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Abstract !
 The order Urodela (newts and salamanders) has the strongest ability to regenerate body parts 

following tissue injury. Previous research have shown that adult newts are capable of regenerating 

their limbs, heart, tail, spinal cord, jaw, brain, lens, and retinal tissue. The underlying molecular 

mechanisms of newt regeneration remain an unsolved mystery, despite being first reported by 

Spallanzani in 1760`s. This study focuses on newt retinal regeneration. The retina is a multilayer 

neural tissue involved in vision. Following the removal of the retina (retinectomy), the newt can 

regenerate a fully functional retina. Previous studies have identified the retinal pigment epithelium 

(RPE) layer of the newt as a primary cell source for retinal regeneration. Use of the newt RPE layer 

as a model to study retinal regeneration is useful because this layer is composed of a single cell 

type, specific markers are available (RPE65), and techniques to remove the neural retina without the 

damaging the RPE layer have been established. During early retinal regeneration the RPE layer 

dedifferentiates into a "stem cell like state”, referred as RPE derived cells. These RPE derived cells 

undergo cellular reprogramming, lose their RPE65 expression, and regenerate the neural retina by a 

precess called transdifferentiation. Currently, there is no system to examine functional gene analysis 

in the newt in vivo (such as gene knockdown or gain of function). 

 Technical limitations such as: the inability to sequence the newt genome (due to its large 

size) and lack of molecular techniques to manipulate gene function in the newt, have decelerated the 

progress in this field. Therefore to overcome these obstacles, this study has established an effective 

method to generate transgenic newts, using a coinjection of I-SceI endonuclease with a target 

transgene into the one cell stage of the newt. This transgenic protocol can be used to study newt 

regeneration in general. To take full advantage of this transgenic protocol, this study also applied it 

to newt retinal regeneration. In order to drive transgene expression and later manipulate gene 

function specifically in the RPE layer, this study identified the newt RPE65 promoter capable of 
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driving exogenous genes in the RPE layer of transgenic newts. In addition, this study generated for 

the first time dual promoter and reporter transgenic newts for studies in retinal regeneration. Lastly 

this research applied the invaluable CreERT2 loxP recombinase system, a power tool for gene 

recombination, in the newt for the first time by injecting two transgenes simultaneously into the one 

cell stage. Transgenesis by I-SceI provides one way to examine retinal regeneration in vivo. This 

study provides essential and fundamental techniques to generate transgenic newts, and applications 

for newt retinal regeneration studies.  

! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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Abbreviations !
4-OHT   4-Hydroxytamoxifen 

AmCyan  Anemonia majano cyan fluorescent protein or cDNA 

AP1   Adaptor Primer 1    !
AP2   Adaptor Primer 2 !
CCAAT  CCAAT-enhancer binding proteins (C/EBP)   !
CreERT2  Modified cre recombinase containing the estrogen receptor T2 !
DMSO   Dimethly sulfoxide !
EGFP   Enhanced green fluorescent protein, cDNA size 720bp !
GSRP1  Gene specific reverse primer 1, derived from the the newt RPE65 mRNA !
GSRP2  Gene specific reverse primer 2, derived from the the newt RPE65 mRNA !
Holt medium  Holtfreter`s embryo medium or solution for  newts.   !
HS4   The chicken β-globin core insulator, size 250bp !
HS42X  Two copies of the chicken β-globin insulator core, size 500bp !
MOK-2  Mouse Krüppel/TFIIIA-related zinc finger proteins !
IRBP   Interphotoreceptor retinoid-binding protein, as known as RBP3 (retinal- 
   binding protein) !
I-SceI   I-SceI is a commercial intron-encoded endonuclease, derived from   
   the mitochondria of Saccharomyces cerevisiae. !
LB   Luria Broth !
mCherry  Red fluorescent protein, modified from DsRed  !
pA   mRNA polyadenylation signal  !
pCAGG`s  The chicken beta actin promoter, size 1.7kb !
npRPE65  The newt (Cynops pyrrhogaster) RPE65 promoter (-560 to 0bp) !
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nRPE65  The newt retinal pigment epithelium protein measuring 65kD !
OCT-1   Octamer-1 transcription factor  !
PCE1   Photoreceptor Conserved Element 1 

NF-Y/CCAAT  Nuclear transcription factor Y/CCAAT-enhancer binding proteins 

RET/PCE1  Ret proto-oncogene/Photoreceptor Conserved Element 1, a TFBS !
RPE   Retinal Pigment Epithelium !
SL   Swimming larva capable of swimming having developed gills !
TB   Tail bud stages !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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!!!
Chapter One: General Introduction  !
 1.1 Urodela Regeneration !
 The order Urodela (newts and salamanders) possesses an elegant and remarkable ability to 

regenerate damaged tissue. Newts and salamanders are diverse amphibians distributed in most parts 

of the world, except Antarctica. Their habitat consists of cool environments with access to land and 

water.  In the case of the newt, their life cycle consist of an egg, a larva, a juvenile (by 

metamorphosis) and an adult stage (sexually mature). The most common species of Urodela 

currently used in regenerative biology and medical research are the following: Ambystoma 

mexicanum (Mexican Axolotl), Cynops pyrrhogaster (Japanese firebelly newt), Pleurodeles Walt 

(Iberian newt), and Notophthalmus viredenscens (The North American newt).  

!
 In 1768 Lazzaro Spallanzani first reported the salamanders` ability to regenerate its tail, by 

repeating the experiment several hundred times (Spallanzani, 1768; Tsonis and Fox, 2009). 

Decade’s later researchers observed that other tissues in the newt also had the ability to regenerate 

such as the: heart, brain, retina, lens, jaw, limbs, and spinal cord (Brockes and Kumar, 2002; Ferretti 

et al., 2003; Brockes and Kumar, 2005; Chiba et al., 2006; Carlson, 2007; Singh et al., 2010; Tanaka 

et al., 2011). Researchers continue to be baffled and amazed at this phenomenon. Without a doubt 

knowledge gained in newt regenerative research will provide powerful insights in regenerative 

medicine and biology. Some major examples include spinal cord injury, retinal degeneration, 

degenerative arthritis, and myocardial scaring.  

 It is important to note that newts are the only adult vertebrates capable of strong body-parts 

regeneration.  Other lower vertebrates such as the fish (Poss et al ., 2002; Raya et al., 2003), frog 
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(Gross, 1969) and axolotl (Sobkow, 2006) have certain abilities to regenerate tissue, but are not 

equivalent to the newt (Sandoval-Guzman et al., 2014). In addition, the axolotl (an aquatic 

salamander) remains at larval stage, never metamorphosing to adulthood, a process called neoteny, 

therefore its difficult to study mature tissue in this model. In contrasts newts fully metamorphose 

into the adult stage.  Thus the newts` ability to regenerate tissue at an adult stage makes them an 

excellent model organism for Regenerative Biology and Medicine. 

 We currently have a better understanding of molecular and cellular events during newt 

regeneration since the time of Spallanzani. It is important to define what regeneration in the newt 

implies. Humans can "heal" damaged tissue; such as injury to the skin or liver damage to a certain 

extent. In contrast general tissue-regeneration of the adult newt includes the following events: 

dedifferentiation, reprogramming and transdifferentiation (cell-type switching) of terminally 

differentiated tissue from an adult stage (Sandoval-Guzman et al., 2014; Eguchi et al, 2011; Jopling 

et al., 2011; ). In addition salamander regeneration maintains a “positional memory” theses are 

molecular programs that keep cell-type specific information (or regional information) in order to 

properly regenerate that lost tissue (Poss, 2010; Kragl et al., 2009).  

 Newt regeneration has also been observed to have a unique relationship with cancer. For 

example attempts to induce cancer in the newt limb using carcinogens resulted in mostly abnormal 

limbs without tumor formation (Tsonis and Eguchi, 1982). Humans on the other hand are more 

susceptible to cancers, when exposed to carcinogens. In a more recent study, it was shown that newt 

limb regeneration requires regulation of p53, for proper formation of the blastema (Yun et al, 2013). 

p53 is a tumor suppressor, involved in genome stability (Ryan et al., 2001), and promotion of 

differentiation pathways in mammals (Molchadsky et al.,, 2010) 

 To elaborate more on these terms, I will use retinal regeneration as an example and the 

research interest of this study for applications. 
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!!
  
 1.2 Newt Retinal Regeneration !
 The vertebrate eye is a hallmark of evolution and a critical sense organ for the organisms  

survival. The vertebrate eye contains a light sensing multilayer tissue called the retina. The retina in 

higher and lower vertebrates is found in the back of the eye. Light enters the cornea and penetrates 

the lens, strikes the retinal layers, which transmits a signal through the optic nerve to occipital part 

of the brain for processing. The retina of the newt is composed  of the following layers: ganglion 

cell,  inner plexiform, inner nuclear, outer plexiform,  outer nuclear, and the retinal pigment layer.  

The retinal pigment epithelium (RPE) is a monolayer of cells located between the choriod and the 

photoreceptors (Kennedy et al., 1998). The retinal pigment has several key functions in vision: 

secretion, phagocytosis, involvement in the visual cycle, glia, epithel transport, light absorption, 

forms part of the blood retinal barrier, and maintains the photoreceptors nourished (Strauss, 2005; 

Kennedy et al., 1998). The newt's retinal pigment epithelium (RPE) has an additional function, 

retinal regeneration (Chiba, 2013; Mitashov, 1996). 

 The Swiss naturalist Charles Bonnet is first credited for performing and publishing studies 

on newt lens and retinal regeneration in 1781(Mitashov, 1996). A hundred years later studies on 

newt retinal regeneration began to increase and several researchers reached the same conclusion; 

that the newt has a flawless skill to regenerate the lens and retina (Philipeaux, 1880; Griffini and 

Marcchio, 1889; Colucci, 1891; Wolff, 1895).  The primary cell source for retinal regeneration is 

the RPE layer, the secondary cell source are stem/progenitors cells of the retinal marginal area, and 

the third cell source are bipolar like cells of the retina itself (Chiba and Mitashov, 2007; Chiba et al., 

2006; Mitashov, 1996.)  This study will focus on the primary cell source, the RPE layer, shown in 

(Figure1).  
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 How does the newt regenerate the retina from the retinal pigment epithelium (RPE layer)? 

The current working hypothesis of the newt early retinal regeneration has been proposed by Chiba 

and  Mitashov (2007), it is illustrated in (Figure 2).　During retinal regeneration several genes in 

the RPE cells are up-regulated and down-regulated. RPE cells dedifferentiate into a stem cell like 

state, two particular gene that are up-regulated the stem cell maker Pax-6 “the master control of the 

eye” and Msi-1, a critical a gene involved in post-transcriptional regulation, proliferative activity of 

gliomas and melanomas  (Chiba et al., 2006; Kaneko et al., 1999). Interestingly, RPE cells  lose 

expression of a specific marker RPE65 (Chiba et al, 2006) and slowly begin to lose their 

pigmentation (Chiba and Mitashov, 2007; Chiba et al., 2006;  Moshiri et al., 2004; Mitashov, 1996). 

RPE cells lose their identity, and reprogram into retinal progenitors cells, early retinal progenitor 

cells (expressing Pax6, Msi-1, Chx-1, and Notch) continue to poses some pigmentation a 

characteristic from the RPE cells. Melanin from RPE cells takes a long time to breakdown, in 

classical experiments it was used to track RPE derived cells during retinal regeneration  (Mitashov, 

1996).  These  retinal progenitor cells derived from RPE cells,  transdifferentiate to regenerate the 

neural retina. How exactly newt RPE cells dedifferentiate is unknown. 

  
 1.3 Direction of the Field !
 (Figure 3) summarizes the some major highlights in the field of newt retinal regeneration. 

The field of retinal regeneration is shifting from histological observation of regeneration towards 

gene identification and gene manipulation of regeneration. To understand the molecular 

mechanisms in the newt regeneration (in general) it is crucial to obtain genomic information 

(mRNA transcripts, contigs, and proteomic data) during the regenerative process. Unfortunately one 

limitation when working with newts is their huge genome, in general all newts and salamanders 

have large genomes. For example, the Japanese newt genome (for Cynops pyrrhogaster) has a C-
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value of 37.8 picograms (approximately 18 Giga basepairs) (Licht and Lowcock, 1991). This size 

has really made it difficult for researchers to seek unique genes involved during regeneration. A 

huge insight in this field regarding the salamander genome size was that it is composed of long 

intron regions (Smith et al., 2009). Nonetheless researchers from several labs around the world are 

eager and currently focusing on genomic information. In 2013 Abdullayev et al., generated a de 

novo reference transcriptome for the newt Notophthalmus viridescens, they found 118,893 

transcripts with a N50 of 2016 nucleotides, and 19,903 newt proteins in during regeneration 

(Abdullayev et al., 2013), these still need to be further examined. In a different study by other 

researchers examined microarray analysis of gene expression during newt regeneration, they found 

several factors  related in cell cycle and DNA repair during regeneration (Sousounis et al 2013). 

Unpublished data from Dr. Chiba`s Lab of Regenerative Physiology are also examining genomic 

data during retinal regeneration of the newt (Personal Communication).  

 Newt regeneration is approaching a genetic direction, there is another limitation to consider. 

How can researchers test genes involved during regeneration? It is essential that these genes are 

tested in order to provide evidence it is necessary to examine their functional role during 

regeneration. Manipulating gene expression in the newt is a critical step in understanding their 

ability to regenerate. Currently only one study has examined gene function in the newt, this study 

used morpholinos to knockdown Pax6 expression in vitro and in vivo during lens regeneration from 

dorsal pigmented iris, results showed that Pax6 expression is necessary for early events in lens 

regeneration  (Madhavan et al., 1996). Morpholinos are a useful gene tools (for modifying RNA 

splicing or inhibiting miRNA activity and maturation) and gene knock down. Morpholinos are very 

expensive (this limits the amount of experiments) and difficult to make. The delivery of 

morpholinos to mature regenerating tissue (without tampering with it) or those that are in the 

process of later regeneration is challenging in vivo. Thus researchers  working with morpholinos can 

�9



only examine early events.  This study proposes an alternative solution to study functional gene 

analysis in the regenerating newt, in vivo manipulation by transgenesis. 

  

1.4 Transgenesis in the Newt 

 Transgenesis is the process of introducing foreign DNA into a host genome, with the goal of 

altering and manipulating the hosts` gene expression. Transgenesis is a very powerful tool for in 

vivo experimentation, such as gain of function or lose of function of a particular gene of interest.  

Before the findings of this study, transgenesis in the newt was limited to two papers, one published 

by Mikita et al., 1995 and the second by Ueda et al., 2005. Thus transgenesis in the newt has very 

few techniques and references available. This is largely due to the difficultly that comes with 

working with the newt in the lab settings, I would like to mention three challenges with transgenesis 

in the newt.  

 (1) One of the major problems with generating transgenic newts is the difficultly of 

obtaining fertilized eggs to generate F0 transgenic lines (Ueda et al., 2005).  Breeding newts in the 

lab is a difficult task, researchers generally purchase or collect them from rice fields, of which many 

females are used but contain very few fertilized eggs (Ueda et al., 2005). Furthermore, in some 

cases females are sacrificed to collect eggs. Amphibians have been declining at a global scale 

(Stuart et al., 2004; Pounds et al., 2006), and the newt is not an exception. The Ministry of 

Environment of Japan has announced that Cynops pyrrhogaster is also declining (Ministry of 

Environment of Japan; http://www.env.go.jp/press/press.php?serial=7849). Furthermore rearing fertilized 

eggs to adult stages requires laborious work, especially if large sample sizes are used. Thus, at the 

current moment there are no reports or published papers using F1 transgenic newts or established 

transgenic lines. 

 (2) The second problem is mosaic transgene expression. The 1980’s marked the expansion 
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of vertebrate transgenic studies. Studies were done by carefully microinjecting embryos, Biologist 

realized that specific genes could be introduced, examine gene expression and compare their 

transgenic organism with a wild type (Stuart et al., 1988). Transgenic studies were done on: fruit 

flies (Rubin and Spradling, 1982), sea urchins (McMahon et al., 1985), frogs (Etkins, 1982; Etkins 

et al., 1984), and mice (Gordon and Ruddle, 1981; Palmiter and Brinster, 1986). Earlier experiments 

microinjected linearized or circular DNA with reporters into one-cell stage of embryos. In general 

the results were mosaic with decreasing expression as the organism developed (Rusconi and 

Schaffner, 1981; Etkins et al. 1984; Andres et al., 1984; Etkins and Pearman, 1987). It is important 

to note that mosaic refers to uneven or non-uniform transgene expression in the target cells or 

tissue. Mosaic expression generally occurs because the transgene fails to insert at the one cell stage 

of embryos or suffer from positional effect (Tabin, et al., 2012; Perrimon, 2008; Vleminckx, 2008; 

Nakatsuki, 2002). Makita et al., 1995 succeeded in introducing transgenes into the newt, but 

ultimately led to the mosaic expresion. 

 (3)The third problem with generation of transgenic newt are technical, involving 

survivorship. Before this study there was no conventional protocol to generate a transgenic newt at 

a practical level. Some labs used different size injection needles, injection volume to the one cell 

stage, others dejellied eggs with forceps or chemicals. Furthermore these methods have not been 

examined in details to  test there survivorship. This was confusing because one can not determine if 

the injected embryos die due to the transgene itself, or the injection, pre/post culture conditions, or 

abnormalities caused by poor egg quality. To give a solid example of this, Ueda et al., 2005 

successfully generated full expression transgenic newt, but survival was less than 2%, we can only 

speculate why survival was so low.  

 Lastly, their are few labs working with newt regeneration, compared to those working with 

model organism such as the frog, mouse, and the fly. Many scientist lost interest in regeneration 

�11



(Okada, 1996; Brockes and Kumar, 2002.) The following is a relevant excerpt from Professor TS 

Okada from the University of Osaka who followed the history of regenerative research and gives us 

insight why the decline occurred:  

 “Later on, regeneration research seemed to retire from the leading part in the recent 
history of developmental biology, replacing its role to studies of early embryonic 
development….. There are several reasons for the recent decline in popularity of 
regeneration research. Probably, the fact that none of such really major scientific issues in 
developmental biology like the discovery of the organizer, or of the multipotentiality of 
somatic nuclei in development, has not come out of the regeneration studies, may have 
resulted in the failure to attract the interest of many scientists to this particular subject. The 
phenomenon of regeneration itself is in many respects too complex to be accommodated well 
in the modern trends in developmental biology. Regeneration was, and still is, a 
tremendously difficult subject to grasp in terms of entity or of element. An introduction of 
some recent techniques at that time like biochemistry, electron microscopy and others, did 
not help much. Furthermore, there was no possibility of a genetic approach, since no 
mutation was known (in principle, even now), which affects regeneration. ” !

 - TS Okada, 1996 
  

 With this in mind it is essential to generate an easy way to produce transgenic newts with the 

goal to altering gene expression during regeneration. Transgenesis will serve as one way for 

studying newt regeneration.  

!
1.5 Research Purpose 
 The purpose of this study are the following: 

1. To establish a simple and efficient method for generating transgenic newts with full expression.  

a. Development of mating tank conditions to obtain large amounts of fertilized eggs in the lab 

settings. 

b. Collection and preparation of fertilized eggs, microinjection conditions, post injection 

culture conditions until metamorphosis. 

c. Application of I-SceI co-injection with transgene construct to improve transgenic efficiency 

in the newt. 

2. Applications of this transgenic protocol (1) for regenerative studies in the newt. 

a. Identification of the newt RPE65 promoter region capable of driving transgene expression at 

the RPE layer, a source for retinal regeneration. 
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b. Transgenic assay of the newt RPE65 promoter during development and metamorphosis, 

examining tissue specificity. 

c. Comparison of the newt RPE65 promoter region with known vertebrates. 

d. Generation of Dual promoter/reporter transgenic newts for tracking RPE cells during retinal 

regeneration. In addition to cell tracking during regeneration, this dual promoter/reporter 

system can help visual RPE cells during regeneration for single cell transcriptome analysis. 

e. Generation of CreERT2 loxP transgenic newts by two construct injection. Cre loxP system 

allow threes basic recombination events: inversion, translocation (homologous 

recombination), and deletion. This study will examine only the deletion recombination 

event with a transgene as a reporter excision.  

  !
Chapter Two: Generation of Transgenic Newts by I-SceI  
  
2.1 Methods: Two Tank Mating System !
 To overcome the difficultly of collecting fertilized eggs in the lab, this study developed two 

mating tank system depicted in Figure 4A. The conditions are the following: tank size aquarium 

tank (60-cm width; 30-cm depth; 45-cm), natural light was used by keeping tanks near windows, 

room temperature was kept at 18°C, water inside the tanks was kept between 14-18°C (fluctuated 

during winter) regulated by a heater/thermostat system, external filter/circulation system was used, 

water remained still the majority of the day, a filter system was used for 4 hr/day for cleaning, water 

was changed when needed, rocks were added to allow newts to hide and rest (critical to minimize 

stress), and water level was set to ~15 cm (height).  

 Adult newts (tail to snout length: ~9 cm male and 11-12 females) were purchased from Mr. 

Kazuo Ohuchi in Chiba Prefecture, Japan. A ratio of 1–2:3 male to female were used per tank. Four 

to six days before the day of egg collection, females are injected with 30U of Gonadotropin 

(Gonatropin 3000; Asuka Seiyaku, Japan. stored at 4°C) in the subcutaneous layer of the abdomen 

every 2 days. Plastic vinyl ribbons were added into the tanks to allow females to lay their eggs and 
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to prevent them from eating their own eggs. In the morning (dawn) of the microinjection, eggs are 

collected early between 6-8 am because eggs must be injected during one cell stage. Eggs collected 

after 8 am begin to develop into second cell stage. All developmental stages of C. pyrrhogaster 

were followed according to the standard table of Okada and Ichikawa, 1947. Animals were cared 

according to University of Tsukuba Animal Use and Care Committee. 

 Two tanks were designed to allow females to lay eggs in one tank, while females in the 

second tank were rest or recovering from previous oviposition (egg laying). In other words when 

Tank 1 females layed eggs, (collection time), Tank 2 females rested (recovered), this process was 

alternated every two weeks for continuous eggs collection during the mating season of the Japanese 

newt (Cynops pyrrhogaster) shown in Figure 4B. Using these two tank system, newt were 

monitored daily to examine fertilization percentage and daily eggs collected per day/ per month 

shown in Figure 4C. 

 2.2 Methods: Fertilized Egg Preparation 
  
  Newt and salamander eggs contain several layers of jelly coating (Hiyoshi et al., 

2007; Okamoto, 1972), which protect the eggs from drying out, and play an important role in 

fertilization (Onitake and Matsuda, 1984). In order to microinject material into the one  cell stage it 

is necessary to remove the jelly, leaving only the vitelline membrane. The vitelline membrane is 

essential for proper development of newt embryos because it provides an early physical 

environment without it the embryos will collapse and lose their shape. In order to remove the jelly 

layers, a classical technique used in Xenopus (Okamoto, 1972) was modified for the newt. 

Alternatively egg jelly can be removed by using fine forceps (Kragl et al., 2009) but this quickly 

becomes tedious and damages several eggs. Therefore newts eggs were treated with 2% sodium 

thioglycolate in 0.5X Holtfreters solution, pH 10 (from herein called dejelly solution). After 

dejellying eggs, they were carefully rinsed with chilled 0.5X Holtfreters solution ten times to 
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remove jelly debris and residual dejelly solution. Dejellied eggs were transferred to terasaki dishes 

containing 6% Ficoll, 0.5X Holt medium, penicillin-streptomycin, pH 7.6 (from herein called 

microinjection egg medium). Dejellied eggs were kept on ice or inside the refrigerator until 

microinjection.  A summary of egg preparation is shown in Figure 5A. 

 From the time of collection to rearing mature adults, modified Holtfreters solution was used 

for treating, rinsing, and manipulating.  Preparation of 1x Modified Holtfreters (Holt) solution, 

contained the following (g/l) 3.5 NaCl, 0.05 KCl, 0.1 CaCl2, and 0.2 MgCl2·6H2O. For diluted 

versions of H solution (i.e. 0.5xH, 0.2xH), pH was adjusted to 7.5 with NaHCO3, unless otherwise 

as mentioned. All solutions for dejellied eggs/embryos were sterilized by a syringe filter of 0.2-mm 

pore size (DISMIC- 25cs, Cellulose Acetate; Advantec, Japan) and stored at 4°C. 

!
 2.3 Methods: Co-Microinjection of a Transgene with I-SceI 
  
  In the 2000`s vertebrate transgenesis shifted to a different approach, enzyme-

mediated transgenesis was used to help transgene insertion into the genome. The fish, Xenopus, and 

Axolotl transgenesis have examined a different approach, the co-injection of DNA with I-SceI 

meganuclease demonstrated to highly increase transgene expression and decrease mosaic 

expression (Thermes et al., 2002; Ogino et al., 2006; Pan et al., 2006; Kragl et al., 2009).  I-SceI is 

an endonuclease isolated from Saccharomyces cerevisiae, this enzyme has a 18 bp recognition site 

(TAGGGATAACAGGGTAAT), this sequence is found once in 7 X 1010 bp, approximately once in 

the human genome  (Jacquier and Dujon, 1985). It is important to note, that unlike the transgenic 

REMI (restriction enzyme mediated integration) method, I-SceI will rarely cut the genomic DNA. 

Rather it only digest the injected transgene (Thermes et al, 2002). The exact mechanisms of I-SceI 

transgenesis insertion is unknown, but current speculations will be discussed later in Chapter 6.  I-

SceI has not been applied to newt transgenesis; therefore it is unknown if the transgene (efficiency ) 
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will work with I-SceI in the newts large genome. 

 Microinjection mix is define as  the solution that will be injected into the one cell stage of 

the embryos. It consists of 4 key components, I-SceI enzyme, plasmid DNA with reporter gene, I-

SceI buffer, and phenol red. In this study a plasmid construct containing pCAGGs-EGFP (Sce) 

(kindly provided by Dr. Elly M. Tanaka, Max Planck Institute of Molecular Cell Biology and 

Genetics, Leipzig, Germany; see Sobkow et al., 2006) was used to test transgene efficiency with I-

SceI. CAGG`s is the CAGGs—chicken b-actin promoter combined with IE CMV enhancer, as 

described by Sobkow et al., 2006.  The plasmid DNA containing pCAGGs-EGFP was amplified in 

JM109 cells (Takara) and cultured with standard techniques. pCAGGs-EGFP plasmid was purified 

using Endofree Plasmid Maxi Kit (Qiagen, Valencia, CA), recovered in nuclease-free water, and 

stored at −80°C. Immediately after arrival I-SceI enzyme was aliquoted and stored at −80°C.  

 Microinjection mix (solution) contained 1× I-SceI buffer (New England Biolabs, 

Ipswich, MA), 0.25–1 U/µl of I-SceI meganuclease enzyme (New England Biolabs), 0.01% 

phenol red (stock: 0.1% phenol red dissolved with 0.3M NaOH), and 0.01–0.2 µg/µl of a 

plasmid DNA construct, (Figure 5B). Red phenol was used to help visual microinjection 

into the egg. Fresh injection solution mix was used in each experiment; solutions were 

incubated at 37°C for 0–60 minutes and placed on ice until use.   

 Grinded glass capillary were prepared as shown in (Figure 5B), they were mounted 

on a holder that was fixed to a motorized micromanipulator (MP-330; Narishige) next to a 

fluorescence stereomicroscope (Leica M165 FC); the holder was connected to an injector 

PV820 Pneumatic Picopump (World Precision Instruments, Sarasota, FL). Immediately 

before injection, a 2-µl drop of the injection solution was placed on a parafilm sheet 

(Pechiney Plastic Packaging, Chicago, IL) mounted on ice and front filled into the 
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micropipette using an aspirator connected to the injector. Terasaki  dish containing dejellied 

embryos (at one-cell stage, prepared as mentioned above) were placed under the 

stereomicroscope, the tip of the micropipette was inserted into the one-cell embryo up to 

∼50 µm in depth Figure 5C. The site of injection was on the superior animal pole section. 

Approximately  1-4 nanoliters were injected into the one cell stage.  

!
 2.4 Methods: Post Microinjection Culture and Rearing Conditions 
  
  I tested 1–4-nl (range) of microinjection mix in order to examine the optimal volume 

per embryo; the microinjection mix was injected at a pressure of 4-6 PSI (pounds per square inch) 

for 80–300 msec. The injection volume was regulated by changing the duration of injection time. 

All calibrations were estimated according to the World Precision Instruments operation manual. 

After all embryos (approximately 96) on Terasaki plates were injected using the same micropipette 

in ∼30 min, they were transferred to an incubator (CN-25C; Mitsubishi Engineering, Japan/M-200; 

TAITEC, Japan) and kept at 14°C. The following day embryos were reared in 0.5X, pen-strep, pH 

7.4, rearing solution was lowered to 0.2X Holt  until tailbud (TB) stage. After tailbud  stage 

embryos were transferred to 22°C  and continue to be reared until swimming larvae stage (SL). 

Developmental stages were determined according to the criteria of Okada and Ichikawa (1947). At 

blastula stage 9-10 , transgenic newts containing CAGG`s promoter driving EGFP can be screened 

for the first time (Figure 5C) and (Figure6 A and B). Here I defined embryos at stage 9–10, 17–21, 

22–27, and 40–42 as blastula, neurula, tail-bud, and swimming larvae, respectively. 

!!!
 2.5 Conclusion 
  
 The methods described here for generation of transgenic newts were described in detail 
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during work done during my 5 year doctoral program, and published by Casco-Robles et al 2010 

and Casco-Robles et al 2011. Here I provide a concise methodology to focus on the applications of 

this transgenic system in the following chapters. From herein all transgenic newts are generated 

using this protocol. The results of these methods demonstrated that I-SceI can be applied to the 

newt, (Figure6). In summary, optimization of I-SceI improved transgene expression and reduced 

mosaic expression in the F0 generation (Table 1). Most importantly, this transgenic method was 

examined during regeneration, a critical propose for regenerative studies. So far it has shown 

promise, (Figure 7). This transgenic system needs to be exploited, next I focus my attention to 

retinal pigment epithelium, a cellular source for retinal regeneration.  

!!!!!
Chapter Three:  The Newt RPE65 Promoter  Can Drive Expression in the RPE 
   Layer of Transgenic Newts !
 3.1 Methods: Identification of the Newt RPE65 Promoter Partial Region  !
  In order to drive exogenous gene expression specifically to the RPE layer of the 

newt, it is necessary to identify a specific marker or protein expressed in this tissue, and identify its 

promoter region. There are currently only two newt promoters identified a lens promoter (Ueda et 

al., 2005) and a limb promoter, Prod1, which contains unique regulatory elements during 

regeneration (Shaikh et al, 2011). Prod1 and lens promoter are not specific to the RPE layer. There 

are currently two known specific proteins expressed in the RPE layer. (1) RPE65, is a visual cycle 

protein weighing 65 kiloDalton, it has been examined carefully in the newt as being specific to the 

RPE layer (Chiba et al., 2006). It is important to mention that RPE65 promoter region has been 

identified in the mouse (Boulanger et al., 2000) and human (Nicoletti et al.,1998). (2) Another RPE 

layer specific marker protein is BEST1, which the promoter sequence has been identified in the 
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mouse and used to generate transgenic mice (Iacvelli et al., 2011). Since BEST1 protein expression 

has not been detected in the newt, I reasoned that identifying the newt RPE65 promoter was the 

current option for this study.  

  

!
 3.1.1 Methods: Genome Walking and PCR conditions !
  Genomic DNA from the newt was isolated using Wizard Genomic DNA Purification 

Kit (Promega), approximately 400mg of adult tail tissue from Chiba Prefecture race newt, was used 

for genomic DNA isolation. Identification of the npRPE65 (newt RPE65 promoter) was carried out 

by using Genome Walker kit (Clontech). This kit allows user to fragment the genome of any species 

and attach known primer adaptors to these genomic fragments. Fragments are produced by 

restriction  enzymes digestion, generating 4 libraries by (DraI, EcoRV, PvuII, and StuI) .  Gene 

specific primers can be designed from a cDNA or mRNA of the target gene. The newt RPE65 

mRNA was identified by Chiba et al., 2006, (Accession number AB095018 ) and was used to 

generate gene specific reverse primers. Due the uncertainties of intron regions in the newts RPE65 

mRNA, reverse primers were designed by first aligning the RPE65 amino acid and cDNA sequence 

of the human, mouse and newt. The vertebrate RPE65 protein is highly conserved. So this provided 

insight (where) not to design primers that would cross intron regions (shown in Figure 8).  The 

following primers were designed according to the Genome Walker kit specifications: GSRP1; 

T T G C T C G A C A T T C T G G C G T G C A T G G ( 3 0 b p ) ,  G S R P 2 ; 

TAATGGCCACTCTGCGTTGATACCA (25bp). The following forward primers were provided in 

the kit AP1; GTAATACGACTCACTATAGGGC (22bp) and AP2; ACTATAGGGCACGCGTGGT 

(19bp).  

  
 Primary and Nested (Secondary) PCR were done using the conditions shown in Figure 9.  
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Careful examination of PCR was done by using reactions with only forward or reverse primers 

(Negative controls) and PCR reactions using both forward and reverse primers, this was done in 

order to avoid false positives in the newts large genome. Secondary (Nested) PCR products were 

run on 1.5% standard agarose gel using standard electrophoresis techniques, shown in Figure 10. 

All positive clones were cut from the agarose gel and cleaned with Gene Clean Kit (qBiogene). 

Cleaned PCR products were later ligated into TOPO TA cloning vector Ampicillin /Kanamycin  

resistance (Invitrogen), transformed into TOP10 competent E. coli cells (Invitrogen) using standard 

techniques. Positive bacterial clones were screened by direct colony PCR (KOD FC, Toyobo), using 

M13 forward primer: GTAAAACGACGGCCAG or  M13 reverse primer: 

CAGGAAACAGTATGAC (provide with TOPO TA cloying kit) in combination with GSRP1 or 

AP2  primers (mentioned above). Positive bacterial clones were cultured in standard LB medium for 

37℃ in a water bath shaker for 15-18hours. DNA was extracted from bacteria using Miniprep Kit 

(Qiagen) and concentration measured on a Nanodrop. 

!
 3.1.2 Methods: Sequencing Conditions !
 Sequencing was carried out using Big Dye Terminator DTv3.1 (Applied Biosystems), using 

M13 Forward and Reverse Primers (mentioned above). Following Big Dye reactions were done 

according to the manufactures recommendations, samples were cleaned with Centri-Sep Spin 

Columns (Applied Biosystems) and dissolved in with 15 micro-liters of Formamide (Applied 

Biosystems) at 95℃ for 2 minutes. Samples were kept on ice, and later transferred to 64 well 

sequencing plates (Applied Biosystems). Samples were sequenced on a ABI3130 using the 

instrument protocol Rapid seq36_pop7_v3 and analysis protocol KB_3130_pop_v3.  

!
 3.1.3 Results: The Newt RPE65 partial upstream promoter sequence 
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 A partial upstream region was sequenced containing a matching sequence of the  5`UTR 

( 5`untranslated region) from the known newt RPE65 mRNA(mention above) and shown in (Figure 

10B). This identified sequence extended up to -560 bp 5` from the mRNA +1 position, shown in 

(Figure 10B). This positive bacterial clone was stored in 15% glycerol in LB mix solution and 

stored at -80℃ for future use. 

!
3.2 Comparison of Newt RPE65 Promoter Sequence Higher and Lower Vertebrates 
  

 Because there are only 2 known reported promoter regions in the newt (mentioned above), 

and the RPE is a cellular source for retinal regeneration, it was curious to compare this newt 

upstream region with other vertebrates. There are currently no studies focusing on regulatory 

elements for the regenerating newt. Thus, understanding what is unique and different in the newt is 

insightful to this field.  

!
 3.2.1 Methods used for Alignment and Software 
   
 The newt RPE65 promoter region was first compared to the known higher and lower 

vertebrate RPE65 regions in the databases. The species and accession numbers used were the 

following:  human (H. sapien, NG_008472), Mouse  (M. musculus) Accession A F 2 7 2 7 1 2 9 7 

Cow (B. taurus, NW_003103871), Dog (C. familiaris, NW_876321), Chicken (G. gallus,  

NC_006095), Frog (X. tropicalis, NW_003163757), Fish (Danio rerio, NW_001879345). In all 

cases only the -560bp to 0bp promoter region was used for alignment. Clustal W Omega (EMBL 

http://www.ebi.ac.uk/Tools/msa/clustalo/) was used to align the multiple high and lower vertebrates 

promoter regions, (Figure 11). Using the Clustal W alignment the percent identity and phylogram 

were generated to compare the newt promoter among other vertebrates, (Figure 12). An additional 

alignment was done using Promoter T-Coffee or Pro-coffee (http://tcoffee.crg.cat/apps/tcoffee/
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do:procoffee), this aligns homologous promoter regions and searches for tentative transcription factor 

binding sites, (Figure 13).  

!
  3.2.2 Methods: Identification of TFBS 
   
 To find reliable transcription factor binding site sequences, I compared the the human and 

the mouse upstream promoter regions to the newt. The mouse (Boulanger et al., 2000) and human 

(Nicoletti et al.,1998) promoter regions have been examined by DNA foot-printing, which 

demonstrates sequence specificity of DNA binding factors. The other lower and higher vertebrates 

promoter region mentioned early have not been examined. Therefore, a separate Clustal W 

alignment was done using only the newt, mouse, and human RPE65 promoter region (-560 to 0 bp).   

Because promoter regions have inversions and translocations, I used Promoter Wise (http://

www.ebi.ac.uk/Tools/psa/promoterwise/). This software identifies regions that have been changed 

in direction or position, shown in Figure 14A. 

 Because the newt is currently the only known vertebrate to regenerate the retina at the adult 

stage, unique tentative transcription factor sites were examined for all 8 species using MatInspector 

(Carthariius et al 2005) online version (http://www.genomatix.de/cgi-bin/UMapps/register.pl ). This 

programs allows multiple promoter regions to be examined at once, producing individual tables and 

group tables to identify similarities and differences. BioBase Match 1.0 and Patch 1.0 (http://

www.gene-regulation.com/pub/programs.html#patch) running Transfac 6.0 were used to confirm 

results from MatInspector. Tentative transcription factors were scored by Matrix similarity ≥0.85 

and Core similarity = 1.0, results were filtered and unique tentative transcription factors elements 

only found in the newt were selected, Table 2. 

!!
  3.2.3 Results: The Newt RPE65 Promoter Contains Conserved TFBS !
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 Alignment using clustal W of the newt RPE65 promoter did not reveal any immediate 

conserved regions among all lower and higher vertebrates RPE65 promoter regions, as shown in 

(Figure 11). Furthermore percent identity of clustal w alignment showed very weak similarity 

among others species, the frog having the closest similarity with the newt by approximately 40%, 

(Figure 12A). Phylogram also revealed that the newt promoter has higher base pair substitutions in 

this region compared to other vertebrates, (Figure 12B). Because these results did not provide much 

insight into the newt RPE65 promoter, I turned my attention to comparing TFBS (transcription 

factor binding sites) that might be common among lower and higher vertebrates. Tentative TFBS 

can be identified using algorithms from conserved sequence motifs of other vertebrates. Promoter T-

coffee alignment provides tentative TFBS distribution among multiple alignments. Several “hot 

spots” were detected among higher vertebrates and the newt promoter, shown in red in (Figure 13).   

 To examine TFBS in more detail an additional alignment with the mouse, human, and newt 

was done and known human and mouse TFBS and Promoter Wise results were added to this 

alignment, (Figure 14). Promoter wise revealed the newt RPE65 promoter region (-560 to 0bp) 

contains the following human or mouse TFBS: RET/PCE1 (ggatttagaga), CCAAT (tttttgcaat), IRBP 

(ttctgtt), MOK-2 (tgcctttttttttat), OCT1 (ttatgtaaa), PCE1 (taactaaattgaattaacggt), and NF-Y/CCAAT 

Box (agggggattggcccg). When compared to the positions among the mouse the human RPE65 

promoter region (-560 bp to 0 bp), these TFBA sites in the newt were shifted up stream to the 5` end 

(translocated), or were in antisense (inversions).  

 Examination of TFBS of all 8 species, and filtering tentative unique TFBS revealed only in 

the newt are summarized in Table 2. Interestingly, the Yamanaka factor c-Myc/Max (in heterodimer 

form) was found in the newts RPE65 promoter region, in plus and minus strand. Another unique 

tentative TFBS were: Odd skipped related factor 1 (involved in embryonic structures), ZIC factor 2 

(involved in embryonic structures of the nervous systems), and the “SIX1” Sine Oculis homeobox 1 
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(involved in embryonic structures).  

!
 3.3 Transgenic Assay of pRPE65 Promoter Activity !
 To examine if the newt RPE65 promoter can drive exogenous gene expression in vivo, the 

promoter and 5`UTR were added into an mCherry reporter cassette containing I-SceI for 

transgenesis. Transgenic animals containing npRPE65-mCherry were monitored for promoter 

activity during development and at the RPE layer of mature larvae. RPE65 protein expression has 

been weakly detected at stage 42 in the center of the RPE layer (Chiba et al., 2006), therefore I 

decided to examine promoter activity at stages 55-59 to allow sufficient time for RPE65 expression. 

!
  3.3.1 Methods: npRPE65-mCherry Transgene Construct !
 PCR Mutagenesis restriction enzyme sites of SpeI was added to the 5` end and EcoRI to the 

3` end of the newt up-stream region: -560bp to +148bp using the following primers SpeI Forward 

P r i m e r c t a c t a g t C G A C G G C C C G G G C T G G T a n d E c o R I R e v e r s e P r i m e r 

tcgaattcTACCAGCCAGTCTCCTAG.  The PCR product was cleaned (GeneClean) and later  

treated with  1 unit of EcoRI and SpeI ( Takara) for 1 hour at 37℃. pRPE65 promoter was cleaned 

with Gene Clean Kit (qBiogene) in order to remove EcoRI, SpeI, and reaction buffer. Newt pRPE65 

promoter with 5`UTR was ligated into the SpeI/EcoRI site of a Bluescript Kanamycin vector 

containing mCherry reporter gene using Ligation Kit (Nippon Gene). This cassette contains I-SceI 

sites as, shown in (Figure 15). The 5`UTR region of the newt RPE65 gene (Figure 10) was 

included as it has been shown it improved transgene expression (Kanoria and Burma, 2012).  

 The npRPE65-mcherry transgene was microinjected into the one cell-stage of the newt, (C.            

pyrrhogaster) as described above by transgenesis with I-SceI. Early and mature stages of 

development were examined to monitor promoter activity at the F0 generation, (Figure 16 and 17). 	
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!
   !
  3.3.2 ImmunoHistochemistry  !
 The retinal layer produces minor red auto fluorescence depending on fixation procedures, 

and the RPE layer is heavily pigmented making it difficult to see the cell body clearly. In order to 

visualise mcherry fluorescence directly (without the need of antibodies), I examined fixation 

conditions. After several trials the following resulted in a good signal. Newt larvae were fixed at 

stage 55-59. All stages were based on the newts standard developmental table by Okada and 

Ichikawa (1947). 

 Larvae were fixed in 4%PFA, 1xPBS, 0.25% Gluataraldehyde, at pH 7.4-7.6 for 6 hours at 

room temperature. To remove excess fixatives samples were later rinsed with 1xPBS in the 

following rinse cycle: 15 min, 15 min, 30 min, 30 min, 1 hour, 1 hour, and 2 hours. Samples were 

later transferred to 1XPBS with 30% sucrose and kept at 4℃ over night. The next day samples were 

cryosectioned using O.C.T medium (Tissue-Tek), at 2µm per tissue section. Sections were rinsed 

with 1XPBS , treated with DAPI (dilution 1:25,000) and mounted on 90% glycerol and observed 

under a confocal microscope using an mCherry filter. 

 To confirm mCherry expression in the RPE layer of transgenic animals, additional sections 

were used for standard immunohistochemistry. Primary antibody: Rabbit dsRed polyclonal 

antibody, 1:500 (Clontech), Secondary antibody:  Goat anti-rabbit IgG conjugated. Sections were 

treated with ABC blocking kit (Vector labs), and later with immunoreactivity DAB substrate (Vector 

labs). In negative controls, sections were not treated with the primary antibody, dsRed polyclonal 

antibody. Pigmentation was removed from the RPE layer by bleaching the slides with 1.5% sodium 

azide and 15% hydrogen peroxide. 

  3.3.3 Results: npRPE65 Promoter can Drive Expression in the RPE layer 
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 The newt RPE65 promoter activity, in vivo assay, was first detected in the blastula stage 10, 

shown in (Figure 16). Approximately 25% ±5 blastula embryos showed RPE65 promoter activity. 

To examine at the RPE layer, transgenic animals that expressed the mCherry fluorescent reporter 

were monitored until larval stages 55-59. At tail bud stage 27, (organogenesis) promoter activity 

was confined to neural tissue such as the eye cup, forebrain and developing nervous system, 

(Figure 17A). At stage 31, RPE65 promoter activity gradually shifted to the forebrain, anterior 

developing neural tissue, and the eye, (Figure 17B). By stage 39, the RPE65 promoter activity in 

the forebrain decreased, and the mcherry expression was detected in the eye, as shown in (Figure 

17C). 

 At the target stage 59, the eye of the newt is highly pigmented, expression of RPE65 

promoter had decreased in the surrounding eye, mcherry was no longer visible macroscopically in 

the body, (Figure 18A and B). Therefore, sections of eye were prepared. (Figure 18D), shows that 

newt eye contains the major retinal layers by stage 59 and RPE65 promoter activity was detected in 

the RPE layer. To examine this promoter activity in detailed, immunohistochemitry staining 

(primary antibody dsRed) was used. The RPE layer was bleached to removed pigmentation. For 

visualisation DAB immunoreactivty was used. (Figure18E1 and 2) shows sections expressing 

positive DAB in the RPE layer only, notice expression is detected in the cytosol and not the nucleus. 

mCherry is a cytosolic protein. (Figure 18F), shows a negative control section derived from the 

same transgenic without the primary antibody (dsRed). This promoter activity in the eye was 

observed at 40% from the positive derived blastula embryos monitored, (Figure 18C). The 

remaining %60 positive npRPE65-mcherry had RPE65 promoter activity in the RPE layer but also 

had off target mCherry  expression in he ONL (photoreceptor layer) and INL (horizontal, amacrine, 

bipolar cells), shown in (Figure 19A2 and A3). These transgenic larvae were  also examined at the 

same stage 59, when the RPE layer was pigmented , and the rental layers were development, 
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(Figure 19A1). 

  

!
  
3.4 Conclusion 
  
 The newt RPE65 promoter region (-560 to +148bp) can successfully drive exogenous 

transgene expression in the RPE layer of F0 generation transgenic larvae. Promoter activity was 

detected in early developmental stages before maturation of the RPE layer. In some cases, variations 

of mcherry expression outside of the RPE layer were detected in INL and ONL. This off target 

expression “leaky expression” should be examined in more detail to improve specificity for future 

RPE transgenic gene manipulation. 

!
!
Chapter Four: Generation of a Dual Promoter/Reporter Transgenic Newts !
 One of the biggest challenges examining a single promoter transgene, is the uncertainty, if 

the tissue specific transgene was inserted correctly at the one cell stage. For example, if RPE65 

promoter transgene inserts into the 1, 3 or 4 cell stage, there is no way of knowing. Therefore an 

internal control in necessary and critical to assure that all cell types carrying the transgene. Thus, I 

developed another set of transgene constructs, this time using the general CAGG`s promoter 

derived from the chicken beta actin gene, together with the newly identified RPE65 promoter. 

CAGG`s was examined previously during the development of the transgenic protocol, this promoter 

expression is known to be active at blastula stage (Thermes et al., 2002; Ogino et al., 2006; Pan et 

al., 2006; Kragl et al., 2009) and in the newt, (Figure 6 and 7). 

!
 4.1 Methods: Dual promoter/Dual Reporter Transgene System !
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 The following primers containing the BstxI restriction enzyme sites were used to amplify 

n p R P E 6 5 - m C h e r r y - p A F o r w a r d p r i m e r 5 ` — 3 ` : 

ccaccgcggtggCGACGGCCCGGGCTGGTAAAAAGC) and Reverse primer 5`—3` 

(ccaccgcggtggACATTGATGAGTTTGGACAAACC), producing BstxI-npRPE65-mCherry-pA-

BstxI.  This PCR products was cleaned and ligated (as described above) into the previously used 

pCAGG`s-EGFP-pA (Clontech EGFP N1, modified version and kind gift from Elly Tanaka, Max 

Planck Insitute) cassette, into the BstxI restriction site. Using the same restriction enzyme two 

possible insertion patterns of npRPE65-mCherry-pA were possible sense or antisense, as shown in 

(Figure 21A). These two trangenes were transformed into HST02 E.coli (Takara) because standard 

JM109 (Takara) competent cells yielded coiled plasmids of these transgenes. Plasmid DNA was 

isolated and purified (as describe above using transgenic protocol). These trangenes were used to 

generate transgenic newts containing two promoter/two reporter transgenes. Transgenic newts were 

monitor during early development, later metamorphosis (to assure maturity), and eye sections of the 

retina were taken examine the RPE layer (methods same as described above). 

!
 4.2 Methods: Application of the Chicken Beta Insulator HS4 to the Dual promoter/ 
   Dual Reporter Transgene System !!
 Transgenesis by I-SceI is a random insertion of the transgene. When  a tissue specific 

promoter is used with I-SceI transgenesis it brings a new challenge. Leaky expression is one of the 

major problems in all transgenic model organism, frog (Vleminckx et al., 2008), mouse (Nakatsuji 

et al., 2002), Axolotl (Tabin et al., 2012), and drosophila (Perrimon et al., 2008). Leaky expression 

occurs due to positional effect, in other words, where the transgene is inserted, will have a 

consequence on its expression, see (Figure 20). If a transgene is inserted near a regulatory element 

such as an enhancer region, this can cause off target activity of RPE65 promoter. Therefore, to 
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protect RPE65 promoter in a two promoter/ two reporter system it is important to examine ways to 

protect the transgene from positional effect. One way to protect transgenes from positional effect is 

to use insulators. 

 Insulators occur naturally in the vertebrate genome, they help protect against enhancers and 

promoters interaction from neighbouring genes. One of the most studied insulators is the chicken 

beta-globin insulator (1.2kb), containing functional core (250bp) called the HS4 site (Bell et al., 

1999; Chung et al., 1993; Recillas-Targa et al., 1999; Recillas-Targa et al., 2002). The chicken beta 

insulator 1.2kb can been successfully used in transgenic mouse containing dual promoters 

(Hasegawa and Nakatsuji, 2002) and the core HS4 insulator has also been applied to transgenic F0 

Xenopus (Sekkali et al.,2008). It is also important to mention that two promoter in a single 

transgene can interefere with their activity (Hasegawa and Nakatsuji, 2002), therefore it is also 

important to use insulators between to promoters in a transgenic cassette. In order to protect RPE65 

promoter, the chicken HS4 insulator was applied. 

 The chicken HS4 core (250bp) was a kind gift from Felsenfeld Group from the National 

Institute of Health, USA. Three dual core HS4 copies were inserted into the CAGG`s-EGFP vector 

two cores one at a time, at restriction sites: XhoI/BstxI, Afl2/Dra3 and at the BstxI/SpeI, shown in 

(Figure 21B). The (BstxtI) npRPE65-mcherry-pA (BstxI) was added last to generate two promoter/ 

reporter trangenes containing the 3 (2X HS4), shown in (Figure 21C). These trangenes containing 

multiple repeats of HS4 were transformed into the Stbl3 competent E. coli cells (Introgen) to avoid  

recombination inside the bacterias. E.coli are know to be sensitive to DNA repeats.  Trangenes from 

(Figure 21 A and C), were microinjected into the one cell stage of the newt to generate four 

transgenic lines. They were examined at early blastula stage, metamorphosis, and retinal sections 

were prepared as mention above to examine RPE65 promoter activity at the RPE layer. 

!
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 4.3 Results: Insulator protects the newt RPE65 Promoter from Positional Effect !!
 pCAGG`s-EGFP was used here as an internal control to assure that npRPE65-mCherry was 

also inserted evenly in all cells. At early blastula stage 10 when embryos expressed EGFP, the newt 

RPE65 promoter had severe leaky expression, when the promoters were placed in opposite 

direction, (Figure 22D). It was interesting that under the same opposite directions, but using the 

HS4 insulator,  RPE65 promoter continued to express mcherry at blastula, (Figure 22C). When the 

promoters were oriented in the same direction, without HS4, RPE65 promoter activity was also 

detected but to minor extent compared to transgenes containing promoters in opposite direction, 

(Table 3).  Promoters in the same direction containing HS4, showed the minimum RPE65 activity 

at blastula stage. Its important to note that all four transgene containing different orientations with 

or without HS4 produced RPE65 activity at blastula, but the frequency varied.  (Table 3), 

summarizes the total number of eggs microinjected, expression of EGFP+ at blastula, expression of 

mCherry/EGFP+ at blastula, and blastula survival of these four transgenic lines containing two 

promoter/ two reporter construct. (Figure 22) depicts the promoter orientation from best (top) to 

worst (bottom). The internal control pCAGG`s-EGFP was always expressed and never silenced at 

blastula stage, (Table3). Two promoter interference was observed in transgenes without the HS4 

insulators, pCAGG`s strongly influenced npRPE65 promoter activity (Figure 23) shows a 

representative larva expressing mCherry in a manner similar to pCAGG`s-EGFP. Survivorship to 

larval stage was improved with the HS4 insulator, but only when the promoters were placed in the 

same direction (Table 3). 

 Representatives of each transgene were reared to metamorphosis, (Figure 24A1,B1,C1,D1). 

Off target  npRPE65 activity could be been in the lens of metamorphosing newts without insulation, 

and minimized  (Table 4 ) when HS4 was used, (Figure 24 A3, B3, C3, D3).  Transgenic newts 
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without HS4 insulator in opposite direction at metamorphosis had leaky expression of npRPE65-

mCherry, which appeared to be similar to that of pCAGG`s, (Figure 24D). Transgenic newts with  

HS4 and promoters in the same direction, showed strong protection against positional effect, 

(Figure 24A). 

 Examination of these transgenic lines in the retina and RPE layer showed similar results. 

Transgenes containing no HS4 and promoters in opposite direction showed off target expression in 

ONL and INL, (Figure 25P-T). Transgenic animals with HS4 and promoters in the same direction 

had noticeable protection of in the neural retina, (Table 4 and Figure 25A-E). RPE65 promoter 

activity was never silenced in the RPE layer, it was always detected with DAB immunoreactivity, 

(Figure 25D,I,N,S and Table4). 

!
  !
 4.4 Conclusion !
 Two promoter/ Reporter transgenic construct can be inserted into the newt genome by I-

SceI, this is the first report in the newt. The chicken insulator HS4 core sequence can protect against 

leaky tissue-specific promoter actiivty. This study tested the chicken HS4 core for the protection of 

RPE65 promoter. This HS4 insulator can improve (protect) tissue-specific promoter in the newt. In 

all four transgenes, RPE65 promoter activity was observed in the RPE layer, it was never silenced 

by positional effect or pCAGG`s. The orientation of the insulator with respect to the promoter must 

be in the same direction. This improves protection from positional effect. It is possible to improve 

this insulation by adding additional copies of the HS4 insulator or using a stronger insulator. 

!!!!
Chapter Five: Generation of CreERT2 loxP Transgenic Newts !
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 5.1 The CreERT2 loxP System   !
 The Cre loxP system is a powerful genetic tool. It was originally derived from a P1 

bacteriophage.  Cre recombinase recognizes the 34bp loxP sites, which occurs once in every 1018 bp 

of DNA length. Two loxP sites are used to that allow 3 basic recombination events to occur 

depending on the loxP site orientation: deletion, inversion, and translocation (or homologous 

recombination) (Nagy, 2000; .)  See (Figure 27) for depiction of these events. Unpublished data 

from (Mat and Nagy, 2000) note that cre recombinase can excise the loxP site up to 400kb distance 

in vitro, and that longer distances have shown reduced efficiency (Ramirez-Soliz et al., 1995)  In 

lower vertebrates the Cre loxP system has just recently been used in the axolotl (Whited et al., 

2012), frog (Roose et al., 2009), and fish (Hans et al., 2009). It has never been applied to the newt.   

!
 5.2 Obstacles and Consideration for Generating CreERT2 loxP Newts 
  

 The use of Cre loxP system in most model organism involves making two transgenic lines 

(1) one F0 generation line containing Cre, and (2) and a second transgenic line containing the loxP 

sites. These two F0 transgenic lines are later crossed to generate a F1 generation Cre loxP organism. 

This method is practical for model organism with short generation times. In the newt this poses a 

time limitation because the average newt generation time is approximately 1.5 to 2 years it would 

take 3 years to generate Cre loxP newt at the F1 generation, (Figure 26).  

 Another point to consider when using the Cre loxP system is the control of recombination. 

Standard Cre is an exogenous gene that is translated into protein (enzyme) and cut the loxP  sites in 

early development. This is a technical limitation if the target recombination needs to be cut at a 

more developed or adult stages. In order to apply Cre loxP to the newt at the adult stage for retinal 

regeneration, an alternative Cre is needed. Cre-ERT2 is a modified version of Cre containing the 

�32



mouse estrogen receptor. Cre-ERT2 after translation is found in the cytoplasm of the cell, but adding 

Tamoxifen (a chemical that binds to ERT2) allows Cre-ERT2 to enter the nucleus and excise the loxP 

site. Therefore, Cre-ERT2 can be temporally activated, and using the RPE65 promoter will allow me 

to have a temporal-tissue specific recombination of target genes during newt retinal regeneration . 

Ultimately gene manipulation can be achieved in the regenerating newt. 

 5.3 Methods !
 In order to examine the Cre-ERT2 loxP system the two separate trangenes were designed. 

CreERT2 was obtained from Addgene. Using the two promoter reporter transgenes in the same 

direction with HS4 (mentioned above), the mCherry reporter was removed and replaced with 

CreERT2. EGFP was removed and replaced with YFP. An additional transgene was designed 

c o n t a i n i n g t h e t w o c o p i e s o f l o x P s i t e s i n t h e s a m e d i r e c t i o n 

(ATAACTTCGTATAGCATACATTATACGAAGTTAT), underline sequence contains the loxP core. 

Two tandem repeats of the loxP sites were inserted into the AccI-KpnI of pCAGG`s -AccI-KpnI-

mCherry-pA vector, shown in (Figure 28). AmCyan reporter gene (Clontech)  was introduced 

between these two loxP sites by adding AscI and AsiSI restriction sites to Amcyan-pA using PCR 

(Forward primer: taggcgcgccATGGCTCTTTCAAACAAGTTTA and reverse primer: 

tagcgatcgcTGCAGTGAAAAAAATGCTTTAT), product AscI-AmCyan-pA-AsiSI was inserted in 

between the loxP sites, (Figure 28). The final loxP reporter and npRPE65-CreERT2 transgene are 

shown in (Figure 29A). 

!
 To overcome the the newts long generation time, I microinjected two transgene 

simultaneously into the one cell stage of the newt, to generation CreERT2 loxP newts at the F0 

generation, as shown in (Figure 26). The transgenic protocol was modified for optimization of two 

transgenes. Two nanoliters of the microinjection mix was injected into the one cell stage of  the 
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newt. The optimal DNA concentration per egg (pg/egg) was examined in a series of microinjects, 

testing for survival and expression of YFP and Amcyan at blastula stage, shown in (Table 5). DNA 

ratio was kept 1:1. At blastula stage transgenic newts were screened, those expressing Amcyan and 

YFP meant the two transgenes simultaneously were inserted. These transgenic embryos were 

monitored to any signs of mcherry expression. Good candidates should not expression mcherry. 

(Table 5) summarises expression pattern of two construct microinjection. 

 Good candidates were reared until larva stage 55-59. OH-Tamoxifen (hydroxyl) is a 

metabolite of Tamoxifen, it was used to activate CreERT2 , which meant it transported from 

cytoplasm into the nucleus. Because CreERT2  has not been examined in the newt, I first examined 

toxicity concentrations on wild type larvae using DMSO or Ethanol, shown in (Table 6). DMSO or 

Ethanol was mixed into the animals rearing solution, 0.1XHolfreters, pH 7.6. OH-Tamoxifen was 

added to both solutions at different concentrations (ranging from 0.5 to 100 µM). Larvae were fully 

submerged in these solutions. To determine treatment time,  animals  were placed inside DMSO or 

Ethanol solutions with or without Tamoxifen and monitor at a fixed time intervals, (Table 6). 

Additionally I examined OH-Tamoxifen injection into the abdominal cavity of larva, but 

experiments failed because the solution leaked out from the abdominal cavity.  

 After and before Tamoxifen treatment transgenic larvae expressing YFP/AmCyan were 

examined for presence of mcherry reporter. After tamoxifen treatment expression of Amcyan should 

slowly decrease. By 36-48 hours expression should not be detected. This is due to cytosolic 

fluorescent protein still present, and require time for degradation. Cryosections of the retina and 

RPE layer were prepared to examine site specific deletion recombination of this system (as describe 

above). 

 5.4 Results:  Two Transgene can be Simultaneously Introduced into the Newt Genome 
   to Generate Cre-ERT2 loxP Newts 
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 Insertion of two separate transgenes (CreERT2  and loxP)  can be applied with I-SceI.  A 

total working DNA concentration of 80 pg/egg (40 pg of each transgene, shown in Figure 29A) can 

produced an effective balance between survival and no mcherry expression, (Table 5). DNA 

concentration higher than 80 pg/egg led to higher embryos expressing both transgenes, but 

survivorship was compromised at later stages, and mcherry+ blastula embryo cases increased.  In 

contrast reducing DNA concentration led to fewer YFP+/AmCyan+ blastula embryos. Transgenic 

blastula embryos containing YFP+/AmCyan+/mCherry- ( were grouped as good candidates) were 

reared and monitored, (Figure 30A). At other developmental stages these good candidates did not 

express mCherry+ , (Figure 30 B and C). At swimming larva stages transgenic animals expressing 

transgenes npRPE65-CreERT2 and loxP-Amcyan-loxP-mcherry, (Figure 29A), were treated with 

OH-Tamoxifen. (Table 6) summarizes pharmacological treatment using OH-Tamoxifen. Ten µM 

was a practical concentration to activated CreERT2 into the nucleus, mcherry could be detected 

within 6hrs. Concentrations greater than 10µM were toxic to larvae. Concentration less than 10µM 

required longer time intervals to detect mcherry. DSMO 1% had minimum side-effects compared to 

ethanol, (Table 6). Retinal sections showed site-specific activation of CreERT2 recombination in 

the RPE layer, of F0 transgenic animals treated with 10µM of OH-Tamoxifen (Figure 31A and B). 

Negative control groups, without OH-Tamoxifen did not express mcherry (Figure31 C and D). 

Leaky mcherry was not detect in the retinal layers with or without OH-Tamoxifen, (Figure31). 

 5.5 Conclusion 

 Insertion of two transgenes can be achieved using I-SceI transgenes. Using two separate 

transgenes containing HS4  one can generate F0 CreERT2 loxP newts. Here I generated site specific  

(RPE  layer) CreERT2 loxP newts for the first time. This system can be temporally activated using 

10µM of OH-Tamoxifen. This method saves experimentation time by directly generating CreERT2 

loxP newts in the the F0 generation.   
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!
Chapter Six: General Discussion !
 6.1 New Findings !
 This study aimed at improving the genetic tools for studies in newt retinal regeneration. The 

newt RPE65 promoter region  (-560 to 0 bp) was identified. Previously for the newt there were only 

two promoters identified a lens promoter (Ueda et al., 2005) and a limb promoter, Prod1, which 

contains unique regulatory elements and is regulated by MEIS1(a homebox thats activated by 

retinioc acid) during regeneration (Shaikh et al, 2011). Regulatory elements and their interaction on 

the promoter of genes involved in the newt regeneration are still new to research. This study found a 

third newt promoter, (npRPE65) capable of driving exogenous gene expression in the new RPE 

layer, a cellular source for retinal regeneration. Interestingly the  human and mouse TFBS 

(transcription factor binding sites): RET/PCE1, CCAAT, IRBP, MOK-2, OCT1, PCE1, and NF-Y/

CCAAT Box were found inside the newt RPE65 promoter region -560 to 0 in different positions and 

orientations. I would like to discuss their relevant roles in the retina of vertebrates. RX 

homeodomain protein is necessary for the development of the eye,  injected RX mRNA Xenopus 

embryos developed ectopic retinal tissue and hyperproliferation of the neural retina (Kimura et al 

2000). RET/PCE1 (ret proto-oncogene/photoreceptor conserved element 1) sequence allows RX to 

bind to this site, interesting RET/PCE1 is found on the promoters of photoreceptor specific genes, 

for example the human RX can bind and activate the TATA-less arrestin promoter and IRBP 

promoter (Kimura et al., 2000). The IRBP (interphotoreceptor retinoid-binding protein , also known 

as retinol binding protein 3) was another TFBS found in the newt pRPE65 promoter, IRBP is 

located between the retinal pigment epithelium and the photoreceptor cells (http://

www.genecards.org/cgi-bin/carddisp.pl?gene=RBP3). IRBP is involved in the mature retina where 

it helps in the visual cycle. Interestingly MOK-2 (a kruppel/TFIIIA-related zinc finger protein) 
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DNA binding site is found within the newt RPE65 promoter region, MOK2 negatively modulates 

IRBP (Arranz, et al., 2001). Furthermore in vivo and in vitro studies have shown that MOK2 works 

as a repressor when in binds to the IRBP promoter site (Dreuillet et al., 2002), this may suggest that 

MOK2 may have repressor activity on RPE65 expression, during early retinal regeneration RPE65 

is down-regulated (Chiba et al, 2006). OCT1 (also known as POU-domain transcription factor 1) 

DNA binding site is located in the newt RPE65 promoter region. Studies on the mouse RPE65 

promoter activation showed that OCT-1 is a key player for promoter activity to occur (Boulanger et 

al., 2000). Lastly the NF-Y/CCAAT Box is commonly found in eukaryotic promoters, highly 

conserved, and NF-Y binding participates in histone post translational modifications by recruitment 

of relevant enzymes (Nardini, et al 2013). 

 Further research is needed to examine the above TFBS in the newt, such as DNA foot-

printing. Nonetheless, the mouse (Boulanger et al., 2000) and human (Nicoletti et al.,1998) RPE65 

promoter have been described as basal, containing all the necessary elements proximal to the 

5`UTR region. For example, the human RPE65 promoter region -450, -262 and -83bp to +39bp are 

capable of driving luciferase reporter expression in ARPE19 cultured cells (Nicoletti et al., 1998). 

Here I used the -560 to +148 (5`UTR), to drive expression of mCherry in the RPE layer of F0 

transgenic newts.  

 This is the first time that the newt RPE65 promoter activity was monitored from early 

development to a target stage expressing RPE65 protein. It is unknown if RPE65 is expressed 

during early development (blastula stage 10 and tailbud stage 27 ), the earliest protein detection in 

the newt has been reported at stage 42 (Chiba et al., 2006). In addition we don`t known if the newt 

RPE65 promoter is capable of driving other RPE65 alternative isoforms. Here I reporter RPE65 is 

primary expressed in the RPE layer at stage 59, was occasionally expressed in the ONL of the 

photoreceptors. It is important to note that this study examined RPE65 promoter activity before 
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adulthood. Studies in the aquatic tiger salamander have reported RPE65 mRNA expression in the 

cone cells of the photoreceptors (Ma et al., 1998a). In young mammals mouse, cow, and rabbit 

RPE65 protein expression has been in the photoreceptor layer by IHC (Znoiko et al., 2002). Human 

embryonic kidney cells have also been reported to express RPE65 mRNA (Ma et al., 2002b).  

 Shaikh et al.,2013 found that the MEIS (homeoprotein) and TF (transcription factors) has a 

regulatory function during limb regeneration. In the newt transcription factors or regulatory 

elements are just starting to be studied. Here I identified tentative candidates TFBS of the newt 

RPE65 promoter such as c-Myc/MAX, OSR1, SIX1, ZIC2. c-Myc is an oncogene which is a 

critical player for cellular reprogramming and pluripotency. In addition, OSR1, ZIC2, and SIX1 are 

all embryonic or neural embryonic TF`s. Because this field is just beginning with genomic data 

collection, these tentative TFBS provided a starting point for genes that could be present in early 

retinal regeneration from the RPE layer. 

Unique	
  tenta*ve	
  TFBS	
  	
  
 Two promoter two reporter transgenic animals are useful tools, especially if one promoter is 

tissue-specific and the other is a general promoter. This study developed a fundamental npRPE65/

pCAGG`s transgene, and assayed it  transgenic newts. It was important to protect this two promoter 

system from each promoter and genomic positional effect by using an insulator sequence (the 

chicken HS4). The direction of the promoter and HS4 insulator was critical for proper protection, 

and this should be considered when designing future transgenes in the newt. Most recent studies 

inserting plasmid by transfection (Shaikh et al, 2011) or generation of transgenic salamanders by I-

SceI have not applied insulation (Khattak et al., 2013). This should be carefully examined when 

inserting a gene at random into the genome, or less results will be inconsistent. For example 

experiments generating Cre Axolotls using CreERT2 by Whited et al 2012 reported that the CreERT2 

loxP system does not work due to leaky expression of the loxP reporter. On the other hand 
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Sandoval-Guzman  et al., 2014 applied Cre-loxP for genetic fate mapping using the same Axolotl 

species. Here I recommend to use insulation to protect transgenes form positional effects. 

!
 6.2 Applications !
  6.2.1 Dual promoter/reporter transgenic system for tracking  !
 One application of this system is to track transgenic cell fate of specific cells during  

regeneration by tissue grafting (transplants). Tissue grafting are classical experiments used in the 

newts, but have never been tested using two promoter reporters transgenic tissue. Unlike dyes to tag 

tissue, transgenic reporter will not fade out with time. In an earlier experiment using Axolotl, 

transgenic EGFP embryo tissue from the limb field (Sobkow et al., 2006) was transplanted to wild 

type embryos, and this EGFP tissue was tracked until later mature stages to examine where that 

tissue differentiated into muscle of the limbs. In another experiment, also using Axolotl, tissue 

transplants were done in regeneration limbs to examine the fate of blastema derived tissue, authors 

concluded that regenerating cells were able to memorize where they came from during regeneration 

(Kragl, et al, 2009). Transgenic tissue transplant have not been published in Cynops pyrrhogaster. 

Using transgenic eye fields one can easy grafted into the wild type embryos to examine tissue 

interactions, and cell fate of RPE cells, even examine if the cell source of RPE embryonic tissue is 

the same during retinal regeneration of adult animals.. 

 The RPE layer is heavily pigmented making it a very difficult to collect single cells for 

transcriptome analysis or single qPCR. During early regeneration RPE derived cells can slowly be 

monitor because they contain a melanin, but gradually in later stages of retinal regeneration they 

become difficult to detect since melanin decreases. Therefore using these two promoter/reporter 

transgenic lines one can monitor RPE cells or isolate them by selecting mcherry-positive cells after 

the removal of the neural retina. 
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!
  6.2.2 CreERT2 loxP system 

 The CreERT2 loxP system is currently one of the standard genetic tools for vertebrate gene 

manipulation. This study only examined Cre as a deletion recombination event. This event was used 

to activate a reporter gene only, following the removal of a floxed reporter gene. This study set the 

ground work for the Cre transgenic newt. In theory the other two events inversion and translocation 

(homologous recombination) can also work, and can be studied in the future experiments. More 

genomic information in the newt is needed to test Cre translocation, since the positioning of loxP 

sites is essential. 

!
 6.3 Limitations to Consider !
 Newt transgenesis by I-SceI under the current situation is the best method for the newt. It is 

important to note that this method inserts transgenes at random, and therefore has limitations.  In 

zebra fish using I-SceI led to approximately 4 to 8 copies of the transgene insert into the genome,  

nonetheless its a huge improvement from previous transgenic methods (Thermes, 2001 ). Random 

transgene insertion as described above, lead to positional effect, transgene expression variation or 

off target expression. Although insulators can reduce positional effect, under the current state 

positional effect is unstoppable by I-SceI. Future transgenesis in the newt requires a single transgene 

insertion in a safe genomic site that will not have an effect on the transgene expression. Because the 

newt genome is not sequenced, several considerations can be taken to circumvent positional effect. 

(1) Establish F1 generations by crossing with the wild type and selecting good candidates. I am 

currently working on generating F1 transgenic stable lines containing two promoter two reporter 

transgene. (2) Reducing the plasmid DNA/egg concentration to a minimum effective concentration  

will improve  positional effect by minimising the insertion copies, in this system.  
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 Other methods that introduce transgenes into a host genome require a safe place to insert 

into the genome to avoid side effects or disrupting gene function. This requires sequencing data, 

most model organisms such as the chicken, frog, mouse, and fish currently have their genomes 

sequenced and are available for these methods. Ideally any system that inserts transgenes in a site 

specific manner without positional effect or altering the normal expression would be preferred. In 

the case of the newt, the genome is not sequenced. I would use to examples to examine this point 

further. 

 TALEN (transcription activator-like effector nuclease) are engineered restriction enzymes 

that connect to TAL effector DNA binding domain to cut a targeted DNA. This system cuts the 

genome by a double-stranded break. Donor DNA can be introduced into this site specific, by 

homologous recombination or non homologous end joining (Grunwald, 2013).This system is very 

powerful for gene editing and gene manipulation, particularly for loss of function studies, gene 

knockout (Grunwald, 2013). This is relatively new, and has many parameters unexplored as, 

nonetheless it has shown tremendous applications in the fish (Grunwald, 2013.) This system 

requires sequencing information to work. Without the  newt genome, target sites are limited. 

 Tol2 transgenesis is a system, that uses the transposons from the hAT family to insert a 

single copy of a transgene. Transposons are repeated sequences found in plant and animal that move 

from one locus in the genome to another (Kawakami et al., 2002). Conserved transposon elements 

and sequences have been identified (Kawakami et al., 2002) (Kawakami, 2007). This single copy 

insertion works by a cut and paste mechanism. It has been tested in the zebrafish, Tol2 elements are 

not found in the zebrafish genome, therefore this system can be used. Again the newt does not have 

the genome sequence, and application of this system before proper sequencing data is very cloudy 

in the newt. 

 Both systems have future promise in the newt, and regenerative studies will definitely 
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benefit from them in the road ahead. 

  

 6.4 Ongoing Research 

 Gene expression during newt retinal regeneration has been observed (Chiba and Mitashov, 

2007), but it is important to examine the functional role of these genes. Interestingly, proto-

oncogenes have been observed in retinal regeneration of adult newt such as FGF2, FGFR-1/2, 

MEK1/2, ERK1/2, Hes-1, Notch-1, and Musashi-1 as well as retinal transcription factors and stem 

cell markers such as Pax6 and Chx10 are assumed to be involved in the retinal regeneration (Chiba 

et al., 2006; Nakamura and Chiba, 2007; Susaki and Chiba, 2007; Chiba and Mitashov, 2007; 

Kaneko and Chiba, 2009).  

 Pax6 the master control gene of the eye, is up-regulated in early retinal regeneration,  

(Figure 2).To take full advantage of these established transgenic techniques, new 

conditional transgenes were designed. This time implementing RNAi (interference) to 

knockdown Pax6 expression in the RPE layer. RNAi is another genetic tool never used in 

the newt, which I am currently examining in the RPE layer. Pax6 is a good candidate to test, 

for an initial gene knockdown because it is highly conserved among vertebrates and its a 

stem cell marker.  (Figure 32), depicts this system, it conditional activates Pax6 RNAi in the 

RPE layer using CreERT2. This system will allow site-specific gene knockdown during 

retinal regeneration. This system can be used as a template, and target gene can be 

knockdown by RNAi. 

 Although Pax6 is known for its role of eye development, it is unclear what functions 

it plays in retinal regeneration. For example, we don’t know the down stream genes Pax6 

controls during retinal regeneration. Using this transgenic conditional knock down system 
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we expect to find novel genes that function down stream of Pax6. With the aid of a 

comprehensive transcriptome analysis pipeline we can identify unique genes from Pax6 -/-  

and Pax6+/+ RPE derived cells by comparing genes in their activity during regeneration. It 

is also unknown if Pax6 plays a role in RPE transdifferentiation or if other genes are 

involved; here I wish to examine this in future research. This transgenic system is unique 

and will improve the current gene manipulation technologies available and it can be used as 

a template to study future newt body-part regeneration.  

 Overall these transgenic techniques are not limited to retinal regeneration, as I 

mentioned in the beginning newts can regenerate jaws, spinal cord, limbs, retina, and 

sections of the heart (Reyer, 1954; Oberpriller and Oberpriller, 1974; Ghosh and Ferretti, 

1994; Mitashov, 1996; Brockes and Kumar, 2002). Hence researchers interested in these 

specific tissues can also these techniques to study specific genes in specific tissue during 

newt regeneration. 

!!!!!!!!!!!!!!!!!!!
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Table 1 
Optimization of I-SceI and Single Transgene Co-injection 



Table 2. Tentative Unique Vertebrate Transcription Factor Binding Sites in the Newt RPE65 
Promoter Region (-560bp to 0bp) containing Core Similarity = 1, Matrix Similarity ≥ 0.85 !

!
$ Represent Transcription factor family format based on TRANSFAC file data !!!!!!!!!!!!!!!!!!!!

TF 
Family

TF 
Matrix

Core 
Sim.

Matrix 
Sim.

Matrix Information 
(Tissue)

Newt Promoter 
Sequence 

CAPS = Core 4/5bps 
(+/-  strand)

V$EBOX c-MYC/MAX_.01 
c-MYC/MAX_.02

1 
1

0.985 
0.965 

c-Myc/Max Heterodimer 
(Pluripotent) 

aaacACGTGttg  (-) 
gaaaCACGTgttgg  (+) 

V$OSRF OSR.01 1 0.934 Odd-skipped related factor 1 
(Embryonic Structures) 

ttactGTAGcaga (-)

V$ZICF ZIC2.02 1 0.912 Zic family member 2 
(Embryonic Structures, Brain, 
Central Nervous System, 
Nervous System, Neurons) 

cgtccCAGCtggtgc  (-)

V$SIXF SIX1.01 1 0.874 Sine Oculis Homeobox 1 
(Brain, Central Nervous 
System, Ear, Embryonic 
Structures, Endocrine System, 
Eye, Kidney, Muscle, Skeletal 
Muscles, Nervous System 
Pituitary Gland, Urogenital 
System) 

atttgagTATCaaaa (-)
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Table 3 
Promoter Activity in Four Transgenic Lines Containing Two Promoter Two Reporters. Promoters 
( pRPE65-mCherry and pCAGG`s-EGFP) were Positioned in the Same or Opposite Direction, 
with or without the Chicken HS4 Insulator.  

Transgene 
Promoter Direction 

--> 5` to 3`

Total 
Eggs Inj. 

n=4
Blastula Embryos

Survival   !
(%)

mCherry+ 
EGFP + 

(%)

EGFP +   !
(%)

mCherry+ 
EGFP- 

(%)

M/ND 
(%)

Survival
Stages 55 (%)

pRPE65--> pCAGG`s--> HS4* 220 133 (60) 9 (7) 37 (28) 0 87 (65) 81 (61)

pRPE65--> pCAGG`s--> 200 103 (51) 11 (11) 18 (17) 0 74 (71) 52 (50)

<--pRPE65  pCAGG`s--> HS4* 160 75 (47) 18 (24) 9(12) 0 48 (64) 40 (53)

<--pRPE65  pCAGG`s--> 170 71 (42) 19 (26) 6 (8) 0 46 (64) 33 (46)

*  Transgenes contained 3 copies of the HS4 2X core, as shown in Figure 21C  
n, is the number of trials 
M/ND, Mosaic or No Detection of the Internal Control pCAGG`s-EGFP 
✢ Survivorship calculated from surviving blastula embryos

Table 4 
Newt pRPE65 Promoter Activity in the Neural Retina, Lens, and Iris of 4 Transgenic Lines at 
Metamorphosis.

Promoter 
--> 5` to 3` Direction Samples RPE L 

 (%)
ONL  
(%)

INL  
(%)

GCL 
(%)

Lens  
(%)

Iris  
(%)

pRPE65--> pCAGG`s--> HS4* 7 7 (100) 2(29) 0 (0) 0 (0) 0 (0) 0 (0)

pRPE65--> pCAGG`s--> 6 6 (100) 1 (17) 0 (0) 0 (0) 2 (33) 1 (17)

<--pRPE65  pCAGG`s--> HS4* 6 6 (100) 3 (50) 2 (33) 1 (17) 2 (33) 0 (0)

<--pRPE65  pCAGG`s--> 8 8(100) 3 (38) 2 (25) 2 (25) 2 (25) 1 (13)

*  Transgenes contained 3 copies of the HS4 2X core, as shown in Figure 21C  
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Table 5 
Optimization of Two DNA Construct Microinjection Conditions for Generating CreER
Newts at F0 Generation.

Blastula Embryos

DNA*  
pg/egg

Eggs  
Injected

Survival  
(%) Cyan+ / YFP+ 

ND mCherry + mCherry - Survival to Stage 55 
mCherry- (%)

400 229 32 (14) 29 1 2 0

240 123 20 (16) 16 1 3 0

200 283 85 (30) 74 2 9 1(1)

160 75 19 (25) 16 0 3 1 (5)

100 128 48 (37.5) 44 0 4 3 (6)

80 48 27 (56) 23 0 4 3 (11)

40 111 67 (60) 65 0 2 2(3)

20 27 27 (100) 26 0 1 1 (4)

* pg is the total mass of two transgenes. DNA ratio was kept at 1:1. Trangenes used are depicted in Figure 28A 
Cyan+/YFP+ count was based on moderate or strong fluorescent expression 
Injection volume was fixed  1-2 nanoliter/ egg 
I-SceI enzymes concentration was fixed at 1X10!
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Table 6 
Pharmacological Treatment of Larvae with 4-Hydroxytamoxifen (4-OHT). 

Detection of mCherry+ / Larva

4-OHT (µM) Solvent 
(v/v %) Samples 3hrs 6hrs 12hrs 24hrs Survival (%)

100 DMSO 1% 3 0 0 0 0 (0)

50 DMSO 1% 3 0 0 0 0 (0)

25 DMSO 1% 4 0 3/4 3/3 2/2 2 (50)

10 DMSO 1% 5 0/5 4/5 4/5 4/5 5 (100)

5 DMSO 1% 4 0/4 0/4 2/4 3/4 4 (100)

1* DMSO 1% 3 0/3 0/3 0/3 0/3 3 (100)

0 DMSO 2% 6 0/6 0/6 0/6 0/6 6 (100)

0 DMSO 1% 9 0/9 0/9 0/9 0/9 9 (100)

0 Ethanol 2% 6 0/6 0/6 0/6 0/6 6 (100)

0 Ethanol 1% 6 0/6 0/6 0/6 0/6 6 (100)

Swimming larvae (from stages 50), were  submerged in 0.1X Holt with the above solvent and 4-OHT concentration 
✢ Animals survived 24hr treatment with side-effects (abnormal tail bending, bloating, or stopped eating) 
* Concentrations < 1µM, required longer than 24hrs, approximately a 5-days to detect mCherry
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Figure 1. Retinal layers of the Newt Larva at Stage 53. The target tissue for this study is the 
RPE layer (retinal pigment epithelium), the primary cell source for retinal regeneration in the 
newt, shown in  yellow.  Note RPE layer is highly pigmented with melanin. ONL: outer nuclear 
layer, OPL: outer plexiform layer, INL: inner nuclear layer, IPL: inner plexiform layer, GCL: 
ganglion cell layer.
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Figure 2. Current Working Hypothesis of Early Retinal Regeneration in the Newt as 
suggested by (Mitashov and Chiba, 2007).
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Figure 3. Current Direction and Major Highlights in the Field of Newt Retinal Regeneration. 
Boxes indicate the contribution of this study to the field. The birth of this field stretches back 
before the time of Darwin.

�61



"

"  !!!

Figure 4. Newt Fertilized Egg Collection Strategy. (A) Two Mating Tank setup (only one shown 
here), used to obtain fertilized eggs of Cynops pyrrhogaster. (B) Alternating recovering period 
and collection period, using the two tank system during 14 day period intervals. ( C) Fertilization 
percentage and average eggs collected per day per month during Jan to July using two tank 
system.   
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Figure 5. Follow Chart of Methods for Newt Trasngenesis. (A) Egg preparation. (B) 
Microinjection mix and needle preparation. DNA concentration varies depending on transgene 
used, working concentration should be tested empirically ( C) Microinjection and rearing (culture 
conditions) .
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Figure 6. Expression of Transgenic Newt from Early Development to Metamorphosis. 
Transgenic newts generated by the I-SceI method with pCAGGs-EGFP(Sce) construct. A, 
D-G: Embryos showing an intense green fluorescence evenly at blastula (A), neurula (D, 
neural plate stage; E, neural tube stage), tail-bud (F), and swimming larvae stage (G). B: 
Bright-light image of the same field in A. C: A blastula embryo showing a mosaic 
expression pattern (arrowhead). H: A magnified view of the head region of the larva in G. 
I-L: A juvenile newt after metamorphosis (anesthetized). Dorsal (I, J) and ventral (K, L) 
views are shown. I, K: Fluorescence image; J, L: Bright-light image. Scale bars = 1mm 
(A-F), 3 mm (G), 1.2 mm (H), 1 cm (I-L).
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Figure 7. Expression of transgenic newt during regeneration.  
A-D Limbs of metamorphosed juveniles (4-5 months) classified as ‘Uniform’ and ‘Mosaic’ 
at swimming larvae stage (A, B, fluorescence and bright light images of a hind limb of the 
‘Uniform’ juvenile;  C, D, those of a forelimb of the ‘Mosaic’ juvenile). (E) A regenerating 
limb (34 days after amputation) of a metamorphosed juvenile showing ‘Uniform’ 
expression pattern. (F) A dorsoventral section of the regenerating limb. The right-hand side 
of the panel is the ventral side. The dotted line shows the site of amputation. (G) PCNA-
immunohistochemistry with the same section, visualizing many proliferating cells (red) in 
the regenerating tip of the limb. DAPI counterstaining of nuclei is shown in blue. Scale 
bars in A- E : 2 mm; F, G: 200 µm.
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Ex2 site AA Ex1 

Ex1 Ex2 site cDNA 

Figure 8. RPE65 Amino acid and cDNA Alignment of the Human, Mouse, and Newt 
(showing only the 5` end).  The pink boxes represent conserved amino acids among the human, 
mouse, and newt on the 5` end. The green boxes represent conserved cDNA among the human, 
mouse, and newt on the 5` end. The vertical bar indicates the gap between exon1 and exon2. All 
gene specific reverse primers were designed to the left of the vertical bar to avoid intron crossing.

Primary PCR (AP1/GSRP1) Secondary PCR (AP2/GSRP1)

Cycles Temp. Time Cycle Temp. Time

7 94℃ 25 Sec 5 94℃ 25 Sec

72℃ 3 min 72℃ 3 min

32 94℃ 25 Sec 25 94℃ 25 Sec

68℃ 3 min 68℃ 3 min

Figure 9. Primary and Secondary (Nested) PCR Conditions for Genome Walking used 
for Newt RPE65 promoter Identification. Two step, touchdown PCR was necessary for 
each PCR run. 
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Figure 10. Identification of the Newt RPE65 Promoter Regions using Genome Walking 
(-560bp upstream). (A) Secondary (nested ) PCR products using 4 genome walker libraries, 
greens box shows positive clone, which contained a matching 5` UTR region of the known newt 
RPE65 mRNA. Note several positive bands are present in Libraries 1-4, but after sequencing 
those bands, they did not contain RPE65 5` untranslated region, only the positive clone in Lib 3, 
marked in green contained the expected RPE65 5`UTR. (B) The newt RPE65 upstream -560bp 
promoter region. F-: Only forward primer was used. R-: Only reverse primer was used. +: Both 
Forward and Reverse Primers were used. Yellow Box: cDNA, Cyan Box: 5`UTR.
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- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - CGA - - - - CGGCCCGGGCTGGTAAAAAGCACCAGCTGGGACGGAAGTAGAACCAGCGGAGAG- - - AAGGGGACCT TGCGACC- - - - - - - - - - -
- - - - - - - - - - CACAGTAAAATAAT CTAAT TAT T T TAT T TGT TAAT CTGT T T TAAAAAAATACATACCT T CATAAATAGCACAAT TACTAGATAA - - - T T T CCAGAT T TAAGATGCA - - - - - - - - T
T T AT TAT TAT TATAGAAAAGCCAT C- - AGTGT T TAAAA - - GGGGTGTGGGT T T TGAT TGT T T CCAAGTGGAT CT T CAT CAGTAT T CACACCCAG- - - T CT CCATATATGAAGAATACGGGGCCCT
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GAGGTACTGCAGTGTGCT T CTATAACACT CCATACT T CT - - - - - CCAAT CATAGCACTGAT - - - - - - - - - AAAAT T T - - T ATAGAATAGCT T
- - - - - - - - - - - - - - - - - - - - - - GAG- - A - - - - - - - - - - - - - T GCT T T T T CT CCAA - - - - - - - - - - - - - - - - - - - - - - AGAGGCT CAGCACTGCACAGCTGCCTGGGCTGGGGGTCACCAT CCCAG
- - - - - - - - - - - - CAGCCT TGT TGAA - - AGGACCTGGATACTGAACTGTGCCGAAGAAGGATAGCAGGGT TAAAACATGCAAAGACAGCACCT CAT - - AT ACCT CTAATGT TGT TAACAATAGCTA
- - - - - - - - - - - - CCGCCAAGGCGGG- - G- - - - - - - - - - T GCCCT CTAGGCTGCGC- - ACAGCACACACGCCGGACAGACGGA- - - - - - - - - - - - - - - - - - - - - - CGCCGAGGGCAAAGCGGGCCG
- - - - - - - - - - - - - - - - - - - - - - - - G- - AGGGT TAGAGGTGCACAATGTGCT T CCATAACAT T T TATACT T CT - - - - - CCAAT CT TAGCACTAAT - - - - - - - - - CAAACAT - - GGT TGAATACT T T

- - CACT CTGCCT CA - - - - - - - - - - - - - - - - - - - - AGCCCTGA - - - - AGAAGT CGTAAGGGGGAT TGGCCC- - GCGACGAAACACGTGT TGGCTGGGCAAT TGTGATGT CG- - T AATAAAAAGAA -
GGTGGTAAT CCACA - - - - - - - - - - - - - - - - - - - - T GCCCTGTAACAAAGTGT TATAAATGCCATGTACT T - - T GCACAACACACAT T T T T TGTGTAAAATAAT T TACT CAGT T T T T TAAATGTGC
GACCCTGAAAAACAAAT CAT T TGT CATGCAGGGAAGTAAACAAAGAAAATGTGAT TAATGAAATGCCT CT - - GACATGT CACACT TGT CT T T TGTA - - GT TGTAAACT T - - - - - - - - - - - - - - - -
GT T AGT T T CT TGT C- - - - - - - - - - - - - - - AT T CT TGTAGAGATACAAGAT CTGTGAAGACA - - GAAATA - - - - - - - - - - - - - GCT TAT C- CATGCCTGCT CC- ATAGACAATGAGTAACAGATAT
GGGTGT T CAGAGCC- - - - - - - - - - - - - - - GTGG- - - GGATGTGGCACTGAGGGGGGGGAGGGGGGCCTGGGGAGCTGGGAAGGCT T T T - - CCAACCTGAGTG- AT T CTGTGGT T CTAGGAG- - - -
ACT T - - - - T T AT CA - - - - - - - - - - - - - - - AACAGTGT CCTGT CACCATGACAGT TACAACATAATGATA - - - - - ATGACTGTACT T T CT - CTAACCAGGT - - - CT AGAT CACT TATAATAAATAT
GTAGGTGCCCGGCA - - - - - - - - - - - - - - - GGGCGTGCAAAGGGCGCAT CCGAGGGACATGCAGCTGGTGGGGTGCCCAGAGCAGGTG- - - - - - - - - - - - - - - - CAGGTGCAGGTGTGACCCCGAC
GT T T - - - - ACTATA - - - - - - - - - - - - - - - ACT CT TACAGAGT TATAAGAT CTGTGAAGACA - - GGGACA - - - - - GGGACAATACCCAT C- T CTGT CTGGT T C- ATAGGTGGTATGTAATAGATAT

- - - - - - - - - - AAAGAAAAAAACACCCAGAGG- - ACT CAAAT T TGAT TAACTAAAT TGAAT TAACGGTCTATAT T CTGTGT CCAACCAAGCAAT T TATGTAAAAAAAAGT T T TGATACT CAAAT T T
CTAGAAAT T CTGTGTATAGAT TATACAGTGGT TACCAAATAAT CCTGCAGAAAAAAGAAGCCCTGGT TAGGGT TGTGAAGCATACCACAACATAGATAAGCATGGACC- - - - - - - - - - - - - T ATG
- - - - - - - - - - T T TGCAT TGA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GCAT TGCT CT T T T TAT T TGTAT TGT T T T T CTAACTGAAGGAATGCTGTGAT TGAT TGAT T - GAAT CCCAGTGTG
- - - - - - - T T T CAAAAATAAGTAAT TGAAAAAATAGTGA - - - - ATGAGGATAAAGACGAGGG- - - - - - C - AT AGAAG- - - - - - AAGAGGGAAGTGGGCACCAGAGAAGGATG- CCAGGT T CCCGTG
- - - - - - - - - - - - - AGAGGAGACAGGCAGCGGGTGGTGA - - - - T GCTGGGCAGTGACACCTGT CCCCTG- CCAT CAC- - - - - - T GGTGT - CACCTGGT T T CACAGCCTGGCA - CAGGATGGGGATG
- - - - - - - AT CT T T TAGTAAT TGAGTAAATGAAT - - - - T - - - - ACAGTGAGGATAACAGCAA - - - - - - A - GAAATGG- - - - - - T GGACAGATG- - - - - - - - - - - - - - - T T T A - CACCAAGAAAGTA
- - - - - - - CTGCACACGT CCCCACCT CAGGTCT CCGGGAACCCGGCTGAACAGT CGCTGGCCT CCTGTG- GT CCT CGCAGAGT CACAGCCCCCGCGATGCCAGCGC- - AGTG- CCCACCT CCGGGG
- - - - - - - T T T T AAAAATAAGTGAGT TAATGAATG- - - - - - - - AGGGTGAGAATGAAGGCAC- - - - - - A - GAGGTAT - - - - - - T AGGGGGAGGTGGGCCCCAGAGAATGGTG- CCAAGGTCCAGTG

CAAT CGAGTGTGTGCATAGAAAGAT CAT T CCAGAC- AAGATGT TGCAGCAT T TAAT T T CGTGCCT T T T T T T TATACCTGCGCGGAGGACGCCT CGT CGGGGATACAT T T CGCT CTGCTACAG- T A
AAATAAAAAATGAGCAT TGGAACAG- - - - - - - - - - - - - - - CAATGCAGCT TGT CATAAC- - - - - - - - T TGGAAAACATGCAGAGAAT T TGGGAAT - - - - - - AAAGGGTCT CCAT TGT TAAAC- AA
AT T TGT CT TAT T - - - - T T AAAAGAT TAT TAAAAAT CATAAAAAT T TATATAT TAATAAAACAAGT T T T CTGCATAT TGAT CCCAT TGACTACA - - - - - GGT TAAAATGTGT T T T TGAT TGAA - - T
GGGTGAC- - - A - CGG- - - - - - - - AT CAGT T CAGGC- CTGATGCTAGCCACTACCACACAACT CCT T T CT T T CTAAT CCACT T CT TGT T CT CT T TGGGAAGGAT TGAGGTCT CTGGAAGATGGCCA
CAGTGAC- - - T - GCAGTGCAGAGCTGAGT T CTGAA - GTGCAGCT CCAGT T CCT T T T T T TGT TGGT T T CT T T T T T CT T TGTAAT CT CT T CTGCT CGGGAAGAAT CTAGGT CT CTGAAAAACCCCT C
TGATGAC- - - T - GAG- - - - - - - - GT CAGCT CAGGA- CTG- - - CATGGCAGGCCCACATGGCT CT T T T T TAT CCAACT CACTACT CCCT CT CCCT TGAAAGGAT CCAAG- - T CTGGAAAATAGCCA
GGATGGAG- - TGGGCGTGCAAGGCCGCGTGAGCCG- GTGAACGGGGCCG- - - - CAGCC- T CCT T CT CCCCAGCCCACCCGCCCGCCGT CT CCT CGGGAGGGAT TGAGGTCT CTGGAGGACAGCCA
GGGTGAC- - - T - GGG- - - - - - - - AT CAGCT CAGGC- CTGACGCTGGCCACT CCCACCTAGCT CCT T T CT T T CTAAT CT - GT T CT CAT T CT CCT TGGGAAGGAT TGAGGTCT CTGGAAAACAGCCA

AAT TGCT C- - - - - - - - - - - - - - - - CT C - - T TGGG- - - - - - - - AGCGCAT TACACAATGCATGA - - - - - - - CT ACAAT CTGCAGT T T CTGT T T T T T TGCAAT CCCT T TGTGGGTGCAT CGGAT T TA
AAT CAGTGT T T T T TAAACAGTGGCCAA - - T T AGT - - - - - - - - ATGT CAAAAGCCTAT T CATACTGAAACTGAAT T CT T T T CT T T CGAT T CAT T CT T T TAAT CCAGT CGTGGT T TGAAAGGAT T TG
ATGTACTGT CT T T CAGGAAGGTAAACA - - T T AGT - - - - - - - - GAAGTAGT T CT TGGT T TGAGCACAAAG- AGAT T CT TGT T T CAGAGGCT T T T CAT T CACTGGAGTAGGAGGAGCT TAA - - - - - -
AAAAACAAT TAAGCGAGCAGCCAGCCCAAAT TAATGCT C- AAGTAT CAGAAGTAT CTGAGTGCTGAAAGCCACT T CTGT T T T - - - - - - - - - - - - - - - - CCCT CT CT CAGCTGAGGAGGGTGGGAA
AAAGCTGCT T T T TGTGTGAACAGCAAGACAAAGCCT CGCAAGGCAT CGGGA- GGAT T T CGGCCTGAAAGCCACCT CTGT T CC- - - - - - - - - - - - - - - - AGCACTGAGCCCAT TGGC- - - - - - - T G
AAACACTGT TATGTAAACACCAAGT CCAAATAATGTGC- - AAGCAT CTAAA - - - - - - - - GT AT TGAAAGCCACT T T TG- T T A - - - - - - - - - - - - - - - - CCT T CCAT CAGCTGAGG- - - GGTGGAG
AGGGGCCGCCACGGGAGCGGCACAGCC- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - CGGGCTGAAAGCCGCT CCTGT T CC- - - - - - - - - - - - - - - - CGCCTGGGCCGGGGCGGGGAGG- - - CC
AACAACTGT TATGGGAACAGCAAGCCCAAATAAAG- - CC - AAGCAT CAGGGGGAT CTGAGAGCTGAAAGCAACT T CTGT T CC- - - - - - - - - - - - - - - - CCCT CCCT CAGCTGAAGGGGTGGGGAA

GAGAT CT CGAACT CT CCGAAGCCGT CCT TGAGCATAAAGAAA - CG- AGGCAATAAAAGCGGAGCG- - - - - - - - C - - - - - - - - -
GAAT T CAAAAT CT T T CAAAGACT T T CCT TGT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- GACT CTGTGT CCATGCGAAGCACT T CACGT T T - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
CAGGT T CCCAAAGCCAT CGCT CCT T T CAGGGGGAT T TAGAAG- GC- ATATAAAGGCCCCTGGCTG- - - - AGGACT TG- - - - - -
CACGCAGCT CCAGT CAT T CCT T CCTGCACT CCCATAAAAACC- CGCATGCAGCT CCAGGAGCCT C- - - - AAAT CCTGCA - - - -
AGGGT T CCCAGAGCCGCAGGCT CCT CCAATAAGGAT TAGAT T - GCATACAAAAAAGCCCTGGCTA - - - - AGAACT T - - - - - - -
GAGCTGCCGT CGGGGGGGCGGGGGGCCCGGGGCGCATAAAGGCCGCTGT CAGGCCT CGCTGCCT CCGT CCGCT CGTGCTACCT
GGGCT C- CCAAAGCCATAACT CCT T T - T AAGGGAT T TAGAAG- GC- ATAAAAAGGCCCCTGGCTG- - - - AGAACT - - - - - - - -

Figure 11. Clustal W Omega Alignment of RPE65 Promoter Region (-560 to 0 bp) Among 
Eight Species . Note reference -(minus) numbers were added by the alignment software during 
the addition of gap, it does not represent the promoter -560bp distance. Defaults alignment 
conditions were used.
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Figure 12. Comparison of the Newt RPE65 Promoter(-560 to 0 bp) Among Seven Species. 
(A) Percent similarity of RPE65 promoter region (-560bp to 0bp) among 7 species compared to 
the newt. (B) A phylogram based on clustal alignment (Figure 11) of the RPE65 promoter 
region (-560bp to 0bp) among 8 species. The distance values show the number of substitutions 
as a proportion of the length of the alignment (excluding gaps). 
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12/5/13, 11:39 AMYour alignment result | T-Coffee Server

Page 1 of 2http://tcoffee.crg.cat/apps/tcoffee/result?rid=b36ae22f

Home  History  Tutorial  References  Contacts  tcoffee.org

Pro-Coffee alignment result

MSA

T-COFFEE, Version_10.00.r1580 (2013-10-01 16:11:20 - Revision 1580 - Build 429)
Cedric Notredame 
SCORE=44
*
 BAD AVG GOOD
*
Human     :  48
Mouse     :  45
Dog       :  35
Cow       :  44
Chicken   :  40
Newt      :  39
Frog      :  24
Fish      :  28
cons      :  44

Human         1 ------------------------------G--------------------------------------------------------------------------------------------------------------------------    1 
Mouse         1 ------------------------------------------------------------------------------------------------------------------------CAG--------CCTTGTTGAAAGGACCTGGATA   25 
Dog           1 ---------------------------CCG----------------------------------------CCAAGGCGGGGTGC---CCTCTAGGCT------------------------GC--------GCACAGCACACACGCCGGACAG   51 
Cow           1 ------------------------------G--------------------------------------------------------------------------------------------------------------------------    1 
Chicken       1 -----------------------------GAGATGCTTTTTCTCCAAAGAGGCTCAGCACTGCACAGCTGCCTGGGCTGGGGGT---CACCATCCCA------------------------GG--------GGTGTTCAGAGCCGTGGGGATG   89 
Newt          1 -------------------------------------------CGACGGCCCGGGCTGGTAAAAAGCACCAGCTGGGACGGAAGTAGAACCAGCGGAGAGAAGGGGACCTTGCGACCCACTCTGCCTCAAGCCCTGAAGAAGTCGTAAGGGGG  110 
Frog          1 CACAGTAAAATAATCTAATTATTTTATTTGTTAATCTGTTTTAAAAAAATACATACCTTCATAAAT------------------------------------AGCACAATTACTAGATAATTT--------CCAGATTTAAG-----------   98 
Fish          1 ------------------------------TTATTATTATTATAGAAAAGCCATCAGTGTTTAAAAGGGGTGTGGGTTTTGATTGTTTCCAAGTGGATCTTCATCAGTATTCACACCCAGTCT--------CCATATATGAAGAATACGGGGC  115 

cons          1                                                                                                                                                            153 

Human         2 -------------------------------------AGGGTTA-----------GAGGTGCACAATGTGCTTCCATAACATT---------TTATACTTCTCCAATCTTAGCACT---AATCAAACATGGTTGA--------------ATAC   80 
Mouse        26 CTGAACTGTGCCGAA--------------------GAAGGATAG-----------CAGGGTTAAAACATGCAAAGACAGCACC---------TCATATACCTCTAATGTTGTTAACAATAGCTAACTTTTATCAA--------------ACAG  124 
Dog          52 ACGGACGCCGAGGGC--------------------AAAGCGGGC-----------CGGTAGGTGCCCGGCAGGGCGTGCAAAGGGCGCATCCGAGGGACATGCAGCTGGTGGGGTGCCCAGAGCAGGTGCAGGTGCAGGTGTGACCCCGACCT  173 
Cow           2 -------------------------------------------------------AGGTACTGCAGTGTGCTTCTATAACACT---------CCATACTTCTCCAATCATAGCACT---GATAAAATTTTATAGA--------------ATAG   73 
Chicken      90 TGGCACTGAGGGGGG--------------------GGAGGGGGG-----------CCTGGGGAGCTGGGAAGGCTTTTCCAA---------CCTGAGTGATTCTGTGGTTCTAGGAGAGAGGAGACAGGCAGCGGGTGGTGATGCTGGGCAGT  202 
Newt        111 ATTGGCCCGCGACGAAACACGTGTTGGCTGGGCAATTGTGATGT-----------CGTAATAAAAAGAAAAAGAAAAAAACAC---------CCAGAGGACTCAAATTTGATTAAC-----------------TA--------------A---  209 
Frog         99 ----------------------------ATGCATGGTGGTAATCCACATGCCCTGTAACAAAGTGTTATAAATGCCATGTACT---------TTGCACAACACACATTTTTTGTGTAAAATAATTTACTCAGTTT--------------TTTA  200 
Fish        116 CCTGACCCTGAAAAACAAATCATTTGTCATGCAGGGAAGTAAAC-----------AAAGAAAATGTGATTAATGAAATGCCTC---------TGACATGTCACACTTGTCTTTTGTAGTTGTAAACTTTTTGCAT--------------TGAG  234 

cons        154                                                                                                       *                                                    306 

Human        81 ------------------------------------------TTTG--T----TTACTATAACTCTTACAGAGTTATAAGAT-----------------------------------------------------------------------  114 
Mouse       125 ------------------------------------------------------------------TGTCCTGTCACCATGACAGTTACAAC-------------------------------------------------------------  150 
Dog         174 GCACACGTCCCCACCTCAGGTCTCCGGGAACCCGGCTGAACAGTCG--CTGGCCTCCTGTGGTCCTCGCAGAGTCACAGCCCC----------------------------------------------------------------------  254 
Cow          74 ------------------------------------------CTTG--TTAGTTTCTTGTCATTCTTGTAGAGATACAAGAT-----------------------------------------------------------------------  111 
Chicken     203 GACACCTGTCCCCTGCCATCACTGGTGTCACCTGGTTTCACAGCCT--G--------------------------------------------------------------------------------------------------------  249 
Newt        210 -------------------------------------------------------------ATTGAATTAACGGTCTATAT------------------------------------------------------------------------  229 
Frog        201 ------------------------------------------AATGTGCCTAGAAATTCTGTGTATAGATTATACAGTGGTTACCAAATAATCCTGCAGAAAAAAGAAGCCCTGGTTAGGGTTGTGAAGCATACCACAACATAGATAAGCATG  311 
Fish        235 ------------------------------------------CATTGCTCTTTTTATTTGTATTGTTTTTCTAACTGAAGGAATGCTGTGAT-------------------------------------------------------------  284 

cons        307                                                                                                                                                            459 

Human       115 ------------------CTGTGAAGACAGGGACAGGGACAATACCCATCTCTGTCTGGTTCATAGGTGGTAT----------GTAATAGATATTTTTAAAAATAAGTGAGT-------TAATGAATGAGGGTGAGAA--------TGAAGGC  224 
Mouse       151 ------------------ATAATGATAATGACTGTACTTTCTCTAACCA---GGTCTAGATCAC--------TT---------ATAATAAATATATCTTTTAGTAA----TTGAGTAAA--------TGAATTACAGTGAGGATAACAGCAAA  253 
Dog         255 -------------------CGCGATGCCAG---------------------------------------------------------------------------------------------------------------------------  265 
Cow         112 ------------------CTGTGAAGACAGAAATAG--------CTTATCCATGCCTGCTCCATAGACAATGA----------GTAACAGATATTTTCAAAAATAAGTAATTGAAAAAATAGTGAATGAGGATAAAGA--------CGAGGGC  220 
Chicken     250 ---------------------------------------------------------------------------------------------------------------------------------------------------------  249 
Newt        230 --------------------------------------------TCTGT-----GTCCAACCAA--------GC---------AATTTATGTAAAAAAAAGTTTTG----ATACTCAAA--------TTTCAATCGAG--------TGTGTGC  296 
Frog        312 GACCTATGAAATAAAAAATGAGCATTGGAACAGCAATGCAGCTTGTCAT---AACTTGGAAAAC--------ATGCAGAGAATTTGGGAATAAAGGGTCTCCATTG----TTAAACAAA--------ATCAGTGTTTT-------------TT  428 
Fish        285 ------------------TGATTGATTGAATCCCAGTGTGATTTGTCTT---ATTTTAAAAGAT--------TA---------TTAAAAATCATAAAAATTTATAT----ATTAATAAA--------ACAAGTTTTCT-------------GC  374 

cons        460                                                                                                                                                            612 

Human       225 ACAGAGGTATTAGGGGGAGGTGGGCCCCAGAGAATGGTGCCAAGGTCCAGTGGGGTGACTGGGATCAGCTCAGGCCTGACGCTGGCCACTCCCACCTAGCTCCTTTCTTTCTAATC-TGTTCTCATTCTCCTTGGGAAGGATTGAGGTCTCTG  376 
Mouse       254 GAAATGG---TGGACAGATGTTTACACCAAGAAAGTATG---------------ATGACTGAGGTCAGCTCAGGACTG---CATGGCAGGCCCACATGGCTCTTTTTTATCCAACTCACTACTCCCTCTCCCTTGAAAGGATCCAAGTCTGG-  384 
Dog         266 ------------C----------GCAGTGCCCACCTCCGGGGGGATGGAGTGGGCGTGCAAGGCCGCGTGAGCCGGTGAACGGGGCCGCAGCCTCCTTCTCCCCAGCCCACCC----GCCCGC-CGTCTCCTCGGGAGGGATTGAGGTCTCTG  391 
Cow         221 ATAGAAGAA---GAGGGAAGTGGGCACCAGAGAAGGATGCCAGGTTCCCGTGGGGTGACACGGATCAGTTCAGGCCTGATGCTAGCCACTACCACACAACTCCTTTCTTTCTAATCCACTTCTTGTTCTCTTTGGGAAGGATTGAGGTCTCTG  370 
Chicken     250 -----------------------GCACAGGATGGGGATGCAGTGACTGCAGTG-----CAGAGCTGAGTTCTGAAGTGCAGCTCCAGTTCCTTTTTTTGTTGGTTTCTTTTTTCTTTGTAATCTCTTCTGCTCGGGAAGAATCTAGGTCTCTG  374 
Newt        297 ATAGAAA-------------------------------------------------------GATCATTCCAGACAAGATGTTGCAGCATTTAATTTCGTGCCTTTTTTTTATACCTGCGCGGAGGACGCCTCGTCGGGGATACATTTCGCT-  393 
Frog        429 AAACAGT-------------------------------------------------------GGCCAAT---TAGTA-TGTCAAAAGCCTATTCATACTGAAACTGAATTCTTTTCTTTCGATTCAT--------------------------  496 
Fish        375 ATATTGA-------------------------------------------------------TCCCATT---GACTACAGGTTAAAATGTGTTTTTGATTGAATATGTACTGTCTTTCAGGAAGGT---------------------------  442 

cons        613                                                                                                                                                            765 

Human       377 GAAAACAGCC--AAACAACTGTTATGGGAACAGCAAGCCCAAATAAA--GCCAAG-CATCAGGGGGATCTGAGAGCTGAAAGCAACTTCTGTTCCCCCTCCCTCAGCTGAAG---GGGTGGGGAAGGGCTCCCAAAGCCATAACTCCTTTTAA  521 
Mouse       385 -AAAATAGCC--AAAACACTGTTATGTAAACACCAAGTCCAAATAA-T-GTGCAAGCATCTAA--------AGTATTGAAAGCCACTTTTGTTACCTTCCATCA----GCTGAGGGGTGGAGAGGGTTCCCAGAGCCGCAG--GCTCCTCCAA  518 
Dog         392 GAGGACAGCC--AAGGGGCCGCCACGGGAGCGGCACAG------------------------------CC-CGGGCTGAAAGCCGCTCCTGTTCCCGCCTGGGCCGGGGCGGGG--AGGC-CGAGCTG-------------CCGTCGGGGGGG  495 
Cow         371 GAAGATGGCC--AAAAAACAATTAAGCGAGCAGCCAGCCCAAATTAATGCTCAAG-TATCAGAAGTATCTGAGTGCTGAAAGCCACTTCTGTTTTCCCTCTCTCAGCTGAGGA--GGGTGGGAACAGGTTCCCAAAGCCATCGCTCCTTTCAG  518 
Chicken     375 AAAAACCCCT--CAAAGCTGCTTTTTGTGTGAACAGCAAGACAAAGCCTCGCAAGGCATCGGGAGGATTT-CGGCCTGAAAGCCACCTCTGTTCCAGCACTGAGCCCATTGGCT--GCAC-GCAGCTC-------------CAGTCATTCCTT  508 
Newt        394 -CTGCTACAGTAAATTGCTCCTCTTGGGAGCGCATTAC--ACAATG-C-A--------TGACT--------ACAAT---CTGCAGTTTCTGTTTTTTTGCAATC----CCTTTGTGGGTGCATCGGATTTAGAGATCTCGA--ACTCTCCGAA  516 
Frog        497 -----------------------------------------TCTTT-T-A---------------------------------------------------ATC----CAGTCGTGGTTTGAAAGGATTTGGAATTCAAAA--TCTTTCAAAG  549 
Fish        443 ----------------------------------------AAACAT-T-A---------------------------------------------------GTG----AAGTAGTTCTTGGTTTGAGCACAAAGAGATTCT--TGTTTCAGAG  496 

cons        766                                                                                                                                                            918 

Human       522 GG-GATTTAGA----------------AGGCATAAAAAGGCCCCTGGCTGAGAACT-------------------------  560 
Mouse       519 TAAGGATTAGA----------------TTGCATACAAAAAAGCCCTGGCTAAGAACTT-----------------------  560 
Dog         496 CGGGGGGCCCG----------------GGGCGCATAAAGGCCGCTGTCAGGCCTCGCTGCCTCCGTCCGCTCGTGCTACCT  560 
Cow         519 GGGGATTTAGA----------------AGGCATATAAAGGCCCCTGGCTGAGGACTTG-----------------------  560 
Chicken     509 CCTGCACTCC---------------------CATAAAAACCCGCATGCAGCTCCAGGAGCCTCAAATCCTGCA--------  560 
Newt        517 GCCGTCCTTGA----------------GCATAAAGAAACGAGGCAATAAAAGCGGAGC-----GC----------------  560 
Frog        550 ACTTTCCTTGT----------------------------------------------------------------------  560 
Fish        497 GCTTTTCATTCACTGGAGTAGGAGGAGCTTAAGACTCTGT-GTCCATGCGAAGCACTT----CACGTTT------------  560 

cons        919                                                                                    999 
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Figure 13. RPE65 Promoter T-Coffee Alignment (-560bp to 0bp) Indicating the 
Distribution of Tentative Transcription Factor Binding Sites Among 8 species . Red areas 
indicate high tentative transcription factor binding sites, blue-green indicated poor areas 
containing  transcription factor binding sites.
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A 
   Upstream 
RPE65 Promoter Location Conserved Box 

Newt    -467bp    AGG-GGGATTGGCCCGCG  
Consensus      AGG GGGA TGGCC GCG 
Human   -256bp    AGGTGGGAGTGGCCAGCG 
          !
Newt        -81bp      GGATTTAGA 
Consensus    GGATTTAGA 
Human       -37bp     GGATTTAGA !
Newt        -356bp      TAAATTGAATTA 
Consensus    TAAAT GAATTA 
Mouse    -339bp      TAAAT-GAATTA !!
Newt   -323bp  TTATGTAAA 
Consensus    TTATGTAAA 
Mouse   -160bp  TTATGTAAA !!!
B 

"  

"  

CGACGGCCCGGGCTGGTAAAAAGCACCAGCTGGGACGGAAGTAGAACCAGCGGAGAGAAGG - - - GGACC T TGCGACCCACTC TGCC TCAAG
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - GAGGGT TAGAGGTGCACAATGTGC T T CCATAACAT T T TATAC
- - - - - - - - CAGCC T TGT TGAAAGGACC TGGATAC TGAACTGTGCCGAAGAAGGATAGCAGGGT TAAAACATGCAAAGACAGCACC TCATAT

CCC TGAAGAAGTCGTAAGGGGGAT TGGCCCGCGACGAAACACGTGT TGGCTGGGCA - AT TGTGATGTCGT - - - - - - - - - - AATAAAAAGAA
T TC TCCA - - - AT C T TAGCACTAATCAAACATGGT TGAATAC T T TGT T TAC TATAACTC T TACAGAGT TATAAGATC TGTGAAGACAGGGAC
ACC TC TA - - - ATGT TGT TAACAATAGCTAA - C T T T TATCAAACAGTGTCC TGTCACCATGACAGT - - T AC - - - - - - - - - - AACATAATGAT

AAAGAAAAAAACACCCAGAGGACTCA - - - - - - - - - - - - - - - - - - - - AAT T TGAT TAACTAAAT TGAAT TAACGGTC TATAT T C TGTGTCCA
AGGGACAATACCCATC TC TGTC TGGT TCATAGGTGGTATGTAATAGATAT T T T TAAAAATAAGTGAGT TAATGAATGAGGGTGAGAATGAA
AATGACTGTAC - - T T T C T C TAACCAGGTC TAGATCAC T TATAATAAATATATC T T T TAGTAAT TGAGTAAATGAAT TACAGTGAGGATAAC

ACCAAGCAAT T TATGTAAAAAAAAGT T T TGATAC TC - - - - AAAT T T CAATCGAGTGTGTGCATAGAAAGATCAT TCCAGACAAGATGT TGC
GGCACAGAGGTAT TAGG - - - GGGAGGTGGGCCCCAGAGAATGGTGCCAAGGTCCAGTGGGGTGACTGGGATCAGCTCAGGCC TGACGCTGG
AGCAAAGAAATGGTGGA - - - CAGATGT T TACACC - - - - - - - - - - - - - - - AAGAAAGTATGATGACTGAGGTCAGCTCAGGACTGCATGG - -

AGCAT T TAAT T T CGTGCC T T T T T T T TATACC TGCGCGGAGGACGCC TCGTCGGGGATACAT T T CGC TC TGC TACAGTAAAT TGC TCC TC T T
CCAC TCCCACC TAGCTCC T T T C - T T T C TAATC TGT T C T CAT T C T CC T TGGGAAGGAT TGAGGTC TC TGGAAAACAGCCAAACAACTGT TAT
- CAGGCCCACATGGCTC T T T T T TATCCAACTCAC TAC TCCC TC TCCC T TGAAAGGATCCA - - AGT C TGGAAAATAGCCAAAACACTGT TAT

GGGAGCGCAT TACACAATGCATGACTACAATC TGCAGT T T C TGT T T T T T TGCAAT - - - - CCC T T TGTGGGTGCATCGGAT T TAGAGATC - -
GGGAACAGCAAGCCCAAATAAAGCCAAGCATCAGGGGGATC TGAGAGCTGAAAGCAACT T C TGT T CCCCC TCCC TCAGCTGAAGGGGTGGG
GTAAACACCAAGTCCAAATAATGTGCAAGCATC TAAAG - - - - - - - T AT TGAAAGCCACT T T TGT - T ACC T T CCATCAGCTGAGGGGTGG - A

- - - - - - - T CGAACTC TCCGAAGCCGTCC T TGAGCATAAAGAAACGAGGCAATAAAAGCGGAGCGC - - - - - - -
GAAGGGCTCCCAAAGCCATAACTCC T T T TAAGGGAT T TAGAAGGCAT - AAAAAGGCCCC TGGCTGAGAACT -
GAGGGT TCCCAGAGCCGCAGGCTCC TCCAATAAGGAT TAGAT TGCATACAAAAAAGCCC TGGCTAAGAACT T
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Figure 14. Transcription Factor Binding Sites of the Newt RPE65 Promoter have 
Translocated more Upstream the 5` end Compared to the Mouse and Human . (A) 
Identification of conserved boxes in the newt RPE65 promoter using Promoter Wise. (B) Black 
boxes represent conserved TFBS in all 3 species. Red boxes represent mammalian TFBS 
identified by DNA foot printing (Nicoletti et al., 1998). The blue boxes represent similar 
mammalian TFBS (sequence) found in the newt promoter.
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Figure 15. Newt RPE65 Promoter Driving mCherry Transgene Construct. The newt RPE65 
promoter region and 5`UTR were inserted into an mCherry reporter construct. Promoter and 
reporter were floxed by I-SceI sites.
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Figure 16. Newt RPE65 Promoter Activity in F0 Transgenic Blastula Embryos. The newt 
RPE65 promoter driving mCherry (A1) Light image. (A2) mCherry. (A3) Merge of A1 and A2. 
(B) Percentage of blastula embryos with positive newt RPE65 promoter activity. pRPE65 (-) 
represented embryos with no detection of mCherry. Scale bar 1mm.
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Figure 17. Newt RPE65 Promoter Activity During Development of F0 Transgenic 
Embryos. Transgenic embryos with expression pattern in Figure 16, were monitored. The newt 
RPE65 promoter driving mCherry. (A1) Light image stage 27. (A2) mCherry fluorescences of 
A1. (A3) Merge of A1 and A2. (B1) Light image stage 31. (B2) mCherry fluorescences of B1. 
(B3) Merge of B1 and B2.  (C1) Light image stage 39. (C2) mCherry fluorescences of C1. (C3) 
Merge of C1 and C2 show a headshot. White and black arrows pointing to the developing eye 
without melanin pigmentation. Yellow arrows pointing at the embryo yolk, a source of auto-
fluorescence. Scale bar: A-C 1mm.
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Figure 18. Newt RPE65 Promoter Activity at Stage 59 of F0 Transgenic Larvae. (A) 
Anterior body shot, light image at stage 59. (B) mCherry fluorescences of A. (C ) Percentage of 
transgenic larvae expressing positive RPE65 promoter activity as shown in D1. pRPE + leaky 
expression are shown in Figure 19. (D1) Newt pRPE65 promoter activity driving mCherry in 
the RPE layer, photo merged with DAPI. Yellow double bars indicate RPE layer margins. (D2) 
is a magnification of D1. (D3) is a magnification of D1, showing a light image merged with 
mCherry. Double yellow bars indicate RPE layer margins. (E1) Immunohistochemistry with 
DsRed (mCherry) polyclonal primary antibody, with DAB immunoreactivity staining shown in 
brown. Samples E1, E2 and F were bleached to remove pigmentation in the RPE. Black arrows 
pointing to RPE cell nuclei. (E2) Showing E1 merged with DAPI, yellow arrows pointing at 
RPE cell nuclei. (F) Negative control without DsRed (mCherry) primary antibody. Scale bar: A 
and B 0.5cm, D1 400µm, D2 -F 100µm
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Figure 19. Newt RPE65 Promoter Leaky Expression (Off Target) at  Stage 59 of F0 
Transgenic Larvae. In some cases transgenic larvae  expressed mCherry in the Outer nuclear 
layer and Inner nuclear layer of the retina. (A1) DAPI staining. (A2) Merge between pRPE65-
mcherry and DAPI. (A3) Light image merged with mCherry. Scale bar: 100µm. 

Figure 20. Illustration of Positional Effect. The Location  of an Inserted Transgene Plays a 
Major Role in Transgene Expression. Neighbouring regulatory elements next to an inserted 
transgene, will lead to variations of transgene expression. Chromatin changes can also affect 
transgene expression.
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Figure 21. Two Promoter/ Two Reporter Transgene Constructs with or without HS4 
Insulators.  (A) The newt RPE65 promoter and mCherry reporter were inserted into a 
pCAGG`s-EGFP cassette vector. RPE65 promoter was placed in sense or antisense. (B) Three 
copies of HS4 (2X) core were inserted into the XhoI/BstxI, BstxI/SpeI and Afl2/Dra3 restriction 
enzymes sites. (C ) The newt RPE65 promoter driving mCherry was inserted in the construct B 
at the BstxI site, generating two promoter/two reporter transgene construct, RPE65 promoter 
was positioned in sense or antisense.
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Figure 22. The Chicken HS4 Insulator Protects the Newt RPE65 Promoter from Leaky 
Expression During Early Development. Two promoter/two reporter F0 transgenic lines were 
examined during blastula stage. (A1,B1,C1,D1) Light image of Blastula embryos. (A2, 
B2,C2,D2) EGFP expression used as an internal control. (A3,B3,C3,D3) mCherry driven by the 
RPE65 promoter. Arrows on the left indicate promoter direction. Triangles represent HS4(2X) 
insulator. Red arrows indicate RPE65 driving mcherry. Green arrows indicate pCAGG`S 
driving EGFP.

Figure 23. Example of Severe Off Target (Leaky) Expression Pattern without Insulation, 
in a Two Promoter Two Reporter Transgenic Larva. Two promoter/two reporter F0 
transgenic larva, containing promoters in the same direction, without the chicken HS4 insulator. 
Larva is at stage 36. (A1) Light image. (A2) pCAGG`s-driving EGFP expression. (A3) The 
newt RPE65 promoter driving mCherry expression. Scale bar 1mm
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Figure 24. The Chicken HS4 Insulator Protects the Newt RPE65 Promoter from Leaky 
Expression During Metamorphosis. Two promoter/two reporter F0 transgenic lines were 
examined during Metamorphosis. (A1,B1,C1,D1) Light image of metamorphosing newts. (A2, 
B2,C2,D2) EGFP expression used as an internal control. (A3,B3,C3,D3) mCherry driven by the 
RPE65 promoter. Arrows on the left indicate promoter direction. Triangles represent HS4(2X) 
insulator. Red arrows indicate RPE65 driving mcherry. Green arrows indicate pCAGG`S driving 
EGFP. Black arrows on panels (A1,B1,C1, D1) indicating retracting gills. White arrows in panels 
(A2-D2) and (A3-D3) expressing pattern in the eye. 
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Figure 25. The Chicken HS4 Insulator Protects the Newt RPE65 Promoter from Leaky 
Expression in the Retina of Metamorphosed Newts. Retinal expression pattern of two 
promoter/two reporter F0 transgenic lines. (A, F, K, P) mCherry merged with EGFP. (B, G, L, Q) 
mCherry merged with DAPI. (C, H, M, R) mCherry merged with light image. Arrows on the left 
indicate promoter direction. (D, I, N, S) Immunohistochemistry sections treated with DsRed 
polyclonal (mCherry) primary antibody, immunoreactivity with DAB staining. (E, J, O, T)  
Negative control sections without primary antibody DsRed. Double white and black bars 
indicate the RPE layer margins. Arrows on the left indicate promoter direction. Red arrows 
indicate RPE65 driving mcherry. Green arrows indicate pCAGG`S driving EGFP. Triangles 
represent HS4(2X) insulator.
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Figure 26. Comparison of Conventional  Methods used to Generate Cre loxP Animals 
Compared to this Studies Suggested Method to Generate Transgenic CreERT2 loxP 
newts. . (A) An example of mouse techniques to generate Cre loxP F1 line, estimated time 6 
months, to adulthood. Average generation time of the mouse is 3 months, to adulthood. Standard 
techniques microinject Cre and loxP separately to generate to transgenic lines. (B) Two transgene 
microinjection technique for the newt, transgenes are simultaneously introduced. CreERT2 loxP 
are generated at the F0 generation, time  taken approximately 6 months to metamorphose.
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Figure 27. Cre Recombinase Events by Altering loxP Orientation. (A) Gene floxed by loxP 
in the same direction, leads to deletion. (B) Gene floxed by loxP sites direction towards each 
other, leads to an inversion event.   (C ) loxP sites positioned on separate chromosomes, leads to 
loci translocation (homologous recombination). This study only examined the deletion event, by 
floxing a transgene. 

Figure 28. Design of loxP Sites, for CreERT2 Reporter Deletion System. Two loxP sites were 
inserted into a pCAGG`s-mCherry vector containing HS4 insulators. LoxP sites were introduced 
at the AccI/KpnI site. AscI-AmCyan-pA-AsiSI was introduced into AscI/AsiSI positioned 
between the loxP sites.
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Figure 29. Transgene Design for CreERT2 loxP. Two transgenes (1 and 2) were used for this 
system. (A) CreERT2 loxP system is inactive. (B) System is activated by OH-Tamoxifen. Upon 
activation, CreERT2 binds to Tamoxifen and enters the cell nucleus. Inside the cell nucleus 
CreERT2 excises Amcyan reporter along with 3` loxP site. This experiment only examined 
deletion of a floxed reporter AmCyan

Figure 30. Generation of CreERT2 lopxP Newts by Two Construct Microinjection. 
Transgenes from Figure 29A were coinjected with I-SceI into the one cell stage of the newt. 
(A1) Light image of blastula embryo at stage 10. (A2) YFP fluorescence of a positive blastula 
embryo. (A3) Cyan fluorescence of a positive blastula embryo. (A4) Negative mCherry 
fluorescence of the same embryo A1-3. White arrows indicating a blastula embryo containing 
both transgenes with mcherry expression. Note not all YFP/Cyan blastula express both genes. 
(B1) Light image embryo at stage 25. (B2) YFP fluorescence of a positive tailbud embryo. (B3) 
Cyan fluorescence of a positive tailbud embryo. (B4) Negative mCherry fluorescence of the 
same embryo B1-3. (C1) Light image embryo at stage 32. (C2) YFP fluorescence of a positive 
embryo. (C3) Cyan fluorescence of a positive embryo. (A4) Negative mCherry fluorescence of 
the same embryo C1-3. Yellow arrow indicate auto-fluorescences from the yolk. 
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Figure 31. Activation of CreERT2 loxP Recombination in the RPE layer of F0 Transgenic Newts. 
(A) Newt larva treated with 10µM of OH-Tamoxifen, examined at 12hrs post treatment. The dotted box 
indicating some of target tissue expressing mcherry with Tamoxifen. (B) Retinal section of the sameness 
animal in A. RPE layer is expressing mcherry. The Outer nuclear, inner nuclear and ganglion cell layer 
are not expressing mcherry. Sample was immediately fixed following OH-Tamoxifen treatment, excised 
Cyan protein can be detected up to 36hrs until degradation.( C) Negative control larva not treated with 
OH-Tamoxifen. (D) Retinal section of larva C, retinal layers and RPE layer did not express mcherry.  

Figure 32. On Going Research to Knock Down Pax6 Expression During Early Newt Retinal 
Regeneration. This strategy uses a Conditional Site-Specific (RPE layer) RNAi Silencing System. Pax6 
shRNAi (short hairpin RNA interference ) were inserted into the loxP reporter construct, between 
mcherry and pA. Upon activation of  CreERT2 loxP system, Amcyan will be cut, activating mcherry and 
Pax6 ShRNAi.  Thus RPE cells or early derived cells will express mcherry indicating Pax6 shRNAi is 
active.
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