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Abstract: This paper proposes a novel algorithm of hierarchical divisive clustering, which generates a multi-branch 
tree, not a binary one, as its output. In order to use the algorithm for clustering large document sets, a spherical k­
means clustering algorithm based on a cosine measure is adopted for partitioning recursively the document set from 
the top to bottom. Also, by selecting automatically the number of clusters in each partitioning according to a criterion, 
an optimal multi-way branching is determined for each node of the tree. This paper reports an experimental result 
indicating the effectiveness of the proposed algorithm. 

1. Introduction 

Tree structures generated by applying a hierarchical clustering 

algorithm to a document collection (e.g., a set of research arti­

cles or web documents) are often useful for applications in in­

formation retrieval (IR) and related areas. For instance, if a set 

of web documents is obtained by entering a query into a search 

engine, then hierarchical clustering of the set (i.e., a dendrogram) 

would help the user specify a suitably-sized subset of relevant 

documents. 

However, when the target document set is large, the com­

putational complexity of hierarchical agglomerative clustering 

(HAC), which is widely used in various areas, becomes very high. 

In such cases, an algorithm for hierarchical divisive clustering 

(HOC) may be suitable because its complexity is expected to be 

lower if the resulting dendrogram is well balanced. 

Typically, the entire set is partitioned at first into two parts by a 

k-means algorithm, and recursively, each part is split by a similar 

procedure, which is usually called 'bisecting k-means' clustering 

(Steinbach et al., 2000 [87]; Zhao & Karypis, 2002 [Ill]). Also, 

the ·principal direction divisive partitioning (POOP)' (Boley et 

al., 1999 [13], [14]) is a well-known hierarchical divisive cluster­

ing algorithm, in which each document set is split based on the 

result of principal component analysis (PCA). 

This paper attempts to explore a hierarchical divisive cluster­

ing algorithm allowing each document set (i.e., node of a tree) to 

be partitioned into two or more parts. Since the algorithm for hi­

erarchical multi-way divisive clustering (HMOC) is more flexible 

than those that divide each node always into just two parts, more 

valid results are expected to be obtained by the HMOC algorithm. 

Particularly, as its component, the spherical k-means (spk-means) 

algorithm (Dhillon & Modha, 2001 [31]) based on a cosine value 
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of two vectors for measuring similarity between two documents 

is used for the partitioning operation, and the optimal number of 

clusters in each partitioning is determined by using the ratio of 

within-cluster dispersion to total dispersion computed from the 

result ofthe cosine-based spk-means clustering. 

In the next section, the HMOC algorithm is explained. Section 

3 reports the results of an experiment confirming the effectiveness 

of the HMDC algorithm. A set of 6,374 articles extracted from 

the RCV 1 test collection (Lewis, et al., 2004 [61]) was used in 

the experiment. After discussing the experimental results, some 

related papers are reviewed. 

2. Hierarchical Multi-way Divisive Clustering 

2.1 Outline of the algorithm 

The basic procedure of the HMOC is to divide each set of doc­

uments into two or more parts, which is repeated recursively from 

the entire set until a full dendrogram whose leaf node at the bot­

tom corresponds to a document (i.e., singleton) is generated. Oth­

erwise, the recursive partitioning can be terminated in a node ac­

cording to a stopping rule when a sufficiently homogeneous clus­

ter is obtained. In the experiment described below, the stopping 

rule was used to assess directly the validity of clustering results 

by external evaluation metrics. 

For the partitioning, the spk-means clustering algorithm is used 

as described above, and the number of parts in each partitioning 

is determined based on the ratio of within-cluster dispersion to 

total dispersion (see below). 

2.2 Executing k-rneans clustering 

In this paper, term frequency is adopted as the element of doc­

ument vectors, each of which is always normalized into a unit 

vector such that vi = ddlldill where di = [xi!, ... , XiJ· ... , XiM f' 
and xiJ denotes the occurrence frequency of term t1 in document 

di (i = 1, ... , N; j = 1, ... , M). Also, a vector of cluster Ck is 

computed as 
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(l) 

According to the standard IR theory, similarity between a docu­

ment and a cluster is measured by the cosine coefficient such that 

cos(d,,ck) = d{"ck/(lld,ll·llckll) = v{ck/llckll· 
In order to execute the spk-means clustering based on the vec­

tors, the present experiment employed a modified version of the 

Hartigan- Wong algorithm in which the Euclidean distance is re­

placed with the cosine similarity (see the appendix in Kishida 

(2014) [57]). 

2.3 Determining the number of parts 

For panitioning each node into two or more parts, the number 

of parts (i.e., clusters) has to be automatically determined within 

the procedures of the HMDC algorithm. Generally, this is a prob­

lem of estimating the optimal number of clusters or segments for 

a given data set, which is not easy to solve. So, many techniques 

or methods have been proposed (see Section 5.2). 

In the case of partitioning medium or large document sets, a 

computationally efficient method is desirable. Also, it is diffi­

cult to assume a probabilistic model such as the Gaussian mixture 

model for large-scale document clustering. So, rather than using 

resampling-based methods or model selection techniques, this pa­

per attempts to determine the number of clusters based on a clus­

tering validity indicator like Calinski and Harabasz's index (CH 

index) [17] which is the ratio of the total within-cluster sum of 

squared distances about the centroids to the total between-cluster 

sum of squared distances (Gordon, 1999 [43]). 

Since the CH index is defined based on the Euclidean distance, 

it is necessary to modify it slightly for the cosine similarity. When 

documents are partitioned into some clusters, the total sum of 

similarities between all pairs of documents, which is denoted by 

T0 , can be computed as 
N N 

T0 = I I v{vh + I I (2) 
I= I h:d"EC[dd i= I h:dhi"C[d;] 

\Vhere C[di] denotes a cluster including d1• Namely, the first part 

T1 is the sum of similarities between two documents in a same 

cluster, and the second part T2 is the sum of similarities between 

two documents \Vhich belong to different clusters. 

So, the proportion of T1 explained by clusters inherent in the 

set (i.e., = T1 /(T 1 + T2 )) can be reasonably employed as an indi­

cator of 'goodness' of the clustering operation because a cluster 

should be "a set of entities which are alike, and entities from dif­

ferent clusters are not alike" (Xu & Wunsch II, 2009 [105] p.4). 

One serious problem preventing its actual use is the high com­

plexity of computing T1 and T2, for which the inner product of 

0(/'-,12
) pairs has to be calculated as explicitly suggested by Equa­

tion (2). 

In order to overcome this problem, this paper computes ap-

proximately T1 and T2 as 

!. 

W(L) =I I v{ck/llckll, and 
k= I i:d1 E( ·~. 

!. 

B(L) = I I v{ck/llckll, 
k=l i:dle:c, 

(3) 

(4) 

-36 

respectively where L indicates the number of clusters. Therefore, 

a criterion for selecting the optimal number of clusters is naturally 

derived as 

W(L) 
H(L)- ---­

- W(L) + B(L) 
(5) 

More precisely, for a particular document set, the spk-means 

clustering is repeated with various values of L (e.g., L = 
2, ... , I 0), and a partition with 

L' = argmax H(L) = argmax W(L)/[W(L) + B(L)] (6) 
!. L 

can be selected as the final result, and L' is considered to be the 

optimal number of clusters for the set. Namely, in the HMDC 

algorithm, each document set corresponding to a node of the tree 

is divided into L' parts defined in Equation ( 6) after Lmax - I 

executions of the spk-means clustering by varying L such that 

L = 2, ... , Lmax (note that Lmax = I 0 in the experiment described 

below). 

2.4 Terminating recursive partitioning 

Automatic termination of recursive panitioning in HOC is also 

a difficult problem, to which some techniques for estimating the 

optimal number of clusters reviewed in Section 5.2 may be ap­

plied. However, this paper does not explore this research issue 

deeply, and the experiment adopted the simple stopping rule that 

"if H(L') > e, then the document set is treated as a final clus­

ter (i.e., a leaf node in the tree), and the recursive partitioning in 

the branch is stopped" where e is a threshold, which means that a 

value of e has to be provided a priori before executing the HMDC 

algorithm. 

Generally, when stopping the recursive partitioning based on 

a predete1mined threshold, the number of objects in each cluster, 

the within-cluster dispersion or the diameter of each cluster can 

be used (e.g., see Guen6che et al., !991 [44 ], Savaresi et al., 2002 

[85] and so on). This paper assumes that the document set is suf­

ficiently homogeneous when the value of H(L') is high, which is 

naturally derived from discussions ofthis section. 

3. Experiment 

3.1 Purpose 

In the experiment, the effectiveness of the HMDC algorithm 

was compared to that of bisecting k-means clustering and non­

hierarchical (standard) k-means clustering. The algorithm for bi­

secting k-means clustering in this experiment was the same as 

that of the HMDC except that L' was always assumed to be two 

(the same stopping rule was applied). For the non-hierarchical 

k-means clustering, the spk-means algorithm was used with the 

predetermined number of clusters (see below). 

3.2 Document dataset 

The Reuter corpus RCV 1 [61] created as a test collection for 

text categorization was used to measure effectiveness of each al­

gorithm. Since one or more topic codes are assigned to each 

record of the corpus, which can be considered as 'answers' of 

clustering, the validity of clusters generated by the algorithms can 

be assessed based on the topic codes (note that the topic codes 



Table 1 Eflectiveness of clustering algorithms 

Methods () #of clusters nMI ARJ BCubed-F 
HMDC 0.60 4 0.163 0.118 0.246 
(Lmax = 10) 0.65 102 0.518 0.399 0464 

0.70 414 0.410 0.101 0.312 
0.75 859 0.377 0.074 0.240 
0.80 1692 0.353 0.041 0.206 

Bisecting 0.60 8 0.064 0.029 0.130 
(L' = 2) 0.65 18 0.100 0 028 0.119 

0.70 36 0.139 0.032 0 104 
0.75 8\ 0 \6\ 0.030 0.099 
0.80 184 0.182 0.031 0.086 
0.85 4\1 0.213 0.033 0.077 
0.90 1031 0.254 0.028 0.063 

K-means 68 0.439 0 189 0.268 
(non-hierarchical) 102 0.417 0.141 0.221 

were used only for evaluation). Patiicularly, as a test dataset for 

this experiment, a set of6,374 records to which just a single topic 

code is assigned was extracted from news articles published dur­

ing August 1996 (i.e., N = 6374) because evaluation of cluster­

ing results including multi-topic documents becomes too compli­

cated. In total, 68 different topic codes appear in the 6,374 records 

(see Kishida, 2011 [55] for the topic codes). 

3.3 Indexing 

By standard text processing which consists of tokenization, 

removing stopwords and stemming by Porter's algorithm, doc­

ument vectors for clustering were generated from the records. As 

described above, term frequency was simply used as the element 

of document vectors, and instead of incorporating the idf factor 

into the element, non-specific terms appearing in more than l 0% 

of all documents (i.e., over 647 documents) were removed from 

all document vectors. Also, terms appearing in only one docu­

ment were not adopted as features for clustering. As a result, in 

total, 22,503 different terms were included in the set of document 

vectors and the average document length amounted to 112.10. 

3.4 Evaluation metrics 

According to a suggestion by Kishida (2014) [57), the ex­

periment employed three external evaluation metrics: nMI (nor­

malized mutual information), ARI (adjusted Rand Index) and 

BCubed-F. Note that normalization of MI was based on the max­

imum of entropy scores of two marginal distributions. 

3.5 Results 

Table I indicates values of the three evaluation metrics for clus­

tering results, and the number of remaining nodes (i.e., final clus­

ters) when the recursive partitioning stopped in all nodes, which 

is referred as "# of clusters". Clearly, it was empirically shown 

that the HMDC outperfonned the bisecting. For example, when 

() = 0.65, a very good result, the three metrics of which were 

0.518, 0.399 and 0.464 respectively, was obtained by the HMDC. 

In contrast, values ofmetrics for results by the bisecting k-means 

clustering were relatively lower as Table 1 indicates. 

Also, the effectiveness of the HMDC \vould be higher than 

that of non-hierarchical k-means clustering. In the experiment, 

when the non-hierarchical k-means clustering was executed with 

L = 68 (the number of 'true' clusters) and L 102 (the number 

of dusters in the best case of the HMDC within the experiment), 

No. of docs 

root 

163741n 

level 
LO Ll L2 L3 

Fig. I Dendrogram by HMDC (at the best case,()= 0.65) 

their values of the evaluation metrics did not exceed those of the 

HMDC with()= 0.65. 

Figure I is a portion of a dendrogram obtained by the HMDC 

algorithm with () = 0.65, which shows a tree structure in top four 

levels while the total number of levels was 16. The number in 

each node indicates the number of documents included in its sub­

set. 

4. Discussion 

The experiments showed that the HM DC was more effective 

than top-down bisecting, which is not surprising because the 

HMDC is more flexible due to multi-way branching. Rather, 

the results in Table 1 should be interpreted as indicating the suc­

cess of estimating automatically the number of subsets inherent 

in each node. However, whether the indicator H(L) in Equation 

(6) is the best or not is unclear, and further research is needed. 

On the other hand, it is clearly difficult to select an appropriate 

threshold in the stopping rule. Namely, clustering results varied 

largely with different values of the threshold in the experiment 

(see Table 1 ). Although further improvement of it may be neces­

sary for obtaining a good result from the HMDC algorithm, the 

stopping rule is not needed actually when a 'full' dendrogram 

whose leaf node is a single document has to be generated. 

5. Related Work 

5.1 Divisive partitioning 

When the target set including n data points (e.g., documents) 

is partitioned into two nonempty subsets, there are many possi­

ble divisions ofthem, which is computationally expensive [105]. 

Therefore, without examining every possible division, a partition­

ing algorithm with less computational complexity is usually used 

to obtain two approximately valid subsets. Although it may ap­

pear that an algorithm fork-means clustering is usually employed 

for it, namely 'bisecting k-means' clustering (e.g., [87], [Ill]), 

actually other algorithms for flat partitioning such as a finite mix­

ture model, nonnegative matrix factorization (NMF) and so on 
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are also available. 

Among them, principal component analysis (PCA) has often 

been applied to hierarchical divisive clustering of document col­

lections, which is called 'principal direction divisive partitioning 

(POOP)' (Boley et al., 1999 [ 13], [ 14]). In each step of the POOP, 

documents contained in a set are classified into two parts depend­

ing on whether the first component score is positive or negative. 

Also, in the NGPOOP (non-greedy version of POOP) algorithm 

(Nilsson, 2002 [73]), components other than the first one can be 

selected for the partitioning according to a criterion on the vari­

ance of a set of clusters, and the POOP(l) algorithm (Zeimpekis 

& Gallopoulos, 2003 [I 08]) tries to classify the target set into i 
parts in each stage where I ~ 1. Another extension of the POOP 

algorithm is to use kernel PCA, which is a nonlinear version of 

PCA; the algorithm is called KPOOP(l) (Zeimpekis & Gallopou­

los, 2008 [I 09]). More recently, Tasoulis et a1.(20 I 0) [91] ex­

plored intensively criteria for selecting a cluster to be split, meth­

ods for splitting it, and stopping rules in the POOP algorithm. 

Other than k-means clustering and the POOP, Cheng et 

al.(2006) [23] used a spectral clustering algorithm for dividing 

the target cluster in their procedure combining top-down parti­

tioning and bottom-up merging, \vhile Feng et al.(2010) [35] used 

an improved discrete particle swarm optimizer, which is a genetic 

algorithm for clustering, to divide the target node. 

5.2 Estimating the optimal number of clusters 

5.2.1 Types of estimation 

The optimal number of clusters, which is denoted by L', can be 

selected from several values based on a criterion or rule, or can be 

determined based on an objective function built into a clustering 

algorithm. Otherwise, the number of clusters may be posteriorly 

defined as an output from a clustering algorithm dependent on 

a threshold, or resampling-based methods providing the number 

of clusters inherent in a dataset have also been applied. Mirkin 

(20 II) [70] reviewed exhaustively algorithms or methods for es­

timating the optimal number of clusters, and Mirkin (2013) [71] 

provided another overviev.r of them. 

5.2.2 Criterion for selection 

When selecting L' fi·om several values (i.e., L = 2, ... , L1110 ,.) 

based on a criterion, a clustering operation is repeated \vith indi­

vidual values of Land the value that provides the clustering result 

\Vith the minimum (or maximum) score ofthe criterion is chosen 

as L' (see Equation (6)). Since the minimum score means the 

optimal one in the case of Euclidean distance, L' corresponds to 

an 'elbmv' in a curve \vhich is obtained by plotting the criterion 

scores (on they-axis) against the values of L (on the x-axis). 

Because the \vithin-cluster dispersion, which is often used as 

an evaluation metric of clustering, decreases monotonically as 

L increases, the criteria are often computed from a combina­

tion of vvithin- and betvieen-cluster dispersion like Cal inski and 

Harabasz's index (CH index) [ 17]. Actually, Milligan & Cooper 

( 1985) [68] reported a result of empirical comparison between 30 

classical criteria proposed before the mid-1980s, most of which 

are based on between- and within-cluster dispersion measured 

in the Euclidean space such as the CH index, Hartigan's statis­

tic (Hartigan, 197 5 [ 4 7]) and so on. After that, Hardy( 1996) 

[46] compared experimentally seven techniques for identifying 

the number of clusters such as a classical geometric method, a 

likelihood ratio test for clusters, and so on. 

One of the well-known criteria is the Silhouette width 

(Rousseeuw, 1987 [82]) of a data point, which is basically com­

puted based on dissimilarities between a given data point and 

other data points in the same cluster and dissimilarities between 

it and other data points in a different cluster. Pollard & van der 

Laan (2002) [79] applied the average Silhouette for identifying 

clusters in gene expression data. 

Mirkin (20 13) [71] discussed the Gap statistic (Tibshirani et 

a!, 200 I [94]) and Jump statistic (Sugar & James, 2002 [89]) as 

other criteria based on cluster dispersion. Yan & Ye (2007) [I 06] 

modified the Gap statistic by changing slightly the definition of 

within-cluster homogeneity. While the original Gap statistic uses 

the logarithm of the within-cluster homogeneity, Mohajer et al. 

(20 I 0) [72] suggested not applying the logarithm to it. 

Pham et al. (2005) [78] proposed another criterion for select­

ing L', \Vhich was computed as the ratio of two cluster distortion 

values at Land L-1. When the curve of criterion scores is smooth 

with no explicit minimum point (i.e., 'elbow'), it is not possible 

to determine the optimal number. In order to solve this problem, 

Salvador & Chan (2004) [84] developed a method for selecting an 

optimal number as the intersection of two straight lines approxi­

mating the left and right sides ofthe curve, respectively. 

5.2.3 Mixture model 

A finite mixture model consisting of L components can be used 

for partitioning a data set, in which the number of components is 

usually assumed to be the number of clusters. McLachlan ( 1987) 

[65] tried to estimate the number of components in a Gaussian 

mixture model (GMM) from the observed data by using the like­

lihood ratio test statistic (LRTS) computed in a framework of 

Bootstrap sampling. A similar technique was also explored by 

McLachlan & Khan (2004) [66] (see also Lo et al., 2001 [64] for 

another statistical test). 

Another typical strategy for determining the number of compo­

nents in a mixture model is to apply a model selection technique 

based on information criteria such as BIC (Bayesian information 

criterion), AIC (Akaike information criterion) and so on. For in­

stance, a penalty for complexity of the model (i.e., for the num~ 

ber of parameters in it) is incorporated into the BIC, which can 

be useful for selecting an optimal mixture model. An actual pro­

cedure of identifying the optimal number of components based 

on the BIC in a clustering application was provided by Fraley & 

Raftery ( 1998) [38]. Also, various other criteria were explored 

by Bozdogan( 1992) [ 16], Banfield & Rattery ( 1993) [7] and so 

on. Roberts et al.( 1998) [80] applied the Bayesian approach to 

computation of the probability distribution in the GMM, which 

led to the likelihood including explicitly the number of parame­

ters in the model. Similarly, Biernacki et al.(2003) [ 12] proposed 

the 'integrated complete likelihood (ICL)' approximating BIC as 

a criterion for determining L'. Because the BIC tends to overes­

timate the value ofL', Chiu et.al. (2001) [27] attempted to merge 

clusters based on a distance defined by a log-likelihood function 

after estimating the 'coarse' number of clusters from the BIC. 

More recently, Pan & Shen (2007) [74) tried to modifY the BIC 

38-



for estimating L' in 'penalized' model-based clustering. 

Also, Xu (1997) [1 02] explored the method of estimating L' in 

a Bayesian Ying-Yang (BYY) machine, in which a term includ­

ing L was incorporated into its objective function for computing 

the maximum likelihood of a GMM (see also Hu & Xu, 2004, 

[50] for model selection based on the BYY machine). 

Basically, there are many measures for assessing the number of 

components in mixture models (see Chapter 6 in McLachlan & 

Peel, 2000 [67]). Such measures can be applied to the problem of 

determining L' according to the model selection procedure. For 

example, Bouguila & Ziou (2007) [ 15] employed MML (mini­

mum message length) for estimating L' in a mixture of general 

Dirichlet distributions. 

Another approach for estimating L' in the framework ofGMM 

is to keep 'rivals' away from the 'winner' to which a data point is 

allocated in the EM algorithm, which can be considered as a tech­

nique of 'rival penalized competitive learning (RPCL)', which 

was used for estimating L' by Xu et al.(l993) [ 1 04]. Xu (1998) 

[ l 03] extended the algorithm for clusters with more complicated 

shapes. More recently, Cheung (2003) [24] and Cheung (2005) 

[25] proposed techniques for fading out redundant densities from 

a density mixture based on a similar mechanism. 

Welling & Kurihara (2009) [ 1 00] proposed clustering algo­

rithms that have a stopping rule based on a cost function including 

L for a GMM, which yields L' automatically. Also, the hierarchi­

cal Dirichlet process (HOP) model (Teh, et al., 2006 [92]) allows 

the number oflatent topics to be estimated from a given document 

set. If the latent topics inherent in the set are used for producing 

clusters of words or documents, then L' can be considered to be 

automatically given by the HOP model (see Kishida, 2013 [56]). 

Rather than assuming a Gaussian distribution, Herbin et al. 

(200 1) [48] employed a nonparametric Parzen-Rosenblatt win­

dow method for kernel density estimation and applied the es­

timated probabilistic distribution function for segmenting the 

dataset into some areas. Cuevas et al. (2000) [28] provided an 

algorithm for estimating L' based on density obtained from a ker­

nel function, and Girolami(2002) [42] explored an unsupervised 

clustering based on a kernel function and suggested that L' may 

be determined by examining the distribution of eigenvalues of the 

kernel matrix. 

5.2.4 Stability-based approach 

Jain & Moreau( 1987) [52] made one of the earliest attempts 

at applying a 'stability' concept for determining L' under the as­

sumption that partitioning with L' is stable whereas partitioning 

with other numbers of clusters is not stable. Actually, the stabil­

ity is measured by an index computed from clustering results for 

a set of subsamples extracted from the target dataset. In [52], an 

index based on within-cluster dispersion was calculated from the 

results ofk-means clustering for Bootstrap samples. 

As the index, Bel Mufti et al.(2005) [8] examined experimen­

tally a stability measure developed by Bertrand & Bel Mufti 

(2006) [11 ], which is based on Loevinger's measure. Also, Pas­

cual et al.(2008) [75] used mutual information (MI) for measuring 

stability between two clustering results, and similarly, Volkovich 

et al.(2008) [96] and Volkovich et al.(20 11) [97] employed dis­

tance measures between two probabilistic distributions for it. 

In Levine & Domany (2001) [60], a cluster validity measure 

was computed from an N x N matrix, each element of which in­

dicates whether the ith data point and jth data point belong to 

the same cluster or not (i.e., 'membership'). Similar membership 

matrices were used in Ben-Hur et al. (2002) [IO] and Ben-Hur & 

Guyon (2003) [9] for determining L'. 

There have been many attempts at measuring the stability in 

a framework of cross-validation which is a standard technique 

in supervised learning. For example, Roth et al.(2002) [81] di­

vided the entire dataset randomly into two parts and executed a 

clustering algorithm for them. After that, the result from the sec­

ond part was used for predicting cluster membership in the first 

part, and the stability was measured based on the accuracy ofthe 

prediction. Similar cross-validation frameworks were adopted by 

Dudoit & Fridlyand (2002) [33] (in which Fowlkes and Mallows 

coefficient was used as one of the stability indices), Tibshirani 

& Walther (2005) [93] (their technical report published in 2001 

proposed a metric 'prediction strength'), and Lange et al. (2004) 

[59] (in which a modified misclassification error was used). Also, 

Wang(20 1 0) [99] and Fang & Wang(20 12) [34] explored inten­

sively the cross-validation approach for determining L'. 

By executing repeatedly a k-means algorithm with changing 

random initialization, it is possible to obtain a set of multiple 

clustering results, which leads to so-called 'consensus cluster­

ing'. If the consensus clustering is also repeated with different 

values of L, then L' can be determined similarly. Based on the 

strategy, Kuncheva & Vetrov (2006) [58] tried to estimate L' on 

data with various cluster shapes (e.g., spiral or half rings), and 

Steinley (2008) [88] also proposed a procedure for selecting L' 

from the result of consensus clustering. 

Chaea et al.(2006) [22] applied five agglomerative clustering 

algorithms to subsamples under assumptions of different values 

of L, and selected L' based on similarity between clustering re­

sults of 10 possible pairs of the algorithms. 

5.2.5 X-means and related approaches 

The k-means clustering can be interpreted as a special case of 

model-based clustering, and it is possible to combine a criterion 

like BIC with standard k-means algorithms. Actually, Pelleg & 

Moore (2000) [77] developed an x-means clustering algorithm 

with estimating L' based on BIC, and also Ishioka (2005) [51] ex­

tended it by adding a post-processing after executing the x-means 

algorithm in order to merge some over-fragmented clusters; 

Several extensions ofthe k-means algorithm with a function of 

estimating L' have been developed. For example, the g-means 

algorithm (Hamerly & Elkan, 2003, [45]) applies a statistical 

test for determining whether recursive partitioning is stopped 

or not, the ik-means algorithm (Mirkin, 2005, [69]; Chiang & 

Mirkin (20 IO) [26]; Mirkin, 2013, [71]) tries to find desirable 

initial seeds based on 'anomalous pattern (AP)' method, and the 

pg-means algorithm (Feng & Hamerly, 2007 [36]) employs the 

Kolmogorov-Smirnov test for the model selection. Also, Fischer 

(20 11) [37] explored another penalty function. 

5.2.6 Fuzzy clustering 

In the fuzzy clustering algorithm, automatic estimation of L' 

has been attempted by using validity measures such as 'fuzzy hy­

pervolume' and 'partition density' (Gath & Geva, 1989 [41 ]), or 
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'robust cluster similarity' (Frigui & Krishnapuram, 1996, [39]), 

which are computed in the framework of fuzzy clustering. Es­

pecially, algorithms tor estimating the number of objects with 

complicated shapes in image data have been developed in fuzzy 

clustering. For example, the 'robust competitive agglomeration 

(RCA)' algorithm (Frigui & Krishnapuram, 1999, [40]) has a 

step for removing a cluster with low degree of fuzzy member­

ship based on a threshold. Also, Kaymak & Setnes (2002) [54] 

estimated L' by merging two clusters between which similarity is 

higher than a threshold based on a 'volume prototype' represent­

ing a complicated shape. Devillez et al.(2002) [29] developed a 

complicated procedure including hierarchical clustering in order 

to apply fuzzy clustering to identification of clusters with compli­

cated shapes. In this procedure, 'real' clusters with complicated 

shapes are automatically identified from the dendrogram. 

On the other hand, Sun et al.(2004) [90] applied a standard pro­

cedure tor finding L' to the fuzzy clustering algorithm, in which 

a new index based on a linear combination of compactness and 

separation of clusters was used tor measuring the validity of each 

cluster. Also, Li & Shen (2010) [63] introduced a simple stopping 

rule based on a threshold for the particular purpose of estimating 

segmentation of an image by fuzzy clustering. 

5.2. 7 Genetic algorithm 

When applying a non-parametric approach such as a genetic 

algorithm (GA), some researchers attempted to determine con­

currently L' and optimal partitioning of a dataset according to 

an objective criterion related to the validity ofthe resulting clus­

ters. In the case of GA, the clustering task is sometimes called 

·GCUK-clustering' (e.g., see Bandyopadhyay & Maulik, 2002, 

[2]) where 'GCUK' is an abbreviation of 'genetic clustering for 

unknown k' and 'k' denotes the number of clusters. For instance, 

Bandyopadhyay & Maulik(200 I) [I] used a variable string length 

genetic algorithm (VGA) for it based on the Davies-Bouldin in­

dex and Dunn's index (see also Bandyopadhyay & Maulik, 2002, 

[2]). Also, Karkkainen & Franti (2002) [53] tried to estimate L' 

in executing the randomized local search (RLS) by employing 

Davies-Bouldin index and variance-ratio F-test as criteria. 

On the other hand, in the case of Hruschka & Ebecken(2003) 

[49], the 'classic' Silhouette criterion was used for selecting L' 

in executing a GA algorithm. Especially, Sheng et al.(2005) [86] 

proposed to use a weighted sum of several normalized cluster va­

lidity functions for detem1ining L'. 

Bandyopadhyay & Saha (2008) [3] introduced a new cluster 

validity function incorporating directly L in the framework of 

GA. The function was called 'Sym', which was also used by com­

bining it with the well-known Xie-Beni index in Saha & Bandy­

opadhyay (20 I 0) [83]. Such 'multi-objective' GA algorithms 

were explored also by other researchers (e.g., Banerjee, 2009 [ 4 ]; 

2010 [5]; 2012 [6]). 

Actually, Casillas et al.(2003) [21] applied the GA and a stop­

ping rule by Calinski & Harabasz ( 1974) [ 17] to the problem of 

partitioning a small set of documents (up to 100 documents). 

5.2.8 Others 

In developing techniques of spectral clustering, automatic de­

termination of L' has been explored. Because spectral clustering 

tries to find approximately an optimal cut of a graph (its nodes are 
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data points and an edge implies similarity between two nodes) by 

solving an eigenvalue problem, elements of the eigenvectors can 

be a clue for selecting L' (see Zelnik-Manor & Perona (2005) 

[ 11 0] or Xiang & Gong, 2008, [ 101] for actual algorithms). Also, 

Costa and Netto ( 1999) [30] tried to incorporate automatic es­

timation of L' into a SOM (self-organizing map)-based cluster­

ing algorithm. Note that some algorithms posteriorly determine 

the number of clusters as an output from the execution under a 

predetermined parameter other than L' (e.g., the leader-follower 

clustering algorithm or the BIRCH algorithm). 

There have been some attempts at estimating L' for special­

type data such as remote-sensing data (Cao et al., 2007, [20]), 

time series data (Vasko & Toivonen, 2002· [95]), mathematical 

function or curves (Li & Chiou, 2011, [ 62]), and so on. Also, 

some methods tailored to image data were proposed (e.g., Wang 

et al., 2009, [98] or Patil & Jondhale, 20 I 0, [76]). Especially, 

C3 M (cover-coefficient-based concept clustering methodology) 

(e.g., Can & Ozkarahan, 1984 [18]; 1990 [19]) is a special al­

gorithm for document clustering, which can predict L' from the 

'cover coefficient' measuring the degree to which a given docu­

ment is 'covered' by other documents. 

6. Conclusion 

This paper tried to develop an algorithm tor hierarchical multi­

way divisive clustering (HMDC) in which the number of parts 

inherent in each node of a tree is automatically estimated by a cri­

terion based on similarities within and between clusters. The ex­

periment showed that the HMDC algorithm generated good clus­

tering results. 
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