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Nonalcoholic steatohepatitis (NASH) is defined as abnormal lipid accumulation in 

the liver and subsequent liver injury, inflammation and fibrosis, which is 

concerned with obesity, insulin resistance and other metabolic disorders and 

sometimes progresses to liver cirrhosis and hepatocellular carcinoma. However, 

the molecular mechanism of the onset and progression of NASH is poorly 

understood. In order to elucidate the molecular mechanism, I focused on two 

crucial processes in NASH pathology, the onset process and the progression of 

liver fibrosis. 

 Stearoyl-CoA desaturase-1 (SCD-1) catalyzes the biosynthesis of 

monounsaturated fatty acids from saturated fatty acids and regulates triglyceride 

synthesis. The abnormality of SCD-1 seems to be responsible for obesity, insulin 

resistance, and hepatic steatosis. In order to elucidate the effects of SCD-1 on the 

onset of NASH, an SCD-1 inhibitor was administered to rats fed with methionine 

and choline-deficient (MCD) diets for 8 weeks, which showed hepatic steatosis, 

liver injury, inflammation and early fibrosis. Administration of the SCD-1 

inhibitor decreased triglyceride accumulation in the liver of MCD rats. 

Administration of the SCD-1 inhibitor also attenuated the increase of plasma AST 

and ALT. Hepatic steatosis, hepatocellular degeneration, inflammatory cell 

infiltration and early fibrosis were histologically observed in liver of MCD rats, 

and administration of the SCD-1 inhibitor ameliorated these crucial problems in 

NASH. These results suggest that the SCD-1 inhibitor prevented hepatic steatosis 

and decreased sensitivity to the onset of the NASH phenotype including liver 

injury, inflammation and fibrosis.  

 Angiotensin II (Ang II), a major component of renin-angiotensin systems, 

possibly plays an important role in the pathogenesis of liver fibrosis which is the 

most crucial phenotype in chronic liver disease including NASH. In order to 

elucidate the effects of Ang II on the progression of liver fibrosis, an Ang II type 1 

receptor blocker (ARB) was administered to rats that received bile duct ligation 

(BDL), which are liver fibrosis models without hepatic steatosis. ARB treatment 

inhibited the accumulation of liver collagen. Activated hepatic stellate cells 

(HSCs), key players in liver fibrogenesis, were highly accumulated in the area of 

collagen deposition in the livers of BDL rats. Furthermore, these cells expressed 



3 
 

AT1 receptors. ARB treatment decreased the accumulation of �SMA expressing 

AT1 receptors as well as collagen deposition. The effects of Ang II on fibrogenic 

phenotypes in in vitro activated HSCs were also evaluated. Ang II stimulated 

proliferation and collagen synthesis in activated HSCs and ARB treatment 

completely blocked them. Additionally, pro-fibrogenic cytokines, transforming 

growth factor-1 and connective tissue growth factor were up-regulated by Ang II 

stimulation through AT1 receptors, suggesting their involvement to 

Ang II-stimulated activation of HSCs. These results suggest that Ang II stimulates 

the key phenotypes of activated HSCs through activation of AT1 receptors and 

consequently leads to the development of liver fibrosis 

 In conclusion, I demonstrated that SCD-1 and Ang II plays key roles in the 

onset process and the progression of liver fibrosis in NASH, respectively. 
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Abbreviations 

 

 

ACE: angiotensin-converting enzyme 

-SMA: -smooth muscle actin 

ALT: alanine aminotransferase 

Ang II: angiotensin II 

ARB: angiotensin receptor blocker 

AST: aspartate aminotransferase 

AT1: angiotensin II type 1 

AT2: angiotensin II type 2 

BDL: bile duct ligation 

ChREBP: carbohydrate response element-binding protein 

CMC: carboxymethyl cellulose 

Col1a1-Luc Tg: rat collagen 1a1 promoter-luciferase transgenic 

CTGF: connective tissue growth factor 

DAB: 3,3’-diaminobenzidine tetrahydrochloride 

DMEM: Dulbecco’s modified Eagle medium 

ECM: extracellular matrix 

FCS: fetal calf serum 

FFA: free fatty acid 

GBSS: Gey’s balanced salts solution 

HBSS: Hanks’ balanced salts solution 

HSC: hepatic stellate cell 

LXR: liver X receptor 

MCD: methionine and choline-deficient 

MCP-1: monocyte chemotactic protein-1 

MUFA: monounsaturated fatty acid 

NAFLD: nonalcoholic fatty liver disease 

NASH: nonalcoholic steatohepatitis 

Olmesartan: olmesartan medoxomil 
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PBS: phosphate-buffered saline 

PDGF: platelet-derived growth factor 

PG:Tween: polyethylene glycol: Tween 80 

RAS: renin-angiotensin system 

SCD: stearoyl-CoA desaturase 

SD: Sprague-Dawley 

SREBP-1c: sterol regulatory element-binding protein-1c 

TBS: tris buffered-saline 

TCA: trichloroacetic acid 

TGF-1: transforming growth factor-1 

TIMP: tissue inhibitor of metalloproteinase 

VLDL: very low density lipoprotein 
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Nonalcoholic fatty liver disease (NAFLD), which is identified by excess lipid 

accumulation in the liver, is strongly associated with obesity, insulin resistance, 

type 2 diabetes, hypertension, dyslipidemia and metabolic syndrome (Farrell and 

Larter, 2006; Torres and Harrison, 2008). NAFLD is frequently observed in 

patients with metabolic disorders and about 10% of them progresses to 

nonalcoholic steatohepatitis (NASH), which shows histological observation of 

hepatocellular degeneration, inflammation and fibrosis in the liver in addition to 

steatosis. Some of NASH patients progress to liver cirrhosis and subsequently 

hepatocellular carcinomas, which are the end-stage of liver disease (Younossi et 

al., 2002). The population of NASH/NAFLD patients in advanced countries is 

increasing with the rise in obesity. Some clinical pilot studies have been performed 

with agents including insulin sensitizers, anti-dyslipidemic drugs, anti-obesity 

drugs and antioxidants (Marchesini et al., 2001; Harrison et al., 2003a, 2003b; 

Belfort et al., 2006; Gomez-Dominguez et al., 2006; Satapathy et al., 2006; Sanyal 

et al., 2010). Nevertheless, there is no established therapy for NASH/NAFLD at 

present (Malinowski et al., 2013).  

 The molecular mechanism of NASH/NAFLD remains poorly understood 

due to difficulties in elucidating the pathology. First, a liver biopsy is necessary to 

diagnose NASH and analyze the pathology in detail. Liver biopsy is highly 

invasive and has a high risk for complications such as bleeding and rare death. It is 

not realistic to repeatedly perform biopsies to observe the progression of the 

disease. Therefore, it is sometimes difficult to identify NASH patients particularly 

in early stages which are generally non-symptomatic. Although many researchers 

have tried to discover non-invasive biomarkers for NASH, there are no clinically 

validated biomarkers at present (Festi et al., 2013). Second, the background of 

metabolic disorders in NASH/NAFLD patients was very complicated. A lot of 

metabolic factors are dysregulated and the abnormal phenotypes are different 

among each patient. Therefore, it is hard to understand and find causative factors 

for NASH. 

 The “two hit theory” has been proposed for the mechanism of NASH onset 

and progression (Figure 1; page 76) (Day, 1998). The “first hit” is the lipid 

accumulation in the liver, which is caused by obesity, insulin resistance and other 
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metabolic disorders. Then, the “second hit” stimuli leads to liver injury, 

inflammation and finally fibrosis. Levels of fatty acids in liver are regulated by 

some processes including fatty acid uptake into liver, de novo fatty acid synthesis 

(lipogenesis), secretion from liver as very low density lipoprotein (VLDL) and 

fatty acid oxidation (Figure 2; page 77). In human obesity, the main mechanisms 

of lipid accumulation in liver are possibly due to increased fatty acid uptake and 

de novo lipogenesis caused by insulin resistance (Lewis et al., 2002). Plasma free 

fatty acids (FFAs) are mainly derived from adipose tissue and are released to 

plasma by the lipolysis of triglycerides in adipocytes. Insulin negatively regulates 

the lipolysis in adipocytes. Therefore, obesity-associated insulin resistance 

activates lipolysis and then plasma FFA levels are elevated. The expression of 

CD36 which regulates fatty acid uptake in the liver is also up-regulated in the liver 

of NAFLD patients (Greco et al., 2008). Increased plasma levels and liver uptake 

of FFAs lead to an excess influx and accumulation of FFAs in NAFLD liver. 

Furthermore, hyperglycemia and hyperinsulinemia resulting from insulin 

resistance can activate transcriptional factors regulating fatty acid synthesis in the 

liver including sterol regulatory element-binding protein (SREBP)-1c and 

carbohydrate response element-binding protein (ChREBP). In this manner, the 

increase of de novo lipogenesis may also cause lipid accumulation in NAFLD 

livers. Donnelly et al. has reported that 26% of liver triglyceride in NAFLD 

patients is derived from de novo lipogenesis compared with 5% in healthy persons 

(Donnelly et al., 2005). One important aspect of the two-hit theory is that steatosis 

per se is not causal in the development of NASH, but it sensitizes the liver to 

various second hit stimuli. Some factors such as oxidative stress, endotoxin and 

other bacterial components and inflammatory cytokines have been proposed as the 

second hits. However, the precise molecular mechanism is poorly understood. 

 Chronic injury and continuous inflammation in the liver lead to liver 

fibrosis and the progression of fibrosis finally causes cirrhosis and hepatocellular 

carcinoma, which are often lethal. Liver fibrosis is the predominant and most 

harmful process in NASH and is characterized by the abnormal accumulation of an 

extracellular matrix (ECM) such as collagen (Hernandez-Gea and Friedman, 2011). 

Fibrosis is generally observed in various chronic liver diseases including NASH. 
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Hepatic stellate cells (HSCs) are a major source of ECM in the liver, and HSCs 

account for approximately 5% to 8% of total cells in normal livers (Friedman, 

2008). HSCs possess vitamin A droplets and produce small amounts of ECM 

components in normal conditions, which are called “quiescent HSCs.” In injured 

livers, HSCs morphologically transform to myofibroblast-like cells, characterized 

as having a proliferative, fibrogenic and contractile phenotype. Their transformed 

cells express -smooth muscle actin (-SMA), which are called “activated HSCs.” 

Activated HSCs can produce an excess of collagen and other ECM components 

and simultaneously inhibit ECM degradation by the induction of tissue inhibitor of 

metalloproteinases (TIMPs), resulting in ECM accumulation in the liver. In injured 

liver, some factors, which are produced from surrounding cells such as 

hepatocytes, Kupffer cells, sinusoidal endothelial cells and inflammatory cells, are 

thought to activate HSCs in a paracrine manner although the precise mechanism is 

poorly understood (Friedman, 2008). Transforming growth factor-1 (TGF-1) 

plays an important role in the activation of HSCs. TGF-1 mainly stimulates the 

activation and collagen synthesis of HSCs in an autocrine or paracrine manner 

(Matsuoka and Tsukamoto, 1990; Gressner, 1995). It has been reported that a 

blockade of TGF-1 by the injection of a soluble type or dominant-negative type 

of TGF-1 type II receptors into animals, prevented experimental liver fibrosis 

(George et al., 1999; Qi et al., 1999; Yata et al., 2002). Thus, TGF-1 is highly 

involved in the pathogenesis of liver fibrosis. Connective tissue growth factor 

(CTGF), a cysteine-rich protein that belongs to the family of CNN, is thought to 

act as a downstream mediator of the fibrogenic actions of TGF-1, and also plays 

an important role in the development of fibrosis in a variety of organs (Leask et al., 

2002). It was reported that CTGF mRNA was up-regulated in human liver 

cirrhosis or activated HSCs, and recombinant CTGF stimulated activation of HSCs 

(Paradis et al., 1999, 2002; Williams et al., 2000). In this manner, these two 

cytokines are thought to be highly concerned with activation of HSCs. 

 In my present study, in order to elucidate the molecular mechanism of 

NASH, I focused on two crucial processes, the onset of NASH and progression of 

fibrosis. I focused on stearoyl-CoA desaturase-1 (SCD-1) in the onset of NASH 

and angiotensin II (Ang II) in the progression of fibrosis as key factors. 
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Introduction 

 
 
SCD is an endoplasmic reticulum enzyme that catalyzes the biosynthesis of 

monounsaturated fatty acids (MUFAs) from saturated fatty acyl-CoAs (Ntambi, 

1995). SCD, in conjunction with the NADPH, the flavoprotein cytochrome b5 

reductase, and the electron acceptor cytochrome b5, introduces the cis double 

bond in the 9 position of fatty acyl-CoA substrates, preferentially stearoyl 

(C18:0) and palmitoyl (C16:0)-CoA. These MUFAs are used as substrates for the 

synthesis of triglycerides, cholesteryl esters, membrane phospholipids, and wax 

esters. Two human and four mouse SCD isoforms have been characterized (Ntambi, 

1995). Some studies have indicated that SCD-1 is the main isoform and plays a 

central role in regulation of fatty acid and triglyceride composition in the liver 

(Miyazaki et al., 2000). Dietary carbohydrates can induce SCD-1 and lipogenic 

genes in the liver (Sampath and Ntambi, 2011). First, increased insulin secretion 

by dietary carbohydrate induces lipogenic transcription factors, sterol regulatory 

element binding protein 1c (SREBP-1c) and liver X receptor (LXR), which can 

activate transcription of SCD-1 and other lipogenic genes (Chen et al., 2004). 

Second, increased influx of glucose or fructose to liver can also induce SCD-1 and 

other lipogenic genes by a SREBP-1c-dependent and -independent mechanism 

(Miyazaki et al., 2001a, 2004). Therefore, the excess intake of dietary 

carbohydrate and some kind of fatty acids, or a food condition that increases 

insulin secretion possibly causes increased liver SCD-1 activity and triglyceride 

accumulation. 

 SCD-1 deficiency in the whole body or liver has reduced lipid synthesis 

and enhanced lipid oxidation, thermogenesis and insulin sensitivity in various 

tissues including liver, muscle and adipose tissue. These metabolic changes protect 

SCD-1-deficient mice against a variety of dietary, pharmacological and genetic 

conditions that promote obesity, insulin resistance and hepatic steatosis (Ntambi et 

al., 2002; Rahman et al., 2003, 2005; Miyazaki et al., 2007). Additionally, 

pharmacological inhibition of SCD-1 also improved hepatic lipid accumulation 
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and metabolic disorders (Issandou et al., 2009; Koltun et al., 2009; Ramtohul et al., 

2010). These reports demonstrate that SCD-1 plays a key role in regulating hepatic 

triglyceride levels and abnormal activation of SCD-1 may lead to hepatic steatosis. 

In contrast, it is poorly understood how SCD-1 affects the onset of the NASH 

phenotype including liver injury, inflammation and fibrosis. In this chapter, I 

evaluated the effects of SCD-1 on onset phase of NASH in rat models using an 

SCD-1 inhibitor. 

 Many animal models have been used for NASH/NAFLD research. Obese 

and type 2 diabetes models such as ob/ob mice, db/db mice and Zucker fatty rats 

generally do not lead to liver fibrosis; therefore they are not useful in researching 

NASH pathology. Actually, some of the NASH/NAFLD models exhibit no or 

slight fibrosis. Methionine and choline-deficient (MCD) diet models are one of the 

most useful NASH models and they develop liver fibrosis that is histologically 

similar to human NASH (Fan and Qiao, 2009). Methionine and choline are used to 

synthesize phosphatidylcholine, which is necessary for the secretion of 

triglyceride from the liver to blood as VLDL. Consequently, deficiency in 

methionine and choline leads to triglyceride accumulation in the liver. 

Additionally, methionine is a precursor of glutathione, an endogenous 

antioxidative protein. Deficiency in methionine also causes oxidative stress in 

liver and subsequently leads to liver injury, inflammation and fibrosis. However, 

MCD diet models require a long time period (over 3 or 4 months) to exhibit 

remarkable fibrosis. For efficient in vivo screening of drug candidates, the 

throughput was very important. Therefore, I tried to modify the MCD models to 

evaluate fibrosis in a shorter period than conventional methods. It has been 

reported that rat collagen 1a1 promoter-luciferase transgenic (Col1a1-Luc Tg) rats, 

in which the expression of luciferase is regulated under the native promoter of 

collagen 1a1, were established. They are appropriate to sensitively evaluate the 

fibrosis of kidneys and various organs in a short-term period (Terashima et al., 

2010). In these rats, the pro-fibrogenic response with altered mRNA expression of 

collagen 1a1 could be detected even if protein levels of collagen are not 

sufficiently increased. Furthermore, luciferase is easier to measure than real time 

RT-PCR analysis; therefore they are useful in in vivo screening. In my present 



13 
 

study, Col1a1-Luc Tg rats were used to evaluate the effects of SCD-1 on the onset 

of NASH including the pro-fibrogenic response in a short-term period. 
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Materials and Methods 

 

 

Synthesis of an SCD-1 inhibitor 

N-(2-hydroxy-2-phenylethyl)-6-[4-(2-methylbenzoyl)piperidin-1-yl]pyridazine-3-

carboxamide (Figure 3; page 78), a potent and orally available SCD-1 inhibitor 

named as compound A, was discovered by Daiichi Sankyo, Co., Ltd. The detailed 

synthetic procedures, physicochemical properties and pharmacokinetic profile of 

compound A with this structural motif have been previously reported (Uto et al., 

2010). 

 

Animals 

All experimental procedures were performed in accordance with the in-house 

guideline of the International Animal Care and Use Committee of Daiichi Sankyo 

Co., Ltd. Col1a1-Luc Tg rats were generated by a previously reported method, and 

bred in Japan SLC Inc. (Shizuoka, Japan) (Terashima et al., 2010). C57BL/6J mice 

were purchased from Charles River Laboratories Japan, Inc. (Yokohama, Japan). 

They were maintained in a room under a temperature controlled at 23°C±2 and a 

12-hour light-dark lighting cycle. The animals were allowed a standard pellet 

chow before the experiment and water ad libitum. Anesthesia was performed by 

intraperitoneally injecting pentobarbital (Dainippon Pharmaceutical, Osaka, 

Japan) at a dose of 50 mg/kg. 

 

Mice fed with lipogenic diets 

In order to evaluate liver SCD-1 activity, 9 week old male C57BL/6J mice were 

fed with non-fat and high-sucrose (lipogenic) diets (Research Diets, Inc., New 

Brunswich, NJ, USA, ) for 7 days prior to administration of compound A. 

Lipogenic diets were composed of 22 kcal% protein and 78 kcal% carbohydrate as 

sucrose. Compound A was administered once at doses of 10, 30 and 100 mg/kg 

(n = 2) to mice by oral gavage in a 4:1 mixture of polypyleneglycol and Tween 80 

(PG:Tween) as vehicle. In order to evaluate liver triglyceride content, the mice 
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were fed with lipogenic diets for 14 days, and compound A was administered 

once-daily at doses of 10, 30 and 100 mg/kg (n = 6) to mice during the last 7 days 

of the feeding of lipogenic diets. The mice in the normal group were fed with 

standard chow diets (FR-2, Funabashi Farm Co., Chiba, Japan). At the next day of 

the 7th administration of compound A, the mice were sacrificed and the livers 

were removed and washed with saline. The specimens of liver were immediately 

snap-frozen and stored at –80°C to measure triglyceride content. 

 

In vivo liver SCD-1 activity 

After 6 hours of administration of compound A in mice fed with lipogenic diets, 

[14C]stearate (Daiichi Pure Chemicals, Tokyo, Japan) dissolved in saline 

containing 2% bovine serum albumin was intraperitoneally administered at a dose 

of 100 L/kg to mice. One hour after the injection of [14C]stearate, the mice were 

sacrificed under anesthesia and the livers were collected and quickly frozen in 

liquid nitrogen. The livers were homogenized in 9×volume of cold phosphate 

buffered-saline (PBS), and 250 L of homogenates were mixed with an equal 

volume of methanol containing 10% KOH and then the mixture was saponified at 

80°C for 30 min. The free fatty acids in the reaction were protonated by the 

addition of 5N HCl (15 L) and extracted with 100 L ethyl acetate. The 30 L of 

the ethyl acetate extracts of each reaction were charged to an AgNO3-TLC plate 

(20 x 20 cm LK5D plates, 150 Å pore diameter, 250 m thick) and differentiated 

in a solvent consisting of chloroform : methanol : acetate : water (90:8:1:0.8). The 

[14C]stearate and [14C]oleate were quantified with BAS2500 (Fujifilm Corporation, 

Tokyo, Japan) and SCD-1 activity was determined as the ratio of [14C]oleate to 

[14C]stearate. 

 

Rats fed with MCD diets 

In the first experiments, male Col1a1-Luc Tg rats (184 to 247 g body weight) were 

randomly divided into four groups as follows: 

 Group 1: Control sacrificed at 2 weeks (n = 5) 

 Group 2: MCD sacrificed at 2 weeks (n = 5) 

 Group 3: Control sacrificed at 8 weeks (n = 5) 
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 Group 4: MCD sacrificed at 8 weeks (n = 5) 

Rats in Group 2 and 4 were fed with lipogenic MCD diets (Oriental Yeast Co., Ltd, 

Tokyo, Japan). Lipogenic MCD diets were composed of 16 kcal% protein (as 

defined amino acid), 63 kcal% carbohydrate (7:3 sucrose-corn starch) and 

21 kcal% fat (as corn oil). Rats in Group 1 and 3 were fed with lipogenic MCD 

diets supplemented with 3 g/kg of DL-methionine and 2 g/kg of choline bitarate. 

Rats were sacrificed under anesthesia at 2 weeks in Group 1 and 2, and 8 weeks in 

Group 3 and 4 after the beginning of the MCD diets, respectively. The livers were 

removed and washed with saline. The specimens of liver were immediately 

snap-frozen and stored at –80°C to measure liver lipid and luciferase content. 

 In the second experiments, male 16 weeks old Col1a1-Luc Tg rats (235 to 

282 g body weight) were randomly divided into four groups as follows: 

 Group 1: Control group (n = 4) 

 Group 2: MCD group (n = 8) 

 Group 3: Low dose of compound A group (n = 5) 

 Group 4: High dose of compound A group (n = 4) 

Rats in Group 2, 3 and 4 were fed with lipogenic MCD diets for 8 weeks. Rats in 

Group 1 were fed with lipogenic MCD diets supplemented with 3 g/kg of 

DL-methionine and 2 g/kg of choline bitartrate. Compound A dissolved in 

PG:Tween was administered once-daily at doses of 30 or 100 mg/kg by oral 

gavage to rats in Group 3 and Group 4 during the feeding of MCD diets, 

respectively. Rats in Group 1 and 2 were treated with PG:Tween as vehicle. Rats 

were sacrificed at 8 weeks after starting the administration under anesthesia. 

Blood was collected from the aorta, and plasma was separated by centrifugation 

and stored at −80°C. The livers were removed, washed with saline and weighed. 

The specimens of liver were immediately snap-frozen and stored at −80°C for 

TaqMan PCR analysis, measurement of liver lipid, luciferase and hydroxyproline 

content. Portions of the liver lobes were also fixed in 10% buffered formalin 

(Wako Pure Chemical Industries, Osaka, Japan) and embedded in paraffin for 

histopathological analysis. 
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Liver luciferase content 

The liver tissues were homogenized by a Polytron homogenizer (Kinematica AG, 

Luzen, Switzerland) with the addition of 1 mL PBS per 1 g of liver. After 

centrifugation at 3,000 rpm for 20 min, the luminescence in the supernatant was 

measured by a PicaGene kit (Toyo Ink MFG Co., Ltd., Tokyo, Japan). The 

concentration of luciferase was quantified using the standard curve of luciferase 

protein (Toyo Ink MFG Co.). The protein concentration was measured by a protein 

assay reagent (Bio-Rad Laboratories, Inc., Tokyo, Japan) , and luciferase was 

indicated as pg/mg protein. 

 

Liver triglyceride content 

A piece of liver was homogenized by Polytron homogenizer (Kinematica AG) with 

the addition of PBS. The homogenates were mixed with the combination of CHCl3 

and MeOH (2:1). After 5 minutes of combining by a vortex mixer, the solutions 

were centrifuged at 14,000 rpm for 3 min. The lower layers were collected and 

evaporated. After being dissolved in isopropanol containing 10% Triton, 

triglyceride content was measured by Triglyceride E test-Wako (Wako Pure 

Chemical Industries). 

 

Plasma AST and ALT 

Aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in 

the plasma were measured using an Autoanalyzer (Hitachi 7250, Hitachi 

High-Technologies Corporation, Tokyo, Japan). 

 

Real time RT-PCR analysis 

The liver tissues were homogenized by a Polytron homogenizer (Kinematica AG) 

with the addition of Trizol reagent (Invitrogen, Carlsbad, CA). After centrifugation 

at 10,000 rpm at 25°C, 0.2 mL chloroform was added and mixed by a vortex mixer. 

After 10 min incubation at room temperature, they were centrifuged at 10,000 rpm 

at 25°C, and the water layer was collected. RNA was purified by an Rneasy Mini 

Kit (Qiagen, Valencia, CA) and RNA concentration was measured by Gene Spec 

III (Hitachi, Tokyo, Japan). cDNA was synthesized by a High Capacity cDNA 
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Reverse Transcription Kit (Applied Biosystems, Foster City, CA). TaqMan PCR 

was carried out by ABI PRISM 7900 (PerkinElmer Life Sciences, Boston, MA). 

The mixture containing 5 L cDNA, 25 L TaqMan 2×PCR Master Mix (Applied 

Biosystems), 0.5 L forward primer, 0.5 L reverse primer and 0.5 L TaqMan 

probe, were reacted together. The thermal cycler conditions were 2 min at 50°C, 

10 min at 95°C, and 40 cycles of 15 sec at 95°C followed by 1 min at 60°C. The 

fluorescent TaqMan probes and forward and reverse primers were designed with 

the software Primer ExpressTM, Ver.1.0 (Applied Biosystems, Foster City, CA) and 

synthesized by Sigma Genosys Japan (Hokkaido, Japan). The sequences of primers 

and probes used in this study were indicated in Table 1 (page 71). All the probes 

contained a fluorescence reporter (6-carboxyfluorescein [FAM]) at the 5' end and a 

fluorescence quencher (6-carboxytetramethylrhodamine [TAMRA]) at the 3' end. 

Rodent GAPDH Control Reagents (Applied Biosystems) were used as an internal 

standard. Control RNA (Rodent, 50 ng/L) was serially diluted 5-fold with 1×TE 

(Wako) down to 80 pg/L. The amplification of standard and sample cDNA was 

carried out in a MicroAmp Optical 96-well reaction plate (Applied Biosystems). 

All standards and samples were assayed in duplicate. Each plate always contained 

the same standard. The threshold cycle (Ct) values were used to plot a standard 

curve in which Ct decreased in proportion to the log of the template copy number. 

The correlation coefficients of the standard curves were always more than 99%. 

 

Liver hydroxyproline content 

Liver tissue (approximately 400 mg of wet weight) was hydrolyzed in 4 mL of 

6 mol/L hydrochloric acid at 105°C overnight. The hydrolysate was centrifuged at 

800 g for 15 min and 20 L of the supernatant was evaporated under vacuum. 

Then, the sediment was dissolved in 0.6 mL of 50% isopropanol and incubated 

with 0.1 mL of chloramine-T solution, containing 42 mg of chloramine-T (Wako 

Pure Chemical Industries) dissolved in 6.9 mL of acetate-citrate buffer and 

0.21 mL of distilled water, for 10 min at room temperature. In turn, 0.5 mL of 

Ehrlich’s solution, including 5 g of p-dimethylaminobenzaldehyde (Wako Pure 

Chemical Industries) dissolved in 5.5 mL of 60% perchloric acid, and 26.8 mL 

isopropanol, were added and incubated at 50°C for 90 min. After cooling, the 
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absorbance was read at 558 nm. The hydroxyproline concentration was calculated 

from a standard curve prepared with high-purity hydroxyproline (Wako Pure 

Chemical Industries). Hydroxyproline levels were expressed in micrograms of 

hydroxyproline per gram liver. 

 

Histological analysis 

Histological analysis was performed in Histo. Science Laboratory Co., Ltd. 

(Tokyo, Japan) Formalin-fixed liver tissue was embedded in paraffin. Sections 

were stained with hematoxylin-eosin and Masson-trichrome. The severity was 

scored by a histopathologist. Hepatocellular degeneration and inflammation were 

scored as follows: 0, none; 1, slight; 2, mild; 3, moderate. Inflammation was 

indicated as the sum (0 to 6) of portal inflammation (score: 0 to 3) and lobular 

inflammation (score: 0 to 3). Fibrosis was indicated as follows: 1, pericellular and 

perivenular fibrosis; 2, focal bridging fibrosis; 3, bridging fibrosis with lobular 

distortion; 4, cirrhosis. 

 

Statistical analysis 

Results were expressed as the mean ± S.E. Student's t-test (when the F-test was 

significant, the Welch test was used) and Dunnett's test was used to compare two 

groups and three or more groups, respectively. The Wilcoxon test was used in 

histological analysis. p < 0.05 was considered statistically significant. The SAS 

System Release 8.2 (SAS Institute Inc.) was used for the statistical analyses. 
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Results 

 
 
Effects of SCD-1 inhibitor on liver SCD-1 activity and triglyceride 

accumulation in mice fed with lipogenic diets in vivo 

SCD-1 inhibitors were screened to obtain a research tool compound, and a lead 

compound reported by Xenon Pharmaceuticals, which had potent in vitro activity 

but low bioavailability, was structurally optimized as previously reported (Uto et 

al., 2010). As a result, a potent and orally-available SCD-1 inhibitor, compound A, 

was obtained, in which the 50% of inhibitory concentration was 51 nM. 

 In order to evaluate in vivo liver SCD-1 inhibition of compound A, I used 

mice fed with lipogenic diets based on high-carbohydrate and non-fat diets. After 

7 days feeding of lipogenic diets, compound A was administered to mice in a 

single oral dosing. Compound A inhibited liver SCD-1 activity in a dose dependent 

manner (Figure 4-A; page 79). The 50% inhibitory dose (ID50) was 17.2 mg/kg. 

Next, after 7 days feeding of lipogenic diets, compound A was orally administered 

once daily for 7 days during an additional 7 days feeding of the diets. Liver 

triglyceride content was increased 2-fold, and repeated dosing of compound A 

decreased high carbohydrate-induced triglyceride accumulation in the liver in a 

dose dependent manner (Figure 4-B; page 79). 

 

Evaluation of rats fed with MCD diets 

In order to evaluate the effects of SCD-1 on NASH pathology, Col1a1-Luc Tg rats 

were fed with lipogenic MCD diets and the time course of disease was confirmed 

to fix experimental conditions. Luciferase in the liver, reflecting collagen 

1a1-promoter activity, was measured to evaluate a pro-fibrogenic response in the 

liver of MCD rats. Luciferase in liver of MCD rats was significantly increased by 

3.3-fold at 8 weeks compared with control rats, although that at 2 weeks was not 

significantly increased (Figure 5-A; page 80). Liver triglyceride content in MCD 

rats were significantly increased at 2 and 8 weeks compared with control rats 

(Figure 5-B; page 80). Therefore, in the next study, MCD diets were fed for 8 
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weeks to rats in order to evaluate the effects of the SCD-1 inhibitor. 

 

Effects of SCD-1 on body weight change and liver weight in MCD 

rats 

In order to evaluate the effects of SCD-1 in the onset phase of NASH, Col1a1-Luc 

Tg rats were fed with lipogenic MCD diets for 8 weeks. SCD-1 inhibitor, 

compound A was administered once-daily to rats at doses of 30 and 100 mg/kg/day. 

The MCD diets caused body weight loss of 30% in the rats (Table 2; page 72). The 

treatment of the SCD-1 inhibitor did not affect the body weight change in rats fed 

with MCD diets. Neither MCD diets nor treatment of SCD-1 inhibitor significantly 

affected relative liver weight in MCD rats. 

 

Effects of SCD-1 on liver lipid accumulation in MCD rats 

In order to evaluate the effects of SCD-1 on liver triglyceride accumulation, the 

first process of NASH/NAFLD, liver triglyceride levels were evaluated. MCD 

diets increased triglyceride content in the livers of MCD rats by 12-fold, 

indicating remarkable lipid accumulation in the liver (Figure 6; page 81). A high 

dose of SCD-1 inhibitor significantly reduced triglyceride accumulation in the 

liver of MCD rats by 80%. These results indicate that SCD-1 is important in 

regulating liver triglyceride levels and its up-regulation may lead to the 

development of hepatic steatosis in MCD rats. 

 

Effects of SCD-1 on liver injury in MCD rats 

Next, I evaluated the effects of SCD-1 on phenotypes of NASH including liver 

injury, inflammation and fibrosis. In order to evaluate the effects of SCD-1 in liver 

injury, plasma markers, AST and ALT were measured. MCD diets increased the 

plasma AST and ALT levels by 3.3 and 5.5-fold, respectively (Figure 7; page 82) 

SCD-1 inhibitor at doses of 30 and 100 mg/kg/day prevented AST elevation by 

75% and 86%, respectively. Treatment of SCD-1 inhibitor at doses of 30 and 

100 mg/kg/day also prevented ALT elevation by 66% and 78%, respectively. These 

results indicate that the SCD-1 inhibitor prevents onset of liver injury after 

development of hepatic steatosis in MCD rats. 
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Effects of SCD-1 on histological changes including steatosis, 

hepatocellular degeneration and inflammation in liver of MCD rats 

I evaluated the effects of SCD-1 on histopathology in NASH by hematoxylin-eosin 

staining. MCD diets initiated severe steatosis in the liver of rats, which was 

detected as lipid droplets within hepatocytes, although it was not detected in the 

control group (Figure 8-A and 8-B; pages 83 and 84). Treatment of SCD-1 

inhibitor attenuated development of steatosis, shown as a reduction of lipid 

droplets in the liver, and it was remarkable in the high dose of the SCD-1 inhibitor 

group (Figure 8-C and 8-D; pages 83 and 84). Hepatocellular degeneration shown 

as ballooning or necrosis was also observed in the liver of rats fed with MCD diets, 

and administration of SCD-1 inhibitor attenuated the severity (Figure 9-A; 

page 85). Inflammatory cell infiltration was also observed in the liver of MCD rats, 

and it was rarely observed in a high dose of the SCD-1 inhibitor group 

(Figure 8-E and 8-F; pages 83 and 84, Figure 9-B; page 85). These results 

demonstrate that the SCD-1 inhibitor prevents the onset of crucial 

histopathological changes including hepatic steatosis, hepatocellular degeneration 

and inflammatory cell infiltration in MCD rats; therefore SCD-1 possibly 

contributes to NASH pathology including liver injury, inflammation as well as 

hepatic steatosis. 

 

Effects of SCD-1 on early fibrosis in the liver of MCD rats 

In order to evaluate the effects of SCD-1 on liver fibrosis, liver histology was 

evaluated by Masson-trichrome staining. Slight or mild fibrosis was observed in 

the liver of MCD rats (Figure 10-A; pages 86 and 87). Treatment of SCD-1 

inhibitor attenuated the development of these early fibrogenic changes 

(Figure 10-B and C; pages 86 and 87). Col1a1-Luc Tg rats were used to evaluate 

the effects on fibrosis easily and with the short-term period, and in the first study, 

luciferase in the liver was significantly increased after 8 weeks feeding of MCD 

diets as shown in Figure 5-A (page 80). Unfortunately, the luciferase in this study 

was not significantly changed in the liver of MCD rats although it showed 

tendency to increase (Figure 11-A; page 88). I suppose that fibrogenic change was 
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histologically very mild at 8 weeks feeding of MCD diets; therefore it failed to 

detect in luciferase. Hydroxyproline content, reflecting collagen protein levels, 

was also not increased in the liver of MCD rats (Figure 11-B; page 88). These 

results indicate that the SCD-1 inhibitor histologically prevents onset of early 

fibrosis in MCD rats, although it is necessary to study for longer time periods in 

order to fully evaluate the effects on more established liver fibrosis. 

 

Effects of SCD-1 on mRNA expression of MCP-1 in the liver of 

MCD rats 

Monocyte chemotactic protein-1 (MCP-1) is a key pro-inflammatory cytokine, 

which is concerned with various inflammatory responses including the liver 

disease. I evaluated the effects of SCD-1 on mRNA levels of MCP-1 in the liver of 

MCD rats by real time RT-PCR analysis. The mRNA levels of MCP-1 was 

drastically increased in the liver of MCD rats (Figure 12; page 89). A high dose of 

SCD-1 inhibitor significantly reduced the mRNA expression.  

 

SCD-1 mRNA expression in liver of MCD rats 

I evaluated the effects of MCD diets on mRNA levels of SCD-1 by real time 

RT-PCR analysis. SCD-1 mRNA levels were remarkably decreased in the livers of 

MCD rats compared with those of control rats (Figure 13; page 90). Its 

down-regulation is possibly due to protection against rapid triglyceride 

accumulation resulting from methionine and choline deficiency in the liver. 
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Discussion 

 

 

In this chapter, I demonstrated that SCD-1 has a key role in liver lipid 

accumulation and subsequent onset of liver injury, inflammation and fibrosis in 

NASH. I used a potent and orally-available SCD-1 inhibitor, compound A, 

obtained by lead optimization as previously reported (Uto et al., 2010). In order to 

measure the in vivo inhibitory activity of compound A to liver SCD-1, mice were 

fed with lipogenic diets based on high-carbohydrate and non-fat that up-regulate 

SCD-1 activity in the liver (Flowers et al., 2006, 2008). A single oral 

administration of compound A inhibited SCD-1 activity in the liver of mice fed 

with lipogenic diets. Liver triglyceride content was increased by 2-fold in the liver 

of mice fed with lipogenic diets for 14 days compared with standard chow diets. 

Repeated administration of the SCD-1 inhibitor for 7 days completely inhibited 

lipogenic diet-induced triglyceride accumulation in the liver.  

 My results are consistent with previous reports in SCD-1 deficient mice 

and pharmacological inhibition which were protective against triglyceride 

accumulation in the liver after feeding of lipogenic diets (Miyazaki et al., 2001a; 

Issandou et al., 2009). All of these previous reports used metabolic syndrome 

models with obesity and insulin resistance. I used NASH models to evaluate the 

effects of an SCD-1 inhibitor for the first time. In NASH rats fed with lipogenic 

MCD diets, SCD-1 inhibitor also inhibited triglyceride accumulation in the liver 

as well as metabolic syndrome models. Buque et al. reported that SCD-1 

expression levels were significantly correlated with the severity of fatty liver in 

obese rats (Buque et al., 2010). In human study, liver SCD-1 activities were also 

higher in obese patients with fatty liver than in those without fatty liver, and they 

were related to the percentage of liver fat (Kotronen et al., 2009). My results and 

these other reports suggest that SCD-1 plays a key role in regulating liver lipid 

levels in metabolic disorders including NASH/NAFLD. Liver specific disruption 

of SCD-1 as well as deficiency in the whole body was protective against lipid 

accumulation in the liver (Ntambi et al., 2002; Miyazaki et al., 2007). These 
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reflect that liver SCD-1 importantly regulates liver lipid levels. Interestingly, 

skin-specific disruption of SCD-1 but not adipose-specific one also protected 

against lipid accumulation in the liver by increasing fatty acid oxidation  

(Sampath et al., 2009; Flowers et al., 2012). In skin-specific deficiency of SCD-1, 

hepatic lipogenic response to high-carbohydrate diets were intact. In addition to 

liver, SCD-1 in skin and other organs possibly affects the development of hepatic 

steatosis in NASH/NAFLD in unknown ways other than increased hepatic 

lipogenesis. 

 Recent studies have focused on the involvement of SCD-1 in the 

development of hepatic steatosis; however there is little information about the 

contribution of SCD-1 to the development of NASH pathology. Therefore, I 

evaluated the effects of SCD-1 on the onset of NASH phenotypes including liver 

injury, inflammation and fibrosis. This is the first report that SCD-1 inhibition 

attenuated these pathology of NASH. MCD diets histologically developed 

hepatocellular degeneration and inflammatory cell infiltration in the liver of rats. 

Importantly, treatment of SCD-1 inhibitor attenuated these pathological 

observations in addition to plasma biomarkers of liver injury, AST and ALT in rats 

fed with MCD diets. MCP-1 is a pro-inflammatory cytokine and concerned with 

various inflammatory diseases including liver disease. In chronically injured liver 

including NASH, activated HSCs, key players in liver fibrosis, proliferate and 

continuously produce collagen. Additionally, activated HSCs also induce 

chemotaxis and activation of inflammatory cells such as monocytes/macrophages 

and T lymphocytes by production of inflammatory cytokines such as MCP-1 

(Marra et al., 1993; Czaja et al., 1994). HSCs can also migrate towards these 

cytokine chemoattractants (Marra et al., 1999). It was reported that the feeding of 

MCD diets to mice increased mRNA expression of MCP-1 in the liver (Zhang et 

al., 2009). In my present study, the mRNA expression of MCP-1 was also 

increased in the liver of rats fed with MCD diets. Treatment of SCD-1 inhibitor 

attenuated the MCD diets-induced MCP-1 up-regulation in the liver of rats. These 

results suggest that SCD-1 inhibition decrease sensitivity of the liver to 

pathogenesis of NASH including liver injury and inflammation after development 

of hepatic steatosis. 
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 It was previously reported that Col1a1-Luc Tg rats were useful as fibrosis 

models of the kidney and other organs, in which organ fibrosis was evaluated 

easily and in a short-term period (Terashima et al., 2010). In my present study, 

Col1a1-Luc Tg rats were used to evaluate pro-fibrogenic responses in livers of rats 

fed with MCD diets in a short-term period. In the first study to confirm 

experimental conditions, luciferase, reflecting collagen 1a1 promoter activity, in 

the liver was significantly increased after 8 weeks MCD diets. In the next study, 

the luciferase also showed a tendency to increase in rats fed with MCD diets for 8 

weeks, although it was not significant. The liver hydroxyproline levels, reflecting 

protein levels of collagen, also showed no changes in MCD rats. Therefore, to 

fully evaluate the effects on established fibrosis in these methods, a longer time 

period may be necessary. In contrast, histological analysis showed slight or mild 

fibrosis in the liver of MCD rats, and treatment of SCD-1 inhibitor prevented the 

onset of the early fibrosis. These results support that SCD-1 plays a key role in the 

onset of NASH pathology including liver injury, inflammation and early fibrosis.  

 Interestingly, SCD-1 inhibitor decreased triglyceride accumulation in the 

liver only in treatments with a high dose, but the liver injury, inflammation and 

early fibrosis were attenuated even in a low dose. I suppose that levels of 

triglyceride, which are a storage form of lipids, are not so important and those of 

free fatty acid cause liver injury and other pathology with NASH. Fatty acids are 

key mediators for hepatocyte lipotoxicity, and play a role in hepatocellular death, 

oxidative and endoplasmic reticulum stress, inflammation and fibrosis (Trauner et 

al., 2010). MUFAs are thought to be less toxic than saturated fatty acids, and it 

was reported that MUFAs protected cells against saturated fatty acids-induced 

apoptosis (Eitel et al., 2002). From this point of view, SCD-1 inhibition could 

increase the toxicity of fatty acids because SCD-1 activity could result in 

increased MUFAs and decreased saturated fatty acids. Unbalanced accumulation 

of saturated fatty acids resulting from decrease of SCD-1 were reported in the liver 

of mice fed with MCD diets, suggesting that depletion of MUFAs contribute to 

liver injury (Eitel et al., 2002). Furthermore, Li et al. reported that MCD diets in 

SCD-1 deficient mice increased hepatocellular apoptosis, liver injury and fibrosis 

although hepatic steatosis was ameliorated (Li et al., 2009). They suggested that 
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liver SCD-1 plays a key role in the prevention of liver injury by safely converting 

toxic fatty acids to MUFAs. In contrast, my results indicate that SCD-1 inhibition 

is protective against inflammation and liver injury in rats fed with MCD diets. 

Larter et al. reported that feeding of MUFA-rich diets did not prevent MCD 

diet-induced liver injuries in spite of an increased ratio of MUFAs in liver fatty 

acids (Larter et al., 2008). They suggested that accumulation of fatty acids per se 

may be important in liver injury, and it was not dependent on the nature of the 

fatty acid source. It was also reported that saturated fatty acids and MUFAs have 

similar effects on sensitization to TRAIL-induced apoptosis in cells (Malhi et al., 

2007). In human NASH, both saturated fatty acids and MUFAs are accumulated in 

the liver (Puri et al., 2007). These reports and our results show that MUFAs as 

well as saturated fatty acids also play a role in liver injury in NASH. One possible 

explanation for opposite results by Li et al. as described above is that toxicity by 

systemic inhibition of SCD-1 may contribute to SCD-1 deficiency-induced 

exacerbation of liver injury. It was recently reported that SCD-1 also seems to be 

concerned with inflammation in some organs (Liu et al., 2011). SCD-1 inhibitor 

did not cause inflammation; however other compounds with more potent systemic 

inhibition of SCD-1 increased white blood cells (Uto et al., 2011). Importantly, 

these potent compounds reduced the beneficial effects on plasma triglyceride 

levels. These findings show that toxic effects of systemic inhibition of SCD-1 

possibly cancel the beneficial effects. Another explanation is the differences 

between genetic disruption and pharmacological inhibition. Inborn and complete 

deficiency of SCD-1 with genetic disruption might be not applicable to evaluate 

the pathology of NASH because environmental and life style related factors are 

involved in most of the elderly patients. 

 Liver lipid levels are mainly regulated by four processes such as fatty acid 

uptake into the liver, de novo lipogenesis, VLDL secretion from the liver and fatty 

acid oxidation. In human obesity with NAFLD, the main mechanism of liver lipid 

accumulation is possibly due to increased fatty acid uptake and de novo 

lipogenesis caused by insulin resistance. In contrast, MCD diets induce liver 

triglyceride accumulation by mainly decreased triglyceride secretion from the 

liver as VLDL and increased fatty acid uptake (Rinella et al., 2008). In my present 
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study, mRNA expression of SCD-1 in the liver of rats fed with MCD diets was also 

remarkably decreased as previously reported in mice fed with MCD diets (Rizki et 

al., 2006). Triglyceride accumulation in the liver is much more rapid in those fed 

with MCD diets than general lipogenic diets containing normal levels of 

methionine and choline. Therefore, one possible explanation is that 

down-regulation of SCD-1 after feeding of MCD diets may be a protective 

mechanism against rapid triglyceride accumulation. Importantly, the SCD-1 

inhibitor effectively inhibited liver triglyceride accumulation in rats fed with MCD 

diets in spite of a remarkably decreased mRNA expression of SCD-1 and also 

presumably decreased the enzymatic activity. I suppose that SCD-1 inhibition 

decreased liver triglyceride accumulation in MCD rats resulting from a change of 

balance in these processes of fatty acid metabolism in the liver, although the 

contribution of SCD-1 might be reduced in these models compared with human 

patients. It is known that generally used lipogenic diets such as high-fat or 

high-carbohydrate or insulin resistant/diabetic animals such as ob/ob, db/db or 

ZDF cause hepatic steatosis but no steatohepatitis with fibrosis; therefore I used 

MCD diet models in my present study although SCD-1 expression showed an 

opposite change. It was recently reported that long-term feeding of 

cholesterol-containing atherogenic diets to mice induced liver injury, 

inflammation and fibrosis, in which induced SCD-1 expression through dietary 

cholesterol-induced LXR activation and subsequent increased hepatic lipogenesis 

were involved (Matsuzawa et al., 2007). I suppose potent beneficial effects of 

SCD-1 inhibitors in such SCD-1 up-regulated NASH models. 

 In summary, an SCD-1 inhibitor prevented hepatic steatosis and 

subsequent pathology including liver injury, inflammation and fibrosis in NASH 

(summarized in Figure 14; page 91). These results demonstrate that SCD-1 plays 

an important role in the onset process of NASH. 
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Chapter II 

“Effects of angiotensin II on the 

progression of liver fibrosis” 
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Introduction 

 

 

Ang II is a major component of renin-angiotensin systems (RAS), which contain 

angiotensinogen, renin, angiotensin I, angiotensin-converting enzyme (ACE) and 

Ang II receptors. Ang II and RAS play central roles in the regulation of systemic 

blood pressure and fluid homeostasis by vasoconstriction of smooth muscle cells 

and sodium retension (Brewster et al., 2003). In addition to these “systemic RAS”, 

“local RAS” are regulated within individual organs including the liver and is 

thought to play an important role in the local response to disease (Paul et al., 

2006). The action of Ang II is mainly mediated by two subtypes of receptors, 

angiotensin II type 1 (AT1) and type 2 (AT2) receptors, which are distributed in 

many kinds of organs and tissues. The action of Ang II primarily is mediated by 

AT1 receptor (Mehta and Griendling, 2007). AT2 receptor generally have 

divergent pathways compared with AT1 receptor.  

 Several lines of evidence have suggested that RAS also plays an important 

role in the pathogenesis of organ fibrosis (Brilla, 2000; Sun et al., 2000). In 

mesangial cells and other cell types, Ang II has been shown to promote the 

proliferation and collagen synthesis (Ray et al., 1991; Wolf et al., 1992; Kagami et 

al., 1994; Weber et al., 1994; Tharaux et al., 2000). Additionally, the expression of 

TGF-1, the key cytokine in the development of cardiac and renal fibrosis, is 

increased by Ang II (Weber, 1997). Blockade of RAS with ACE inhibitors or 

angiotensin receptor blockers (ARBs) has been shown to ameliorate the 

progression of organ fibrosis (Ishidoya et al., 1995; Kim et al., 1995; Molteni et al., 

2000).  

 In the liver, Ang II is considered to regulate intrahepatic circulation 

(Schneider et al., 1999). It has been also reported that Ang II induces proliferation 

and contraction of human HSCs, key players in liver fibrosis (Bataller et al., 2000). 

Additionally, ACE inhibitors or ARBs were shown to attenuate the progression of 

liver fibrosis in vivo (Ramos et al., 1994; Jonsson et al., 2001; Ohishi et al., 2001; 

Paizis et al., 2001; Yoshiji et al., 2002). These reports suggested that Ang II and 
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RAS might play an important role in the pathogenesis of liver fibrosis including 

NASH. However, the precise molecular mechanism of Ang II-mediated liver 

fibrosis and activation of HSCs were poorly understood.  

 Bile duct ligation (BDL) is generally used as liver fibrosis models. BDL 

stimulates proliferation of bile duct epithelial cells and finally causes portal 

inflammation and fibrosis (Peter, 2011). BDL model does not show hepatic 

steatosis and related metabolic disorders, and are pure fibrosis models. It was 

reported that key elements of RAS including ACE and AT1 receptors were 

up-regulated in the liver of BDL rats, indicating possible contribution of RAS to 

fibrosis in the model (Paizis et al., 2002). The comparison of BDL model with 

MCD model used in “Chapter I” is 1 in Table 3 (page 73). In my present study, I 

used BDL models to purely evaluate progression of liver fibrosis, although it is 

necessary to evaluate in MCD models.  

 Olmesartan medoxomil (olmesartan), (5-methyl-2-oxo-1,3-dioxolen -4-yl) 

methoxy-4-(1-hydroxy-1-methylethyl)-2-propyl-1-{4-[2-(tetrazol-5-yl)-phenyl] 

phenyl}methylimidazol-5-carboxylate, is a potent ARB and is commercially used 

as an antihypertensive agent globally. Olmesartan is a prodrug containing an ester 

moiety which is rapidly cleaved to release the active form of olmesartan, 

RNH-6270, after oral administration (Mizuno et al., 1995). Chemical structures of 

olmesartan and RNH-6270 were shown in Figure 15 (page 92). 

 In this chapter, in order to elucidate the molecular mechanism of 

Ang II-mediated liver fibrosis progression, I evaluated the effects of Ang II on in 

vivo liver fibrosis models and in vitro activated HSCs using ARB, olmesartan. 

 

  



32 
 

Materials and Methods 

 

 

Synthesis of olmesartan and RNH-6270 

Olmesartan and its active metabolite, RNH-6270 were discovered and synthesized 

in Sankyo Co., Ltd. 

 

Animals 

All animal experiments were performed in accordance with the Animal 

Experimentation Guidelines of Sankyo Co., Ltd. Sprague-Dawley (SD) male rats 

were purchased from Japan SLC Inc. (Shizuoka, Japan), and maintained in a room 

under a temperature controlled at 23°C ± 2 and a 12-hour light-dark lighting cycle. 

The animals were allowed a standard pellet chow and water ad libitum. Anesthesia 

was performed by intraperitoneally injecting pentobarbital (Dainippon 

Pharmaceutical) at a dose of 50 mg/kg. 

 

Rats with common bile duct ligation 

Liver fibrosis was induced by common bile duct ligation, as previously described 

(Kountouras et al., 1984). SD male rats (200 to 250 g body weight) were used. The 

common bile duct was double-ligated and cut between the ligatures. In the first 

experiment, some rats received BDL and others received a sham-operation, in 

which they were subjected to a midline incision and manipulation of the common 

bile duct without ligation. Rats were divided into six groups and sacrificed at 

indicated times (1 to 3 weeks) after surgery under anesthesia as follows: 

 Group 1: Sham sacrificed at 1 week (n =3) 

 Group 2: BDL sacrificed at 1 week (n = 3) 

 Group 3: Sham sacrificed at 2 weeks (n = 5) 

 Group 4: BDL sacrificed at 2 weeks (n = 6) 

 Group 5: Sham sacrificed at 3 weeks (n = 5) 

 Group 6: BDL sacrificed at 3 weeks (n = 5) 

In the second experiment, rats were divided into three groups at 7 days after 
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surgery as follows:  

 Group 1: Sham group (n = 5) 

 Group 2: BDL group (n = 10) 

 Group 3: BDL + ARB group (n =10) 

In Group 3, olmesartan, dissolved in a solution of 0.5% carboxymethyl cellulose 

(CMC, Nacalai Tesque, Kyoto, Japan), was orally administered at a dose of 

1 mg/kg six times a week from 7 days to 20 days after the surgery. In Group 1 and 

2, rats received the vehicle for the same time period. Rats were sacrificed at 21 

days after surgery under anesthesia. Blood was collected from the aorta, and 

plasma was prepared by centrifugation. Plasma samples were frozen and stored at 

–80°C. The livers were washed with saline and weighed. The specimens of liver 

were immediately snap-frozen and stored at –80°C for real time RT-PCR analysis 

and measurement of hydroxyproline content. Portions of liver lobes were also 

fixed in 10% buffered formalin (Wako Pure Chemical Industries) and embedded in 

paraffin for histological analysis. 

 

Liver hydroxyproline content 

Liver tissue (approximately 400 mg of wet weight) was hydrolyzed in 4 mL of 

6 mol/L hydrochloric acid at 105°C overnight. The hydrolysate was centrifuged at 

800 g for 15 min and 20 L of the supernatant was evaporated under vacuum. 

Then, the sediment was dissolved in 0.6 mL of 50% isopropanol and incubated 

with 0.1 mL of chloramine-T solution, containing 42 mg of chloramine-T (Wako 

Pure Chemical Industries) dissolved in 6.9 mL of acetate-citrate buffer and 

0.21 mL of distilled water, for 10 min at room temperature. In turn, 0.5 mL of 

Ehrlich’s solution, including 5 g of p-dimethylaminobenzaldehyde (Wako Pure 

Chemical Industries) dissolved in 5.5 mL of 60% perchloric acid, and 26.8 mL 

isopropanol, were added and incubated at 50°C for 90 min. After cooling, the 

absorbance was read at 558 nm. The hydroxyproline concentration was calculated 

from a standard curve prepared with high-purity hydroxyproline (Wako Pure 

Chemical Industries). Hydroxyproline levels were expressed in micrograms of 

hydroxyproline per gram liver. 
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Plasma AST and ALT 

AST and ALT levels in the plasma were measured using an Autoanalyzer (Hitachi 

7250, Hitachi High-Technologies Corporation). 

 

Histological analysis 

Liver sections were incubated with xylene and hydrated through several washes in 

ethanol and distilled water to remove the paraffin. The sections were either stained 

with Masson-trichrome or subjected to immunohistostaining using antibodies 

against -SMA or AT1 receptor. For AT1 immunohistostaining, sections were 

heated with 10 mmol/L sodium citrate buffer (pH 6.0) at 120°C for 10 min. 

Endogenous peroxidase activity was quenched by the addition of 3%(v/v) 

hydrogen peroxide for 5 min. Unspecific binding sites were blocked by Block Ace 

(Dainippon Pharmaceutical) for 30 min. Polyclonal anti-rabbit AT1 (Santa Cruz 

Biotechnology, Santa Cruz, CA) diluted 1:200 in Block Ace was used. The 

sections were incubated for 30 min with the primary antibody at room temperature, 

the secondary antibody (goat anti-rabbit IgG, biotinylated, Santa Cruz; diluted 

1:100 in Block Ace) for 30 min, and finally, with peroxidase-conjugated 

streptavidin (Nichirei, Tokyo, Japan). For -SMA immunohistostaining, after 

endogenous peroxidase inactivation, sections were incubated for 60 min with 

mouse monoclonal anti-human smooth muscle actin/HRP (DAKO Japan, Kyoto, 

Japan) at room temperature. The immunoreactivity was detected by the addition of 

3,3'-diaminobenzidine tetrahydrochloride (DAB, DAKO Japan) at room 

temperature. Between each step, the sections were washed three times with 

tris-buffered saline (TBS, DAKO Japan) for 5 min. The sections were 

counterstained with Carazzi's hematoxylin (Muto Pure Chemicals, Tokyo, Japan), 

dehydrated and mounted. 

 

Isolation of rat hepatic stellate cells 

Rat HSCs were prepared from SD male rats (>500 g body weight) using the 

method of Kawada et al. with some modifications (Kawada et al., 1998). The liver 

was perfused through the portal vein with Ca2+- and Mg2+-free Hanks' balanced 
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salts solution (HBSS; Sigma Chemical Co., St. Louis, MO) containing 0.06% 

EGTA at a flow rate of 10 mL/min at 37°C for 10 min. The liver was then perfused 

with HBSS containing 0.1% pronase E (Merck, Damstadt, Germany), followed by 

0.02% pronase E and 0.125% collagenase (type IV; Sigma). After perfusion, the 

digested liver was excised, minced, and incubated with gentle stirring in HBSS 

containing 0.05% pronase E, 0.05% collagenase, 20 g/mL Dnase I (Roche 

Diagnostics, Mannheim, Germany) for 30 min at pH 7.3. After passage through a 

mesh with a pore size of 150 m in diameter, the cells were centrifuged twice at 

400 g in Gey's balanced salts solution (GBSS) at 4°C for 7 min. The HSC-enriched 

fraction was obtained by centrifugation in GBSS containing 8.2% Nycodenz 

(Daiichi Pure Chemicals) at 1,400 g for 20 min. The HSCs in the upper white layer 

were washed twice by centrifugation. The cells were cultured in Dulbecco's 

modified Eagle medium (DMEM; Gibco BRL, Grand Island, NY) containing 10% 

fetal calf serum (FCS), 100 g/mL gentamicin sulfate (Gibco BRL), 100 g/mL 

streptomycin sulfate and 100 units/mL penicillin G sodium (Gibco BRL) on 

96-well or 6-well tissue culture plates (FALCON, Beckton Dickinson, Franklin 

Lakes, NJ) at 37°C under a 5% CO2 atmosphere. The culture medium was replaced 

at 2 days after plating and then every 2 to 3 days. Before reaching confluence, the 

cells were used in each experiment. 

 

Cell proliferation 

The proliferation rate of HSCs was determined by measuring the amount of 

[3H]-thymidine incorporated into the cellular DNA. The media were replaced with 

serum-free DMEM containing angiotensin II (human, Sigma) with or without 

RNH-6270 and then pulsed for 48 hrs with 0.5 Ci/mL [methyl-3H]-thymidine 

(Daiichi Pure Chemicals). At the end of the pulsing period, the plates were frozen 

and stored at –80°C. After thawing, the cells were incubated with 0.05% 

trypsin/0.53 mmol/L EDTA solution (Gibco BRL) at 37°C. Cellular DNA was then 

fixed on a glass filter (Filtermat A, PerkinElmer Inc., Waltham, MA) using a cell 

harvester (Harvester 96, Hamden, CT). The radioactivity was measured by a liquid 

scintillation counter (Betaplate 1205, PerkinElmer Inc.). 
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Collagen synthesis 

The rate of collagen synthesis in HSCs was determined by measuring the amount 

of [3H]-proline incorporated into collagenase-digestible macromolecules. The 

media were replaced with Ang II in serum-free DMEM containing 0.5 mmol/L 

3-aminopropionitrile (Tokyo Kasei Kogyo, Tokyo, Japan) and 0.1 mmol/L 

L-ascorbic acid (Sigma) in the presence or absence of RNH-6270, and then pulsed 

for 48 hrs with 0.5 Ci/mL L-[2,3,4,5-3H]-proline (Daiichi Pure Chemicals). At 

the end of the pulsing period, the plates were frozen and stored at –80°C. After 

thawing, the cells were precipitated twice with 10% trichloroacetic acid (TCA; 

Nacalai Tesque, Kyoto, Japan) by centrifugation and washed twice with 

ethanol-ether (3:1) mixture. After drying overnight, the pellet was digested with 

5 mg/mL collagenase type VII (Sigma), dissolved in 50 mmol/L Tris-HCl, and 

5 mmol/L CaCl2, at pH 7.4, and at 37°C for 90 min, and precipitated twice with 

10% TCA and 5% tannic acid (Sigma) by centrifugation. The supernatants from 

the two centrifugations were pooled, and 50 L of the mixture was placed on a 

Deepwell LumaPlate (PerkinElmer Inc.). After drying overnight, the radioactivity 

was counted by a microplate scintillation counter (TopCount HTS, PerkinElmer 

Inc.). 

 

Measurement of TGF-1 

In the in vitro experiments, HSCs were incubated with Ang II in the presence or 

absence of RNH-6270 or platelet-derived growth factor-BB (PDGF-BB, rat; R&D 

Systems, Minneapolis, MN), which is a homodimer of PDGF-B chain subunit and 

the most potent mitogen for HSCs, for 48 hrs. Culture supernatants were collected, 

frozen and stored at –80°C. In order to quantify total TGF-1, the supernatants 

were treated with 1 mol/L HCl for 10 min to convert the latent form of TGF-1 to 

the active form and neutralized with 1.2 mol/L NaOH and 0.5 mol/L HEPES. In 

the in vivo experiments, plasma samples were treated with 2.5 mol/L acetic acid 

for 10 min and neutralized with 2.7 mol/L NaOH and 1 mol/L HEPES. The 

activated samples were measured using TGF-1 Human, Biotrak ELISA System 

(Amersham Biosciences, Piscataway, NJ) according to the manufacturer's 

instructions. 
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Real time PCR analysis 

In the in vitro experiments, HSCs were incubated with Ang II in the presence or 

absence of RNH-6270 for 24 hrs. and total cellular RNA was isolated after lysis of 

the cells. In the in vivo experiments, total RNA was isolated from homogenates of 

whole livers at Day 21 after surgery. RNA extraction was performed using 

TRIZOL reagent (Gibco BRL) according to the manufacturer's instructions. RNA 

purity and concentration were determined using a spectrophotometer (DU 7500, 

Beckman Coulter, Inc., Brea, CA). Total RNA was converted to complementary 

DNA (cDNA) with TaqMan Reverse Transcription Reagents (Applied Biosystems) 

using GeneAmp PCR System 9600 (PerkinElmer Inc.). For cDNA synthesis, 5 g 

total RNA, 10 L 10×RT buffer, 22 L MgCl2 (25 mM), 20 L dNTPs mixture 

(10 M each), 5 L random hexamers (50 M), 2 L RNase inhibitor (20 U/L), 

and 2.5 L (50 U/L) Moloney Murine Leukemia Virus Reverse Transcriptase 

were added to make a total volume of 100 L. Samples were incubated at 25°C for 

10 min and 48°C for 30 min. Reactions were stopped by heating to 95°C for 5 min. 

The fluorescent TaqMan probes, and forward and reverse primers were designed 

with the software, Primer ExpressTM, Ver.1.0 (Applied Biosystems, Foster City, 

CA), and synthesized by Sigma Genosys Japan (Hokkaido, Japan). Sequences of 

primers and probes used in this study are shown in Table 1 (page 71). I used a 

probe and primers from the Rodent GAPDH Control Reagents (Applied 

Biosystems) for internal calibration. Two-step PCR was carried out using an ABI 

PRISM 7700 Sequence Detector System (PerkinElmer Inc.). PCR conditions were 

as follows: 5 L cDNA solution, 25 L TaqMan 2×PCR Master Mix (Applied 

Biosystems), 0.5 L forward primer (10 M), 0.5 L reverse primer (10 M), and 

0.5 L probe (20 M) were added to make a total volume of 50 L. The thermal 

cycler conditions were 2 min at 50°C, 10 min at 95°C, and 40 cycles of 15 sec at 

95°C followed by 1 min at 60°C. Standard curves to determine the mRNA content 

were generated using the GAPDH control. Control RNA (Rodent, 50 ng/L) was 

serially diluted 5-fold with 1×TE (Wako) down to 80 pg/L. The amplification of 

standard and sample cDNA was carried out in a MicroAmp Optical 96-well 
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reaction plate (Applied Biosystems). All standards and samples were assayed in 

duplicate. Each plate always contained the same standard. The threshold cycle (Ct) 

values were used to plot a standard curve in which Ct decreased in proportion to 

the log of the template copy number. The correlation coefficients of the standard 

curves were always more than 99%. 

 

Statistical analysis 

Results were expressed as the mean ± S.E. Student's t-test (when the F-test was 

significant, the Welch test was used) and Dunnett's test was used to compare two 

groups and three or more groups, respectively. p < 0.05 was considered 

statistically significant. The SAS System Release 8.2 (SAS Institute Inc.) was used 

for the statistical analyses. 
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Results 

 

 

Time course evaluation of in vivo liver fibrosis models with BDL 

I used BDL model as in vivo liver fibrosis models. In order to confirm 

experimental conditions in BDL rats, the time course of disease progression was 

evaluated up to 3 weeks after BDL. Liver hydroxyproline content, reflecting 

collagen protein levels, was increased by 1.9-fold at 1 week after BDL compared 

with sham-operated rats (Figure 16; page 93). Liver hydroxyproline content at 

both 2 and 3 weeks increased by 2.5-fold. Plasma AST levels at 1, 2 and 3 weeks 

increased by 3.0, 3.1 and 4.0-fold in BDL rats compared with Sham rats, 

respectively (Figure 17; page 94). In contrast, plasma ALT levels were not 

significantly changed. Body weight in BDL rats was remarkably decreased for the 

first 4 days after BDL presumably due to surgical complications although no 

animals died (Figure 18; page 95). In the next study, fibrosis was evaluated at 3 

weeks after surgery, and the treatment of compounds started at 7 days after surgery 

considering surgical damage. 

 

Effects of Ang II on survival rate, body weight change and liver 

weight in BDL rats in vivo 

In order to evaluate the effects of Ang II on liver fibrosis in vivo, ARB, olmesartan 

was orally administered at a dose of 1 mg/kg starting at 7 days after BDL. 

However, two animals in the BDL group and three animals in the ARB-treated 

group died up to Day 11 after BDL presumably due to surgical complications. The 

survival rate was not statistically different between these two groups (Fisher’s 

exact test). Final body weight was significantly lower than those in the BDL group 

compared with the Sham group, but ARB treatment did not significantly affect 

them (Table 4; page 74). The ratio of liver weights to body weights increased in 

the BDL group by 1.8-fold, which is presumably due to inflammation and fibrosis. 

It was significantly lower in the ARB-treated group compared with the BDL 

group. 
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Effects of Ang II on liver fibrosis in BDL rats in vivo 

I evaluated the effects of Ang II on liver fibrosis in BDL rats in vivo. First, 

collagen levels were measured as hydroxyproline content in the livers of BDL rats. 

Liver hydroxyproline content in the BDL group increased by 1.8-fold compared 

with the Sham group, indicating development of fibrosis (Figure 19; page 96). 

ARB treatment decreased collagen accumulation by 45%. These results suggest 

that Ang II mediates progression of liver fibrosis in BDL rats through activation of 

AT1 receptors. 

 Histological analysis was performed in the liver of BDL rats. Bile duct 

proliferation was remarkable in the livers of the BDL group resulting from 

cholestasis after BDL, and it was minimal in the ARB group (Figure 20-A; 

page 97). Masson-trichrome staining showed that collagen deposition spread from 

the area of bile duct proliferation in the BDL liver, and ARB treatment decreased 

the area of fibrosis (Figure 20-A; page 97). These observations were consistent 

with the results in liver hydroxyproline content, indicating ARB ameliorated liver 

fibrosis in BDL rats. Activated HSCs are key players in liver fibrosis and 

continuously produce collagen and ECMs. Therefore, in order to identify activated 

HSCs in the BDL liver, immunostaining for -SMA, a marker protein of activated 

HSCs, was performed. The number of -SMA-positive cells, indicating activated 

HSCs, were remarkably increased  in the liver of BDL rats compared with the 

Sham group (Figure 20-B; page 97). These cells were localized in the area of 

collagen deposition. ARB treatment reduced the number of -SMA-positive cells 

in the liver of ARB group. Next, in order to identify expression and distribution of 

AT1 receptors, immunostaining for AT1 receptor was performed. AT1 receptors 

were highly expressed in the livers of BDL rats and almost not in the Sham group 

(Figure 20-C; page 97). Importantly, AT1 receptors were localized in the area of 

collagen deposition and accumulation of -SMA-positive cells. ARB treatment 

reduced AT1 receptor positive-cells. These results suggest that activated HSCs 

expressing AT1 receptors may have a key role in the development of liver fibrosis 

with stimulation of Ang II in the liver. 

 Next, I evaluated mRNA levels of key fibrosis-related genes, collagen 1a1 
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and α-SMA, in the liver of ARB-treated BDL rats by real time RT-PCR. Collagen 

1a1 and α-SMA mRNA levels were increased in the BDL group by 3.7 and 

3.8-fold compared with the Sham group, respectively, and ARB treatment reduced 

the expression of them by 44% and 52%, respectively (Figure 21; page 98). These 

results are consistent with the histological results in that collagen deposition, 

α-SMA-positive cells and hydroxyproline content were reduced. 

 TGF-1 is a key pro-fibrogenic cytokine and is thought to stimulate 

activation of HSCs, in particular collagen production in HSCs. Therefore, I 

evaluated plasma TGF-1 levels in ARB-treated BDL rats. Plasma TGF-1 levels 

were increased in the BDL group by 1.7-fold compared with the Sham group, and 

ARB treatment reduced them by 79% (Figure 22; page 99). These results indicate 

that Ang II is involved in plasma TGF-1 elevation in vivo. 

 

Effects of Ang II on liver injury in BDL rats in vivo 

In order to evaluate the effects of Ang II on liver injury, plasma markers of liver 

injury were measured. Plasma AST and ALT levels were increased in the BDL 

group by 5.3 and 2.6-fold compared with the Sham group, respectively (Figure 23; 

page 100). However, ARB treatment did not significantly change plasma AST and 

ALT levels. These results indicate that ARB did not directly ameliorate liver injury 

in BDL rats. Therefore, the anti-fibrotic effects of ARB were not secondary ones 

due to hepatoprotection. 

 

Effects of Ang II on proliferation and collagen synthesis in 

activated HSCs in vitro 

In the in vivo experiments, possible fibrogenic effects of Ang II were shown. Next, 

in order to investigate the mechanism of fibrogenic action of Ang II, I evaluated 

the effects of Ang II on activated HSCs in vitro. HSCs were prepared from rats by 

collagenase-pronase perfusion and cultured. Isolated HSCs show a quiescent 

phenotype with a round shape and stored vitamin A within the cells. Cultured 

HSCs on plastic dishes were spontaneously activated during several days and 

thereafter used for experiments. Olmesartan is a prodrug that converts to an active 

metabolite in blood. Therefore, a pharmacologically active form of olmesartan, 
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RNH-6270 was used in the in vitro experiments.  

 First, I evaluated the effects of Ang II on proliferation and collagen 

synthesis as typical and crucial phenotypes of activated HSCs. Ang II treatment 

stimulated proliferation of activated HSCs, measured as [3H]thymidine 

incorporation into cells (Figure 24; page 101). ARB treatment completely blocked 

the Ang II-stimulated proliferation in activated HSCs. Ang II treatment also 

stimulated collagen synthesis in activated HSCs, measured as [3H]proline 

incorporation (Figure 25; page 102). ARB treatment almost completely blocked 

the Ang II-induced collagen synthesis in activated HSCs. These results 

demonstrate that Ang II stimulates typical fibrogenic phenotypes including 

proliferation and collagen synthesis in activated HSCs through activation of AT1 

receptors. 

 

Effects of Ang II on autocrine production of pro-fibrogenic 

cytokines in activated HSCs in vitro 

TGF-1 plays a central role in transformation of HSCs to myofibroblast-like 

phenotypes in a paracrine manner. Furthermore, activated HSCs secrete TGF-1 

and stimulate self-activation in an autocrine manner. Therefore, I evaluated the 

effects of Ang II on production of TGF-1 in activated HSCs. Ang II increased 

TGF-1 levels in culture supernatants in a dose-dependent manner (Figure 26-A; 

pages 103 and 104). PDGF is the most potent mitogen for HSCs; therefore I 

evaluated TGF-1 production after PDGF treatment. PDGF increased TGF-1 

production in activated HSCs in my present study. Interestingly, Ang II and PDGF 

additively stimulated TGF-1 production in activated HSCs. ARB treatment 

almost completely blocked the Ang II-induced TGF-1 production in activated 

HSCs (Figure 26-B; pages 103 and 104). 

 In addition to TGF-1, CTGF is also a key pro-fibrogenic cytokine in 

activated HSCs. Therefore, I evaluated the effects of Ang II on mRNA expression 

of CTGF in activated HSCs. Ang II treatment significantly increased mRNA 

expression of CTGF in activated HSCs (Figure 27; page 105). ARB treatment 

completely blocked Ang II-induced CTGF mRNA expression. These results 

suggest that up-regulation of TGF-1 and CTGF possibly mediates fibrogenic 
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action of Ang II in activated HSCs. 
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Discussion 

 

 

In this chapter, I demonstrated that Ang II plays a key role in the progression of 

liver fibrosis mediated through stimulation of proliferation and collagen synthesis 

of activated HSCs. I showed that ARB, olmesartan ameliorated liver fibrosis in 

BDL rats. During the same period as my research, two other groups had also 

reported anti-fibrotic effects of ARB in liver in vivo (Paizis et al., 2001; Yoshiji et 

al., 2001). Paizis et al. used BDL models to evaluate ARB, irbesartan just like my 

study. They showed that ARB reduced mRNA levels of collagen 1a1 in the liver; 

however they failed to show decrease of collagen protein levels or amelioration of 

liver histology. In contrast, I showed that olmesartan surely attenuated liver 

fibrosis histologically and decreased collagen protein levels as well as mRNA 

levels of collagen 1a1 of BDL rats. Yoshiji et al. also reported that ARB, 

candesartan, inhibited progression of liver fibrosis in pig-serum models. My 

results and their findings indicate key roles of Ang II in liver fibrosis through 

activation of AT1 receptors. In my present study, ARB did not significantly affect 

plasma markers of liver injury, AST and ALT, although ARB ameliorated liver 

fibrosis. These results exclude the possibility of indirect effects of ARB on liver 

fibrosis mediated through hepatocellular protection. 

 In order to elucidate the mechanism of fibrogenic action of Ang II, I 

evaluated the effects of Ang II and ARB on typical phenotypes of activated HSCs 

in vitro. Quiescent HSCs in normal livers are not or scarcely proliferating; 

however activated HSCs in injured livers are highly proliferating. Batallar et al. 

reported that Ang II stimulated proliferation of human HSCs (Bataller et al., 2000). 

I also demonstrated that Ang II treatment stimulated proliferation of activated 

HSCs in vitro, measured as [3H]thymidine incorporation into cells, and ARB 

treatment completely blocked them. In an injured liver, activated HSCs 

continuously produce collagen and other ECM that lead to development of liver 

fibrosis. Ang II treatment also stimulated collagen synthesis measured as 

[3H]proline incorporation, and ARB treatment blocked them. I showed for the first 
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time that Ang II stimulated collagen production, which is the most crucial 

phenotype of activated HSCs.  

 TGF-1 is highly involved in the pathogenesis of liver fibrosis. TGF-1 

mainly stimulates the activation and collagen synthesis of HSCs in an autocrine or 

a paracrine manner (Matsuoka and Tsukamoto, 1990; Gressner, 1995). In BDL 

model, TGF-1 expression was up-regulated in the liver and HSCs were shown to 

be their main source of production (Bissell et al., 1995). In other organs such as 

the kidney and heart, the expression of TGF-1 was increased with stimulation of 

Ang II (Weber, 1997). Furthermore, Yoshiji et al. showed that ARB treatment 

decreased protein levels of TGF-1 in the liver of fibrotic rats (Yoshiji et al., 

2001). I also showed that plasma levels of TGF-1 were increased in BDL rats in 

vivo and ARB treatment attenuated them. Additionally, I showed that Ang II 

treatment increased TGF-1 production of activated HSCs in vitro. PDGF is the 

most potent mitogen for HSCs (Pinzani, 2002; Borkham-Kamphorst et al., 2007). 

PDGF also induced TGF-1 production in activated HSCs in my present study. 

Interestingly, PDGF treatment potentiated the Ang II-induced TGF-1 production. 

These results suggest that Ang II and PDGF may jointly stimulate activated 

phenotypes including TGF-1 production in HSCs and lead to development of 

liver fibrosis. ARB treatment almost completely blocked the Ang II-induced 

TGF-1 production in activated HSCs in vitro and additionally inhibited increased 

plasma TGF-1 levels in BDL rats in vivo. CTGF is also thought to stimulate 

activation of HSCs (Paradis et al., 1999; Williams et al., 2000; Paradis et al., 

2002). My results indicated for the first time that Ang II treatment up-regulates 

mRNA expression of CTGF in activated HSCs. These results suggest that the 

Ang II-stimulated collagen synthesis is mediated through up-regulation of two 

pro-fibrogenic cytokines, TGF-1 and CTGF, to some extent in an autocrine 

manner. All of these actions were mediated through activation of AT1 receptors 

because all of them were blocked with ARB treatment. 

 Histological analyses showed remarkable collagen deposition in the liver 

of BDL rats. The -SMA-positive cells, indicative of activated HSCs, were 

accumulated in the area of collagen deposition. The mRNA levels of -SMA were 

also up-regulated in the liver of BDL rats. These results support that proliferating 
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and activated HSCs are involved in development of fibrosis in the liver of BDL 

rats. ARB treatment decreased accumulation of -SMA-positive cells and mRNA 

expression of -SMA as well as collagen deposition, suggesting that Ang II and 

AT1 receptors contribute to the activation and proliferation of HSCs in the liver of 

BDL rats. As expected, -SMA-positive cells seemed to express AT1 receptors 

based on the AT1 immunostaining. Paizis et al. also reported remarkable 

expression of AT1 receptors and other RAS components in the fibrotic area in the 

liver of BDL rats (Paizis et al., 2002). Furthermore, activated, but not quiescent, 

HSCs highly expressed RAS components and synthesized Ang II (Bataller et al., 

2003b). Therefore, activation of local RAS in the liver after liver injury may play 

a key role in liver fibrosis in chronic liver diseases including NASH. My data and 

these other reports demonstrated that activated HSCs expressing AT1 receptors, in 

response to Ang II, play a key role in the progression of liver fibrosis. Particularly, 

I showed that Ang II stimulated collagen synthesis of activated HSCs is possibly 

mediated through up-regulation of pro-fibrogenic cytokines including TGF-1 and 

CTGF. AT2 receptors generally have divergent pathways compared with AT1 

receptors. Interestingly, it has been predicted that ARB increases levels of 

unbound Ang II after AT1 receptor blockade and subsequently activates AT2 

receptors (Unger, 2002). Therefore, activation of AT2 receptors as well as AT1 

receptor blockade may also contribute to the beneficial effects of ARB. Nabeshima 

et al. reported that liver fibrosis is deteriorated in AT2 receptor-deficient mice 

(Nabeshima et al., 2006). I suppose that AT2 receptor activation also in some 

content contributed to anti-fibrotic effects of ARB in addition to AT1 receptor 

blockade in my present study. 

 As discussed above, some researchers and I concurrently elucidated the 

fibrogenic effects and the molecular mechanism of Ang II in chronic liver disease. 

After our results were published, some new findings about roles of Ang II in 

NASH/NAFLD or liver fibrosis have been reported as following, 1) contribution 

of reactive oxygen species to Ang II-induced liver fibrosis, 2) roles of RAS in the 

development of hepatic steatosis in NASH/NAFLD and 3) clinical trials of ARBs 

in liver fibrosis including NASH/NAFLD patients.  

 Increased oxidative stress is thought to lead to activation of HSCs and 
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liver fibrosis (Koek et al., 2011). Systemic infusion of Ang II to normal or fibrotic 

rats induced activation of HSCs and consequently liver fibrosis mediated through 

increased oxidative stress and pro-inflammatory cytokines (Bataller et al., 2003a, 

2005). Ang II phophorylated p47phox, a subunit of NADPH oxidase, and induced 

reactive oxygen species via NADPH oxidase activity in human HSCs (Bataller et 

al., 2003c). Ang II-induced activation of HSCs was also attenuated by treatment of 

NADPH oxidase inhibitors and HSCs isolated from p47phox-deficient mice showed 

blunted responses to Ang II. Furthermore, p47phox-deficiency attenuated liver 

fibrosis after BDL. Therefore, NADPH oxidase-mediated oxidative stress is 

thought to contribute to Ang II-induced activation of HSCs and development of 

liver fibrosis.  

 In summary, AT1 receptor blockade reduced activated HSCs and prevented 

progression of liver fibrosis in vivo, and Ang II stimulated proliferation and 

collagen synthesis in activated HSCs in vitro possibly through increased 

production of TGF-1 and CTGF (summarized in Figure 28; page 106). These 

results demonstrate that Ang II plays an important role in the progression of liver 

fibrosis in NASH. 
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General Discussion 
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Since the publication of my research, the involvement of RAS including Ang II in 

metabolic disorders has been reported (Putnam et al., 2012). Liver-specific 

disruption of AT1 receptors or ARBs have been shown to attenuate triglyceride 

accumulation in the liver and in turn inflammation and fibrosis in NASH models 

including MCD models, indicating contribution of Ang II to hepatic steatosis in 

NASH/NAFLD concerned with insulin resistance (Fujita et al., 2007; Hirose et al., 

2007; Kurita et al., 2008; Nabeshima et al., 2009). Therefore, the mechanism of 

beneficial effects of AT1 receptor blockade in NASH models is complicated. Some 

mechanisms in Ang II-induced triglyceride accumulation in the liver have been 

proposed including decreased fatty acid oxidation, increased VLDL secretion and 

increased de novo lipogenesis (Ran et al., 2004a, 2004b; Kurita et al., 2008; Rong 

et al., 2010). On the other hand, SCD-1 potently contributes to process of 

lipogenesis and triglyceride synthesis in the liver. Interestingly, Yokozawa et al. 

reported that ARB down-regulates liver SCD-1 expression and ameliorates insulin 

resistance and hepatic steatosis in obese rats (Yokozawa et al., 2009). These 

findings suggest that, in addition to liver fibrosis, Ang II also plays a key role in 

hepatic steatosis, and these effects are possibly mediated through SCD-1 

regulation to some extent. Therefore, Ang II may modulate NASH pathology in 

multiple processes. 

 In my present study, the SCD-1 inhibitor and ARB were used as tool 

compounds to evaluate the roles of SCD-1 and Ang II, respectively. These proteins 

are attractive targets to treat NASH/NAFLD; therefore both compounds may be 

useful to treat NASH/NAFLD. I showed that SCD-1 is related to the early phases 

of NASH. SCD-1 inhibitors may be useful to prevent the onset of NASH in 

patients with simple steatosis or progression of NASH in patients with early 

phases of NASH. In contrast, steatosis, in which SCD-1 activity mainly involved, 

is a trigger to steatohepatitis but the roles in acceleration of disease after the onset 

of NASH are unknown. Therefore, I suppose that the benefit of SCD-1 inhibitors 

are restrictive at advanced stages of patients. In order to confirm the potential of 

SCD-1 inhibitor in advanced stages of patients, it is important to evaluate 

therapeutic protocol in which treatment of the SCD-1 inhibitor is started after 

establishment of the disease in MCD models. Additionally, SCD-1 deficiency 
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developed cutaneous abnormalities and narrow eye fissure with atrophic sebaceous 

and meibomian glands due to defect of lipid synthesis in tissues (Miyazaki et al., 

2001b). SCD-1 also seems to be associated with inflammation in some organs (Liu 

et al., 2011). SCD-1 inhibitor did not cause inflammatory observation; however 

other compounds with more potent systemic inhibition of SCD-1 increased white 

blood cell (Uto et al., 2011). Therefore, liver-specific inhibition may be important 

to avoid these adverse effects.  

 My studies as well as other groups showed beneficial effects of ARBs in 

animal models with chronic liver disease. Furthermore, as discussed above, Ang II 

possibly contributes to hepatic steatosis and other metabolic disorders in addition 

to liver fibrosis. Therefore, ARBs might be useful to treat patients with broad 

stages in NASH/NAFLD such as early steatotic or advanced fibrotic stages. Since 

the publication of our findings, some clinical trials of ARBs in treatment of liver 

fibrosis including NASH patients have been reported (Yokohama et al., 2004, 

2006; Georgescu et al., 2009; Fogari et al., 2012). These studies showed possible 

beneficial effects of ARBs on inflammation, liver injury and metabolic disorders 

in NASH patients. However, they were all small size scale and clinical endpoints 

(histology, serum markes, etc.) and the study designs (duration of treatment, 

severity of patients, etc.) were quite different among studies. Furthermore, only 

few trials showed a reduction of fibrosis, the most important pathology of NASH, 

in histological evaluation with liver biopsy. I think that in order to fully elucidate 

the benefit of ARBs in NASH patients, large scale and placebo-controlled trials 

with long-term histological evaluation are needed. ARBs are highly safe and 

widely treated in the world. If the benefits of ARBs are established in large scale 

clinical trials, these will provide promising treatment of NASH/NAFLD. 

 In conclusion, I demonstrated that SCD-1 plays an important role in the 

onset phase of NASH, and Ang II in the progression of liver fibrosis (summarized 

in Figure 29; page 117).  
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Table 1  Sequences of primers and probes used in real-time PCR analysis 

 

The sequences of primers and probes for each gene used in present study are indicated. FAM; 

6-carboxyfluorescein, TAMRA; 6-carboxytetramethylrhodamine. 

  

Collagen 1a1
Forward primer 5'-CTCCCAGCGGTGGTTATGAC-3'
Reverse primer 5'-TGCTGGCTCAGGCTCTTGA-3'
Probe 5'-FAM -AAGATGGTGGCCGTTACTACCGGGC-TAMRA -3'

-Smooth muscle actin (-SMA)
Forward primer 5'-CAACTGGTATTGTGCTGGACTCTG-3'
Reverse primer 5'-CTCCTTGATGTCACGGACGATCT-3'
Probe 5'-FAM -AGATGGCGTGACTCACAACGTGCCT-TAMRA -3'

Connective tissue growth factor (CTGF)
Forward primer 5'-CAATACCTTCTGCAGGCTGGA-3'
Reverse primer 5'-TTAGCCCGGTAGGTCTTCACA-3'
Probe 5'-FAM -TGCATCCGGACGCCTAAAATTGCCA-TAMRA -3'

Monocyte chemotactic protein-1 (MCP-1)
Forward primer 5'-CTTCACAGTTGCTGCCTGTAGC-3'
Reverse primer 5'-AGTGAATGAGTAGCAGCAGGTGAG-3'
Probe 5'-FAM -TGTCTCAGCCAGATGCAGTTAATGCCC-TAMRA -3'

Stearoyl-CoA desaturase-1 (SCD-1)
Forward primer 5'-CCGCTGGCACATCAACTTCA-3'
Reverse primer 5'-AAACTTTTTTCCGGTCGTAAGCC-3'
Probe 5'-FAM -CACGTTCTTCATCGACTGCATGGCTG-TAMRA -3'
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Table 2  Effects of an SCD-1 Inhibitor on body weight and liver weight of MCD 

rats 

 

Rats were treated as shown in Materials and Methods. Control, vehicle-treated rats 

fed with control diets (n = 4); MCD, vehicle-treated rats fed with MCD diets 

(n = 8); compound A (30 and 100 mg/kg/day) was administered daily to rats fed 

with MCD diets (n = 5 and 4, respectively). Body weight was measured before and 

at 8 weeks after the first treatment, and body weight gain was calculated. Livers 

were removed and weighed at 8 weeks after the first treatment. Values are Means ± 

SE. ** p < 0.01 vs. control (by t-test). 

  

Body weight gain (g) 9.6 ± 5.6 -76.4 ± 2.6** -80.8 ± 5.1 -89.4 ± 4.3

Liver weight (g) 9.41 ± 0.08 6.56 ± 0.23** 6.35 ± 0.4 6.17 ± 0.22

Liver weight
(g/100 g of body weight)

3.57 ± 0.06 3.59 ± 0.08 3.64 ± 0.18 3.74 ± 0.08

Control MCD 30 100

Compound A (mg/kg)
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Table 3  Comparison of MCD and BDL models 

 

MCD; methionine and choline-deficient, BDL; bile duct ligation 

 

  

Metabolic
disorders

Hepatic
steatosis

Liver injury
Inflammation

Fibrosis

MCD model
Fatty liver-

based NASH
models

Yes Yes Yes Yes

BDL model
Pure fibrosis

models
No No Yes Yes
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Table 4  Effects of ARB on survival rate, final body weight and liver weight 

 

Rats were treated as described in Materials and Methods. Sham, sham-operated 

rats receiving the vehicle; BDL, bile duct-ligated rats receiving the vehicle; 

BDL+ARB, bile duct ligation followed by 1 mg/kg/day of olmesartan treatment. 

Survival rate was calculated during the treatment of ARB (from Day 7 to Day 21). 

Final body weight and liver were weighed at 3 weeks after surgery. Values are 

Means ± SE. * p < 0.05,** p < 0.01 vs. sham, ## p < 0.01 vs. BDL. 

  

100% 80% 70%
(n = 5) (n = 10) (n = 10)

Final body weight (g) 304 ± 7 275 ± 8
* 250 ± 15

Liver weight
(g/100 g of body weight)

3.41 ± 0.07 6.06 ± 0.15
** 5.46 ± 0.24

##

Sham BDL BDL + ARB

Survival rate
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Figure 1  “Two hit theory” in onset and progression of NASH. NASH is thought 

to develop in a two-step process. The “first hit” is the lipid accumulation in the 

liver, which is caused by obesity, insulin resistance and other metabolic disorders. 

Subsequently the “second hit” stimuli lead to liver injury, inflammation and 

fibrosis. 
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Figure 2  Regulation of lipid content in liver. Liver lipid levels were regulated by 

four mechanisms as shown in (1) to (4). In NASH/NAFLD patients, (1) and (2) are 

generally up-regulated. FFA: fatty acid, TG; triglyceride, VLDL; very low density 

lipoprotein 
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Figure 3  Structure of an SCD-1 inhibitor, compound A. 
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Figure 4  Effects of compound A on SCD-1 activity (A) and triglyceride levels 

(B) in the liver of mice fed with lipogenic diets. (A) Compound A was 

administered once at doses of 10, 30 and 100 mg/kg to mice fed with lipogenic 

diets (n = 2). Liver SCD-1 activity was measured as shown in Materials and 

Methods. (B) Compound A was administered once-daily for 7 days at doses of 10, 

30 and 100 mg/kg to mice fed with lipogenic diets (n = 6). Liver triglyceride 

content was measured as shown in Materials and Methods. Values are Means + SE. 
** p < 0.01 vs. normal diet (by Student’s t-test), ## p < 0.01 vs. lipogenic diets (by 

Dunnett’s test). 
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Figure 5  Luciferase (A) and triglyceride content (B) in the liver of MCD rats. 

Rats were treated as described in Materials and Methods. Control, vehicle-treated 

rats fed with control diets (n = 5 for each time point); MCD, vehicle-treated rats 

fed with MCD diets (n = 5 for each time point). Liver samples were prepared at 

indicated times after starting feeding of MCD diets. Values are Means + SE. 
** p < 0.01 vs. control (by Student’s t-test). 
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Figure 6  Effects of SCD-1 inhibitor on liver triglyceride levels in MCD rats. 

Rats were treated as shown in Materials and Methods. Control, vehicle-treated rats 

fed with control diets (n = 4); MCD, vehicle-treated rats fed with MCD diets 

(n = 8); an SCD-1 inhibitor, compound A (30 and 100 mg/kg/day) was 

administered daily to rats fed with MCD diets (n = 5 and 4, respectively). Livers 

were prepared at 8 weeks after the first treatment. Values are Means + SE. 
** p < 0.01 vs. control (by Student’s t-test), ## p < 0.01 vs. MCD (by Dunnett’s 

test). 
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Figure 7  Effects of SCD-1 inhibitor on plasma AST (A) and ALT (B) levels in 

MCD rats. Rats were treated as shown in Materials and Methods. Control, 

vehicle-treated rats fed with control diets (n = 4); MCD, vehicle-treated rats fed 

with MCD diets (n = 8); an SCD-1 inhibitor, compound A (30 and 100 mg/kg/day) 

was administered daily to rats fed with MCD diets (n = 5 and 4, respectively). 

Plasma samples were prepared at 8 weeks after the first treatment. Values are 

Means + SE. ** p < 0.01 vs. control (Student’s t-test), # p < 0.05, ## p < 0.01 vs. 

MCD (Dunnett’s test). 
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(Figure 8) 
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Figure 8  Histological analysis of liver of SCD-1 inhibitor-treated MCD rats. 

Rats were treated as shown in Materials and Methods. (A) Control, vehicle-treated 

rats fed with control diets; (B) and (E) MCD, vehicle-treated rats fed with MCD 

diets; (C) an SCD-1 inhibitor, compound A 30 mg/kg/day; (D) and (F) compound 

A 100 mg/kg/day; compound A was administered daily to rats fed with MCD diets. 

Liver sections were prepared at 8 weeks after the first treatment, and performed by 

hematoxylin-eosin staining. Representative sections of rats in each group are 

shown. Arrows indicate inflammatory cell infiltration. Scale of bars in (A) to (D) 

indicate 0.4 mm and 0.1 mm in (E) and (F). 
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Figure 9  The scores of hepatocellular degeneration (A) and inflammation (B) in 

the liver of SCD-1 inhibitor-treated MCD rats. Rats were treated as shown in 

Materials and Methods. Control, vehicle-treated rats fed with control diets (n = 4); 

MCD, vehicle-treated rats fed with MCD diets (n = 8); an SCD-1 inhibitor, 

compound A (30 and 100 mg/kg/day) was administered daily to rats fed with MCD 

diets (n = 5 and 4, respectively). Liver sections were prepared at 8 weeks after the 

first treatment, and performed by hematoxylin-eosin staining. The degree of 

hepatocellular degeneration and inflammation were scored as follows: 0, none; 1, 

slight; 2, mild; 3, moderate. Inflammation was indicated as the sum (0 to 6) of 

portal inflammation (score: 0 to 3) and lobular inflammation (score: 0 to 3). 

Values are Means + SE * p < 0.05, ** p < 0.01 vs. control (by Student’s t-test), 
# p < 0.05, ## p < 0.01 vs. MCD (by Dunnett’s test). 
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(Figure 10) 
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Figure 10  Masson-trichrome staining of liver in SCD-1 inhibitor-treated MCD 

rats. Rats were treated as shown in Materials and Methods. Control, 

vehicle-treated rats fed with control diets (n = 4); MCD, vehicle-treated rats fed 

with MCD diets (n = 8); an SCD-1 inhibitor, compound A (30 and 100 mg/kg/day) 

was administered daily to rats fed with MCD diets (n = 5 and 4, respectively). 

Liver sections were prepared at 8 weeks after the first treatment, and performed by 

Masson-trichrome staining. Representative sections of rats in MCD (A) and 

compound A 100 mg/kg/day (B) are shown. Fibrotic area is stained as blue. Bar 

indicates 0.4 mm. (C) fibrosis was scored as follows: 1, pericellular and 

perivenular fibrosis; 2, focal bridging fibrosis; 3, bridging fibrosis with lobular 

distortion; 4, cirrhosis. Values are Means + SE. ** p < 0.01 vs. control (by 

Student’s t-test), # p < 0.05, ## p < 0.01 vs. MCD (by Dunnett’s test). 
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Figure 11  Effects of SCD-1 inhibitor on promoter activity of collagen 1a1 (A) 

and hydroxyproline content (B) in the liver of MCD rats. Rats were treated as 

shown in Materials and Methods. Control, vehicle-treated rats fed with control 

diets (n = 4); MCD, vehicle-treated rats fed with MCD diets (n = 8); an SCD-1 

inhibitor, compound A (30 and 100 mg/kg/day) was administered daily to rats fed 

with MCD diets (n = 5 and 4, respectively). Liver samples were prepared at 8 

weeks after the first treatment. Values are Means + SE. All of the data were not 

statistically significant (by Student’s t-test or Dunnett’s test). 
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Figure 12  Effects of SCD-1 inhibitor on mRNA expression of MCP-1 in the 

liver of MCD rats. Rats were treated as shown in Materials and Methods. Control, 

vehicle-treated rats fed with control diets (n = 4); MCD, vehicle-treated rats fed 

with MCD diets (n = 8); an SCD-1 inhibitor, compound A (30 and 100 mg/kg/day) 

was administered daily to rats fed with MCD diets (n = 5 and 4, respectively). 

Liver samples were prepared at 8 weeks after the first treatment. Values are Means 

+ SE. ** p < 0.01 vs. control (by Student’s t-test), # p < 0.05 vs. MCD (by 

Dunnett’s test). 
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Figure 13  Effects of feeding of MCD diets on SCD-1 mRNA expressions in the 

liver of rats. Rats were treated as shown in Materials and Methods. Control, 

vehicle-treated rats fed with control diets (n = 4); MCD, vehicle-treated rats fed 

with MCD diets (n = 8). Liver samples were prepared after 8 weeks feeding of 

MCD diets. Values are Means + SE ** p < 0.01 vs. control (by Student’s t-test). 
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Figure 16  Time course of hydoxyproline content in the liver of BDL rats. Rats 

were treated as described in Materials and Methods. Sham, sham-operated rats 

receiving the vehicle (n = 3 to 5); BDL, bile duct-ligated rats receiving the vehicle 

(n = 3 to 6). Liver samples were prepared at indicated times after surgery. Values 

are Means + SE. * p < 0.05, ** p < 0.01 vs. sham (by Student’s t-test). 
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Figure 17  Time course of plasma AST (A) and ALT (B) levels in BDL rats. Rats 

were treated as described in Materials and Methods. Sham, sham-operated rats 

receiving the vehicle (n = 3 to 5); BDL, bile duct-ligated rats receiving the vehicle 

(n = 3 to 6). Plasma samples were prepared at indicated times after surgery. Values 

are Means + SE. ** p < 0.01 vs. sham (by Student’s t-test). 
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Figure 18  Time course of body weight change in BDL rats. Rats were treated as 

described in Materials and Methods. Sham, sham-operated rats receiving the 

vehicle (n = 5); BDL, bile duct-ligated rats receiving the vehicle (n = 5). Values 

are Means ± SE. 
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Figure 19  Effects of ARB on liver hydroxyproline content in BDL rats. Rats 

were treated as described in Materials and Methods. Sham, sham-operated rats 

receiving the vehicle (n = 5); BDL, bile duct-ligated rats receiving the vehicle 

(n = 8); BDL+ARB, bile duct ligation followed by 1 mg/kg/day of olmesartan 

treatment (n = 7). Liver samples were prepared at 3 weeks after surgery. Values are 

Means + SE. ** p < 0.01 vs. sham, # p < 0.05 vs. BDL (by Student’s t-test). 
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Figure 20  Histological analysis of the liver in ARB-treated BDL rats. Liver 

sections were examined by Masson-trichrome staining (A), immunohistochemical 

staining using antibodies against -SMA (B) or AT1 receptor (C). Rats were 

treated as described in Materials and Methods. Sham, sham-operated rats receiving 

the vehicle; BDL, bile duct-ligated rats receiving the vehicle; BDL+ARB, bile 

duct ligation followed by 1 mg/kg/day of olmesartan treatment. Liver samples 

were prepared at 3 weeks after surgery. The three images on the left, in the middle 

and on the right are consecutive. Representative sections of rats in each group are 

shown. Arrowheads indicate the bile duct proliferation. Arrows indicate the site of 

fibrosis (A), the -SMA-positive cells (B) and the AT1-positive cells (C), 

respectively. Original magnification ×25.  



98 
 

 

 

 

 

 

 

 

 
 

Figure 21  Effects of ARB on mRNA expression of collagen 1a1 (A) and -SMA 

(B) in the liver of BDL rats. Rats were treated as described in Materials and 

Methods. Sham, sham-operated rats receiving the vehicle (n = 5); BDL, bile 

duct-ligated rats receiving the vehicle (n = 8); BDL+ARB, bile duct ligation 

followed by 1 mg/kg/day of olmesartan treatment (n = 7). Liver samples were 

prepared at 3 weeks after surgery. Values are Means + SE. ** p < 0.01 vs. sham, 
# p < 0.05 vs. BDL (by Student’s t-test). 
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Figure 22  Effects of ARB on plasma TGF-1 levels in BDL rats. Rats were 

treated as described in Materials and Methods. Sham, sham-operated rats receiving 

the vehicle (n = 5); BDL, bile duct-ligated rats receiving the vehicle (n = 8); 

BDL+ARB, bile duct ligation followed by 1 mg/kg/day of olmesartan treatment 

(n = 7). Plasma samples were prepared at 3 weeks after surgery. Values are Means 

+ SE. * p < 0.05 vs. sham, # p < 0.05 vs. BDL (by Student’s t-test). 
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Figure 23 Effects of ARB on plasma AST (A) and ALT (B) levels in BDL 

rats. Rats were treated as described in Materials and Methods. Sham, 

sham-operated rats receiving the vehicle (n = 5); BDL, bile duct-ligated rats 

receiving the vehicle (n = 8); BDL+ARB, bile duct ligation followed by 

1 mg/kg/day of olmesartan treatment (n = 7). Plasma samples were prepared at 3 

weeks after surgery. Values are Means + SE. ** p < 0.01 vs. sham (by Student’s 

t-test). 
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Figure 24  Effects of Ang II and ARB on proliferation in activated HSCs in vitro. 

HSCs were incubated with Ang II in the presence or absence of 10 M RNH-6270 

(ARB) in serum-free medium for 48 hr., and DNA synthesis was measured by 

calculating the amount of incorporated [3H]thymidine into cells, as described in 

Materials and Methods. Values are means + SE of 8 separate experiments. 
* p < 0.05, ** p < 0.01 vs. control (by Dunnett’s test); ## p < 0.01 vs. Ang II 10 M 

(by Student’s t-test). 
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Figure 25  Effects of Ang II and ARB on collagen synthesis in activated HSCs in 

vitro. HSCs were incubated with Ang II in the presence or absence of 10 M 

RNH-6270 (ARB) in serum-free medium for 48 hrs., and collagen synthesis was 

measured by calculating the amount of incorporated [3H]proline, as described in 

Materials and Methods. Values are means + SE of 8 separate experiments. 

Statistical tests were performed with logarithmically transformed values. 
** p < 0.01 vs. control (by Dunnett’s test); ## p < 0.01 vs. Ang II 10 M (by 

Student’s t-test). 
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(Figure 26) 
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Figure 26  Effects of Ang II and ARB on TGF-1 production in activated HSCs 

in vitro. HSCs were incubated with Ang II in the presence or absence of 25 ng/mL 

PDGF (A) and in the presence or absence of 10 M RNH-6270 (ARB) (B) in 

serum-free medium for 48 hrs. The collected culture supernatants were acidified, 

and then total TGF-1 amount in the supernatants was measured as described in 

Materials and Methods. Values are means + SE of 8 separate experiments. (A) 
* p < 0.05, ** p < 0.01 vs. 0 nM Ang II without PDGF, # p < 0.05, ## p < 0.01 vs. 

0 nM Ang II with PDGF, (B) ** p < 0.01 vs. control (by Dunnett’s test); ## p < 0.01 

vs. Ang II 10 M (by Student’s t-test). 
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Figure 27  Effects of Ang II and ARB on mRNA expression of CTGF in activated 

HSCs in vitro. HSCs were incubated with Ang II in the presence or absence of 

10 M RNH-6270 (ARB) in serum-free medium for 48 hrs. Total RNA was 

extracted from cells, and mRNA expression was determined by TaqMan PCR 

analysis as described in Materials and Methods. RNA was normalized to that of 

GAPDH RNA. Values are means + SE of 5 separate experiments. ** p < 0.01 vs. 

control (by Student’s t-test); ## p < 0.01 vs. Ang II 10 M (by Dunnett’s test). 
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