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Abbreviation 

 

AIR : Alchol Insoluble Residue 

ACC : 1-aminocyclopripane-1-acrboxylic acid 

ACS : 1-aminocyclopripane-1-acrboxylic acid syntase 

Ara : Arabinose 

B : Breaker stage 

bp : base pairs 

BTB : bromothymol blue 

Ca : Calcium 

cDNA : complementary deoxyribonucleic acid 
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EST : expressed sequence tag 
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Fuc : fucose 

Gal : galactose 

GalA : galacturonic acid 

GAUT1 : galacturonosyltransferase1 

Glc : glucose 

GlcA : glucuronic acid 

GUT1 : pectin glucuronyltransferase 1 

HG : homogaracturonan 

I : immature green 

ICP-AES : inductively coupled plasma atomic emission spectroscopy 
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kDa : kilo daltons 

M : mature green 

Man : mannose 

mRNA : messenger ribonucleic acid 

O : over ripe 

PCR : polymerase chain reaction 

PG : Polygalacturonase 

PGIP : polygalacturonase inhibitor protein 

ppm : parts per million 

R : red ripe 

Rha : rhamnose 

RG-Ⅰ : rhamnogalacturonan-I 

RG-Ⅱ : rhamnogalacturonan-Ⅱ 

RNA : ribonucleic acid 

RT-PCR : reverse transcriptase polymerase chain reaction 

rpm : rotation per minute 

T : turning  

TMS : trimethylsilyl 

TFA : trifluoroacetic acid 

UDP : uridine diphosphate 

Wt : wild type 

Xyl : xylose 
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 Abstract 

 

Fruit ripening is one of the developmental processes accompanying seed 

development. The tomato is a well-known model for studying fruit ripening and 

development. The disassembly of primary cell walls and the middle lamella through 

pectin de-methylesterified by pectin methylesterase (PE) and depolymerization by 

polygalacturonase (PG) is generally accepted to be one of the major changes that occur 

during ripening. Many reports about the changes in pectin during tomato fruit ripening 

are focused on the relation to softening of the pericarp or the Blossom-end rot (BER) by 

calcium (Ca2+) deficiency disorder. However, the changes in pectin structure and 

localization in each tissues during tomato fruit ripening has not been well known. In this 

study, gene expression and enzyme activity of PE and pectin de-methylesterified during 

fruit ripening was shown specific in pericarp tissues. And pectin content was richer in 

pericarp tissues than locular tissue. Especially, pectin (uronic acids) content and calcium 

(Ca2+)-bound pectin content was rich in skin. Also calcium (Ca2+)-bound pectin 

determined by secondary ion-microprobe mass spectrometry were detected in skin cell 

layer between the mesocarp. These results show that changes in pectin properties during 

fruit development and ripening have tissue-specific patterns. In particular, differential 

control of pectin methyl-esterification occurs in each tissue. Variations in the cell walls 

of the pericarp are quite different from that of locular tissues. The Ca2+-binding pectin 

and hairy pectin in skin cell layers are important for intercellular and tissue–tissue 

adhesion. Maintenance of the globular form and softening of tomato fruit may be 

regulated by the arrangement of pectin structures in each tissue.  
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Introduction 
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Fruit ripening is a developmental process accompanying seed development. In 

fleshy fruits, this involves many physiological processes, including the production of 

nutrients and aromatic compounds, changes in colour and softening of the pericarp. 

These processes attract animals and promote seed dispersal [1]. The molecular pathways 

for many ripening-related phenomena have been characterised, including the 

modification of fruit nutritional and organoleptic status as well as the role of ethylene in 

ripening [2-8]. However, the critical molecular determinants of fruit firmness and 

softness are not well known. 

   Fruit softening is a prominent character in fleshy or climacteric fruits. For more than 

40 years, many studies have targeted the mechanism of fruit softening, much of it using 

tomato fruits as a model system to study fleshy fruit development and ripening. A 

decrease in fruit firmness occurs due to dissolution of the primary cell wall and middle 

lamella, resulting in a reduction in intercellular adhesion, depolymerization and 

solubilisation of hemicellulosic and pectic cell wall polysaccharides [9]. These events 

are accompanied by increased expression of various cell wall-degradation enzymes. For 

example, polygalacturonase (PG)-catalysed depolymerization of pectin in the wall and 

middle lamella was long believed to be the principal process underlying fruit softening 

in tomatoes [9]. However, suppressing PG by constitutive expression of antisense PG 

transgenes driven by the cauliflower mosaic virus 35S promoter degreased only 0.5-1% 

PG enzyme activity, but of the wild-type level of, did not affect overall fruit ripening 

and softening [10]. Similarly, suppressing the expression of several other 

ripening-related cell wall modification proteins, such as pectinesterase (PE)-catalysed 

de-methyl-esterification of pectin, in transgenic tomato fruits has generally resulted in 

minimal effects on fruit softening or texture [9, 11, 12]. On the other hand, suppression 
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of   β-galactosidase activity early in ripening significantly reduces fruit softening [13]. 

Although small effects on fruit softening can be achieved by individual gene 

knockdowns, substantial changes in fruit texture are likely to require the simultaneous 

modulation of multiple pectin degradation-related genes [9, 14]. 

   Although the level of pectin main chain depolymerization is a characteristic change 

in tomato fruit ripening, it does not directly affect fruit softening and firmness. And 

recently, it was suggested pectin de-methlesterification by PE effects to BER in tomato 

fruit that believed to be a calcium (Ca2+) deficiency disorder [15]. The function and the 

changes in pectin structure and localization in each tissue during tomato fruit ripening is 

not well known. Although many reports on tomato fruit ripening are focused on the 

relation between pectin degradation and softening of whole fruits or the pericarp, 

changes in pectin content and/or composition during fruit ripening may be unique 

between tissues.  

In this study, to elucidate the tissue-specific role of pectin during fruit development 

and ripening, I examined the expression of pectin biosynthesis/depolymerization genes, 

such as glycosyltransferase-1-like gene (GAUT1-like), pectin esterase (PE2) and PG2. 

The enzymatic activity of PE and PG, content and composition of pectin uronic acids 

involved in pectin biosynthesis and depolymerization in tomato fruit tissues were 

examined. In the previous reports, observations of fruits were only in pericarp, because 

red ripe fruit has liquefied locular tissues, which was quite difficult to keep in the 

microscopic sample (Fig. 1). In this reports, I report successful preparation of 

longitudinal sections through red ripe tomato fruit enabled by a novel microscopic 

fixation technique. I tried immunohistochemical analyses of uronic acids and calcium 

(Ca)-bound pectin localization in whole tomato fruit.  
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Materials and Methods 
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Plant material 

 

Tomatoes (Solanum lycopersicum cv 'Micro-Tom') were grown inside a cultivation 

chamber (TOMY CL-301)  under  16  h  light  and  8  h  dark  at  26˚C  and  22˚C,  respectively,  

and a light intensity of approximately 100 µmol m–2 s–1. Tomato fruits at the 

corresponding developmental stages were also collected: I (Immature green <1 cm 

length; 15 days after pollination (dap), M (Mature green; 30 dap), B (Breaker; 35 dap), 

T (Turning; 37 dap), R (Ripening; 45 dap) and O (Over ripe; 55 dap); Figure 1.  

 

RNA expression analysis 

 

Total RNA extractions were performed using a Qiagen RNeasy Mini Kit (Qiagen, 

Valencia, CA, USA) with subsequent DNase treatment to remove any contaminating 

DNA. RNA was quantified by spectroscopy. RT-PCR assays were performed using the 

TaKaRa ExTaq Kit (TaKaRa Bio, Otsu, Japan). The PCR conditions were as follows: 

step 1, 94°C for 3 min; step 2, 98°C for 10 s; step 3, 50°C for 15 s and 72°C for 1 min 

(steps 2–4; x times). The primer pairs for each gene given in Table S1 (see 

Supplementary Information). The expression level of RNAs was visually analysed on 

ethidium bromide-stained gels. 

 

Determination of pectin methyl-esterase activity 

 

Pectin methyl-esterase (PE) activity was investigated with a continuous 

spectrophotometric method according to Hagerman and Austin (1986) [16] in extracts 
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of the enzyme obtained from tomato fruit tissues. Measurements were conducted at 

20°C and pH 7.5 in a cuvette containing 2 ml pectin, 0.15 ml bromothymol blue (BTB) 

and 0.55 ml distilled water. Addition of 0.3 ml enzyme extract started the reaction and 

the residual enzyme activity was immediately assayed. The change in absorbance at 620 

nm was recorded for 10 min in a UV/VIS spectrophotometer (Perkin-Elmer, Waltham, 

MA, USA). The activity values are an average of three independent measurements. The 

assay was calibrated at room temperature and activity expressed as units of absorbance 

(–0.0001) per second. 

 

Determination of PG activity 
 

PG activity was assayed by determining the liberated reducing end products 

following the method of Milner and Avigad [17], in which polygalacturonic acid is used 

as a standard. The reaction mixture was composed of 100 µl of enzyme extract and 300 

µl of Milner–Avigad copper reagent and was boiled for 10 min. After rapid cooling, 

added 100 µl of Nelson reagent as a color former. After stirring, 800 µl of DW was 

added, followed by incubation at room temperature for 30 min. the absorbance at 600 

nm was recorded using a UV/VIS spectrophotometer (Perkin-Elmer, Waltham, MA). 

The activity values are reported as averages of three independent measurements. 

Activity is expressed as change in the content of isolated uronic acid per 1 minute. 
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Extraction and analysis of cell wall polysaccharides 

 

Tomato samples were frozen in liquid nitrogen. The frozen tissue was powdered in a 

mortar in liquid nitrogen and the resulting powder was disolved in 80% EtOH. The 

supernatant was removed after centrifugation for 5 min at 15,000 × g. The pellet was 

washed three times with water, three times with methanol:chloroform (MC = 1:1) and 

three times with acetone. A drop of phenol:acetic acid:water (PAW = 2:1:1) was added 

to the pellet and mixed. Two drops of MC were added to the sample and then washed 

with acetone. This process was repeated three times and the sample was then dried at 

room temperature for over 1 h. Starch was removed by digestion with amylase (2 

unit/ml amylase; Wako Pure Chemical Industries, Osaka, Japan) in 50 mM acetate 

buffer at 37ºC for 3 h. After reaction, the samples were centrifuged and the residues 

were washed three times with water, MC and acetone. After washing, the samples were 

air-dried for over 12 h. Alcohol insoluble residues (AIR) were used as the cell wall 

material. Two mg of AIR was boiled with 0.25% ammonium oxalate for 2 h. After 

boiled, the samples were centrifuged at 15,000 × g for 5 min. The supernatant was the 

ammonium oxalate-soluble fraction as a pectic sugar fraction. The pellets were 

hydrolyzed with 2 M trifluoroacetic acid (TFA) at 121ºC for 2 h. After hydrolysis, the 

samples were centrifuged at 15,000 × g for 5 min. The supernatant was the TFA-soluble 

fraction. The pellets were hydrolyzed with 72% H2SO4 at room temperature for 2 h and 

then diluted to 4% H2SO4 and boiled for 1 h. The H2SO4 solutions were neutralized with 

Ba(OH)2. Sugar in ammonium oxalate-soluble fraction was analyzed by gas–liquid 

chromatography (GC-2010; Shimadzu, Kyoto, Japan). Sugar content in ammonium 

oxalate-soluble fraction was determined using the phenol sulphuric acid method. 
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Determination of the pectin methyl ester content 

 

The methyl ester group was determined quantitatively by an enzymatic method 

involving an alcohol oxidase/formaldehyde dehydrogenase system. For hydrolysis of 

methyl esters bound to pectin, 0.1 M KOH (100 µl) was added to the pectin solution 

(100 µg/100 µl), followed by incubating for 1 h at room temperature. The methanol 

released was determined. The reaction mixture, composed of 100 mM glutathione (60 

µl), 100 mM NAD+ (60 µl), alcohol oxidase (1 unit) and FADH (2 units) in 0.2 M 

potassium phosphate buffer (pH 7.5) in a total volume of 2.9 ml, was placed in 

screw-cap tubes. Aliquots (100 µl) of methanol standards (0.5–10 µg) or the pectin 

hydrolysates containing 50 pg of galacturonic acid were added to the tubes. The tubes 

were incubated at 25°C for 30 min. The methanol content was calculated using e = 6.2 × 

103 mol–1 cm–1 for NADH at 340 nm. The degree of methyl esterification (DE) was 

expressed as the molar percent of methyl ester groups per D-galacturonic acid residues. 

 

Tissue section and light microscopy 

 

Tomato fruit pericarp samples were cut by hand-sectioning. These samples were 

fixed in 2.5% paraformaldehyde in 0.025 mM phosphate-buffered saline (PBS) and 

vacuated using a vacuum pump for 12 h. Fixed samples were dehydrated through the 

following series of ethanol concentrations: 30%, 50%, 70%, 80% and 90% for 20 min 

each and then 95% and 100% twice for 30 min. Ethanol in dehydrated samples was 

exchanged for Technovit 7100 resin (Heraeus Kulzer, Wehrheim, Germany) through the 

following series of Technovit 7100:ethanol: 1:4, 2:3, 3:2, 4:1 each for 30 min and then 
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100% Technovit for 30 min and 12 h. Samples were then solidified in Technovit 7100 

resin following the manufacturer's protocol. Embedded samples were cut into 5-μm  

sections using a microtome with a glass knife. The sections were stained with 1% 

Toluidine Blue and 1% Ruthenium Red solution for 10 min, washed with water and then 

observed under a microscope (×40).  

Whole tomato fruit samples were cut in half by hand sectioning to prevent the 

liquefied locular tissues from leaking out from fruit samples during fixation and ethanol 

dehydration treatments. These samples were fixed in 2.5% paraformaldehyde in 0.025 

mM PBS and vacuated with a vacuum pump for 24 h. Fixed samples were dehydrated 

through the following sequence of ethanol concentrations: 30%, 50%, 70%, 80%, 90% 

and 95%; dehydrations were repeated thrice for 20 min in each ethanol concentration. 

Sections were then immersed in 100% ethanol thrice for 30 min. Although not all 

tissues in the half-cut fruit samples were completely fixed, about 3–4 mm wide 

thicknesses of tissue adjacent to the hand-cut surfaces were (including liquefied locular 

tissues). Accordingly, I removed about 3–4 mm of tissue from either side of the 

hand-cut surfaces for embedding in resin. Ethanol-dehydrated samples were immersed 

in the following sequence of Technovit 7100 resin concentrations (in ethanol): 50% for 

6 h, followed by 100% for 6 h and 12 h. Samples were then solidified in Technovit 7100 

resin following the manufacturer's protocol. Embedded samples were cut into 

10-μm-thick sections using a microtome with a tungsten knife. The sections were 

stained with 1% Toluidine Blue and 1% Ruthenium Red solution for 10 min, washed 

with water, and then observed under a light microscope (×40). 
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Immunohistochemical analysis 

 

A series of monoclonal rat IgG antibodies to Homogalacturonan / LM19 and LM20 

was purchased from PlantProbes (Leeds, UK; www.plantprobes.net) and a TSA kit with 

HRP-conjugated secondary antibody and Alexa Fluor 488 tyramide were purchased 

from Invitrogen (Carlsbad, CA, USA; cat. #T20912). Immunohistochemistry using the 

set of monoclonal antibodies was performed according to the   manufacturer’s  

instructions. The sections were put under PBS prior to labelling and 100 µl of the 

following reagents were dropped onto the sections in order: quenchin buffer (to quench 

endogenous peroxidase activity), 1% blocking reagent and primary antibody diluted in 

1% blocking reagent (1:30), each time incubated at room temperature for 1 h. The 

sections were washed three times with PBS, then incubated in 100 µl of HRP conjugate 

diluted in 1% blocking reagent (1:100) for 1 h, washed (3× PBS) and incubated in 100 

µl of tyramide working solution [tyramide stock solution diluted in amplification 

buffer/0.0015% hydrogen peroxide (H2O2); 1:100) for 10 min at room temperature and 

washed three times with PBS followed by DW, twice. The sections were mounted in 

DW and observed under a fluorescence microscope.   

 

Determination of Ca content 

 

Fruit tissues and AIRs were homogenized with a mortar and pestle, and the samples 
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(300 mg fresh weight and AIRs) were pre-digested overnight in a solution of 40% nitric 

acid (HNO3) and 10% H2O2. Subsequently, samples were digested in concentrated 

HNO3 at 140°C. To measure metal concentrations, first digested solutions diluted with 

Milli-Q water were filtered through 0.45-μm  membrane  filters (Millipore, Billerica, MA, 

USA). After dilution with 0.1 N HNO3, the Ca content was determined by inductively 

coupled plasma atomic emission spectroscopy (ICP-AES; Optima 7300 DV; 

Perkin-Elmer) at the Chemical Analysis Centre, University of Tsukuba. To calculate the 

concentrations of these elements, standard solutions were purchased from Wako Pure 

Chemical Industries. 

 

Ion microscope analysis 

 

Samples were solidified in Technovit 7100 resin following the manufacturer's 

protocol. Embedded samples were stained with 1% Ruthenium Red solution for 5 min 

and washed with water. The samples were coated with a 30 nm layer of gold to avoid 

the accumulation of charge due to the primary beam of the ion microscope and electron 

microprobe. Ion microscope analyses were conducted at Hokkaido University using a 

modified Cameca ims-1270 ion microscope with a SCAPS ion imager to undertake two 

complementary ion beam techniques [18]. A O- primary beam of 23 keV was 

homogeneously irradiated on the sample surface of approximately 300 x 300 µm2 with a 

beam current of 10 ~ 40 nA [19]. Secondary ion images of 102Ru+, 63Cu+, 40Ca+ and 39K+ 

were obtained with the exposure times of 100 s, 75 s, 50 s and 25 s for each isotope 

images. 
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Analysis of pectin biosynthesis and depolymerization-related gene expression in 

tomato fruit tissues during ripening 

 

To compare ripening-related cell wall pectin metabolism between tomato fruit 

tissues, the expression of genes encoding proteins involved in pectin biosynthesis, 

modification and depolymerization, including GAUT1-like, pectin methyesterase2 

(PE2) ([20], [21], [22]; GenBank accession no. X07910), and polygaracturonase 2 

(PG2) ([23],[24]; GenBank accession no. X14074.1) was examined by reverse 

transcription-polymerase chain reaction (RT-PCR) analysis (Fig. 2). GAUT1 was the 

first   successfully   identified   pectin   biosynthetic   enzyme,   homogalacturonan   (HG)   α-1, 

4-GalA transferase identified in Arabidopsis thaliana [25]. GAUT1 was predicted to be 

a Type Ⅱ membrane protein, with a single N-terminal transmembrane helix and a 

main globular domain inside the Golgi lumen. In tomatoes, pectin biosynthetic enzyme 

has not been identified. Thus, I investigated a homologous genes of GAUT1. Homology 

search of the SOL database (http://solgenomics.net/) and Mibase 

(http://www.pgb.kazusa.or.jp/mibase/)  revealed  a GAUT1 homologous genes 

(GAUT1-like family) in tomatoes. These tomato GAUT1-like family have high 

similarity to homologous to Arabidopsis GAUT1 protein based on the nucleic acids of 

tomato unigenes registered with the SOL Genomics Network (SGN), including a 

conserved glycosyltransferase family 8 domain (Supplemental Figure S1). PE2 and PG2 

are known ripening-related pectin modification and depolymerization enzymes. These 

enzymes are believed to be expressed and active in fruits. PE catalyzes the 

de-methyl-esterification of pectin HG polymers and assists in the depolymerization of 

HG by PG. Pectin de-methylesterification by PE also promotes Ca-binding between HG 

http://solgenomics.net/
http://www.pgb.kazusa.or.jp/mibase/
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polymers. PE expression is generally thought to increase gradually during fruit ripening, 

and PG expression to increase gradually in analyses of whole tomato fruits or fruit 

pericarp [26]. However, the expression of these genes in each of the tomato fruit tissues 

has not been demonstrated. I analyzed expression of these genes by semiquantitative 

RT-PCR and found differences in expression between tissues.      

   Figure 2 shows the expression patterns of three fruit-associated tomato pectin 

biosynthesis/degradation-related genes during fruit development and ripening. The 

expression of tomato rRNA was also evaluated in the same analysis as a loading control. 

The expression patterns in different fruit stages were generally similar. For example, 

PE2 and PG2 were expressed at high levels in ripening fruit pericarp, as previously 

reported [26-29]. Remarkably, PE2 expression was not detected in tissues surrounding 

seeds, such as locular tissue, seed, placenta, and core (Fig. 2A). PG2 expression in 

tissues surrounding seeds was detected in later stage compared with other tissues (Fig. 

2B). The expression pattern of the GAUT1-like gene gradually increased during fruit 

ripening (Fig. 2C). Pectin content may differentially change between tissues during 

ripening, and thus enzymatic assays of PE and PG activity and quantitative 

determination of cell wall and pectin contents were performed.    

 

Determination of PE activity and degree of pectin methyl-esterification (DE) in 

tomato fruit tissues during ripening 

 

PE activity was assayed with extracts of the enzyme obtained from five tomato fruit 

tissues (skin, mesocarp/endocarp, septum, locular tissue and seed). PE activity was 

remarkably high in the skin and gradually increased during ripening in skin, 
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mesocarp/endocarp and septum. In locular tissue and seed, PE activity was not detected 

(Fig. 3A). Analysis of the degree of pectin methyl-esterification showed that the DE of 

the pericarp decreased during ripening, while DE was not changed and maintained at 

about 50% during ripening in seed surrounding tissues where it was maintained at about 

50% (Fig. 3B).  

 

Determination of the Ca content in tomato fruit tissues during ripening 

 

Total Ca content in alcohol-insoluble residues (AIR) samples from each tissue was 

determined by ICP-AES. Total Ca content was very high in the skin compared with 

other tissues. In skin, locular tissue and seed Ca content increased gradually during 

ripening (Fig. 4A). In contrast, in the septum, Ca content remained steady and decreased 

slightly in the mesocarp/endocarp. Similarly, Ca content in the AIR was very high in the 

skin and increased at the breaker stage (Fig. 4B). In mesocarp/endocarp, Ca content 

increased after the B stage and in the septum and locular tissue, Ca increased and 

decreased during ripening, respectively (Fig. 4B). Ca in the AIR sample could be the 

result of cell wall (pectin)-binding calcium. Determination of Ca by secondary 

ion-microprobe mass spectrometry (SIMS) suggested similar results (Fig. 4C). Direct 

observations of Ca2+-pectin localizations in fruit by SIMS are reported here for the first 

time. Ca was high in the skin, especially in cell layers between the skin and mesocarp. 

Ca localized with pectin, which was stained by Ruthenium Red (Fig. 4C).   
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Determination of PG activity in tomato fruit tissues during ripening 

 

To determine the PG activity in tomato fruit tissues, cell wall protein extracts from 

five tomato fruit tissues (skin, mesocarp/endocarp, septum, locular tissue and seed) at 

six ripening stages (I-O) were assayed for their ability to degrade polygalacturonic acid 

in vitro (Fig. 5). Protein extracts isolated from pericarp tissues possessed high PG 

activity at the M stage, while seed surrounding tissues had weak activity at the M stage 

and activity gradually increased from the B stage. Remarkably high PG activity was 

observed in the septum.  

 

Biochemical analysis of the cell walls of fruit tissues during ripening 

 

Changes in the amount of total cell wall material (on a fresh weight basis) and of 

uronic acids followed tissue-specific and typical ripening-related trends (Fig. 6A–C). In 

all tissues, total cell wall content increased from the I to T stages accompanying fruit 

and seed development. The pectin content (uronic acids) also increased in the cell wall. 

In the skin, pectin content decreased remarkably from the T to R stages (Fig. 6B). This 

suggests that a pectin degradation-related enzyme, like PE, affects pectin content during 

ripening. Sugar composition analysis of the pectin fraction indicated that most tomato 

fruit pectins were HG; pectin sugar composition diversified in the skin during fruit 

ripening (Fig. 6D). 
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Distribution of methyl-esterified pectin, non-methyl-esterified pectin in tomato 
fruit tissues during ripening  

 

In skin, the pectin content and degree of pectin methyl-esterification was distinctly 

changed compared with other tissues. The anatomical features of the epidermal cell 

layers were examined by light microscopy (Fig. 3C). Pericarp tissue slices for each 

ripening stage were made, with a focus between the skin and mesocarp. These were 

stained by Ruthenium Red with or without NaOH treatment. These slices were also 

stained by Toluidine Blue as a control. Whole pectin content increased remarkably from 

the I to B stages (Fig. 3C-f,g,h), while de-methyl-esterified pectin increased from the B 

to R stages (Fig. 3C-m,n,o). During fruit ripening, pericarp tissues soften gradually and 

cell adhesion may weaken. Pectin de-methyl-esterification is probably related to cell–

cell adhesion. Moreover, in this study, I have succeeded in observing a whole fruit 

section of red ripe tomato fruit, including liquefied locular tissue using a devise 

microscopic fixing techniques (Fig. 7). Those sections were used for the determination 

of wall modifications at the cellular level by comparing histochemical staining patterns 

and immunolocalization patterns using antibodies. Immunolocalization of HG epitopes 

raised against de-methyl-esterified pectin (LM19) and methyl-esterified pectin (LM20) 

residues in tomato fruit (http://www.plantprobes.net/index.php). Especially, pectin were 

more abundant in pericarp than locular tissue (Fig. 7C and D), and methyl-esterified 

pectin content increased remarkably from the I to M stages (Fig. 7D), while 

de-methyl-esterified pectin increased from the B to T stages (Fig. 7C). Even in the red 

ripe stage, pectin residues remained in the outline around the pericarp form. 
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Discussion 
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Differential control of methyl-esterification of pectin is present in fruit tissues 

during ripening 

 

Fruit softening is a prominent character of climacteric fruits. Softening fruit occurs due 

to solubilization and depolymerization of cell wall hemicelluloses and pectin by various 

cell wall hydrolases [9], [30]. Disassembly of the fruit cell wall is largely responsible 

for softening and textural changes during ripening, but the precise roles of particular cell 

wall alterations and of the cell wall-modifying enzymes responsible for these changes 

are unknown. Most studies have focused on the fruit as an organ or only on pericarp 

softening. The changes during fruit ripening, including seed development, may differ 

between the pericarp tissues and the inner tissues, such as locular tissue and placenta 

(Fig. 1). Therefore, in our study, I compared different tomato fruit tissues and the result 

suggest that changes in pectin during fruit ripening differ in each tissue and that pectin 

is not only degraded but also biosynthesized (Fig. 2).  

   Pectin sugar composition and construction vary with the different roles typical of 

tissues and cell layers. Tomato fruits are rich in HG composed  of  long  chains  of  (1→4)  

a-D-galacturonic acid, which is initially highly methyl-esterified, and the main chains, 

polygalacturonans, are secreted into the cell wall in a highly methyl-esterified form, 

which are de-esterified during cell development. During fruit ripening in tomatoes, the 

degree of methyl esterification of pectin decreased from 90% in mature green fruit to 

35% in red ripe fruit [31]. Although our data were similar to these results, pectin 

de-methyl-esterification was specific to the pericarp, especially in the cell layers 

between the skin and mesocarp (Fig. 3C). In contrast, the degree of pectin 

methyl-esterification in locular tissue was constant at about 50% (Fig. 3B). This was 
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accomplished by PE and the degree of methyl-esterified pectin was associated with PE 

activity in all tissues. Demethylation of pectin to their free carboxyl groups changes the 

pH in the cell wall, allowing for the aggregation of polyuronides into a Ca-linked gel 

structure, making the polyuronides susceptible to degradation by PG [31], [32], [33], 

[34], [35]. From these results, changes in the degree of pectin methyl-esterification 

appear to play an important role in tissue-specific changes in pectin construction during 

tomato fruit ripening.  

   Compared to other tissues, the degree of methyl-esterified pectin in locular tissue 

was low (45–50%) at the immature fruit developing stage (Fig. 3B). This suggests that 

PE was active early in fruit development or fruit set and pectin was already 

de-methyl-esterified at these stages. The pectin content increased in locular tissue 

during ripening; maintaining the DE at 50% from the early fruit developing stage is 

difficult. HG is thought to be synthesized in the cis-Golgi, methyl-esterified in the 

medial-Golgi, substituted in the trans-Golgi and secreted in a highly methyl-esterified 

state [36], [37], [38]. GAUT and a Pectin Methyl-Transferase (PMT), probably acting as 

a hetero-complex, may be involved in the polymerization of a fully methyl-esterified 

HG (i.e. 80%), which is the secreted form. Recently, a Golgi-localized HG GAUT was 

identified in Arabidopsis [23]. Golgi pectin methyltransferase activity was demonstrated 

[39,40], and a candidate gene has been identified [41]. In the pectin HG biosynthesis 

process, the degree of methyl-transferization differs between tissues (Fig. 3B). The 

degree of pectin methyl-esterification is especially important for embryonic 

development in locular tissue and may be associated with seed development.  
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Ca-binding pectin and hairy pectin in skin cell layers are important for 

intercellular and tissue–tissue adhesion  

 

During fruit ripening, pectin de-methy-esterification due to PE activity was specific 

to pericarp tissues (Fig. 3A). In skin, although pectin was de-methyl-esterified similarly 

to mesocarp and pectin was gradually degraded by PG activity (Fig. 5), pectin content 

in the cell wall of the tissue was higher than in other tissues (Fig. 6B) and Ca content 

was 1.5–2 times that in other pericarp tissues (Fig. 4A). The cell wall is the largest pool 

of Ca2+ in plant tissues, reaching about 60–75% of the total tissue Ca2+ content [42]. In 

the cell wall, PEs carry out block-wise de-esterification, creating contiguous stretches of 

galacturonic acid residues [43]. The extent and strength of Ca2+ cross-linking depends 

on the pattern of de-esterification as well as on the number and availability of the acidic 

residues [44]. Under low degrees of block-wise de-esterification, pectins ionically 

associate with carboxyl moieties participating in labile binding with free Ca2+, forming 

plastic gels with low shear strength [45]. As pectins are de-esterified block-wise by PE, 

dimers begin to form in a cooperative fashion, so the binding strength rapidly increases 

as the ratio of Ca2+ to available binding sites increases [44]. The number of consecutive 

de-esterified galacturonic acid residues required to form stable chains in a modified, or 

shifted   “egg-box”,   configuration   [46],   [47]   has   been   estimated   in   various   systems   to  

range from 6 to 20 [48]. De-methyl-esterified pectin, which can be cross-linked with Ca, 

is abundant in the skin cell wall,   and   these   pectin   residues   may   form   an   “egg-box”  

configuration and pectin gels. Because a great difference in pectin construction exists 

between the skin and mesocarp, tissue firmness also differs, and these differences may 

be responsible for the phenomena seen in the skin and mesocarp, e.g. skin peeling. The 
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colorless and non-ripening Cnr mutations are recessive and dominant mutations, 

respectively, and effectively block the ripening process. This may be due to failure to 

produce elevated ethylene or to respond to exogenous ethylene during ripening [28], 

[49], [50]. This indicates that high-level cell separation in Cnr is attributable to thin cell 

walls, weak cell adhesion and fewer pectin–Ca2+ bonds. These results suggest that 

pectin–Ca2+ bonding is required for cell–cell or between tissue adhesion, such as 

between the skin and mesocarp. Also, BER in tomato fruit (Solanum lycopersicum) is 

believed to be a Ca2+-deficiency disorder. Consequently, changes in the expression of 

enzymes that create binding sites for Ca2+ in the cell wall, such as PEs, can potentially 

affect cellular Ca2+ partitioning and distribution (Fig. 3B,C). Accordingly, our results 

show that pectin de-methyl-esterification due to PE and pectin–Ca2+ binding exists in 

cell layers under the skin cuticle layer, as occurs in BER.  

Our results show that Rha, Ara and Xyl are increased in skin cell walls from the late 

ripening stage. Pectin is thought to be increased in side chains during ripening in the 

skin (Fig. 6D). These Ara side chains of pectins may prevent the formation of 

cross-links between pectins, but some reports demonstrated that Ara side chains are 

important for the formation of other cell wall networks [51], [52], [53]. The skin is the 

border tissue between the outside environment, with a cuticle layer on the surface. 

High-density net construction of pectin and other cell wall components in the skin cell 

layers under the cuticle seem to be important in determining firmness in fruit softening. 

Recently, Ara side chains of pectin in RG I were reported to interact with cellulose 

fibers [53]. Covalent bonding exists between pectin and xyloglucans [54], [55] and 

pectins are also cross-linked with cell wall proteins, as in extensin [56]. These results 

suggest that these cell wall net constructions have weak interactions or close covalent 



25 
 

bonds, giving these cell walls a supermolecular structure. High-density complex cell 

wall structures in the skin might be important for maintaining tissue firmness. The 

cuticle also has a role in resistance to fungal infection and apparently provides 

resistance to postharvest pathogens. Similarly, the cell wall of the inner skin cell layer 

under the cuticle was a high-density structure due to increases in pectin side-chains and 

Ca bonds (Fig. 3C and 6D). These may play a role in resistance to pathogen infection by 

restricting the size or molecular weight of objects that can pass through the skin.  

 

Maintenance of globular form and softening of tomato fruit are regulated by the 

arrangement of pectin structures in tissues 

 

Micro Tom is a miniature dwarf tomato cultivar that was originally bred for home 

gardening. This cultivar has several unique features, such as a small size that enables it 

to grow at a high density seed setting under fluorescent light and a short life cycle that 

allows for mature fruit to be harvested within 70–90 d after sowing. And the genome 

was fully opened. These features are similar to those of Arabidopsis thaliana; 

consequently, this tomato is considered to be a model cultivar for tomato research. 

Although Micro Tom has some mutations, for example brassinosteroid deficient 

phenotype, plant growth and development of Micro Tom appear largely normal 

compared with more typical tomato cultivars. Most of the information on softening in 

fleshy fruit ripening is based on studies on tomatoes, and many of these studies suggest 

that tomato fruit softening is associated with changes in sugar metabolism and proteins 

affecting the integrity of the middle lamella, which controls cell–cell adhesion and thus 

influences fruit texture. The degree of pectin methyl-esterification is reduced by PE, and 
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if PE is suppressed, then polyuronide depolymerization decreases [57]. Physical 

restrictions to PG activity may exist. Although most studies have focused on fruit 

softening due to pectin de-methyl esterification by PE and depolymerization by PG, 

experiments with transgenic tomato fruits whose genes encoding these and other wall 

remodeling proteins had been silenced do not support this hypothesis; these experiments 

suggest that individual gene knockdowns have small effects on fruit softening [29]. 

During fruit ripening, cell wall pectin biosynthesis and assembly occurs, and pectins 

secreted to the apoplast are highly esterified and later de-esterified by the activity of PEs 

[43], [58] inducing pectin–Ca2+ cross-linking, which has an important role in the fruit 

cell wall. These processes are controlled differently in each tissue. I considered that the 

degree of softening or firmness is also regulated differently in each tissue.  

Pectin de-methyl-esterification by PE is specific in pericarp tissues and skin (Fig. 

3A and B), with mesocarp being very similar, but changes in tissue texture differ 

remarkably between skin and mesocarp. In skin, early ripening stage (MG) cell 

expansion is stopped and the surface becomes glossy, with the cuticle layer and cell wall 

becoming thick (Fig. 3C). The expression level of the tomato PMEU1 gene, which 

encodes the PME1 isoform, is elevated in the mature green stage, with levels declining 

substantially at the onset of ripening [60]. Gene silencing experiments demonstrate that 

the loss of PMEU1 expression leads to an enhanced rate of softening during ripening, 

suggesting that the action of PME contributes to the maintenance of fruit firmness. Rich 

pectin–Ca2+ cross-linking and the interaction of cell wall components likely produce a 

high-density cell wall structure that plays a role in maintaining tissue firmness. In the 

mesocarp, cell wall components are fewer than in the skin (Fig. 6A), and the degree of 

pectin in the cell wall decreases gradually from the breaker stage (Fig. 6C), which is 
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earlier than in skin. Pectin degradation is associated with fruit softening, and it is 

thought to increase in the inner fruit tissues, mesocarp, endocarp and locular tissue, with 

cell adhesion and tissue firmness decreasing during fruit ripening. In mesocarp, pectin 

de-methyl-esterified occurs, but pectin content, especially pectin–Ca2+, is about five 

times lower than in the skin (Fig. 6B). Pectin is not believed to form a 

high-molecular-weight polymer or gel in these tissues and is easily degraded by PG, 

which has a much higher activity than in the skin. Similar to many studies, pectin 

degradation due to the lack of side chains to interact with other components resulted in 

weak cell adhesion and decreased cell wall or tissue firmness affecting fruit softening. 

From the results of immunofluorescent antibody staining of LM19, de-methyl-esterified 

pectin is present in higher amounts on the calyx side than the stigma side, and increases 

until the breaker stage and decreases thereafter (Fig. 7C). This indicates that fruit 

softening starts on the stigma side. Pectin is lower on the stigma side than the calyx side 

and during ripening, pectin de-methyl-esterification and degradation weaken cell 

adhesion from the stigma side. At the red ripe stage, pectin content does not differ 

between the calyx side and stigma side (Fig. 7C and D).   

In the septum, which connects the pericarp and placenta, and the separated locules, 

the cell wall pectin content increases slowly until the breaker stage, remaining stable 

afterward (Fig. 6A and B). From the gene expression analysis, both pectin biosynthesis 

and degradation related genes were expressed constitutively, and pectin or cell wall 

components were reconstructed actively in the septum (Fig. 2A, B and D). High PG 

activity, especially after the Turning stage was observed (Fig. 5), and although the inner 

skin-like cell layers, which formed a thin membranous layer outlining the septum, was 

maintained, the inner septum cell layers gradually became thin. This suggests that both 
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cell wall biosynthesis and degradation actively occurs, and decreasing septum firmness 

affects fruit softening. PG activity also increased from earlier ripening stages compared 

to other tissues, and softening may start with decreasing septum firmness.  

   Locular tissue is a major expanding tissue in tomato fruit. The degree of pectin 

methyl-esterification in this tissue was constant at about 50% (Fig. 3B). Changes in 

bound Ca are associated with increasing pectin content. Although the pectin in locular 

tissue also can be cross-linked with Ca in the cell wall, pectin content was remarkably 

low and finding bound pectin-Ca or gel was difficult. In contrast, PG activity was high 

in later ripening stages as in pericarp tissues as pectins were degraded and decreased 

(Fig. 6B). These results indicate that pectin methyl-esterification levels vary among 

specific tissues and cause diverse modifications in the degree of cell wall degradation 

during fruit development.  

   In tomato fruits, fruit drop or birds disperse seeds. Globular form of fruit might be 

maintained by the skin and septum until seed maturity when seed surrounding tissues 

(mesocarp, endocarp and locular tissue) become soft, allowing for easy seed drop. Each 

tissue, according to its role in fruit ripening, seems to be differentially controlled in fruit 

cell wall modification and construction.  
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Figure 1. Preparation for tissue-specific analysis. 

A, The fruit ripening stages of cv. Micro Tom. The six stages included immature green 

(I), mature green (M), breaker (B), turning (T), red ripe (R) and overripe (O). B, The 

fruit tissues of cv. Micro Tom. The eight tissues included skin, mesocarp, endocarp, 

septum, locular tissue, seed, placenta and core. These were separated by 

hand-sectioning.  
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Figure 2. Pectin biosynthesis/degradation-related gene expression patterns differed 

among tissues.  

Gene expression was analysed by RT-PCR. A, PE2, pectin methyl-esterase 2 (25 

cycles); B, PG2, polygalacturonase 2 (25 cycles); C, GAUT1 family Arabidopsis pectin 

homogalacturonan galacturonosyltransferase-like gene family (25 cycles); D, rRNA, as 

a control (20 cycles). Expression levels were compared to rRNA in the same assay. The 

eight tissues analyzed in these assays included skin, mesocarp, endocarp, septum, 

locular tissue, seed, placenta, and core. Ripening stages were the following: I, immature 

green; M, mature green; B, breaker; T, turning; R, red ripe; O, overripe. 
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Figure 3. PE activity and a decreasing degree of pectin methyl-esterification were 

specific to pericarp tissues.   

A, PE activity. Total protein in the cell wall was extracted from each fruit tissue and 

assayed for PE activity. One unit means a decrease in OD620 per second. B, Degree of 

pectin methyl-esterification. The pectin fraction was extracted from fruit tissues for 

analysis. The five tissues analysed in these assays included skin, mesocarp/endocarp, 

septum, locular tissue and seed. Ripening stage: I, immature green; M, mature green; B, 

breaker; T, turning; R, red ripe; O, overripe. ±SD of three independent replicates. C, 

Pectin localisation between the skin and the mesocarp. Light microscopy images with 

Toluidine Blue (a-e) as a control, Ruthenium Red after NaOH treatment for 5 min (f-j) 

staining of pectin and Ruthenium Red (k-o) staining of de-methyl-esterified pectin. 

Ripening stage: I, immature green; M, mature green; B, breaker; T, turning; R, red ripe. 
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Figure 4. Ca-bound pectin was plentiful in the boundary cell layers between the skin 

and mesocarp. 

A, Ca content in tomato fruit tissues. B, Ca content in the tomato fruit cell wall. The 

alcohol-insoluble residue fraction was extracted from fruit tissues for analysis. Ca 

content in  each fraction was determined by inductively coupled plasma atomic 

emission spectroscopy (ICP-AES). C, Ca determination between the skin and mesocarp. 

Quantitative imaging by secondary ion-microprobe mass spectrometry (SIMS). 

Ruthenium: showing ruthenium, which binds with pectin. Calcium: showing calcium 

content. Merge: showing overlap of ruthenium (pectin) and calcium. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

 

 

 
  



44 
 

Figure 5. PG activity affects fruit softening in pericarp tissues at the late ripening stage.   

PG activity was determined by the Milner-Avigad method (Milner and Avigad, 1967). 

Total protein in the cell wall was extracted from each tomato fruit tissue and assayed for 

PG activity. The five tissues analysed in this assay included skin, mesocarp/endocarp, 

septum, locular tissue and seed. Ripening stage: M, mature green; B, breaker; T, turning. 

±SD of three independent replicates. 
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Figure 6. Changes in the cell wall and pectin content differed in fruit tissues during 

ripening. 

A, Dry weight of the alcohol-insoluble residue (AIR) per 1 g fresh weight from each 

fruit tissue. B, Pectin content per 1 g fresh weight from each fruit tissue. C, Relative 

pectin content in the cell wall. The five tissues analysed in this assay included skin, 

mesocarp/endocarp, septum, locular tissue and seed. D, Suger content in pectin fraction 

extracted from skin cell wall. Ripening stage: I, immature green; M, mature green; B, 

breaker; T, turning; R, red ripe; O, overripe. ±SD of three independent replicates.  
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Figure 7. Immunolocalization of Homogalacturonan (HG) epitopes in tomato fruit 

longitudinal section of fruit.  A, Light microscopy images with Toluidine Blue as a 

control. B, Negative control. C, Immunolabeled with LM19, which labelled 

de-methyl-esterified HG. D, Immunolabeled with LM20, which labelled 

methyl-esterified HG. Ripening stage: I, immature green; M, mature green; B, breaker; 

T, turning; R, red ripe. E, Immunolabeled with LM19, which labelled 

de-methyl-esterified HG. Top row micrographs indicate Sepal side of pericarp (Se), 

middle row micrographs indicate Middle of pericarp (Mi), and bottom row micrographs 

indicate Stigma side of pericarp (St). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

 

 

 

 

 

  



50 
 

 

 
 
 
 
 
 

Supplementary Information   

  



51 
 

Figure S1. Alignment of GAUT1-like family. 
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Table S1. The primer pairs for pectin biosynthesis and depolymerization-related gene 
expression analysis. 
 
 

 
FORWARD PRIMER REVERSE PRIMER  

PE2 ATACAGAACACAGCAGGACCAGC AGGCCACTTGACACGCTTACTAG 

PG2 GAGCCCAAATACTGATGGAG GATCCTCCCTGCCAAGTCTTGAT 

GAUT1-like family TCTTCGCTCTTAGACCTTTTAGG CATCAAGAAAAAGGATTTTATTCA 

rRNA GCAAATTACCCAATCCTGAC CTATTGGAGCTGGAATTACC 
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