al. (1995) and Valente et al. (1997), and also removing some mathematical inconsistencies when 

it dealt with low rainfall rates. Hence, this revised Gash analytical model was more robust and 

accurate and can be applied widely for different species with range of canopy cover fraction 

(Deguchi et al., 2006; Gash et al., 1995; Jackson, 2000; Llorens, 1997; Shi et al., 2010; van Dijk and 

Bruijnzeel, 2001). However, few studies have applied the revised model to abandoned Japanese 

coniferous forest plantations, parameterizing the interception model and conducting validation.  

1-3-3 Tree transpiration  

Tree transpiration (Et) is a main part in forest water balance and for modeling water, energy 

and carbon exchange in forest ecosystem. In coniferous forests, Et may account for approximately 

19.0-72.4% of ET for different climates summarized from previous studies. To quantify Et in 

forests, several methods are available that assess forest water use at both temporal and spatial scales. 

Thermal dissipation sap flow technique (Granier, 1987) is the most useful, particularly in a 

mountainous country like Japan, because complex terrain and spatial heterogeneity does not limit its 

applicability (e.g., Wilson et al., 2001).  

To estimate stand-scale Et, appropriate scaling procedures are required to extrapolate from 

sap flow measurements made on individual trees. The scaling procedure requires: (1) estimation of 

the total sapwood area of the stand ( S_standA ) from the relationship between the stem diameter at 
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breast height (DBH; measured for all trees in the stand) and tree sapwood area ( tree_SA ) measured 

the sampled trees; (2) estimation of mean stand sap flux density (JS) from tree-level measurements 

of xylem sap flow density (Fd) in a limited sample size in the stand; and (3) calculation of stand 

transpiration as the product of S_standA  and JS. Several sources of errors must be taken into account at 

each step in the scaling process because of tree-to-tree variations in Fd (Granier et al., 1996a; 

Kumagai et al., 2005a; Pataki and Oren, 2003) and tree_SA (Kumagai et al., 2005c) and radial 

variation in Fd across the sapwood of individual trees (Delzon et al., 2004; Kumagai et al., 2005a; 

Lu et al., 2000; Shinohara et al., 2013; Zang et al., 1996). 

This technique can be effectively applied to estimate the tree water use on a continuous 

basis, which has made it feasible to examine the thinning effects on water uptake and Et at both tree 

and stand levels, at a high temporal resolution. Several studies have used it to examine changes in 

tree water use induced by thinning (e.g., Breda et al., 1995; Lagergren and Lindroth, 2004; 

Medhurst et al., 2002; Morikawa et al., 1986). When climatic data are properly collected 

simultaneously with sap flow data, this method can supply forceful insights into atmospheric-

biological controls of tree water use (Whitehead, 1998). 

1-3-4 Forest floor evaporation 

Forest floor evaporation (Ef) is one component of ET in forests, defined as the evaporation 

from the Ao horizon and underlying soil surface (Bristow et al., 1986; Deguchi et al., 2008). The Ao 

horizon consists of litter, fermentation and humus layers. The litter layer is an important fact and 

helps to prevent excessive loss of soil moisture by evaporation. Ef was in the range of 3 to 21% of 

total ET in forest stands without an understory (Kelliher et al., 1993). Compared with forests with 

closed canopies (Moore et al., 1996; Schaap and Bouten, 1997), Ef constituted a high proportion of 

ET from deciduous forests in the dormant season or in forests with open canopies (Kelliher et al., 

1997; Wilson et al., 2000). Additionally, Ef accounted for approximately 6.0-42.1% of ET for 
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different climates in coniferous forests summarized from previous studies. However, Ef has received 

little attention compared with research on Ei and Et, and considered to be much less than them, 

because the forest floor environment is highly humid, with low wind speed and low available 

energy, compared with the canopy surface (Hattori, 1983). 

In general, Ef can be measured by means of a lysimeter system (Kelliher et al., 1997; 

Kelliher et al., 1990; Schaap and Bouten, 1997), a closed-chamber system (Deguchi et al., 2008; 

Norman et al., 1992) or eddy covariance techniques (Baldocchi et al., 2000; Baldocchi and Meyers, 

1991; Wilson et al., 2000). Lysimeter systems are useful for simultaneously measuring many points 

at low cost, and have been applied extensively in different ecosystems (e.g., agriculture, 

agroforestry and forest) to estimate Ef (e.g., Allen, 1990; Boast and Robertson, 1982; Hattori, 1983; 

Jackson and Wallace, 1999), although they are unsuitable for long-term measurements because the 

moisture and heat conditions inside the container change over long periods (Hattori, 1983). Eddy 

covariance techniques can be used to simulate the average efflux with minimal impact on the local 

environment, but they need strict requirements that meet for the technique to be applicable (Fang 

and Moncrieff, 1996). The closed-chamber system was developed to measure CO2 efflux from soils 

and designed that air circulates in a loop between the chamber and an external gas analyzer 

(Goulden and Crill, 1997; Norman et al., 1992). This system could estimate Ef as well as the 

lysimeter system (Daikoku et al., 2008). 

1-4 Thinning effect on partitioning of evapotranspiration 

1-4-1 Reviews of forest management effect on forest water cycle 

A number of attempts have been made to evaluate how forest management, including 

thinning, affects components of forest water cycle (e.g., runoff, canopy interception, and 

transpiration). Bosch and Hewlett (1982) found that increases in water yield depended on the area of 

harvesting treatments in a given watershed. The increased water yield also related to rates of canopy 

removal (Baker, 1986; Lane and Mackay, 2001). For example, Lesch and Scott (1997) found that 
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forest thinning of 22-46% in a 27.2 ha catchment increased annual runoff by 10-71% in the first 3 

years after thinning, and annual streamflow decreased slightly after a 46% forest thinning in a 191 

ha catchment in South Africa. The rate of increase in catchment runoff after thinning may be related 

to annual precipitation. For example, Ruprecht et al. (1991) observed a 260 mm increase in annual 

runoff after 74% of basal area removal for 1300 mm of annual precipitation while Baker (1986) 

found a 32 mm increase of annual runoff after 31-68% thinning for 668 mm annual precipitation.  It 

implied that areas with more annual precipitation have greater increases in catchment runoff after 

thinning treatment compared to areas with less precipitation. Besides, hydrological responses to any 

given precipitation are also strongly scale dependent (Gomi et al., 2008; Sidle et al., 2000). The 

differences in vegetation type, topography, and soil properties in hillslope, headwater, and 

downstream areas may result in dominant hydrological processes differ (Sidle et al., 2011; Stomph 

et al., 2002). Dung et al. (2012) reported that despite annual runoff increased in 240.7 mm at the 

catchment scale, overland flow at hillslope plot did not increase significantly. Therefore, it is of 

important to evaluate the complex interactions between vegetation and hydrological processes at 

various scales when assessing runoff responses associated with forest managements, and to optimize 

water and forest management in forested watersheds (Castro et al., 1999; Dung et al., 2012; Miyata 

et al., 2010; Stomph et al., 2002).  

Canopy interception (Ei) is one of the major components of the water cycle in forest 

ecosystems, and is of importance in influencing the water yield of forested areas (Komatsu et al., 

2007; Llorens and Domingo, 2007; Hormann et al., 1996). Forest structural parameters (e.g., stand 

density and leaf area index) strongly determine the variation of Ei (e.g., Deguchi et al., 2006; Link et 

al., 2004). The changes in characteristics of forest stand caused by thinning would greatly affect Ei. 

A number of attempts have been made to evaluate how forest management, including thinning, 

affects Ei in different tree species in the worldwide (e.g. Aussenac et al., 1982; Breda et al., 1995; 

Limousin et al., 2008; Molina and del Campo, 2012; Teklehaimanot et al., 1991). For example, 
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Teklehaimanot et al. (1991) found that mean annual Ei rate was 33, 24, 15 and 9% in the 2, 4, 6 and 

8 m spacing treatments, respectively, in a Picea sitchensis forest in Cloich, Edinburgh. And the 

difference in Ei between the spacing treatments was attributed to the difference in the boundary 

layer conductance. Many thinning experiments have shown that the degree of decline in Ei rate is 

not proportional to the amount of biomass removed. Whitehead and Kelliher (1991) reported that, 

for instance, removing 56% of the stems with respect to control value only resulted in a 27.2% 

decrease in Ei in a Pinus radiata forest in New Zealand. Furthermore, environmental conditions 

(e.g., fog entrapment) can also influence the changes in rainfall partitioning by thinning. For 

example, Aboal et al. (2000) reported that the importance of fog entrapment that reducing leaf area 

index and surface roughness has a negative effect on throughfall. Hydrological responses to land 

management and cover change vary greatly because of the complex interactions among climate, soil, 

and vegetation from individual tree to landscape scales (Bosch and Hewlett, 1982; Zhang et al., 

2001). Therefore, it is very necessary to evaluate quantitatively the effect of forestry practice on Ei 

in forest watersheds. An understanding of relationship between canopy water balance and forest 

could play an important role on predicting the changes in interception processes caused by forest 

management. 

Tree transpiration (Et) is influenced by environmental variables, including vapor pressure 

deficit, solar radiation, wind speed and temperature (Morikawa et al., 1986; Granier et al., 1996a; 

Oren et al., 1999; Clausnitzer et al., 2011), and by the availability of soil water within the rooting 

zone (Black et al., 1980; Breda et al., 1995; Simonin et al., 2007). The thinning of forests results in 

stand canopies more open. Accordingly, the remained individual trees have apportioned a higher 

availability of site resources (e.g., soil water) due to thinning treatment (Black et al., 1980; Breda et 

al., 1995; Morikawa et al., 1986). However, thinning can vary various factors that affect the growth 

rate of trees, and it is difficult to determine the single most important factor affecting tree water use 

(Medhurst et al., 2002). Therefore, studies regarding changes in Et that are induced by thinning are 
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quite necessary for predicting tree water use and for guiding integrated forest and water 

management. 

Several studies have focused on the changes in Et by thinning in different species (e.g., 

Breda et al., 1995; Lagergren et al., 2008; Morikawa et al., 1986; Reid et al., 2006; Simonin et al., 

2006, 2007; Stogsdill et al., 1992). For example, Morikawa et al. (1986) reported that the stand Et 

decreased by 21.2% after 24% thinning in a Japanese cypress forest. In addition, the daily single 

tree Et was higher at a given range of solar radiation, except in suppressed trees. Breda et al. (1995) 

reported that thinning caused the stand Et value to decrease in the thinned plot of an oak forest for 

the first year, whereas the stand Et approached the same level as that on the control plot after two 

years of thinning. Furthermore, the difference in the stand Et between the thinned and the control 

plot may not significantly decrease due to the drought periods. Simonin et al. (2007) found that the 

difference in the stand Et between the thinned and the control plot was much less when the soil 

water content was low in semi-arid Pinus ponderosa forests. Lagergren et al. (2008) reported that 

the stand Et in the thinned plot was rather higher than that in the control plot during the drought 

period in a mixed pine-spruce forest in Sweden. However, previous studies only examined changes 

in Et by light thinning (removing 24% of stems) (Morikawa et al., 1986) or during a short measuring 

period (two months before and after thinning, respectively) (Komatsu et al., 2013) for Japanese 

coniferous plantations. Until now, little data have been available to document the changes in Et 

induced by heavy thinning during a long measurement period for coniferous plantations in Japan. 

Ef is affected by the photoenvironments (e.g., solar radiation) and the soil water content of 

the forest floor surface. Kelliher et al. (1993) described the soil environment in relation to leaf area 

of the vegetation overhead. Ef is constrained by soil water of topsoil and is higher in open sites 

because forest canopy reduces light penetration and soil temperature. Thinning alters forest structure 

and changes environmental factors influencing Ef (e.g., solar radiation) inside the forest, and could 

result in an increase in solar radiation at the forest floor and lead to an increase in Ef contributed to 
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the higher solar radiation and increased net precipitation. Therefore, it is considered that the 

proportion of Ef will be relative high where thinning has occurred, and it must not be negligible to 

evaluate the effect of thinning on Ef in forested watersheds. Some studies have examined the effects 

of tree shade on spatial variations of Ef (Jackson and Wallace, 1999; Raz-Yaseef et al., 2010). For 

example, Raz-Yaseef et al. (2010) reported that Ef measured in sun-exposed areas was on average 

double that in shaded areas, and solar radiation was 92% higher in exposed compared to shaded 

sites in a semi-arid pine forest in Southern Israel. Furthermore, Simonin et al. (2006) reported that 

after 82% basal area thinning (corresponding to 45% leaf area index reduced), understory 

evapotranspiration was greater in thinned compared with unthinned plots in a semi-arid ponderosa 

pine stand of the southwestern US. The quantification of changes in Ef by thinning is of important 

for understanding the hydrological processes at the forest floor, and improving water use and water-

use efficiency in forest ecosystems. However, until now, few studies have attempted to elucidate the 

change in Ef induced by thinning. 

The changes in forest structure by thinning could alter the relative contributions of Ei, Et and 

Ef to total ET in forest watersheds. The reduction of forest canopies and stems may result in 

decreases in Ei and Et, and an increase in Ef. The partitioning of ET in forest ecosystems is a 

dominant control on climate and hydrology at local to global scales. For instance, ET returning to 

the atmosphere may support future precipitation events and influence canopy gas exchange through 

a boundary layer feedback (Jarvis and Mcnaughton, 1986). Thus examination of changes in 

partitioning of ET response to thinning could provide useful information for predicting the changes 

in forest stand water balance. However, data on the changes in partitioning of ET induced by 

thinning are still limited.  

1-4-2 Strip thinning effect on partitioning of evapotranspiration 

Strip thinning is a form of heavy and cost-effective thinning method, in which corridors are 

opened at regular intervals and the remaining strips are thinned from below, and the width of the 
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remained sections is usually two to three crown widths. Linear sections of the plantation are 

harvested paralled to the direction of the slope and often perpendicular to the forest road to extract 

timber efficiently (Fig. 1-3). Strip thinning has been extensively carried out in these poorly managed 

plantation stands in Japan primarily because this method does not need select tree that is involved in 

conventional selective thinning operations and thus requires less time and skill (Taniguchi, 1999) 

(Fig. 1-3).  

Furthermore, strip thinning results in different changes in canopy cover and structure of 

forest compared with other forestry practices (e.g., selective thinning and partial cutting). The 

different forest structures can lead to resultant changes in environmental variables (Oguntunde and 

Oguntuase, 2007; Wilson et al., 2000), the availability of soil water (Aboal et al., 2000; Molina and 

del Campo, 2012; Stogsdill et al., 1989), and in boundary layer conductance (Teklehaimanot et al., 

1991). For example, Teklehaimanot et al. (1991) reported that reported that the greater ventilation 

(i.e., wind speed) with an increase in tree spacing resulted in greater boundary layer conductance 

per tree in Picea sitchensis (Bong.) Carr forest stands. Recently, Dung et al. (2012) summarized 

previous studies on the different thinning methods (e.g., partial cutting, clear cutting and selective 

thinning) and reported that the increase in catchment runoff after selective thinning was less than 

those after partial cutting. Thus changes in components of forest water cycle response to different 

management strategies would be different. However, studies on the strip thinning effect on 

partitioning of ET are quite limited and are quite necessary for achieving an optimized water and 

forest management.    
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Fig. 1-3 Schematic views of different forest managements (e.g., strip thinning, selective thinning 

and partial cutting). 
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1-5 Objectives of this study 

Based on the foregoing literature review, this study aimed to (1) quantify partitioning of ET 

in an abandoned Japanese cypress plantation, and (2) evaluate the effect of strip thinning on ET and 

its three sub-components (Ei, Et, and Ef) after 50% strip thinning. The study was conducted in a 

dense and mature Japanese cypress stand of central Japan.  

The rest of the paper is organized as follows. In chapter 2, study site, thinning treatment, 

measurements, and data analysis were described. In chapter 3, the partitioning of ET was quantified 

during the growing season and the three components of ET were modeled for an abandoned 

Japanese cypress plantation. Furthermore, the effect of strip thinning on partitioning of ET was 

elucidated in chapter 4. Finally, chapter 5 summarized the findings and offered some suggestions 

for future studies. 
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Chapter 2 Methodology 

2-1 Study area 

The study was conducted the catchment K2 on Mt. Karasawa, located in Sano City, Tochigi 

Prefecture, in central Japan (139°36’E, 36°22’N; 198 m above sea level) (Fig. 2-1). The site is 

located on a southwest-aspect hill slope with an average slope of 31°. The catchment is covered by 

Japanese cypress plantations planted in the 1980. However, these plantations received no 

management practice and have been abandoned since planting. At the time of study, the stand 

density was high as 2198 trees ha
-1

, and the corresponding basal area was 50.4 m
2
 ha

-1
. The mean 

height and diameter at breast height (DBH) were 16.0 m and 19.1 ± 3.9 cm, respectively.  The 

canopy cover fraction was 0.974, as calculated with CanopOn 2 software (http://takenaka-

akio.org/etc/canopon2/index.html) from hemispherical photographs of the site. Understory 

vegetation was sparse, mainly including a fern species (Gleichenia japonica) and evergreen shrubs 

(e.g. Cleyera japonica and Ardisia japonica). The soil is an orthic brown cambisol with silt–loam 

texture. The mineral soil is covered by a 1.0-cm thin humus layer with an average bulk density of 

1.2 g cm
-3

.  

The humid, temperate climate has a 20-year average annual temperature of 14.1 ± 0.6°C and 

annual Pg of 1,265 ± 220 mm. The area has two dominant storm periods: the Baiu rainy season from 

late June to mid-July and the typhoon season from late August to October both of which have 

abundant precipitation. Rainy season precipitation (from July to October) accounts for 54 ± 10% of 

mean annual Pg.  

 



Chapter 2 Methodology 

  20 

 

Fig. 2-1 Location map and topography of the Japanese cypress forest field site on Mt. Karasawa, 

Tochigi Prefecture, Japan. 

2-2 Thinning treatment  

  Strip thinning, which includes each interval of two lines of trees that were felled, was 

performed in catchment K2 in October 2011 (Fig. 2-2). All thinning operations were conducted by 

forest workers using no-heavy machinery except for chainsaws, in order to minimize soil 

disturbance on the hillslope. All twigs, branches, and timber from thinned trees were removed from 

the stand. In total, 50% of the stems were felled, corresponding to 48% of the basal area. The 
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number of trees in the plot decreased from 27 to 13. The stand density decreased from 2198 to 1099 

trees ha
-1

. The basal area was reduced from 50.4 to 26.2 m
2
 ha

-1
. The canopy cover diminished from 

0.974 to 0.758. The change in DBH was relatively small, decreasing from 19.1 to 18.9 cm (Table 2-

1).   

 

Fig. 2-2 Schematic views of (a) strip thinning in this study and (b) photos in pre-thinning and post-

thinning. 
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Table 2-1 Stand characteristics of the study plot in the pre- and post-thinning periods. 

Characteristic Pre-thinning Post-thinning Ratio of thinning (%) 

Plot area (m
2
) 156 156 

 
Age (year) 32 32 

 
Mean height (m) 16 16 

 
Mean DBH (m) 19.1 18.9   

Canopy cover (%) 97.4 75.8 22.2  

Density (trees ha
-1

) 2198 1099 50.0  

Basal area (m
2 

ha
-1

) 50.4 26.2  48.0  

Sapwood area (m
2
 ha

-1
) 26.1 14.0  46.4  

Sapwood area at xylem band (m
2
 ha

-1
) 

   
    0-20 mm 17.7 9.3 47.5  

    20-40 mm 8.4 4.7 44.0  

Sap flux measurements (trees) 10 6 
 

2-3 Meteorological measurements 

Pg was measured by an automatic weather station (Davis Instruments 7852M, Hayward, CA, 

USA) using a recording rain gauge with 0.2 per tipping, on an open field 250 m from the monitoring 

hill slope. The data was stored every 5 min with a data logger (SQ1250; Grant Instruments Ltd., 

Cambridgeshire, UK) along with other meteorological parameters: wind speed and direction, solar 

radiation, temperature and humidity.  

We also measured meteorological conditions under the forest canopy. Wind speed and 

direction was measured using a three-up anemometer (AC750, Makino Applied Instruments Corp., 

Tokyo, Japan) at a height of 2 m above the forest floor. Solar radiation, humidity and temperature 

inside the forest stand were recorded every 30 min at 1 m from the forested ground surface with a 

data logger (HOBO U30 station; Onset Computer Corporation, MA, USA).  

2-4 Canopy interception 

2-4-1 Throughfall measurements  

TF within a 12 m × 13 m plot was measured by 20 rain gauges (Davis Instruments 7852M) 

with 0.2 mm per tipping. Numbers of tips were recorded simultaneously at 10-min intervals using 



Chapter 2 Methodology 

  23 

the data logger. The average TF was computed from all functioning rain gauges. The rain gauges 

were distributed on an approximately 2 m × 2 m grid under the forest canopy. To prevent litterfall 

and dust from blocking the inside hole of rain gauges, they were equipped with a small piece of 

metal net (grid: 0.2 mm × 0.2 mm) inside and covered by a plastic gauze outside the rain gauge. 

Each gauge was set on a platform that was 40 cm above the forest floor. The rain gauges were 

maintained in the same positions throughout the study (Fig. 2-3).  

 

Fig. 2-3 Throughfall and stemflow observation design in the study plot 

2-4-2 Stemflow measurements  

For SF measurements, five experimental individuals were selected with mean DBH of 17.5 cm 

(13.8–23.0 cm) during the pre-thinning period. Because two trees were thinned, three individuals 

were left during the post-thinning period (Fig. 2-3). The ratio of measured tree circumstances to all 

tree circumstances was 0.169 (2.7 m of 16.0 m) for the pre-thinning period and 0.193 (1.5 m of 8.0 
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m) for the post-thinning period. Each sample tree was equipped with a polyvinyl tube placed around 

the trunk at about 1.3 m height, with a draining hole connected to a bucket. Then, a flexible plastic 

board was attached to the tube with staples and silicon sealant, which formed a small channel to 

drain SF to the bucket directly and smoothly. The distance from the top of the plastic board to the 

tube was 5–8 cm. The polyvinyl tube was fastened to the tree bole with metal wire at moderate 

slope, and the gap between tube and bole was sealed with silicon. All buckets were connected to a 

V-notch weir to measure SF when it exceeded the bucket capacity (82 L). Water level in the bucket 

and V-notch weir was measured every 5 min with a water level probe (Odyssey capacitance water 

level probe; Dataflow Systems Pty Ltd., Christchurch, New Zealand). SF volume was calculated 

from the water level data. 

All trees in the stand were classified according to their DBH, and SF depth (mm) of the 

stand was computed using the following (Hanchi and Rapp, 1997): 


 




n

i

n

A

mS
SF

1
410

                         (2.1)  

where SF is estimated SF depth (mm) of the stand; Sn is average SF volume (ml) from sampled trees 

in a certain DBH class; A is area of study site (m
2
); n is the number of DBH classes, which is 2 (n1 

≤16 cm and n2＞16 cm) in this study; and m is the number of trees belonging to a certain DBH class 

in the stand.  

        In this study, tree DBH was divided into three classes (n1 ≤ 16cm, 16 < n2 < 20 cm and n3 

≥20cm) according to the range of trees’ DBH in the stand (11.3 - 25.1 cm). However, the 

experimental tree with DBH of 23.0 cm was excluded because of some problems in measurement. 

Hence, the classes of DBH were reduced to only two dividing at 16 cm. The number of trees 

belonging to each DBH class, n1 ≤ 16 cm and n2＞16 cm, was 7, and 21, respectively.  



Chapter 2 Methodology 

  25 

2-4-3 Calculation of canopy interception   

Ei was calculated according to the water balance of rainfall partitioning. A rainfall event was 

defined as a period with more than 0.8 mm of total rainfall and separated two subsequent dry period 

events of a minimum of 6 h. During and after a rainfall event, Pg was partitioned into three 

fractions, Ei, SF and TF. The water balance of rainfall partitioning is expressed by the following 

equation: 

            
SFTFPE gi 

              (2.2) 

2-4-4 Canopy parameters  

TF components are described based on the analytical model developed by Gash (1979), and 

composed of p and drainage from the canopy. When a rainfall event begins, TF is composed entirely 

of the direct component, because rainfall has not contacted the foliage. Then, TF increases 

approximately linearly with Pg, until the canopy becomes saturated (Fig. 2-4). Once the 

accumulated precipitation required to saturate the canopy has been reached, an inflection point 

)'(
G

P  in the cumulative Pg versus cumulative TF plot occurs, as cumulative TF increases as a result 

of water dripping from the foliage (Fig. 2-4). The slope of the relationship between cumulative Pg 

and cumulative TF before canopy saturation was determined as p in each event (Link et al., 2004). 

When a sudden increase in Pg occurred before canopy saturation, p was not determined because it 

was impossible to find the inflection point from the data. In this study, p was determined using 

within-event, 10-minute interval rainfall data.  
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Fig. 2-4 Example (rainfall event 15 in the pre-thinning period) of data used to determine direct 

throughfall proportion (p) and saturation storage capacity by Link et al. (2004) method. Linear 

regressions are fit to a scatter plot of throughfall vs. gross precipitation. 

S is defined as the amount of water remaining on the canopy in zero evaporation conditions, 

when rainfall and TF have ceased. S was determined by the original method of Leyton et al. (1967), 

the simplest method for determining S, using within-event rainfall data. The canopy saturation point 

was estimated by identifying )'(
G

P in the Pg versus TF linear relationship, which was determined 

by the least-squares method. The method to determine S assumed negligible evaporation during 

canopy wetting (Iw). 

2-4-5 Revised Gash analytical model  

2-4-5-1 Description of the model  

The interception model used is the revised Gash analytical model developed for sparse 

canopies (Gash et al., 1995). This reduces to the original Gash model for complete canopies (Gash, 

1979) when canopy cover is 100%. The canopy cover was 97% in this study, but we used the 
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revised model since it has a formulation that removes certain mathematical inconsistencies in the 

original model when treating low rainfall rates (Gash et al., 1995). The revised model assumes that 

Pg is intercepted in a series of discrete storm events, with sufficient time to dry the canopy between 

them. Each event can be distinguished by three sequential phases: (1) a wetting phase, during which 

rainfall is less than required to saturate the canopy; (2) a saturation phase; and (3) a drying phase 

after rainfall ceased. It is necessary to estimate storage of water on the investigated canopy using S, 

the minimum depth of water required to saturate the canopy, which is given by the product of 

canopy capacity per unit area of cover (Sc) and canopy cover (c). The p is the amount of rain that 

falls directly to the forest floor without touching the canopy. The trunk storage capacity (St) is water 

evaporated from the trunks, and the proportion of rain that is diverted to SF is pt. The mean rainfall 

intensity ( R , mm h
-1

) onto the saturated canopy and mean evaporation rate ( E , mm h
-1

) during 

rainfall are also required. Table 2-2 summarizes the five separate components of interception in the 

revised Gash analytical model. 

Table 2-2 Components of interception in revised Gash model. 

            The amount of rain necessary to saturate the canopy '
G

P  is given by  

)]/(1ln[' RES
E

R
P cc

c

G                     (2.3)  

where Sc is S per unit area of cover, defined by Sc=S/c; cE  is mean evaporation rate from the 

saturated canopy during rainfall, defined as cE = E /c.  

Table 1 Components of interception in revised Gash model 

1 Ic For m small storms insufficient to saturate the canopy ( PG<PG') 
 

  
For n storms (PG>PG') which saturate the canopy, 

 
2 Iw Wetting up the canopy 

 

3 Is Wet canopy evaporation during the storms 
 

4 Ia Evaporation after storms ceases 
 

5 It Evaporation from trunks for q storms, which saturate the trunks ( PG>St/pt) 
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The amount necessary to saturate the trunks 'tP   is given by  

ttt p/S'P                                      (2.4)  

where St is trunk storage capacity and  pt  is the proportion of rain diverted to SF.  

2-4-5-2 Estimation of model parameters 

S was determined using within-event rainfall data, as mentioned above. The p was estimated 

from the slope of the regression line for all points less than '
G

P . pt and St were determined as the 

slope and negative intercept from a linear regression of SF versus Pg.  

R was determined using the data recorded by the tipping-bucket rain gauge. E was 

determined using the Penman-Monteith equation with canopy resistance rs set to zero, namely:  

                                 
)(/)/(   apn rDcRE             (2.5)  

where λ is the latent heat of vaporization of water, Δ the rate of change of saturated vapor pressure 

with temperature, Rn net radiation load on the canopy (because we did not measure net radiation, Rn 

was approximated by (1−α) Rs, where Rs is incident solar radiation and α is albedo of the forest 

canopy, taken as 0.13) (Monteith and Unsworth, 1990). ρ is density of dry air, cp the specific heat of 

air at constant temperature, D the vapor pressure deficit, ra the aerodynamic resistance and γ the 

psychometric constant. ra is calculated from the recorded wind speed and surface roughness, using 

the momentum method:  

)/(}/){(ln 2

0

2 ukzdzra               (2.6)  

where k is the von Kármán constant (0.41), z the reference height above the ground surface (taken 

here as h+2, where h is canopy height), d the zero plane displacement height, z0 the roughness 

length, and u the wind speed at height z. Following Monteith and Unsworth (1990), the 

displacement height d and roughness length z0 were taken as 0.7 and 0.1 of vegetation height h (16 

m), respectively. 
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2-5 Tree transpiration  

2-5-1 Granier method 

            Sap flow densities (Fd) were measured by the thermal dissipation method with Granier-type 

sensors (Granier, 1987), and used to estimate Et. Each sensor consisted of a pair of probes 20 mm 

long and 2 mm in diameter containing a copper–constantan thermocouple. The probes were inserted 

in the sapwood about 0.15 mm apart. The upper probe included a heater that was supplied with 0.2 

W constant power. The temperature difference between the upper heated probe and the lower 

unheated reference probe was measured and converted to Fd according to Granier (1987). Sap flow 

signals were recorded on a data logger (CR1000, Campbell Scientific, Logan, UT, USA) with a 

multiplexer (AM 16/32, Campbell Scientific) every 30 s and averaged over 30 min.  

            Fd was measured in 10 and 6 trees in the pre- and post-thinning period, respectively, so that 

the number of trees measured in each DBH class corresponded to the frequency distributions of 

DBH (Table 2-1; Fig. 2-5). In this study, three sensors were positioned about 0.15 mm 

circumferentially apart at height of about 1.3 m. The upper two sensors were inserted in each 

selected tree at depths of 0-20 and 20-40 mm to cover the entire sapwood, with a heating element of 

constantan, powered by 0.2 W constant supply. The lower probe was inserted at a depth of 0-20 mm, 

representing sapwood temperature. The Japanese cypress plantations are characterized by a circular 

stem cross section and circumferentially constant sapwood thickness; therefore, we assumed the 

azimuthal variation in Fd to be small. To avoid the sun-exposed side of the trunk, all the sensors 

were placed on the north side of the trees, and the part of the trunk into which the sensors were 

inserted was fully insulated to prevent direct radiation. Sap flow measurements were installed from 

April 28, 2011.  
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Fig. 2-5 Frequency distributions of stem diameters at breast height (DBH) in the pre- and post-

thinning periods, respectively. Note that the number at the top of each bar denotes the number of 

trees used for the sap flow measurements in each DBH class. 

Sapwood thickness (in mm) of each tree in the study plot was measured with a ruler on a 

core extracted within a 5-mm increment borer at about 1.3 mm aboveground, and assessed as the 

mean of two orthogonal measurements. Distinct color differences were taken to identify the 

boundary between sapwood and heartwood. The tree sapwood area (
treeSA _

) was obtained as the 

difference between stem cross-sectional area beneath the bark and stem cross-sectional heartwood 

area assuming that the stem cross sections were circular.  

      The value calculated from Fd measurements represents tree water uptake, rather than whole-

tree transpiration ( treetE  ), because of a time lag between the sap flow measured at the stem and 
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transpired at the canopy (e.g., Kumagai, 2001; Phillips et al., 1997). However, for Japanese cypress 

plantations, Kumagai et al. (2009) found that there were no significant differences between daily 

stem sap flow and daily treetE  . Therefore, we regarded daily stem sap flow as daily treetE  . In this 

study, daily treetE   (kg d
-1

) was calculated by the following equation:  




 
2

1i

i_tree_si_dtreet AFE   (2.7) 

where i_dF is the sap flow density (m
3
 m

-2
 d

-1
) at xylem depths of 0-20 (i=1) and 20-40 mm 

(i=2) for the measured tree, respectively; i_tree_sA is the sapwood area (m
2
) at xylem depths of 0-20 

(i=1) and 20-40 mm (i=2) for the measured tree, respectively.  

Individual tree-scale measurements were integrated upward for daily stand-level 

transpiration ( dtanstE  ) (mm d
-1

) using the following equation (Kumagai et al., 2007; Pataki and 

Oren, 2003; Wilson et al., 2001): 
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JE              (2.8)  

where Js is the mean sap flux (m
3
 m

–2 
d

–1
); As_stand is the stand sapwood area (m

2
); and AG is ground 

area of the study site (m
2
).  

Js is calculated as 
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          (2.9)  

where JS_A and JS_B are the mean Fd for the xylem bands at 0 – 20 and 20 – 40 mm for all measured 

trees, respectively; Ai and Bi are sapwood areas at xylem depths of 0 – 20 and 20 – 40 mm for all 

trees, respectively; and N is the total number of Japanese cypress trees in the study plot. 
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2-5-2 Canopy conductance model 

The environmental control of stand Et has been characterized in terms of the response of cG  

to environmental factors (e.g., Cienciala et al., 2000; Granier et al., 1996b; Kumagai et al., 2004; 

Meinzer and Grantz, 1990; Wullschleger et al., 2000). cG  was calculated using the following 

simplified form of the Penman-Monteith equation (McNaughton and Black, 1973): 

VPDc

E
G

p

dtanst
c




 

              (2.10)                   

 

where   is the psychrometric constant,   is the latent heat of vaporization of water, 
pc is the 

specific heat of air at constant pressure,  is the air density, and VPD is the above canopy 

atmospheric vapor pressure deficit.  

             This equation is derived under the assumption of complete coupling with the canopy and 

with the atmosphere. Furthermore, the cG  was calculated as a daily average conductance using 

thermodynamic variables based on the mean daytime temperature (T) and on the mean daytime 

VPD, under the assumption that this period is when the VPD has an effect on transpiration and, 

therefore, uptake. However, the dtanstE  was summed over 24 h but was divided by daylight hours 

only because 1) this value accounted for all of the water uptake driven by the VPD over the day and 

because 2) this period provided a consistent averaging period compared with that used for the daily 

VPD. The daily integration period may be subject to large relative errors. These errors are 

introduced under conditions of low absolute daily dtanstE   (Phillips and Oren, 1998). Daylight 

hours refer to photosynthetically active radiation (PAR) > 0  mol m
-2

 s
-1

. In this study, the starting 

and ending points for days were from 06:00 h to 18:00 h. In general, the boundary conductance of 

conifers is sufficiently large. We confirmed that Japanese cypress canopies are aerodynamically well 

coupled to the atmosphere. Under these conditions, we removed the cG values obtained on rainy 

days because the Fd data could be subject to noise on rainy days (Kumagai et al., 2008).   
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2-6 Forest floor evaporation  

2-6-1 Lysimeter measurements  

The Ef was measured with three weighing lysimeters placed randomly in the study site 

(Daikoku et al., 2008; Kelliher et al., 1990; Schaap and Bouten, 1997). The lysimeters were 

containers of 0.2-m diameter filled with forest soil that was disturbed as little as possible. Their 

weight was measured with an electrical weighing platform (SB-15K10, A&D Co. Ltd., Tokyo, 

Japan) and recorded with a data logger (CR10X, Campbell Scientific) every 30 s and averaged over 

30 min. The weight losses were regarded as evaporation and the average weight losses of the three 

lysimeters was considered as the diurnal average evaporation from the forest floor.  

2-6-2 Modified Penman-Monteith equation 

 Lysimeters were installed from13 September to 10 October 2011. Because of the short Ef 

measuring period, a modified Penman-Monteith equation was used to compute Ef over the same 

timescale as Ei and Et (i.e., 1 July to10 October 2011). The physically realistic Penman-Monteith 

equation is amongst the most widely used models and is effective in predicting Ef of forests (Bond-

Lamberty et al., 2011; Schaap and Bouten, 1997; Tian et al., 2011). In the present study, the 

modified Penman-Monteith equation recommended by Tian et al. (2011) was selected to compute Ef.  





/)]/1([

/})({)(

sasc

sasasspasn

f
rr

reTecGR
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




    (2.11)
  

where   is the slope of the saturation vapor pressure curve at air temperature T  (kPa °C
–1

) above 

the forest floor, snR  is the net radiation (MJ m
–2

 s
–1

) at 2 m above the forest floor, G is the soil heat 

flux (MJ m
–2

 s
–1

), a  is air density (kg m
–3

), 
pc is the specific heat of the air (MJ kg

–1 
°C

–1
), )(Tess

is the saturated vapor pressure (kPa) at 2 m above the forest floor when the air temperature is T  

(°C), sae is the local actual vapor temperature (kPa) at 2 m above the forest floor,   is the 
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psychometric constant  (kPa °C
–1

),   is the latent heat of vaporization of water, sar and scr are the 

aerodynamic and (bulk) surface resistance of the forest floor (s m
–1

), respectively. 

 In the present study, we adopted sar
 
and scr  from a study in dense Douglas fir stand without 

understory vegetation reported by Schaap and Bouten (1997). sar
 
was expressed by an aerodynamic 

parameter (ca) and the wind speed (u) at 2 m height (m s
-1

): 

uc
r

a

sa

1
            (2.12) 

Following Schaap and Bouten (1997), ca was taken as 0.01. scr was assumed to be a simple 

empirical function of soil water content (θ) (m
3
 m

–3
):  

)}199.0(1029.1,0max{ 4  scr     (2.13)  

Soil water content was measured from 23 August to 10 October 2011. Because of the short θ 

measuring period, we assumed that θ was the mean of observed values adjusted to represent non-

measuring period (i.e., 1 July to 22 August 2011). Besides, the abundant rainfall would be expected 

to maintain a high soil content consistently during the study period. The computed Ef was validated 

with the observed Ef, and the acceptability of these estimates was shown later in this paper.  

2-7 Soil water content 

Volumetric soil water content (θ) (m
3
 m

–3
) was measured with reflectrometry sensors 

(ECH2O-10, Decagon Devices Inc., Pullman, WA, USA) and recorded at a 30 min time resolution. 

The soil moisture sensors were installed nearby each lysimeter and at one of the trees used for 

measuring sap flow. They were positioned horizontally at depths of 5, 10, 15, 30, 50 and 80 cm in 

an undisturbed soil column. The hole dug for the sensor installation was backfilled with the original 

mineral soil and duff. 

2-8 Calculation of potential evapotranspiration 

In this study, PET (mm d
-1

) was calculated using following equation: 
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

GRn 



PET     (2.14) 

where is the slope of the vapor saturation curve,  is the psychrometric constant, nR is the net 

radiation, G is the soil heat storage and   is the latent of water vaporization. For this equation, we 

assumed sn RR )1(  and that  is the albedo of the forest canopy, which is taken as 0.13 

(Monteith and Unsworth, 1990). G was assumed to be zero because G is usually far less than Rn for 

forests. The other parameters in the above equation were obtained from the automatic whether 

station. 

2-9 Calculation of evapotranspiration and data analysis  

In this study, ET was calculated as the sum of the three components of ET expressed by the 

following equation: 

                                                   
fti

EEE ET    (2.15) 

where ET is evapotranspiration, Ei is canopy interception, Et is tree transpiration, and Ef is 

forest floor evaporation. 

The positions of trees and all measurements in the present study were shown in Fig. 2-6. The 

observation period was divided into pre-treatment (November 2010 – October 2011) and post-

treatment (November 2011 – October 2012). In pre-thinning, Ei, Et and Ef were measured at 

different time with the shortage of measuring period. Therefore, we will estimate them on the basis 

of measured values and then extend to the annual scale. TF and SF measurements were estimated 

according to the strong relationships between TF, SF, and Pg (TF = 0.650Pg – 0.79, R
2
=0.998; SF = 

0.114Pg – 0.284, R
2
=0.992; respectively), which we obtained from 29 measured rainfall events from 

July to October, 2011. Et was estimated using the canopy conductance model, and Ef  was simulated 

by means of the modified Penman-Monteith equation. We thus filled the data gap and analyzed the 

data from November 2010 to November 2011. In post-thinning, all data were collected completely. 
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Therefore, we can get annual data in pre- and post-thinning and then analyze the effect of strip 

thinning on partitioning of ET at annual scale.   

 

Fig. 2-6 Plot design in this study. 

The Wilcoxon-Mann-Whitney (W) non-parametric test for paired samples was used, because 

the data samples were not distributed normally. A significance level of P ≤ 0.05 was used for all 

analysis. Data were performed with the aid of SPSS version 19.0. 
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Chapter 3 Quantifying and modeling partitioning of the total evapotranspiration 

in an abandoned Japanese cypress plantation 

3-1 Incident rainfall partitioning and canopy interception modeling  

3-1-1 Incident rainfall partitioning  

Both event-based and total water balance during the measured period are summarized in 

Table 3-1. It should be noted that data were missed from July 2 to July 18, 2011. Therefore, a total 

of 29 events were collected with 880.8 mm total rainfall. Event-based Pg ranged from 0.8-176.8 mm 

with a mean of 30.4 mm. Rainfall duration ranged from 1-51 h with a mean of 12 h. Time since 

previous event ranged from 6-303 h with a mean 64 h. Total TF±SD was 565.9±32.1 mm, 

representing 64.2±3.6% of Pg. Event-based TF was 0–125.8 mm (0–76.5% of Pg). Total SF±SD was 

93.0±5.6 mm, representing 10.6±0.6% of Pg. Event-based SF was 0–19.7 mm (0–13.1% of Pg). 

Total Ei±SD was 221.8±9.4 mm, representing 25.2±1.1% of Pg. Event-based Ei was 0.8–36.6 mm 

(18.2–100% of Pg). 

During the study period, p comprised 14±7% of TF, but it was 4–33% between events. 

Drainage from the canopy was 50±21% of TF, but it was 8–76% between events. Mean S was 

2.4±0.7 mm, with range 1.2–3.8 mm (Table 3-1). 

The relationships between Pg and the canopy water balance (TF, SF and Ei) are expressed by 

the following equations (n=29) (Fig. 3-1a, c, e):  

                TF = 0.683 Pg − 1.25   (r
2
>0.99)     (3.1)        

               SF = 0.118 Pg − 0.387   (r
2
=0.99)    (3.2)      

                Ei = 0.198 Pg + 1.637   (r
2
=0.97)    (3.3)       

The above equations show strong positive linear correlations between TF, SF, Ei and Pg. These 

imply that Pg must exceed 1.8 mm and 3.3 mm to initiate TF and SF, respectively.  
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Event 
Start 

(Julian day) 

Duration 

 (h) 

Time since 

previous event (h) 

Pg 

(mm) 

TF 

(mm) 

SF 

(mm) 

Ei 

(mm) 

TF/Pg 

(%) 

SF/Pg 

(%) 

Ei/Pg 

(%) 

p 

(dimensionless) 

S 

(mm) 

1 40725.67 5 44 42.8 30.5  3.4  8.9  71.3  7.9  20.8  na  
 

2 40743.21 20 202 176.8 125.8  18.8  32.2  71.2  10.6  18.2  na  
 

3 40750.92 3 146 1.2 0.1  0.0 1.1  11.7  0.0  88.3  0.11  
 

4 40751.71 18 16 54.2 37.7  5.4  11.2  69.6  9.9  20.6  0.24  2.9  

5 40752.71 42 6 77.8 49.0  10.2  18.7  62.9  13.1  24.0  0.33  1.6  

6 40754.83 5 9 0.8 0.0  0.0  0.8  2.8  0.0  97.2  na 
 

7 40760.29 14 122 4.2 0.0  0.0  4.2  0.0  0.0  100.0  na 
 

8 40762.71 5 44 13.8 10.6  0.6  2.7  76.5  4.3  19.3  0.09  3.8  

9 40769.88 3 162 2.2 0.6  0.0  1.6  26.3  0.0  73.7  0.15  
 

10 40771.88 3 45 4.4 2.6  0.0  1.8  58.0  0.0  42.0  0.15  2.3  

11 40773.92 2 46 2.8 1.9  0.0  0.9  69.4  0.0  30.6  na 
 

12 40774.46 16 11 14.0 7.9  0.6  5.5  56.4  4.5  39.1  0.21  2.3  

13 40775.79 40 13 33.2 18.4  3.7  11.2  55.3  11.0  33.7  0.13  2.0  

14 40777.83 8 9 2.0 0.5  0.0  1.5  22.8  0.0  77.2  0.05  
 

15 40780.08 10 40 5.6 2.1  0.0  3.5  37.9  0.0  62.1  0.11  2.3  

16 40781.58 4 26 29.2 18.5  3.2  7.5  63.2  11.1  25.7  na 
 

17 40786.08 4 104 3.8 1.2  0.0  2.6  30.9  0.0  69.1  0.13  2.1  

18 40786.67 1 10 2.2 0.4  0.0  1.8  16.4  0.0  83.6  0.11  
 

19 40787.21 29 12 117.8 79.5  14.3  24.0  67.5  12.1  20.4  0.16  2.1  

20 40788.88 8 11 3.2 0.5  0.0  2.7  14.6  0.0  85.4  0.06  
 

21 40789.58 2 10 1.0 0.1  0.0  0.9  8.0  0.0  92.0  0.04  
 

22 40789.92 6 6 16.4 11.0  2.0  3.4  67.4  11.9  20.7  na  
 

23 40790.50 1 8 6.6 2.9  0.4  3.3  43.2  6.7  50.1  0.08  2.5  

24 40791.46 21 22 21.0 12.3  2.3  6.4  58.4  11.0  30.7  0.11  3.6  

25 40803.08 7 258 4.6 1.6  0.0  3.0  35.1  0.0  64.9  0.19  1.9  

26 40805.75 51 57 157.0 100.7  19.7  36.6  64.1  12.5  23.3  0.15  2.5  

27 40808.58 5 17 14.8 8.3  1.8  4.7  56.2  11.9  32.0  0.05  3.3  

28 40821.42 22 303 64.4 40.3  6.8  17.3  62.6  10.6  26.8  0.23  2.3  

29 40826.04 2 89 3.0 1.1  0.0  1.9  37.9  0.0  62.1  0.13  1.2  

Total 

   
880.8  565.9  93.0  221.8  64.2  10.6  25.2    

Mean 
 

12  64  30.4  19.5  3.2  7.6  45.4  5.1  49.4  0.14  2.4  

Min 
 

1  6  0.8  0.0  0.0  0.8  0.0  0.0  18.2  0.04  1.2  

Max 
 

51  303  176.8  125.8  19.7  36.6  76.5  13.1  100.0  0.33  3.8  

na: Not available. The parameter p and S were not determined due to immediate increase of 

cumulative Pg in the beginning of the event. 
 

Table 3-1 Detailed interception summary during the measuring period from July 1 to October 10, 

2011. 
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Fig. 3-1 Throughfall (TF), stemflow (SF), canopy interception (Ei) depth (mm) and rates (%) as a 

function of gross precipitation (Pg) depth (mm) using 29 event-based data. (a) TF amount, (b) TF 

rate, (c) SF amount, (d) SF rate, (e) Ei amount, (f) Ei rate.   
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The relationships between Pg and the rate of canopy water balance are expressed by the 

following equations (n=29) (Fig. 3-1b, d, f): 

        TF (%) = 68.96-257.74/ (3.28+Pg
1.12

)          (r
2
=0.68)     (3.4)          

       SF (%) = 11.25-6916.57/ (597.18+Pg
2.79

)     (r
2
=0.88)     (3.5)          

                    Ei (%) = 1.64 Pg
 0.43

                         (r
2
=0.66)     (3.6)              

The TF rate stabilized with increasing Pg (Fig. 3-1b). For smaller-magnitude events with 

rainfall depth less than 40 mm, the TF rate varied greatly, from 0% to 77% with mean 39%. For 

larger-magnitude events with rainfall depth greater than 40 mm, that rate was relatively stable, from 

63% to 71% with mean 67%. The SF rate stabilized with increasing Pg (Fig. 3-1d). For smaller-

magnitude events with rainfall depth less than 20 mm, the SF rate strongly varied, from 0% to 12% 

with mean 2%. For larger-magnitude events with rainfall depth greater than 20 mm, the SF rate was 

relatively stable, from 8% to 13% with mean 11%. The Ei rate also stabilized with increasing Pg 

(Fig. 3-1f). For smaller-magnitude events with rainfall depth less than 40 mm, the Ei rate varied 

greatly, from 20% to 100% with mean 58%. For larger-magnitude events with rainfall depth greater 

than 40 mm, the Ei rate was relatively stable, from 18% to 27% with mean 22%. When rainfall was 

slight, the Ei rate was relatively large because precipitation was insufficient to saturate the canopy. 

The stability of this rate was strongly correlated with that of TF.  

 In the present study, 93.0 mm (10.6% of Pg) was partitioned as SF. This value agrees with 

other studies of coniferous forest, ranging from the 0.3% reported by Valente et al. (1997) to 12.1% 

by Hattori and Chikaarashi (1988) (Table 3-2). Nevertheless, the present value is considerably larger 

than results for other coniferous stands. It was found that SF is affected by stand structure (e.g., 

stand density and branch inclination angle) (Levia and Frost, 2003). For example, total SF was 

greater in denser stands (Huber and Iroume, 2001), and horizontal branches were linked to smaller 

SF values (Crockford and Richardson, 2000). In the present study, stand density was high and stems 

were vertical on the hillslope; angles between stems and branches were small and nearly vertical. 
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These factors may partially explain the relatively large SF rate generated in the abandoned Japanese 

cypress plantation.  

TF depth was 565.9 mm (64.2% of Pg). This percentage agrees with those of related studies 

of coniferous forest, from the 60% reported by Viville et al. (1993) to 85% by Shi et al. (2010) 

(Table 3-2). The present percentage is considerably lower than for other coniferous forests, such as 

Japanese cypress (74.2%; Tanaka et al., 2005) and natural pine forest (85%; Shi et al., 2010). TF in 

forest ecosystems is affected by multiple factors such as stand characteristics (e.g., stand density, 

basal area, and canopy cover) (Crockford and Richardson, 2000; Staelens et al., 2006; Molina and 

Del Campo, 2012), and meteorological conditions (e.g., rainfall intensity) (Llorens et al., 1997). For 

example, TF was negatively and linearly related to the tree density, basal area, and forest canopy 

cover (Molina and Del Campo, 2012). In the present study, the canopy cover fraction (0.974) was 

almost close due to high stand density (2198 trees ha
-1

). These factors may partially explain the 

relatively low TF.  

The result of Ei rate (25.2% of Pg) agrees with other studies in coniferous forest that ranges 

from 12% reported by Haibara and Aiba (1982) to 39.3% by Viville et al. (1993) (Table 3-2). Ei 

varies greatly, and depends on meteorological conditions and forest properties (Crockford and 

Richardson, 2000). At the event-based scale, Ei rate stabilized with increasing Pg (Fig. 3-1f). 

However, at an annual scale, Ei rate decreased with Pg amount (Komatsu et al., 2008b). Ei rate 

increased with stand density (Komatsu et al., 2008b) and was affected by forest cover and branch 

architecture (Staelens et al., 2006). Canopy storage capacity (S) is one of the useful parameters for 

examining variation on Ei induced by forest properties (Komatsu et al., 2008b). In the present study, 

the mean of S was 2.4 mm, and in the range of 0.5-4.3 mm which was summarized for different 

coniferous forests by Hormann et al. (1996) and Link et al. (2004). The quantification of rainfall 

partitioning can improve understanding of the water resources of forested watersheds, and can also 

guide forest practices (e.g., thinning) and improve the condition of abandoned coniferous forests 
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such as Japanese cypress plantations.    

Table 3-2 Interception loss for coniferous forests from earlier studies.  

Species Age 
Stand density 

 (trees ha-1) 

Height  

(m) 

DBH 

 (cm) 

Pg  

(mm) 

TF/Pg 

(%) 

SF/Pg 

 (%) 

Ei/Pg 

(%) 
References 

Chamaecyparis obtusa  31 1325 14 18 1087 72.9 8.2 18.9 Hattori and Chikaarashi (1988) 

Chamaecyparis obtusa  31 1750 14 18 1336 64.5 12.1 23.4 Hattori and Chikaarashi (1988) 

Chamaecyparis obtusa  60-70 3200 8 8 1793 68.7 5.8 25.5 Iwatsubo and Tsutsumi (1967) 

Chamaecyparis obtusa  29 2051 11 16 1543 67.7 11.0 21.3 Hattori et al. (1982) 

Chamaecyparis obtusa  70 923 19 34 2053 74.2 11.4 14.4 Tanaka et al.(2005) 

Cryptomeria japonica 70 513 27 39 2304 78.6 5.6 15.8 Tanaka et al.(2005) 

Cryptomeria japonica 30 1467 15 23 1584 63.7 10.2 26.1 Sato et al. (2003a,b) 

Cryptomeria japonica 71 750 25 29 1150 - - 12.0 Haibara and Aiba (1982) 

C. japonica/C. obtusa  93 783 18 32 1734 - - 13.0 Murakami et al. (2000) 

Pinus densiflora  40-70 1575 7 12 1513 83.0 3.0 14.0 Mitsudera et al. (1984) 

Pinus densiflora  - 2300 12 30 1291 78.1 0.5 20.7 Taniguchi et al. (1996) 

Pinus pinaster 60 312 24 34 1366 82.6 0.3 17.1 Valente et al. (1997) 

Pinus armandii  27 575 12 20 545 85.0 0.9 14.2 Shi et al. (2010) 

Pinus armandii 25 1420 - 12 926 67.4 5.9 26.7 Li et al. (2007) 

Pinus pseudostrobus - 246 12 32 974 80.2 0.6 19.2 Silva and Rodriguez (2001) 

Picea sitchensis 29 4250 9 - 1795 - - 26.7 Gash et al. (1980) 

Picea rubens  - - - - - 76.0 2.3 21.7 Mahendrappa (1990) 

Pinus strobus  - - - - - 65.0 5.3 30.7 Mahendrappa (1990) 

Pinus resinosa  - - - - - 69.0 0.7 28.3 Mahendrappa (1990) 

Pseudotsuga menziesii etc. 500 427 19 34 619 75.0 - 25.0 Link et al. (2004) 

Picea abies 90 575 25 - 583 67.3 0.3 32.4 Viville et al. (1993) 

Picea abies 90 575 25 - 588 65.3 0.5 31.2 Viville et al. (1993) 

Picea abies 90 575 25 - 539 60.0 0.7 39.3 Viville et al. (1993) 

Pinus sylvestris 33 2400 10 14 850 74.7 1.3 24.0 Llorens et al. (1997) 

Chamaecyparis obtusa  32 2198 16 19 881 64.2 10.6 25.2 This study 

Entries with dashes indicate that data could not be found in the paper. 
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3-1-2 Spatial variability of throughfall 

The spatial variability of TF amount is expressed via the coefficient of variability (CV), i.e., 

the standard deviation as a proportion of the mean. Fig. 3-2 shows the CV of TF rate for all rainfall 

events. At the event-based level, the CV decreased asymptotically with increasing PG amount. The 

CV was 16–56%, with median 26%. CV values for smaller-magnitude events were much higher 

than for larger-magnitude ones. The TF rate and its CV at each rain gauge are shown in Fig. 3-3a, b. 

The TF rate was 43–70% with mean 55% (Fig. 3-3a). The rate was substantially lower than 100%, 

because of Ei and the distribution of SF. The CV of TF rate at each rain gauge was 36–61%, with 

median 46% (Fig. 3-3b).  

 

Fig. 3-2 Coefficient of variability (CV) of throughfall (TF) rate versus gross precipitation (Pg), 

using 29 event-based data. 
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Fig. 3-3 Variation of throughfall (TF) among rain gauges. (a) Mean TF rate for rainfall events. (b) 

Coefficient of variability (CV) of TF rate for the events. The boxplots are drawn from data from 20 

rain gauges. Error bars indicate standard deviation. 

Canopy cover above the TF rain gauges was 93–98%, with mean 97%. The CV of TF rate at 

each rain gauge versus corresponding canopy cover is presented in Fig. 3-4a. The CV was not 

significantly correlated with canopy cover, according to Pearson correlation coefficients (r=0.152, 

p=0.521, n=20).  

The distance from the TF rain gauges to the nearest trunk was 0.4–2.2 m, with mean 1.0 m. 

The CV of TF rate at each rain gauge versus distance to the nearest trunk is depicted in Fig. 3-4b. 

The CV was again not significantly correlated with distance to the nearest trunk, according to the 

Pearson coefficients (r=0.196, p=0.408, n=20).   
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Fig. 3-4 Coefficient of variability (CV) of throughfall (TF) for rain gauges: versus canopy cover (a), 

and distance from nearest trunk (b). 

In this study, the CV of TF rate was not significantly correlated with canopy cover (r=0.152, 

p=0.521, n=20) and distance from the nearest trunk (r=0.196, p=0.408, n=20) (Fig. 3-4). The CV of 

TF rate was 16–56%, with median 26% (Fig. 3-2). This median value was greater than that reported 

from other temperate forests: 14-22%, summarized by Staelens et al. (2006). Furthermore, the 

median CV obtained in this study was also higher than that of a mixed white oak forest (11.8%; 

Silva and Okumura, 1996), and a broad-leaved secondary forest (17.2%; Deguchi et al., 2006). It 

has been suggested that abandoned Japanese cypress forests represent the most difficult forest type 

to measure Ei, because of the high spatial variability of TF.  
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The spatial variability of TF is affected by both meteorological factors (e.g., rainfall intensity 

and wind speed) and canopy factors (e.g., canopy storage capacity and canopy species) (Levia and 

Frost, 2006). For example, Keim et al. (2005) showed that the relationship between TF amount and 

the radial distance from the trunk varied by canopy species and tree age. Estimation of TF thus is 

notoriously difficulty due to the spatial and temporal variability of TF (Keim et al., 2005; Staelens et 

al., 2006). Zimmermann et al. (2010) reported that the relative error of mean TF became stable and 

better as the number of sample sizes increase. This implies that large number of sample sizes would 

be required to estimate TF. 

For determining the approximate number of TF collectors that would be required within the 

Japanese cypress forests, the acceptable standard error ε (%) was calculated using the following 

equation (Kimmins, 1973; Kostelnik et al., 1989; Price and Carlyle-Moses, 2003; Shinohara et al., 

2010):  

n

CVt n )1,( 





               (3.7) 
 

where n is the number of collectors; CV is the CV of TF rate; and 
)1,( n

t  is the Student’s t-value for 

a desired confidence interval α and (n-1) degrees of freedom (d.f.). Our sampling design using 20 

rain gauges per Pg event was found to estimate the cumulative study-period TF flux within 

acceptable error limits (12.2% at the 95% confidence level). This agrees with the range from 7.0% 

with 25 rain gauges to 15.0% with 5 rain gauges (at the 95% confidence level) reported by 

(Shinohara et al., 2010).  

3-1-3 Validation of revised Gash analytical model  

Event-basis interception loss was calculated, applying the revised Gash model with 

parameters shown in Table 3-3. Table 3-4 shows Ei components for the study period, as predicted 

by the model. Simulated Ei was 209.3 mm (accounting for 23.8% of Pg), underestimating measured 

Ei by 5.7%. In this model analysis, most interception loss (62.9%) evaporated during rainfall, with 
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evaporation after rainfall cessation contributing 26.8% and canopy wetting 2.5%. For weaker storms 

insufficient to saturate the canopy, evaporation represented 4.4%. Evaporation from trunks 

accounted for 3.4% of Ei. Comparison between observed and simulated Ei per event is shown in Fig. 

3-5. It reveals that Ei is slightly overestimated for some weaker rainfall events, and greatly 

underestimated for heavier events. For some weaker events, the simulated Ei is nearly identical to 

observed.   

 Table 3-3 Values of parameters in revised Gash model in this study 

 

Table 3-4 Components of simulated interception in this study 

 

 

  

Parameters Values 
Canopy cover, c 0.97  
Canopy storage capacity, S (mm) 2.40  
Canopy storage capacity by canopy cover, S

c
=S/c (mm) 2.47  

Free throughfall coefficient, p 0.13  
Trunk storage capacity, S

t
 (mm) 0.39  

Proportion of rain diverted to stemflow, p
t 0.12  

Mean evaporation rate during rainfall, E  (mm h
-1

) 0.38  
Mean evaporation rate scaling by canopy cover during rainfall, cEEc / (mm h

-1
) 0.39  

Mean rainfall rate, R (mm h
-1

) 2.37 
REc /  0.17  

Amount of rain to saturate the canopy, P
G
' (mm) 2.70 

Amount of rain to saturate the trunks, P
t
' (mm) 3.17  

 

Components 
The revised Gash model 

(mm) 

Proportion of Ei 

(%) 

Estimated error 

(%) 

For storms Pg<PG' 
   

Evaporation from canopy 9.1 4.4 
 

For storms Pg≥PG' 
   

Wetting up the canopy 5.1 2.5 
 

Wet canopy evaporation     

during the storms 
129.7 62.9 

 
Evaporation after storms 

cease 
55.2 26.8 

 

Evaporation from trunks 10.1 3.4 
 

Simulated interception 209.3 100 5.7 

Observed interception 221.8 - 
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Fig. 3-5 Observed versus simulated interception loss (Ei) (mm) using revised Gash model; each 

point represents a rainfall event.  

Fig. 3-6 shows the sensitivity of the canopy parameters and climatic variables to Ei. 

Sensitivity analysis for the six main parameters of the revised Gash model indicate that changes to 

St and pt are not significant, whereas those to E , S and c produce linear changes in predicted losses. 

Changes in R are nonlinear, and show opposite signs to those in E , S and c. If values of E , S, c, St 

and pt decrease by 30%, Ei is reduced by 20%, 7%, 3%, 1%, and 0.6%. If R  is also decreased by 

30%, Ei increases at a rate of 28%. These results indicate that the revised Gash analytical model is 

very sensitive to changes of forest structural parameters S and c, and climatic variables R  and E . 

However, it is not sensitive to the stem parameters St and pt, since these have only a small effect on 

Ei.    
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Fig. 3-6 Sensitivity analysis of revised Gash analytical model. Note that canopy cover fraction (c) 

was 0.974 in this study. The change in c was calculated only by decreasing 10%, 20%, 30% and 40% 

because its positive change does not meet the practical situation (i.e. c becomes >1.0).  

The revised Gash analytical model produced good agreement between observed and 

simulated Ei, and we validated it in the environment of its application. The model assesses estimates 

of Ei components and identifies the most appropriate version for the abandoned Japanese cypress 

forests. Over the study period, the greater part of Ei (89.7%) was from evaporation of a saturated 

canopy, during the storms and after they ceased (Table 3-4). This agrees with earlier studies of 

broadleaf forest (90.0%; Deguchi et al., 2006), coniferous forests (76.7%; Loustau et al., 1992; 

83.0%; Llorens, 1997; 94.7%; Shi et al., 2010), cultural cropping system (91.6%; van Dijk and 

Bruijnzeel, 2001), and agroforestry system (84.0%; Jackson, 2000). Evaporation from the trunk is a 

very small component of interception loss, as reported for rainforest (9.0%; Lloyd et al., 1988) and 

coniferous forest (1.7%; Llorens, 1997). This evaporation was ignored for broadleaf forest by Price 

and Carlyle-Moses (2003) and Deguchi et al. (2006).  



Chapter 3 Partitioning of evapotranspiration in a Japanese cypress plantation 

  50 

The model tends to underestimate Ei, within a range of 5.7%. This error mainly occurs for 

heavy rainfall events, whereas Ei for weaker events tends to be slightly overestimated (Fig. 3-5). As 

the sensitivity analysis showed in Fig. 3-6, the model is highly sensitive to the parameters S, E , and 

R . The error in the prediction was dominated by these three key controlling variables, which were 

assumed to be consistent value for each parameter during the study period (Gash et al., 1995; 

Wallace and McJannet, 2006). The prediction error for the studied coniferous forest in the temperate 

maritime climate is within the range as those obtained from other kinds of forests of climate. For 

example, Gash et al. (1995) found 5.4% underestimation of measured Ei for coniferous forests in a 

maritime climate. Llorens et al. (1997) reported 4.3% underestimation of observed Ei in coniferous 

forests in a Mediterranean climate. Dykes (1997) underestimated observed Ei by 1.2% for rainforest 

in a tropical climate. Despite these errors in Ei estimation for different climates, the revised Gash 

analytical model is sufficiently robust and reliable to generally estimate that loss for the abandoned 

coniferous forests of Japanese cypress plantation in a maritime climate.  

3-1-4 Summary 

These results indicate that within the partitioning of Pg, TF has the largest proportion 

(64.2%), followed by Ei (25.2%) and SF (10.6%). Compared with earlier literatures, the TF rate was 

much lower but the SF rate much higher than values from other coniferous forests. Ei parameters 

such as p, drainage from the canopy, and S were found to improve understanding of the interception 

process and test generalized models. The CV of TF rate was higher than other temperate forests, 

implying that abandoned Japanese cypress forests are one of the most difficult forest types to 

measure Ei. The revised Gash analytical model produced good agreement between observed and 

simulated Ei, with underestimation of 5.7%, and was demonstrated to be sufficiently robust and 

reliable to apply to coniferous forest plantations in a maritime climate. The present study may 
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improve understanding of water resources of forested watersheds, and provide a basis for future 

studies of forest management (e.g., thinning) and rainfall partitioning interaction. 

3-2 Tree transpiration and canopy conductance 

3-2-1 Tree transpiration 

Daily variations in stand Et related to mean daily daytime VPD measured from April 28 to 

October 10, 2011 are shown in Fig. 3-7a. Daily Et increased with increasing VPD, and had a mean 

of 1.29 ± 0.60 mm d
–1

 and range of 0.07 – 2.53 mm d
–1

 during the measuring period. The 

cumulative Et was 214.9 mm, accounting for 18.3% of Pg. Fluctuations in the daily Et were directly 

related to rainfall events and daily Et decreased quickly during rainfall events (Fig. 3-7b). On rainy 

days, daily Et had a mean of 0.97 ± 057 mm d
–1

 and range of 0.07 – 2.27 mm d
–1

, with total Et of 

75.4 mm. On dry days, daily Et mean was 1.59 ± 0.46 mm d
–1

, with range of 0.36 – 2.53 mm d
–1

 and 

total Et of 141.2 mm. Daily Et was 64.1% greater on dry compared to rainy days. In fact, rainfall 

events effectively reduced the solar radiation and vapor pressure deficit (VPD). 

Average daily Et was found to be 1.29 ± 0.60 mm d
–1

, consistent with other coniferous 

forests in Japan. Komatsu et al. (2010) summarized stand transpiration of coniferous forests 

compared with a Moso bamboo forest, and showed that it was in the range of 0.5 – 1.6 mm d
–1

 

during the rainy season. The main error sources for Et estimates are within-tree radial and tree-tree 

variations in Fd compared with circumferential variations in Fd (Kume et al., 2011). The within-tree 

variations in Fd can be ignored because Fd was measured at a depth of 0 – 20 and 20 – 40 mm to 

cover all the sapwood. Therefore, tree-tree variations in Fd are main source of error for Et estimates, 

and the coefficient of variability (CV) with a sample size for ten measured individual trees was 

around 10% (Kumagai et al., 2007).  
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Fig. 3-7 (a) Daily stand transpiration (E

t
) response to mean daily daytime vapor pressure deficit 

(VPD), and (b) time series of E
t 
and gross precipitation (Pg) measured from April 28 to October 10, 

2011.  

3-2-2 Relationship between tree transpiration and soil water content 

The variations in Et reflected the changes in soil moisture at different depths, shown by the 

correlation between Et and soil water content at different depths (Table 3-5). Pearson correlation 

analysis showed that Et was correlated with soil moisture at the depth of 5 – 15 cm (correlation 

coefficient 0.343 – 0.377; P < 0.05).  
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Unit of soil depth: cm. 

Significant correlations at the 95% confidence level are marked in bold. 

Numbers of days used for the correlation analysis: tree transpiration (Et), 49; forest floor evaporation (Ef), 29. 

These results suggest that Et was correlated with soil water content in the fine root zone at 

the depth of 5 – 15 cm for this site (Table 3-5). Raz-Yaseef et al. (2012) reported that Et was related 

to soil moisture at a depth of 10 – 20 cm in a pine forest ecosystem with shallow (20 – 40 cm) 

Aeolian-origin loess with clay–loam texture overlying chalk and limestone bedrock. Cavanaugh et 

al. (2011) reported that Et was related to soil moisture at depths of 37.5 and 75 cm in creosote bush 

ecosystems with sandy loam and high gravel content. In contrast to these previous studies, Et was 

correlated with soil moisture at a depth of 5 cm. This may be caused by the exposure of tree roots on 

the top of soil surface, which indicates that tree roots uptake water from shallow soil at a depth of 0 

– 5 cm.  

3-2-3 Canopy conductance 

            Fig. 3-8 shows the relations between the mean daily daytime VPD and Gc for the Japanese 

cypress forest from April 28 to October 10, 2011. Gc was 0.0031 ± 0.0035 m s
-1

 during the 

measuring period. We observed significant (P<0.01) negative correlation; thus, the Gc values for the 

study period was modeled as        

Et Ef

Soil depth
Correlation

coefficient
p-Value

Correlation

coefficient
p-Value

5 0.377 <0.05 0.385 <0.05

10 0.343 <0.05 0.163 0.262

15 0.362 <0.05 0.316 0.088

30 0.228 0.114 0.105 0.473

50 0.167 0.251 0.039 0.79

80 0.164 0.259 0.006 0.966

Table 3-5  Correlation analysis between tree transpiration (Et), forest floor evaporation (Ef) 

and soil water content at different soil depths. 
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Fig. 3-8 Relationship between mean daily daytime vapor pressure deficit (VPD) and canopy 

conductance (Gc) for Japanese cypress forests from April 28 to October 10, 2011. Data are classified 

according to solar radiation (Rs). The solid line is the regression line, determined by the least-

squares method for all data representing the pre-thinning period. 

            On the basis of Gc model (eq. 3.8), dtanstE  during the measuring period from April 28 to 

October 10, 2011 was predicted as shown in Fig. 3-9a. The estimated dtanstE  corresponded to the 

measured values. The correlation between estimated and measured dtanstE   was significant 

(P<0.01: a two-tailed Pearson correlation test, R=0.807). Thus, the Gc model was robust in 

estimating daily dtanstE  and could be used to extend the dtanstE   time scale in the Japanese 

cypress plantation, although the estimated values were slightly higher than actual values observed at 

beginning of May 2011.  
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           Fig. 3-9b shows the time series of the daily dtanstE   
estimated using the Gc model for the 

pre-thinning period from the November 1, 2010 to October 31, 2011. The daily dtanstE   at annual 

scale was 1.23 ± 0.48 mm d
-1

 in the pre-thinning period. Annual stand Et were 441.0 mm, 

accounting for 30.5% of Pg or 49.3% of PET.  
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Fig. 3-9 Time series of stand transpiration (Et-stand), measured by Granier method (circle) and 

estimated using the Gc model (solid line) for the pre-thinning period from November 1, 2010 to 

October 31, 2011 (b), and detailed for the period from April 28 to October 10, 2011 (a). 

           Gc was calculated by the simplified Penman-Monteith equation, assuming the complete 

coupling of the canopy with the atmosphere. Specifically, the Gc calculations assume that Et-stand is 

independent of the radiation term of the Penman-Monteith equation (Jarvis and McNaughton, 1986; 

Komatsu et al., 2006, 2012; McNaughton and Black, 1973). Thus, the use of the simplified Penman-



Chapter 3 Partitioning of evapotranspiration in a Japanese cypress plantation 

  56 

Monteith equation is invalid when this equation is applied to canopies decoupled with the 

atmosphere.  

The relations between VPD and Gc for Japanese cypress forests during the measuring period 

is shown in Fig. 3-8.  There is a significant (P<0.01) negative correlation, and the coefficient of 

determination (R
2
) was 0.51 in the pre-thinning period. This result suggests that VPD was the 

primary factor controlling Gc in the Japanese cypress forests, which agrees with previous studies 

examining controlling factors affecting Gc in forests during growing seasons without a severe soil 

water deficit (Granier et al., 1996c; Komatsu et al., 2006; Komatsu et al., 2012). The data for 

different Rs classes are located along the regression line, which was determined using all data (Fig. 

3-8). When Rs was > 250 W m
-2

 (i.e., light-saturated conditions) (Komatsu et al., 2012), the 

correlation was not particularly strong, and R
2
 was 0.46. Thus, these results validate our assumption 

of a less-considerable contribution of the radiation term of the Penman-Monteith equation.  
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Fig. 3-10 Cumulative daily values of gross precipitation (Pg), potential evapotranspiration (PET), 

and stand transpiration (Et) in the pre-thinning period from November, 2010 to October, 2011. 
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The predicted Et-stand from the Gc model had a significant correlation (P<0.01: a two-tailed 

Pearson correlation test, R=0.807) and a good performance with the measured values during the 

growing season in the pre-thinning (Fig. 3-9a). Komatsu et al. (2012) also reported that the 

estimated Et-stand using Gc model corresponded to the observed Et-stand and that the correlation 

coefficient (R=0.878) between these values was significant (P< 0.01) for the Japanese cypress 

forests during the growing season. The Gc was related to a range of environmental variables, 

including VPD, Rs, and soil water deficit (Granier et al., 2000a; Granier et al., 2000b). In this study, 

the estimated Et-stand values were slightly higher than those values observed at beginning of growing 

season of 2011 (Fig. 3-9a). This observation may be caused by the limiting soil water deficit. During 

the study period, the cumulative Pg was lower than the cumulative PET from late April to May 2011 

(Fig. 3-10). The shortage of soil-water storage may restrain water uptake and limit Et-stand. However, 

the soil water deficit was not severe from November 2010 to mid-April 2011 because the 

cumulative Pg was higher than PET (Fig. 3-10). Thus, the time series of estimated Et-stand can be well 

explained by the response of Gc to VPD in the pre-thinning period, without considering the response 

of Gc to the soil water deficit. 

3-2-4 Summary 

This section elucidated Et-stand and Gc model for an abandoned Japanese cypress plantation. 

The average daily Et-stand was 1.29 ± 0.60 mm d
–1 

measured from April 28 to October 10, 2011. It 

was well correlated with soil moisture at a depth of 5-15 cm. Contrast to previous studies, Et-stand 

was correlated with soil moisture at a depth of 5 cm. This reflected the abandoned Japanese cypress 

forest properties, i.e. tree roots were exposed on the forest floor, and tree roots also uptake water 

from shallow. Gc was calculated on the basis of Et-stand, and primarily related to VPD, similar to the 

results obtained for other temperate forests. The estimated Et-stand using Gc model corresponded to 

the measured values. The correlation between estimated and measured Et-stand was significant 

(P<0.01). Thus Gc model was robust in estimating daily Et-stand and can be used to extend the Et-stand 
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time scale in the Japanese cypress plantation. Daily Et-stand at annual scale was 1.23 ± 0.48 mm d
-1

 in 

the pre-thinning period. Annual Et-stand were 441.0 mm, accounting for 30.5% of Pg or 49.3% of 

PET.  These results reported here would be useful for understanding the interaction between soil 

moisture and Et-stand, and also simulating changes in terrestrial water and carbon cycles using 

ecosystem models due to thinning practice in the abandoned Japanese cypress plantations.  

3-3 Forest floor evaporation 

3-3-1 Measurement and estimation of forest floor evaporation 

           The validation of daily observations of Ef using lysimeters and that estimated from the 

modified Penman-Monteith equation for 12 September to 10 October 2011 is shown in Fig. 3-11a. 

The computed Ef had a mean of 0.38 ± 0.17 mm d
–1

 and range of 0.03 – 0.67 mm d
–1

 for a total of 

10.86 mm. The observed Ef had a mean of 0.40 ± 0.33 mm d
–1

 and range of 0.00 – 1.07 mm d
–1

. The 

cumulative daily observed Ef was 11.55 mm. The computed Ef had a similar trend and fitted very 

well with observed Ef (Fig. 3-11a); it was reasonably consistent with the results directly measured 

using weighing lysimeters, with an underestimation of 5.9%. Therefore, the modified Penman-

Monteith equation was robust in estimating Ef and extending the time scale of Ef in this Japanese 

cypress stand. 

           Fig. 3-11b shows the daily Ef estimated by the modified Penman-Monteith equation in the 

pre-thinning period from November 2010 to October 2011. Daily Ef had an average of 0.34 ± 0.23 

mm d
–1

 and range of 0.02 – 1.01 mm d
–1

. The cumulative values of Ef in the whole study period 

were 124.0 mm, accounting for 8.6% of Pg. Daily Ef was also affected by rainfall events and 

decreased quickly during rainfall events. On rainy days, daily Ef had a mean of 0.29 ± 0.20 mm d
–1

 

and range of 0.02 – 0.82 mm d
–1

, with total Ef of 37.8 mm. On dry days, daily Ef had a mean of 0.37 

± 0.24 mm d
–1

 and range of 0.05 – 1.01 mm d
–1

, with total Ef of 86.2 mm. Daily Ef increased by 

26.5% on dry compared to rainy days. Similarly to Et, low Ef values are explained by lower solar 

radiation and VPD conditions during rainfall.  
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Fig. 3-11 Daily values of forest floor evaporation (Ef), measured by lysimeters (soil line and 

triangles) and estimated using the modified Penman–Monteith equation (dashed line and triangles) 

from November 1, 2010 to October 31, 2011 (b), and detail for the period 12 September to 10 

October, 2011 (a). 

 Average daily Ef was found to be 0.34 ± 0.23 mm d
–1 

and was similar to the value of 0.39 d
–1

 

in a 31-year-old Japanese cypress stand reported by Hattori (1983). The ratio of Ef to Pg in this study 

was also consistent with the range of 7.1 to 20.3% in Japanese coniferous plantations summarized 

by Hattori (1983). The variation of average daily Ef in three lysimeters ranged from 0.40 to 0.44 mm 

d
–1

 with a mean of 0.41 ± 0.02 mm d
–1

 during the measurement period. The CV of the results for 

these three lysimeters was 5.6%. The Ef value was higher compared to similar forest conditions 
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(e.g., stand density, understory vegetation cover). For instance, Schaap and Bouten (1997) reported 

that Ef was 0.23 mm d
–1

, with range of 0.19 – 0.3 mm d
–1

 in a dense Douglas fir stand with no 

understory vegetation in the central Netherlands. In their study, soil water content had a mean of 

0.12 m
3
 m

–3
 and range of 0.05 – 0.21 m

3
 m

–3
, with total rainfall amount of 51 mm during 44 d. In 

the present study, soil water content had a mean of 0.18 m
3
 m

–3
 and a range of 0.14 – 0.22 m

3
 m

–3
, 

with total rainfall of 938.8 mm. This abundant rainfall would be expected to maintain a high soil 

water content. The surface soil was the dominant reservoir for evaporation flux from the forest floor 

(Table 3-5), and this reservoir was constantly filled by abundant rainfall, the Ef found here could be 

large compared to other studies. 

3-3-2 Relationship between forest floor evaporation and soil water content 

The daily variations in Ef also reflected the changes in soil moisture at different depths. 

Pearson correlation analysis showed that the best correlation was between Ef and soil moisture at the 

depth of 5 cm (correlation coefficient 0.385; P < 0.05), while there was no significant correlation 

with the soil moisture at other depths (Table 3-5).  

            Table 3-5 suggests that Ef was correlated with soil water content of the topsoil. Averaged soil 

water content was consistently high throughout the rainy season and could support high Ef fluxes 

when energy was available. The results are consistent with those for a coniferous forest by Raz-

Yaseef et al. (2012), who reported that Ef was best correlated with soil moisture in the topsoil (5 cm 

depth). The results also agree with those for grassland and shrubland ecosystems showing that soil 

evaporation was strongly correlated with surface soil moisture but poorly correlated with water 

content at greater depths throughout the entire root zone of both sites (Kurc and Small, 2004). 

 A simple ET-soil moisture relationship can be used to investigate soil moisture dynamics 

(e.g., Laio et al., 2001; Rodriguez-Iturbe, 2000) and the resulting impacts on plant productivity, 

species interactions, and nutrient cycling (Porporato et al., 2001). Combined with the findings in the 

Section 3-2-2, we identified the depth at which moisture was best correlated with Et and Ef. This 
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relationship can help in understanding the interactions between soil moisture and evaporation 

fluxes, and also allows more accurate prediction of ET than when estimates of ET are based only on 

averaged soil moisture in the root zone (Guswa et al., 2002).  

3-3-3 Summary 

This section validated the daily variation of Ef using lysimeters and that estimated from the 

modified Penman-Monteith equation in the abandoned Japanese cypress plantation. The observed Ef 

had a mean of 0.40 ± 0.33 mm d
–1

 and the computed Ef had a mean of 0.38 ± 0.17 mm d
–1

 for the 

period from 12 September to 10 October 2011. The computed Ef had a similar trend and fitted very 

well with observed Ef with an underestimation of 5.9%. The modified Penman-Monteith equation 

was robust in estimating Ef and extending the time scale of Ef in the abandoned Japanese cypress 

stand. In the pre-thinning period, annual daily Ef had an average of 0.34 ± 0.23 mm d
–1

. The 

cumulative values of Ef were 124.0 mm, accounting for 8.6% of Pg. This was consistent with the 

range for coniferous forests in Japan. Daily Ef was best correlated with soil moisture in the upper 5 

cm of soil. Combined with the findings shown in Section 3-2-2, these relationships can help 

researchers understand the interactions between soil moisture and evaporation fluxes (Et and Ef) and 

also allow increased accuracy in the prediction of ET than that based only on root zone average soil 

moisture. In addition, the surface soil was the dominant reservoir for evaporation flux from the 

forest floor, and this reservoir was constantly filled by abundant rainfall during the rainy season. 

The Ef could be large when energy was available. These results highlight a strong pressing to clarify 

the effect of thinning on Ef due to the increase in solar radiation penetrated into the forest, although 

Ef was a small component of forest water cycle in the abandoned Japanese cypress plantations. 
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3-4 Partitioning of the total evapotranspiration for an abandoned Japanese cypress stand 

during the growing season 

3-4-1 Environmental conditions 

Meteorological conditions during the growing season from July to October, 2011 are plotted 

in Fig. 3-12. The rainy season typically starts in July, with large storm events, and rain ceases in 

October. Total Pg during the growing season was 938.8 mm, and was consistent with the range of 

407 – 1,196 mm and mean of 684 mm for the last 20 years. The measuring period included three 

storm events: 177.6, 81.0 and 132.6 mm d
–1

 on 19 July, 28 July and 21 September, respectively. 

During the observation period, there were 43 rainy days representing 42.2% of total days. The 

longest rain period was 8 d. The longest interval between rainfall events was 11 d. Soil water 

content had a mean of 0.18 m
3
 m

–3
 and range of 0.14 – 0.22 m

3
 m

–3
. The high soil moisture 

conditions persisted throughout the rainy season. Other meteorological variables are also shown in 

Fig. 3-12. Mean daily solar radiation was 12.8 MJ m
–2

 d
–1

 with range of 1.0–22.4 MJ m
–2

 d
–1

, with 

the relative peak values recorded during 11:00 – 15:00. The prevailing gust wind direction was 

southeast, with a mean of 0.33 m s
–1

. Mean vapor pressure deficit (VPD) was 0.46 kPa with range of 

0.00 – 3.61 kPa. Mean air temperature was 23.7°C with range of 9.3 – 37.9°C, and was consistent 

with the mean temperature of 22.3 ± 1.0°C for the last 20 years. The mean relative humidity was 

87.1% (range 32.0 – 100%).  
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Fig. 3-12 Daily values from 1 July to 10 October 2011 of solar radiation; wind gust speed; 

maximum, mean and minimum vapor pressure deficit (VPDmax, VPDmean and VPDmin, respectively); 

maximum, mean and minimum relative humidity (RHmax, RHmean and RHmin, respectively); 

maximum, mean and minimum temperature (Tmax, Tmean and Tmin, respectively); soil water content 

averaged for depth of 0–80 cm and open gross precipitation (Pg) amount. 

3-4-2 Partitioning of evapotranspiration during the growing season 

Detailed monthly Pg, ET and its three sub-components in the Japanese cypress forest during 

the 2011 growing season are summarized in Table 3-6. For the whole growing season, Ei, Et and Ef 

accounted for 53.6, 33.7 and 12.7% of total ET, respectively. Total ET was 446.3 mm, accounting 

for 47.5% of total Pg – this corresponds to almost half of the Pg being stored in the forested 

watershed or discharged by streams. The cumulative daily value of Pg, ET and its three sub-

components is illustrated in Fig. 3-13a. ET was less than precipitation throughout the rainy season. 

ET was only close to Pg at the beginning of the rainy season, and afterward was much less than Pg. 

Table 3-6 Monthly precipitation (Pg) and evapotranspiration (ET) and its three sub-components: 

canopy interception (Ei), tree transpiration (Et) and forest floor evaporation (Ef) during the growing 

season, 2011. 

 
* Only for 1–10 October. 

  

Jul Aug Sep Oct* Total Ratio of P Ratio of ET 

mm %

Ei 90.1 44.8 85.2 19.1 239.2 25.5 53.6 

Et 50.0 42.9 43.1 14.4 150.4 16.0 33.7 

Ef 21.4 18.4 13.4 3.5 56.7 6.0 12.7 

ET 161.5 106.1 141.7 37.0 446.3 47.5 -

P 410.4 118.4 342.6 67.4 938.8 - -

g 
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Fig. 3-13 (a) Cumulative daily values of gross precipitation (Pg), evapotranspiration (ET) ET = Ei + 

Et + Ef, canopy interception (Ei), tree transpiration (Et), and forest floor evaporation (Ef) in the 

Japanese cypress forest during the growing season. (b) Relative contribution of each flux (Ei, Et and 

Ef) to total ET in the Japanese cypress forest during the growing season (1 July to 10 October 2011). 
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            The daily relative contribution of each sub-component flux to ET varied greatly between 

rainy and dry days. On rainy days, the relative contribution of Ei was high, with a range of 10.1 – 

97.1% and mean of 64.3 ± 27.7% of ET; this was particularly pronounced for rainfall events > 15 

mm, with a mean Ei of 88.5 ± 6.4% and range of 75.1 – 97.1%. The relative contribution of Ef was 

the smallest, with range of 0.1 – 33.1% and mean of 11.1 ± 9.7%. The relative contribution from Et 

was moderate, with range of 2.1 – 66.9% and mean of 24.6 ± 19.0% of ET. On dry days, there was 

obviously no Ei. The relative contribution of Et was the dominant evaporation flux to ET, with range 

of 53.5 – 89.9% and mean of 73.6 ± 7.1%. Moreover, the contribution from Ef was a smaller 

component than Et on a daily scale, with range of 10.1 – 46.5% and a mean of 26.4 ± 7.1% of ET.  

Ei and subsequent evaporation loss from forest was the largest proportion (53.6%) of ET in 

the Japanese cypress stand during the growing season (Table 3-6). Literature concerning ET for 

coniferous forests shows that Ei loss from coniferous forests are in the range of 11.4 – 75.0% of 

total ET, depending on climate and forest structure parameters (Table 3-7). The ratio of Ei to ET in 

this study was relatively higher than found in other sites for coniferous forests. For instance, Tian et 

al. (2011) reported that interception loss from Picea crassifolia Kom. forest accounted for 32.2% of 

total ET in the growing periods in China. Jansson et al. (1999) found that Ei loss of a pine-spruce 

mixed forests (Picea abies L. and Pinus sylvestris L.) stand represented 22.3% of total ET during 

the growing season in Sweden. Shimizu et al. (2003) reported the mean annual Ei rate represented 

40.0% of annual ET in coniferous forests of western Japan. Ei loss increases with the amount of Pg 

and forest stand density (Komatsu et al., 2008b). Compared with previous studies, values in our 

study probably reflect the relatively large number of storm events (three typhoon events) and the 

dense stand density. Ei was the largest component of total ET, an accurate estimation of the water 

balance in watersheds requires a precise quantification of this interception, at the event scale as well 

as at the yearly scale.  
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In the present study, Et-stand accounted for 33.7% of total ET although the value was smaller 

than for some areas with similar climates, where Et-stand is the dominant component of ET. For 

instance, in a P. caribaea forest on the Fiji islands, Et-stand accounted for > 70% of annual ET 

(Waterloo et al., 1999). The Et/ET ratio is crucial to predicting ecosystem survival and productivity, 

especially in water limited regions. For instance, if this ratio is high, the tree components of the 

ecosystem uptake more water from the ground and transpire more to the atmosphere than when it is 

low. This implies that it creates an imbalance in the water use between trees and other components 

of the ecosystem that could affect proper ecosystem function. In light of this, it is possible to expect 

that knowing the value of this ratio can help land managers to manage abandoned dense plantations. 

            Total ET was 446.3 mm summed from three sub-components and accounted for 47.5% of 

total Pg. Because of the uncertainty of estimations of each component, further measurements should 

be applied to validate the total ET. For example, an eddy covariance system coupled with 

meteorological data allows analysis of the factors controlling ET for short/long-term periods. By 

contrast, the water balance approach cannot allow researchers to determine the factors controlling 

ET or their influences on the characteristics of ET; so, a long-term period of time is needed to 

evaluate ET. Therefore, an eddy covariance system would be a suitable method for evaluating total 

ET. 

 For the entire growing season, the ET/Pg ratio agreed well with that found for other Japanese 

cypress sites. For instance, our result for ET/Pg (47.5%) was within the measured range of 38.1 – 

62.3% for Japanese cypress forest recorded by Kosugi and Katsuyama (2007), and 37.5 – 42.6% for 

a coniferous forest including Japanese cypress and Japanese cedar found by Shimizu et al. (2003) 

(Table 3-7). However, it was smaller than for other coniferous forests in dry climates. For example, 

the ET/Pg ratio was > 80% or sometimes > 100%, and Et was the dominant evaporation flux due to 

dry climates (Raz-Yaseef et al., 2012). ET is the dominant component in the water balance at 

watershed-scale. The dynamics of ET partitioning can improve the understanding of water resources 
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of forested watersheds and can also help in predicting or modeling a forest stand water budget.  

3-4-3 Summary  

  This study quantified partitioning of ET into Ei, Et and Ef in a Japanese cypress plantation 

during the growing season. ET was the main component in the water balance and accounted for 47.5% 

of the total Pg (938.8 mm). Ei (53.6% of ET) was the dominant evaporation flux followed by Et 

(33.7% of ET) and Ef (12.7% of ET). These findings can increase the understanding of water 

balances of forested watersheds, and help in predicting or modeling water budgets (e.g., ET 

partitioning and runoff) in forest ecosystems. Forest management practices (e.g., thinning) can alter 

the cover and structure of the forest canopy, and change the hydrological processes of forest. 

Japanese coniferous plantations are currently subjected to thinning treatments because of their 

overstocked stand densities and volumes. Hence, researchers need a clear understanding of the 

impacts of forest/vegetation on processes connected with ET. Thus, future ecohydrological studies 

should focus on quantifying the ET partitioning response to land use change in forested watersheds 

which in turn will help to improve the development of sound forestry techniques and resolve 

complex forest-water conflicts. 
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Chapter 4 The effect of strip thinning on partitioning of evapotranspiration in a 

Japanese cypress plantation 

4-1 Meteorological characteristics in pre- and post-thinning  

It is of important to understand the characteristics of meteorological conditions in pre- and 

post-thinning period. The time series of meteorological factors in the pre- and post-thinning periods 

are shown in Fig. 4-1. The meteorological variables (e.g., relative humidity (RH), temperature (T), 

PET and VPD) show clear seasonal trends and reached higher values during the growing season 

(May - October) in both periods. Maximum T reached more than 37 ºC between later June and early 

August, and minimum T were below 0 ºC mainly between January and February in both periods. 

The day-to-day variations in Rs generally corresponded to Pg and were low during the regular rainy 

season from mid-June to mid-July in Japan. The day-to-day variations in the VPD generally 

corresponded to those changes in T and RH. The Pg frequently occurred for both periods. The total 

Pg values were 1444.6 and 1266.8 mm, respectively. The Pg values during the growing season were 

1139.8 mm and 869.0 mm, respectively. The total PET was 894.3 mm with a mean of 2.45 ± 1.43 

mm d
-1

, and 945.1 mm with a mean of 2.59 ± 1.60 mm d
-1

 in pre- and post-thinning, respectively. 

The PET values during the growing season were 533.9 mm and 605.4 mm, respectively. The Pg 

values were higher than PET in the annual and growing season scales, respectively.    
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Fig. 4-1 Daily climatic values in the pre-thinning period (November 2010 – October 2011) and the 

post-thinning period (November 2011 – October 2012). Reading from the top: daily precipitation 

(Pg), maximum, mean and minimum relative humidity (RHmax, RHmean and RHmin, respectively); 

maximum, mean and minimum temperature (Tmax, Tmean and Tmin, respectively); vapor pressure 

deficit (VPD); daily total solar radiation (Rs); and daily potential evapotranspiration (PET). 

Rainfall characteristics in pre- and post-thinning were summarized in Table 4-1. Total gross 

rainfall was 1444.6 mm and 1266.8 mm in pre- and post-thinning, respectively. Less rainfall events 

but more precipitation was observed in the pre-thinning period than in the post-thinning period. 

Event-based gross rainfall ranged from 0.8 – 176.8 mm with a mean of 13.0 mm in the pre-thinning 

period and from 0.8 – 150.0 mm with a mean of 17.4 mm in the post-thinning period. Rainfall 

intensity ranged from 0.2 – 12.9 mm h
-1

 with a mean of 1.6 mm h
-1

 in the pre-thinning period and 

ranged from 0.1 – 16.5 mm h
-1

 with a mean of 1.5 mm h
-1

 in the post-thinning. No significance 

difference existed about rainfall between the pre-thinning and post-thinning periods (p > 0.05, 

Wilcoxon-Man-Whitney test). The characteristics of rainfall were similar in both periods.   

 

 

 

 

  

 

Rainfall conditions 
Pre-thinning   Post-thinning 

Nov 2010 - Oct 2011   Nov 2011 - Oct 2012 

Number of storm events (mm) 83 

 

98 

Total rainfall (mm) 1444.6 

 

1266.8 

Max storm event rainfall (mm) 176.8 

 

150.0  

Mean storm event rainfall (mm) 13.0  

 

17.4 

Max duration (h) 51 

 

40 

Mean duration (h) 10 

 

10 

Max time since previous event (h) 1179  

 

1008  

Mean time since previous event (h) 89  

 

77  

Max rainfall intensity (mm/h) 12.9  

 

16.5  

Mean rainfall intensity (mm/h) 1.6    1.5  

Table 4-1 Rainfall characteristics in the pre- and post-thinning periods. 
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In addition, Fig. 4-2 showed frequency distribution of rainfall event classification in pre- and 

post-thinning period. Most rainfall events, 75 and 93 rainfall events in pre- and post-thinning period, 

respectively, were less than 40 mm. For the class between 40 and 100 mm, the number of rainfall 

events was similar, 5 and 4 rainfall events were collected in pre- and post-thinning period. But for 

classification of rainfall event more than 100 mm, 3 and 1 rainfall events was observed in pre- and 

post-thinning period. Overall, the frequency distribution of each rainfall event classification was 

uniform in both periods.   
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Fig. 4-2 Frequency distribution of rainfall event classification (grouped into 5 mm intervals) in the 

pre- and post-thinning periods. 
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4-2 The effect of strip thinning on canopy interception  

4-2-1 Changes in rainfall partitioning 

Annual-based scale: The annual canopy water balance for pre- and post-thinning periods is 

summarized in Table 4-2 and Fig. 4-3. Total TF was 887.7 mm (61.4% of Pg) and 925.0 mm (73.0% 

of Pg) in the pre- and post-thinning periods, respectively. More TF amount and a higher TF rate 

were observed in the post-thinning period, although less precipitation amount was observed. Total 

SF was 142.1 mm (9.8% of Pg) and 77.7 mm (6.1% of Pg), and total Ei was 414.8 mm (28.7% of Pg) 

and 263.0 mm (20.8% of Pg) in the pre- and post-thinning periods. Both SF and Ei decreased in the 

post-thinning period due to the thinning treatment (p < 0.05, Wilcoxon-Man-Whitney test). 

Table 4-2 Annual and seasonal gross precipitation (Pg), canopy water balance (throughfall, TF; 

stemflow, SF; canopy interception, Ei) expressed as depth (mm) and as a percentage of Pg (%) in 

the pre- and post-thinning periods. Dry season is composed of spring and winter, and rainy 

season is composed of summer and autumn. 

 
Pre-thinning 

 
Post-thinning 

Year/season Pg 
 

TF 
 

SF 
 

E
i
 

 
Pg 

 
TF 

 
SF 

 
E

i
 

mm 

 

mm % 
 
mm % 

 

mm % 
 

mm 

 

mm % 

 

mm % 

 

mm % 

Spring 229.8 
 
129.0 56.1 

 
19.8 8.6 

 
81.0 35.3 

 
473.2 

 
355.7 75.2 

 
29.2 6.2 

 
87.1 18.4 

Summer 574.6 
 
363.5 63.3 

 
53.9 9.4 

 
157.1 27.3 

 
389.8 

 
282.3 72.4 

 
25.9 6.7 

 
81.6 20.9 

Autumn 495.2 
 
309.6 62.5 

 
55.3 11.2 

 
130.3 26.3 

 
299.4 

 
219.0 73.1 

 
17.6 5.9 

 
62.8 21.0 

Winter 145.0 
 

85.6 59.0 
 
13.1 9.0 

 
46.3 32.0 

 
104.4 

 
68.0 65.2 

 
4.9 4.7 

 
31.5 30.2 

Dry 374.8  214.6 57.3  32.8 8.8  127.4 34.0  577.6  423.7 73.4  34.1 5.9  118.7 20.5 

Rainy 1069.8  673.1 62.9  109.3 10.2  287.4 26.9  689.2  501.3 72.7  43.6 6.3  144.4 20.9 

Annual 1444.6 
 
887.7 61.4 

 
142.1 9.8 

 
414.8 28.7 

 
1266.8 

 
925.0 73.0 

 
77.7 6.1 

 
263.0 20.8 
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Fig. 4-3 Annual canopy water balance ratio (%) in the pre- and post-thinning periods. Significance 

differences are indicated by * (p< 0.05) by U-test. 

Season-based scale: The seasonal canopy water balance in both periods is also shown in 

Table 4-2 and Fig. 4-4. The largest Pg amount was observed in summer and spring in the pre- and 

post-thinning period, respectively. The lowest Pg amount was observed in winter in both periods. TF 

rate ranged from 56.1-63.3% in the pre-thinning period and from 65.2-75.2% in the post-thinning 

period. SF rate ranged from 8.6-11.2% in the pre-thinning period and from 4.7-6.7% in the post-

thinning period. Ei rate ranged from 26.3-35.3% in the pre-thinning period and from 18.4-30.2% in 

the post-thinning period (Table 4-2). After thinning, net precipitation (TF and SF) rate increased by 

11.1% from 71.3 to 79.2%, of which it increased from 66.0-79.3% in dry season and from 73.1-

79.1% in rainy season. 
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Fig. 4-4 Seasonal canopy water balance ratio (%) in the pre- and post-thinning periods. 

Month-based scale: The monthly variation of canopy water balance in the pre- and post-

thinning periods are shown in Fig. 4-5. Month-based Pg ranged from 0.0-383.4 mm with a mean of 

120.4±120.2 mm in the pre-thinning period and from 26.1-281.2 mm with a mean of 105.6±80.9 

mm in the post-thinning period. Monthly Pg was highest in July and May and lowest in January and 

December in pre- and post-thinning periods, respectively. Month-based TF ranged from 0.0-259.9 

mm with a mean of 74.0±80.8 mm (0-67.8% of Pg) in the pre-thinning period and from 16.0-217.7 

mm with a mean of 77.1±62.5 mm (60.2-77.4% of Pg) in the post-thinning period. Month-based SF 

ranged from 0.0-40.4 mm with a mean of 11.8±13.8 mm (0.0-11.8% of Pg) in the pre-thinning 

period and from 1.6-17.9 mm with a mean of 6.5±5.5 mm (3.5-7.7% of Pg) in the post-thinning 

period. Month-based Ei ranged from 0.0-85.1 mm with a mean of 34.6±26.5 mm (0.0-52.6% of Pg) 

in the pre-thinning period and from 8.9-45.6 mm with a mean of 21.9±13.3 mm (16.2-33.5% of Pg) 
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in the post-thinning period. In summary, monthly TF rate was significant higher whereas SF and Ei 

rate were lower after thinning treatment (p < 0.05, Wilcoxon-Man-Whitney test). 
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Fig. 4-5 Relationship between gross precipitation (Pg) and canopy water balance (throughfall, TF; 

stemflow, SF; canopy interception, Ei) using the month-based rainfall data: pre-thinning period 

(solid cycles), and post-thinning period (hollow cycles). 
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Event-based scale: The relationships between event-based Pg and canopy water balance are 

shown in Fig. 4-6. Event-based Pg ranged from 0.8-176.8 mm with a mean of 17.4±30.6 mm in the 

pre-thinning period, and from 1.0-150.0 mm with a mean of 12.0±18.8 mm in the post-thinning 

period. Event-based TF ranged from 0.0-125.8 mm with a mean of 10.7±20.9 mm (0.0-76.5% of Pg) 

in the pre-thinning period, and from 0.0-124.1 mm with a mean of 9.4±15.6 mm (0.0-85.2% of Pg) 

in the post-thinning period. Event-based SF ranged from 0.0-19.7 mm with a mean of 1.7±3.6 mm 

(0.0-13.1% of Pg) in the pre-thinning period, and from 0.0-13.2 mm with a mean of 0.8±1.7 mm 

(0.0-10.7% of Pg) in the post-thinning period. Event-based Ei ranged from 0.8-36.6 mm with a mean 

of 5.0±6.2 mm (18.2-100% of Pg) in the pre-thinning period, and from 0.4-12.7 mm with a mean of 

2.7±1.7 mm (8.4-100% of Pg) in the post-thinning period.  

Based-event canopy water balance (TF, SF, and Ei) increased linearly with Pg (Fig. 4-6 a, c, e). 

The following equations were determined for the linear regressions: 

TFpre = 0.68Pg – 1.19    (R
2
 > 0.99)  (4.1) 

TFpost = 0.83 Pg – 1.29    (R
2
 > 0.99)  (4.2) 

SFpre = 0.12 Pg – 0.34     (R
2
 = 0.99)  (4.3) 

SFpost = 0.09 Pg – 0.34    (R
2
 = 0.97)  (4.4) 

Ei pre = 0.20 Pg + 1.52     (R
2
 = 0.98)  (4.5) 

Ei post = 0.08 Pg + 1.61     (R
2
 = 0.85)  (4.6) 

where TFpre, SFpre, and Ei pre represent TF, SF, and Ei in the pre-thinning period, and TFpost, 

SFpost, and Ei post represent TF, SF, and Ei in the post-thinning period.  
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Fig. 4-6  Relationship between gross rainfall (Pg) and canopy water balance using the rainfall event 

data: pre-thinning period (solid circles), post-thinning period (hollow circles). (a) throughfall (TF) 

amount, (b) ratio of TF to Pg, (c) stemflow amount (SF), (d) raito of SF to Pg, (e) canopy 

interception amount (Ei), and (f) ratio of Ei to Pg. 

The percentages of canopy water balance stabilized with increasing Pg in both periods (Fig. 4-

6b, d, f). Table 4-3 shows that mean percentage of canopy water balance to corresponding mean Pg 

class using event-based data in both periods. The percentages of canopy water balance changed 

significantly after rainfall depth greater about 10 mm after thinning treatment, and were relatively 

stable for larger magnitude events with rainfall depth greater than 40 mm in both periods (Fig. 4-7). 

Table 4-3 Mean ratio of canopy water balance (throughfall, TF; stemflow, SF, and canopy 

interception, Ei) and standard deviation (SD) corresponding to mean gross precipitation (Pg) 

classified into 14 classes using event-based data in the pre-thinning period and post-thinning periods. 

Entries indicate that there is no rainfall event in that classification. 

No. 
Rainfall 

class 

 
Pre-thinning 

 
Post-thinning 

Rainfall 

event 

Pg (mm)  TF/Pg (%)  SF/Pg (%)  E
i
/Pg (%) 

 
Rainfall 

event 

Pg (mm)  TF/Pg (%) SF/Pg (%)  E
i
/Pg (%) 

Mean SD Mean SD Mean SD Mean SD 
 

Mean SD Mean SD Mean SD Mean SD 

1 0~2 14 1.2 0.3 1.6 3.7 0.0 0.0 98.4 3.7 
 

15 1.4 0.3 29.0 20.6 0.2 0.3 70.9 20.6 

2 2~4 19 2.8 0.6 25.1 13.9 0.2 0.4 74.7 14.0 
 

15 2.7 0.6 41.7 12.0 0.6 1.2 57.7 12.3 

3 4~6 8 4.9 0.6 37.9 16.8 2.0 2.2 60.1 17.7 
 

13 4.9 0.6 52.5 7.8 1.9 1.8 45.6 7.0 

4 6~8 7 6.9 0.4 49.4 2.9 6.3 0.4 44.3 2.9 
 

11 6.7 0.6 60.4 7.9 3.4 2.1 36.2 8.0 

5 8~10 3 8.7 0.5 54.0 0.8 7.4 0.3 38.7 1.1 
 

5 8.9 0.4 60.9 7.0 5.1 2.1 34.0 7.0 

6 10~15 8 13.2 1.1 60.1 6.7 8.0 2.5 31.9 5.6 
 

11 11.3 1.4 69.9 4.6 3.7 1.3 26.4 5.4 

7 15~20 5 17.0 1.1 62.3 2.9 10.0 1.1 27.7 3.9 
 

9 18.3 1.3 75.4 6.9 6.4 1.9 18.2 5.4 

8 20~25 4 22.8 1.4 61.8 2.3 10.3 0.4 27.8 1.9 
 

7 22.1 1.7 76.8 4.4 6.3 1.7 16.2 2.6 

9 25~30 2 27.8 2.0 63.4 0.2 10.7 0.5 25.9 0.3 
 

4 29.1 1.2 79.1 4.4 7.3 2.3 13.6 2.8 

10 30~40 4 36.3 2.2 62.5 4.8 10.8 0.1 26.6 4.7 
 

3 32.4 3.0 78.5 3.1 8.0 2.3 13.5 1.4 

11 40~60 2 48.5 8.1 70.4 1.2 8.9 1.4 20.7 0.2 
 

3 48.5 7.0 81.4 1.6 6.8 1.4 11.9 1.6 

12 60~100 3 68.1 8.4 63.9 2.0 11.6 1.3 24.4 2.2 
 

1 71.0 0.0 78.3 0.0 9.7 0.0 12.0 0.0 

13 100~150 1 117.8 0.0 67.5 0.0 12.1 0.0 20.4 0.0 
 

- - 0.0 - 0.0 - 0.0 - 0.0 

14 150~200 2 166.9 14.0 67.6 5.0 11.6 1.3 20.8 3.6 
 

1 150.0 0.0 82.8 0.0 8.8 0.0 8.4 0.0 
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Fig. 4-7 Mean ratio of canopy water balance (throughfall, TF and stemflow, SF) to corresponding 

mean gross precipitation (Pg) classified into 14 classes using event-based data in pre-thinning period 

(solid symbol) and post-thinning period (hollow symbol). Pg was grouped into 14 intervals: 0~2 mm; 

2~4 mm; 4~6 mm; 6~8 mm; 8~10 mm; 10~15 mm; 15~20 mm; 20~25 mm; 25~30 mm; 30~40 mm; 

40~60 mm; 60~100 mm; 100~150 mm; 150~200 mm. Data were from Table 4-3. 

  This study elucidated the changes in canopy water balance after heavy strip thinning in a 

dense and matured stand of Japanese cypress plantation. The thinning experiment (removing 50% of 

trees) resulted in an increase in TF rate and decreases in SF rate and Ei rate. For example, at annual-

based scale, TF rate increased from 61.4-73.0% whereas SF decreased from 9.8-6.1%, and Ei 

decreased from 28.7-20.8% after thinning treatment (Table 4-2, Fig. 4-3). These results support the 

hypothesis that thinning reduces canopy interception and increases net precipitation (TF and SF) on 

the soil surface.  
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For the abandoned Japanese cypress plantation (i.e., before thinning), the TF rate was in the 

down range (60.1-85%) while the SF rate was in the up range (0.3-12.1%) compared with other 

coniferous forests (Table 3-2). Both TF and SF were affected by the characteristics of forest 

structure. For example, TF rate is affected by forest cover and branch architecture (Staelens et al., 

2006) and decreased with increasing canopy cover (Molina and del Campo, 2012). SF rate is greater 

in denser stands (Huber and Iroume, 2001) and smaller values for horizontal branches (Crockford 

and Richardson, 2000). Rainfall partitioning by forests plays a crucial role in canopy water balance 

and thereby on water resources in forested watershed (Crockford and Richardson, 2000; Llorens and 

Domingo, 2007). The thinning of forest stands alters the forest structures (e.g., canopy cover and 

basal area), and can be an important and immediate tool to exhibit a strong hydrological function on 

regulating the redistribution of water resources.   

In the present study, thinning caused an increase in water availability in the soil matrix, 

especially in dry season (Table 4-2). Dung et al. (2012) examined runoff responses to forest thinning 

(removing 58.3% of trees) at plot and catchment scales in a Japanese cypress plantation. They 

reported that annual catchment runoff increased significantly (mean: 240.7 mm), yet increases in 

hillslope plot runoff were not significant. That implies that after thinning, the increased net 

precipitation directly infiltrated the soil and increased base flow or recharged groundwater. The 

changes in forest water cycles by thinning contribute to increase low flow discharge in the drought 

periods and recharge groundwater in the rainy season. Examining changes in various components of 

the forest water cycle (e.g., Ei, tree transpiration, and runoff) due to forest practices are of important 

to improve the understanding of processes underling changes in water yield in forested watersheds.    

4-2-2 Strip thinning and selective thinning effects on canopy interception 

In the present study, the change in Ei rate caused by strip thinning agrees with the simple 

relationship between stand density and Ei rate in Japanese coniferous forests developed by Komatsu 

et al. (2007) (Fig. 4-8). The equation is determined based on a summary of 16 earlier observational 
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Ei studies, and is a useful tool for predicting the influence of forest management on Ei rate in 

Japanese coniferous plantations. Furthermore, the reduction in Ei rate (27.5%) by strip thinning 

tended to be smaller than that by selective thinning reported by Nanko et al. (2013), although the 

thinning of magnitude was similar (Table 4-4, Fig. 4-8). They reported that selective thinning by 

removing 46% of the trees in a Japanese cypress plantation in Kochi, Japan, resulted in a 208.4 mm 

decrease in Ei or a 58.2% reduction in Ei rate from 29.9-12.5% (Table 4-4, Fig. 4-8). The reduction 

in Ei rate caused by selective thinning is approximately twice as that by strip thinning.  
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Fig. 4-8 Comparison of strip thinning and selective thinning with a simple relationship between 

stand density (D, stem ha
-1

) and interception rate (Ei, %) in coniferous forests in Japan developed by 

Komatsu et al. (2007). The linear equation was expressed as: Ei (%) = 0.00498 D + 12 

(500<D<3000), R
2
 = 0.42. 
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The differences between strip thinning and selective thinning may be related to the changes 

in forest canopy cover. Although both thinning ways removed about 50% of trees in a catchment, 

selective thinning caused a 30.2% decrease in canopy cover from 85.5-59.7% (Nanko et al., 2013) 

while strip thinning caused a 22.2% decrease in canopy cover from 97.4-75.8% (Table 2-1, Fig. 4-

8). The decrease in canopy cover caused by strip thinning is smaller than that by selective thinning. 

The Ei is determined by forest structural parameters (forest density, canopy structure, and leaf area 

index) (Deguchi et al., 2006; Komatsu et al., 2007). The two thinning methods caused different 

changes in forest structures. Strip thinning only caused the canopy cover at corridors change while 

selective thinning resulted in the whole canopy cover of forest stand change. Therefore, the resultant 

changes in Ei rate may differ between strip thinning and selective thinning. This study is one of case 

studies on the influence of strip thinning on Ei. In the future, it is important to accumulate data 

related to changes in canopy water balance caused by thinning, especially strip thinning, to require 

an integrated understanding of the effects of management practices in forest watersheds.   

4-2-3 Interception response to thinning ratio and gross precipitation 

The reduction in Ei rate (27.5%) obtained in this study also agrees with previous literatures 

on thinning effects on Ei (Table 4-4). For example, Limousin et al. (2008) reported a 34.6% 

reduction in Ei after 47% thinning in Quercus ilex forest in southern France. (Whitehead and 

Kelliher, 1991) reported a 27.2% reduction in Ei after 56% thinning in Pinus radiate forest in New 

Zealand. The degree of decline in Ei loss/rate after thinning may be related to gross precipitation and 

ratio of thinning (Fig. 4-9a, b). The decrease in Ei loss with gross precipitation > 1000 mm was 

significantly larger than that with gross precipitation < 1000 mm (Fig. 4-9a). For example, Breda et 

al. (1995) reported a 45.5 mm decrease of Ei after 23% thinning for 650 mm of annual Pg while for 

1245 mm of annual Pg, Sado and Kurita (2004) observed a 83.4 mm decrease in annual Ei after 21% 

of the stems removal. This pattern suggested that areas with more annual precipitation appear to 

have greater decrease in Ei after thinning treatment compared to areas with less precipitation.  



Chapter 4 Strip thinning effect on partitioning of evapotranspiration 

  85 

0 20 40 60 80 100
0

20

40

60

80

100

0

100

200

300

 

 

D
ec

re
as

e 
in

 E
i 

 ra
te

 (
%

)

Ratio of thinning treatment (%)

This study

Stand density

              > 2000 stems ha
-1

              < 2000 stems ha
-1

Gross preciptation 
     > 1000 mm

     < 1000 mm

(b)

This study  

 

D
ec

re
as

e 
in

 E
i (

m
m

)

(a)

1:1

 

Fig. 4-9 The relationship between (a) ratio of thinning treatment and canopy interception (Ei) 

decrease (mm) and (b) ratio of thinning treatment and decrease in Ei rate in the present study and 

previous studies (data were from Table 4-4). Ratio of thinning treatment was selected based on ratio 

of stem removal because basal area cannot be found in some previous studies. 
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In addition, the degree of decline in Ei rate may be also related to the amount of biomass 

removed (Table 4-4, Fig. 4-9b). For thinning ratio < 30%, the decrease in Ei rate is proportional or 

more than the removal of biomass. For example, Sado and Kurita (2004) reported that the observed 

reduction in Ei rate (11.5% and 22.6%, respectively) was proportional to the removal of the stems 

(12% and 21%, respectively) (corresponding to 29.3% and 27.8% of the basal area, respectively) in 

a Chamaecyparis obtusa forest in Japan. In addition, the observed reduction in Ei rate (35.8%) was 

larger than the removal of the stems (19%) in a Pinus densiflora forest in Japan (Hattori and 

Chikaarashi, 1988). However, for thinning ratio > 30%, the decrease in Ei rate was usually lower 

than the removal of the stems. For instant, after removing 67% of the stems (corresponding to 

42.5% of the basal area) with respect to control-plot value in a Pinus densiflora forest in Japan, the 

observed decline in Ei rate was 33.8% (Murai, 1970). In a Pinus radiata forest in Yass catchment, 

Australia, removing 59% of the stems (corresponding to 50.4% of the basal area) with respect to 

pre-thinning value resulted in a 41.6% decrease in Ei (Crockford and Richardson, 1990).  

The changes in Ei are affected by thinning ratio/method and Pg. Thus there should be an 

optimum value of reduction of the stems (or the basal area) to attain a significant decrease in Ei and 

increase in water yield. The results with summarizing from previous studies can be used for 

researchers to get a general understanding to manage and implement hydrology-based silviculture. 

This study only examined the changes in canopy water balance after one-year thinning. Thinning 

will increase the growth of remained individual trees due to apportion a higher availability of site 

resources (e.g., soil water and solar radiation). The canopy closure fraction will also increase each 

year into to the future and this will lead to the changes in rainfall partitioning. In the future, 

temporal changes in canopy water balance after thinning are required to evaluate the effects of 

forest management on water resources of forested watersheds. 
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4-2-4 Summary 

           This section quantified the effect of strip thinning on gross precipitation (Pg) partitioning into 

throughfall (TF), stemflow (SF) and canopy interception (Ei) at various time scales (e.g., annual, 

season, month, and event) in a Japanese cypress plantation. The results indicated that (1) strip 

thinning caused annual TF rate to increase (from 61.4-73.0%) whereas annual SF rate (from 9.8-

6.1%) and Ei rate (from 28.7-20.8%) to decrease; (2) strip thinning caused net precipitation (TF and 

SF) rate to increase by 11.1%, which increased the water availability in the soil matrix, especially in 

dry season; (3) the reduction in Ei rate (27.5%) by strip thinning tended to be smaller than that by 

selective thinning, which may be induced by the changes in forest canopy cover; (4) by 

summarizing the findings of previous studies, it appears that the degree of decline in Ei loss/rate 

caused by thinning was related to Pg and ratio of thinning. This work provides useful information 

for researchers to forecast the effects of land use and cover change on water resources in forested 

watersheds. These results with summarizing from previous studies can also be used for researchers 

to get a general understanding to manage and implement hydrology-based silviculture. In addition, 

it is important to collect data related to the changes in Ei under different thinning methods to achieve 

an integrated understanding of watershed water balance and best management practice.   
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4-3 The effect of strip thinning on tree transpiration  

4-3-1 Sapwood area estimates in pre- and post-thinning 

 As_stand in the pre-thinning period was 26.1 m
2 

ha
-1

 and decreased 46.4% after thinning 

(Table 2-1). The sapwood area at xylem bands of 0-20 and 20-40 mm before and after thinning are 

also shown in Table 2-1.  Fig. 4-10 shows the relations between DBH and tree_SA  in the pre- and 

post-thinning periods (DBH and 
treeSA _

 were measured in/around the observation plot, with 44 trees 

were selected before thinning, and 18 trees were left after thinning). The tree_SA  in the pre-thinning 

period ranged from 57.7 to 229.6 cm
2
 with a mean of 150.8 cm

2
, and ranged from 71.9 to 223.1 m

2
 

with a mean of 155.5 cm
2
 in the post-thinning period. Power functions of DBH were fitted to 

tree_SA  using linear regression analysis. The R
2
 values were 0.83 for both the pre- and post-

thinning periods.   

As_stand in this study decreased by 46.4% after 50% thinning (Table 2-1). The sapwood area at 

xylem bands of 0-20 and 20-40 mm also showed similar trends and declined by 47.5% and by 

44.0%, respectively (Table 2-1). The decline of As_stand corresponded to the ratio to thinning. A linear 

relation between DBH and AS-tree was found for Japanese cypress plantations (Fig. 4-10). Although 

several studies estimated the As-tree from a power function-based regression (Kumagai et al., 2007; 

Vertessy et al., 1995; Wullschleger and King, 2000), this regression did not drastically heighten the 

relation between DBH and tree_SA  because individuals with a DBH were larger than approximately 

0.1 m in this study plot (Fig. 4-10). Kume et al. (2010) reported that there was no significant change 

between the measured and estimated tree_SA using the linear relationship between DBH and 

tree_SA  from 58 Japanese cypress trees. A linear relationship was also produced from an allometric 

data set on 1226 Japanese cypress plantations (Kumagai et al., 2005c). These findings can be used 

to estimate tree_SA
 
according to the allometric data (DBH) and then to obtain As_stand for Japanese 

cypress plantations.  
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Fig. 4-10 Stem diameters at breast height (DBH) versus tree sapwood area (AS_tree) for 44 Japanese 

cypress trees in the pre-thinning and 18 Japanese cypress trees in the post-thinning. The trees are 

selected in/around the study plot; the overlapped scatters indicate the trees were not felled after 

thinning. Black line represents regression equation derived in the pre-thinning (y = 1218.4 x – 82.9 

(R
2
 = 0.83)). Dotted line represents regression equation generated after thinning (y = 1215.5 x – 72.0 

(R
2
 = 0.83)). 

 

4-3-2 Changes in sapflow density  

Fig. 4-11 shows the diurnal courses in Fd at depths of 0-20 (outer xylem) and 20-40 mm 

(inner xylem) in the three tree classes (large, medium and small) (Table 4-5), with the Rs and VPD 

values on given days without rain (Aug 9, 2011 and Aug 9, 2012) representing the pre- and post-

thinning days, respectively. The Rs values were 18.3 and 17.5 MJ m
-2

, and VPD values were 1.2 and 

1.3 kPa on August 9 in 2011 and 2012, respectively. There was a pronounced diurnal hysteresis 
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between Rs and VPD (2-3 h between the peaks). The climatic conditions are considered to be similar 

on these two days, with a moderate atmospheric evaporative demand. The dynamics of the Fd 

reflected Rs and VPD values; however, the Fd at the outer xylem was more sensitive to climatic 

conditions in the post-thinning day compared with the pre-thinning day. For example, the Fd 

decreased sharply when the VPD declined suddenly on August 9, 2012. However, the Fd slightly 

changed when the VPD decreased abruptly on August 9, 2011.   

Furthermore, the Fd decreased with an increase in the measurement depth. In addition, the Fd 

at the outer xylem obviously increased in the three tree classes, particularly in the small tree class, 

whereas the Fd at the inner xylem did not significantly change after thinning (Fig. 4-11). The 

maximum Fd (outer xylem + inner xylem) of the three classes (large, medium and small) increased 

from 47.15 to 60.41 cm
3
 m

-2
 s

-1
, from 48.25 to 57.70 cm

3
 m

-2
 s

-1
 and from 20.91 to 36.88 cm

3
 m

-2
 s

-

1
, respectively. In addition, the daily Fd of the three classes increased by 20.2 ± 0.5%, reaching 

1040.24 cm
3
 m

-2
 d

-1
, by 19.9 ± 0.4%, reaching 990.86 cm

3
 m

-2
 d

-1
, and by 92.2 ± 2.1%, reaching 

610.37 cm
3
 m

-2
 d

-1
, respectively.  

Table 4-5 Number (n) and mean diameter at 1.3 m 

aboveground (1 SE) of sampled Japanese cypress trees 

for each size class.  

 

Pre-thinning 
 

Post-thinning 

Size class n DBH (mm) 

 

n DBH (mm) 

Small 3 16.4 (0.5) 

 

2 16.7 (0.3) 

Medium 3 19.3 (0.7) 

 

2 19.7 (0.5) 

Large 4 22.1 (1.0) 

 

2 21.7 (0.9) 
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Fig. 4-11 Half-hourly patterns of sap flux density (Fd) in two depth categories (outer xylem: 0-20 

mm, and inner xylem: 20-40 mm) and three tree size classes (large, medium and small) on August 9, 

2011 (pre-thinning) and on August 9, 2012 (post-thinning). Climatic conditions (e.g., vapor pressure 

deficit (VPD) and solar radiation (Rs)) are also shown. Vertical bars represent standard deviation 

(SD). (see Table 4-5 for the number of each tree class). 
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Fig. 4-12 (a)Time series of mean daily sap flux densities for xylem bands 0-20 (JS_A) and 20-40 mm 

(JS_B), (b) relation between mean daily daytime vapor pressure deficit (VPD) and JS_A, JS_B (c) for all 

measured Japanese cypress trees, and (d) stand sap flux density (JS) during the growing season in 

the pre-thinning period (April 28 – October 10, 2011) and the post-thinning period (April 28 – 

October 10, 2012). 

Daily JS_A and JS_B values with tree-to-tree variations in the pre- and post-thinning period 

during the growing season are shown in Fig. 4-12a. The mean stand Fd measured at radial depths of 

0-20 and 20-40 mm consistently decreased with depth over both periods and varied with 

meteorological conditions (e.g., VPD and Rs). During the rainy period (e.g., May 22-29, 2011), the 

sap flow was appreciably reduced due to the low VPD and Rs.  

The JS_A values were higher in the post-thinning period than in the pre-thinning periods 

(P<0.01: Mann-Whitney U test), and the differences significantly increased with increasing VPD 

(Fig. 4-12b). The daily JS_A values ranged from 0.03 to 1.26 m
3
 m

-2
 d

-1
,
 
with a mean of 0.62 ± 0.31 
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m
3
 m

-2
 d

-1
 in the pre-thinning period, and ranged from 0.06 to 1.72 m

3
 m

-2
 d

-1
, with a mean of 0.97 ± 

0.40 m
3
 m

-2
 d

-1
, in the post-thinning period. However, unlike the JS_A values, the JS_B values had no 

significant differences between the two periods (P>0.05: Mann-Whitney U test) (Fig. 4-12c). The 

daily JS_B values ranged from 0.02 to 0.58 m
3
 m

-2
 d

-1
,
 
with a mean of 0.23 ± 0.10 m

3
 m

-2
 d

-1
 in the 

pre-thinning period, and ranged from 0.06 to 0.44 m
3
 m

-2
 d

-1
, with a mean of 0.22 ± 0.08 m

3
 m

-2
 d

-1
, 

in the post-thinning period. The changes in JS values reflected a similar trend compared with the JS_A 

values and were higher in the post-thinning period than in the pre-thinning period (P<0.05: Mann-

Whitney U test). The differences significantly increased with increasing VPD (Fig. 4-12d). The 

daily JS values averaged over the growing season were 0.50 ± 0.23 m
3
 m

-2
 d

-1
, ranging from 0.03 to 

1.00 m
3
 m

-2
 d

-1
, in the pre-thinning period, whereas the daily JS values were 0.71 ± 0.29 m

3
 m

-2
 d

-1
, 

ranging from 0.07 to 1.27 m
3
 m

-2
 d

-1
, in the post-thinning period.  

Radial patterns in the Fd declined with depth (Fig. 4-11, 4-126a), which have often been 

investigated in different species (e.g., Kumagai et al., 2005b; Oren et al., 1999; Phillips et al., 1996), 

indicating that xylem conductivity decreases quickly with radial depth. The Fd at the outer xylem 

significantly increased, whereas the Fd at the inner xylem did not significantly change after thinning 

(Fig.4-11, 4-12b, c). This result indicates that thinning only enhanced the capacity of conducting 

water at the outer xylem. Furthermore, the effect of tree classes (Large, medium and small) on the 

Fd showed that the Fd for the three tree classes increased significantly after thinning, particularly for 

the small class. The differences in the Fd between small trees and dominant trees were reduced due 

to the thinning treatment (Fig. 4-11). The transpiration rate (i.e., the physical process of water 

vaporization) is mostly determined by the amount of available solar radiation above the canopy 

(Gebauer et al., 2011). For example, in a fully closed Norway canopy, the uppermost 10% of needle 

biomass intercepted as much as 50% of the incoming solar radiation (Kucera et al., 2002). The 

higher radiation interception in the upper canopy in turn results in higher transpiration (Moren et al., 

2000). Indeed, the Fd was related to the tree class, and co-dominant trees exhibited a lower Fd in 
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Eperua falcata forest (Granier et al., 1996c). In this study, the high stand density (2198 tree ha
-1

) 

caused an almost fully closed canopy cover (canopy cover fraction: 0.974); thus, the small trees 

were partly shaded by dominant trees and experienced lower light before thinning. However, after 

50% thinning, solar radiation can penetrate deeper into the lower crowns. Therefore, small trees 

were able to receive more irradiance, and Fd largely increased.    

The dynamic of Fd was more sensitive to climatic variables (e.g., VPD and Rs) after 

thinning, and the differences in JS were significantly higher with increasing VPD in the post-

thinning (Fig. 4-11, 4-12d). This result suggests a higher influence of climatic factors on JS after 

thinning. In this study, we did not consider the effect of soil water content on JS because Pg was 

higher than PET during both periods, and thus, the soil-water competition among trees is not severe. 

This finding is similar to previous studies (Komatsu et al., 2006; Komatsu et al., 2012; Kumagai et 

al., 2008; Morikawa et al., 1986), who reported soil water deficit had little or no effect on the 

examination of Et and evapotranspiration in Japan. 

4-3-3 Canopy conductance response to thinning 

           Fig. 4-13 shows the relations between VPD and Gc for the Japanese cypress forest during the 

growing season in pre- and post-thinning period, respectively. the mean daily daytime VPD and Gc 

for the Japanese cypress forest during the growing season in pre- and post-thinning periods, 

respectively. The Gc was 0.0031 ± 0.0035 m s
-1

 in the pre-thinning period, whereas the Gc was 

0.0021± 0.0017 m s
-1

 in the post-thinning period. We observed significantly (P<0.01) negative 

correlations in both periods; thus, the Gc values were modeled before and after thinning, 

respectively, as: 

                                       )ln(001.00021.0 VPDGc      51.02 R             (4.7) 

)ln(001.00016.0 VPDGc     54.02 R             (4.8) 
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Fig. 4-13 Relations between the mean daily daytime vapor pressure deficit (VPD) and canopy 

conductance (Gc) for Japanese cypress forests during the growing season (April 28 – October 10) in 

the pre-thinning period (solid circle) and the post-thinning period (white circle). The data are 

classified according to solar radiation (Rs). The solid lines are the regression lines, which were 

determined by the least-squares method for all data, representing the pre- and post-thinning periods, 

respectively. 

            In this study, the Gc significantly decreased after thinning (Fig. 4-13). Gc expresses the 

physiological control of Et (Kelliher et al., 1995; Raupach, 1995) and affects the transpiration rates 

of forest canopies (Jarvis and Mcnaughton, 1986; Kelliher et al., 1993; Komatsu, 2004). Gc also 

strongly correlates with canopy photosynthesis rates (Lai et al., 2000; Law et al., 2001b). Therefore, 

the low Gc after thinning implies lower Et and photosynthesis, and thus, possible changes in 

terrestrial water and carbon cycles due to thinning treatment.   
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4-3-4 Changes in single tree transpiration           
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Fig. 4-14 (a) Half-hourly patterns of tree transpiration ( treetE  ) in three tree size classes (large, 

medium and small) and vapor pressure deficit (VPD) on August 9, 2011 (pre-thinning) and on 

August 9, 2012 (post-thinning). Vertical bars represent the standard deviation (SD). (see Table 4-5 

for the number of each tree class). (b) Mean daily treetE   averaged by all measured Japanese 

cypress trees using the Granier method response to the mean daily daytime VPD in the pre- and 

post-thinning periods during the growing season (April 28 – October 10). 
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           The diurnal courses in treetE   
in the three tree classes (large, medium and small) under given 

similar climatic conditions without rain on Aug 9, 2011 and Aug 9, 2012 are shown in Fig. 4-14a. 

treetE   
correlated with tree sizes and was smallest in the small tree class on both days. Furthermore, 

treetE   increased after thinning. The maximum half-hourly treetE   in the three classes increased 

from 1.0689 to 1.3605 g tree
-1

 30 min
-1

, from 0.9115 to 1.1212 g tree
-1

 30 min
-1

, and from 0.2312 to 

0.6292 g tree
-1

 30 min
-1

, respectively. The daily treetE  in the three classes increased by 20.1%, 

reaching 0.023 kg d
-1

, by 24.2%, reaching 0.019 kg d
-1

, and by 195.1%, reaching 0.010 kg d
-1

, 

respectively. In particularly, the daily treetE   in the small class significantly increased.   

            Fig. 4-14b shows the mean daily sampled treetE   response to the mean daily daytime VPD 

in the pre- and post-thinning periods during the growing season. The mean daily treetE   was 0.008 

± 0.004 kg d
-1

, ranging from 0.001 to 0.016 kg d
-1

, in the pre-thinning period, whereas the mean 

daily treetE   was 0.012 ± 0.005 kg d
-1

, ranging from 0.001 to 0.021 kg d
-1

, in the post-thinning 

period. The daily treetE   was significantly higher in the post-thinning period than in the pre-

thinning period during the growing season (P<0.01: Mann-Whitney U test). Moreover, the 

difference in both periods became remarkable with increasing mean daily daytime VPD. 

The daily treetE   in the present study increased after thinning (Fig. 4-14a, b). The increase in 

the daily treetE  may primarily be due to the increase in the Fd (Fig. 4-11) because the Fd increased 

significantly at the outer xylem (0-20 mm) after thinning (Fig. 4-11, 4-12b), and because the effect 

of  the growth of the sapwood area of residual trees were assumed to be small after one-year 

thinning. Breda et al. (1995) also observed that there were no significant differences in the sapwood 

area in an oak forest. The results regarding the daily treetE   increased were consistent with previous 

studies (Lagergren and Lindroth, 2004; Medhurst et al., 2002; Morikawa et al., 1986; Reid et al., 
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2006; Simonin et al., 2006). For example, Morikawa et al. (1986) reported that the daily treetE  was 

higher at a given level of Rs after 24% thinning in a 31-year-old Japanese cypress stand. Reid et al. 

(2006) found that individual trees in the thinned plot transpired more water in a lodgepole pine 

(Pinus contorta) forest in Alberta, Canada. However, several studies reported that treetE   had no 

clear differences when thinned. Gebauer et al. (2011) found that treetE  remained similar between 

thinned and control plots for a spruce forest in southeast Norway. These authors implied that sun-

exposed needles were subjected to higher water shortage in the thinned plot.   

           The results also show that the daily treetE  for the small tree class increased by 195.1%, 

reaching 0.010 kg d
-1 on given days after thinning (Fig. 4-14a). This result was contrary to the 

results of Morikawa et al. (1986), who reported that there was no significant difference in the daily

treetE   on suppressed Japanese cypress before and after thinning. This conflict may be related to the 

deference of the stand density and the ratio of thinning. In their study, the ratio of thinning was 24% 

and stand density decreased from 1750 to 1325 trees ha
-1

. The spacing for small tree class was not 

significantly changed. In the present study, the ratio of thinning was 50%, and the stand density 

decreased from 2198 to 1099 trees ha
-1

. The openness of the crown declined significantly (22.2%) 

after thinning (Table 2-1). Solar radiation can penetrate deeper into the dense canopy by heavy 

thinning and, thus, result in remarkably increases in the Fd of small tree class. Therefore, the daily 

treetE   for the small class significantly increased after thinning in the present study.  

4-3-5 Changes in stand transpiration 

 

The daily variations in dtanstE  , which are related to the mean daily daytime VPD in the 

pre- and post-thinning periods during the growing season, are shown in Fig. 4-15. Although JS 

values in the post-thinning period increased (Fig. 4-12d), the daily dtanstE  was significantly lower 

in the post-thinning period than in the pre-thinning period (P<0.01: Mann-Whitney U test), because 
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AS-stand was reduced by 46.4% after 50% thinning (Table 2-1). The mean daily dtanstE  was 1.29 ± 

0.60 mm d
-1

, ranging from 0.07 to 2.36 mm d
-1

, in the pre-thinning period, whereas the mean daily 

dtanstE  was 1.00 ± 0.40 mm d
-1

, ranging from 0.10 to 1.77 mm d
-1

, in the post-thinning period 

(Table 4-6, Fig. 4-15). The total dtanstE  during the growing season was 214.9 mm, accounting for 

18.9% of Pg or 40.3% of PET in the pre-thinning period. After thinning, the total dtanstE  decreased 

by 23.0% and was 165.5 mm, accounting for 19.0% of Pg or 27.3% of PET after thinning (Table 4-

6).  
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Fig. 4-15 Daily stand transpiration ( dtanstE  ) response to the mean daily daytime vapor pressure 

deficit (VPD) in the pre- and post-thinning periods during the growing season (April 28 – October 

10). 
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Daily variations in dtanstE  related to mean daily daytime VPD in the pre- and post-thinning 

periods at annual scale are shown in Fig. 4-16. The daily dtanstE  was also significantly lower in 

the post-thinning period than in the pre-thinning period (P<0.01: Mann-Whitney U test) (Fig. 4-16a). 

The mean daily dtanstE  decreased by 39.8%, from 1.23 ± 0.48 mm d
-1

 in the pre-thinning period to 

0.74 ± 0.42 mm d
-1

 in the post-thinning period (Table 4-6; Fig. 4-16a). The annual dtanstE  in the 

pre-thinning period was 441.0 mm, accounting for 30.5% of Pg or 49.3% of PET. After thinning, the 

annual dtanstE  decreased by 38.3% and was 272.1 mm, accounting for 21.5% of Pg or 28.8% of 

PET (Table 4-6; Fig. 4-16b).   
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Fig. 4-16  Daily stand transpiration ( dtanstE  ) response to the mean daily daytime vapor pressure 

deficit (VPD) with boxplots drawn from the data; and (b) cumulative daily values of gross 

precipitation (Pg), potential evapotranspiration (PET), and dtanstE   in the pre-thinning period 

(November 1, 2010 – October 31, 2011) and the post-thinning period (November 1, 2011 – October 

31, 2012), respectively.  
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 Contrary to the daily treetE  increased after thinning (Fig. 4-14b), the daily dtanstE 

decreased significantly after thinning (Fig. 4-11, 4-15a). This result was consistent with the lower 

Gc that was caused by thinning in this study (Fig. 4-13). The daily dtanstE  was calculated from 

GstandS AA /_ and JS (Eq. (2.8)). Therefore, the decreases in the daily dtanstE  were caused by the 

reduction in the sapwood area (46.4%) (Table 2-1), although there was an increase in JS after 

thinning (Fig. 4-12d). The total dtanstE  decreased by 23.0% during the growing season and by 

38.3% at the annual scale after thinning. The results agree with previous studies (Breda et al., 1995; 

Lagergren et al., 2008; Morikawa et al., 1986; Simonin et al., 2007). For example, Morikawa et al. 

(1986) reported that dtanstE  decreased by 21.2% after 24% thinning in a 31-year-old Japanese 

cypress forest. Lagergren et al. (2008) found that dtanstE  for a thinned plot of a pine-spruce forest 

was lower by 40% than that for the control plot for the first year after removing 24% basal area. 

            However, the difference in dtanstE  between the thinned and control plot may not be 

significantly reduced due to the drought period or temporal changes in dtanstE  after thinning. 

Simonin et al. (2007) found considerable differences in dtanstE  between the thinned and control 

plots when the soil water content was high in semi-arid Pinus ponderosa forests, whereas the 

difference was much less when the soil water content was low. Lagergren et al. (2008) reported that 

dtanstE  in the thinned plot was rather higher than in the control plot during the drought period 

(July-September) when soil water content was low due to low precipitation. Additionally, dtanstE 

might gradually increase for several years after thinning and approach the total dtanstE  value 

before thinning. Breda et al. (1995) reported that dtanstE  was lower in the thinned plot of an oak 

forest for the first year after thinning. However, dtanstE  was nearly the same between the thinned 

and control plots for the second year after thinning. Lagergren et al. (2008) also found that the 
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difference in dtanstE  between the thinned and control plots diminished successively for the second 

year after thinning. Therefore, further studies were recommended to examine the variation in 

dtanstE  for Japanese coniferous forests for the drought (low-precipitation) years, although the 

annual Pg is usually higher than PET, and the soil water deficit is not severe in Japan (Komatsu et 

al., 2006, 2012; Kumagai et al., 2008). Furthermore, measurement studies at a multi-year scale are 

also required to elucidate the temporal changes in dtanstE   after thinning in Japanese coniferous 

forests.   

In the present study, the decrease in the total dtanstE   was less than that in As_stand after 50% 

strip thinning in a Japanese cypress plantation. The results were in contrast to those results observed 

by Komatsu et al. (2013). Recently, these authors conducted 45% selective thinning (from 1100 to 

600 stem ha
-1

) in a Cryptomeria japonica plantation in Japan and reported that the change in 

dtanstE   was comparable to that in As_stand and that JS did not increase due to thinning. The 

different results may be related to the stand characteristics and to the thinning method. In their 

studied stand, the stand density is relative sparse, which may cause water and environmental 

variables (light competition) to be less significant just after thinning. Additionally, the different 

thinning methods may be other possible factors. Different forestry practices (e.g., strip thinning and 

selective thinning) can result in different changes in stand structures and environmental variables. 

The resultant changes in stand/tree Et under different forestry practices would be different. However, 

until now, data regarding the stand/tree Et response to forest managements are so limited that it is 

difficult to obtain the single most important factor affecting tree water use. Therefore, further 

research should evaluate the responses of stand/tree Et under different management plans (e.g., 

selective thinning and partial cutting) to identify those practices that are most optimized for water 

and forest management in forest watersheds.    
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4-3-6 Summary 

This section elucidated the variations in Et and Gc, in addition with tree-to-tree and radial Fd 

by 50% strip thinning in a Japanese cypress forest. The results showed that the Fd at the outer xylem 

(0-20 mm) increased remarkably, whereas the Fd at the inner xylem (20-40 mm) had no significant 

change in three tree classes (large, medium and small) after thinning. This result implies that 

thinning only enhanced the capacity of conducting water at the outer xylem. Correspondingly, the 

JS_A values were higher in the post-thinning period, whereas the JS_B values had no significant 

differences between the pre- and post-thinning periods. Similar to JS_A, the JS values were higher in 

the post-thinning period, and the differences significantly increased with increasing VPD. 

Furthermore, the daily treetE   increased in the three tree classes after thinning. Specially, the daily 

treetE  for the small class significantly increased, which may due to deeper solar radiation 

penetration into the canopy after heavy thinning, and then increased the transpiration of the lower 

crowns. Unlike the daily treetE  , the daily dtanstE  decreased by 39.8%, from 1.23 ± 0.48 to 0.74 ± 

0.42 mm d
-1

,
 
at the annual scale, which is due to the reduction in the sapwood area (46.4%) that is 

caused by thinning, although there was an increase in JS. The annual dtanstE  decreased by 38.3%, 

from 441.0 to 272.1 mm. The Gc values were significantly lower in the post-thinning period during 

the growing season. This result implies lower dtanstE   and photosynthesis and would be useful for 

simulating possible changes in terrestrial water and carbon cycles due to the thinning treatment 

using ecosystem models. This study was conducted only one year after thinning, without soil water 

stress. Thus, further studies are recommended to examine the variation in Et for drought (low-

precipitation) years and the temporal changes in Et at a multi-year scale by thinning. Further 

research should also evaluate the effects of different management practices on tree water use to 

identify those practices that are most appropriate for water and forest management in forest 

watersheds.   
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4-4 The effect of strip thinning on forest floor evaporation  

4-4-1 Spatial variation of forest floor evaporation response to thinning 

Daily variations in Ef of three lysimeters (L1, L2 and L3) located at different points at the 

forest floor in the pre- and post-thinning measuring periods are shown in Fig. 4-17. L1 and L2 were 

placed on the remained tree lines while L3 was placed on the thinned tree lines.  In the pre-thinning 

measuring period (September 12 – October 10, 2011), daily Ef of the three lysimeters had a mean of 

0.41±0.20, 0.45±0.18 and 0.40±0.19 mm d
-1

, respectively. Total amount was 11.30, 12.70 and 11.10 

mm, respectively. In the post-thinning measuring period (November 6 – October 31, 2012), daily Ef 

of the three lysimeters had a mean of 0.67±0.48, 0.72±0.0.50 and 0.64±0.0.46 mm d
-1

, respectively. 

Total amount was 241.3, 260.7 and 233.4 mm, respectively. There are no significance differences on 

Ef among the three lysimeters in both periods. This indicates that spatial differences in Ef are not 

dependent on the location at the forest floor.  

 

Fig. 4-17 Variations in daily forest floor evaporation (Ef) of three lysimeters located in the remained 

tree lines: L1(R) and L2 (R), and the thinned tree lines: L3(T) in the pre-thinning measuring period 

from September 12 to October 10, 2011, and post-thinning measuring period from November 6, 

2011 to October 31, 2012, respectively.   



Chapter 4 Strip thinning effect on partitioning of evapotranspiration 

  109 

Surface soil was the dominant reservoir for evaporation flux from forest floor, and could 

support high Ef flux when energy was available. Soil water deficit was not severe because annual Pg 

was larger than PET in both pre- and post-thinning periods (see Fig. 4-1; Table 4-7). Therefore, 

spatial variations in Ef are affected by photoenvironment (e.g., solar radiation) under the forest 

canopy. Before thinning, photoenvironment was considered to be constant under the dense canopy 

cover (canopy cover fraction: 0.974) caused by the high stand density. This was consistent with the 

result that there were no significant changes among the three lysimeters located at different points at 

the forest floor before thinning. After thinning, solar radiation penetrated increasedly into the forest. 

Ef increased largely among the three lysimeters while there were still no significant differences 

among them located at the remained tree lines and the thinned tree lines. Fig. 4-18 shows the 

variations in solar radiation at the forest floor measured at three different points: the remained tree 

lines, the thinned tree lines, and between one remained tree line and one thinned tree line after 

thinning. Daily solar radiation of the three points had a mean of 4.9±2.5, 4.8±2.7 and 4.7±2.1 MJ m
-

2
, respectively. There were also no significant differences among them located at different positions. 

The spatial variations in Ef corresponded to solar radiation at the forest floor. That may partially 

explain the homogeneity spatial variations in Ef after thinning.  

The results showed that it is particularly important to understand the changes in spatial 

variations in Ef and solar radiation by thinning, and will be used to analyze and model the energy 

balance at the forest floor. 
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Fig. 4-18 Daily variations in solar radiation at the forest floor located in the remained tree lines: 

S(R); the thinned tree lines: S(T); and between one remained tree line and one thinned tree line: 

S(R/T) for the period of May 13 to October 24, 2013. 

4-4-2 Changes in forest floor evaporation  

Time series of daily Ef for the pre-thinning period from the November 1, 2010 to October 31, 

2011 and for the post-thinning period from the November 1, 2011 to October 31, 2012 are shown in 

Fig. 4-19. Mean daily Ef was 0.34±0.23 mm d
-1

 ranging from 0.02 to 1.01 mm d-1 in the pre-

thinning period (Fig. 4-19a) while it was 0.68±0.47 mm d
-1

 ranging from 0.00 to 2.10 mm d
-1

 in the 

post-thinning period (Fig. 4-19b). Mean daily Ef increased by 99.3% and was significantly larger in 

the post-thinning period than in the pre-thinning period (P< 0.01: Mann-Whitney U test).  
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Fig. 4-19 (a) Time series of daily forest floor evaporation (Ef) responded to gross precipitation (Pg) 

in the pre- and (b) post-thinning periods, respectively.   

Seasonal changes in monthly Ef in the pre- and post-thinning period are shown in Fig. 4-20. 

In the pre-thinning period, monthly Ef varied from 3.9 to 19.9 mm with a mean of 10.3±5.1 mm. 

Monthly Ef was highest in July and lowest in January. In the post-thinning period, monthly Ef varied 

from 13.9 to 33.9 mm with a mean of 20.4±6.3 mm. Monthly Ef was highest in May and lowest in 

September. In summary, monthly Ef was significant higher in the post-thinning period than in the 

pre-thinning period (P< 0.01: Mann-Whitney U test). Additionally, there are clear seasonal trends in 

both periods (Fig. 4-19 and 4-20). A similar seasonal tendency for Ef has been found in temperate 

deciduous forests (e.g., Daikoku et al., 2008; Deguchi et al., 2008). That said, the seasonal peak of 

Ef was found before leaf emergence, and the local maximal value of solar radiation beneath the 

forest canopy was also just observed because of the lack of leaves and the solar elevation angle in 
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those deciduous forests (Deguchi et al., 2008; Wilson et al., 2000).  However, the seasonal tendency 

of Ef was also found in evergreen stands (e.g., Japanese cypress plantation). It is possible that it was 

influenced by energy allocation into latent and sensible heat fluxes (Moore et al., 1996).  
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Fig. 4-20 Time series of monthly forest floor evaporation (Ef) in pre- and post-thinning periods, 

respectively. 

Annual changes in Ef for the pre- and post-thinning periods are summarized in Table 4-7. 

Annual Ef in the pre-thinning period was 124.0 mm, accounting for 8.6% of Pg or 13.9% of PET. 

Annual Ef in the post-thinning period was 245.0 mm, accounting for 19.3% of Pg or 25.9% of PET. 

After thinning, annual Ef was significantly larger and increased by 97.6% due to the thinning 

treatment (P< 0.01: Mann-Whitney U test). 
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Table 4-7 Gross precipitation (Pg), potential evapotranspiration (PET), and forest floor evaporation 

(Ef) in the pre- and post-thinning periods, respectively. 

  P
g   PET    E

f
  

Period  Annual 
 

Annual Daily  
 

Annual Daily  E
f
/P

g E
f
/PET 

  mm   mm mm d
-1

   mm mm d
-1

 % % 
Pre-thinning  

(Nov 2010 - Oct 2011 
1444.6 

 
894.3 2.45 ± 1.43 

 
124.0 0.34±0.23  8.6 13.9 

Post-thinning 

(Nov 2011 - Oct 2012) 
1266.8 

 
945.1 2.59 ± 1.60 

 
245.0 0.68±0.47  19.3 25.9 

In this study, greater Ef was found in the post-thinning period compared to the pre-thinning 

period. Soil evaporation occurs in two stages: (1) the constant-rate stage controlled by energy input 

as influenced by light penetration through the canopy, atmospheric turbulence and soil albedo; and 

(2) the falling rate stage controlled by overall soil moisture and hydraulics (Suleiman and Ritchie, 

2003). As such, the evaporation rate from a soil surface depends upon the radiation rate and the 

moisture condition of the forest surface (e.g., Suleiman and Ritchie, 2003; Tsujimura and Tanaka, 

1998). Surface soil could constrain Ef, and Ef is higher in open sites because shade from overstory 

canopy and forest floor litter reduces light penetration and soil temperature. Because soil moisture is 

not severe in Japan, thus the increase in Ef was contributed to the higher solar radiation and 

increased net precipitation all of which contribute to greater potential soil evaporation after thinning 

treatment. These results support the hypothesis that Ef could be high when energy was available in 

the abandoned Japanese cypress plantations.  

Canopy structure and leaf area index are known to affect below-canopy radiation 

characteristics (Kuuluvainen and Pukkala, 1989), which can potentially increase Ef and its spatial 

variability. Simonin et al. (2006) reported that after 82% basal area thinning (corresponding to 45% 

leaf area index reduced), understory evapotranspiration was greater in thinned compared with 

unthinned plots and increased during extreme drought when overstory transpiration was low due to 
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stomatal closure in a semi-arid ponderosa pine stand of the southwestern US.  Previous studies have 

also examined the effects of tree shade on spatial variations in soil evaporation (Jackson and 

Wallace, 1999; Raz-Yaseef et al., 2010). For example, Raz-Yaseef et al. (2010) reported that 

evaporation fluxes measured in sun-exposed areas were on average double those in shaded areas, 

and solar radiation was 92% higher in exposed compared to shaded sites in a semi-arid pine forest in 

Southern Israel. Thus the quantitative Ef before and after thinning in the present study could 

improve the understanding of hydrological processes at the forest floor, and develop predictive and 

management tools to improve water use and water-use efficiency in forest ecosystems.  

4-4-3 Summary 

This section elucidated the changes in Ef by 50% strip thinning in a Japanese cypress 

plantation. Spatial distribution of Ef was examined in the pre- and post-thinning measuring periods, 

respectively. Daily variations in Ef of three lysimeters located at different points had no significant 

differences in both periods. The spatial variations in Ef in the post-thinning period corresponded to 

solar radiation measured at the forest floor. That indicates spatial differences in Ef are not dependent 

on the location and homogeneousness at the forest floor even after thinning treatment.  These results 

provide useful information for understanding the changes in spatial variations in Ef and solar 

radiation by thinning, and will be used to analyze and model the energy balance at the forest floor. 

Besides, changes in Ef by thinning were quantified. Daily Ef increased by 99.3% from 0.34 ± 0.23 to 

0.68 ± 0.47 mm d
-1

, which was due to the increase in solar radiation. Annual Ef increased by 97.6% 

from 124.0 (8.6% of Pg) to 245.0 mm (19.3% of Pg). The quantification of changes in Ef by thinning 

could improve the understanding of hydrological processes at the forest floor, and develop 

predictive and management tools to improve water use and water-use efficiency in forest 

ecosystems.  
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4-5 The effect of strip thinning on partitioning of evapotranspiration  

4-5-1 Changes in partitioning of evapotranspiration  

Detailed monthly Pg, PET, ET and its three sub-components in the Japanese cypress forest in 

the pre-thinning period from November 2010 to October 2011and the post-thinning period from 

November 2011 to October 2012 are summarized in Table 4-8. In the pre-thinning period, monthly 

ET varied from 39.6 to 153.1 mm with a mean of 81.7±34.6 mm. Monthly ET was largest in July 

and lowest in January. In the post-thinning period, monthly ET varied from 36.2 to 107.0 mm with a 

mean of 65.0±23.4 mm. Monthly ET was largest in May and lowest in January. Annual ET was 

980.2 mm, accounting for 67.9% of Pg or 109.6% of PET in the pre-thinning period. After thinning, 

annual ET was 780.1 mm, accounting for 61.6% of Pg or 82.5% of PET. Thinning resulted in annual 

ET decreased by 15.5% corresponding 200.1 mm. In summary, annual ET decreased significantly 

due to thinning treatment (P< 0.01: Mann-Whitney U test). 

Table 4-8 Summary on gross precipitation (Pg), potential evapotranspiration (PET), evapotranspiration 

(ET), and its three sub-components: canopy interception (Ei), tree transpiration (Et) and forest floor 

evaporation (Ef) in the pre-thinning period (November 2010 – October 2011) and post-thinning period 

(November 2011 – October 2012). 

    N D J F M A M J J A S O Total   
Ratio 

of P
g 

Ratio 

of PET 
Ratio 

of ET 
    mm   % 

P
re-th

in
n

in
g
 

E
i 26.0 24.7 0.0 21.6 16.1 15.5 49.5 29.2 83.1 44.8 85.1 19.1 414.8   28.7 46.4 42.3 

E
t 32.5 34.3 35.7 28.4 36.3 42.5 25.5 34.6 50.0 42.9 43.1 35.5 441.4  

30.6 49.4 45.0 
E

f 7.5 4.7 3.9 5.5 6.1 9.5 12.5 15.2 19.9 15.7 13.1 10.4 124.0  
8.6 13.9 12.6 

ET 66.0 63.7 39.6 55.6 58.5 67.5 87.6 79.0 153.1 103.4 141.3 65.0 980.2  
67.9 109.6 - 

PET 47.5 34.3 40.4 46.0 72.1 93.2 88.9 94.3 122.8 101.0 89.2 64.6 894.3  
61.9 - - 

P
g 85.4 85.8 0 59.2 46.6 29.4 153.8 73.8 383.4 117.4 342.4 67.4 1444.6   - - - 

P
o

st-th
in

n
in

g
 

E
i 11.1 8.9 9.5 13.1 22.0 19.6 45.6 31.7 37.3 12.6 40.2 11.5 263.0  

20.8 27.8 33.7 
E

t 17.9 12.3 11.8 10.3 18.0 22.2 27.5 28.4 32.8 39.4 25.9 25.7 272.1  
21.5 28.8 34.9 

E
f 16.6 19.2 15.0 14.1 19.5 24.5 33.9 21.3 21.5 30.1 13.9 15.4 245.0  

19.3 25.9 31.4 
ET 45.5 40.4 36.2 37.5 59.5 66.2 107.0 81.4 91.6 82.2 80.0 52.6 780.1  

61.6 82.5 - 
PET 48.3 29.8 37.0 45.1 62.5 82.8 114.3 99.5 116.5 143.2 94.5 71.5 945.1  

74.6 - - 
P

g 50 26.6 32.2 45.6 100 92 281.2 164 183.2 42.8 189.8 59.6 1266.8   - - - 



Chapter 4 Strip thinning effect on partitioning of evapotranspiration 

  116 

 The cumulative and annual values of Pg, PET, ET and its three subcomponents in the pre- 

and post-thinning periods are illustrated in Fig. 4-21 and 4-22. ET was less than Pg throughout the 

pre-thinning period expect period from March to May (i.e., before the beginning of rainy season). 

For the post-thinning period, ET was almost close to Pg from November 2011 to March 2012 and 

afterward was much less than Pg. Compared with PET, ET was consistently higher during the whole 

pre-thinning period. However, in the post-thinning period, ET was almost close to PET before June, 

and afterward was much less than PET. In the both periods, Pg was significantly larger in the pre-

thinning period than that in the post-thinning period while PET in the pre-thinning was close to the 

post-thinning period (Table 4-8). Therefore, because the interannual variability of Pg was 

remarkable large, we assumed that the interannual variability of PET was insignificant and a 

constant parameter in the pre- and post-thinning periods. 
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Fig. 4-21 Cumulative daily values of gross precipitation (Pg), potential evapotranspiration (PET), 

evapotranspiration (ET), canopy interception (Ei), tree transpiration (Et) and forest floor evaporation 

(Ef) in the Japanese cypress stand in the pre- and post-thinning periods, respectively. 
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As shown in Fig. 4-21, cumulative values of Et in the pre-thinning period was the dominant 

component of ET, and consistent higher than Ei and Ef. Moreover, the annual Ef was the smallest 

component. However, after thinning, although Et was still the dominant component of ET, the 

relative contributions of the three components to ET were changed to be close. For example, before 

the beginning of rainy season (November 2011 - May 2012), the contribution from Ef was the main 

component of ET while Ei was the smallest component of ET. During the rainy season (June – July, 

2012), the relative contribution of Ei instead of Ef and became the dominant component of ET. Et 

was the smallest component of ET. After the rainy season (August – October, 2012), the relative 

contribution of Et gradually increased and finally exceeded Ei, and was the dominant component of 

ET. The contribution from Ef was the smallest component of ET.    
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Fig. 4-22 Annual values of gross precipitation (Pg), potential evapotranspiration (PET), 

evapotranspiration (ET), canopy interception (Ei), tree transpiration (Et) and forest floor evaporation 

(Ef) in the Japanese cypress stand in the pre- and post-thinning periods, respectively. 
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The changes in partitioning of ET by thinning were quantified. Fig. 4-23 shows the ratio of 

each evaporation flux (Ei, Et and Ef) to total ET in pre- and post-thinning period. In the pre-thinning 

period, Ei, Et and Ef was 414.8, 441.4 and 124.0 mm, accounting for 42.3%, 45.3% and 12.6% of 

total ET, or 46.4%, 49.4% and 13.9% of total PET, respectively (Table 4-8). After thinning, Ei, Et 

and Ef was 263.0, 272.1 and 245.0 mm, accounting for 33.7%, 34.9% and 31.4% of total ET, or 

27.8%, 28.8% and 25.9% of total PET, respectively (Table 4-8). Thinning altered the partitioning of 

ET and resulted in decreases in Ei and Et, and an increase in Ef.  
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Fig. 4-23 Ratio of each flux (canopy interception, Ei; tree transpiration, Et, and forest floor 

evaporation, Ef) to total evapotranspiration (ET) in the pre- and post-thinning periods, respectively.  

            In this study, the experimental treatment of 50% strip thinning caused a 15.5% decrease in 

annual ET corresponding 200.1 mm in the Japanese cypress plantation. In forest water cycle, ET is a 

hydrologic component of major importance in determining the water budget of forest areas, 

especially in the Japanese coniferous plantations (Kuraji, 2003). These results support the positive 

effect of thinning on water resources that thinning efficiently increased the water availability in the 
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forested watershed. The partitioning of ET by forests is a dominant control on climate and 

hydrology at local to global scales. For example, ET returning to the atmosphere may support future 

precipitation events and influence canopy gas exchange through a boundary layer feedback (Jarvis 

and Mcnaughton, 1986). Thinning of forests changed the relative contribution of individual flux 

components to total ET. Thus, the quantification of changes in partitioning of ET response to 

thinning could help to understand the thinning effects on forest stand water balance, and improve 

the development of sound forestry techniques and resolve complex forest-water conflicts. 

4-5-2 Summary 

    This section elucidated the changes in partitioning of ET by thinning in a Japanese cypress 

plantation. The results showed that thinning caused the annual ET decreased by 15.5% 

(corresponding 200.1 mm) from 980.2 to 780.1 mm. The ratio of ET to PET decreased from 109.6% 

to 82.5%. Thinning efficiently increased the water availability, and highlighted the positive thinning 

effects on water resources in forested watersheds. Then the changes in partitioning of ET by 

thinning were quantified. ET partitioned into Ei, Et and Ef was 42.3%, 45.3% and 12.4%, 

respectively, in the pre-thinning period. After thinning, ET partitioned into Ei, Et and Ef was 33.7%, 

34.9% and 31.4%, respectively. Thinning resulted in decreases in Ei and Et, and an increase in Ef. 

Besides, thinning changed the relative contribution of individual flux components to total ET. 

Although Et was the dominant component of ET in both periods, the relative contributions of the 

three components to ET were changed to be very close after thinning. The quantification of changes 

in partitioning of ET response to thinning could guide us for predicting the effect of thinning on 

forest stand water balance, and achieving an optimized water and forest management in forested 

watersheds. 
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Chapter 5 Over-all conclusions and future research 

5-1 Over-all conclusions 

Forest management (e.g., thinning) alters the cover and structure of forest and plays a great 

role in regulating the hydrological cycle at multiple temporal and spatial scales by altering 

ecosystem water balances. Moreover, different management practices could result in different 

effects on components of forest water cycle due to its effect on soil moisture available and 

environmental variables. Evapotranspiration (ET) is an important component in water balance and is 

used to evaluate forest hydrological functions. When evaluating the effects of ET by changes in 

stand conditions and understory vegetation, the quantification of changes in partitioning of ET 

response to thinning could help to understand the changes in forest stand water balance, and guide 

integrated forest and water management. Despite numerous studies on the relations between forest 

practices and the forest water, few studies attempt to elucidate the effect of strip thinning on 

partitioning of ET. Strip thinning requires less time and skill needed for tree selection compared 

with conventional selective thinning. It has been widely adopted in these abandoned Japanese 

coniferous plantations because of their overstocked stand densities and volumes. This study 

employed intensive field measurements to examine the effect of strip thinning on partitioning of ET 

in the Japanese cypress plantation. The followings are key conclusions drawn from this study.  

5-1-1 Incident rainfall partitioning and canopy interception modeling for an abandoned 

Japanese cypress stand 

Canopy interception (Ei) in forests has been studied widely. However, Ei parameters and 

modeling as well as spatial patterns of throughfall (TF) in abandoned Japanese cypress plantations 

remain poorly documented. Results indicate that Pg partitioning into TF, SF and Ei were, 

respectively, 64.2±3.6%, 10.6±0.6 % and 25.2±1.1% of the 880.8 mm cumulative Pg from 29 

rainfall events. Direct throughfall proportion (p) and drainage from the canopy contributed about 

14±7% and 50±21% of total TF between events, respectively. The mean canopy storage capacity (S) 
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was 2.4±0.7 mm. The coefficient of variability (CV) of TF rate decreased asymptotically with 

increasing PG amount, ranging from 16% to 56% with median 26%. The CV of TF rate was not 

significantly correlated with canopy cover (r=0.152, p=0.521, n=20) and distance from the nearest 

trunk (r=0.196, p=0.408, n=20). Based on the revised Gash analytical model, total simulated Ei was 

close to observed, with a general underestimation magnitude 5.7%. The Ei components were 

quantified, and most of the interception loss (62.9%) was evaporated during rainfall, of which 

26.8% evaporated after rainfall ceased. Climatic and forest structural parameters required by the 

model were identified and analyzed by sensitivity analysis, implying that the revised Gash 

analytical model is robust and reliable enough for the abandoned Japanese cypress plantation in a 

maritime climate. The present study may improve understanding of water resources of forested 

watersheds and provides a basis for future studies of forest management and rainfall partitioning 

interaction. 

5-1-2 Partitioning of the total evapotranspiration in an abandoned Japanese cypress stand 

during the growing season 

The partitioning of ET into Ei, Et and Ef were quantified in an abandoned Japanese cypress 

plantation. Monitoring primarily focused on the growing season of July – October 2011. Total ET 

during the monitoring period was 446.3 mm accounting for 47.5% of the total precipitation of 938.8 

mm. Ei was the dominant evaporation flux and accounted for 53.6% of ET or 25.5% of rainfall, 

followed by Et with 33.7% of ET or 16.0% of rainfall. The average Et was 1.5 ± 0.6 mm d
–1

. It was 

well correlated with soil moisture at a depth of 5 – 15 cm, which reflected the forest properties, i.e., 

tree roots were exposed on the forest floor. Ef accounted for 12.7% of ET or 6.0% of rainfall with a 

daily mean of 0.55 ± 0.26 mm d
–1

, and was best correlated with soil moisture in the upper 5 cm of 

soil. The interactions between soil moisture and evaporation fluxes can be used to predict ET more 

accurately when estimates of ET are based only on averaged soil moisture in the root zone. These 

findings can improve the understanding of water budget in forested watershed and also be used to 
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build and validate hydrologic models for water resource managements. 

5-1-3 The effect of strip thinning on canopy interception 

The changes in Pg partitioning into TF, SF and Ei were quantified by thinning in the pre-

thinning period (November 2010 – October 2011) and the post-thinning period (November 2011 – 

October 2012). The results revealed that after thinning, annual TF rate increased from 61.4 to 73.0% 

whereas annual SF rate decreased from 9.8 to 6.1% and annual Ei rate decreased from 28.7 to 

20.8%. Thinning treatment resulted in the water availability an increase in the soil matrix, especially 

in dry season. The reduction in Ei rate by strip thinning tended to be smaller than that by selective 

thinning, which may be related to the different changes in canopy cover by the two thinning 

methods. This study is one of case studies, however, it is important to accumulate data related to 

changes in Ei caused by different forest practices to acquire an integrated understanding of canopy 

water balance. Based on summarizing the findings of previous studies, the degree of decline in Ei 

loss/rate caused by thinning was related to Pg and ratio of thinning. These results provide useful 

information for assessing the effects of forest practice on water resources in forested watershed. 

5-1-4 The effect of strip thinning on tree transpiration 

Tree-to-tree and radial variation in xylem sapflow density (Fd) were measured in the pre- 

and post-thinning periods. The results revealed that the Fd at the outer xylem (0-20 mm) increased 

remarkably, whereas the Fd at the inner xylem (20-40 mm) had no significant change after thinning. 

Mean stand sap flow density (JS) values were higher in the post-thinning period, and the differences 

significantly increased with increasing vapor pressure deficit (VPD) values. Furthermore, the daily 

treetE   increased, particularly in the small tree class. Unlike the daily treetE  , the daily dtanstE 

decreased from 1.29 ± 0.60 to 1.00 ± 0.40 mm d
-1

 during the growing season or decreased from 1.23 

± 0.48 to 0.74 ± 0.42 mm d
-1 

on the annual scale. The total dtanstE   decreased by 23.0%, from 

214.9 to 165.5 mm, during the growing season or decreased by 38.3%, from 441.0 to 272.1 mm, on 

the annual scale. Gc decreased after thinning, which implies lower stand Et and photosynthesis. Gc 
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was primarily related to the VPD and would be an effective model to predict Et from these Japanese 

cypress plantations. This study provides useful information for understanding the Et responses at 

individual tree and stand levels to strip thinning and contributes to obtaining a thorough 

understanding of the change in tree water use under different management strategies.   

5-1-5 The effect of strip thinning on forest floor evaporation 

Daily variations in Ef of three lysimeters located at different points had no significant 

differences in both periods. The spatial variations in Ef in the post-thinning period corresponded to 

solar radiation measured at the forest floor. That indicates spatial differences in Ef are independent 

on the location and are homogeneousness at the forest floor even after thinning treatment. These 

results provide useful information for understanding the changes in spatial variations in Ef and solar 

radiation by thinning, and will be used to analyze and model the energy balance at the forest floor. 

Additionally, changes in Ef by thinning were quantified. Daily Ef increased by 99.3% from 0.34 ± 

0.23 to 0.68 ± 0.47 mm d
-1

, which was due to the increase in solar radiation. Annual Ef increased by 

97.6% from 124.0 (8.6% of Pg) to 245.0 mm (19.3% of Pg). The quantification of changes in Ef by 

thinning could improve the understanding of hydrological processes at the forest floor and develop 

predictive and management tools to improve water use and water-use efficiency in forest 

ecosystems.  

5-1-6 The effect of strip thinning on partitioning of evapotranspiration 

The changes in partitioning of ET by thinning were quantified in pre- and post-thinning 

periods. The results showed that thinning caused the annual ET decreased by 15.5% (corresponding 

200.1 mm) from 980.2 to 780.1 mm. The ratio of ET to PET decreased from 109.6% to 82.5%. 

Thinning efficiently increased the water availability and highlighted the positive thinning effects on 

water resources in the forested watershed. ET partitioned into Ei, Et and Ef was 42.3%, 45.3% and 

12.4%, respectively, in the pre-thinning period. After thinning, ET partitioned into Ei, Et and Ef was 

33.7%, 34.9% and 31.4%, respectively. Thinning resulted in decreases in Ei and Et, and an increase 
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in Ef. Furthermore, thinning changed the relative contribution of individual flux components to total 

ET. Although Et was the dominant component of ET in both periods, the relative contributions of 

the three components to ET were changed to be very close after thinning. The quantification of 

changes in partitioning of ET response to thinning could guide us for predicting the effect of 

thinning on forest stand water balance, and achieving an optimized water and forest management in 

forested watersheds. 

5-2 Further research 

Because of the uncertainty of estimations of each component, further measurements should 

be applied to validate the total ET. There are two methods: eddy covariance system and water 

balance approach. The eddy covariance system coupled with meteorological data allows analysis of 

the factors controlling ET for short/long-term periods. By contrast, the water balance approach 

cannot allow researchers to determine the factors controlling ET or their influences on the 

characteristics of ET; so, a long-term period of time is needed to evaluate ET. The two methods have 

been proved to be close to estimate total ET in forested watershed for a long time scale (e.g., Kosugi 

and Katsuyama, 2007). 

This study was conducted only one-year before and after thinning without soil water stress. 

Thus, measurement studies at a multi-year scale are recommended to examine the temporal changes 

in partitioning of ET for the succeeding years after thinning due to the temporal changes in stand 

characteristics (e.g., stand growth, forest cover recovery, and understory vegetation growth). 

Furthermore, we didn’t examine the resultant changes in partitioning of ET between strip 

thinning and other forestry practices (e.g., afforestation, partial cutting and selective thinning), 

because few studies elucidated the effect of forestry practices on partitioning of ET in Japanese 

coniferous plantations. The different forestry practices could result in different effects on 

components of forest water cycle (e.g., Et, ET, runoff). Therefore, further research should evaluate 
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thinning effects on hydrological processes for different management plans to identify those 

practices that are most optimized for water and forest management in forest watersheds. 
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