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Abstract 

The neural crest is unique to vertebrates and has allowed the evolution of their 

complicated craniofacial structure. During vertebrate evolution, the acquisition of the 

neural crest must have been accompanied by the emergence of a new gene regulatory 

network (GRN). Here, to investigate the role of protein evolution in the emergence of 

the neural crest GRN, I examined the neural crest cell (NCC) differentiation-inducing 

activity of chordate FoxD genes. Amphioxus and vertebrate (Xenopus) FoxD proteins 

both exhibited transcriptional repressor activity in Gal4 transactivation assays and 

bound to similar DNA sequences in vitro. However, whereas vertebrate FoxD3 genes 

induced the differentiation of ectopic NCCs when overexpressed in chick neural tube, 

neither amphioxus FoxD nor any other vertebrate FoxD paralogs exhibited this activity. 

Experiments using chimeric proteins showed that the N-terminal portion of the 

vertebrate FoxD3 protein is critical to its NCC differentiation-inducing activity. 

Further-more, replacement of the N-terminus of amphioxus FoxD with a 39-amino-acid 

segment from zebrafishFoxD3 conferred neural crest-inducing activity on amphioxus 

FoxD or zebrafish FoxD1. Therefore, fixation of this N-terminal amino acid sequence 

may have been crucial in the evolutionary recruitment of FoxD3 to the vertebrate 

neural crest GRN. 
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Introduction 

Evolutionary developmental biology (evo-devo) has played an important role in 

elucidating morphological evolution. Especially, through a clarifying the details of gene 

regulation of the development, evo-devo studies have contributed to elucidate the 

molecular context that give rise to morphological novelty. The widely-accepted concept 

of developmental evolution is the “genetic toolkit” (Carroll, 2001) “Toolkit” genes are 

transcription factor and signaling molecules, that regulators patterning of body and 

body parts. Notably, “toolkit” genes are broadly conserved among diverse organisms. 

Therefore, alteration of when and where the “toolkit” genes are expressed during 

embryogenesis is important for morphological evolution. As shown in a lot of evo-devo 

studies which have paid attention for cis-regulatory element of protein coding genes 

(Carroll, 2001, 2005; Davidson, 2006). 

However, Kawashima et al. (2009) have pointed out that novel genes produced by 

domain shuffling may also play a critical role in the evolution of novel structures. They 

showed that genes acquired in the common ancestors of chordates are involved in the 

development of their characteristic features. In the common ancestors of the vertebrates, 

for example, the genes encoding Aggrecan, Occludin, and Tectorin alpha were built up 

by domain shuffling and were perhaps involved in the evolution of cartilage, tight 
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junctions, and tectorial membranes, respectively (Kawashima et al., 2009). 

Novel sequence motifs in transcription factors have also been implicated in the 

evolution of morphologic features. For example, the glutamine–alanine-rich sequence 

(QA domain) of insect Ultrabithorax protein is thought to have been important in the 

evolutionary loss of abdominal appendages (Galant and Carroll, 2002; Ronshaugen et 

al., 2002). Similarly, the N-terminal motif of the Daphnia Antennapedia protein has also 

been implicated in the evolution of their specific appendage morphology (Shiga et al., 

2002). Lynch et al. (2008) presented evidence that modification to HoxA-11 was 

essential in the evolution of mammalian pregnancy, as the modified protein has 

acquired a novel regulatory relationship with the prolactin gene. These studies have 

revealed that the evolution of morphology is driven not only by the molecular evolution 

of cis-regulatory elements but also by the evolution of protein coding sequences.  

 Neural crest cells are vertebrate embryonic cell population that originates from 

ectoderm between neural plate and non-neural ectoderm (neural plate border). Neural 

crest cells migrate throughout the embryo, and differentiate into numerous cell types. 

Neural crest cell is vertebrate novelty and first arose in the ancestors of vertebrates and 

have performed a central role in the evolution of vertebrates, particularly in their 

complicated craniofacial structures (Gans and Northcutt, 1983). The gene regulatory 
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network (GRN) underlying neural crest cell differentiation has been intensively studied. 

The transcription factor genes that are expressed at the neural plate border, including 

Dlx, Zic, Pax3/7 and Msx, are termed the “neural plate border specifiers”. These neural 

plate border specifiers define a region between neural plate and non-neural ectoderm, 

where give rise to neural crest cells (Meulemans and Bronner-Fraser, 2004). The 

transcription factor genes that are expressed in pre-migratory and migrating neural 

crest cells, including Slug/Snail, Foxd3, AP-2, Sox9/10 and Twist are termed the “neural 

crest specifiers”. These neural crest specifiers act downstream of neural plate border 

specifiers, and regulate the fate of neural crest cell by controlling the expression of 

neural crest effectors, such as cadherins and collagens (Meulemans and Bronner-Fraser, 

2004). Notably, in protochordates (both amphioxus and ascidians), homologs of the 

neural plate border specifiers are expressed in the border region between the neural and 

non-neural ectoderm (Holland et al., 1996; Wada et al., 1997; Aniello et al., 1999; 

Holland et al., 1999; Sharman et al., 1999; Caracciolo et al., 2000; Gostling and Shimeld, 

2003; Meulemans and Bronner-Fraser, 2004; Wada and Makabe, 2006; Yu et al., 2008). 

In contrast, homologs of the neural crest specifiers (with the exception of snail/slug) are 

not expressed in the corresponding regions of protochordates; thus, the neural crest 

specifiers are likely to be new recruits to the neural crest GRN (Langeland et al., 1998; 
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Imai et al., 2002; Meulemans and Bronner-Fraser, 2002, 2004; Yu et al., 2004, 2008; 

Wada and Makabe, 2006; Meulemans and Bronner-Fraser, 2007; Wada, 2010). It has 

been proposed that by co-opting neural crest specifier genes into a pre-existing neural 

plate border specification genetic network during early vertebrate evolution, cells at the 

neural plate border region acquired new cellular properties, such as migration and the 

ability to differentiate into diverse cell types, and evolved into neural crest cells 

(Meulemans and Bronner-Fraser, 2004, 2005; Yu, 2010). This idea is supported by 

recent experiments in ascidians showing that ectopic expression of homolog of one of the 

neural crest specifier genes (Twist) can reprogram neural plate border-derived pigment 

cells into migratory mesenchymal cells (Abitua et al., 2012). During this process of 

co-option, some transcription factors may have continued to regulate the same 

downstream genes that they regulated in the ancestral context, only now also in NCCs. 

In addition, they may have acquired new target genes, possibly by gaining the ability to 

physically interact with other transcription factors. This process would have activated 

new target genes in the NCCs that were not activated in the ancestral context. Thus, I 

reason that neofunctionalization of transcription factors might be accompanied by the 

evolutionary fixation of new sequence motifs, particularly those involved in 

intermolecular interactions.  
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In the present study, I focused on the transcription factor FoxD3 (Forkhead box D3). 

Because two rounds of genome duplication occurred during the evolution of vertebrates 

(Putnam et al., 2008), most vertebrate neural crest specifiers have several paralogs in 

vertebrate species but only a single homolog in protochordate species (reviewed in Wada 

and Makabe, 2006). For some other neural crest specifiers, including Sox9/10, snail/slug, 

and AP-2, duplicate paralogs are expressed in vertebrate NCCs (Hilger-Eversheim et al., 

2000; Linker et al., 2000; Hong and Saint-Jeannet, 2005), indicating that co-option of 

these genes occurred before the genome duplications. In contrast, among five known 

vertebrate paralogs of FoxD, only FoxD3 is expressed in the neural crest; the other 

paralogs have retained their ancestral chordate roles in the forebrain, somites, and 

notochord (Kos et al., 2001; Sasai et al., 2001; Yu et al., 2002; Yu, 2010).  

Therefore, I decided to focus on FoxD3 in our attempts to detect specific amino acid 

sequences involved in the neofunctionalization of FoxD underlying neural crest 

specification. In the present study, I examined the molecular evolution underlying the 

neofunctionalization of FoxD3 by examining the NCC differentiation-inducing activity 

of genes of the FoxD family in vertebrates and amphioxus, the most basal group of 

chordates (Bourlat et al., 2006; Putnam et al., 2008). I found that overexpressed in chick 

neural tubes, only vertebrate FoxD3 induces the production of ectopic NCCs; neither 
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amphioxus FoxD nor any other vertebrate FoxD3 paralogs (such as FoxD1 or FoxD5) 

exhibit this activity. Furthermore, by assaying the activity of chimeric FoxD proteins, I 

identified the N-terminal region of the FoxD3 protein as the essential region for ectopic 

induction of NCCs. These results indicate that the involvement of FoxD3 in the GRN of 

NCC differentiation was accompanied by fixation of the N-terminal sequence motif. Our 

findings constitute the first evidence linking the evolution of vertebrate NCCs to the 

molecular evolution of a specific protein sequence. 

 

 

 

 

 

 

 

 

 

 

 



8 
 

Materials and Methods 

FoxD constructs 

FoxD constructs for chick electroporation were made by inserting the complete open 

reading frames of the amphioxus FoxD (AmphiFoxD), zebrafish FoxD1 (zFoxD1), 

zebrafish FoxD3 (zFoxD3), zebrafish FoxD5 (zFoxD5), Xenopus FoxD1 (xFoxD1), 

Xenopus FoxD2 (xFoxD2), Xenopus FoxD3 (xFoxD3), mouse FoxD4 (mFoxD4) into the 

expression vector pCAGGS (Momose et al., 1999). The complete open reading frame of 

zFoxD1, zFoxD3 and zFoxD5 were amplified from total cDNA of adult zebrafish by PRC 

using each primer (Table 1). The complete open reading frames of xFoxD1, xFoxD2 and 

AmphiFoxD were amplified from pCS2+ vectors inserted xFoxD1, xFoxD2, mFoxD4 and 

AmphiFoxD respectively by PCR using each primer (Table 1). The amplified FoxD genes 

were digested by restriction enzymes and inserted into pCAGGS vector by using 

T4-DNA ligase (Promega).  

Chimeric protein constructs were produced by amplifying partial cDNA fragments and 

inserting them into pCAGGS. Partial lamprey FoxD-A gene was amplified from total 

ammocoete larva cDNA of Lethenteron reissneri collected in GOGYO rever in Tochigi 

prefecture by PCR using primers (Table 2). Primer sequences and restriction enzyme 

sites were shown in Table 2. The sequences of the chimeric constructs are shown in 
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Figures 3-8, respectively. I confirmed that no mutation occurred during plasmid 

construction by sequencing. 

 

Plasmid preparation and electroporation of plasmid DNA into chick neural tubes 

Plasmid DNAs were transfected into Escherichia coli cultured in LB (Becton, 

Dickinson and Company) medium 16 hours. After cultured, Plasmid DNAs were 

extracted by using QIAGEN Plasmid Midi Kit or Maxi Kit (QIAGEN). Plasmid DNA 

was electroporated into chick neural tubes essentially as described in Wada et al. (2006). 

Circular plasmid DNA (3 mg/ml) was injected into the neural tube lumen of chick 

embryos at Hamburger–Hamilton (HH) stage 09 at the level of the trunk, and five 

square pulses of 20 mV were applied for 50 msec each. 24 hours after electroporation, 

the embryos (at HH stage 20–22) were fixed for staining. In order to visualize efficiency 

of electroporation, GFP expression vector (pCAGGS-GFP; Wada et al., 2006) was 

co-electroporated. 

 

Immunohistology and in situ hybridization 

After electroporation, embryos were fixed in 4% paraformaldehyde in 

phosphate-buffered saline (PBS) at 4 ℃  for 40 hours, transferred through a 
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methanol/PBS gradient, and stored in 100% methanol at –20℃ until use. Specimens 

were sectioned after frozen in O.C.T. (Optimal Cutting Temperature) compounds 

(Sakura Finetek Japan) by using CM3050 III (Leica). In situ hybridization was 

performed on sectioned specimens following Wada et al. (2006). Immunohistochemical 

analysis was performed with monoclonal antibody of HNK-1 (mouse IgM, Tucker et al., 

1988), and polyclonal antibody against GFP (Clonetech). 
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Results 

Overexpression of vertebrate FoxD1, FoxD2, FoxD4, FoxD5, and amphioxus 

AmphiFoxD do not induce ectopic NCC differentiation in chick embryo 

After gene duplication, five vertebrate FoxD paralogs had undergone 

sub-functionalization and had shared the ancestral function in mesodermal 

differentiation (Yu et al., 2002; Yu, 2010). In addition, only FoxD3 acquired novel 

function in neural crest differentiation aside from mesodermal differentiation through 

neo-functionalization (Yu et al., 2002, Yu 2010). In Hox genes studies, functional 

redundancy among paralog genes has been shown (Condie et al., 1994; Greer et al., 

2000; Tvrdik et al., 2006). On the other hand, Lynch et al. (2008) showed functional 

difference in mammalian HoxA11 genes. Thus, I questioned whether FoxD family genes 

potentially have NCC induction activity. Kos et al. (2001) and Dottori et al. (2001) 

reported that overexpression of chicken FoxD3 in chick neural tubes induces the 

differentiation of ectopic NCCs, as assessed by the expression of the Sox10 transcription 

factor gene and the HNK-1 epitope. I first examined whether the overexpression of 

FoxD3 orthologs from other vertebrate species would exhibit the same activity when 

overexpressed in chick neural tube at the level of trunk. As shown in Fig. 1A-F, 

overexpression of Xenopus FoxD3 (xFoxD3) or zebrafish FoxD3 (zFoxD3) caused 
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marked upregulation of the HNK-1 epitope and Sox10 expression. Thus, FoxD3 

orthologs from distant species of vertebrates can induce the production of ectopic NCCs 

when overexpressed in chick neural tube.  

I next examined the activities of other vertebrate FoxD paralogs. As shown in Figure 1, 

neither zebrafish FoxD1 (zFoxD1), Xenopus FoxD1 (xFoxD1), Xenopus FoxD2 (xFoxD2), 

mouse FoxD4 or zebrafish FoxD5 (zFoxD5) upregulated HNK-1 or Sox10 expression 

when overexpressed in chick neural tubes (Fig. 1G–U). Referring to the phylogeny of the 

FoxD gene family (Yu et al., 2002), I surmised that the sequence motif for ectopic 

induction of NCCs became fixed only in FoxD3 orthologs after the vertebrate genome 

duplications. In support of this conclusion, the overexpression of AmphiFoxD also failed 

to induce any upregulation of HNK-1 or Sox10 expression (Fig. 1V–X). 

 

The N-terminal sequence of FoxD3 is critical for NCC induction 

The amino acid sequence of the DNA-binding, winged-helix motif (WHM) of FoxD3 is 

highly conserved; only one amino acid substitution is specific to the FoxD3 paralogs (Fig. 

9). Thus, differences in the sequence outside of WHM are likely to be responsible for 

specialization of FoxD3 paralog functions. Therefore, to identify the amino acid 

sequence motif of FoxD3 responsible for NCC induction, I tested the activity of two 
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chimeric proteins in which the portion of zFoxD3 N-terminal or C-terminal to the WHM 

was replaced with the corresponding portion of AmphiFoxD. The chimera Z3-Z3-A 

contains the zFoxD3 (Z) sequence N-terminal to the WHM, the zFoxD3 (Z) WHM, and 

the AmphiFoxD (A) sequence C-terminal to the WHM (Fig. 2A, Fig. 3). The inverse 

chimera A-Z3-Z3 contains the AmphiFoxD (A) sequence N-terminal to the WHM, the 

zFoxD3 (Z) WHM, and the zFoxD3 (Z) sequence C-terminal to the WHM (Fig. 2A, Fig. 4). 

I found that the overexpression of the Z3-Z3-A FoxD3 chimera in chick neural tube 

induced the differentiation of ectopic NCCs, as shown by marked upregulation of 

HNK-1 and Sox10 expression (Fig. 2B-D), the A-Z3-Z3 FoxD3 chimera failed to 

significant NCC inducing activity (Fig. 2E-G). Although some A-Z3-Z3 embryos did have 

a small number of ectopic NCCs, the induction activity was rather low relative to that of 

normal zFoxD3. Thus, I concluded that the portion of the protein N-terminal to the 

WHM is critical for the NCC differentiation-inducing activity of FoxD3.  

An amino acid sequence alignment of the N-terminal portion of FoxD proteins revealed 

that N-terminus is conserved in FoxD3 but not in other vertebrate paralogs or in 

amphioxus FoxD (Fig. 2T), suggesting that this conserved region might be important for 

FoxD3 function. To examine this hypothesis, I produced a chimeric FoxD protein in 

which the N-terminal 39 amino acids of AmphiFoxD were replaced with the 
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corresponding amino acids of zFoxD3. This modified AmphiFoxD protein (designated 

Z3A-A-A, Fig. 2A, Fig. 5) induced differentiation of ectopic NCCs when overexpressed in 

chick neural tube (Fig. 2H-J), confirming that evolutionary changes in the N-terminal 

39 amino acids would have been sufficient to confer NCC differentiation-inducing 

activity on the ancestral FoxD transcription factor. Similarly, zFoxD1 protein in which 

the N-terminal 39 amino acids were replaced with those of zFoxD3 (Z3Z1-Z1-Z1, Fig. 2A, 

Fig. 6) also induced differentiation of ectopic NCCs (Fig. 2K-M). On the other hand, 

zFoxD3 whose N-terminal 39 amino acids were replaced with those from AmphiFoxD 

(AZ3-Z3-Z3, Fig. 2A, Fig. 7) scarcely induced ectopic NCCs (Fig. 2N–P). Thus, 

N-terminal 39 amino acids are necessary for FoxD3 to induce NCC differentiation.   

Searches against the NCBI (http://www.ncbi.nlm.nih.gov/guide/proteins/) and PFam 

protein databases (http://pfam.sanger.ac.uk/) yielded no proteins other than FoxD 

proteins containing sequences similar to the N-terminal 39-aa sequence of zFoxD3.  

I then asked when the conserved N-terminal sequence was fixed in chordate evolution. 

FoxD from ascidian Ciona shows expression in melanocytes and endodermal cells (Imai 

et al., 2002; Abitua et al., 2012). Ciona FoxD has a highly divergent sequence in 

N-terminal region, and no conservation observed (Fig. 2T). Thus, the fixation of the 

N-terminal sequence is likely to have occurred after the divergence of vertebrates from 
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invertebrate chordates.  

Lamprey was reported to possess a FoxD family gene (FoxD-A) that is expressed 

during neural crest Q4 differentiation (Sauka-Spengler et al., 2007). The N-terminal 

sequence of lamprey FoxD-A is moderately conserved with those of other vertebrate 

FoxD paralogues (Fig. 2T). I tested the activity of the N-terminal sequence of the 

lamprey FoxD-A by a fusion construct with AmphiFoxD (Fig. 2A, Fig. 8), and found that 

the lamprey N-terminal sequence do not provide HNK-1/Sox10 inducing activity to 

amphioxus FoxD (Fig. 2Q–S). Therefore, lamprey FoxD-A may not be able to substitute 

for the role of gnathostome FoxD3 in the context of chick neural tube. 
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Discussion 

Neofunctionalization of transcription factors 

The evolution of development is fundamentally attributable to evolving gene 

regulation changes. It is generally accepted that morphological evolution is driven by 

co-option of toolkit genes. In other words, acquisitions of novel expression domain of 

transcription factor through changes in cis-regulatory element contribute to altering 

gene regulation (Carroll et al., 2001; Davidson, 2006). On the other hand, mutations in 

protein-coding region of transcription factors are barely considered as a driving force of 

morphological evolution. Because comparing with cis-regulatory element change, 

mutations in protein-coding region have extensive pleiotropic negative effects during 

development (Lynch et al., 2008, Lynch and Wagner, 2008). 

But some evo-devo studies have shown that transcription factors gain a novel function, 

with conserving ancestral function, through evolving new functional domain (Galant et 

al., 2002; Lynch et al., 2008). Because transcription factors often regulate gene 

expression with other transcription factors, new functional domain act as novel 

interface of protein-protein interaction and contribute to get new target genes. In 

protein-mediated evolution, this novel interaction with other transcription factors 

might be essential for acquiring new function. 
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There are evidences of FoxD genes conserving ancestral function. (1) Amphioxus and 

vertebrate FoxD cognates get involved in mesoderm differentiation (Yu et al. 2002; 

Yuasa et al., 1996; Mariani and Harland, 1998; Gomez-Skarmeta et al., 1999; Scheucher 

et al., 1995; Wu et al., 1998; Chang and Kessler, 2010; Sullivan et al., 2001), (2) 

amphioxus and vertebrate FoxD cognates act as transcriptional repressors that bind to 

similar DNA sequences (Ono et al. 2013), (3) FoxD3 is known to work primarily as a 

transcriptional repressor via a Groucho-like repressor-interaction motif in its 

C-terminal domain (Sutton et al., 1996; Pohl and Knöchel, 2001; Sasai et al., 2001; 

Steiner et al., 2006; Yaklichkin et al., 2007; but note that in some context, it was 

suggested that vertebrate FoxD3 functions as a transcriptional activator; e.g., Liu and 

Labosky, 2008). This motif is required for FoxD3 to induce the differentiation of dorsal 

mesoderm in Xenopus embryos (Yaklichkin et al., 2007) and is conserved in AmphiFoxD. 

In addition, our findings suggest that it is required for FoxD genes to play their 

ancestral role in mesoderm development and transcription factor FoxD3 underwent 

“additive manner” of functional evolution via protein changes during the acquisition of 

its novel ability to induce NCC differentiation.  

The NCC differentiation-inducing function of FoxD3 is unique to vertebrates, and has 

arisen through the fixation of a specific N-terminal amino acid sequence not present in 
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AmphiFoxD or Ciona FoxD. And the result of domain searches suggest N-terminal 

amino acid sequence of vertebrate FoxD3 has evolved through short linear motifs 

(SLiM) switches (Neduva and Russell, 2005; Lohr et al., 2001; Galant and Carroll, 2002), 

neither domain shuffling (Kawashima et al., 2009) nor simple sequence repeats (SSRs) 

(Sears et al. 2007). Because of its short lengh and discontinuous arrangement of amino 

acids, in contrast to normal structural domain and SSRs, SLiMs are hard to identify. To 

find out the advanced neural crest inducing amino acid sequence, more experimental 

procedures will be needed (e.g., single amino acid replacement experiments). And also, I 

found that, although lampreys possess migratory neural crest cells, the N-terminal 

sequence of the lamprey FoxD-A did not provide HNK-1/Sox10-inducing activity when 

fused with AmphiFoxD. This observation may reflect the variation in the distal part of 

the lamprey neural crest gene regulatory network compared with that in gnathostomes 

(Sauka-Spengler et al., 2007; Nikitina and Bronner-Fraser, 2009). In the lamprey 

embryo, several neural crest specifier genes including c-Myc, Id, AP2 and Snail are 

deployed earlier than FoxD3 and SoxE family genes, suggesting that the regulatory 

linkages among lamprey neural crest specifier genes might be slightly different. 

Alternatively, this lack of activity may simply be due to technical issues; i.e., N-terminal 

portion of the lamprey FoxD-A may perform the same role during neural crest 
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differentiation, but just cannot work in the cellular context of the chick neural tube, 

possibly due to the divergence of the amino acid sequence in the counterpart proteins.  

In either case, this N-terminal amino acid sequence must constitute a new interface 

critical for FoxD3 to function in the GRN of NCC differentiation. Thomas and Erickson 

(2009) indicated that FoxD3 represses Mitf expression in avian neural crest cells, and 

thus suppress neural crest cells from differentiation into pigment cells. This effect of 

FoxD3 on Mitf expression is not dependent on the DNA binding, but on sequestration of 

Pax3. Abitua et al. (2012) showed that ascidian FoxD also suppresses Mitf expression. 

Moreover, they indicated that its portion N-terminal to WHM is sufficient for this 

suppression. These studies may suggest that the N-terminal sequence unique to 

vertebrate FoxD3 may be involved in the interaction with Pax3 or other transcription 

factors, and those interactions may confer the new functions of FoxD3 protein in 

vertebrate neural crest development. 

 

Evolution of the neural crest GRN 

For those interested in the evolutionary origin of vertebrates, an understanding of the 

evolution of the neural crest GRN is critical. That the neural crest regulatory genes can 

be divided into neural plate border specifiers and NCC specifiers illuminates the 
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stepwise evolution of the neural crest GRN. Because protochordate neural plate border 

specifiers, like those of vertebrates, are expressed in the corresponding region between 

the neural and non-neural ectoderm (Meulemans and Bronner-Fraser, 2004; Yu et al., 

2008; Yu, 2010), their eventual involvement in NCC differentiation would not require a 

change in their expression patterns. Thus, as the first step in the evolution of the neural 

crest GRN, the border specifiers have to recruit a set of genes (neural crest specifiers) as 

their downstream targets. These genes may not have been recruited simultaneously. 

Duplicate paralogs of SoxE, snail/slug, and AP-2 are expressed in NCCs, indicating that 

recruitment of these genes to the neural crest GRN occurred before the genome 

duplications (Wada and Makabe, 2006). In contrast, among the five known vertebrate 

FoxD paralogs, only FoxD3 is expressed in the neural crest (Yu et al., 2002,2004; Wada 

and Makabe, 2006). Therefore, FoxD3 might have been recruited slightly later than the 

other neural crest specifiers, after the genome duplications. The second step in the 

evolution of the neural crest GRN might be the acquisition of target effector genes, such 

as cadherin and collagen genes, for the neural crest specifiers. Interestingly, these 

effector genes appear to have been present during the vertebrate genome duplications 

but, in several cases, only certain paralogs were recruited as neural crest effectors (e.g., 

cadherin6, cadherin7, col2a1, and rhoB), suggesting that neofunctionalization of some 
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effectors to NCC development occurred after the genome duplications (Wada and 

Makabe, 2006). Actually, cadherin7 was suggested as direct FoxD3 target (Dottori et al. 

2001). Therefore, the neural crest GRN may have been completed by the recruitment of 

some novel target genes after the genome duplications. During its evolution, the neural 

crest GRN must have gained several new regulatory interactions, probably through the 

acquisition of new cis-regulatory regions by target genes (Yu et al., 2008). In addition, 

because most of the transcription factor genes in the neural crest GRN function not only 

in NCCs but also in other cells, interactions between transcription factors may be 

essential for NCC-specific regulation of target gene expression. Our FoxD fusion 

construct studies have shown that the N-terminal region of FoxD3 is critical for its role 

in neural crest development. SoxE, on the other hand, may not have a fixed motif 

specific to neural crest development, because Drosophila SoxE can substitute 

functionally for vertebrate SoxE in NCC differentiation (Cossais et al., 2010). 

Examination of the neural crest GRN from the aspect of interactions between 

transcription factors may shed new light on neural crest evolution, and will provide 

more general insight on how novel GRNs emerged during evolution. 

 

 



22 
 

Acknowledgement 

I thank Jr-Kai Yu for the pCS2+ plasmids inserted Xenopus FoxD cognates, Yoshio 

Wakamatsu for pBluescript inserted chicken Sox10, Hiroshi Wada for the leads, helpful 

discussion of this research, and all colleagues of Wada’s lab. for technical advices. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

References 

Abitua, P.B., Wagner, E., Navarrete, I.A., Levine, M., 2012. Identification of a 

rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104–107. 

Aniello, F., Locascio, A., Villani, M.G., Gregorio, A.D., Fucci, L., Branno, M., 1999. 

Identification and developmental expression of Ci-msxb: a novel homologue of 

Drosophila msh gene in Ciona intestinalis. Mech. Dev. 88, 123–126. 

Bourlat, S.J., Juliusdottir, T., Lowe C.J., Freeman, R., Aronowicz, J., Kirschner, M., 

Lander, E.S., Thorndyke, M., Nakano, H., Kohn, A.B., Heyland, A., Moroz, L.L., 

Copley, R.R., Telford, M.J., 2006. Deuterostome phylogeny reveals monophyletic 

chordates and the new phylum Xenoturbellida. Nature 444, 85–88. 

Caracciolo, A., Gregorio, A.D., Aniello, F., Lauro, R.D., Branno, M., 2000. Identification 

and developmental expression of three Distal-less homeobox containing genes in the 

ascidian Ciona intestinalis. Mech. Dev. 99, 173–176. 

Carroll, S.B., Greiner, J.K., Weatherbee, S.D., 2001. From DNA to diversity. Blackwell, 

Malden.  

Carroll, S.B., 2005. Evolution at two levels: on genes and form. PLoS Biol 3,1159–1166 

Chang, L.L., Kassler, D.S., 2010. Foxd3 is an essential Nodal-dependent regulator of 

zebrafish dorsal mesoderm development. Dev. Biol. 342:39-50 



24 
 

Condie, B.G., Capecchi, M.R., 1994. Mice with targeted disruptions in the paralogous 

genes hoxa-3 and hoxd-3 reveal synergistic interactions. Nature 370:304–307. 

Cossais, F., Sock, E., Horning, J., Schreiner, S., Kellerer, S., Bösl, M.R., Russel, S., 

Wegner, M., 2010. Replacement of mouse Sox10 by the Drosophila ortholog Sox100B 

provides evidence for co-option of SoxE proteins into vertebrate-specific 

gene-regulatory networks through altered expression. Dev. Biol. 341, 267–281. 

Davidson, E.H., 2006. The Regulatory Genome. Academic Press, San Diego. 

Dottori, M., Gross, M.K., Labosky, P., Goulding, M., 2001. The winged-helix 

transcription factor Foxd3 supresses interneuron differentiation and promotes neural 

crest cell fate. Development 128, 4127–4138. 

Galant, R., Carroll, S.B., 2002. Evolution of a transcriptional repression domain in an 

insect Hox protein. Nature 415, 910–913. 

Gans, C., Northcutt, R.G., 1983. Neural crest and the origin of vertebrates: a new head. 

Science 220, 268–274. 

Gomez-Skarmeta JL, de la Calle-Mustienes E, Modolell J, Mayor R., 1999. Xenopus 

brain factor-2 controls mesoderm, forebrain and neural crest development. Mech. Dev, 

80,15-27 

Gostling, N.J., Shimeld, S.M., 2003. Protochordate Zic genes define primitive somite 



25 
 

compartments and highlight molecular changes underlying neural crest evolution. 

Evol. Dev. 5, 136–144. 

Greer, J.M., J. Puetz,. Thomas K.R., Capecchi, M.R., 2000.Maintenance of functional 

equivalence during paralogous Hox gene evolution. Nature 403, 661–665. 

Hilger-Eversheim, K., Moser, M., Schorle, H., Buettner, R., 2000. Regulatory roles of 

AP-2 transcription factors in vertebrate development, apoptosis and cell-cycle control. 

Gene 260, 1–12. 

Holland, L.Z., Schubert, M., Kozmik, Z., Holland, N.D., 1999. AmphiPax3/7, an 

amphioxus paired box gene: insights into chordate myogenesis, neurogenesis, and the 

possible evolutionary precursor of definitive vertebrate neural crest. Evo. Dev. 1, 153–

165. 

Holland, N.D., Panganiban, G., Henyey, E.L., Holland, L.Z., 1996. Sequence and 

developmental expression of AmphiDll, an amphioxus Distal-less gene transcribed in 

the ectoderm, epidermis and nervous system: insights into evolution of craniate 

forebrain and neural crest. Development 122, 2911–2920. 

Hong, C.-S., Saint-Jeannet, J.-P., 2005. Sox proteins and neural crest development. Sem. 

Dev. Biol., 16. 

Imai, K.S., Satoh, N., Satou, Y., 2002. An essential role of FoxD gene in notochord 



26 
 

induction in Ciona embryos. Development 129, 3441–3453. 

Kawashima, T., Kawashima, S., Tanaka, C., Murai, M., Yoneda, M., Putnam, N.H., 

Rokhsar, D.S., Kanehisa, M., Satoh, N., Wada, H., 2009. Domain shuffling and the 

evolution of vertebrates. Genome Res. 19, 1393–1403. 

Kos, R., Reedy, M.V., Johnson, R.L., Erickson, C.A., 2001. The winged-helix 

transcription factor FoxD3 is important for establishing the neural crest lineage and 

repressing melanogenesis in avian embryos. Development 128, 1467–1479. 

Langeland, J., Tomsa, J.M., Jackman, W.R., Kimmel, C.B., 1998. An amphioxus snail 

gene: expression in paraxial mesoderm and neural plate suggests a conserved role in 

patterning the chordate embryo. Dev. Genes Evol. 208, 569–577. 

Linker, C., Bronner-Fraser, M., Mayor, R., 2000. Relationship between gene expression 

domains of Xsnail, Xslug, and Xtwist and cell movement in the prospective neural 

crest of Xenopus. Dev. Biol. 224, 215–225. 

Liu, Y., Labosky, P.A., 2008. Regulation of embryonic stem cell self-renewal and 

pluripotency by Foxd3. Stem Cells 26, 2475–2484. 

Lohr, U., Yussa, M., Pick, L., 2001. Drosophila fushi tarazu: a gene on the border of 

homeotic function. Curr. Biol. 11,1403–1412. 

Lynch, V.J., Tanzer, A., Wang, Y., Leung, F.C., Gellersen, B., Emera, D., Wagner, G.P., 



27 
 

2008. Adaptive changes in the transcription factor HoxA-11 are essential for the 

evolution of pregnancy in mammals. Proc. Natl. Acad. Sci. U.S.A. 105, 14928–14933. 

Lynch, VJ., Wagner, GP. 2008. Resurrecting the role of transcription factor change in 

developmental evolution. Evolution 62:2131-2154 

Mariani FV, Harland RM. 1998. XBF-2 is a transcriptional repressor that converts 

ectoderm into neural tissue. Development 125:5019–5031. 

Meulemans, D., Bronner-Fraser, M., 2002. Amphioxus and lamprey AP-2 genes: 

implications for neural crest evolution and migration pattern. Development 129, 

4953–4962. 

Meulemans, D., Bronner-Fraser, M., 2004. Gene-regulatory interactions in neural crest 

evolution and development. Dev. Cell 7, 291–299. 

Meulemans, D., Bronner-Fraser, M., 2005. Central role of gene cooption in neural crest 

evolution. J. Exp. Zool. B Mol. Dev. Evol. 304, 298–303. 

Meulemans, D., Bronner-Fraser, M., 2007. Insights from amphioxus into the evolution 

of vertebrate cartilage. PLoS ONE 2, e787. 

Momose, T., Tonegawa, A., Takeuchi, J., Ogawa, H., Umesono, K., Yasuda, K., 1999. 

Efficient targeting of gene expression in chick embryos by microelectroporation. Dev. 

Growth Differ. 41, 335–344. 



28 
 

Neduva, V., Russell, R.B., 2005. Linear motifs: evolutionary interaction switches. FEBS 

Lett. 579:3342–3345. 

Nikitina, N.V., Bronner-Fraser, M., 2009. Gene regulatory networks that control the 

specification of neural-crest cells in the lamprey. Biochem. Biophys. Acta 1789, 274–

278. 

Pohl, B.S., Knöchel, W., 2001. Overexpression of the transcriptional repressor FoxD3 

prevents neural crest formation in Xenopus embryos. Mech. Dev. 103, 93–106. 

Putnam, N.H., Butts, T., Ferrier, D.E.K., Furlong, R.F.,  Hellsten, U., Kawashima, T., 

Robinson-Rechavi, M., Shoguchi, E., Terry, A., Yu, J.K., Benito-Gutirrez, E.,  

Dubchak, I., Garcia-Fernendez, J., Gibson-Brown, J.J., Grigoriev, I.V., Horton, A.C., 

de Jong, P.J., Jurka, J., Kapitonov, V.V., Kohara, Y., Kuroki, Y., Lindquist, E., Lucas, 

S., Osoegawa, K., Pennacchio, L.A., Salamov, A.A., Satou, Y., Sauka-Spengler, T., 

Schmutz, J., Shin-I, T., Toyoda, A., Bronner-Fraser, M., Fujiyama, A., Holland, L.Z., 

Holland, P.W.H., Satoh, N., Rokhsar, D.S., 2008. The amphioxus genome and the 

evolution of the chordate karyotype. Nature 453, 1064–1071. 

Ronshaugen, M., McGinnis, N., McGinnis, W., 2002. Hox protein mutation and 

macroevolution of the insect body plan. Nature 415, 914–917. 

Sasai, N., Mizuseki, K., Sasai, Y., 2001. Requirement of FoxD3-class signaling for 



29 
 

neural crest determination in Xenopus. Development 128, 2525–2536. 

Sauka-Spengler, T., Meulemans, D., Jones, M., Bronner-Fraser, M., 2007. Ancient 

evolutionary origin of the neural crest gene regulatory network. Dev. Cell 13, 405–

420. 

Scheucher M, Dege P, Lef J, Hille S, Kno ¨chel W. 1995. Transcription patterns of four 

different fork head/HNF-3 related genes (XFD-4, 9 and 10) in Xenopus laevis embryos. 

Rouxs Arch Dev. Biol. 204,203–211. 

Sears, K. E., A. Goswami., Flynn, J.J., Niswander, L.A., 2007. The correlated evolution 

of Runx2 tandem repeats, transcriptional activity, and facial length in carnivora. Evol. 

Dev. 9,555–565. 

Sharman, A.C., Shimeld, S.M., Holland, P.W.H., 1999. An amphioxus Msx gene 

expressed predominantly in the dorsal neural tube. Dev. Genes Evol. 209, 260–263. 

Shiga, Y., Yasumoto, R., Yamagata, H., Hayashi, S., 2002. Evolving role of antennapedia 

protein in arthropod limb patterning. Development 129, 3555–3561. 

Steiner, A.B., Engleka, M.J., Lu, Q., Piwarzyk, E.C., Yaklinchkin, S., Lefebvre, J.L., 

Walters, J.W., Pineda-Salgado, L., Labosky, P.A., Kessler, D.S., 2006. FoxD3 

regulation of nodal in Spemann organizer is essential xenopus dorsal mesoderm 

development. Development 133, 4827–4838. 



30 
 

Sullivan SA, Akers L, Moody SA. 2001. foxD5a,a Xenopus winged helix gene, maintains 

an immature neural ectoderm via transcrip-tional repression that is dependent on the 

C-terminal domain. Dev Biol 232:439–457. 

Sutton, J., Costa, R., Klung, M., Field, L., Xu, D., Largaespada, D.A., Fletcher, C.F., 

Jenkins, N.A., Copeland, N.G., Klemsz, M., Hromas, R., 1996. Genesis, a winged helix 

transcriptional repressor with expression restricted to embryonic stem cells. J. Biol. 

Chem. 271, 23126–23133. 

Thomas, A.J., Erickson, C.A., 2009. FOXD3 regulates the lineage switch between neural 

crest-derived glial cells and pigment cells by repressing MITF through a 

non-canonical mechanism. Development 136, 1849–1858. 

Tvrdik, P. and M. R. Capecchi. 2006. Reversal of Hox1 Gene Subfunctionalization in the 

Mouse. Develop. Cell 11:239–250. 

Wada, H., Makabe, K., 2006. Gnome duplications of early vertebrates as a possible 

chronicle of the evolutionary history of the neural crest. Int. J Biol. Sci. 2,133-141 

Wada, H., 2010. Origin and genetic evolution of the vertebrate skeleton. Zool. Sci. 27, 

119–123. 

Wada, H., Escriva, H., Zhang, S., Laudet, V., 2006. Conserved RARE localoization in 

amphioxus Hox clusters and implications for Hox code evolution in the vertebrate 



31 
 

neural crest. Dev. Dyn. 235, 1522–1531. 

Wada, H., Holland, P.W.H., Sato, S., Yamamoto, H., Satoh, N., 1997. Neural tube is 

partially dorsalized by overexpression of HrPax-37: the ascidian homologue of Pax-3 

and Pax-7. Dev. Biol. 187, 240–252. 

Wada, H., Makabe, K., 2013. Genome duplications of early vertebrates as a possible 

chronicle of the evolutionary history of the neural crest. Int. J. Bio. Sci(In press). 

Wu, S.C., Grindley, J., Winnier, G.E., Hargett, L., Hogan, B.L., 1998. Mouse 

Mesenchyme forkhead 2 (Mf2): expression, DNA binding and induction by sonic 

hedgehog during somitogenesis. Mech. Dev. 70, 3–13. 

Yaklichkin, S., Steiner, A.B., Lu, Q., Kessler, D.S., 2007. FoxD3 and Grg4 physically 

interact to repress transcription and induce mesoderm in Xenopus. J. Biol. Chem. 282, 

2548–2557. 

Yu, J.-K., Holland, N.D., Holland, L.Z., 2002. An amphioxus winged helix/forkhea gene, 

AmphiFoxD: insights into vertebrate neural crest evolution. Dev. Dyn. 225, 289–297. 

Yu, J.-K., Holland, N.D., Holland, L.Z., 2004. Tissue-specific expression of FoxD reporter 

constructs in amphioxus embryos. Dev. Biol. 274, 452–461. 

Yu, J.K., Meulemans, D., McKeown, S.J., Bronner-Fraser, M., 2008. Insights from the 

amphioxus genome on the origin of vertebrate neural crest. Genome Res. 18, 1127–



32 
 

1132. 

Yu, J.K.S., 2010. The evolutionary origin of the vertebrate neural crest and its 

developmental gene regulatory network – insights from amphioxus. Zoology 113, 1–9. 

Yuasa J, Hirano S, Yamagata M, Noda M. 1996. Visual projection map specified by 

topographic expression of transcription factors in the retina. Nature 382:632–635. 



Tables and Figures

33



Amphioxus FoxD F

Amphioxus FoxD R

zebrafish FoxD1 F 

zebrafish FoxD1 R 

zebrafish FoxD3 F 

zebrafish FoxD3 R 

zebrafish FoxD5 F 

zebrafish FoxD5 R

Xenopus FoxD1 F 

Xenopus FoxD1 R 

Xenopus FoxD3 F 

Xenopus FoxD3 R 

Xenopus FoxD2 F 

Xenopus FoxD2 R

mouse FoxD4 F

mouse FoxD4 R

Table 1

GGCTCGAGATGACCCTGTCTGGAGGCAC

GGGGATCCTCATTGAGAAGGCCATTTCGA

GGGTCGACATGTCGGACAGTTCTGCTCT

GGGGATCCCTAGAAATGGCAATTGTTAAG

GGGAATTCATGACCCTCTCCCAGGATTA

GGCTCGAGTCAACAGTGAGGATAAACCAT

GGGAATTCATGCTTCTCGAGGCGGACGC

GGGTCGACTCACGAGTGCACGTGCGGCCA

Primer names Primer sequences 

(underlines are restriction site)

Restriction enzyme

names

EcoRI

SalI

SalI

BamHI

XhoI

BamHI

EcoRI

XhoI

GGCTCGAGATGAACTCAGCAAGAGCTGG

GGGATATCTTAAAATTCGGGCAAGGTCCC

XhoI

EcoRV

GGCTCGAGATGACTTTGGGCACAGAGAT

GGGATATCTTAAAACTCACAGCTCTTAAG

GGGAATTCATGACCCTGTCAAGCAGCGG

GGCTCGAGTTATTGCGCTGGCCATTTGGC

GGGAATTCATGACTCTGAGCTCTGACAT

GGCTCGAGCTAGTGGTTTGTAAGCACCGT

EcoRI

XhoI

XhoI

EcoRV

EcoRI

XhoI
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Table 2

Primer names

(constructs name)

Primer sequences 

(underlines are restriction site)

Restriction enzyme

names

Z3-Z3-A zebrafish R GGGTCGACCCTGAGAATGTCCGGCTGATG SaｌI

Z3-Z3-A Amphioxus F GGCTCGAGCCCACGGCCTTCATGGCGGCC XhoI

A-Z3-Z3 zebrafish F GGTCTAGAATGACCCTGTCTGGAGGCAC XbaI

A-Z3-Z3 Amphioxus F GGTCTAGAATGCTTCTCGAGGCGGACGC XbaI

A-Z3-Z3 Amphioxus R GGGAGCTCTCCACGTCTGTATTCTCCGCG SacI

Z3A-A-A zebrafish F GGGAATTCATGACCCTGTCTGGAGGCAC EcoRI

Z3A-A-A zebrafish R GGTCTAGAGTCCTGCTCCATCCCCTCGTC XbaI

Z3A-A-A Amphioxus GGGCTAGCCAGGGGAGCCATCCACAGGGC NheI

Z3Z1-Z1-Z1 dfoxd3 F GGCTCGAGATGACCCTGTCTGGAGGCACC XhoI

Z3Z1-Z1-Z1 dfoxd3 R GGGCTAGCACTGTCCTGCTCCATCCCCTC NhaI

Z3Z1-Z1-Z1 dfoxd1 F GGTCTAGATTGGACAATGACTCCGATGAC XbaI

Z3Z1-Z1-Z1 dfoxd1 R GGGGATCCCTAGAAATGGCAATTGTTAAG BamHI

AZ3-Z3-Z3  dfoxd3 F GGGATATCGACTGCGAAAGCCAGTGCATG EcoRV

AZ3-Z3-Z3 dfoxd3 R GGGGATCCTCATTGAGAAGGCCATTTCGA BamHI

AZ3-Z3-Z3 afoxd F GGGTCGACATGCTTCTCGAGGCGGACGCC SalI

AZ3-Z3-Z3 afoxd R GGGATATCGCTGGTCATCTCCCGGGGAAG EcoRV

LA-A-A lfoxda F GGGAATTCATGACCCCGCTCTCCGGGTCC EcoRI

LA-A-A lｆoxda R GGGCTAGCAGCGTCGTCGCTGTCACC NheI

LA-A-A adoxd F GGGAATTCGCTACGAGCCAGGGGAGCCAT EcoRI, NheI

LA-A-A adoxd R GGGATATCTCACGAGTGCACGTGCGG EcoRV
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Figure legends
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Figure 1
Effect of FoxD overexpression on HNK-1 antigen and Sox10 expressions in chick 
neural tube. Upregulation of the HNK-1 epitope (middle column: B, E, H, K. N, Q, 
T,W) and Sox10 (right column: C, F, I, L, O, R, U, X) were induced by zebrafish FoxD3 
(zFoxD3) and xFoxD3, but not by zFoxD1, xFoxD1, xFoxD2, mouse FoxD4, zFoxD5, or
AmphiFoxD. Transfected cells were visualized by anti-GFP antibody in adjacent 
sections of embryos in which GFP-pCAGGS were co-electroporated (left column: A, D, 
G, J, M, P, S, V). Ectopic expression of the FoxD proteins was induced on the left-hand 
side of the neural tube. Numbers in the panel show the number of embryos in which 
marker overexpression was observed as a fraction of the number of embryos examined.

Figure 2 
Effect of overexpression of chimeric FoxD proteins on Sox10 and HNK-1 epitope 
expression in chick neural tube. (A) Schematic illustrations of chimeric protein
constructs, where amino acid segments from zFoxD3, AmphiFoxD, zFoxD1 and 
lamprey FoxD-A are shown in red, blue, orange and magenta respectively. 
Upregulation of the HNK-1 epitope (middle column: C, F, I, L, O, R) and Sox10 (right 
column: D, G, J, M, P, S) were induced by chimeric constructs: Z3-Z3-A, Z3A-A-A and 
Z3Z1-Z1-Z1, but only fairly induced by A-Z3-Z3, AZ3-Z3-Z3 or LA-A-A. Transfected 
cells were visualized by anti-GFP antibody in adjacent sections of embryos in which 
GFP-pCAGGS were co-electroporated (left column: B, E, H, K. N, Q). Ectopic 
expression of the FoxD proteins was induced on the left-hand side of the neural tube. 
Numbers in the panel show the number of embryos in which marker overexpression 
was observed as a fraction of the number of embryos examined. (T) Amino acid 
sequence alignment of the N-terminal portions of proteins encoded by genes of the 
FoxD family. The 39-aa N-terminal segment conserved in FoxD3 genes is shaded 
green.

Figure 3
The nucleotide sequence and amino acid sequence of chimeric FoxD constract Z3-Z3-A. 
The segment of zebrafish FoxD3 sequence is shaded magenta, and amphioxus FoxD
sequence is shaded cyan. The location of DNA-binding motif, winged-helix motif is 
underlined. 

Figure 4
The nucleotide sequence and amino acid sequence of chimeric FoxD constract A-Z3-Z3. 
The segment of zebrafish FoxD3 sequence is shaded magenta, and amphioxus FoxD
sequence is shaded cyan. The location of DNA-binding motif, winged-helix motif is 
underlined. 
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Figure 5
The nucleotide sequence and amino acid sequence of chimeric FoxD constract Z3A-A-
A. The segment of zebrafish FoxD3 sequence is shaded magenta, and amphioxus 
FoxD sequence is shaded cyan. The location of DNA-binding motif, winged-helix motif 
is underlined. 

Figure 6
The nucleotide sequence and amino acid sequence of chimeric FoxD constract Z3Z1-
Z1-Z1. The segment of zebrafish FoxD3 sequence is shaded magenta, and zebrafish
FoxD1 sequence is shaded orange. The location of DNA-binding motif, winged-helix 
motif is underlined. 

Figure 7
The nucleotide sequence and amino acid sequence of chimeric FoxD constract AZ3-Z3-
Z3. The segment of zebrafish FoxD3 sequence is shaded magenta, and amphioxus 
FoxD sequence is shaded cyan. The location of DNA-binding motif, winged-helix motif 
is underlined. 

Figure 8
The nucleotide sequence and amino acid sequence of chimeric FoxD constract LA-A-A. 
The segment of lamprey FoxD-A sequence is shaded purple, and amphioxus FoxD
sequence is shaded cyan. The location of DNA-binding motif, winged-helix motif is 
underlined. 

Figure 9
The alignment of amino acid sequence of  the DNA-binding, winged-helix motif among 
FoxD cognates. Only one amino acid substitution is specific to the FoxD3 paralogs.
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