124. Hypoelliptic Differential Operators with Double Characteristics

By Kazuaki Taira
Department of Mathematics, Tokyo Institute of Technology
(Comm. by Kôsaku Yosida, m. J. A., Oct. 12, 1974)

In this note, we shall consider the hypoellipticity of the following operator in \boldsymbol{R}^{2} :

$$
\begin{aligned}
P\left(x, t, D_{x}, \partial_{t}\right)= & \left(\partial_{t}+t a D_{x}\right)\left(\partial_{t}+t b D_{x}\right)+c D_{x} \\
& +A(x, t) t D_{x}+B(x, t),
\end{aligned}
$$

where $\partial_{t}=\partial / \partial t, D_{x}=-i \partial / \partial x$ and $a, b, c \in \boldsymbol{C}$ and $A(x, t), B(x, t) \in C^{\infty}\left(\boldsymbol{R}^{2}\right)$. (Cf. Grušin [1], [2], Sjöstrand [3], Treves [4].) A linear (pseudo-) differential operator $Q\left(x, D_{x}\right)$ in \boldsymbol{R}^{n} is called hypoelliptic in an open subset $\Omega \subset \boldsymbol{R}^{n}$ if

$$
\operatorname{sing} \operatorname{supp} u=\operatorname{sing} \operatorname{supp} Q u, \quad u \in \mathcal{E}^{\prime}(\Omega)
$$

If $A \equiv 0$ and $B \equiv 0$, then we have
Theorem 0 (cf. [1], Theorem 1.2). Assume that $\operatorname{Re} a \cdot \operatorname{Re} b<0$. Then

$$
P_{1}\left(x, t, D_{x}, \partial_{t}\right)=\left(\partial_{t}+t a D_{x}\right)\left(\partial_{t}+t b D_{x}\right)+c D_{x}
$$

is hypoelliptic in \boldsymbol{R}^{2} if and only if

$$
\frac{c}{b-a} \notin \boldsymbol{Z} .
$$

Thus, in this note, we assume that

$$
\begin{equation*}
\operatorname{Re} a<0, \operatorname{Re} b>0, \frac{c}{b-a} \in Z^{+} \cup\{0\} . \tag{A}
\end{equation*}
$$

We shall give the sufficient conditions on A, B for P to be hypoelliptic in a neighbourhood of $(x, t)=(0,0)$ (see Corollary 1 and Corollary 2 below). The case that $\operatorname{Re} a>0, \operatorname{Re} b<0, c /(b-a) \in \boldsymbol{Z}^{+} \cup\{0\}$ can be proved in exactly the same way. Now we state the main result:

Theorem 1 (cf. [3], Proposition 5.4). Under the assumption (A), there exist properly supported operators

$$
\begin{aligned}
& \mathscr{P}=\left(\begin{array}{ll}
P, & R^{-} \\
R^{+}, & 0
\end{array}\right): \underset{\mathscr{D}^{\prime}(\boldsymbol{R})}{\mathscr{D}^{\prime}\left(R^{2}\right)} \rightarrow \stackrel{\mathscr{D}^{\prime}\left(\boldsymbol{D}^{2}\right)}{\oplus}(\boldsymbol{R}) \\
& \mathcal{G}=\left(\begin{array}{ll}
G, & G^{+} \\
G^{-}, & G^{-+}
\end{array}\right): \underset{\mathscr{D}^{\prime}(\boldsymbol{R})}{\bigoplus^{\mathscr{D}^{\prime}\left(\boldsymbol{R}^{2}\right)}} \rightarrow \underset{\mathscr{D}^{\prime}(\boldsymbol{R})}{\boldsymbol{D}^{\prime}\left(\boldsymbol{R}^{2}\right)}
\end{aligned}
$$

with the following properties:
(i) $\mathcal{G} \cdot \mathscr{P}-I$ and $\mathscr{P} \cdot \mathcal{G}-I$ have C^{∞} kernels.
(ii) For all $s \in \boldsymbol{R}$

$$
G: H_{s}^{1 \mathrm{loc}}\left(\boldsymbol{R}^{2}\right) \rightarrow H_{s+1}^{\mathrm{loc}}\left(\boldsymbol{R}^{2}\right),
$$

$$
\begin{aligned}
& G^{+}: H_{s}^{1 o c}(\boldsymbol{R}) \rightarrow H_{s+1}^{10 c}\left(\boldsymbol{R}^{2}\right), \\
& G^{-}: H_{s}^{10 c}\left(\boldsymbol{R}^{2}\right) \rightarrow H_{s}^{\mathrm{oc}}(\boldsymbol{R}), \\
& G^{-+}: H_{s}^{1 \mathrm{oc}}(\boldsymbol{R}) \rightarrow H_{s}^{10 c}(\boldsymbol{R})
\end{aligned}
$$

are continuous.
(iii) $W F^{\prime}(G) \subset\left\{((x, t, \xi, \tau),(x, t, \xi, \tau)) \in\left(T^{*}\left(\boldsymbol{R}^{2}\right) \backslash 0\right) \times\left(T^{*}\left(\boldsymbol{R}^{2}\right) \backslash 0\right)\right\}$, $W \boldsymbol{F}^{\prime}\left(R^{-}\right), W \boldsymbol{F}^{\prime}\left(G^{+}\right) \subset\left\{((x, 0, \xi, 0),(x, \xi)) \in\left(T^{*}\left(\boldsymbol{R}^{2}\right) \backslash 0\right) \times\left(T^{*}(\boldsymbol{R}) \backslash 0\right)\right\}$, $W \boldsymbol{F}^{\prime}\left(R^{+}\right), W \boldsymbol{F}^{\prime}\left(G^{-}\right) \subset\left\{((x, \xi),(x, 0, \xi, 0)) \in\left(T^{*}(\boldsymbol{R}) \backslash 0\right) \times\left(T^{*}\left(\boldsymbol{R}^{2}\right) \backslash 0\right)\right\}$, $W \boldsymbol{F}^{\prime}\left(G^{-+}\right) \subset\left\{((x, \xi),(x, \xi)) \in\left(T^{*}(\boldsymbol{R}) \backslash 0\right) \times\left(T^{*}(\boldsymbol{R}) \backslash 0\right)\right\}$.

Remark 1. It follows from the assumption (A) that the principal symbol of G^{-+}is equal to 0 for $\xi>0$ and $(2 m+1)(b-a) C_{m}$ for $\xi<0$ where $c=m(b-a)$ with $m \in Z^{+} \cup\{0\}$ and C_{m} is a non zero constant. Thus G^{-+}is elliptic for $\xi<0$.

Remark 2. It follows from (i) that $G^{-+} \equiv-G^{-} P G^{+} \bmod C^{\infty}$ kernel. Hence we see from (iii) that the problem of the location of the singularities for P in the characteristic $\left\{(x, 0, \xi, 0) \in\left(T^{*}\left(\boldsymbol{R}^{2}\right) \backslash 0\right)\right\}$ can be reduced to the same problem for G^{-+}. In fact we can prove

Theorem 2 (cf. [2], Theorem 4.2). P is hypoelliptic in a neighbourhood of $(x, t)=(0,0)$ if and only if G^{-+}is hypoelliptic in a neighbourhood of $x=0$.

In the case that $a+\bar{b}=0, c=0$, calculating the symbols of G^{-+} explicitly*) and using Theorem 2, we obtain the following corollaries.

Corollary 1. Let $a+\bar{b}=0$, let $c=0$, let $A(x, t)=\omega(x) t^{j}$ where $\omega(x) \in C^{\infty}(\boldsymbol{R})$ and $j \in \boldsymbol{Z}^{+} \cup\{0\}$, and let $B(x, t) \equiv 0$. If $\omega(x) \neq 0$ in a neighbourhood of $x=0$, then P is hypoelliptic in a neighbourhood of (x, t) $=(0,0)$.

Remark 3. Similarly we can prove the following result (see [4], Example II. 5.2): Under the assumption that $h(0)=0$,

$$
P=\left(\partial_{t}-\frac{1}{2} t D_{x}\right)\left(\partial_{t}+\frac{1}{2} t D_{x}\right)+h(t) D_{x}
$$

is hypoelliptic in \boldsymbol{R}^{2} if $h(t)$ does not vanish of infinite order at $t=0$. In fact, putting $a=-1 / 2, b=1 / 2, A(x, t)=h(t) / t$ and $B(x, t) \equiv 0$, we find that if $h(t)$ does not vanish of infinite order at $t=0$, then G^{-+}is elliptic for $\xi>0$, which proves that G^{-+}is hypoelliptic in \boldsymbol{R} (see Remark 1 and [2], Theorem 4.3).

Corollary 2. Let $a=-1$, let $b=1$, let $c=0$, let $A(x, t)=\omega(x) t$ where $\omega(x) \in C^{\infty}(\boldsymbol{R})$ and let $B(x, t)=\varepsilon(x) t^{2}$ where $\varepsilon(x) \in C^{\infty}(\boldsymbol{R})$. Assume that $\omega(x)$ has a zero of finite order k at $x=0$. If $k \geq 2$ and there exists a constant $C>0$ such that in a neighbourhood of $x=0$

$$
C\left|\operatorname{Im}\left(\frac{\beta(x)}{\alpha(x)}\right)\right|>\left|\operatorname{Re}\left(\frac{\beta(x)}{\alpha(x)}\right)\right|
$$

[^0]where $\alpha(x)=\omega(x) / 2$ and $\beta(x)=\varepsilon(x) / 2+\omega^{2}(x) / 8-D_{x} \omega(x) / 4$, then P is hypoelliptic in a neighbourhood of $(x, t)=(0,0)$.

The details will be given somewhere else.

References

[1] Grušin, V. V.: On a class of hypoelliptic operators. Math. USSR Sbornik, 12, 458-476 (1970).
[2] -: On a class of elliptic pseudodifferential operators degenerate on a submanifold. Math. USSR Sbornik, 13, 155-185 (1971).
[3] Sjöstrand, J.: Parametrices for pseudodifferential operators with multiple characteristics. Ark. för Mat., 12, 85-130 (1974).
[4] Treves, F.: Concatenations of second-order evolution equations applied to local solvability and hypoellipticity. Comm. Pure Appl. Math., 26, 201250 (1973).
[5] Boutet de Monvel, L., and F. Trèves: On a class of pseudodifferential operators with double characteristics. Inventiones Math., 24, 1-34 (1974).

[^0]: *) (Added in proof.) Cf. Boutet de Monvel and Trèves [5], §8.

