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124. Hypoelliptic Differential Operators with Double
Characteristics

By Kazuaki TAIRA
Department of Mathematics, Tokyo Institute of Technology

(Comm. by KSsaku YOSIDA, M. $. A., Oct. 12, 1974)

In this note, we shall consider the hypoellipticity of the ollowing
operator in R"

P(x, t, Dx, 3t) (3t + taDx)(3t + tbD) + cDx
+ A(x, t)tD+ B(x, t),

where 3t=3/3t, D=--i3/3x and a, b, c e C and A(x, t), B(x, t) e C(R).
(C. Gruin [1], [2], SjSstrand [3], Treves [4].) A linear (pseudo-)
differential operator Q(x,D) in Rn is called hypoelliptic in an open
subset/2 R i

sing supp u= sing supp Qu, u e
If A =_0 and B=0, then we have
Theorem 0 (c. [1], Theorem 1.2). Assume that Re a.Re b0.

Then
P(x, t, D, 3t)= (3t + taD)(3t + tbD) + cD

is hypoelliptic in R if and only if
cZ.

b--a
Thus, in this note, we assume that

(A) Rea0, Reb0, c eZ/t2{0}.
b--a

We shall give the sufficient conditions on A, B or P to be hypoelliptic
in a neighbourhood of (x, t)=(0, 0) (see Corollary I and Corollary 2
below). The case that Rea0, Reb0, c/(b--a) eZ/U{O} can be
proved in exactly the same way. Now we state the main result"

Theorem 1 (c. [3], Proposition 5.4). Under the assumption (A),
there exist properly supported operators

0 R) )’(R)

_=(G, G+

G-, G-+

with the following properties"
( ) .--I and .--I have C kernels.
(ii) For all s e R

lo loG" H (R )---H/I(R ),
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loc locH8 (R)---Hs+I(R ),
loc locG-’H (R)H (R),
loc locG-+’H (R)--H (R)

are continuous.
(iii) WF’(G)c {((x, t, , r), (x, t, , r)) e (T*(Rf)\0) (T*(Rf)\0)},

WF’(R-), WF’(G+)c{((x, 0, , 0), (x, )) e (T*(R)\0) (T*(R)\0)},
WE’(R+), WF’(G-){((x, ), (x, 0, , 0)) e (T*(R)\0) (T*(Rf)\0)},
WF’(G-+)c{((x, ), (x, )) e (T*(R)\0) (T*(R)\0)}.

Remark 1. It follows from the assumption (A) that the principal
symbol of G-/ is equal to 0 for )0 and (2m+l)(b-a)C for (0
where c=m(b--a) with m e Z/ {0} and C is a non zero constant.
Thus G-+ is elliptic for (0.

Remark 2. It follows from (i) that G-/-- -G-PG/ mod C kernel.
Hence we see from (iii) that the problem of the location of the singu-
larities for P in the characteristic {(x,O,,O) e(T*(Rg\O)} can be
reduced to the same problem for G-/. In fact we can prove

Theorem 2 (cf. [2], Theorem 4.2). P is hypoelliptic in a neigh-
bourhood of (x, t)-(0, 0) if and only if G-+ is hypoelliptic in a neigh-
bourhood of x--0.

In the case that a/b--O, c-O, calculating the symbols of G-/

explicitly* and using Theorem 2, we obtain the following corollaries.
Corollary 1. Let a+b-O, let c--0, let A(x,t)-w(x)t where

o(x) e C(R) and ] Z+ [J {0}, and let B(x, t)=_0. If o(x):#0 in a neigh-
bourhood of x--0, then P is hypoelliptic in a neighbourhood of (x,
=(o, o).

Remark 3. Similarly we can prove the following result (see [4],
Example II. 5.2)" Under the assumption that h(0)-0,

1 tDx)(3t + ltD,)+ h(t)D
is hypoelliptic in R if h(t) does not vanish of infinite order at
In fact, putting a---l/2, b-l/2, A(x,)=h(t)/t and B(x,t)--O, we
find that if h(t) does not vanish of infinite order at t-0, then G-/ is
elliptic for )0, which proves that G-/ is hypoelliptic in R (see Remark
1 and [2], Theorem 4.3).

Corollary 2. Let a----l, let b=l, let c-O, let A(x,t)=w(x)t
where o(x) e C(R) and let B(x, t)-(x)t where e(x) e C(R). Assume
that (o(x) has a zero of finite order k at x=O. If k>__2 and there exists
a constant C>O such that in a neighbourhood of x=O

C Ira((x)(x) ’)1 > IRe (’(x)a(x)

(Added in proof.) Cf. Boutet de Monvel and Tr.ves [5], 8.
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where a(x)=(o(x)/2 and (x)-e(x)/2+o(x)/8--Do(x)/4, then P is
hypoelliptic in a neighbourhood of (x, t)=(O, 0).

The details will be given somewhere else.
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