
A Study on Large Scale Graph Analysis Using
Eigen Decomposition and Tensor Decomposition

Koji Maruhashi

March 2014

Graduate School of Systems and Information Engineering
University of Tsukuba

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy in Engineering

ii

Abstract

The focus of this thesis is anomaly detection and path analysis of large scale,
real world graphs. We mainly focus on detecting anomalous sub-structures
from large scale static and unlabeled graph data, whose adjacency informa-
tion can be represented as matrices or tensors, i.e., adjacency matrices or
adjacency tensors. These graphs include simple undirected graphs, bipartite
graphs, and k-partite k-uniform hypergraphs (k,k-hypergraphs).

The main motivation of this thesis is to detect anomalous patterns re-
lated to community structures and path capacities in graph data. We con-
sider a clique-like sub-structure as a “community”, which is a set of nodes in
which almost all possible combinations of nodes have common edges. Path
capacity is the number of l-hops paths between two sets of nodes. None of
the existing works on anomaly detection in graph data did not consider the
path capacities between nodes and community structures.

The core intuition behind this thesis is that nodes can be projected
on a low dimensional space in which path capacities between each pair of
nodes can be roughly estimated, by low rank approximation of adjacency
matrices or adjacency tensors. As we discuss in the preliminary section, the
coordinates of nodes have high absolute values for important nodes in the
graph, and exponentially decay as nodes are separated from the important
nodes. Most of existing data mining related works using such coordinates
pay attention only to high absolute values, and this means that these works
only consider the important nodes themselves. We utilize the coordinates
of even very low absolute values, which enables us to deal with the path
capacities between all nodes and the important nodes.

Based on above intuition, we tackled three problems in this thesis. (1)
Anomaly detection of k,k-hypergraph: We defined anomalous clique-like
patterns located far from important nodes, and spot such patterns by de-
tecting spikes of coordinates of nodes obtained by tensor decomposition of
the adjacency tensor. (2) Pattern discovery of bipartite graph: We spot
several connection patterns related to community structures by detecting
linear-like patterns from the distributions of the node properties correspond-
ing to singular vectors of the adjacency matrix. (3) Shortest path distance
estimation: We estimate the short distances more accurately than exist-
ing methods using landmark nodes, by approximating the adjacency matrix
multiplied by k using a small number of eigenvalues and eigenvectors of the
adjacency matrix.

iv

Acknowledgments

First, I would like to thank my advisors in University of Tsukuba. Hiroyuki
Kitagawa, Toshiyuki Amagasa, and Tetsuya Sakurai gave me many helpful
advices.

I cannot complete a lot of works in this thesis without great help of Chris-
tos Faloutsos and Fan Guo, my collaborators during my stay at Carnegie
Mellon University.

The work on this thesis was supported by Fujitsu Laboratories Ltd, and I
thank my colleagues in the company, Nobuhiro Yugami, Junichi Shigezumi,
and many other colleagues.

I wish to thank my family for supporting my life. I thank my parents
and parents-in-law for great help. And, above all, I thank Hiromi, my wife,
and Miyuu and Yuji, my children, for always being there and making me
happy.

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview of the Thesis . 5

2 Related Works 7
2.1 Anomaly Detection . 8

2.1.1 Types of Anomaly Detection 8
2.1.2 Anomaly Detection of Graph Data 10

2.2 Community Detection . 11
2.2.1 Similarity-based Method 12
2.2.2 Cut-based Method . 12
2.2.3 Information-theoretic Method 13
2.2.4 Modularity-based Method 13
2.2.5 Clique-based Method 14

2.3 Path Analysis . 14
2.3.1 Centrality Analysis . 15
2.3.2 Shortest Path Distance Estimation 16

2.4 Tensor Decomposition . 17
2.4.1 Tucker and CP Decomposition 17
2.4.2 Non-negative Tensor Factorization 18
2.4.3 Boolean Tensor Factorization 19

3 Preliminaries 21
3.1 Definitions . 21

3.1.1 Notations . 21
3.1.2 Basic Operation of Matrix and Tensor 22
3.1.3 Graph and k,k-Hypergraph 24
3.1.4 Adjacency Matrix and Adjacency Tensor 25
3.1.5 Community Structure 25

vii

3.2 Matrix and Tensor Decomposition 26
3.2.1 Eigen Decomposition 26
3.2.2 Singular Value Decomposition 27
3.2.3 Tensor Decomposition 28
3.2.4 Common Properties of Decompositions 29

3.3 Datasets Used . 37

4 Anomaly Detection Using Tensor Decomposition 43
4.1 Introduction . 44
4.2 Related Work . 47
4.3 Problem Definition and Algorithm 47

4.3.1 Problem Definition . 48
4.3.2 Algorithm Overview 48
4.3.3 Data Decomposition 49
4.3.4 Spike Detection in Histograms 50
4.3.5 Visualization . 52
4.3.6 Substructure Discovery 53

4.4 Evaluation of Accuracy and Scalability 58
4.4.1 Putting Synthesized Anomalies on Datasets 58
4.4.2 Compared Method . 59
4.4.3 Accuracy of Detecting Anomalies 59
4.4.4 Scalability . 61

4.5 Empirical Results on Real Data 61
4.5.1 Data and Environment 61
4.5.2 LBNL Traffic Log . 64
4.5.3 RTW Knowledge Base 65
4.5.4 BDGP Gene Annotation 66

4.6 Conclusion . 67

5 Pattern Discovery Using Singular Value Decomposition 69
5.1 Introduction . 70
5.2 Related Work . 73
5.3 The Method . 73

5.3.1 Problem Definition . 73
5.3.2 Preliminary - Main idea 74
5.3.3 Plotting Properties of the Nodes 75
5.3.4 Patterns in DS-plot 76
5.3.5 Patterns in SDSD-plot 79

5.4 Proposed Tool: EigenDiagnostics 81
5.4.1 Main Algorithm . 81

viii

5.4.2 Modified Hough Transform for Automatic Line Detec-
tion . 81

5.4.3 Pick Up Representative Nodes 82
5.5 Experimental Evaluation . 84

5.5.1 Experimental Setup and Datasets 84
5.5.2 Experiment on Real Data 85
5.5.3 Scalability . 89

5.6 Conclusions . 89

6 Shortest Path Distance Estimation Using Eigen Decompo-
sition 97
6.1 Introduction . 98
6.2 Related Work . 99
6.3 Proposed Method . 99

6.3.1 Problem Definition . 99
6.3.2 Computing Distances by Eigenvectors 100
6.3.3 Estimating Distances by Eigenvectors 101
6.3.4 How to Determine Thresholds 101
6.3.5 Estimating Distances More Accurately 104

6.4 Empirical Results . 110
6.4.1 Data and Environment 110
6.4.2 Compared Methods 112
6.4.3 Evaluation Metric . 113
6.4.4 Estimation Accuracy 114
6.4.5 Effect of Number of Eigenvalues 115
6.4.6 Query Time . 117
6.4.7 Precomputation Time 119

6.5 Conclusion . 121

7 Conclusion 123
7.1 Summary of the Contributions 123
7.2 Future Works . 124

ix

x

Chapter 1

Introduction

1.1 Motivation

Along with development of sensoring techniques, more and more data can be
generated and stocked from everywhere in the society. Among them, graph
data is ubiquitous: internet, social networks, food web, protein networks and
many more. The focus of this thesis is anomaly detection and path analysis
of large scale, real world graphs using spectral properties of matrices and
tensors corresponding to adjacency information of the graph. We mainly
focus on detecting anomalous sub-structure from large scale static graph
data. This is very important problem in a wide variety of applications such
as intrusion detection of computer communication networks, fraud detection
in credit card transaction, and so on. In spite of such great importance, we
have very little practical solutions. Also, our focus is anomaly detection
of unlabeled, undirected graph data. This is a harder task than that of la-
beled or directed graph data, because we have less information to distinguish
anomalous sub-structures from normal sub-structures.

This thesis focuses on graphs whose adjacency information can be repre-
sented as matrices or tensors, i.e., adjacency matrices or adjacency tensors.
A simple undirected graph, e.g., friendship relations of social networks based
on e-mail communication of who-sent-whom, can be represented as a sym-
metric adjacency matrix (Figure 1.1 (a)). A bipartite graph is a graph whose
nodes are divided into two disjoint partitions. For example, purchasing be-
havior of who-bought-what or communication between client IP address and
server IP address are bipartite graphs in which customers or client IPs are
nodes of a partition and products or server IPs are of another partition.
A bipartite graph can be represented as an unsymmetric adjacency matrix

1

(Figure 1.1 (b)). Moreover, a collection of relations of more than two at-
tributes is regarded as a k-partite k-uniform hypergraph (k,k-hypergraph).
A hypergraph is a graph in which each edge have two or more than two
nodes, and a k,k-hypergraph is a hypergraph in which nodes are divided
into k partitions (k-partite) and all edges have just k nodes (k-uniform) of
different partitions. For example, social bookmarks are collections of rela-
tions of users and contents and tags, and network traffic logs are those of
source IPs and destination IPs and source ports and destination ports. A
k,k-hypergraph can be represented as an adjacency tensor, i.e., a multidi-
mensional array (Figure 1.1 (c)).

a1 a2

a12

a3

a7

a13

a9a8
a11

a6a5

a10

a4
11 0 0 1

11 1 0 1

10 1 1 0

00 1 1 0

11 0 0 1

a1

a2

a3

a4

a5

a1 a2 a3 a4 a5

(a) simple graph and a symmetric adjacency matrix

c1

c2

c3

p2

p4

p3

p1

c5 p5

c4

11 0 1 0

11 0 0 0

01 1 0 0

00 1 1 1

00 0 1 1

c1

c2

c3

c4

c5

p1 p2 p3 p4 p5

(b) bipartite graph and an adjacency matrix

u1

u2

c1

u3

c2

t2

t1

t3

01

u2

u1

00

00

10

u1

u2

u3

c1 c2

01

00

00

u1

u2

u3

c1 c2 10

00u3

c1 c2

t1

t2

t3

(c) k,k-hypergraph and an adjacency tensor

Figure 1.1: Graphs and related adjacency matrix and tensor.

Researchers have cast several data mining tasks related to graph data
including community detection [122, 121], link prediction [105], centrality
analysis [19, 20], and so on. However, anomaly detection of graph data has
only recently gained attention. Some existing works on anomaly detection of
graph data detected anomalous sub-graphs using variants of the Minimum

2

Description Length (MDL) principle[126, 50, 30]. Another works applied
matrix factorization to matrices corresponding to adjacency information of
graph data and looked at the reconstruction error, that is, certain norms
of the residual matrices [150, 157, 156]. Recently, a powerful approach was
proposed which found laws of features of ego-net, i.e., sub-graphs of neigh-
boring nodes of each node, and detected abnormal nodes that deviated from
the laws [7]. Some works detected anomalous nodes which did not similar
to most of other nodes within the same community [58], or nearest commu-
nity [66].

The main motivation of this thesis is to detect anomalous patterns re-
lated to community structures and path capacities in graph data, which
have not been taken into account by any of the existing works. A com-
munity structure is a group of nodes in which each set of nodes is densely
connected internally. In other words, pairs of nodes are more likely to be con-
nected if both of them are members of the same community, and less likely
to be connected if they do not share communities. For example, in pur-
chasing data, community structures are groups of products bought by many
common customers, and groups of customers who bought many common
products. Several methods for community detection have been developed,
including minimum-cut method [164], modularity maximization [122, 121],
and so on. In this thesis we consider a “community” as a clique-like sub-
structure, that is, a set of nodes in which almost all possible combinations of
nodes have common edges. Path capacity [68] is the number of l-hops paths
between two sets of nodes in a simple graph or a bipartite graph. For a k,k-
hypergraph, we define a sequence of l hyperedges as a l-hops path between a
node pair, in which each end hyperedge contains each node of the node pair
and every successive hyperedges share at least one common nodes. If two
sets of nodes have many l-hops paths of small l, they are well connected.
In other words, if they do not have any paths of small l at all, the two sets
of nodes are hardly related to each other. We regard well-connected nodes
in a graph as important nodes, i.e., nodes which have many l-hops paths of
small l to many nodes in the graph.

One of the questions we consider is how to realize that there is an ab-
normally large community whose nodes are hardly related to the impor-
tant nodes which are well related to many nodes in the graph. In social
bookmarks, if there exist groups of a lot of user accounts who bookmarked
strangely same contents with almost same tags, and these contents are
hardly bookmarked by other users, i.e., hardly related to the important
contents, they are suspected to be spam activities to attract much attention
illegally. This is not a trivial question because we must extract anomalous

3

communities in both views of the size of communities and the path capacities
between the communities and the important nodes.

Another question is how to spot a node or a group of nodes whose connec-
tion pattern with several communities is not normal, i.e., a node or a group
of nodes whose path capacity of one-hop paths between several communities
is not normal. For example, in a purchasing data, if a group of products
which are usually bought by specific customer segments are bought by some
customers who belong to other segments, e.g., cosmetics usually bought by
groups of young women are bought by some men in strangely much amount,
they are suspicious. In a computer communication network, if a set of servers
which are usually accessed in a distributed manner, e.g., a group of mirror
web-servers, are accessed at strangely much amount on all of the servers
(in not a distributed manner), it can be declared to be anomalous access.
However, the normal connection patterns among a potentially vast amount
of community structures in real world data include too many possible types
to deal with them comprehensively. As a result, it is a hard task to spot the
anomalous connection patterns among community structures effectively.

The core intuition behind this thesis is that nodes can be projected on a
low dimensional space by low rank approximation of adjacency matrices or
adjacency tensors. By using the coordinates of node in the low dimensional
space, we can roughly estimate path capacities between each pair of nodes,
and also detect anomalies in both views of path capacities and community
structures, in which most of pairs of nodes have many one-hop paths. As we
discuss in Section 3.2, the coordinates of nodes in the low dimensional space
obtained by low rank approximation of adjacency matrices or tensors have
high absolute values for important nodes in the graph, and exponentially
decay as nodes are separated from the important nodes. The coordinates as
values of entries of the 1st singular vectors of an adjacency matrix are called
Hub and Authority scores in the famous ranking algorithm HITS proposed
by Kleinberg [90]. Most of existing data mining related works using such
coordinates pay attention only to high absolute values, and this means that
these works only consider the important nodes themselves. We utilize the
coordinates of even very low absolute values in order to project whole graph
structure on low dimensional space, which enables us to deal with the path
capacities between all nodes and the communities including the important
nodes. This is the remarkable point of this thesis.

Moreover, we propose a novel method to estimate the shortest path
distance between nodes using such properties of the coordinates of nodes.
As the coordinates exponentially decay according to the distance from the
important nodes, we should be able to estimate the distance between two

4

nodes by considering how many times the coordinates decay. This intuition
can be translated into the estimation of path capacity between two nodes,
i.e., the number of the shortest paths between two nodes, by approximating
the adjacency matrix multiplied by k using a small number of eigenvalues
and eigenvectors of the adjacency matrix.

1.2 Overview of the Thesis

Following the motivation described above, we organize this thesis as three
parts.

Anomaly detection of k,k-hypergraph (Chapter 4): Suspicious activ-
ities such as spam bookmarks and distributed cyber attacks tend to
form clique-like patterns of a k,k-hypergraph, in which almost every
combinations of k nodes straddling over k partitions share common
hyperedges. Moreover, their nodes are hardly related to the important
nodes, i.e., there are few l-hops paths of small l to the important nodes
which have many l-hops paths of small l to many nodes in the graph.
We spot such clique-like anomalous patterns by detecting spikes of co-
ordinates of nodes obtained by tensor decomposition of the adjacency
tensor. We use CP decomposition, one of the well-known tensor de-
composition [97]. We show that our method can detect synthesized
anomalies effectively, and the computation time scale linearly at the
size of hyperedges. Also, we introduce some visualization and summa-
rization of detected spikes for further inspection, and we empirically
show some examples of anomalies detected in real-world datasets from
three dissimilar application domains. This work was published as [110]
and [111].

Pattern discovery of bipartite graph (Chapter 5): To spot a node or
a group of nodes whose connection pattern with several communi-
ties is not normal, we want to know whether there exist any normal
patterns, i.e., any statistical models about (one-hop) paths between
each node and several communities. This is analogous to the laws of
the connection patterns between each node and “ego-net” analyzed
in [7]. However, the normal connection patterns among a potentially
vast amount of community structures in real world data include too
many possible types to deal with them comprehensively. Our proposed
method projects all nodes into several 2-D plots corresponding to sev-
eral singular vectors of the adjacency matrix, and detect remarkable

5

patterns such as linear-like patterns by using Hough transform. We
can spot possible normal patterns of the nodes related to community
structures, e.g., a pattern of the ratio of the degrees and the number
of paths to a community, a pattern of the ratio of connections strad-
dling two communities, and so on. Our intuition is that the value
of a singular vector corresponding to a node is related to the path
capacity, i.e., the number of one-hop paths, between the node and a
specific community structure, and that the values of different singular
vectors are related to different important nodes. We empirically show
our method can spot some interesting patterns in real-world datasets
with millions of edges. This work was published as [109].

Shortest path distance estimation (Chapter 6): If the (i,j)-th element
of the adjacency matrix multiplied by k − 1 is 0 and that multiplied
by k is more than 0, the shortest path distance between the i-th and
j-th nodes is k. We approximate this procedure by using a small
number of eigenvalues and eigenvectors of the adjacency matrix. Our
method can estimate the short distances more accurately than existing
methods using landmark nodes [134, 125, 171] with almost the same
computation cost. Also, we show that there is instability in the accu-
racy depending on the number of eigenvalues used, i.e., the accuracy
of approximation of values of an adjacency matrix varies according to
the choice of number of eigenvalues, and it even become worse when
we use many eigenvalues. We introduce a heuristic to tackle this prob-
lem, and show the heuristic can suppress such instability. This work
was published as [112].

Prior to the detailed explanation of each work, we introduce more related
works in Chapter 2. We describe some definitions and the common proper-
ties of low rank approximation of adjacency matrices or adjacency tensors,
along with a summary of datasets we used in this thesis in Chapter 3.

6

Chapter 2

Related Works

A problem of anomaly detection has been researched within diverse research
areas and application domains. Many existing works related to anomaly
detection can be categorized by techniques used, and we can categorize the
works on anomaly detection of graph data according to the same categories
as described in Section 2.1. However, none of the existing works did not
consider the path capacities between nodes and communities, even though
the clustering-based anomaly detection tried to detect anomalies related to
communities.

Community structures can be detected in many ways as described in
Section 2.2. Also, several kinds of centralities have been used to measure
the importance of nodes in a graph data as described in Section 2.3. Among
them, eigenvectors of an adjacency matrix can be used as both of a technique
of community detection and a centrality measure, i.e., eigenvector centrality.
This is related to a property of eigenvectors, i.e., the values of the elements
of the eigenvectors exponentially decay according to the distances from the
important nodes, as we will decribe in Section 3.2. Vectors obtained by sin-
gular value decomposition and tensor decomposition have similar properties
as eigen decomposition (also discussed in Section 3.2). We use these vec-
tors for anomaly detection considering the path capacities between all nodes
and communities including the important nodes, neither only for community
detection nor only for measuring importance of nodes.

Moreover, shortest path distances between pairs of nodes can be esti-
mated by using the landmark nodes selected based on several centrality
measures as described in Section 2.3. However, these landmark-based meth-
ods tend to err in short distances because a small number of landmark
nodes cannot cover many shortest paths of short distances. We tackle this

7

problem by using an adjacency matrix approximated by a small number of
eigenvalues and eigenvectors, which have approximated information of the
path capacities among nodes in the graph.

Tensor decomposition is a basic technique we use in Chapter 4. Several
kind of tensor decompositions with different objective functions have been
developed as described in Section 2.4. We use CANDECOMP/PARAFAC
(CP) Decomposition for anomaly detection of k,k-hypergraph, because it has
similar properties to low rank approximation of matrices, i.e., eigen decom-
position and singular value decomposition as we will discuss in Section 3.2.

2.1 Anomaly Detection

Anomaly detection is related to the problem of finding patterns in data
caused by unexpected behavior. Such patterns are often referred to as
anomalies, outliers, exceptions, peculiarities, surprises, and so on. Of these,
anomalies and outliers are two terms used most commonly in the context
of anomaly detection, and they are sometimes interchangeably. Anomalies
are translated into significant real life entities such as cyber intrusions and
credit card frauds.

2.1.1 Types of Anomaly Detection

As the definition of the anomalies is hard to give, several different defitions
have been given [72, 14, 82, 94]. Chandola [32] gave a comprehensive survey
on anomaly detection techniques, and categorized the anomaly detection
techniques into classification based, nearest-neighbor based, clustering based,
statistical, information theoretic, and spectral techniques.

Classification based techniques learn a classifier using the available la-
beled training data, and classifies a test instance as normal or anomalous
using the classifier. A well-known classification based anomaly detection
technique is one-class SVMs [140], which learn a discriminative boundary
around the normal instances, and any test instance that does not fall within
the learnt boundary is declared as anomalous.

Nearest-neighbor based techniques define an n-dimensional point as an
outlier if it is too far away from the rest, and thus lives in a low-density
area. These methods not only flag a point as an outlier but they also give
outlierness scores. LOF [23] is a typical method in which the LOF score
of a data instance is equal to ratio of average local density of the k nearest
neighbors of the instance and that of the data instance itself. For a normal
instance lying in a dense region, its local density will be similar to that of

8

its neighbors, while for an anomalous instance, its local density will be lower
than that of its nearest neighbors. Hence the anomalous instance will get a
higher LOF score. LOCI [131] finds not only anomalous instances but also
anomalous micro-clusters, by using the inverse of the standard deviation
of the local densities of the nearest neighbors of the given data instance.
LSOD [165] is a scalable alternative leveraged by Locality Sensitive Hashing
(LSH) [59]. Many other density-based [5, 9, 34, 65, 88, 124, 170, 101, 81] or
distance-based [94, 93, 95] methods that perform well in detecting outliers
in very large datasets of high dimension were proposed. Hayashi et al. [73]
projected all data points onto a low-dimensional space by conducting ten-
sor decomposition techniques, and detected anomalous points by applying
LOF [23].

Clustering based techniques reveal outliers as a by-product of clustering
algorithms. One approach is to apply a known clustering algorithm such as
DBSCAN [52], ROCK [64], and SPARCL [33] to the data set and declare
any data instance that does not belong to any cluster as anomalous. An-
other approach is to cluster the data by using a clustering algorithm such as
SOM [96], and to calculate the distance from each data instance to its clos-
est cluster centroid as the anomaly score of the instance [146].Yet another
approach is to declare instances belonging to clusters whose size and/or den-
sity is below a threshold as anomalous. The CBLOF score [74] captures the
size of the cluster to which the data instance belongs, as well as the distance
of the data instance to its cluster centroid.

Statistical techniques fit a statistical model to the given data, and un-
seen instances are declared as anomalies if they have a low probability to
be generated from the model. Statistical techniques form two classes, non-
parametric and parametric, and both techniques have been applied to fit a
statistical model. Non-parametric techniques do not generally assume any
underlying distribution [45], whereas parametric techniques assume the un-
derlying distribution and estimate the parameters from the given data [51].
Several variations of non-parametric techniques were proposed that cap-
tured the conditional dependencies between the different attributes using
more complex Bayesian networks, especially for data with categorical at-
tributes [42, 168, 25]. Also, Das et al. [43] proposed an anomaly pattern
detection in noisy categorical datasets based on a rule-based anomaly de-
tection [167], by using a measure similar to the concept of suspicious co-
incidence proposed by Barlow [13]. As a parametric technique, Maruhashi
et al. modeled the distribution of the number of records in count data as
mixture of several Poisson distributions by using Poisson Tensor Factoriza-
tion [35], and spotted anomalous behaviors by conducting additional tensor

9

decomposition [113].
Information theoretic techniques analyze the information content of a

data set using different information theoretic measures such as Kolomogorov
Complexity, entropy, relative entropy, etc. All instances which induce irreg-
ularities in the information content of the data set are deemed as anomalous.
Arning et al. [9] measured the Kolomogorov Complexity of data represented
as a string by using the size of the regular expression. Keogh et al. [89]
used the size of the compressed data file which was compressed by any stan-
dard compression algorithm, as a measure of the data set’s Kolomogorov
Complexity. Recently, Smets and Vreeken [145] took a pattern-based com-
pression approach and employed KRIMP [144] as its compressor for anomaly
detection.

Spectral techniques try to find subspaces (embeddings, projections, etc.)
by using techniques like Principal Component Analysis (PCA) in which
the anomalous instances can be easily identified. A problem of PCA is that
outliers strongly affect the principal components which model the correlation
structure of normal instances. Robust PCA [26] can handle such a problem
and assign anomaly scores based on the points’ distances from the principal
components [143, 57].

2.1.2 Anomaly Detection of Graph Data

Anomaly detection of graph data has only recently gained attention. Here
we introduce works on anomaly detection of graph data according to the
categories described above.

Several information theoretic techniques were developed for anomaly de-
tection of graph data. Noble and Cook [126] detected repetitive subgraphs
within large graphs using Subdue system [76] which evaluated subgraphs
based on the Minimum Description Length (MDL) principle, and flagged
less frequent and not too small / large subgraphs as anomalous. Eberle
and Holder [50] also used the MDL principle as well as other probabilistic
measures to detect several types of anomalies such as unexpected or missing
nodes and edges. Chakrabarti [30] reordered the adjacency matrix so that
the compression costs were minimized, i.e., similar nodes were clustered with
each other, and spotted outlier edges that lay across clusters.

Spectral techniques utilize low-rank approximation of the adjacency ma-
trices of the graphs. Some methods detect anomalous structures based on
the reconstruction error of matrix factorization. These methods use certain
norms of the residual matrix of several kinds of matrix factorizations such as
CMD [150] and Colibri [157]. Tong et al. used non-negative matrix factoriza-

10

tion which non-negative constraint were added to both low-rank matrix and
residual matrix [156]. Ide and Kashima [78] tackled a problem of anomaly
detection in a time series of graphs by using a two-step spectral technique.
They considered the principal components of the adjacncy matrices at every
time instances as the activity vectors, and regarded the principal left sin-
gular vector of the matrix whose column vectors were the activity vectors
within a specific time slice as the normal dependencies over time. The angle
between the vector of normal dependencies and a new activity vector was
used as the anomaly score of a new graph.

Recently a powerful statistical technique has been proposed. Akoglu
et al. found the laws of the connection patterns between each node and
“ego-net”, i.e., sub-graphs of neighboring nodes of each node, and detected
abnormal nodes that deviated from the laws [7].

Moreover, as a nearest-neighbor based technique, Sun et al. assessed
the normality of nodes in bipartite graphs by using proximity and random
walks [148].

Clustering based techniques detect outliers in view of community struc-
tures. Gao et al. spotted anomalous nodes that did not well belong to the
community they resided, which they called community outliers [58]. Gupta
et al. [66] proposed a concept of Community Distribution Outliers in a het-
erogeneous network, i.e., a graph with several types of nodes. They found
outlier nodes whose distributions of labels of connected nodes differed very
much from those of the nodes within closest community detected by Net-
Clus algorithm [151]. However, even such clustering based techniques do
not consider the path capacities between all nodes and communities, i.e.,
they do not focus on anomalous communities separated by several hops from
the important nodes, or they do not determine normal connection patterns
between nodes and communities.

2.2 Community Detection

The basic notion of a community structure is a group of nodes in which each
set of nodes is densely connected internally. In other word, pairs of nodes
are more likely to be connected if both of them are members of the same
community, and less likely to be connected if they do not share communities.
However, there are numerous alternative methods for detecting community
structures, and there are several varieties of community structures according
to the objective function of each method [139, 53].

11

2.2.1 Similarity-based Method

Similarity measures between nodes in a graph data have been traditionally
used to find communities. Commonly used measures include the cosine
similarity, the Jaccard index, and the Hamming distance between rows of
the adjacency matrix. Hierarchical clustering reveals the multilevel structure
of the graph by identifying groups of nodes with high similarity. Hierarchical
clustering is very common in social network analysis, biology, engineering,
marketing, etc [138, 77].

Some methods embed the nodes in a metric space according to the dis-
similarity measures, and separate the nodes in k clusters by using parti-
tioning methods such as k-means and k-medians [75]. Rattingan et al [137]
adopted k-medoids algorithm and the Girvan-Newman method [60] based
on edge betweenness centrality.

2.2.2 Cut-based Method

One of the most widely used community detection methods is spectral
clustering, a “cut-based” method for understanding graph structures. It
partitions nodes based on the eigenvectors of unnormalized Laplacian ma-
trix [116, 117] or normalized Laplacian matrix [36]. The unnormalized
Laplacian matrix is defined as L = D −A, where D is a diagonal matrix
called degree matrix whose diagonal elements are degrees of every nodes,
and A is the adjacency matrix. There are several kind of normalized Lapla-
cian matrix such as Lsym = D−1/2LD−1/2 and Lrw = D−1L. In short,
these methods compute the first k eigenvectors of Laplacian matrix, and
divide nodes by some clustering algorithm like k-means according to row
vectors of the matrix containing the k eigenvectors as columns. There are
several different versions of spectral clustering, depending which kind of the
Laplacian matrix is used. A comprehensive survey of spectral clustering
was given in [164]. These methods were successfully applied in areas like
machine-learning [123] and image segmentation[142].

An alternate approach to partitioning graphs based on cut-based metrics
utilizes multilevel algorithms like Metis [86], which coarsen the graph by coa-
lescing nodes and then apply refinement steps to recover partitions. Graclus
[46] is also a multilevel algorithm but removes the restriction of equal-sized
clusters by using kernel k-means to optimize weighted graph cuts.

12

2.2.3 Information-theoretic Method

Another partitioning methodology that has been recently proposed takes
an information-theoretic view of clustering wherein the graph connectivity
matrix is viewed as a set of codewords. Co-clustering [47] divides rows and
columns of the matrix into disjoint groups by seeking to maximize mutual
information of row groups and column groups subject to constraints on the
number of row and column clusters. It requires a priori information on the
number of clusters like k-means. Cross-Association [31] also creates disjoint
row groups and column groups, but it automatically determines parameters
such as number of row groups and column groups based on Minimum De-
scription Length (MDL) principle. A simple graph or a bipartite graph can
be partitioned by applying these methods to the adjacency matrix of the
graph.

2.2.4 Modularity-based Method

Community detection methods based on maximizing the modularity met-
ric [122] compare the graph’s community structure against a random graph.
In short, the expected number of edges between nodes i and j if edges are
placed at random is kikj/2m, where ki and kj are the degrees of the nodes
and m = 1

2

∑
i ki is the total number of edges in the graph. The modularity

metric can be written Q = 1
4msTBs, where si = 1 if node i belongs to a

specific group and si = −1 otherwise, and B is the modularity matrix de-
fined as bij = aij − kikj

2m , aij is an element of the adjacency matrix A. Some
modularity-based community detection were proposed including a greedy
search heuristic[37], and utilizing the spectral properties of a modularity
matrix as an alternative to Laplacian matrices [121, 166].

Also, modularity-based community detection was generalized to study
community structure in hypergraph. Neubauer et al. addressed problems
of modularity-based community detection in k,k-hypergraph in view of con-
nectivity, community structure, and hyper-incidence, and discussed how to
overcome these problems [120]. Liu et al. defined community structures
in a k,k-hypergraph as disjoint communities in each partitions such that
nodes in the same community were “parallel” and hyperedges between com-
munities were either dense or sparse, and proposed an algorithm for opti-
mizing the quality function [104]. Lin et al. modeled multi-relational and
multi-dimensional social data as a hypergraph representation and tensor
factorization method was applied to extract community structure from the
representation [103].

13

2.2.5 Clique-based Method

A clique is a subgraph in which every node is connected to every other node
in the clique, and a node can be a member of more than one clique. One
approach of clique-based community detection is to find the maximal cliques,
which are not the subgraph of any other clique [107]. Pseudo cliques are
natural extension of cliques which are subgraphs obtained by removing small
number of edges from cliques, and an algorithm to enumerate all pseudo
cliques in a given graph was proposed [162]. A quasi-cliques is an alternative
definition of a pseudo clique, and an efficient algorithm was developed [133].

The clique percolation method [128] defines a k-clique community as a
union of k-cliques (cliques with k nodes) that can be reached from each other
through a series of adjacent k-cliques, where adjacency means sharing k− 1
nodes, and extracts k-clique communities by locating the maximal cliques
rather than the individual k-cliques.

Moreover, near cliques or near-bipartite cores are related to high ab-
solute values of elements of the first few singular vectors of an adjacency
matrix [135, 84]. Eigenvectors of matrices are also used in the spectral clus-
tering of the cut-based methods, but the eigenvectors or singular vectors
of an adjacency matrix indicate the path capacity of the graph [68, 158],
whereas the eigenvectors of a Laplacian matrix indicate the connectivity of
the graph [36]. Our method proposed in Chapter 5 also utilize the singular
vectors of an adjacency matrix. However, we utilize even very low absolute
values to analyze the path capacities between all nodes and communities,
whereas existing works only utilize very high absolute values. Other meth-
ods proposed in Chapter 4 and Chapter 6 also utilize very low absolute
values of the vectors obtained by conducting low rank approximation of ad-
jacency matrices / tensors, whereas other existing works only utilize very
high absolute values.

2.3 Path Analysis

Relative importance of a node has been traditionally measured by the con-
cept of centrality based on path capacities. Eigenvectors of an adjacency
matrix can also be used as a centrality measure, i.e., eigenvector centrality.
Nodes with high eigenvector centrality are important node.

Also, we describe some algorithms of shortest path distance estimation,
and show how these algorithms select landmark nodes based on several cen-
trality measures, and our method proposed in Chapter 6 tackles a problem
which these landmark-based algorithms have.

14

2.3.1 Centrality Analysis

Centrality is a fundamental concept in network analysis, which measures
relative importance of a node within a graph [20]. Freeman [55] reviewed
a number of published measures and reduced them to three basic concepts,
degree centrality, closeness centrality, and betweenness centrality.

Degree centrality is a count of the number of edges incident upon a
given node. Mathematically, degree centrality of a node i is ci =

∑I
j=1 aij

where I is number of all nodes and aij is the value of the (i, j)-th element
of the adjacency matrix A. Katz centrality [87] is a generalization of degree
centrality, which is a weighted count of the number of paths originating
(or terminating) at a given node. In short, Katz centrality of a node i is

ci =
∑∞

k=1

∑I
j=1 α

ka
(k)
ij , where a

(k)
ij is the value of the (i, j)-th element of the

adjacency matrix multiplied by k, i.e., Ak, and α is an attenuation factor
between 0 and 1.

Closeness centrality is classically defined as the total distance from a
given node to all other nodes. Mathematically, classical closeness centrality
of a node i is ci =

∑I
j=1 dij where dij is shortest path distance from node i to

node j. Since its larger values indicate less centrality, it technically measures
farness rather than closeness. Other variants of closeness centrality can be
obtained by varying the way the initial distance matrix is defined, e.g., the
speed with which randomly walking messages reach a node from elsewhere
in the network [127, 147].

Betweenness centrality of a node is the number of times that any actor
needs a given actor to reach any other actor [56]. Mathematically, between-
ness centrality of a node i is ci =

∑I
j=1

∑I
k=1

gjik
gjk

where gjk denote the

number of paths from node j to node k, and let gjik denote the number
of paths from j to k that pass through intermediary i. Unfortunately, the
computation cost of calculating betweenness centrality is very expensive.
The fastest known algorithms to compute betweenness centrality exactly
are described by Brandes [22]. Bader et al. [12] discuss how to approximate
betweenness centrality by random sampling.

Moreover, eigenvector centrality, also called Bonacich’s centrality, is a
measure of the influence of a node [18]. Eigenvector centrality can be calcu-
lated as the eigenvector of a matrix with the largest eigenvalue, where the
matrix is related to adjacency information of a graph. Variants of eigenvec-
tor centrality are used in ranking algorithm of web pages such as HITS [90]
and PageRank [24].

Eigenvector centrality assigns relative scores to all nodes based on the
concept that connections to high-scoring nodes contribute more to the score

15

than equal connections to low-scoring nodes. This concept can be general-
ized for other low rank approximation of adjacency matrices / tensors, i.e.,
singular value decomposition and tensor decomposition, as we will discuss
in Section 3.2. We use the values of the vectors obtained by low rank ap-
proximation of matrices / tensors not only to measure the importance of
the nodes but also to analyze path capacities between all nodes and the
important nodes, by utilizing even very low absolute values.

2.3.2 Shortest Path Distance Estimation

Dijkstra’s algorithm [48] is the most well-known algorithm for computing
shortest paths in weighted graphs. A* algorithm [70] uses a Best-First-
Search which favors nodes that are close to the goal, combining the Dijkstra’s
algorithm which favors nodes that are close to the starting point. ALT
algorithms are state-of-the-art in point to point shortest path queries, which
prune the search space of the A* algorithm by calculating lower-bounds
based on landmark nodes and the triangle inequality [61, 79].

There are algorithms which estimate approximated shortest path dis-
tance faster than such exact shortest path algorithms by several orders
of magnitude [134]. Most of these algorithms first compute coordinates
for a few selected nodes as landmark nodes, and use the coordinates of
these nodes as fixed points to calibrate coordinate values for a given node
pair [125, 152, 171, 172, 108]. Global Network Positioning (GNP) [125] is
a state-of-the-art which models a network as a geometric space and char-
acterizes the position of any node. GNP first computes positions of the
landmark nodes, and then computes positions of all other nodes so as to
minimize the error of estimated distances from the landmark nodes by us-
ing the Simplex Downhill method [119]. However, the cost of computing
positions of GNP is very expensive, and Orion bootstrap [171] tackles this
problem by dividing the landmark nodes into two groups. The problem of
approximating network distances in real networks by embedding a small set
of landmarks has been discussed by Kleinberg et al. [91], and the metric for
embedding landmarks was generalized by Abraham et al. [3]. Potamias et
al. [134] proved the problem of optimal landmark selection in a graph is NP-
hard. They evaluated the accuracy of landmark-based methods with upper
bounds and lower bounds of the distances estimated by using the landmark
nodes. They compared three kinds of landmark selection strategies, random
sampling, highest degree centrality, and highest closeness centrality. And
they showed that in practice, simple intuitive landmark selection strategies
such as degree centrality and closeness centrality work much better than

16

random ones.
Moreover, the decentralized methods are similar to landmark-based method

but compute coordinates of another space for a node pair by using any nodes
of which coordinates have already been computed [39, 41]. The main prob-
lem with decentralized methods is that the convergence time increases as
the number of already computed nodes grows.

However, landmark-based methods tend to err in approximating short
distances, since it is difficult for a few landmarks to cover the many short-
est paths of close node pairs in a large graph. We tackle this problem by
using an adjacency matrix approximated by a small number of eigenvalues
and eigenvectors in Chapter 6. Our method is closely related to the work of
Tsourakakis [160]. Tsourakakis estimated the number of 3-hop paths return-
ing to the starting nodes from the diagonal elements of a 3 times multiplied
adjacency matrix approximated by a small number of eigenvalues and eigen-
vectors. We estimate the number of k-hops paths for every k as the similar
way, and guess the shortest path distances between pairs of nodes based on
the approximated information of the path capacities.

2.4 Tensor Decomposition

Tensor decomposition techniques have recently attract much attention in
the data mining research community. Several kinds of tensor decompo-
sitions with different objective functions have been developed. CANDE-
COMP/PARAFAC (CP) Decomposition and Tucker Decomposition are two
well-known approaches. Non-negative tensor factorizations retain the non-
negative characteristics of the original data, and Boolean Tensor Factoriza-
tions factorize a binary tensor to binary factors using Boolean arithmetic.
We use CANDECOMP/PARAFAC (CP) Decomposition for anomaly detec-
tion of k,k-hypergraph in Chapter 4, because it has similar properties to
low rank approximation of matrices, i.e., eigen decomposition and singular
value decomposition as we will discuss in Section 3.2.

We overview the several kind of tensor decomposition techniques in this
Section.

2.4.1 Tucker and CP Decomposition

Tensor decomposition is a basic technique that has been well studied and ap-
plied to a wide range of disciplines and scenarios. CANDECOMP/PARAFAC
(CP) Decomposition and Tucker Decomposition are two well-known ap-
proaches, and an informative survey on tensor decompositions is presented

17

by Kolda and Bader with many further references [97]. Some implementa-
tions of tensor decomposition algorithms have been made publicly available,
such as the N-way toolbox for MATLAB by Andersson and Bro [8] and the
more recent MATLAB Tensor Toolbox by Bader and Kolda [11].

The Alternate Least Square (ALS) method was proposed in the origi-
nal papers by Carroll and Chang [29] and Harshman [69] to realize the CP
Decomposition, and it still remains the primary workhorse algorithm today
due to its speed and ease of implementation [155]. Kang et al. conduct CP
Decomposition on tensors with billions of sizes and hundreds of millions of
nonzero elements by carefully minimizing the intermediate data size, and de-
ploy tensor decompositions in the MapReduce framework [85]. Papalexakis
it al. proposed a parallelizable method for speeding up CP Decomposition
by leveraging random sampling techniques, which produce sparse factor ma-
trices [132]

Tucker Decomposition is more flexible than CP Decomposition, although
its application is usually limited by its limited scalability and vulnerability to
noise. Memory-efficient Tucker decomposition [98] avoids constructing large
intermediate results by handling the computation in a piecemeal fashion,
adaptively selecting the order of operations. Tsourakakis proposed a scalable
alternative using random sampling [159].

Several extensions have been developed to utilize tensor decomposition
techniques on more practical applications. Tensor analysis has also been ap-
plied to study the dynamics of graphs and networks [149], which incremen-
tally summarize tensor streams. Recent researches have further generalized
the CP Decomposition to handle incomplete data [4]. Hayashi et al. [73] gen-
eralized the likelihood of Tucker Decomposition by using exponential-family
distributions, and they proposed an anomaly detection approach by using
the factor matrix as low-dimensional features of m-th mode of the tensor.

2.4.2 Non-negative Tensor Factorization

Non-negative tensor factorizations have been proposed to retain the non-
negative characteristics of the original data [141], as natural expansions
of non-negative matrix factorizations[102]. Poisson Tensor Factorization
(PTF) [35] is one of such factorizations, and models sparse count data by
describing the random variation via a Poisson distribution, such that each
Poisson parameter is a multilinear combination of the model parameters.

18

2.4.3 Boolean Tensor Factorization

The Boolean Tensor Factorizations [114] factorize a binary tensor to binary
factors using Boolean arithmetic, i.e., defining that 1 + 1 = 1. The prob-
lems of Boolean variations of CP Decomposition and Tucker Decomposition
were proved to be NP-hard [115, 114], and algorithms for these problems
were presented based on rather straight forward alternating optimization
heuristics.

19

20

Chapter 3

Preliminaries

3.1 Definitions

In this section we describe the definitions used throughout this thesis.

3.1.1 Notations

Throughout, scalars are denoted by lowercase letters (a), vectors by boldface
lowercase letters (a), matrices by boldface capital letters (A). The i-th
element of a vector a is denoted by ai, and the element of a matrix A with
index (i,j) is denoted by aij . The i-th row vector of a matrix A is denoted
by ai:, and the j-th column vector by a:j . The j-th column vector of a
matrix A is also denoted by aj . The outer product of vector a and b is
denoted by a× b. The pseudoinverse of a matrix A is denoted by A†, and
the transposed matrix of A is denoted by AT .

A tensor is a multidimensional array. Its order is the dimensionality of
the array, while each dimension is known as one mode. A first-order tensor
is a vector, a second-order tensor is a matrix, and tensors of order three or
higher are called higher-order tensors. A tensor is denoted by boldface Euler
script letters (A), and the element of A with index (i1, . . . , iM) by ai1,...,iM .
We also use measure to denote the unit of each element. An order M tensor
A of size I1 × I2 × . . . × IM is rank-one if it can be written as the outer
product of M vectors, i.e.,

A = x(1) × x(2) × · · · × x(M). (3.1)

This means that each element of the tensor is the product of the correspond-
ing vector elements:

ai1i2...iM = x
(1)
i1
x
(2)
i2
· · ·x(M)

iM
for all (i1, i2, . . . , iM) . (3.2)

21

The rank of a tensor is defined as the smallest number of rank-one tensors
that can generate the tensor as their sum, and we refer to each rank-one
tensor as a component. The notation ‖A‖ refers to the square root of the
sum of the squares of the elements, analogous to the matrix Frobenius norm.

Table 3.1 and Table 3.2 list definitions of symbols used in this thesis.

Symbol Definition

G A simple graph or a bipartite graph
G A hypergraph
V Nodes in a simple graph G or a hypergraph G
V1, V2 Nodes of left and right partition in a bipartite graph G
V1, . . . , Vk Nodes of 1st to kth partition in a k,k-hypergraph G
I The number of nodes in a simple graph G

I1, I2
The number of nodes of left and right partition in a bipartite
graph G

I1, . . . , Ik
The number of nodes of 1st to kth partition in a k,k-
hypergraph G

E Edges in a graph G
H Hyperedges in a hypergraph G

Table 3.1: Symbol table (continues to Table 3.2)

3.1.2 Basic Operation of Matrix and Tensor

Several matrix products are important in the sections that follow, so we
briefly define them here. See details in [97].

Fibers are the higher-order analogue of matrix rows and columns. A
fiber is defined by fixing every index but one. A matrix column is a mode-1
fiber and a matrix row is a mode-2 fiber. Third-order tensors have column,
row, and tube fibers, denoted by a:jk, ai:k, and aij:, respectively.

The mode-n matricization of a tensor A of size I1 × I2 × . . . × IM is
denoted by A(n) and arranges the mode-n fibers to be the columns of the
resulting matrix. Though conceptually simple, the formal notation is clunky.
Tensor element (i1, i2, . . . , iM) maps to matrix element (in, j), where

j = 1 +
∑n−1

k=1

∑M
k=n+1(ik − 1)Jk with Jk =

∏n−1
m=1

∏k−1
m=n+1 Im. (3.3)

See some examples in [97].

22

Symbol Definition

A An adjacency matrix of a graph G
A An adjacency tensor of a k,k-hypergraph G
aij The element of A with index (i, j)
ai1...iM The element of order M tensor A with index (i1, . . . , iM)
ai: The ith row vector of A
a:j The jth column vector of A
A(n) The mode-n matricization of a tensor A

λr
The rth largest eigenvalue of A, singular value of A, and
weight of CP decomposition of A

Λ Diagonal matrix containing all λr
Λr Diagonal matrix whose diagonal elements are λ1, . . . , λr
xr Eigenvector of A corresponding to λr
xri i-th element of xr

X Matrix containing all eigenvectors xr as their columns
Xr Matrix containing x1, . . . ,xr as its columns
xr,yr Left and right singular vector of A corresponding to λr
xri, yri i-th element of xr,yr

X,Y Matrix containing all singular vectors xr,yr as its columns
Xr,Yr Matrix containing x1, . . . ,xr and y1, . . . ,yr as their columns

x
(m)
r Factor vector of mth mode of A corresponding to λr

x
(m)
ri i-th element of x

(m)
r

X(m) Factor matrix of mth mode containing all factor vectors x
(m)
r

as its columns

X
(m)
r Matrix containing x

(m)
1 , . . . ,x

(m)
r as their columns

Table 3.2: Symbol table (continued)

The Kronecker product of matrices A of size I × J and B of size K × L
is denoted by A⊗B. The result is a matrix of size (IK)× (JL) and defined
by

A⊗B =

a11B a12B · · · a1JB
a21B a22B · · · a2JB

...
...

. . .
...

aI1B aI2B · · · aIJB

 . (3.4)

This can be also written as

23

A⊗B =
[
a1 ⊗ b1 a1 ⊗ b2 a1 ⊗ b3 · · · aJ ⊗ bL−1 aJ ⊗ bL

]
. (3.5)

The Khatri-Rao product is the “matching columnwise” Kronecker prod-
uct. Given matrices A of size I × J and B of size J ×K, their Khatri-Rao
product is denoted by A�B. The result is a matrix of size (IJ)×K defined
by

A�B =
[
a1 ⊗ b1 a2 ⊗ b2 · · · aK ⊗ bK

]
. (3.6)

If a and b are vectors, then the Khatri-Rao and Kronecker products are
identical, i.e., a⊗ b = a� b.

The Hadamard product is the elementwise matrix product. Given ma-
trices A and B, both of size I × J , their Hadamard product is denoted by
A ∗B. The result is also of size I × J and defined by

A ∗B =

a11b11 a12b12 · · · a1Jb1J
a21b21 a22b22 · · · a2Jb2J

...
...

. . .
...

aI1bI1 aI2bI2 · · · aIJbIJ

 . (3.7)

3.1.3 Graph and k,k-Hypergraph

A simple graph which we call in this thesis is a set of nodes V where some
pairs of nodes are connected by undirected edges. Formally, a simple graph
is defined by G =< V,E >, where V is a set of all nodes and E ⊂ V × V
is a set of all undirected edges. The degree (or weighted degree) of a node
is the sum of the weights of the edges containing the node. In unweighted
graph, it is the number of connected nodes.

A bipartite graph is a graph whose nodes are divided into two disjoint
sets V1 and V2 such that every edge connects a node in V1 to a node in V2.
Formally, a bipartite graph is defined by G =< V1 ∪ V2, E >, where V1 is
a set of nodes of one partition, V2 is a set of nodes of another partition,
and E ⊂ V1 × V2 is a set of all edges. Also, the degree (or weighted degree)
of a node is the sum of the weights of the edges containing the node. In
unweighted graph, it is the number of connected nodes.

A hypergraph is a generalization of a graph in which an edge can connect
any number of nodes. Formally, a hypergraph is defined by G =< V,H >,
where V is a set of all nodes and H is a set of non-empty subset of V called
hyperedges or simply edges. If all edges contain just k nodes, G is a k-uniform

24

hypergraph. And a hypergraph is k-partite if V can be partitioned in k sets
V1 . . . Vk such that edges never contain multiple nodes from the same set.
A k-partite, k-uniform hypergraph is called k,k-hypergraph. Thus, a k,k-
hypergraph is defined by G =< V1 ∪ . . .∪ Vk, H >, where V1, . . . , Vk are sets
of nodes of each partition, and H ⊂ V1 × . . .× Vk is a set of all hyperedges.

3.1.4 Adjacency Matrix and Adjacency Tensor

A simple graph or a bipartite graph can be represented as an adjacency
matrix. In an adjacency matrix, columns and rows correspond to nodes, and
values are 1s or weights if there exist edges between corresponding nodes, and
0 otherwise. An adjacency matrix of a simple graph is symmetric, because
a simple graph is an undirected graph in our definition (Figure 1.1(a)),
whereas that of a bipartite graph is not symmetric (Figure 1.1(b)).

A k,k-hypergraph can be represented as an adjacency tensor(Figure 1.1(c)).
In an adjacency tensor, indices of each mode correspond to nodes of the
corresponding partition, and values are 1s or weights if sets of nodes are
contained by hyperedges, and 0 otherwise.

3.1.5 Community Structure

There are several definitions of community in graph data [139, 53]. In this
thesis we use the term “community” as a subset of nodes in which almost
all possible combinations of nodes have common edges.

In a simple graph, we regard so-called a near-clique as a community. A
near-clique is a subset of nodes such that almost every two nodes in the
subset are connected by an edge. Formally, a subset of nodes < C > in a
simple graph G =< V,E > where C ⊂ V is a near-clique if |(C ×C)∩E| ≥
ε|C × C| with a specific value of ε. Nodes in a near-clique have similar
corresponding row vectors ai: in the adjacency matrix A.

A community in a bipartite graph in this thesis is so-called a near-
bipartite core. A near-bipartite core is a subset of nodes such that al-
most every two nodes of different partitions in the subset are connected by
an edge. Formally, a subset of nodes < C1 ∪ C2 > in a bipartite graph
G =< V1 ∪ V2, E > where C1 ⊂ V1, C2 ⊂ V2 is a near-bipartite core if
|(C1 × C2) ∩ E| ≥ ε|C1 × C2| with a specific value of ε. Nodes in a near-
bipartite core have similar corresponding row vectors ai: or column vectors
a:j in the adjacency matrix A.

Also, we define a k,k-hyperclique as a community in a k,k-hypergraph. A
k,k-hyperclique is a subset of nodes such that almost every combinations of

25

k nodes straddling over k partitions share common hyperedges. Formally, a
subset of nodes < C1∪. . .∪Ck > in a k,k-hypergraph G =< V1∪. . .∪Vk, H >
where C1 ⊂ V1, . . . , Ck ⊂ Vk is a k,k-hyperclique if |(C1 × . . .× Ck) ∩H| ≥
ε|C1 × . . . × Ck| with a specific value of ε. In an adjacency tensor, (k − 1)
dimensional sections corresponding to nodes of a specific partition in a k,k-
hyperclique resemble each other.

3.2 Matrix and Tensor Decomposition

Eigen decomposition, singular value decomposition, and tensor decomposi-
tion are basic techniques we use in this thesis. We can commonly understand
these techniques in view of low-rank approximation of matrices and tensors,
and the scores of each nodes calculated by these techniques have similar rela-
tional expressions. Here we describe a brief introduction of these techniques,
along with the common properties that these techniques have.

3.2.1 Eigen Decomposition

We consider a low-rank approximation of a symmetric matrix A of size I×I
so as to minimize the Frobenius norm∥∥∥∥∥A−

R∑
r=1

λr (xr × xr)

∥∥∥∥∥ ,
where R is desired rank, λr is a scalar (λ1 ≥ . . . ≥ λR), and xr is rth unit
vector of size I (Figure 3.1(a)). The solution is obtained in terms of eigen
decomposition, i.e., λ1, . . . , λR are R largest eigenvalues of A and xr is the
r-th eigenvector of A corresponding to λr.

Because λr and xr are eigenvalues and eigenvectors, they satisfy

Axr = λrxr. (3.8)

For an adjacency matrix of a simple graph, this can be written as

xri = λ−1r

∑
j∈Ci

aijxrj , (3.9)

where Ci is a set of nodes connected to i-th node, and aij is weight of the
edge between i-th node and j-th node. In this thesis we call xri the r-th
eigenscore (or just score) of the i-th node.

26

a1 a2

a4a3

a1 a2 a4a3

a1

a2

a4

a3

λ
1 + … +λ

R≈A

x
1

x
1

x
R

x
R

(a) eigen decomposition

p1 p2 p3

c1

c2

c4

c3

λ1 + … + λR≈

c1

c2

c3
p2

p3

p1

c4 x1

y1

xR

yR

A

(b) singular value decomposition (SVD)

c1 c2

u1

u2

u3

≈

t2
t1u1

u2

c1

u3
c2 t2

t1

λ1 + … +A

x1
(1)

x1
(2)

x1
(3)

λR

xR
(1)

xR
(2)

xR
(3)

(c) CANDECOMP / PARAFAC (CP) decomposition

Figure 3.1: Low-rank approximation of matrix and tensor.

3.2.2 Singular Value Decomposition

For a matrix A which is not symmetric, we consider a low-rank approxima-
tion of A of size I1 × I2 so as to minimize the Frobenius norm∥∥∥∥∥A−

R∑
r=1

λr (xr × yr)

∥∥∥∥∥ ,
where R is desired rank, λr is a scalar (λ1 ≥ . . . ≥ λR), xr is r-th unit
vector of size I1, and yr is r-th unit vector of size I2 (Figure 3.1(b)). The
solution is obtained in terms of singular value decomposition (SVD), i.e.,
λ1, . . . , λR are R largest singular values of A, xr is the r-th left singular
vector of A corresponding to λr, and yr is the r-th right singular vector of
A corresponding to λr.

27

Because λr and xr, yr are singular values and singular vectors, they
satisfy {

Axr = λryr,

Ayr = λrxr.
(3.10)

For an adjacency matrix of a bipartite graph, this can be written as
xri = λ−1r

∑
j∈Ci

aijyrj ,

yrj = λ−1r

∑
i∈Dj

aijxri,
(3.11)

where Ci is a set of right nodes connected to i-th left node, Dj is a set of left
nodes connected to j-th right node, and aij is weight of the edge between
i-th left node and j-th right node. In this thesis we call xri the r-th left
singular score of the i-th left node, and yrj the r-th right singular score of
the j-th right node (or just score).

3.2.3 Tensor Decomposition

For a tensorA, we consider a low-rank approximation ofA of size I1×. . .×IM
so as to minimize the Frobenius norm∥∥∥∥∥A−

R∑
r=1

λr

(
x(1)
r × . . .× x(M)

r

)∥∥∥∥∥ ,
where R is desired rank, λr is a scalar (λ1 ≥ . . . ≥ λR), x

(1)
r , . . . ,x

(M)
r is r-th

unit vectors of size I1, . . . , IM (Figure 3.1(c)). The solution is obtained in
terms of CANDECOMP / PARAFAC (CP) decomposition [97]. The matrix

X(m) =
[
x
(m)
1 · · ·x(m)

R

]
are called factor matrix. In this thesis we call each

vector x
(m)
r as a factor vector, and λr as a r-th weight.

Because CP decomposition is not a problem with orthogonality con-
straints, factor vectors do not satisfy rather simple relational expression as
eigen decomposition and singular value decomposition. Even though, in a
solution of the three-order tensor in which the sum of rank-one tensors fits
the original tensor A perfectly, each factor matrix satisfies [97]

X(1) = A(1)(X
(2) �X(3))(X(2)TX(2) ∗X(3)TX(3))†Λ†,

X(2) = A(2)(X
(1) �X(3))(X(1)TX(1) ∗X(3)TX(3))†Λ†,

X(3) = A(3)(X
(1) �X(2))(X(1)TX(1) ∗X(2)TX(2))†Λ†,

(3.12)

28

where Λ is a diagonal matrix whose diagonal elements are weights of CP
decomposition. For an adjacency tensor of k,k-hypergraph, this can be
written as

x
(1)
ri1

= λ−1r

∑
(i2,i3)∈C(1)

i1

ai1i2i3

S∑
s=1

p(1)rs x
(2)
si2
x
(3)
si3
,

x
(2)
ri2

= λ−1r

∑
(i1,i3)∈C(2)

i2

ai1i2i3

S∑
s=1

p(2)rs x
(1)
si1
x
(3)
si3
,

x
(3)
ri3

= λ−1r

∑
(i1,i2)∈C(3)

i3

ai1i2i3

S∑
s=1

p(3)rs x
(1)
si1
x
(2)
si2
,

(3.13)

where S is the rank of A, and C
(m)
im

is a set of combination of nodes which

share common hyperedges with im-th node in m-th partition. p
(1)
rs is the

(r, s)-th element of (X(2)TX(2) ∗X(3)TX(3))†, and this is the same for p
(2)
rs

and p
(3)
rs . This equation suggests that values of elements of factor vectors cor-

responding to small weights can affect those corresponding to large weights.
This discussion can be easily generalized to a tensor with more than three

orders. In this thesis we call x
(m)
rim

the r-th eigenscore of the im-th node of
m-th mode (or just score).

3.2.4 Common Properties of Decompositions

As described above, eigen decomposition, singular value decomposition and
CP decomposition have similar relational expressions such as equations 3.9,
3.11, and 3.13. Roughly speaking, all of these equations suggest that a
value of r-th vector corresponding to a node is linear combination of values
corresponding to connected nodes multiplied by the inverse of λr, and values
decay exponentially with the decay rate of λr if nodes are connected with
a few edges. In this section we show how real-world datasets have this
property by using a 1-hour snapshot of LBNL traffic logs (LBNL) described
in Section 3.3. LBNL traffic logs datasets are sets of packet traces which
include four attributes: IP-source (srcIPs), IP-destination (dstIPs), port
number (ports), and a time tick in second.

To discuss eigen decomposition, we construct a simple graph whose nodes
are dstIPs and connected if they share the same port. Eigenvectors are
calculated for a symmetric adjacency matrix in which each element is 1 if the
corresponding node pair is connected, and 0 otherwise. We plot edges by the

29

Figure 3.2: Edges are plotted by absolute values of 1st eigenscores of two
nodes on the edges. The adjacency matrix is related to a simple graph whose
nodes are dstIPs and connected if they share same ports in a LBNL traffic
logs dataset.

absolute values of the 1st eigenscores corresponding to nodes of one side of
each edge against those corresponding to nodes of another side (Figure 3.2).
The largest eigenvalue of this adjacency matrix is 603.1, i.e., 102.8, and this
plot suggests that the ratio of absolute values of two eigenscores of nodes of
the same edge does not exceed corresponding eigenvalue. How true is this
for many real-world graph data? The equation 3.9 can be written as

|xri| = |λr|−1
∑
j∈Ci

aij |xrj |, (3.14)

if the eigenscores xrj for j ∈ Ci are all positive or all negative. In this
case, aij |xrj |/|xri| is not greater than |λr| for all j ∈ Ci. Conversely, if the
eigenscores xri for i ∈ Cj are all positive or all negative, aij |xri|/|xrj | is not
greater than |λr| for all i ∈ Cj . Thus, if two connected nodes are connected
to the nodes with eigenscores of all positive or all negative, the ratio of the
absolute values of the eigenscores of these two nodes does not exceed the
absolute value of the eigenvalue. A typical graph structure is a “caveman
graph” where a node in a group of nodes (a “cave”) is connected to many

30

other nodes in the same cave, while connected to very little nodes in different
caves [83]. From equation 3.9, the absolute value of the eigenscore of a node
i in a cave S satisfies

|xri| ≤ |λr|−1(aig|xrg|+
∑
j∈Ci
j 6=g

aij |xrj |) (3.15)

≤ |λr|−1amax(|xrg|+
∑
j∈S
j 6=g

|xrj |), (3.16)

where node g is a node connected to the nodes outside the cave (say, a
“gatekeeper’), amax is a maximum value of aij(i ∈ S, j ∈ S). By summing
up the inequation 3.16 for all i ∈ S(i 6= g), we obtain an inequation

(|λr| − amax(|S| − 1))
∑
j∈S
j 6=g

|xrj | ≤ amax(|S| − 1)|xrg|. (3.17)

The inequation 3.17 indicates that the absolute values of the eigenscores of
all nodes in a cave S except for the gatekeeper are much smaller than that
of the gatekeeper if amax(|S| − 1) is much smaller than |λr|. Along with
the equation 3.9, the eigenscores of the nodes in “caveman” structures are
all positive or all negative, that is, the same sign as that of the gatekeeper.
Thus, for many nodes in a graph which has the “caveman” structure, the
ratio of absolute values of two eigenscores of nodes of the same edge does not
exceed corresponding eigenvalue. This means that nodes residing in close
neighborhood in a graph have similar eigenscores. In other words, eigen-
scores tend to decay exponentially as nodes are separated from a node with
the highest eigenscore, such that the decay rate should be about correspond-
ing eigenvalue. This is the same as other eigenvectors, and we would be able
to know distance between nodes by using several eigenvectors. Based on this
intuition, we propose a novel method to estimate the shortest path distance
of a given node pair by using eigenvalues and eigenvectors in Chapter 6.

Next we construct a bipartite graph whose nodes are dstIPs and ports,
to discuss singular value decomposition. Singular vectors are calculated for
an adjacency matrix in which each element is 1 if corresponding node pair
is connected, and 0 otherwise. We plot edges by the absolute values of the
left 1st singular scores corresponding to dstIPs against those of the right
1st singular scores corresponding to ports (Figure 3.3). The largest singular
value of this adjacency matrix is 122.7, i.e., 102.1, and this plot suggests that
the ratio of absolute values of the left singular score and the right singular

31

Figure 3.3: Edges are plotted by absolute values of 1st singular scores of
two nodes on the edges. The adjacency matrix is related to a bipartite graph
whose nodes are dstIPs and ports in a LBNL traffic logs dataset.

score of a node pair on the same edge does not exceed corresponding singular
value, similar to eigen decomposition. We can discuss how true this is for
many real-world graph data as same as the case of eigen decomposition. The
equation 3.11 can be written as

|xri| = |λr|−1
∑
j∈Ci

aij |yrj |,

|yrj | = |λr|−1
∑
i∈Dj

aij |xri|
(3.18)

if the singular scores xri for i ∈ Dj and yrj for j ∈ Ci are all positive or all
negative. In this case, aij |yrj |/|xri| is not greater than |λr| for all j ∈ Ci, and
aij |xri|/|yrj | is not greater than |λr| for all i ∈ Dj . Thus, if two connected
nodes are connected to the nodes with singular scores of all positive or all
negative, the ratio of the absolute values of the singular scores of these two
nodes does not exceed the absolute value of the singular value. Similar to
the case of eigen decomposition, a typical graph structure is a “caveman
graph”. From equation 3.11, the absolute value of the singular score of a

32

(a)

(b)

Figure 3.4: Nodes are plotted by absolute values of 1st singular scores
against those of 3rd singular scores. The adjacency matrix is related to a
bipartite graph whose nodes are dstIPs and ports in a LBNL traffic logs
dataset. Nodes share same nodes of opposite partition with a node of the
highest 1st (3rd) singular score are plotted in red circle (green triangle). (a)
nodes of dstIPs, (b) nodes of ports.

33

left node i ∈ S1 and a right node j ∈ S2 in a cave S1 ∪ S2 satisfies
|xri| ≤ |λr|−1amax(|yrg|+

∑
j∈S2
j 6=g

|yrj |),

|yrj | ≤ |λr|−1amax

∑
i∈S1

|xri|,
(3.19)

where node g is a gatekeeper, amax is a maximum value of aij(i ∈ S1, j ∈ S2).
We assume that the gatekeeper is a node in the right partition. By summing
up the inequation 3.19 for all i ∈ S1 and j ∈ S2(j 6= g), we obtain an
inequation

(|λr| − amax(|S2| − 1))
∑
i∈S1

|xri|+ (|λr| − amax|S1|)
∑
j∈S2
j 6=g

|yrj | ≤ amax|S1||yrg|.

(3.20)
The inequation 3.20 indicates that the absolute values of the singular scores
of all nodes in a cave S1 ∪ S2 except for the gatekeeper are much smaller
than that of the gatekeeper if amax|S1| and amax(|S2| − 1) are much smaller
than |λr|. Along with the equation 3.11, the singular scores of the nodes
in “caveman” structures are all positive or all negative, that is, the same
sign as that of the gatekeeper. Thus, for many nodes in a graph which has
the “caveman” structure, the ratio of absolute values of the left singular
score and the right singular score of a node pair on the same edge does not
exceed corresponding singular value, similar to eigen decomposition. This
means that nodes residing in close neighborhood in a graph have similar
singular scores, like eigenscores, and also indicates that singular scores of
nodes in a same community structure, in which every node pairs reside in
close location, should form a cluster of similar values.

Moreover, we plot nodes by the absolute values of the 1st singular scores
against those of the 3rd singular scores (Figure 3.4). The third largest sin-
gular value of this adjacency matrix is 42.5, i.e., 101.6. Red circle or green
triangle nodes are nodes which have 2-hops paths to a node of the highest
1st or 3rd singular score. The 1st singular scores of red circle nodes are much
larger than those of green triangle nodes, whereas the 3rd singular scores of
green triangle nodes are much larger than those of red circle nodes. Because
a left singular score is the sum of the right singular scores of the connected
nodes (equation 3.11), the 1st singular scores of dstIP nodes should be cor-
related to the number of connected red port nodes. This is the same for
the 1st singular scores of port nodes, and 3rd singular scores. If red circle

34

nodes and green triangle nodes form community structures, these singular
scores should be correlated to the number of connections with nodes of each
community. In Chapter 5, we propose a novel method of pattern discovery
based on this intuition, which spots patterns related to community struc-
tures effectively by analyzing distribution of singular scores and degrees of
nodes.

Figure 3.5: Hyperedges are plotted by absolute values of 1st eigenscores
of nodes on the hyperedges. The adjacency tensor is related to a k,k-
hypergraph whose nodes are srcIPs, dstIPs, and ports in a LBNL traffic
logs dataset.

Finally we construct a k,k-hypergraph whose nodes are srcIPs, dstIPs,
and ports, to discuss CP decomposition. Function vectors are calculated for
an adjacency tensor in which each element is 1 if corresponding combination
of nodes are on a hyperedge, and 0 otherwise. The highest weight of the CP
decomposition is 26.9, i.e., 101.4. Figure 3.5 is a 3D-plots of hyperedges plot-
ted by absolute values of the 1st eigenscores of nodes on hyperedges. This
implementation of CP decomposition can calculate the values of element of
factor matrix with precision of about 10−300. We can see that, for most of
the hyperedges, the ratio of eigenscores of a node of dstIP and that of port
on the same hyperedge does not exceed a specific rate, whereas the eigen-
score of a node of srcIP on the same hyperedge does not depend on those

35

(a) (b)

(c)

Figure 3.6: Hyperedges of the same k,k-hypergraph as Figure 3.5 are plot-
ted by 2D-plots. (a) srcIPs vs dstIPs, (b) srcIPs vs ports, and (c) dstIPs vs
ports.

of dstIP and port. To understand that more clearly, we also show 2D-plots
plotted by values of two of three nodes on hyperedges (Figure 3.6(a)(b)(c)).
The ratio of eigenscores of a node of dstIP and that of port on the same
hyperedge is within a specific range (Figure 3.6(c)), whereas eigenscores of
nodes of srcIP are high on most of edges, not depending on those of dstIP
and port (Figure 3.6(a)(b)). This is analogous to eigen decomposition and
singular value decomposition, meaning that nodes resided in close location
in hypergraph have similar eigenscores, in at least some modes. In other
words, in this dataset, eigenscores of CP decomposition decay exponentially
as nodes are separated from a node with the highest eigenscore, in these
modes. Is this true in many other k,k-hypergraphs? This is very hard to
prove, but similar to eigen decomposition and singular value decomposition,

36

the equation 3.13 can be written as

∣∣∣x(1)ri1

∣∣∣ = |λr|−1
∑

(i2,i3)∈C(1)
i1

ai1i2i3

S∑
s=1

∣∣∣p(1)rs x
(2)
si2
x
(3)
si3

∣∣∣ ,
∣∣∣x(2)ri2

∣∣∣ = |λr|−1
∑

(i1,i3)∈C(2)
i2

ai1i2i3

S∑
s=1

∣∣∣p(2)rs x
(1)
si1
x
(3)
si3

∣∣∣ ,
∣∣∣x(3)ri3

∣∣∣ = |λr|−1
∑

(i1,i2)∈C(3)
i3

ai1i2i3

S∑
s=1

∣∣∣p(3)rs x
(1)
si1
x
(2)
si2

∣∣∣ ,
(3.21)

if the values p
(1)
rs x

(2)
si2
x
(3)
si3

for (i2, i3) ∈ C(1)
i1

and p
(2)
rs x

(1)
si1
x
(3)
si3

for (i1, i3) ∈ C(2)
i2

and p
(3)
rs x

(1)
si1
x
(2)
si2

for (i1, i2) ∈ C
(3)
i3

are all positive or all negative for all
s = 1, . . . , S. In this case,

ai1i2i3

∣∣∣p(1)rs x
(2)
si2
x
(3)
si3

∣∣∣ / ∣∣∣x(1)ri1

∣∣∣ ≤ |λr| ∀(i2, i3) ∈ C(1)
i1
,

ai1i2i3

∣∣∣p(2)rs x
(1)
si1
x
(3)
si3

∣∣∣ / ∣∣∣x(2)ri2

∣∣∣ ≤ |λr| ∀(i1, i3) ∈ C(2)
i2
,

ai1i2i3

∣∣∣p(3)rs x
(1)
si1
x
(2)
si2

∣∣∣ / ∣∣∣x(3)ri3

∣∣∣ ≤ |λr| ∀(i1, i2) ∈ C(3)
i3
,

(3.22)

for s = 1, . . . , S. If
∣∣∣x(3)si3

∣∣∣ are similar values on most of edges like srcIP nodes

in Figure 3.6(a)(b),
∣∣∣x(2)si2

∣∣∣ / ∣∣∣x(1)ri1

∣∣∣ and
∣∣∣x(1)si1

∣∣∣ / ∣∣∣x(2)ri2

∣∣∣ might be not greater than

a specific value. These assumptions are hard to translate into structures
in real-world graph data, but we observed almost similar patterns as in
Figure 3.5, in most of the datasets we analyzed in this thesis. According to
this observation, we might expect that groups of nodes which are contained
by hyperedges containing similar nodes, i.e., community structures in k,k-
hypergraph, should have eigenscores of similar order in at least some modes,
i.e., similar number of digit, and be able to be separated if we sort nodes
according to the order of the eigenscores. Based on this intuition, we propose
a novel method to detect community structures in k,k-hypergraph that we
call k,k-hyperclique in Chapter 4.

3.3 Datasets Used

In this section we describe the various real-world datasets that we have used
in this thesis. Some of datasets such as social networks are fundamentally a

37

Dataset name abbr. attributes chap.

LBNL traffic logs LBNL

2.3K IP-srcs

4,5
2.4K IP-dsts
6.1K port #’s
3.6K time ticks

Read the Web RTW
3.6K subjects

40.1K verbs
3.9K objects

Berkeley Drosophila
Genome Project

BDGP
4.5K genes

40.2K terms
6 stages

The Internet Movie
Database

IMDb
553.0K actors

5,6
204.0K movies

DBLP collaboration
network

DBLP
316.0K authors

5,6
472.0K papers

Patent Citation Patent
2,089.0K citing

5
3,259.0K cited

Click Stream Click
23.0K users

5
199.0K sites

Table 3.3: A summary of datasets (continues to Table 3.4)

simple graph in which nodes are not partitioned, and we mainly use them in
Chapter 6. Others are datasets which can be regarded as bipartite graphs
or k,k-hypergraphs. In Chapter 5 we pick up two attributes of each dataset
and analyze them as bipartite graphs, and in Chapter 4 we use more than
two attributes and analyze them as k,k-hypergraphs. Moreover, we pick up
one attribute of some datasets and analyze them as a simple graph with no
partition in Chapter 6, in which there is an edge between two nodes if they
share same values in some other attributes. Summaries of all datasets are
shown in Table 3.3 and Table 3.4.

LBNL traffic logs (LBNL) The network traffic log is made available through
a research effort to study the characteristics of traffic for Internet en-
terprises [129]. The measurement was taken on servers within the
Lawrence Berkeley National Lab (LBNL) from thousands of internal
hosts over time, with millions of packet traces recorded1. Each packet

1http://www.icir.org/enterprise-tracing/download.html

38

Dataset name abbr. attributes chap.

The CAIDA AS Rela-
tionships Datasets

AS-CAIDA 26.5K AS 6

Email communication
network from Enron

Enron 36.7K address 6

Arxiv Astro Physics AstroPh 18.8K authors 6

Arxiv Condensed Mat-
ter

CondMat 23.1K authors 6

Arxiv General Relativ-
ity

GrQc 5.2K authors 6

Arxiv High Energy
Physics Theory

HepTh 9.9K authors 6

Table 3.4: A summary of datasets (continued)

trace includes four attributes: IP-source, IP-destination, port number,
and a time tick in second. With privacy in concern, lower 16 bits of
IP addresses were randomly permuted to anonymize the host identity,
whereas upper 16 bits were kept intact for proper identification of the
location and service provider [130]. This dataset consists of 264 logs,
each log is a snapshot of 1-hour. Moreover, logs are separated by two
kinds of port number, i.e., TCP and UDP, and logs with or with-
out scanning activity (we call ’scanners’ or ’regular’ dataset). We use
three or four attributes in Chapter 4, and two attributes in Chapter 5.
Also, we use only logs of regular dataset with TCP port number in
Chapter 4.

Read the Web (RTW) This online knowledge base is the outcome of the
NELL (Never-Ending Language Learning) system at Carnegie Mellon
University [27]. It employs natural language processing and machine
learning techniques to constantly and automatically crawl web pages
and extract facts [28]. Each fact is a triplet of (subject, verb, ob-
ject) such as (pittsburgh, city-located-in-state, pennsylvania). For bet-
ter quality of results, we apply our algorithm on a preprocessed subset
after noise removal (by courtesy of Dr. Byran Kisiel at Carnegie Mellon
University).

Berkeley Drosophila Genome Project (BDGP) The dataset was col-

39

lected from the Berkeley Drosophila Genome Project (BDGP) to study
the spatial-temporal patterns of gene expression during the early de-
velopment of fruit fly [153, 154]. In Chapter 4 we select three attributes
from the database dump available at [1], which consists of genes, func-
tional annotation terms from a specialized vocabulary, and different
developmental stages.

The Internet Movie Database (IMDb) The Internet Movie Data Base
(IMDb2) is a collection of facts about movies and actors. We analyze
as a bipartite graph of movies and actors in Chapter 5, and as a simple
graph of a collaboration network between actors in Chapter 6.

DBLP collaboration network (DBLP) DBLP3 provides bibliographic
information on major computer science journals and proceedings. We
analyze as a bipartite graph of authors and papers in Chapter 5, and
as a simple graph of a collaboration network between authors in Chap-
ter 6.

Patent Citation(Patent) Patent citation data between citing patents and
cited patents[67].

Click Stream(Click) Click stream data about people clicked link of sites[118].
This dataset contains active time of each session.

The CAIDA AS Relationships Datasets (AS-CAIDA) CAIDA AS graph
from November 5 2007. CAIDA AS is a communication network
of who-talks-to-whom constructed from the BGP (Border Gateway
Protocol) logs of Autonomous Systems (AS). The graph of routers
comprising the Internet can be organized into sub-graphs called Au-
tonomous Systems.

Email communication network from Enron (Enron) Email commu-
nication network in a company. The nodes of the network are email
addresses, and two nodes are connected with an edge if one address
sent at least one email to the other address.

Arxiv Astro Physics (AstroPh) Scientific collaborations in astro physics.

Arxiv Condensed Matter (CondMat) Scientific collaborations in con-
dense matter physics.

2http://www.imdb.com
3http://dblp.uni-trier.de/

40

Arxiv General Relativity (GrQc) Scientific collaborations in general rel-
ativity and quantum cosmology.

Arxiv High Energy Physics Theory (HepTh) Scientific collaborations
in high energy physics - theory.

The datasets AS-CAIDA, Enron, AstroPh, CondMat, GrQc, and HepTh
were taken from the Stanford Network Analysis Project (SNAP4).

4http://snap.stanford.edu/

41

42

Chapter 4

Anomaly Detection Using
Tensor Decomposition

A lot of modern applications such as web knowledge bases, network traf-
fic monitoring and online social bookmarks involve several kind of rela-
tional data, which are sometimes called ‘heterogeneous’ network data in
data mining research communities, with rich types of interactions among
nodes. Many of them can be analyzed as k,k-hypergraphs as discussed in
Chapter 1. Suspicious activities such as spam bookmarks and distributed
cyber attacks tend to form clique-like patterns of a k,k-hypergraph, in which
almost every combinations of k nodes straddling over k partitions share com-
mon hyperedges. Moreover, their nodes are hardly related to the important
nodes, i.e., they have few l-hops paths of small l to the important nodes
which have many l-hops paths of small l to many nodes in the graph. An
important and non-trivial problem is to detect such clique-like patterns in
a k,k-hypergraph with millions of edges in a scalable way, and distinguish
them from those caused by NOT suspicious behaviors, such as many popu-
lar contents bookmarked by many users with many popular tags. We intro-
duce MultiAspectForensics, a novel tool to automatically detect and visualize
bursts of specific subgraph patterns within a local community of nodes as
anomalies in a k,k-hypergraph, leveraging scalable tensor analysis methods.
One such pattern consists of a set of vertices that form a dense bipartite
graph, whose edges share exactly the same set of attributes. We present
empirical results of the proposed method in detecting synthesized anoma-
lies added to some real data, and discuss insights derived from patterns
discovered on three datasets from distinct application domains. Moreover,
we empirically show that our algorithm can be feasibly applied to higher

43

dimensional datasets. This work was published in [110], and refined version
was published in [111].

4.1 Introduction

Modern applications in the Internet era, either data-informed or data-driven,
have contributed to the boom of network data arising from a spectrum of
domains, such as web knowledge bases [17], network traffic monitoring [62]
and online social networks [21]. A glowing trend in the accumulation and
analysis of such data is the emergence of heterogeneous interactions be-
tween nodes in the network, for which a vivid depiction is offered by the
Facebook friendship page, with multiple page elements ranging from wall
posts, comments, and photos, to mutual friends, shared interests and com-
mon networks between a pair of users. In web knowledge bases, the Re-
source Description Framework (RDF) is a method for expressing knowledge
as triples in the form of subject-predicate-object expressions that represents
a heterogeneous interactions between subject nodes and object nodes with
predicate edges [92], and OWL is a language based on RDF that describes
the semantics of ontology [15]. The RDF-based knowledge is published as
Linked Data [16]. Browsing and navigation over such a space of information,
despite its overwhelming scale and complexity, has been a challenging task
commonly encountered in many fields. Yet the rather recent availability
and popularity of these data, in addition to practical requirements over the
efficiency, robustness and generalizability of the solution, has rendered the
topic of pattern mining for heterogeneous network data a relatively under-
explored one, where even the definition of interesting or abnormal patterns
could become a non-trivial problem itself.

Many of pioneering studies on pattern discovery for graph and network
data focused on frequent substructure mining, with heuristics motivated
by information theory [38], mathematical graph theory [169, 99], inductive
logic programming [44], etc. An intimately related problem is the detection
of rare event and anomalous behavior, which has attracted wide interests
thanks to its many well-recognized applications concerned with security,
risk assessment, and fraud analysis. Noble and Cook [126] were among
the first to address this challenge on structured network data by providing
solutions based on the minimal description length principle to search for
abnormal subgraphs. And many alternative approaches are now available
to spot anomalous nodes [7], edges [30], or both [50], with further elaboration
adapted to bipartite graphs [148], and time-evolving graphs [157]. This piece

44

Figure 4.1: A plot which displays absolute values of eigenscores (y-axis in
log-scale) along its elements (indexed by the x-axis) for the “IP-source” mode
with negative eigenscores for LBNL traffic logs (which we call “attribute
plot”). Elements are sorted such that IP-sources located in the same local
network have similar attribute index. The black arrows point to common
score values, illustrating an observation critical to the algorithmic design of
MultiAspectForensics.

of work, by revealing two classes of patterns in the context of heterogeneous
graphs, resembles a novel attempt to explore this relatively young realm of
multi-aspect network data for state-of-the-art discoveries and developments.

A heterogeneous network can be represented as a graph, or a k,k-hypergraph,
with several statistics that differ according to the types of the relationships
between nodes, and these statistics are carefully mixed up to process some
data mining tasks such as clustering [151] or classification [80]. Suspicious
behaviors such as spam bookmark and distributed cyber attack tend to
form clique-like patterns of k,k-hypergraph, in which hyperedges exist be-
tween almost every set of k nodes in different partitions. An important and
non-trivial problem is to detect such clique-like patterns in a k,k-hypergraph
with millions of edges in a scalable way, and distinguish them from those
caused by NOT suspicious behaviors, such as many popular contents book-
marked by many users with many popular tags. We resort to a tensor-based

45

representation of a k,k-hypergraph and employ off-the-shelf decomposition
algorithms [97] as a starting point of the analysis. Previous research along
this line has paid a great deal of attention on individual nodes, which play
a central role in similarity ranking [54], personalized recommendation [173],
etc. The major finding in our study is that, for multiple datasets across di-
verse application domains, we could sometimes observe groups of elements
with similar connections along one or more data modes, as implied by nearly-
identical decomposition scores. Figure 4.1 is an example of the decompo-
sition scores for the “IP-source” of a network traffic logs , which displays
absolute values of eigenscores (y-axis) along its elements (indexed by the
x-axis). The y-axis should be in log scale, because it is expected that nodes
of different community structures are separated in log scale as discussed in
Section 3.2. The black arrows indicate score values shared by many ele-
ments, which are not uncharacteristic in other dimensions and across differ-
ent datasets. This key observation enables us to create effective heuristics
to extract spikes from histograms as anomalies, and subsequently examine
subgraph patterns they imply. And the surprising fact is that many spikes
do not appear at the very top of the figure with most significant eigenscore
values. While algorithms in aforementioned studies mostly look for elements
with top eigenscores, our heuristic distinguishes itself by being able to cap-
ture patterns formed by less well-connected nodes in the network, which do
not necessarily stand out in the eigenspace and are often ignored by other ex-
tant techniques. This enables us to realize that there is an abnormally large
community whose nodes are hardly related to the important nodes which
are well related to many nodes in the graph, e.g., abnormally many spam
bookmarks on NOT popular contents with NOT popular tags to attract
much attention illegally.

In summary, we propose MultiAspectForensics, which starts with a data
decomposition step for input heterogeneous networks, features a spike de-
tection heuristic to reveal non-trivial substructure patterns. Our method
also includes programs to automatically visualize the detected spikes and
summarize the subgraph patterns corresponding to the spikes. The advan-
tage of our method is that we extract anomalous communities in both views
of the size of communities and the path capacities between the communi-
ties and the important nodes, by utilizing even very low absolute values
of the eigenvectors of CP decomposition. We demonstrate its effectiveness
and efficiency by showing experimental studies on some real datasets added
with synthesized anomalies. We also present empirical results of executing
MultiAspectForensics on three datasets from distinct application scenarios,
and investigate the discovered patterns which could be leveraged to sug-

46

gest suspicious activities from network traffic logs such as port-scanning
and denial-of-service attack, extract interesting facts from a web knowledge
base such as punk musicians or low-cost airline destinations, and report
gene function groups in a developmental biology consistent with established
theories. Moreover, we empirically show that our algorithm can be feasibly
applied to higher dimensional datasets.

The remainder of this chapter is organized as follows: we first briefly
sketch related literatures in Section 4.2, and then elaborate on MultiAspect-
Forensics procedures step-by-step in Section 4.3. Experimental studies on
synthesized anomalies are shown in Section 4.4, and empirical results on
three datasets are covered in Section 4.5. Lastly, Section 4.6 concludes the
discussion and highlights future directions.

4.2 Related Work

The problem we tackle in this chapter is to detect anomalous community
structures which are hardly related to the important nodes. As we discussed
in Section 2.1, none of existing works on anomaly detection in graph data
consider the path capacities between all nodes and communities, i.e., focus
on anomalous communities separated by several hops from the important
nodes.

CP decomposition we use in this chapter is one of the well-known tensor
decomposition techniques as we introduced in Section 2.4. We use CP de-
composition because the eigenvectors have useful properties for our anomaly
detection problem, i.e., the eigenscores of nodes decay exponentially as the
nodes are separated from the important nodes which have the eigenscores of
high absolute values, as we discussed in Section 3.2.

Moreover, our work are related to community detection in k,k-hypergraphs.
Several modularity-based community detection in k,k-hypergraphs have been
discussed as we described in Section 2.2, but they are not for detection of
k,k-hypercliques which we define in Section 4.3. The Boolean Tensor Fac-
torization (see Section 2.4) might be able to detect k,k-hypercliques, but it
does not necessarily spot anomalous communities as our method does.

4.3 Problem Definition and Algorithm

In this section, we first define the problem to tackle, then describe the details
of algorithm we propose. Definitions of symbols used in this chapter is listed
in Table 3.1 and Table 3.2.

47

4.3.1 Problem Definition

First of all, we formally define k,k-hypergraph and k,k-hyperclique.

Definition 1 (k,k-hypergraph) A k,k-hypergraph is a hypergraph G =<
V1 ∪ . . . ∪ Vk, H >, where V1, . . . , Vk are disjoint sets of nodes, and H ⊂
V1 × . . .× Vk is a set of hyperedges.

Definition 2 (k,k-hyperclique) Given a value ε between 0 and 1, a set of
nodes < C1∪ . . .∪Ck > in a hypergraph G =< V1∪ . . .∪Vk, H > where C1 ⊂
V1, . . . , Ck ⊂ Vk is a k,k-hyperclique if |(C1×. . .×Ck)∩H| ≥ ε|C1×. . .×Ck|.

For example, in a 3,3-hypergraph like Figure 1.1(C), if C1 =< u1, u2 >,
C2 =< c1, c2 >, C3 =< t1, t2 >, (u2, t2, c2) /∈ H, and all other members
of < C1 × C2 × C3 > are included in H, |(C1 × C2 × C3) ∩ H| = 7 and
|C1×C2×C3| = 8. In this case, < C1∪C2∪C3 > is a 3,3-hyperclique under
ε = 0.8, because 7 ≥ 0.8× 8.

Moreover, we define a l-hops path in k,k-hypergraph again.

Definition 3 (l-hops path in k,k-hypergraph) Given a node pair, a se-
quence of l hyperedges in which each end hyperedge contains each node of
the node pair and every successive hyperedges share at least one common
nodes is a l-hops path between the given node pair.

We assume anomalous behaviors cause k,k-hypercliques in which nodes
are hardly related to the important nodes, i.e., there are few l-hops paths of
small l between the nodes in the k,k-hypercliques and the important nodes,
which have many l-hops paths of small l between many nodes in the graph.
Under these definitions and the assumption, our problem is described as:

Problem 1 Given a hypergraph G =< V1 ∪ . . . ∪ Vk, H >, how can we
spot k,k-hypercliques in which nodes have few l-hops paths of small l to the
important nodes which have many l-hops paths of small l to many nodes in
the hypergraph, automatically and in a scalable way?

4.3.2 Algorithm Overview

An effective method to tackle the problem should (a) project all nodes in a
subspace in which nodes without small hops paths to important nodes are lo-
cated in long distances from the important nodes, (b) detect strangely large
k,k-hypercliques located even far away from the important nodes, and (c) vi-
sualize and summarize the detected k,k-hypercliques for further inspection.

48

We propose MultiAspectForensics leveraged by low rank approximation of
an adjacency tensor which provides such a subspace described above. Mul-
tiAspectForensics, in a nutshell, consists of the following steps:

• Data Decomposition: Take the input heterogeneous network, i.e., k,k-
hypergraph, as a tensor and perform the CP decomposition to obtain
a factor vector along each data mode.

• Spike Detection in Histograms: Iterate over all data modes to obtain
histograms and apply the spike detection algorithm.

• Visualization: Create attribute plots and histogram plots with detected
spikes highlighted.

• Substructure Discovery: Identify the induced subgraph for each spike
and summarize patterns discovered.

The above procedure just makes use of the strongest component after data
decomposition. If the contribution of the component corresponding to the
largest weight is not as large, the latter three steps should be carried out
over multiple strongest components in a similar fashion.

The running example in this section is LBNL traffic logs, which comes
from snapshot of network traffic logs that consist of packet traces in an
enterprise network (LBNL/ICSI Enterprise Tracing Project [2, 129]). We
abbreviate them as LBNL. In this section we use a triplet in the logs of (IP-
source, IP-destination, and port-number), which could be represented as a
3,3-hypergraph. In this chapter we regard this 3,3-hypergraph as a directed
network of machine IP addresses with the only edge attribute “port number”
and number of packets as edge weights. We borrowed a subset of this dataset
within 1-hour time span in this section.

4.3.3 Data Decomposition

A k,k-hypergraph can be represented as an adjacency tensor A as discussed
in Chapter 3. In terms of a heterogeneous network in data mining research
communities, i.e., a graph whose edges have several attributes, it can be
transformed into a tensor in which attributes of edges and edge sources and
edge destinations become three modes of a tensor. Edge weights naturally
stay as element values of the tensor. In another definition of a heterogeneous
network in which nodes have different colors, node colors could also be in-
corporated by taking a Cartesian product over two end points of an edge,

49

c1 c2

u1

u2

u3

≈

t2
t1u1

u2

c1

u3
c2 t2

t1

λ1 + … +A

x1
(1)

x1
(2)

x1
(3)

λR

xR
(1)

xR
(2)

xR
(3)

Figure 4.2: Illustration of the CP decomposition: a 3,3-hypergraph is
represented as a 3-mode tensor, and decomposed into R triplets of vectors,
reminiscing of the rank-R singular value decomposition of a matrix.

for instance, if a directed network contains nodes with 7 different colors, we
could have an edge attribute whose arity is 72 = 49.

Tensor decomposition leverages multi-linear algebra to the analysis of
high-order data. The CANDECOMP / PARAFAC (CP) decomposition we
applied in this chapter generalizes the singular value decomposition (SVD)
for matrices. It factorizes a tensor to the weighted sum of rank-one tensor,
i.e., the weighted sum of outer products of mode-specific vectors, as illus-
trated in Figure 4.2 for a 3-order tensor. Formally, for an M -mode tensor
A of size I1 × I2 × · · · × IM , its CP decomposition of rank R yields

A ≈
R∑

r=1

λr

(
x(1)
r × . . .× x(M)

r

)
. (4.1)

Similar to SVD, the approximation becomes closer as R enlarges, and would
be exact if it equals the rank of the tensor (see [71] for details).

4.3.4 Spike Detection in Histograms

Now that we have transformed complex structured data into a set of

more manageable vectors x
(m)
r , the next step is to spot anomalous patterns

from these vectors. Prior to applying the spike detection heuristics, we
obtain histogram data which indicate the frequencies of the nodes within
the ranges of eigenscores equally divided in log scale. An example of the
histogram is shown in Figure 4.3, which we call a histogram plot.

Given parameters s, r, and K, the spike detection algorithm (Algo-
rithm 1) just needs to traverse the histogram data until one of the following
conditions is satisfied: (1) the energy as measured by the sum of square
values of frequencies covered is equal or more than a fraction of s, and the

50

Figure 4.3: A histogram which shows the frequencies of the same nodes of the
“IP-source” mode for LBNL traffic logs as Figure 4.1, within the ranges of
the eigenscores equally divided in log scale (which we call “histogram plot”).
The eigenscores are indicated by y-axis, and the frequencies are indicated
by x-axis. Detected spikes are indicated by red circles.

frequency is less than a fraction of r of the largest one; (2) K bins are al-
ready inspected. After the inspection, the sets of elements within each bin
are extracted as spikes, as long as the energy covered is equal or more than
a fraction of s. K is the desired number of spikes to be detected. Now we
do not have a clear strategy of the parameter settings of s, r, and K, and
there is a big room for improvement of our method. In this section and
experiments in Section 4.5, we use K = 20 as the number of spikes we can
investigate practically. We use r = 50%, because the bins with equal or
more than half of the frequencies of the largest one should be extracted as
spikes, as long as the condition of the energy is satisfied. We have examined
several number of s under K = 20 and r = 50%, and we chose s = 90%
so that many spikes are extracted for most of the datasets we use. But we
use another settings in Section 4.4 so as to pick up synthesized anomalies
effectively.

51

Algorithm 1 SDA (Spike Detection Algorithm)

Input: Eigenscore histogram vector Ho of size N
Output: The set indicating spikes detected S
1: sort the histogram in descending order s.t. Ho1 ≥ Ho2 ≥ · · · ≥ HoN

2: S ← φ; Q← 0; QSUM ←
∑N

n=1H
2
on

3: for k = 1, . . . ,K do
4: S ← S ∪ {ok}
5: Q← Q+H2

ok
6: if Q/QSUM ≥ s and Hok/Ho1 < r then
7: break
8: end if
9: end for

10: if Q/QSUM < s then
11: S ← φ
12: end if
13: return S

4.3.5 Visualization

For further inspection of the detected spikes, the distributions of the at-
tribute index of the elements within each spike can be very useful informa-
tion. For example, if the elements are sorted such that IP-sources located
in the same local network have similar attribute index, and the elements
within a spike are distributed in a specific range of the indices, we can eas-
ily know that these IP-sources are located in the same local network. To
investigate such distributions of the attribute index, we create attribute plot
which displays absolute values of eigenscores by the y-axis in log-scale along
the attribute indices by the x-axis as shown in Figure 4.1, and put attribute
plot on the left side-by-side with histogram plot on the right, highlighting
every spike in red (Figure 4.4).

The collection of output plots of MultiAspectForensics is named MAF-ray
(MultiAspectForensics X-ray), which puts together attribute plots and his-
togram plots of both positive and negative eigenscores. The rank 1 MAF-ray
of LBNL traffic logs is shown in Figure 4.5. With MAF-ray, users can eas-
ily realize that there have occurred spikes in histogram plot of some modes,
whose corresponding elements have specific attribute index in attribute plot,
like aforementioned spikes of IP-sources.

52

Figure 4.4: An attribute plot (adopted from Figure 4.1) on the left side-
by-side with the corresponding histogram plot (adopted from Figure 4.3).
Detected spikes are indicated by red circles in histogram plot and red dots
in attribute plot. We can find the elements within each spike have attribute
index in a specific range, indicating that they are located in the same local
network.

4.3.6 Substructure Discovery

Having extracted anomalous sets of elements that form histogram spikes
from each data mode, we head back to the input network data to examine
corresponding local subnetworks to complete the final step of pattern dis-
covery. Because the elements within the same spike are expected to behave
similarly and specifically, the local patterns corresponding to detected spikes
can be understood as bursts of common patterns shared by the elements.
As the starting point for analyzing the local patterns, we propose spike
table that shows detected spikes along with frequency counts of elements
within each spike, numbers of common patterns, and numbers of unique
elements of other modes within the common patterns. A spike table in “IP-
source” mode (#1) in our running example is shown in Table 4.1. For ex-
ample, most of the 119 IP-sources within spike #2 have 3 common patterns
(131.243.143.66/534, 131.243.141.187/534, and 131.243.140.105/534 as IP-
destination/port number), with 3 distinct IP-destinations (mode #2), and
one distinct port number (mode #3). Patterns derived from MultiAspect-
Forensics can be summarized into the following two categories:

generalized star (g-Star)

53

Figure 4.5: 1st MAF-ray for LBNL traffic logs: attribute plots and histogram
plots, for “IP-source” mode (the top row, #1) and “IP-destination” mode
(the middle row, #2) and “port#” mode (the bottom row, #3), and for the
positive (left) and negative (right) parts. Using MAF-ray, we can quickly
spot IP-sources (or IP-destinations, or port#), which have similar behavior,
forming one of the patterns in Section 4.3.6.

This pattern can be detected as a spike in a mode, whose corresponding ele-
ments share a single common pattern of other modes. This is a subnetwork
which consists of conterminous edges that differ only in one data mode. It
generalizes the star pattern in bipartite graphs, and makes up a continuous
block along one dimension in the adjacency tensor, if elements along that
dimension are ordered carefully. We can find 3 spikes of this category in
the spike table shown in Table 4.1. They are groups of IP-sources sending
packets to a single destination server using the same port (Figure 4.6 (a)
‘NCP’). Note that in a heterogeneous network, this category of patterns also
includes multiple edges between one pair of nodes with differing attribute

54

#
Frequency

count

common

patterns

unique ele-

ments of mode

#2;3

Description

1 172 1 1; 1 g-Star (‘NCP’)

2 119 3 3; 1 g-Bcore (‘File Sharing’)

3 63 5 1; 5
g-Bcore (‘Multi Pur-
pose’)

4 51 1 1; 1 g-Star

5 33 4 4; 1 g-Bcore

6 26 1 1; 1 g-Star

7 26 2 1; 2 g-Bcore

Table 4.1: A spike table in “IP-source” mode (#1) for the LBNL traffic logs.
Number of common patterns are the number of patterns of other modes
shared by more than 90% of the elements within each spike. Numbers of
unique elements of other modes within the common patterns are also shown.

values, e.g., a good many port numbers in our running example, in which
case the source machine may be either an administrator performing port
screening or a suspect trying to exploit a vulnerable port (Figure 4.6 (b)
‘Port Scanning’).

generalized bipartite-core (g-Bcore)

This pattern can be detected as a spike in a mode, whose corresponding
elements share multiple common patterns of other modes. This is a subnet-
work that represents a dense bipartite structure similar to the bipartite-core
pattern in bipartite graphs. More generally, it can be viewed as a ‘slice’ of
continuous blocks along two dimensions in higher-order tensors under spe-
cific element orders. Patterns of this category can be classified into some
classes according to the number of unique elements of each mode within the
common patterns. In the spike table shown in Table 4.1, spikes of this cat-
egory are classified into two classes, spikes whose common patterns contain
multiple unique elements only in mode #2 (spike #2 and #5), and spikes
only in mode #3 (spike #3 and #7). The former class is a group of IP-
sources sending packets to multiple destination servers with the same port
(Figure 4.7 (a) ‘File Sharing’). And the latter class is a group of IP-sources
sending packets over different port numbers to the same server (Figure 4.7
(b) ‘Multi Purpose’), likely to happen during a DDoS (Distributed Denial-of-

55

Figure 4.6: Examples of generalized star patterns discovered in the LBNL
traffic logs. Wavy arrows indicate multiple edges between the pair of nodes
with a handful of distinct attribute values. (a) ‘NCP’: 10 IP-sources (ran-
domly selected out of 172 ones) are sending multiple packets to a server
machine with Port# 524, which is a UDP port under the NCP protocol
from a network OS for file sharing and printing services; (b) ‘Port Scan-
ning’: The IP-source registered by an Indian ISP is sending packets to a
host in LBNL via port numbers (ranging from 2,300 to 2,900) not usually
intended for this type of communication, implying a suspicious activity.

Service) attack, a typical scenario of network intrusion, in which IP-sources
play the role of malicious hosts sending huge volumes of packets to the tar-
get server as the victim. Note that this category of patterns can also include
classes of spikes whose common patterns contain multiple unique elements
in several modes, like spikes detected in the network traffic dataset with
additional mode of time tick, as shown in Section 4.5.

56

Figure 4.7: Examples of generalized bipartite-core patterns discovered in the
LBNL traffic logs. Wavy arrows indicate multiple edges between the pair
of nodes with a handful of distinct attribute values. (a) ‘File Sharing’: 10
IP-sources (randomly selected out of 119 ones) are sending multiple packets
to an array of server machines over a port used for file sharing and print-
ing services; (b) ‘Multi Purpose’: 10 IP-sources (randomly selected out of
63 ones) are sending packets over different ports to a multi-purpose server
machine.

As a final remark, the statement that both patterns are belated to a
block along one dimensions or a bundle of blocks in the high-order ten-

57

sor only holds when elements of their respective data modes are ordered
in specific ways. And the complexity to search for such an order is gener-
ally exponential, which reflects, in some sense, the power of the proposed
approach.

4.4 Evaluation of Accuracy and Scalability

In this section, we present experimental results on the accuracy and scalabil-
ity of our method. First, we evaluate the accuracy of our method by using
10 largest LBNL traffic logs added with synthesized anomalies. Then we
evaluate the scalability by using many LBNL traffic logs of various numbers
of packets. MultiAspectForensics is implemented in the MATLAB language,
and all following experiments are performed on a Unix machine with four
2.8GHz cores, and 16GB memories. We use the cp als function in the MAT-
LAB Tensor Toolbox [11] which features the alternating least squares (ALS)
method, a predominant implementation for CP decomposition.

4.4.1 Putting Synthesized Anomalies on Datasets

We create some synthesized anomalies of k,k-hypercliques and add into 10
largest LBNL traffic logs, and evaluate how effectively our method can spot
these anomalies. To create k,k-hypercliques located far away from the im-
portant nodes, i.e., without small hops paths to the important nodes which
should have the eigenscores of large absolute values, we randomly select ele-
ments within the synthesized k,k-hypercliques. These LBNL traffic logs have
about 15, 000 to 50, 000 hyperedges, with 1, 400 to 4, 500 nodes of srcIPs,
1, 400 to 4, 800 nodes of dstIPs and 5, 400 to 24, 000 nodes of ports.

Given parameters of volume V and density ε, i.e., a parameter of k,k-
hypercliques, we create N anomalies as follows: (1) For each group, we
randomly select three values s,d,p between 0 and 1, and decide the number
of srcIPs and dstIPs and ports in accordance with the ratio of three selected
values, so that sdp is not lower than V , e.g., the number of srcIPs was
ds(V/(sdp))1/3e where d·e is the ceiling function. (2) dV εe elements are
randomly selected for each group, that is, hyperedges of a k,k-hyperclique.
We tested for V = 100, 200, 300, 400, 500, ε = 1.0, 0.9, 0.8, and N = 10.

58

4.4.2 Compared Method

The most related method is the Boolean Tensor Factorization (BTF) [114].
Given a binary tensor B, BTF try to find a rank-S tensor

C =
S∑

s=1

c(1)s × ...× c(M)
s (4.2)

which minimize ‖B−C‖, where c
(m)
s are binary vectors, using Boolean arith-

metic, i.e., defining that 1+1 = 1. Each component c
(1)
s ×...×c

(M)
s represents

a group of elements in B with self-similar indices in each mode, like k,k-
hypercliques defined in Section 4.3. As we do not know any implementation
of sparse coding of BTF, we compare our method with a similar heuristic
which we call DenseSpot.

DenseSpot first obtains a rank-S tensor Ĉ =
∑S

s=1 ĉ
(1)
s × . . .× ĉ

(M)
s which

minimize ‖B − Ĉ‖, where ĉ
(m)
s are real-value vectors. This is a relaxation

problem of BTF without Boolean arithmetic, and we can obtain a solution
by conducting CP decomposition. After that, DenseSpot checks entries in
s-th component of Ĉ corresponding to non-zero elements in B with indices

(i1, . . . , iM) and puts 1 on im-th element of c
(m)
s if the entries are greater

than a threshold h. Finally, DenseSpot selects h, which minimizes ‖B − C‖
and returns those C calculated by the h. We can easily calculate ‖B−C‖2 as
‖B‖2 − 2〈B, C〉+ ‖C‖2. The s-th group of nodes can be created by selecting

value 1 entries of c
(m)
s for all m = 1, . . . ,M , regarded as a candidate of k,k-

hyperclique. We test S = 10 so that DenseSpot can detect 10 candidates of
k,k-hyperclique.

For MultiAspectForensics, we consider a group of hyperedges which con-
tain nodes in a detected spike, and regard a set of nodes contained by all
hyperedges in the detected group as a candidate of k,k-hyperclique. For
spike detection, we use s = 10%, r = 80%, and K = 10, so that our method
can detect 10 candidates in maximum.

4.4.3 Accuracy of Detecting Anomalies

We apply MultiAspectForensics and DenseSpot to LBNL traffic logs added
with synthesized anomalies, and compare a candidate of k,k-hyperclique de-
tected by each method with each synthesized anomaly of k,k-hyperclique.
We conduct chi-square tests of independence, which assess whether hyper-
edges of a candidate k,k-hypergraph and those of synthesized k,k-hypergraph

59

are independent of each other. In short, given these two groups of hyper-
edges, we calculate χ2 = n(a(n−e−g+a)−(e−a)(g−a))2/(e(n−e)g(n−g))
where n is the total number of hyperedges, a is the number of common hy-
peredges between two groups, e and g are the numbers of hyperedges of each
group. If χ2 is greater than a value of p-value at 0.01 of the chi-squared dis-
tribution for 1 degree of freedom, we conclude that the method successfully
has detected the synthesized anomaly of k,k-hyperclique.

Figure 4.8 is the number of k,k-hypercliques successfully detected by
each method. MultiAspectForensics can detect almost half of synthesized
anomalies even though the volume of k,k-hyperclique are as small as 100,
whereas DenseSpot can hardly detect such small anomalies. Moreover, Mul-
tiAspectForensics can successfully detect synthesized anomalies for all ε we
test, whereas DenseSpot seems to focus on anomalies of larger ε especially
in larger volume as 500. These results suggest that MultiAspectForensics
can detect anomalous k,k-hypercliques located in local position of graph
structure, which DenseSpot does not pay attention to.

0 100 200 300 400 500 600
0

2

4

6

8

10

volume of anomalies

#
 d

et
ec

te
d
 a

n
o
m

al
ie

s

MAF(ε =1.0)

MAF(ε =0.9)

MAF(ε =0.8)

DSpot(ε =1.0)

DSpot(ε =0.9)

DSpot(ε =0.8)

Figure 4.8: Average number of successfully detected synthesized anoma-
lies by each method. Vertical axis: average number of detected synthesized
anomalies. Horizontal axis: size of synthesized anomalies. Solid lines: Mul-
tiAspectForensics (MAF). Dashed lines: DenseSpot (DSpot).

60

4.4.4 Scalability

Can MultiAspectForensics be feasibly applied to higher dimensional datasets?
The most time-consuming part in MultiAspectForensics is CP decomposition
for the input tensor, for which a predominant implementation is the alternat-
ing least squares (ALS) method, such as the cp als function in the MATLAB
Tensor Toolbox [11]. Given a order-M sparse tensor of size I1×I2×. . .×IM ,
the computational cost of each iteration depends on the larger of the fol-
lowing: (1) I =

∑M
n=1 In; (2) NNZ = the number of non-zero elements.

Figure 4.9 presents empirical results over two different datasets – (a) a traf-
fic log from LBNL for which the tensor is sparse (NNZ � I), and we add
non-zero elements to (a) in order to create a more dense tensor in (b) for
which NNZ � I. These results support the complexity of MultiAspect-
Forensics in time is O(N ∗max(I,NNZ)), where N denotes the number of
iterations. If the dimension is low and the tensor data stays in the category
(b), the computational cost does not depend on the addition of the dimen-
sions, and scales linearly as NNZ grows. When the dimension increases,
the tensor data becomes sparser and will fall into the category (a). In such a
case, even though the total volume of the high-dimensional space increases
exponentially, the computational cost will increase linearly as the dimen-
sion grows, proportional with the sum of the number of attribute index.
In each case MultiAspectForensics has a feasible time complexity for higher
dimensional datasets.

4.5 Empirical Results on Real Data

We discuss about respective patterns discovered by MultiAspectForensics in
the three datasets.

4.5.1 Data and Environment

Datasets are acquired from three dissimilar application domains: network
traffic monitoring, knowledge networks, and bioinformatics. A summary is
highlighted in Table 4.2. Details of the datasets are described in Section 3.3.

LBNL traffic logs (LBNL) The network traffic log collected on an inter-
nal enterprise network of the Lawrence Berkeley National Lab (LBNL) [129].
Each trace in the logs contains IP-source, IP-destination, port-number,
and time tick. We use a triplet in the logs of (IP-source, IP-destination,
port-number) regarded as 3,3-hypergraphs in Section 4.3 and Section 4.4

61

(a) NNZ � I

(b) NNZ � I

Figure 4.9: Computational time of MultiAspectForensics on two different
datasets. On the x-axis, N denotes the number of iterations, I equals the
sum of sizes over all dimensions, and NNZ stands for the number of non-
zero elements. The complexity of MultiAspectForensics in time is O(N ∗
max(I,NNZ)).

62

Figure 4.10: An attribute plot on the left side-by-side with the corresponding
histogram plot for the “time” mode (#1) from the 1st MAF-ray for LBNL-
sdpt. The spikes indicated by black arrow are discussed in Section 4.5.2.

(LBNL). And we use four attributes of (IP-source, IP-destination,
port-number, time tick) regarded as a 4,4-hypergraph in this section
(LBNL-sdpt).

Read the Web (RTW) Online knowledge base derived from the NELL
(Never-Ending Language Learning) system at Carnegie Mellon Uni-
versity [27]. Each fact is a triplet of (subject, verb, object) such as (pitts-
burgh, city-located-in-state, pennsylvania) regarded as a 3,3-hypergraph,
which could be also represented as a directed graph made up of entities
like pittsburgh or pennsylvania, edges with attributes like city-located-
in-state.

Berkeley Drosophila Genome Project (BDGP) A dataset collected from
the Berkeley Drosophila Genome Project (BDGP) [153, 154]. We
have selected three attributes from the database dump available at [1],
which consists of (genes, annotation terms, developmental stages) re-
garded as a 3,3-hypergraph.

For every of these datasets, the wall-clock time is no more than 2 minutes
to carry out the computation and generate attribute plot and histogram plot
along all modes.

63

Dataset # modes Measure
non-

zero
Dimensions

#

spikes

LBNL 3
pack-
ets

27K 2,345 IP-srcs 7

2,355 IP-dsts 0
6,055 port #’s 10

LBNL-
sdpt

4
pack-
ets

231K
3,610 time
ticks

2

2,345 IP-srcs 0
2,355 IP-dsts 0
6,055 port #’s 0

RTW 3 binary 10K 3,641 subjects 15
98 verbs 0
3,929 objects 2

BDGP 3 binary 38K 4,491 genes 5
248 terms 2
6 stages 0

Table 4.2: A summary of datasets. The numbers of spikes extracted by
MultiAspectForensics are shown.

4.5.2 LBNL Traffic Log

We have already discussed patterns discovered from a snapshot of this
dataset in Section 4.3.6, illustrated in Figures 4.6, 4.7. With the additional
mode of time tick (LBNL-sdpt), we have found two dominating spikes for
the “time-ticks” mode (Table 4.2). The elements within these two big spikes
in histogram plot (arrows on Figure 4.10) distributes on almost all the at-
tributes in attribute plot, indicating the traffic corresponding to these spikes
occurred at almost every time-tick. A spike table indicates both of the spikes
are g-Bcore pattern, bipartite-cores between “time-tick” elements and pat-
terns of other modes (Table 4.3). Upon closer examination, we report the
following activities: the first spike is related to the HTTP traffic on port 80
between four servers in LBNL and three remote hosts in Chinese academic
institutions, possibly executing scripts to crawl/download web pages. The
second spike seems to be related to the same HTTP traffic as the first spike,
with additional traffic between a server in LBNL and a remote host at India
aforementioned. We have traced further in time and found that the remote
host never sent packets back to acknowledge the connection, suggestive of

64

#
Frequency

count

common

patterns

unique ele-

ments of mode

#2;3;4

Description

1 2,641 10 9; 9; 7 g-Bcore

2 803 11 9; 10; 7 g-Bcore

Table 4.3: A spike table in “time ticks” mode (#1) for LBNL-sdpt. Num-
ber of common patterns are the number of patterns of other modes shared
by more than 90% of the elements within each spike. Numbers of unique
elements of other modes within the common patterns are also shown.

suspicious activities to be reported to domain experts.

4.5.3 RTW Knowledge Base

Recall that each item in the knowledge database can be represented as a
(subject, verb, object) triplet. MultiAspectForensics has detected 15 spikes
in “subjects” mode and 2 spikes in “objects” mode (Table 4.2). A spike
table shows the spikes detected in “subjects” mode in Table 4.4. Almost all
of the spikes are g-Star pattern with exception of a spike of g-Bcore pattern
having only 2 common patterns.

Figure 4.11 illustrates a subgraph discovered revealing a g-Star pattern
(‘Punk’). The music artists/bands listed here are specialized to punk mu-
sic according to the knowledge base. And Figure 4.12 displays another
g-Star pattern (‘Ryanair’) between European cities and an Irish low-cost
airline which flies to many regional or secondary airports to reduce cost, fol-
lowing a different business model and choice of destination from industrial
giants.

We should note that some elements within each spike have more versa-
tile peers. For example, some of the musicians of “subjects” mode in the
‘Punk’ spike have patterns of verb ‘music-artist-genre’ with objects ‘hor-
ror punk’, ‘proto punk’, ‘british punk’ and ‘punk rock’ (not shown in the
figure). In ‘Ryanair’ spike, some of the cities of “subjects” mode have
patterns of verb ‘city-located-in-country’ with objects ‘finland’, ‘norway’,
‘austria’, ‘scotland’, ‘spain’, ‘belgium’ and ‘ireland’ (not shown in the fig-
ure). These patterns are not be favorably selected by MultiAspectForensics,
because they are less important in the first rank.

Moreover, as a sanity check, since node names are ordered alphabetically
in this dataset, the pattern does not make a continuous block in the tensor

65

#
Frequency

count

common

patterns

unique ele-

ments of mode

#2;3

Description

1 265 1 1; 1 g-Star

2 134 1 1; 1 g-Star

3 63 1 1; 1 g-Star

4 31 1 1; 1 g-Star

5 30 1 1; 1 g-Star

6 30 1 1; 1 g-Star (‘Punk’)

7 29 1 1; 1 g-Star

8 27 1 1; 1 g-Star (‘Ryanair’)

9 27 1 1; 1 g-Star

10 26 1 1; 1 g-Star

11 25 1 1; 1 g-Star

12 24 1 1; 1 g-Star

13 24 1 1; 1 g-Star

14 22 2 2; 2 g-Bcore

15 22 1 1; 1 g-Star

Table 4.4: A spike table in “subjects” mode (#1) for RTW knowledge base.
Number of common patterns are the number of patterns of other modes
shared by more than 90% of the elements within each spike. Numbers of
unique elements of other modes within the common patterns are also shown.

without non-trivial permutation.

4.5.4 BDGP Gene Annotation

In this dataset MultiAspectForensics spots a spike of a set of genes known
to be responsible for the maternal effect in the early development of fruit
fly, which also provides hints to study other higher organisms including
Homo sapiens. Products of such maternal effect genes, in the form of either
protein or mRNA, play a critical role in the very early stage of embryo
development, such as the first few cell divisions. For instance, four of such
genes, including bicoid, caudal, hunchback, and nanos, is mostly responsible
for the determination of anterior-posterior axis – which side of the embryo
will be the future head and which other side will be the future tail [100].

66

Figure 4.11: ‘Punk’: A g-Star pattern discovered from the RTW knowledge
base about 49 punk music artists, of which a random selected set of 10 are
listed. They are all specialized in punk or one of its sub-genres according to
the knowledge base.

4.6 Conclusion

We presented MultiAspectForensics, a novel and effective tool to automati-
cally detect and visualize a category of anomalous patterns in k,k-hypergraphs,
including generalized star and generalized bipartite-core patterns. These
patterns can be understood as bursts of specific subgraph patterns within a
local community of nodes in heterogeneous networks, i.e., k,k-hypercliques
described in Section 4.3, even if they exist among less-well connected nodes
which are more likely to be ignored by many extant methods. We show
our method can effectively detect such patterns by detecting synthesized
anomalies added to some real datasets. Empirical results exhibited valu-
able insights derived from pattern discovered, across multiple application
domains such as network traffic monitoring, knowledge networks, and bioin-
formatics. These successes could be attributed to the fact that we resorted
to a tensor-based representation to facilitate data decomposition, reached a
key observation leading to spike patterns in histogram plots, and revealed
typical substructures reflecting spectral properties of heterogeneous data.
Moreover, MultiAspectForensics is scalable to higher dimensional datasets,
as we have empirically shown.

67

Figure 4.12: ‘Ryanair’: A g-Star pattern discovered from the RTW knowl-
edge base about 36 European destinations of the Ryanair, an Irish low-cost
airline, of which a random selected set of 10 are listed. Many of these cities
have only sparse connections with other verbs.

68

Chapter 5

Pattern Discovery Using
Singular Value
Decomposition

So far we only looked at anomalous community structures themselves in
Chapter 4. The more complicated task is to detect anomalies in the re-
lationship of groups of nodes and community structures. To detect such
anomalies, we should recognize patterns related to community structures,
including a near clique or a set of nodes bridging two or more near-cliques
or other, and detect anomalies or outliers that deviated from the patterns.
This would improve intrusion detection in computer networks and network
traffic monitoring.

We propose EigenDiagnostics, a fast algorithm that spots patterns of the
nodes related to community structures in a large bipartite graph, such as a
pattern of the ratio of the degrees and the numbers of paths to a community,
a pattern of the ratio of connections straddling two communities, and so on.
The process creates scatter-plots of the node properties (such as singular
scores, degree, and weighted degree), then looks for linear-like patterns.
Our tool automatically discovers such plots, using the Hough transform
from machine vision. None of existing works on anomaly detection in graph
data consider the path capacities between all nodes and communities, i.e.,
determine normal connection patterns between nodes and communities.

We apply EigenDiagnostics on a wide variety of synthetic and real data
(LBNL computer traffic, movie-actor data from IMDB, Patent citations,
and more). EigenDiagnostics finds patterns, which appear to correspond
to port-scanning (in computer networks), repetitive tasks with bot-net-like

69

behavior, patterns of actors changing careers (in movie-actor data) , and
more. The advantages are: (a) it is effective in discovering patterns of the
nodes related to community structures. (b) it is fast (linear on the number
of edges) (c) it is general, and applicable to many, diverse graphs, spanning
tens of GigaBytes.

This work was published as [109].

5.1 Introduction

Given a large graph, like who-bought-what in a purchasing data or who-
contacts-whom in a computer communication network, how can we auto-
matically monitor and report strange behavior of nodes or groups of nodes?
To attain such objectives, we should recognize ordinary patterns or laws
among nodes and edges, and detect anomalies or outliers that deviated
from them. Recent studies on anomaly detection of graph data provided
several solutions for this task [126, 50, 30, 150, 157, 156, 7], though it is
more complicated task to detect anomalies in the relationship of groups of
nodes and community structures. For example, in a purchasing data, if a
group of products which are usually bought by a specific customer segments
are bought by some customers who belong to other segments, e.g., cosmet-
ics usually bought by groups of young women are bought by some men in
strangely much amount, they are suspicious. In a computer communica-
tion network, if a set of servers which are usually accessed in a distributed
manner, e.g., a group of mirror web-servers, are accessed at strangely much
amount on all of the servers (in not a distributed manner), it can be declared
to be anomalous access. However, the normal connection patterns among a
potentially vast amount of community structures in real world data include
too many possible types to deal with them comprehensively. As a result, it
is a hard task to spot the anomalous connection patterns among community
structures effectively.

Our intuition is that the singular scores of nodes, i.e., values of cor-
responding elements of singular vectors of an adjacency matrix, are corre-
lated with the amount of connection with specific community structures as
discussed in Section 3.2, and we could comprehensively overlook patterns
related to many community structures by using small number of singular
vectors. A vivid example is the linear pattern of the scatter-plot of Figure
5.1, which will be described the details very soon. In a nut-shell, every point
corresponds to a network node, and the two axes correspond to two numer-
ical properties, like singular score, degree, weight, etc. By examining some

70

of the nodes on this pattern (red diagonal line), we see that they correspond
to the gray nodes of Figure 5.1(b), which clearly straddle the two bipartite
cores, which serve as ’bridges’ between them.

Could we have a method that will automatically do attention routing,
spotting the nodes that deserve further inspection? Ideally, the method
should (a) examine a carefully selected collection of such scatterplots, (b)
automatically determine striking patterns, and (c) return some of the net-
work nodes that constitute these patterns. This is exactly what our proposed
EigenDiagnostics does. In the first part, we propose to use spectral prop-
erties of the nodes (score on the first singular vector, 2nd, etc.), as well as
traditional measures like degree and total weight. In the second part, au-
tomatic detection - we propose to use the Hough transform adapted from
machine vision, to spot linear constellations of points. In the third part, we
propose RepPick, to select representatives from each pattern.

As we show later (Section 5.5), there are several recurring patterns in
many of the graphs we inspected. One of the most striking cases is the pat-
tern of “accidentally related group”. These are many nodes that belong to
various community structures but accidentally connected to a common com-
munity structure, such as actors of various genre who accidentally co-starred
with a few actors who changed careers from adult movies to television shows.
Another recurring pattern is the pattern of “bridging tasks”. This is a group
of source-IPs which used only two groups of port-numbers, e.g., a group
of business use computers which only use two groups of port numbers for
sending or receiving e-mails. Such patterns themselves might be interest-
ing, while it could be expected to detect anomalous behaviors that deviated
from these patterns.

We want to emphasize that “accidentally related group” and “bridging
tasks” are only two of the many patterns we found. Several more patterns
are described later in Section 5.3, like “division of labor”, “satellite group”,
and many more. All those patterns were suggested by EigenDiagnostics, and
automatically detected.

The main contributions of this work is the design and evaluation of
’EigenDiagnostics’. This can spot patterns of the nodes related to commu-
nity structures in large graphs by automatically detecting linear-like patterns
in our proposed SDSD-plot and DS-plot (see Section 5.3). These pattern
include a pattern of the ratio of the degrees and the numbers of paths to a
community, a pattern of the ratio of connections straddling two communities,
and so on. Our ’EigenDiagnostics’ method has several desirable properties:

• Automatic: it automatically detects linear-like patterns (using the

71

(a) SDSD-plot of ’bridging tasks’ (b) template of
in intranet traffic log ’bridging tasks’

Figure 5.1: ’bridging tasks’ in a bipartite graph, automatically detected
by EigenDiagnostics. (a) is a scatter plot of network nodes (“SDSD-plot” -
see details in section 5.3); with red lines signifying automatically detected
patterns; (b) gives the vicinity of selected nodes on the red diagonal line P1
indicated by blue circle in (a) (actually, the template of the pattern) - notice
how the black-circle nodes straddle the two bipartite cores (each indicated
by a dashed rectangle).

Hough transform), and picks up representative nodes to show to the
users (’RepPick’ algorithm).

• Effective: we have discovered novel and strange patterns in multiple
real datasets.

• Scalable: The method is linear on database size (# of edges).

We run experiments on several diverse and real large bipertite graphs.
For weighted graphs, we use LBNL traffic logs and Click Stream. For un-
weighted graphs, IMDb, DBLP, and Patent Citationare used.

The rest of the chapter is organized as follows: We review the related
work in Section 5.2, and proposed strategies are presented in Section 5.3.

72

We introduce an automated tool in Section 5.4. The experimental results
are presented in Section 5.5, and we conclude this work in Section 5.6.

5.2 Related Work

As we discussed in Section 2.1, none of existing works on anomaly detection
in graph data considered the path capacities between all nodes and com-
munities, i.e., determined normal connection patterns between nodes and
communities. Akoglu et al. [7] is the most related work which found the
laws of the connection patterns between each node and “ego-net”, i.e., sub-
graphs of neighboring nodes of each node, and detected abnormal nodes that
deviated from the laws. However, they did not find the normal connection
patterns between nodes and community structures.

We use the singular vectors of adjacency matrices which can be used
for community detection (see Section 2.2) and measures of importance of
nodes (see Section 2.3). In addition to these usages of singular vectors, we
use them for analysis of the path capacities between nodes and community
structures, by utilizing even very low absolute values.

5.3 The Method

In this section, we first define the problem, and then describe our main idea.
Most of symbols used in this chapter are listed in Table 3.1 and Table 3.2,
and additional symbols are listed in Table 5.1.

5.3.1 Problem Definition

Given a weighted bipartite graph G =< V1 ∪ V2, E >, where V1 = {v1i|1 ≤
i ≤ I1} and V2 = {v2i|1 ≤ i ≤ I2}, E ⊂ V1×V2. The graph G is conceptually
stored in a I1-by-I2 matrix A, where aij is the weight of the edge < i, j >.
The value can be 0/1 for an unweighted graph, or any nonnegative value for
a weighted graph. For ease of presentation, we shall refer to the rows of A
as ’sources’ (’src’), and to the columns of A as ’destinations’ (’dst’)

Problem 2 How can we detect patterns of the number of connections from
each node to nodes of several community structures, from the given weighted
bipartite (src-dst) graph, automatically and in a scalable way?

73

5.3.2 Preliminary - Main idea

We propose to use the ratio of singular scores to degrees. More specifically,
consider the singular value decomposition (SVD) of the matrix A:

A = XΛY T (5.1)

where Λ is a diagonal matrix with the singular values λ1, . . ., X and Y
contain the left- and right- singular vectors.

Definition 4 (Singular score) The value xri is the r-th singular score of
(’source’) node i. Similarly, yrj is the r-th singular score of (’destination’)
node j.

Symbol Definition

di weighted degree of ith left node,
∑

l ai,l
ej weighted degree of jth right node,

∑
l al,j

fri xri divided by di, r
th left ratio score of A

grj yrj divided by ej , r
th right ratio score of A

1 I1 × 1 vector, all values are 1

Table 5.1: Symbol table (in addition to Table 3.1 and Table 3.2)

The main idea is that, plotting singular scores versus degrees help us
discover remarkable patterns, as the one in Figure 5.1.

We need one more definition:

Definition 5 (Ratio score) We use ratios of the singular scores (xri for
’sources’, yrj for ’destinations’), divided by the degree of each node. Specif-
ically, for ’source’ i we define its r-th left ratio score fri as

fri =
xri
di

= λ−1r

∑
j aijyrj∑
j aij

(5.2)

and similarly, r-th right ratio score grj for destination node j:

grj =
yrj
ej

= λ−1r

∑
i aijxri∑
i aij

(5.3)

This means that if most of yrj are high for a destination j of high weight
aij , then the score fri is high, and vice versa. For a unweighted graph,

74

if most of yrj are high for destination j, then the score fri is high, and
vice versa. Left nodes (sources) with dominant r-th left singular scores and
right nodes (destinations) with dominant r-th right singular scores form
near-clique [135]. Using this fact, the i-th source with high fri is mainly
connected to one or a few near-cliques with a few or many edges. Moreover,
nodes in different near-cliques have dominant singular scores of different r,
resulting a singular score of different r are correlated with the amount of
connections between a node and different near-cliques, as we discussed in
Section 3.2.

Based on above intuition, we propose a method ’EigenDiagnostics’, which
can rapidly detect patterns related to many community structures.

5.3.3 Plotting Properties of the Nodes

We create several kinds of plots to detect pattern of fri (or grj) among left
(or right) nodes. We explain these plots using the results of synthetic data.
The synthetic data is very simple unweighted bipartite graph which contains
about 40 communities. Nodes in each community are randomly connected
with 80 percent of total possible edges (See Table 5.2).

1. DS-plot: left (or right) DS-plot (r) is a scatter-plot, with one point
for each source node i (or destination node j). It plots the weighted
degree di (or ej) vs. the score on the r-th left (or right) singular vector.
When r and ’left/right’ are omitted, we imply r=1 and ’left’ (the main
left singular vector). In linear-linear scale, nodes with same ratio score
align in a linear-like pattern. But linear-like pattern in low singular
scores cannot be detected in linear-linear scale plot. So we use log-log
scale plot in which linear-like pattern is observed in linear-like pattern
with slope 1. If we could observe some linear-like pattern with slope
of other than 1 in the log-log scale plot, they might be very surprising
patterns. Nodes with negative singular score are plotted as another
DS-plot multiplied by −1.

2. SDSD-plot: left (or right) SDSD-plot is a scatter-plot , with one
point for each source node i (or destination node j), plotting the first
ratio-score f1i (or g1j) versus the second ratio-score f2i (or g2j). When
’left/right’ is omitted, we imply left SDSD-plot. The SDSD-plot should
be in linear-linear scales.

75

5.3.4 Patterns in DS-plot

Here we describe some of the patterns that we can detect in DS-plot. We
also show examples using synthetic data which include new nodes with these
patterns. The basic patterns we can observe in DS-plot are ’satellite group’
pattern in unweighted graph and ’routine task’ pattern in weighted graph
(Figure 5.2).

Pattern 1 (satellite group) Nodes that are connected to a bipartite core,
but not connected to anything else. For example, see the bipartite core in
Figure 5.2 (a): nodes a5,a6,a7 are the ’satellites’, being connected to the
clique with various degrees, but not connected to anything else. Satellites
form a sloping line in the DS-plot (red points in Figure 5.2 (a)). The ex-
planation is: Nodes with dominant r-th singular scores form a near-clique
[135], in other words, they have high singular scores of same order. So nodes
connected only to nodes of a clique have ratio scores of same order, because
ratio score is weighted mean of singular scores for the connected nodes. This
means these nodes form a sloping line in the DS-plot. See Figure 5.6 (c)
for an example from IMDB, where the clique are adult actors (and adult
movies), and the satellites are actors who played in only one such movie.
More discussion is on Section 5.5.2.

Pattern 2 (routine task) Each node is connected to a specific nodes group
with specific weight ratio (Figure 5.2 (b)). Nodes groups with non-zero
slopes in DS-plot contains this kind of nodes groups (red points in Figure
5.2 (b)). If some left nodes i have specific weight ratio, their weight vectors
ai: can be written as pib, such that b is a constant row vector. Singular
score xri can be written as λ−1r ai:yr, and weighted degree di can be written
as ai:1. Thus,

fri =
xri
di

= λ−1r

byr

b1
= Const.

This means these nodes form non-zero slopes in DS-plot.

We can observe more remarkable patterns in DS-plot such as ’accidentally
related group’ pattern and ’division of labor’ pattern (Figure 5.3). Note
that these patterns are mainly observed in unweighted graphs, but we can
possibly observe them in weighted graphs too.

Pattern 3 (accidentally related group) Nodes connedted to a few nodes
which are also connected to nodes within a community, but the connected
nodes do not belong to the community. For example, nodes a5, a6, a7 in

76

(DS-plot)
(a) ’satellite group’

(DS-plot)
(b) ’routine task’

Figure 5.2: Basic patterns detected in DS-plot: (a) ’satellite group’: the
gray nodes in the template (bottom), act as satellites to the main near-
bipartite core. This forms a sloping line in the DS-plot (top row). (b)
’routine task’: the same nodes (in gray) connect to the same destinations
(squares), with proportional weights - for the IPsource-port example, that
would correspond to a task like checking mail (port 25 for mail, port 993
for imap, as many repetitions as needed). Thickness indicates weight. This
(also) shows up as a sloping line in the DS-plot (top row).

Figure 5.3 (a): There is a bipartite core. Node a4 is a member of the bi-
partite core, but ’accidentally’ connected to outside node t4. The nodes

77

(DS-plot)
(a)’accidentally related group’

(DS-plot)
(b)’division of labor’

Figure 5.3: More patterns detected in DS-plot: (a) ’accidentally related
group’: the gray nodes ’a5’ ’a6’ ’a7’ in the bottom template, ”accidentally”
related to the near-bipartite core (indicated by a dashed rectangle). A dou-
ble circled node ’a4’ belongs to the near-bipartite core, but has an ”acciden-
tal” connection outside it. The gray nodes and the double circled node share
the ”accidentally” connected node ’t4’. They show up as a horizontal line in
the DS-plot (red points, in the top diagram). (b) ’division of labor’: bottom
template shows a sparse bipartite core (like machines scanning ports, after
carefully dividing the work. This shows up as a vertical line on the DS-plot
(top row).

78

of accidentally related group(a5, a6, and a7) are connected to the outside
node t4 despite they can have other connections. Points that are horizon-
tally distributed in DS-plot correspond to nodes of such node-groups (see
red points of Figure 5.3 (a)). The explanation is as follows: Nodes with
dominant r-th singular scores form a near-clique [135]. Thus, if a left clique
node is ”accidentally” connected to an outside right node j, the right node
j also has high singular score yrj . As the result, the singular scores xri for
the left nodes i connected to the right node j can be similar to each other.
This means these left nodes i are horizontally distributed in DS-plot.

Pattern 4 (division of labor) This pattern consists of nodes that form
a large, sparse, bipartite core, and all nodes strangely have the same degree
(see Figure 5.3 (b)). All left side nodes have same degree. Points that are
vertically distributed in the DS-plot correspond to this type of nodes (see
the red points in Figure 5.3 (b)).

5.3.5 Patterns in SDSD-plot

Next we describe the patterns that we can detect in SDSD-plot. Examples
using synthetic data which include new nodes with these patterns are also
shown . The remarkable patterns we can observe in SDSD-plot are ’bridge
group’ pattern in unweighted graph and ’bridging tasks’ pattern in weighted
graph (Figure 5.4).

Pattern 5 (bridge group) These are nodes that connect two big com-
munities (see Figure 5.4 (a)). These nodes exhibit a linear-like pattern in
SDSD-plot, (see red points in Figure 5.4 (a)). The explanation is the fol-
lowing: Suppose that the nodes of the first community have high singular
score in their r-th singular vector, and the nodes of the second community
have low such scores. However, in s-th singular vector, the situation may be
reversed; then, each bridge-node has a score that is linear combination of fri
and fsi, and thus such bridge nodes eventually form a line in the SDSD-plot.

Pattern 6 (bridging tasks) Each node is connected to a pair of specific
nodes groups with specific weight ratio, but weight ratio differs between two
groups (Figure 5.4 (b)). Nodes groups with non-zero slopes in SDSD-plot
contains this kind of nodes groups (red points in Figure 5.4 (b)). If some
left nodes i are connected to two nodes groups that each group has specific
weight ratio, their weight vectors ai: can be written as pib + qic, such that
b and c are constant row vectors. Left singular score xri can be written as

79

(SDSD-plot)
(a) ’bridge group’

(SDSD-plot)
(b) ’bridging tasks’

Figure 5.4: Remarkable patterns detected in SDSD-plot: (a) ’bridge group’:
bottom template shows gray nodes ’a5’ and ’a6’, straddling the same two
(near-) bipartite cores, acting like bridges. This pattern shows up as a
sloping line in the SDSD-plot (top row). (b) ’bridging tasks’: the same gray
nodes, perform two groups of tasks (instead of just one, as (b)). This leads
to a sloping line in the DS-plot (top row).

λ−1r ai:yr, and weighted degree di can be written as ai:1. Thus,

fri =
xri
di

= λ−1r

pibyr + qicyr

pib1 + qic1
.

80

Similarly,

fsi =
xsi
di

= λ−1s

pibys + qicys

pib1 + qic1
.

From this, linear combination of fri and fsi can be constant for all i in
this group. This means if nodes are plotted at fri against fsi, they forms
linear-like patterns.

5.4 Proposed Tool: EigenDiagnostics

In this section, we introduce ’EigenDiagnostics’, a novel tool to automati-
cally spot groups of nodes with patterns related to community structures,
in a large sparse graph.

5.4.1 Main Algorithm

The input of ’EigenDiagnostics’ is a weighted bipartite graph, and the out-
put is a set of pattern. ’EigenDiagnostics’ reports patterns with some rep-
resentative nodes so that users can easily understand what kind of pattern
they are. Figure 5.5 is the framework of ’EigenDiagnostics’. In Figure 5.5:
(1) EigenDiagnostics’ computes some properties of nodes, such as weighted
degree and singular score; (2) Nodes are plotted against two properties into
2-D; (3) Lines are automatically detected using Hough transform as patterns;
(4) Some representative nodes on the detected lines are chosen (’RepPick’
algorithm, to be described later), and ’EigenDiagnostics’ reports users the
patterns with the representative nodes. We give the pseudo-code of ’Eigen-
Diagnostics’ in Algorithm 2.

5.4.2 Modified Hough Transform for Automatic Line Detec-
tion

The Hough transform is a feature extraction technique used in image analy-
sis, computer vision, and digital image processing [49]. The Hough transform
is a most popular technique to detect lines, circles, etc. ’EigenDiagnostics’
tries to detect linear-like pattern using this method. ’EigenDiagnostics’ first
converts plot data to an n× n bitmap, then converts the bitmap data into
Hough space, and pick up the peaks in Hough space. The Hough transform
accepts as input a 2-d bitmap, and returns 2-d array (ρ, θ), indicating how
prominent is the line that has distance ρ from the origin, and orientation
θ (the orientation is related to the slope of the line, and it is the angle be-
tween the x axis and the vector that is perpendicular to our line). ρ and θ

81

Figure 5.5: Workflow of EigenDiagnostics. Given an input graph, it com-
putes the necessary plots, spots lines (in red), and reports representatives
(red circles).

are digitized to user-defined increments. Thus, a horizontal line that passes
through the origin should give a high score for the (0,90) entry of the Hough
transform, while a vertical line through the origin would lead to highs score
at (0,0).

Unfortunately, as-is, the Hough transform is not enough to help us spot
prominent lines, because there can be many false-positive lines with high
score which pass through some dense areas in the 2-D bitmap. So we want
(ρ, θ) entries that (a) have high score and (b) have neighbors with low score.
Thus, our method looks for peaks in the Hough matrix. The pseudo-code is
Algorithm 3.

5.4.3 Pick Up Representative Nodes

On the detected lines are usually too many nodes for users to understand
what was happening. So we introduce ’RepPick’ algorithm, which can choose
representative nodes by which users can check network easily. In short,
’RepPick’ chooses nodes at regular intervals on the detected line. Nodes
with big values for both properties are preferentially selected. The pseudo-
code is Algorithm 4.

82

Algorithm 2 EigenDiagnostics

Input: A (the adjacency matrix of a weighted bipartite graph G =< V1 ∪
V2, E >)

Output: a set of representative nodes of patterns Rt = {at1 , at2 , ...} such
that ∀ati ∈ V1, t = 1, 2, . . .

1: compute each ai(∈ V1)’s properties pk,i such as singular score, weighted
degree ,etc. (1 ≤ k ≤ K, 1 ≤ i ≤ |V1|)

2: t = 1
3: for all combination { k1, k2 }, 1 ≤ k1 ≤ K, 1 ≤ k2 ≤ K, k1 6= k2 do
4: detect linear-like distributed nodes Os = {as1 , as2 , . . .} in pk1,i vs pk2,i

plot using Hough transform, s = 1, 2, . . . (Algorithm 3)
5: for all Os do
6: pick up representative nodes as Rt = {at1 , at2 , . . .} by ’RepPick’

algorithm (Algorithm 4)
7: t = t+ 1
8: end for
9: end for

10: return Rt , t = 1, 2, . . .
11: end function

Algorithm 3 detect line using Hough transform

Input: node properties { < pk1,i, pk2,i > } such that ∀ai ∈ V1, 1 ≤ k1 ≤ K,
1 ≤ k2 ≤ K

Output: linear-like distributed nodes Os = {as1 , as2 , ...} ,s = 1, 2, ...
1: plot node ai in 2-D against node properties pk1,i vs pk2,i
2: convert plot data to bitmap data
3: convert bitmap data to Hough space
4: pick up peaks { < ρs, θs > } in Hough space
5: for all { < pk1,i, pk2,i > } do
6: if {< pk1,i, pk2,i >} is near from line { < ρs, θs > } then
7: put ai to Os

8: end if
9: end for

10: return Os

11: end function

83

Algorithm 4 ’RepPick’ algorithm

Input: linear-like distributed nodes O = {as1 , as2 , ...}
Input: pk1,si , pk2,si such that ∀asi ∈ O
Output: representative nodes R = {at1 , at2 , ...}
1: pick up a node ax that both pk1,x and pk2,x are big absolute values (e.g.,

a node with max harmonic mean of absolute values)
2: maxD = max distance from ax among asj ∈ O
3: for h = 0; h ≤ maxD; h = h+ Const. do
4: put a node whose distance from ax is closest to h into R
5: if more than S (max representative node count) nodes are selected

then
6: break
7: end if
8: end for
9: return R

10: end function

5.5 Experimental Evaluation

5.5.1 Experimental Setup and Datasets

First we describe the experimental setup and the datasets we use. The ex-
periments run on 4 core Xeon 2.8GHz, with Fedora 7 Linux, 16Gb of memory
and 2Tb of disk. We use the following datasets. Details are described in
Section 3.3.

• IMDb (unweighted): Relationship between about 553,000 authors and
204,000 movies.

• DBLP(unweighted): The author-paper information of DBLP dataset.
This data contains about 316,000 authors and 472,000 papers.

• Patent Citation(unweighted): Patent citation data between about 2,089,000
citing patents and 3,259,000 cited patents[67].

• LBNL traffic logs (weighted): The network traffic log is collected
on an internal enterprise network of the Lawrence Berkeley National
Lab (LBNL) [129]. Each trace in the logs contains IP-source, IP-
destination, port-number, and time tick. We use two of these informa-
tion as three bipartite graphs, such as IP-source vs IP-destination, IP-
source vs port-number, IP-destination vs port-number. The weight of

84

each graph is log(#ofpacket+1). There are two kind of port number,
TCP and UDP. And this dataset is separated into two dataset, dataset
without scanning activity (we call ’regular’ dataset) and dataset with
scanning activity (we call ’scanners’ dataset). We conduct experi-
ments on combined datasets of all hours for each of the combination
of TCP/UDP, regular/scanners. But we show only the results of LBNL
regular TCP IP-source vs port-number (LBNL-sp) and LBNL scanners
UDP IP-destination vs port-number (LBNL-dp).

• Click Stream(weighted): Click stream data [118]. About 23,000 people
clicked link of 199,000 sites. Weight is active time.

• Syn. data(unweighted): Synthetic data. This data contains about
4,000 nodes and 106,000 edges. This data contains about 40 com-
munities. Nodes in each community are randomly connected with 80
percent of total possible edges.

All the above data sets are summarized in table(5.2):

dataset number of nodes number of edges

IMDb ≈ 757K ≈ 2, 270K

DBLP ≈ 788K ≈ 1, 073K

Patent Citation ≈ 5, 348K ≈ 16, 522K

LBNL-sp ≈ 66K ≈ 3, 029K

LBNL-dp ≈ 69K ≈ 1, 339K

Click Stream ≈ 222K ≈ 953K

Syn. data ≈ 4K ≈ 106K

Table 5.2: Summary of data sets

5.5.2 Experiment on Real Data

Due to the page limit, we only show left 1st and 2nd DS-plot and left
SDSD-plot for each dataset. The results on unweighted graphs are shown
in Figure 5.10, Figure 5.11, and Figure 5.12. We choose the most striking
patterns among these plots (P2 and P4). We describe these patterns as
below.

Observation 1 (satellite group) We have found a diagonal line in DS-
plot of the IMDb database (P4 in Figure 5.10 and Figure 5.6 (a)). Figure

85

(a) DS-plot of IMDb data set.

(b) representative actors of P4. (c) representative actors of P2.

Figure 5.6: Automatic discovery of ‘accidentally related group’ and ’satel-
lite group’: (a) DS-plot of IMDb data set. We have found ’satellite
group’(P4) and ’accidentally related group’(P2). (b) representative actors
(shaded nodes) which are on the diagonal line of ’satellite group’ (P4) in
DS-plot of IMDb dataset. ’Lee(II) Brown’ and ’Philip Farber’ played in a
few movies of an adult movie clique (dashed rectangle), and did not play in
other movies. (c) representative actors (shaded nodes) which are on the hor-
izontal line of ’accidentally related group’ (P2) in DS-plot of IMDb dataset.
‘Ron Jeremy’ (top oval node) played in many mainstream movies (a few
shown, as rectangles), as many adult movies (not shown)

86

5.6 (b) shows the representative actors on this diagonal line (shaded nodes).
There are a near-bipartite core (dashed rectangle) of actors and adult movie
films. The representative actors appeared in a few films of the clique and
did not appear in other films, like ’satellites’ of the clique. We only show
the representative actors with low degrees to make the explanation easier.
We do not show all the films in which the actors in the dashed rectangle
appeared.

Observation 2 (accidentally related group) We have also found a hor-
izontal line in DS-plot of the IMDb database (P2 in Figure 5.10 and Figure
5.6 (a)). There are horizontally distributed actors in DS-plot of 2nd singular
scores. Figure 5.6 (c) shows the representative actors on this horizontal line
(shaded nodes). They rarely shared movies, but there was an actor who
shared movies with almost all of the representative actors. The actor, Ron
Jeremy, a star of adult films, has also appeared in many other more main-
stream movies. The movies the representative actors shared with Jeremy
were not adult movies.

We show the results on weighted graphs in Figure 5.13, Figure 5.14,
Figure 5.15. The most striking patterns among these plots are chosen (P1,
P3, and P5(not shown)). We describe these patterns as below.

Observation 3 (bridging tasks) There are linear-like patterns which do
not contain origin in SDSD-plot of LBNL-dp for f1i and f2i (P1 in Fig-
ure 5.14 and Figure 5.7 (a)). This is ’bridging tasks’ pattern. We pick up
some representative nodes and check what they are. Figure 5.7 (b) shows
three representative IP-destinations (shaded nodes) and port numbers they
are accessed. We also show other IP-destinations which shared same port
numbers with all of the three representative IP-destinations. There is a
near-bipartite core which contains port number 57391, 38312, 32976. There
is a very big tree in which about 17,000 dst address are accessed to port 53
(DNS). The three representative IP-destinations were accessed by “bridg-
ing tasks” on those two groups of port numbers. This means there were two
kinds of port scanning, one scans port 53, and another scans over port 30,000
(maybe over 32,768). And there were a group of IP-destinations scanned by
both methods.

We have found another ’bridging tasks’ pattern in DS-plot of LBNL-sp
(P3 in Figure 5.13 and Figure 5.8 (a)). There are many lines in SDSD-plot
of ratio scores for the IP-sources. ’EigenDiagnostics’ has detected a striking
line which do not contain origin (Figure 5.8(a)). Figure 5.8 (b) shows the

87

(a) SDSD-plot of LBNL-dp. (b) representative
IP-destinations.

Figure 5.7: An example of a bridging tasks pattern: (a) SDSD-plot of
LBNL-dp. (b) representative IP-destination (shaded nodes) and port num-
bers (right nodes). The shaded nodes used port 53 (dns), as well as high-
numbered ports (probably used for P2P traffic).

representative IP-sources on this line (shaded nodes). These IP-sources sent
only 25 (SMTP) and 993 (IMAP) which are used to send/receive e-mail.
They do not do another operations. They may be computers of secretaries
or administrative office. By using ’EigenDiagnostics’, we can easily know
there are this kind of computers in intranet.

Observation 4 (division of labor) We have found a group of vertically
distributed port numbers in DS-plot for 2nd right singular vector of the
LBNL-dp (data not shown). This is ’division of labor’ pattern. This pattern
means there are many nodes with strangely same degrees. In this case, there
are several IP-destinations which were connected to various port numbers of
this group. Some computers were connected to a few port numbers, whereas
other computers were connected to many port numbers. But the number of
destination computers to which each port number was connected is strangely
equal. This may have been caused by the same scanning program, running
on a computer or distributed computers.

88

(a) SDSD-plot of LBNL-sp. (b) representative
IP-sources.

Figure 5.8: Another example of ‘bridging tasks’ pattern: (a) SDSD-plot of
LBNL-sp. There are some ’bridging tasks’ patterns. (b) representative IP-
sources (shaded nodes) and port numbers (right nodes). The shades nodes
used only port 25 (smtp) and 993 (imap).

5.5.3 Scalability

To evaluate the performance of ’EigenDiagnostics’, we report the computa-
tion time as we vary the number of graph edges, for various synthetic and
real data (Figure 5.9). As expected, it clearly shows that the processing
time is linear in the number of graph edges. This is mainly due to the
computation time of singular value decomposition (svds of MATLAB imple-
mentation), which dominates that of Hough Transform in our experimental
settings.

5.6 Conclusions

The main contribution is the design of EigenDiagnostics, a carefully-designed
method to spot patterns on large graphs. EigenDiagnostics has the following
desirable properties:

1. Automatic: it operates without human intervention, and does atten-
tion routing, by giving the user a few nodes that are worth inspecting
(like bridge-nodes, members of a bot-net-like group, etc).

89

Figure 5.9: Computation time of ’EigenDiagnostics’, versus # of edges.
The scaling is linear.

2. Effective: We showed that EigenDiagnostics discovered novel patterns
in multiple real datasets, such as ’satellite group’, ’accidentally related
group’ and ’bridging tasks’. Not only on computer traffic data, but
also movie-actor data, and patent citations, etc.

3. Scalable: the method is carefully designed, with singular value decom-
position being the most expensive operation. Using modern sparse-
matrix eigensolvers, the complexity is linear on the database size (ie.,
linear on the number of edges).

Finally, as our goal is anomaly detection, some additional methods to
detect anomalies or outliers based on patterns spotted by our method might
be required. There are many possible solutions. One possibility is to detect
outlier nodes directly on DS-plot and SDSD-plot. Another possibility is
to extract groups of nodes located near linear-like patterns, and to detect
anomalous nodes which deviate from laws of number of degrees and edges
related to the groups, like [7].

90

(DS-plot of 1st singular score)

(DS-plot of 2nd singular score)

(SDSD-plot)

Figure 5.10: Results on IMDb (unweighted graph). Left DS-plot (first,
and second singular score), and left SDSD-plot. Red lines indicate patterns
detected by EigenDiagnostics. Details are in section 5.5.

91

(DS-plot of 1st singular score)

(DS-plot of 2nd singular score)

(SDSD-plot)

Figure 5.11: Results on Patent Citation(unweighted graph). Left DS-plot
(first, and second singular score), and left SDSD-plot. Red lines indicate
patterns detected by EigenDiagnostics. Details are in section 5.5.

92

(DS-plot of 1st singular score)

(DS-plot of 2nd singular score)

(SDSD-plot)

Figure 5.12: Results on DBLP (unweighted graph). Left DS-plot (first,
and second singular score), and left SDSD-plot. Red lines indicate patterns
detected by EigenDiagnostics. Details are in section 5.5.

93

(DS-plot of 1st singular score)

(DS-plot of 2nd singular score)

(SDSD-plot)

Figure 5.13: Results on LBNL regular TCP IP-source vs port-number
(LBNL-sp) (weighted graph). Left DS-plot (first, and second singular score),
and left SDSD-plot. Red lines indicate patterns detected by EigenDiagnos-
tics. Details are in section 5.5.

94

(DS-plot of 1st singular score)

(DS-plot of 2nd singular score)

(SDSD-plot)

Figure 5.14: Results on LBNL scanners UDP IP-destination vs port-number
(LBNL-dp) (weighted graph). Left DS-plot (first, and second singular score),
and left SDSD-plot. Red lines indicate patterns detected by EigenDiagnos-
tics. Details are in section 5.5.

95

(DS-plot of 1st singular score)

(DS-plot of 2nd singular score)

(SDSD-plot)

Figure 5.15: Results on Click Stream(weighted graph). Left DS-plot (first,
and second singular score), and left SDSD-plot. Red lines indicate patterns
detected by EigenDiagnostics. Details are in section 5.5.

96

Chapter 6

Shortest Path Distance
Estimation Using Eigen
Decomposition

Estimating the distances of the shortest path between given pairs of nodes in
a graph is a basic operation in a wide variety of applications including social
network analysis, web retrieval, etc. Such applications require a response
on the order of a few milliseconds, but exact algorithms to compute the
distance of the shortest path exactly do not work on real-world large-scale
networks, because of their infeasible time complexities. The landmark-based
methods approximate distances by using a few nodes as landmarks, and can
accurately estimate shortest-path distances with feasible time complexities.
However, they fail at estimating small distances, as it is difficult for a few
selected landmarks to cover the shortest paths of many close node pairs.

To tackle this problem, we present a novel method EigenSP, that es-
timates the shortest-path distance by using an adjacency matrix approxi-
mated by a few eigenvalues and eigenvectors. As discussed in Section 3.2,
we can expect to estimate distances of node pairs located nearby by using
eigen decomposition. The average relative error rate of EigenSP is lower
than that of the landmark-based methods on large graphs with many short
distances. Empirical results suggest that EigenSP estimates small distances
better than the landmark-based methods.

This work was published in [112].

97

6.1 Introduction

Estimating the distance of the shortest path between given pairs of nodes
in a graph is a basic operation in a wide variety of applications including
social network analysis [163], web retrieval [161], etc. Such applications
require responses on the order of a few milliseconds, yet exact algorithms
to compute the shortest-path distance exactly [48] fail on real-world large
scale networks, due to their infeasible time complexities. Precomputing all
the shortest paths and storing them is a straightforward solution, but this
is infeasible since it would require storage of an extremely huge matrix.

The landmark-based methods can accurately estimate shortest-path dis-
tance with feasible space and time complexities [134, 91]. These methods
approximate shortest-path distance by analyzing the relationship between a
given node pair and a few selected nodes as landmarks [125, 152, 171, 172,
108, 136]. The landmark-based methods can accurately approximate net-
work distances if the landmarks are properly selected [134, 106], but tend to
err in approximating short distances. The reason for this failure is that it is
difficult for a few landmarks to cover the many shortest paths of close node
pairs in a large graph. This is an unwanted property for applications which
try to identify potential friends located nearby, as is done in social network
analysis. For example, in people search, a user want to sort the list of people
retrieved by some keywords according to the distance from the user in social
network. In this case, a direct friend of the user should be ranked in the top
of the list, and people of distance 2, i.e., friends of friends, should be ranked
after them. But longer distances are not so important, that is, it does not
matter whether people in the list are distance 5 or distance 7, because both
of them would be remotely related to the user in social network. Thus,
in some applications, estimating short distances accurately is critical, while
accurate estimation is less important over long distances.

In this chapter, we present a novel method, EigenSP. Our intuition is
that the shortest-path distance can be estimated as the smallest number of
k such that values in the k-times multiplied adjacency matrix corresponding
to node pairs are more than 0, and that the values can be approximated by
using a few eigenvalues and eigenvectors of the original adjacency matrix.
Approximation error is expected to be small for a smaller value of k, which
means that the estimation error of the shortest-path distance is expected
to be small for close node pairs. Our method can estimate short distances
better than the landmark-based methods. To the best of our knowledge, this
is the first analysis of the feasibility and efficiency of estimating shortest-
path distances with an adjacency matrix approximated by a few eigenvalues

98

and eigenvectors. Our main contributions are summarized as follows:

• We propose a novel method, EigenSP, that can accurately approxi-
mate the distance in a graph with good scalability on the basis of the
spectral theorem. We also propose an improvement of EigenSP with a
simple heuristic (EigenSP-M) to deal with a problem that arises with
EigenSP.

• We show that our method is more accurate than the landmark-based
methods, especially in estimating short distances, on eight different
large real-world networks.

The remainder of this chapter is organized as follows: we describe the
related literatures in Section 6.2, and introduce our method in Section 6.3.
We describe the experimental evaluation in Section 6.4, while Section 6.5
concludes the discussion.

6.2 Related Work

The landmark-based methods have been widely used for shortest path dis-
tance estimation as we discussed in Section 2.3. They select the landmark
nodes according to several centrality measures (see Section 2.3). However,
landmark-based methods tend to err in approximating short distances, since
it is difficult for a few landmarks to cover the many shortest paths of close
node pairs in a large graph. We tackle this problem by using an adjacency
matrix approximated by a small number of eigenvalues and eigenvectors.

6.3 Proposed Method

6.3.1 Problem Definition

Given an unweighted, undirected graph G = (V,E) with no self-edges, the
shortest path distance between node i and node j (i, j ∈ V) is the number
of edges within the shortest path. The distance is considered to be infinite
when there is no path between node i and node j (disconnected).

Our problem can be summarized as follows:

Problem 3 given a node pair, how can we estimate shortest-path distance
within the order of microseconds for query time, with feasible space require-
ments, and good time complexity for pre-computing?

99

Table 6.1 shows the notation used in this chapter in addition to Table 3.1
and Table 3.2.

Symbol Definition

D diameter (longest shortest path distance) of G
dist(i, j) shortest path distance between node i and node j
dist′(i, j) estimated dist(i, j)

a
(k)
ij i-th row and j-th column element of Ak

AR approximation of A (= XRΛRX
T
R)

a′
(R,k)
ij i-th row and j-th column element of Ak

R

t(R,k) threshold to guess a
(k)
ij using a′

(R,k)
ij

t
(R,k)
a threshold to guess a

(k)
ij using R−1

∑R
r=1 a

′(r,k)
ij

Table 6.1: Symbol table (in addition to Table 3.1 and Table 3.2)

6.3.2 Computing Distances by Eigenvectors

Here we show a way to compute the shortest-path distance by using eigen-
vectors. The shortest-path distance and the eigenvalue and eigenvectors of
the adjacency matrix are related by the following theorem.

Theorem 1 Let G be an undirected, simple graph and A be the adjacency
matrix representation of it. The shortest path distance dist(i, j) between
two distinct nodes i and node j satisfies the following equation:

dist(i, j) = min

{
k

∣∣∣∣∣
n∑

r=1

xriλ
k
rxrj > 0, k ∈ N

}
(6.1)

where xri is the i-th element of the r-th eigenvector, λr is the r-th eigenvalue
of the adjacency matrix, and n is the number of orthogonal eigenvectors.

Proof 1 Since G is undirected, A is a real, symmetric matrix. Thus, from
the spectral theorem, we can diagonalize A by using its eigenvalues and
eigenvectors. Therefore, A = XΛXT , where Λ is a diagonal matrix con-
taining the eigenvalues of A and X = [x1| . . . |xn] is an orthonormal matrix
containing in its i-th column the eigenvector xi corresponding to the i-th
eigenvalue λi, i = 1, . . . , n. From the orthonormality of X, it follows that
Ak = XΛkXT (♦).

Now we have the following lemma:

100

Lemma 1 (Algebraic path counting) Let a
(k)
ij be the i-th row and j-th col-

umn element of Ak. Then a
(k)
ij equals the number of paths from node i to j

of length exactly k.

If there are no paths from node i to j of length k, a
(k)
ij is 0. From equation

(♦), it follows that a
(k)
ij =

∑n
r=1 xriλ

k
rxrj . Combining these two facts, we

obtain equation 6.1.

Now we can compute the shortest-path distance exactly by finding a k
which satisfies equation 6.1, though we cannot directly adopt this as comput-
ing all eigenvalues and eigenvectors is infeasible for massive graph datasets.

6.3.3 Estimating Distances by Eigenvectors

The idea behind our method is to determine k that satisfies equation 6.1 by

using a′
(R,k)
ij =

∑R
r=1 xriλ

k
rxrj with a small R. AR = XRΛRX

T
R is an ap-

proximated matrix of A, and a′
(R,k)
ij is the i-th row and j-th column element

of Ak
R = XRΛk

RX
T
R .

Based on the above idea we develop a novel method, EigenSP. EigenSP
requires precomputed values of XR and ΛR of A with the desired rank R, and
the thresholds t(R,k) determined by the distribution of sampled node pairs.
When EigenSP receives a request to estimate the shortest-path distance of a

node pair, it searches for the minimum k for which a′
(R,k)
ij exceeds a threshold

t(R,k). If a′
(R,k)
ij does not exceed t(R,k) for any k ≤ D, i.e., the diameter of the

graph, it concludes that the nodes of the pair are disconnected. Algorithm 5
describes this procedure.

The time complexity of the distance estimation is on the order of the
number of eigenvectors multiplied by the diameter, i.e., O(RD). The space
requirement of the distance estimation is dominated by holding the R eigen-
vectors, i.e., O(R|V |). The time complexity and space requirements of pre-
computation are dominated by the eigenvalue computation of the sparse
matrix, leveraged by several eigenvalue computation techniques such as the
Lanczos algorithm [40].

6.3.4 How to Determine Thresholds

Finding a k satisfying equation 6.1 depends on how well we can distinguish

node pairs with a
(k)
ij = 0 and those with a

(k)
ij > 0 for every k using a′

(R,k)
ij .

There may be two types of errors:

101

Algorithm 5 EigenSP

Input: Node pair i and j to compute distance
Input: XR,ΛR

Input: Thresholds t(R,k)

Input: Diameter D of the graph
Output: Estimated distance
1: for k = 1, . . . , D do
2: if

∑R
r=1 xriλ

k
rxrj ≥ t(R,k) then

3: return k
4: end if
5: end for
6: return ∞

• (Type 0 error) a
(k)
ij is 0 but estimated to be more than 0 (a′

(R,k)
ij ≥

t(R,k)).

• (Type 1 error) a
(k)
ij is more than 0 but estimated to be 0 (a′

(R,k)
ij <

t(R,k)).

There is a trade-off between these types of error. EigenSP tends to estimate
the distances to be shorter than the actual distances if the type 0 error
rate dominates the type 1 error rate, and vice versa. The simple way to
determine t(R,k) is to sample node pairs and determine t(R,k) that minimizes
the error rate of both types for each k. But we cannot adopt this simple

sampling method, as the number of connected node pairs with a
(k)
ij > 0 is

very small for small values of k, and those with a
(k)
ij = 0 rapidly decrease

in number when k grows. We show the number of connected node pairs
in Enron dataset described in Section 6.4 (Figure 6.1). So we cannot have
enough sample node pairs to determine t(R,k) for a small and large k.

Then how do we determine thresholds for those small and large k? Fig-
ure 6.2 shows thresholds with several error rates of each error type for k with
enough sampled node pairs. Thresholds with similar type 0 error rates or
thresholds with similar type 1 error rates exponentially increase as k grows.
The most likely explanation for this is that the error

∑n
r=R+1 xriλ

k
rxrj expo-

nentially grows at a rate proportional to the dominated λr (r = R+1, . . . , n),
resulting in a type 0 error. In addition, the exact value

∑n
r=1 xriλ

k
rxrj

also exponentially grows at a larger rate proportional to the dominated λr
(r = 1, . . . , n), so thresholds with similar type 1 error rates will diverge away
from zero as k grows. According to this observation, we model thresholds

102

0 5 10 15
0

200

400

600

800

1000

k

#
 o

f
p
ai

rs
 o

f
n
o
d
es

Enron

a
ij

(k)
=0

a
ij

(k)
>0

Figure 6.1: The number of connected node pairs with a
(k)
ij = 0 or a

(k)
ij > 0

among 1,000 sampled node pairs. Horizontal axis: k. Vertical axis: the

number of connected node pairs with a
(k)
ij = 0 or a

(k)
ij > 0.

as t(R,k) = βαk so that type 0 error rates or type 1 error rates are almost
constant for every k. The ideal ratio of type 0 error rate to type 1 error
rate depends on the application. We adopt the ratio of one through which
the errors of both shorter and longer distances than the actual distances
are minimized to the same extent. To determine α and β, first we calculate

thresholds for k for which there are enough node pairs with a
(k)
ij = 0 and

a
(k)
ij > 0 within 1,000 sampled node pairs, such that error rates of type 0 and

type 1 are nearly equal. Next we calculate the slope a and intercept b for
the least squares regression line for the relationship between the logarithm
of the thresholds and k, and determine α as 10a and β as 10b. For Enron
data, α is 3.47 and β is 0.60 ∗ 10−2.

To clarify for which node pairs it is easy to guess that a
(k)
ij is 0 or not,

we also examine the relation of a
(k)
ij and a′

(R,k)
ij . Figure 6.3 compares a

(3)
ij

and a′
(10,3)
ij , with the plot showing a strong correlation between them. The

same is true for any values of k and R. This means that the bigger a
(k)
ij is,

the easier it is to guess whether a
(k)
ij is 0 or more than 0.

103

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

10
−4

10
−3

10
−2

10
−1

10
0

10
1

k

T
h

re
s
h

o
ld

s

Type 0 error Enron

10% error

50% error

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

10
−2

10
0

10
2

10
4

k

T
h

re
s
h

o
ld

s

Type 1 error Enron

10% error

50% error

Figure 6.2: Thresholds with several error rates of each error types for k with
enough sampled node pairs. Horizontal axis: k. Vertical axis: thresholds
with error rates of 10% and 50%.

6.3.5 Estimating Distances More Accurately

We find that the a′
(R,k)
ij become unstable as the number of eigenvectors R

grows. In other words, a′
(R,k)
ij does not always approach a

(k)
ij rapidly enough

as R increases. Figure 6.4 plots a′
(R,3)
ij and a′

(R,4)
ij of an example node pair of

Enron dataset for R = 1, . . . , 500 (blue line). dist(i, j) is 4 because a
(3)
ij = 0

and a
(4)
ij = 24 > 0. For some R , a′

(R,3)
ij may exceed t(R,3) and dist′(i, j) may

104

0 50 100 150 200 250
−50

0

50

100

150

200

a
ij

(3)

a’
ij(1

0
,3

)

Figure 6.3: a
(3)
ij (horizontal axis) are highly correlated with a′

(10,3)
ij (vertical

axis) on Enron graph. These two values are also highly correlated for other
values of k and R(not shown).

be smaller than dist(i, j). But dist′(i, j) may be larger than dist(i, j) for

other R, because a′
(R,4)
ij may still be negative. In general, even if a′

(R,k)
ij is

very close to a
(k)
ij for some R, it may still be much further away for a larger

R. This instability may cause errors in distance estimations.

One possible explanation for this instability of a′
(R,k)
ij can be found in

the distribution of eigenvalues (Figure 6.5). The absolute values of the
eigenvalues decrease very slowly, and even the 500th largest eigenvalue is
not much smaller than the 1st eigenvalue. This means the elements of the

R-th eigenvector can strongly affect a′
(R,k)
ij , even if R is about 500.

To deal with this problem, we add an easy heuristic to EigenSP (we call

this modification, EigenSP-M). To find whether a
(k)
ij is 0 or not, EigenSP-M

uses the average value of a′
(r,k)
ij (r = 1, . . . , R), i.e., R−1

∑R
r=1 a

′(r,k)
ij , instead

of a′
(R,k)
ij itself. Figure 6.4 shows the R−1

∑R
r=1 a

′(r,k)
ij for R = 1, . . . , 500

(red dotted line). These values are more stable and are closer to a
(k)
ij for

many R. With this heuristic, EigenSP-M should be able to reduce the error.
To show efficiency of this heuristic more generally, we show mean error

(ME) and mean squared error (MSE) of approximation for k as a
(k−1)
ij = 0

and a
(k)
ij > 0 among 1,000 sampled node pairs in Enron dataset (Figure 6.6).

These errors should directly affect the accuracy of EigenSP. ME of a′
(R,k−1)
ij

105

10
0

10
1

10
2

10
3

−3

−2

−1

0

1

2

3

4

R vs. approximation of a
ij

(3)
 (example)

R

ap
p
ro

x
im

at
io

n
 o

f
a ij(3

)

a’
ij

(R,3)

average of a’
ij

(R,3)

a
ij

(3)

10
0

10
1

10
2

10
3

−50

0

50

100

R vs. approximation of a
ij

(4)
 (example)

R

ap
p

ro
x
im

at
io

n
 o

f
a ij(4

)

a’
ij

(R,4)

average of a’
ij

(R,4)

a
ij

(4)

Figure 6.4: a′
(R,k)
ij of an example element has a wide variety of values

which do not depend on the number of R (blue line). In this sample on

an Enron dataset, a
(k)
ij is 0 (k = 3) and 24 (k = 4) (black dotted straight

line). R−1
∑R

r=1 a
′(r,k)
ij does not vary much and is in fact closer to a

(k)
ij (red

dotted line). (top)k = 3. (bottom)k = 4. Horizontal axis: the number of R.

Vertical axis: a
(k)
ij or a′

(R,k)
ij or R−1

∑R
r=1 a

′(r,k)
ij .

and a′
(R,k)
ij totally decrease as R grows, but have a wide variety of values

which do not depend on the number of R (blue lines in Figure 6.6(a)(c)).

Moreover, MSE of a′
(R,k−1)
ij and a′

(R,k)
ij are high not depending on the num-

ber of R (blue lines in Figure 6.6(b)(d)). These indicate the accuracy of

106

0 100 200 300 400 500
−50

0

50

100

150

Rank vs. Eigenvalue

rank

ei
g
en

v
al

u
e

Figure 6.5: Distribution of eigenvalues of the adjacency matrix of Enron
dataset. The absolute values of the 500-th eigenvalue (11.7) was not much
smaller than that of the 1-st eigenvalue (119.4).

EigenSP differs so much according to the choise ofR. On the other hand, ME

of R−1
∑R

r=1 a
′(r,k−1)
ij and R−1

∑R
r=1 a

′(r,k)
ij are higher than ME of a′

(R,k−1)
ij

and a′
(R,k)
ij , but smoothly decrease as R grows (red dotted lines in Fig-

ure 6.6(a)(c)). Moreover, MSE of R−1
∑R

r=1 a
′(r,k−1)
ij and R−1

∑R
r=1 a

′(r,k)
ij

decrease as R grows (red dotted lines in Figure 6.6(b)(d)). These indicate
the accuracy of EigenSP-M should smoothly become better as R grows.

In addition, we show those in CondMat dataset also described in Sec-

tion 6.4 (Figure 6.7). In CondMat dataset, ME of a′
(R,k−1)
ij and a′

(R,k)
ij do not

decrease as R grows, and even MSE increase as R grows (blue lines in Fig-

ure 6.7). On the other hand, ME of R−1
∑R

r=1 a
′(r,k−1)
ij and R−1

∑R
r=1 a

′(r,k)
ij

decrease as R grows, and MSE does not increase as R grows (red dotted lines
in Figure 6.7). These indicate that the accuracy of EigenSP can become
worse if we use larger R, and EigenSP-M should suppress such instability,
and be better than EigenSP.

As an important observation, we also show mean error (ME) of approx-
imation for k = 2, . . . , 5 among 1,000 sampled node pairs in Enron dataset
in Figure 6.8. Even though accuracies for individual node pairs are un-
stable for the number of R as shown in Figure 6.4, errors in average seem
to decrease as R grows. Moreover, we show mean squared error (MSE) in
Figure 6.9. Roughly speaking, MSE decrease linearly in these log-log plots,

107

10
0

10
1

10
2

10
3

−0.1

0

0.1

0.2

0.3

0.4

Enron

R

m
ea

n
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(k

−
1
)

a’
ij

(R,k−1)

Σ
r=1

R
 a’

ij

(r,k−1)

no error

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

Enron

Rm
ea

n
 s

q
u
ar

ed
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(k

−
1
)

a’
ij

(R,k−1)

Σ
r=1

R
 a’

ij

(r,k−1)

(a) (b)

10
0

10
1

10
2

10
3

−5

0

5

10

15

20

Enron

R

m
ea

n
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(k

)

a’
ij

(R,k)

Σ
r=1

R
 a’

ij

(r,k)

no error

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

Enron

Rm
ea

n
 s

q
u
ar

ed
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(k

)

a’
ij

(R,k)

Σ
r=1

R
 a’

ij

(r,k)

(c) (d)

Figure 6.6: Mean error (ME) and mean squared error (MSE) of approxima-

tion for k as a
(k−1)
ij = 0 and a

(k)
ij > 0 among 1,000 sampled node pairs in En-

ron dataset. (a) ME of approximation of a
(k−1)
ij , (b) MSE of approximation

of a
(k−1)
ij , (c) ME of approximation of a

(k)
ij , and (d) MSE of approximation of

a
(k)
ij . Blue line: ME and MSE of a′

(R,k−1)
ij and a′

(R,k)
ij . Red dotted line: ME

and MSE of R−1
∑R

r=1 a
′(r,k−1)
ij and R−1

∑R
r=1 a

′(r,k)
ij . Black dotted straight

line: line of no error. Horizontal axis: the number of R. Vertical axis: ME
in (a)(c), and MSE in (b)(d).

which indicates that error rate is proportional to some powers of R. This is
analogous to a Monte Carlo method in which random sampling is repeated
R times, and error rate decreases roughly linearly to 1/

√
N where N(= R)

is the number of sampled points. Thus, error rate in average decreases as

R grow in view of specific value of k, whereas error rate for k as a
(k−1)
ij = 0

108

10
0

10
1

10
2

10
3

−2

−1

0

1

2

3

CondMat

R

m
ea

n
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(k

−
1
)

a’
ij

(R,k−1)

Σ
r=1

R
 a’

ij

(r,k−1)

no error

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

CondMat

Rm
ea

n
 s

q
u
ar

ed
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(k

−
1
)

a’
ij

(R,k−1)

Σ
r=1

R
 a’

ij

(r,k−1)

(a) (b)

10
0

10
1

10
2

10
3

−20

0

20

40

60

CondMat

R

m
ea

n
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(k

)

a’
ij

(R,k)

Σ
r=1

R
 a’

ij

(r,k)

no error

10
0

10
1

10
2

10
3

10
2

10
3

10
4

10
5

10
6

10
7

CondMat

Rm
ea

n
 s

q
u
ar

ed
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(k

)

a’
ij

(R,k)

Σ
r=1

R
 a’

ij

(r,k)

(c) (d)

Figure 6.7: Mean error (ME) and mean squared error (MSE) of approxi-

mation for k as a
(k−1)
ij = 0 and a

(k)
ij > 0 among 1,000 sampled node pairs

in CondMat dataset. (a) ME of approximation of a
(k−1)
ij , (b) MSE of ap-

proximation of a
(k−1)
ij , (c) ME of approximation of a

(k)
ij , and (d) MSE of

approximation of a
(k)
ij . Blue line: ME and MSE of a′

(R,k−1)
ij and a′

(R,k)
ij .

Red dotted line: ME and MSE of R−1
∑R

r=1 a
′(r,k−1)
ij and R−1

∑R
r=1 a

′(r,k)
ij .

Black dotted straight line: line of no error. Horizontal axis: the number of
R. Vertical axis: ME in (a)(c), and MSE in (b)(d).

and a
(k)
ij > 0 is unstable as shown in Figure 6.6. This makes the problem

complicated, and this is why we need the heuristic we propose.

We also model thresholds for EigenSP-M as t
(R,k)
a = βαk, and determine

α and β by using the same method as EigenSP to make the error rates of
type 0 and type 1 equal. For Enron data, α is 2.58 and β is 1.72 ∗ 10−2.

109

10
0

10
1

10
2

10
3

−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

Enron

R

m
ea

n
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(2

)

a’
ij

(r,2)

no error

10
0

10
1

10
2

10
3

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Enron

R

m
ea

n
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(3

)

a’
ij

(r,3)

no error

(a) (b)

10
0

10
1

10
2

10
3

−50

−40

−30

−20

−10

0

10

Enron

R

m
ea

n
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(4

)

a’
ij

(r,4)

no error

10
0

10
1

10
2

10
3

−2000

−1500

−1000

−500

0

500

1000

Enron

R

m
ea

n
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(5

)

a’
ij

(r,5)

no error

(c) (d)

Figure 6.8: Mean error (ME) of approximation for k = 2, . . . , 5 among
1,000 sampled node pairs in Enron dataset. (a) k = 2, (b) k = 3, (c) k = 4,

and (d) k = 5. Blue line: ME of a′
(R,k)
ij . Black dotted straight line: line of

no error. Horizontal axis: the number of R. Vertical axis: ME.

6.4 Empirical Results

6.4.1 Data and Environment

We conduct experiments using eight real-world datasets in order to demon-
strate the efficiency and scalability of our method. Six datasets (AS-CAIDA,
Enron, AstroPh, CondMat, GrQc, HepTh) were taken from the Stanford
Network Analysis Project (SNAP1). The other two datasets (DBLP, IMDb)
were obtained from their respective websites. We use the diameters de-

1http://snap.stanford.edu/

110

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

Enron

Rm
ea

n
 s

q
u
ar

ed
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(2

)

a’
ij

(r,2)

10
0

10
1

10
2

10
3

10
−2

10
−1

10
0

10
1

10
2

Enron

Rm
ea

n
 s

q
u
ar

ed
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(3

)

a’
ij

(r,3)

(a) (b)

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

Enron

Rm
ea

n
 s

q
u
ar

ed
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(4

)

a’
ij

(r,4)

10
0

10
1

10
2

10
3

10
2

10
4

10
6

10
8

10
10

Enron

Rm
ea

n
 s

q
u
ar

ed
 e

rr
o
r

o
f

ap
p
ro

x
im

at
io

n
 o

f
a ij(5

)

a’
ij

(r,5)

(c) (d)

Figure 6.9: Mean squared error (MSE) of approximation for k = 2, . . . , 5
among 1,000 sampled node pairs in Enron dataset. (a) k = 2, (b) k = 3,

(c) k = 4, and (d) k = 5. Blue line: MSE of a′
(R,k)
ij . Horizontal axis: the

number of R. Vertical axis: MSE.

scribed in the SNAP web site. We estimate the diameters of DBLP and
IMDb by sampling over 1, 000 random nodes. Table 6.2 summarizes the
data.

• IMDb: A collaboration network between actors, obtained from IMDb2.

• AS-CAIDA: CAIDA AS graph from November 5 2007.

• Enron: Email communication network in a company.

2http://www.imdb.com

111

Dataset |V | |E| D dist Pinf

IMDb 551,200 54,544,140 13 3.67 0.02

AS-CAIDA 26,475 106,762 17 3.88 0.00

Enron 36,692 367,662 12 3.96 0.16

AstroPh 18,772 396,160 14 4.20 0.08

CondMat 23,133 186,936 15 5.35 0.15

GrQc 5,242 28,980 17 5.98 0.36

HepTh 9,877 51,971 17 5.98 0.23

DBLP 286,944 1,802,480 22 7.17 0.40

Table 6.2: A summary of datasets. |V |: # of nodes. |E|: # of edges. D:
diameter. dist: the average of the shortest-path distance. Pinf : the ratio
of the disconnected node pairs. dist and Pinf are estimated by using 1, 000
randomly sampled node pairs.

• AstroPh, CondMat, GrQc, HepTh: Scientific collaborations in
astro physics, condense matter physics, general relativity and quantum
cosmology, high energy physics - theory.

• DBLP: A collaboration network between authors in computer science,
obtained from DBLP3.

EigenSP is implemented in the MATLAB language and all the experi-
ments are performed on a 64-bit Windows XP machine with four 2.8GHz
cores and 8GB of memory.

6.4.2 Compared Methods

We compute our methods by using the top 10 eigenvalues and eigenvectors
, which can be stored within about 8GB memory for today’s common graph
data with 100 million nodes, assuming it needs 8 bytes(double) to store each
score.

We compare our methods with the landmark-based methods (in this
section, we call them the landmark methods). One of said methods is the
triangulated heuristic [134, 125]. This heuristic selects the landmarks in
a graph and calculates distances between the landmarks and all the nodes
in the data. Then, the upper bounds of the distances are taken from the
minimum length of the paths connecting node pairs via the landmarks, and

3http://dblp.uni-trier.de/

112

the lower bounds from the maximum length of paths assuming one node
is on shortest paths connecting another node and the landmarks. Various
weighted averages of the upper and lower bounds can be used as distance
functions. We use the upper bounds as estimated distances since most of
the previous studies showed that the upper bounds performed far better
than the lower bounds and other weighted averages [134, 125]. We compare
our methods with the triangulated heuristic of 100 landmarks, as required
memory is almost the same as storing 10 eigenvectors, that is, 8 bytes for
scores of eigenvectors (double) and 1 bytes for the distance between the
landmarks and all the nodes (unsigned char). The distances between the
landmarks and all other nodes are precomputed by using simple BFS.

Another landmark method we compare is Global Network Positioning
(GNP) [125]. GNP models a network as a geometric space and characterizes
the position of any node, which are optimized such that the overall error
between the exact distances and the geometric distances is minimized by
using the Simplex Downhill method [119]. First, GNP computes positions
of the landmarks, and then computes positions of all other nodes so as to
minimize the error of estimated distances from the landmarks. The cost of
computing positions is very expensive, and Orion bootstrap [171] tackles this
problem by dividing the landmarks into two groups. We calculate a simple
GNP of 10-dimensional positions from the 16 landmarks, and calculate Orion
by using 84 additional landmarks, resulting in 100 landmarks in total, the
same setup as [171]. The reason we choose a dimensionality of 10 is that
required memory is the same as storing 10 eigenvectors. Moreover, we regard
errors of the geometric distances (g) of disconnected node pairs as D+ 1− g
if g < D + 1, and as zero if g ≥ D + 1.

Among the several landmark selection strategies for the triangulated
heuristic and GNP, we choose a strategy which selects the top k highest
degree nodes such that each selected node is more than 1-hop away from
every other selected node. We choose this landmark selection strategy due
to its high accuracy on many datasets [134].

6.4.3 Evaluation Metric

We evaluate the accuracy with the average relative error (ARE). ARE is the
average of the relative approximation error: |dist′(i, j)−dist(i, j)|/dist(i, j).
This metric is widely used in the study of shortest path distance estimations
[134, 171]. However, it cannot be directly used if the dataset contains dis-
connected node pairs separated by a distance of ∞. Thus, we make the
distance of disconnected node pairs D + 1, 1-hop longer than the diameter

113

of the graph. The reason for this is that the main interest of many applica-
tions is over short distances, where it is unimportant whether two nodes are
disconnected or connected over a very long distance in the graph. This fits
the aim of the metric of ARE. We measure the accuracy of each method in
calculating the shortest path distances of 1, 000 randomly sampled pairs of
nodes, which are different from node pairs used to determine thresholds for
EigenSP and EigenSP-M.

6.4.4 Estimation Accuracy

Figure 6.10 shows the experimental results of each dataset. On IMDb, AS-
CAIDA, Enron and AstroPh, the accuracies of our methods are better than
those of the landmark methods, whereas our methods perform worse than
the landmark methods on other datasets. We should realize that the former
group of datasets have short average distances of about 4, whereas the latter
have long average distances of about 6 or 7 (Table 6.2). We omit the results
of Orion because AREs of Orion are worse than all the methods in every
dataset.

0

0.05

0.1

0.15

0.2

0.25

0.3

IM
D

b

A
S

−
C

A
ID

A

E
n

ro
n

A
st

ro
P

h

C
o

n
d

M
at

G
rQ

c

H
ep

T
h

D
B

L
P

A
R

E

GNP

triangulated

EigenSP

EigenSP−M

Figure 6.10: Average relative error (ARE) of each dataset. EigenSP and
EigenSP-M can estimate distances better than the landmark method on
datasets with short average distances of about 4 such as IMDb, AS-CAIDA,
Enron, and AstroPh (see Table 6.2). Vertical axis: ARE.

What cause the difference in estimation accuracy among these meth-
ods? To answer this question, let us refer to the sum of relative errors
(RE) of each dataset per the exact distance, that is, the sum of |dist′(i, j)−
dist(i, j)|/dist(i, j) for each dist(i, j). On IMDb, AS-CAIDA, Enron and

114

AstroPh, on which the AREs of our methods are better than those of the
landmark methods, our methods estimate many of the short distances more
accurately than the landmark methods (Figure 6.11). Further, the trian-
gulated heuristic has a high rate of error in estimating distances of 2 or 3,
whereas GNP has large errors in estimating distances of 3 to 5, and the sum
of RE of our methods are not severely different from or much smaller than
those of the landmark methods in estimating these distances. Short average
distances about 4 on these datasets (Table 6.2) can be caused by a large
number of hub nodes in the graphs, and the landmark methods may have
large errors due to a few landmarks being unable to cover these hub nodes.

On the other hand, the differences of the AREs on CondMat, GrQc,
HepTh and DBLP between our methods and the landmark methods are
mainly brought about when estimating the longer distances (Figure 6.12).
Because these datasets contain many node pairs with long distances, that
is, the average distance is about 6 or 7 (Table 6.2), a large amount of errors
in our methods in these distances may have caused large AREs on these
datasets.

The accuracies of EigenSP-M are almost as same as those of EigenSP
with 10 eigenvalues. But EigenSP-M perform better than EigenSP with
larger number of eigenvalues, especially on datasets of longer average dis-
tances, as we show in the following subsection.

EigenSP, EigenSP-M and GNP have high rates of error in disconnected
node pairs. This type of error within EigenSP and EigenSP-M may be
caused by the computational accuracy. For a disconnected node pair of i
and j, either the score xri or xrj in the r-th eigenvector must be theoret-

ically zero, and a′
(r,k)
ij should be zero for every r. But a small amount of

absolute error in computing these xri or xrj can occur and a′
(r,k)
ij might ex-

ceed thresholds of the distances smaller than the diameter for large k. This
kind of error can be reduced by calculating eigenvalues and eigenvectors
more precisely. For GNP, this error may have been caused by our setup, in
computing the positions of the disconnected node pairs, but this is outside
the scope of this thesis.

6.4.5 Effect of Number of Eigenvalues

Next we show the accuracies of our methods with more than 10 eigenvalues.
We show only the triangulated heuristic as the landmark method, because
GNP took too long precomputing time to test with more than 10 landmarks.

On datasets which have short average distances, such as IMDb, AS-

115

1 2 3 4 5 6 7 8 9 10 11 12 13 Inf
0

20

40

60

80

100

120

IMDb

distance

su
m

 o
f

R
E

s

GNP

triangulated

EigenSP

EigenSP−M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Inf
0

10

20

30

40

50

60

70

AS−CAIDA

distance

su
m

 o
f

R
E

s

GNP

triangulated

EigenSP

EigenSP−M

1 2 3 4 5 6 7 8 9 10 11 12 Inf
0

10

20

30

40

50

60

Enron

distance

su
m

 o
f

R
E

s

GNP

triangulated

EigenSP

EigenSP−M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 Inf
0

10

20

30

40

50

60

AstroPh

distance

su
m

 o
f

R
E

s

GNP

triangulated

EigenSP

EigenSP−M

Figure 6.11: The sum of relative errors (RE) per the exact distance of
datasets which have short average distances about 4 (Table 6.2). The trian-
gulated heuristic has a high rate of error in estimating distances of 2 or 3,
whereas GNP has large errors in estimating distances of 3 to 5, and the sum
of RE of EigenSP and EigenSP-M are not severely different from or much
smaller than those of the landmark methods in estimating these distances.
Horizontal axis: exact distance. Vertical axis: the sum of REs.

CAIDA, Enron and AstroPh, both of EigenSP and EigenSP-M perform far
better than the landmark method, even if the number of eigenvalues or
landmarks grows(Figure 6.13).

On datasets which have long average distances, such as CondMat, GrQc,
HepTh and DBLP, our method can not outperform the landmark method
even with many eigenvalues(Figure 6.14). Interestingly, the accuracies of
EigenSP-M are better than those of EigenSP if we use many eigenvalues
on these datasets. Moreover, AREs of EigenSP with many eigenvalues can

116

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Inf
0

5

10

15

20

25

30

35

40

45

50

CondMat

distance

su
m

 o
f

R
E

s

GNP

triangulated

EigenSP

EigenSP−M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Inf
0

10

20

30

40

50

60

70

80

90

GrQc

distance

su
m

 o
f

R
E

s

GNP

triangulated

EigenSP

EigenSP−M

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 Inf
0

5

10

15

20

25

30

35

40

45

50

HepTh

distance

su
m

 o
f

R
E

s

GNP

triangulated

EigenSP

EigenSP−M

1 3 5 7 9 11 13 15 17 19 21 Inf
0

20

40

60

80

100

120

DBLP

distance

su
m

 o
f

R
E

s

GNP

triangulated

EigenSP

EigenSP−M

Figure 6.12: The sum of relative errors (RE) per the exact distance of
datasets which had long average distances about 6 or 7 (Table 6.2). The
differences of the AREs between our methods and the landmark methods
are mainly brought about when estimating the longer distances. Horizontal
axis: exact distance. Vertical axis: the sum of REs.

be worse than those with smaller number of eigenvalues, whereas AREs
of EigenSP-M decrease as the number of eigenvalues grew. These results
suggests that the heuristic of EigenSP-M can effectively overcome instability
in estimating the values of the adjacency matrix for the variation of the
number of eigenvalues.

6.4.6 Query Time

EigenSP and EigenSP-M can estimate for given node pairs in O(RD), where
R is the number of eigenvectors and D is the diameter of the graph. The
triangulated heuristic can compute this in O(L) where L is the number of

117

10
1

10
2

10
30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

of landmarks / eigenvectors

A
R

E
IMDb

Landmark
EigenSP
EigenSP−M

10
1

10
2

10
30

0.05

0.1

0.15

0.2

of landmarks / eigenvectors

A
R

E

AS−CAIDA

Landmark
EigenSP
EigenSP−M

10
1

10
2

10
30.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

of landmarks / eigenvectors

A
R

E

Enron

Landmark
EigenSP
EigenSP−M

10
1

10
2

10
30

0.05

0.1

0.15

0.2

0.25

of landmarks / eigenvectors

A
R

E

AstroPh

Landmark
EigenSP
EigenSP−M

Figure 6.13: Average relative error (ARE) of datasets which have short
average distances about 4 (Table 6.2) with many eigenvalues of landmarks.
EigenSP and EigenSP-M can estimate distances far better than the land-
mark method can in these datasets, even with many eigenvalues or land-
marks such as 200. Horizontal axis: the number of eigenvectors or land-
marks. Vertical axis: ARE.

landmarks, and GNP in O(S) where S is the dimensionality of the geo-
metric space. All of the above time complexities are much improved over
that of BFS, i.e., O(|V | + |E|). Table 6.3 shows the average query time
of these methods. All of these methods can estimate within the order of
microseconds, much faster than BFS, which estimates within the order of
milliseconds.

We also show the query time of BFS in estimating short distances in
Figure 6.15, to answer a question such as “why not use BFS to estimate the
short distances that is the advantage of EigenSP?” The query time of BFS
increases almost linearly with the number of edges, and it takes more than
1ms for graphs with more than 100K edges, even in calculating distances

118

10
1

10
2

10
30.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

of landmarks / eigenvectors

A
R

E
CondMat

Landmark
EigenSP
EigenSP−M

10
1

10
2

10
30

0.05

0.1

0.15

0.2

of landmarks / eigenvectors

A
R

E

GrQc

Landmark
EigenSP
EigenSP−M

10
1

10
2

10
30

0.05

0.1

0.15

0.2

of landmarks / eigenvectors

A
R

E

HepTh

Landmark
EigenSP
EigenSP−M

10
1

10
2

10
30

0.05

0.1

0.15

0.2

of landmarks / eigenvectors

A
R

E

DBLP

Landmark
EigenSP
EigenSP−M

Figure 6.14: Average relative error (ARE) of datasets which have long
average distances about 6 or 7 (Table 6.2) with many eigenvalues of land-
marks. The accuracies of EigenSP-M are better than those of EigenSP if
we use many eigenvalues on these datasets. Horizontal axis: the number of
eigenvectors or landmarks. Vertical axis: ARE.

of 2. It takes about 1.2s on average for a graph with 55M edges (IMDb)
when calculating distances of 2 (not shown in Figure 6.15). This should be
because BFS, in real networks, will check many nodes connected to some
hub nodes very often, even if the distance of the node pair is short. Our
methods and the landmark methods can estimate far faster than BFS, i.e.,
within the order of tens of microseconds.

6.4.7 Precomputation Time

We evaluate the scalability of our methods from the precomputing point of
view. The most expensive precomputation of our methods is the eigenvalue
computation. We used the MATLAB command eigs, which calculates them

119

methods BFS EigenSP triangulated GNP

IMDb 1289.5 ms 13.1 µs 25.5 µs 3.5 µs

AS-CAIDA 2.4 ms 12.0 µs 23.3 µs 3.4 µs

Enron 8.2 ms 15.2 µs 23.2 µs 3.5 µs

AstroPh 6.8 ms 14.5 µs 23.3 µs 3.5 µs

CondMat 5.8 ms 18.4 µs 23.3 µs 3.4 µs

GrQc 1.5 ms 23.6 µs 22.9 µs 3.3 µs

HepTh 2.5 ms 22.2 µs 23.0 µs 3.3 µs

DBLP 238.3 ms 26.5 µs 23.0 µs 3.5 µs

Table 6.3: The average query time of each method. EigenSP, the trian-
gulated heuristic and GNP can calculate estimations within the order of
microseconds, much faster than BFS.

1 2 3 4 5

x 10
5

0

2

4

6

8

10

of edges

q
u

er
y

 t
im

e
(m

il
li

se
co

n
d

s)

Query Time of BFS

2−hops

3−hops

4−hops

5−hops

Figure 6.15: The numbers of edges of each dataset are plotted against the
average query time of BFS. The query time of BFS increases almost linearly
with the number of edges. It takes more than 1ms for graphs with more
than 100K edges, even in calculating distances of 2.

based on the Lanczos algorithm [40]. We show the computation time of the
top 10 eigenvalues in Table 6.4. The computation time is about 1 minute
for the graph with 50M edges. Figure 6.16 is a log-log plot of the number of
edges against the precomputation time of EigenSP. The slope in the log-log
plot is 0.72, and it suggests that the precomputation time may increase at

120

methods EigenSP triangulated GNP

IMDb 64.8 s 473.3 s N.A.

AS-CAIDA 0.6 s 2.3 s 122.8 min

Enron 1.5 s 3.6 s 157.7 min

AstroPh 0.7 s 3.6 s 84.0 min

CondMat 0.8 s 2.4 s 103.5 min

GrQc 0.3 s 0.5 s 24.6 min

HepTh 1.0 s 0.9 s 44.2 min

DBLP 12.4 s 36.7 s 17.0 hour

Table 6.4: The precomputation time. Precomputing EigenSP and the
triangulated heuristic is fast enough for all the datasets, whereas GNP’s is
inefficient.

most linearly with the number of edges, and that they may be computed
within, at most, several hours for a graph with billions of edges.

We should mention the precomputation time of the landmark methods.
Table 6.4 also shows that precomputation of the triangulated heuristic is
fast enough for all of the datasets. Because the computation of the Simplex
Downhill method is very expensive, the precomputation of GNP takes a very
long time compared to the triangulated heuristic and EigenSP.

6.5 Conclusion

We devised a novel method, called EigenSP, that estimates shortest path
distances by using an adjacency matrix approximated by a few eigenvalues
and eigenvectors. We found that the values of the elements of eigenvectors
vary widely about the exact values of the elements without depending on
the number of eigenvectors, and we added a simple heuristic to EigenSP
(resulting in EigenSP-M). The experimental results on eight large-scale real-
world graphs show that the AREs of our methods are lower than those
of the landmark-based method on datasets with short average distances
of about 4, which are very close to that of Facebook [10]. Moreover, we
showed that our methods can estimate shorter distances better than the
landmark-based method on such datasets. A property like this is beneficial
to applications such as social network analysis which try to identify potential
friends separated by short distances. In addition, it should be possible
to combine our method with the landmark-based method. The simplest

121

10
4

10
5

10
6

10
7

10
8

10
−1

10
0

10
1

10
2

Precomputation Time of EigenSP

of edges

p
re

co
m

p
u
ta

ti
o
n
 t

im
e

(s
ec

o
n
d
s)

Figure 6.16: The numbers of edges of each dataset are plotted against the
precomputation time of EigenSP in the log-log plot. The slope in the log-
log plot is 0.72, and it suggests that the precomputing time may increase at
most linearly with the number of edges.

way would be to use the landmark-based method for longer distance and
trust our method for shorter distance, and we can consider many other
combining strategies. Note that the accuracy of the landmark-based method
on datasets with short average distances can be significantly improved by
storing the actual path information [63], and applying such information to
our methods is a future research direction.

Recently, Akiba et al. proposed a novel method for shortest-path dis-
tance queries, which precomputed distance labels for nodes by performing a
breadth-first search from every nodes [6]. It can answer even exact distances
within microseconds. It should be also a future direction to evaluate the
advantage and disadvantage of our method compared to this method.

122

Chapter 7

Conclusion

Now we describe the concluding remarks. Contributions of this thesis is
summarized in the first section, and we conclude with future research direc-
tions in the following section.

7.1 Summary of the Contributions

In this section we summarize our works and contributions described in this
thesis.

Novel anomaly detection method of k,k-hypergraph. (Chapter 4) We
defined the problem of detecting anomalous k,k-hypercliques, and pro-
posed a novel method which automatically detects such anomalies us-
ing CP decomposition. The advantage of our method is that we ex-
tract anomalous communities in both views of the size of communities
and the path capacities between the communities and the important
nodes, by utilizing even very low absolute values of the eigenvectors
of CP decomposition. We have shown that our method can detect
synthesized anomalies effectively, and the computation time scale lin-
early at the size of hyperedges, leveraged by a sparse coding of CP
decomposition. Also, we introduced some visualization methods that
users can easily understand nature of detected anomalies, and some
examples of detected anomalies were shown by empirical experiments
using real-world datasets from three dissimilar application domains.

Pattern discovery of bipartite graph. (Chapter 5) We proposed some
novel patterns of the nodes related to community structures in graph
data, which we can observe by inspecting distributions of values of

123

elements of singular vectors and weighted degrees corresponding to
nodes. These patterns include a pattern of the ratio of the degrees and
the numbers of paths to a community, a pattern of the ratio of con-
nections straddling two communities, and so on. And we introduced a
framework which can spot these patterns by detecting linear-like pat-
terns in 2D-plots of node properties, using Hough transform. None of
existing works on anomaly detection in graph data consider the path
capacities between all nodes and communities, i.e., determine normal
connection patterns between nodes and communities. We showed our
framework could spot some interesting patterns in real-world datasets
with millions of edges.

Fast shortest path distance estimation method. (Chapter 6). We pro-
posed a novel method to estimate shortest path distance of query node
pairs within order of micro seconds, using eigen decomposition. We
also showed the accuracy of approximation of values of an adjacency
matrix varies according to the choice of number of eigenvalues, and
it even became worse when we use many eigenvalues. We introduced
a heuristic to tackle this problem. By conducting some experiments
using eight real-world datasets, we showed our method could estimate
shorter distances more accurately than existing well-known methods
like the landmark-based methods.

7.2 Future Works

As future works, there is a big room to improve our methods introduced in
this thesis.

Parameter settings of spike detection algorithm. For anomaly detec-
tion method of k,k-hypergraph proposed in Chapter 4, we should have
a clear strategy to select parameters of spike detection algorithm, the
heart of this method.

Anomaly detection based on patterns detected. As our goal is anomaly
detection, we should introduce some methods to detect anomalies or
outliers based on patterns detected by our method proposed in Chap-
ter 5. In addition, there are possibly other patterns than linear-like
patterns, and other technique will be required to detect such patterns
in future.

124

Improvement of the distance estimation method and applications.
Even though our method introduced in Chapter 6 is very simple, there
are many possibilities to improve our method. One possible improve-
ment is better selection strategy of eigenvalues and eigenvectors, as
they are not necessarily selected from the largest eigenvalues. For ex-
ample, we can estimate mean error and mean squared error of approx-
imation of multiplied adjacency matrix as Figure 6.6 and Figure 6.7,
and greedily pick up eigenvalues and eigenvectors from those reduce
errors most efficiently by adding them.

Another possible improvement is the combination with the landmark-
based methods. The simplest way would be to use the landmark-
based method for longer distance and trust our method for shorter
distance. Other way would be to divide whole graph into some parti-
tions. We could estimate distances that straddle partitions by using
the landmark-based methods, and estimate distances within partitions
by using our method.

Moreover, there is some possibility of using our method to improve
algorithm for point to point shortest path queries. ALT algorithms
combine the bidirectional Dijkstra algorithm with the A* algorithm
and landmarks in order to prune the search space [61, 79]. They use
graph-theoretic lower-bounding technique based on landmarks and the
triangle inequality. But these lower bounds might be too low to prune
the search space if two nodes are located far from any landmark nodes,
which should happen as the A* search approaches the query nodes.
Even though our method cannot provide lower bounds, our method
might be able to estimate short distance near the query nodes, and
give good approximate shortest paths effectively.

Furthermore, there are many more complicated problems beyond the
problems we tackled in this thesis. One of the problems is how to detect novel
anomalous patterns. For example, a serious problem for analysts in charge
of a company’s security system is how to distinguish remarkable attacks
which have never been seen before, from vast amount of ordinary attacks
in the intrusion detection systems logs. In other words, this is a problem
of distinguishing anomalous connection patterns from normal connection
patterns as we spotted in Chapter 5, so far we distinguish them manually.
This is a hard problem because it is hardly trivial to determine that a today’s
pattern is similar to some past patterns caused by similar kind of attacks.
Another problem is how to deal with datasets containing information at

125

various levels of granularity. For example, there are many purchasing data
which include records with only the receipt numbers and product names,
and records with the customer IDs in addition to the receipt numbers and
product names, and records with the customer’s zip codes, and many more.
Obviously we cannot deal with such datasets by using a simple technique like
the basic tensor decomposition techniques. However, it should be a natural
situation that we have to analyze such datasets, in the era that more and
more data can be generated and stocked from everywhere in the society.

Finally, anomaly detection of graph data is almost endless problem. This
is very hard task, but practical solutions are desired intensely in the wide
variety of applications.

126

Bibliography

[1] Berkeley Drosophilia Genome Project. Patterns of gene expression in
Drosophila embryogenesis. http://insitu.fruitfly.org/cgi-bin/
ex/insitu.pl. 40, 63

[2] Lawrence Berkeley National Laboratory and ICSI. LBNL/ICSI enter-
prise tracing project. http://www.icir.org/enterprise-tracing/.
49

[3] I. Abraham, Y. Bartal, H. T.-H. Chan, K. Dhamdhere, A. Gupta,
J. M. Kleinberg, O. Neiman, and A. Slivkins. Metric embeddings
with relaxed guarantees. In Proceedings of the 46th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’05), pages
83–100, 2005. 16

[4] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup. Scalable tensor
factorizations with missing data. In Proceedings of the 2010 SIAM
International Conference on Data Mining (SDM ’10), pages 701–712,
2010. 18

[5] C. C. Aggarwal and P. S. Yu. Outlier detection for high dimensional
data. SIGMOD Record, 30:37–46, May 2001. 9

[6] T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance
queries on large networks by pruned landmark labeling. In Proceedings
of the 2013 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’13), pages 349–360, 2013. 122

[7] L. Akoglu, M. McGlohon, and C. Faloutsos. Oddball: Spotting anoma-
lies in weighted graphs. In proceedings of the 14th Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining (PAKDD ’10), pages
410–421, 2010. 3, 5, 11, 44, 70, 73, 90

127

http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
http://insitu.fruitfly.org/cgi-bin/ex/insitu.pl
http://www.icir.org/enterprise-tracing/

[8] C. A. Andersson and R. Bro. The N-way toolbox for MATLAB.
Chemometrics and Intelligent Laboratory Systems, 52(1):1–4, 2000.
18

[9] A. Arning, R. Agrawal, and P. Raghavan. A linear method for devia-
tion detection in large databases. In Proceedings of the second ACM
SIGKDD international conference on Knowledge discovery and data
mining (KDD ’96), pages 164–169, 1996. 9, 10

[10] L. Backstrom, P. Boldi, M. Rosa, J. Ugander, and S. Vigna. Four
degrees of separation. In Proceedings of the 3rd Annual ACM Web
Science Conference (WebSci ’12), pages 33–42, 2012. 121

[11] B. W. Bader, T. G. Kolda, et al. Matlab tensor toolbox version 2.5.
Available online, January 2012. http://www.sandia.gov/~tgkolda/
TensorToolbox/. 18, 58, 61

[12] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating
betweenness centrality. In Proceedings of the 5th international confer-
ence on Algorithms and models for the web-graph (WAW’07), volume
4863, pages 124–137, 2007. 15

[13] H. B. Barlow. Unsupervised learning. Neural Computation, 1:295–311,
1989. 9

[14] V. Barnett and T. Lewis. Outliers in Statistical Data. John Wiley and
Sons, 1994. 8

[15] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein. OWL
Web Ontology Language Reference. Technical report, W3C,
http://www.w3.org/TR/owl-ref/, February 2004. 44

[16] C. Bizer, T. Heath, and T. Berners-Lee. Linked data - the story so
far. International Journal on Semantic Web and Information Systems
(IJSWIS), 5(3):1–22, 2009a. 44

[17] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
and S. Hellmann. Dbpedia - a crystallization point for the web of data.
Journal of Web Semantics, 7(3):154–165, 2009b. 44

[18] P. Bonacich. Factoring and weighting approaches to status scores and
clique identification. Journal of Mathematical Sociology, 2(1):113–120,
1972. 15

128

http://www.sandia.gov/~tgkolda/TensorToolbox/
http://www.sandia.gov/~tgkolda/TensorToolbox/

[19] S. P. Borgatti. Centrality and network flow. Social Networks, 27(1):55–
71, 2005. 2

[20] S. P. Borgatti and M. G. Everett. A graph-theoretic perspective on
centrality. Social Networks, 28(4):466–484, 2006. 2, 15

[21] D. M. Boyd and N. Ellison. Social network sites: Definition, his-
tory, and scholarship. Journal of Computer-Mediated Communication,
13(1):210–230, 2007. 44

[22] U. Brandes. A faster algorithm for betweenness centrality. Journal of
Mathematical Sociology, 25(163), 2001. 15

[23] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. LOF: identi-
fying density-based local outliers. SIGMOD Record, 29:93–104, May
2000. 8, 9

[24] S. Brin and L. Page. The anatomy of a large-scale hypertextual (web)
search engine. In Proceedings of the seventh international conference
on World Wide Web 7 (WWW7), pages 107–117, 1998. 15

[25] A. Bronstein, J. Das, M. Duro, R. Friedrich, G. Kleyner, M. Mueller,
S. Singhal, and I. Cohen. Self-aware services: Using bayesian networks
for detecting anomalies in internet-based services. In Proceedings of
the 7th IFIP/IEEE International Symposium on Integrated Network
Management (IM 2001), pages 623–638, 2001. 9

[26] E. J. Candès, X. Li, Y. Ma, and J. Wright. Robust principal compo-
nent analysis? Journal of the ACM (JACM), 58(3):11, 2011. 10

[27] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr., and
T. M. Mitchell. Toward an architecture for never-ending language
learning. In Proceedings of the Twenty-Fourth Conference on Artificial
Intelligence (AAAI 2010), pages 1306–1313, 2010a. 39, 63

[28] A. Carlson, J. Betteridge, R. C. Wang, E. R. Hruschka, Jr., and T. M.
Mitchell. Coupled semi-supervised learning for information extrac-
tion. In Proceedings of the third ACM international conference on
Web search and data mining (WSDM ’10), pages 101–110, 2010b. 39

[29] J. Carroll and J.-J. Chang. Analysis of individual differences in multi-
dimensional scaling via an n-way generalization of ‘eckart-young’ de-
composition. Psychometrika, 35(3):283–319, September 1970. 18

129

[30] D. Chakrabarti. Autopart: Parameter-free graph partitioning and
outlier detection. In Proceedings of the European Conference on Ma-
chine Learning and Principles and Practice of Knowledge Discovery
in Databases (ECML PKDD 2004), pages 112–124, 2004. 3, 10, 44,
70

[31] D. Chakrabarti, S. Papadimitrou, D. Modha, and C. Faloutsos.
Fully automatic cross-associations. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data
mining (KDD ’04), pages 79–88, 2004. 13

[32] V. Chandola, A. Banerjee, and V. Kumar. Anomaly detection: A
survey. ACM Computing Surveys, 41:15:1–15:58, July 2009. 8

[33] V. Chaoji, M. A. Hasan, S. Salem, and M. J. Zaki. SPARCL: Efficient
and effective shape-based clustering. In Proceedings of the 2008 IEEE
International Conference on Data Mining (ICDM ’08), pages 93–102,
2008. 9

[34] A. Chaudhary, A. S. Szalay, and A. W. Moore. Very fast outlier
detection in large multidimensional data sets. In Proceedings of the
7th ACM SIGMOD workshop on Research issues in data mining and
knowledge discovery (DMKD ’02), 2002. 9

[35] E. C. Chi and T. G. Kolda. On tensors, sparsity, and nonnegative
factorizations. SIAM Journal on Matrix Analysis and Applications,
33(4):1272–1299, 2012. 9, 18

[36] F. R. K. Chung. Spectral Graph Theory. American Mathematical
Society, Providence, RI, USA, 1997. 12, 14

[37] A. Clauset, M. E. J. Newman, and C. Moore. Finding Community
Structure in Very Large Networks. Physical Review, 2004. 13

[38] D. J. Cook and L. B. Holder. Substructure discovery using minimum
description length and background knowledge. Journal of Artificial
Intelligence Research, 1:231–255, February 1994. 44

[39] M. Costa, M. Castro, A. I. T. Rowstron, and P. B. Key. Pic: Prac-
tical internet coordinates for distance estimation. In Proceedings of
the 24th International Conference on Distributed Computing Systems
(ICDCS’04), pages 178–187, 2004. 17

130

[40] J. K. Cullum and R. A. Willoughby. Lanczos Algorithms for Large
Symmetric Eigenvalue Computations, Vol. 1. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2002. 101, 120

[41] F. Dabek, R. Cox, M. F. Kaashoek, and R. Morris. Vivaldi: A de-
centralized network coordinate system. In Proceedings of the 2004
conference on Applications, technologies, architectures, and protocols
for computer communications (SIGCOMM ’04), pages 15–26, 2004.
17

[42] K. Das and J. G. Schneider. Detecting anomalous records in categor-
ical datasets. In Proceedings of the 13th ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD ’07), pages
220–229, 2007. 9

[43] K. Das, J. G. Schneider, and D. B. Neill. Anomaly pattern detection in
categorical datasets. In Proceedings of the 14th ACM SIGKDD inter-
national conference on Knowledge discovery and data mining (KDD
’08), pages 169–176, 2008. 9

[44] L. Dehaspe and H. Toivonen. Discovery of frequent datalog patterns.
Data Mining and Knowledge Discovery, 3:7–36, March 1999. 44

[45] M. J. Desforges, P. J. Jacob, and J. E. Cooper. Applications of prob-
ability density estimation to the detection of abnormal conditions in
engineering. In Proceedings of Institute of Mechanical Engineers, vol-
ume 212, pages 687–703, 1998. 9

[46] I. Dhillon, Y. Guan, and B. Kullis. Weighted Graph Cuts without
EigenVectors : A Multilevel Approach. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1944–1957, November 2007.
12

[47] I. Dhillon, S. Mallela, and D. Modha. Information-theoretic co-
clustering. In Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD ’03), pages
89–98, 2003. 13

[48] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959. 16, 98

[49] R. O. Duda and P. E. Hart. Use of the hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–
15, 1972. 81

131

[50] W. Eberle and L. Holder. Discovering structural anomalies in graph-
based data. In Proceedings of the ICDM 2007 Workshop on Mining
Graphs and Complex Structures (MGCS), pages 393–398, 2007. 3, 10,
44, 70

[51] E. Eskin. Anomaly detection over noisy data using learned probability
distributions. In Proceedings of the 17th international conference on
Machine learning (ICML ’00), pages 255–262, 2000. 9

[52] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based al-
gorithm for discovering clusters in large spatial databases with noise.
In Proceedings of the second ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD ’96), pages 226–231,
1996. 9

[53] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-
5):75–174, 2010. 11, 25

[54] T. Franz, A. Schultz, S. Sizov, and S. Staab. TripleRank: Ranking
semantic web data by tensor decomposition. In Proceedings of the 8th
International Semantic Web Conference (ISWC ’09), pages 213–228,
2009. 46

[55] L. Freeman. Centrality in Social Networks: Conceptual Clarification.
Social Networks, 1:215–239, 1979. 15

[56] L. C. Freeman. The gatekeeper, pair-dependency and structural cen-
trality. Quality and Quantity, V14(4):585–592, 1980. 15

[57] R. Fujimaki, T. Yairi, and K. Machida. An approach to spacecraft
anomaly detection problem using kernel feature space. In Proceedings
of the 11th ACM SIGKDD international conference on Knowledge dis-
covery and data mining (KDD ’05), pages 401–410, 2005. 10

[58] J. Gao, F. Liang, W. Fan, C. Wang, Y. Sun, and J. Han. On com-
munity outliers and their efficient detection in information networks.
In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD ’10), pages 813–822,
2010. 3, 11

[59] A. Gionis, P. Indyk, and R. Motwani. Similarity search in high dimen-
sions via hashing. In Proceedings of the 25th International Conference
on Very Large Data Bases (VLDB ’99), pages 518–529, 1999. 9

132

[60] M. Girvan and M. E. J. Newman. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences
of the United States of America, 99(12):7821–7826, June 2002. 12

[61] A. V. Goldberg and C. Harrelson. Computing the shortest path: A∗

search meets graph theory. In Proceedings of the sixteenth annual
ACM-SIAM symposium on Discrete algorithms (SODA ’05), pages
156–165, 2005. 16, 125

[62] J. Gómez, C. Gil, N. Padilla, R. Baños, and C. Jiménez. Design
of a snort-based hybrid intrusion detection system. In Proceedings of
the 10th International Work-Conference on Artificial Neural Networks
(IWANN ’09), pages 515–522, 2009. 44

[63] A. Gubichev, S. Bedathur, S. Seufert, and G. Weikum. Fast and accu-
rate estimation of shortest paths in large graphs. In Proceedings of the
19th ACM International Conference on Information and Knowledge
Management (CIKM ’10), pages 499–508. ACM, 2010. 122

[64] S. Guha, R. Rastogi, and K. Shim. Rock: A robust clustering algo-
rithm for categorical attributes. Information Systems, 25(5):345–366,
2000. 9

[65] S. Guha, R. Rastogi, and K. Shim. Cure: An efficient clustering
algorithm for large databases. Information Systems, 26(1):35–58, 2001.
9

[66] M. Gupta, J. Gao, and J. Han. Community distribution outlier de-
tection in heterogeneous information networks. In Proceedings of the
European Conference on Machine Learning and Principles and Prac-
tice of Knowledge Discovery in Databases (ECML PKDD 2013), pages
557–573, 2013. 3, 11

[67] B. H. Hall, A. B. Jaffe, and M. Trajtenberg. The NBER patent citation
data file: Lessons, insights and methodological tools. Working Paper
8498, National Bureau of Economic Research, October 2001. 40, 84

[68] F. Harary and A. J. Schwenk. The spectral approach to determining
the number of walks in a graph. Pacific Journal of Mathematics,
80(2):443–449, 1979. 3, 14

[69] R. Harshman. Foundations of the parafac procedure: Models and
conditions for an “explanatory” multi-modal factor analysis. UCLA
Working Papers in Phonetics, 16, 1970. 18

133

[70] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions
on Systems Science and Cybernetics, SSC-4(2):100–107, 1968. 16

[71] J. H̊astad. Tensor rank is NP-complete. Journal of Algorithms, 11:644–
654, December 1990. 50

[72] D. Hawkins. Identification of outliers (Monographs on Statistics &
Applied Probability). Chapman and Hall, 1980. 8

[73] K. Hayashi, T. Takenouchi, T. Shibata, Y. Kamiya, D. Kato, K. Ku-
nieda, K. Yamada, and K. Ikeda. Exponential family tensor factor-
ization for missing-values prediction and anomaly detection. In Pro-
ceedings of the 2010 IEEE International Conference on Data Mining
(ICDM ’10), pages 216–225, 2010. 9, 18

[74] Z. He, X. Xu, and S. Deng. Discovering cluster-based local outliers.
Pattern Recognition Letters, 24(9-10):1641–1650, 2003. 9

[75] A. Hlaoui and S. Wang. A direct approach to graph clustering. In Pro-
ceedings of the IASTED International Conference on Neural Networks
and Computational Intelligence (NCI 2004), pages 158–163, 2004. 12

[76] L. B. Holder, D. J. Cook, and S. Djoko. Substucture discovery in
the subdue system. In Proceedings of the Workshop on Knowledge
Discovery in Databases (KDD Workshop), pages 169–180, 1994. 10

[77] P. Holme, M. Huss, and H. Jeong. Subnetwork hierarchies of biochem-
ical pathways. Bioinformatics, 19(4):532–538, 2003. 12

[78] T. Idé and H. Kashima. Eigenspace-based anomaly detection in com-
puter systems. In Proceedings of the tenth ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining (KDD ’04),
pages 440–449, 2004. 11

[79] T. Ikeda, M.-Y. Hsu, H. Imai, S. Nishimura, H. Shimoura,
T. Hashimoto, K. Tenmoku, and K. Mitoh. A fast algorithm for find-
ing better routes by AI search techniques. In Proceedings of the Vehi-
cle Navigation and Information Systems (VNIS ’94), pages 291–296,
1994. 16, 125

[80] M. Ji, J. Han, and M. Danilevsky. Ranking-based classification of
heterogeneous information networks. In Proceeding of the 17th ACM

134

SIGKDD international conference on Knowledge discovery and data
mining (KDD ’11), pages 1298–1306, 2011. 45

[81] W. Jin, A. K. H. Tung, and J. Han. Mining top-n local outliers in large
databases. In Proceedings of the seventh ACM SIGKDD international
conference on Knowledge discovery and data mining (KDD ’01), pages
293–298, 2001. 9

[82] R. A. Johnson and D. W. Wichern. Applied Multivariate Statistical
Analysis. Prentice Hall, 1998. 8

[83] U. Kang and C. Faloutsos. Beyond ’caveman communities’: Hubs and
spokes for graph compression and mining. In Proceedings of the 2011
IEEE International Conference on Data Mining (ICDM ’11), pages
300–309, 2011. 31

[84] U. Kang, B. Meeder, and C. Faloutsos. Spectral analysis for billion-
scale graphs: Discoveries and implementation. In proceedings of the
15th Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing (PAKDD ’11), pages 13–25, 2011. 14

[85] U. Kang, E. E. Papalexakis, A. Harpale, and C. Faloutsos. Gigatensor:
scaling tensor analysis up by 100 times - algorithms and discoveries.
In Proceedings of the 18th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD ’12), pages 316–324,
2012. 18

[86] G. Karypis and V. Kumar. A fast and high quality multilevel scheme
for partitioning irregular graphs. SIAM Journal on Scientific Com-
puting, 20(1):359–392, 1999. 12

[87] L. Katz. A new status index derived from sociometric analysis. Psy-
chometrika, 18(1):39–43, March 1953. 15

[88] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An In-
troduction to Cluster Analysis. John Wiley, 1990. 9

[89] E. J. Keogh, S. Lonardi, and C. A. Ratanamahatana. Towards
parameter-free data mining. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data
mining (KDD ’04), pages 206–215, 2004. 10

[90] J. Kleinberg. Authoritative sources in a hyperlinked environment.
Journal of the ACM (JACM), 46(5):604–632, 1998. 4, 15

135

[91] J. M. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and em-
bedding using small sets of beacons. In Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’04),
pages 444–453, 2004. 16, 98

[92] G. Klyne and J. J. Carroll. Resource description framework (RDF):
Concepts and abstract syntax. World Wide Web Consortium, Recom-
mendation REC-rdf-concepts-20040210, February 2004. 44

[93] E. Knorr and R. Ng. Finding intentional knowledge of distance-based
outliers. In Proceedings of the 25th International Conference on Very
Large Data Bases (VLDB ’99), pages 211–222, 1999. 9

[94] E. M. Knorr and R. T. Ng. Algorithms for mining distance-based
outliers in large datasets. In Proceedings of the 24th International
Conference on Very Large Data Bases (VLDB ’98), pages 392–403,
1998. 8, 9

[95] E. M. Knorr, R. T. Ng, and V. Tucakov. Distance-based outliers:
algorithms and applications. The International Journal on Very Large
Data Bases (The VLDB Journal), 8(3-4):237–253, 2000. 9

[96] T. Kohonen. Self-organizing maps. Springer series in information
sciences, 30. Springer, Berlin, 3rd edition, December 2001. 9

[97] T. G. Kolda and B. W. Bader. Tensor decompositions and applica-
tions. SIAM Review, 51(3):455–500, September 2009. 5, 18, 22, 28,
46

[98] T. G. Kolda and J. Sun. Scalable tensor decompositions for multi-
aspect data mining. In Proceedings of the 2008 IEEE International
Conference on Data Mining (ICDM ’08), pages 363–372, 2008. 18

[99] M. Kuramochi and G. Karypis. An efficient algorithm for discover-
ing frequent subgraphs. IEEE Transactions on Knowledge and Data
Engineering, 16:1038–1051, September 2004. 44

[100] P. A. Lawrence. The Making of a Fly: The Genetics of Animal Design.
Wiley-Blackwell, 1992. 66

[101] A. Lazarevic and V. Kumar. Feature bagging for outlier detection.
In Proceedings of the 11th ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD ’05), pages 157–166,
2005. 9

136

[102] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix fac-
torization. In Advances in Neural Information Processing Systems:
Proceedings of the 2000 Conference (NIPS), pages 556–562, 2000. 18

[103] Y.-R. Lin, J. Sun, P. Castro, R. B. Konuru, H. Sundaram, and A. Kel-
liher. Metafac: community discovery via relational hypergraph factor-
ization. In Proceedings of the 15th ACM SIGKDD international con-
ference on Knowledge discovery and data mining (KDD ’09), pages
527–536, 2009. 13

[104] X. Liu and T. Murata. Detecting communities in k-partite k-
uniform (hyper)networks. Journal of Computer Science and Tech-
nology, 26(5):778–791, 2011. 13

[105] L. Lu and T. Zhou. Link prediction in complex networks: A survey.
Physica A: Statistical Mechanics and its Applications, 390(6):1150–
1170, 2011. 2

[106] A. S. Maiya and T. Y. Berger-Wolf. Benefits of bias: Towards better
characterization of network sampling. In Proceedings of the 17th ACM
SIGKDD international conference on Knowledge discovery and data
mining (KDD ’11), pages 105–113, 2011. 98

[107] K. Makino and T. Uno. New algorithms for enumerating all maximal
cliques. In Proceedings of the 9th Scandinavian Workshop on Algo-
rithm Theory (SWAT ’04), pages 260–272, 2004. 14

[108] Y. Mao, L. K. Saul, and J. M. Smith. Ides: An internet distance
estimation service for large networks. IEEE Journal on Selected Areas
in Communications, 24(12):2273–2284, 2006. 16, 98

[109] K. Maruhashi and C. Faloutsos. EigenDiagnostics: Spotting connec-
tion patterns and outliers in large graphs. In Proceedings of the ICDM
2010 Workshop on Large-scale Analytics for Complex Instrumented
Systems (LACIS 2010), pages 1328–1337, 2010. 6, 70

[110] K. Maruhashi, F. Guo, and C. Faloutsos. MultiAspectForensics: Pat-
tern mining on large-scale heterogeneous networks with tensor analy-
sis. In Proceedings of the 2011 International Conference on Advances
in Social Networks Analysis and Mining (ASONAM ’11), pages 203–
210, 2011. 5, 44

137

[111] K. Maruhashi, F. Guo, and C. Faloutsos. MultiAspectForensics: min-
ing large heterogeneous networks using tensor. International Journal
of Web Engineering and Technology (IJWET), 7(4):302–322, 2012. 5,
44

[112] K. Maruhashi, J. Shigezumi, N. Yugami, and C. Faloutsos. EigenSP:
A more accurate shortest path distance estimation on large-scale net-
works. In Proceedings of the ICDM 2012 Workshop on Data Mining
in Networks (DaMNet 2012), pages 234–241, 2012. 6, 97

[113] K. Maruhashi and N. Yugami. MultiAspectSpotting: Spotting anoma-
lous behavior within count data using tensor. In Proceedings of the
18th Pacific-Asia Conference on Knowledge Discovery and Data Min-
ing (PAKDD ’14), 2014. To appear. 10

[114] P. Miettinen. Boolean tensor factorizations. In Proceedings of the
2011 IEEE International Conference on Data Mining (ICDM ’11),
pages 447–456, 2011. 19, 59

[115] P. Miettinen, T. Mielikäinen, A. Gionis, G. Das, and H. Mannila. The
discrete basis problem. IEEE Transactions on Knowledge and Data
Engineering, 20(10):1348–1362, 2008. 19

[116] B. Mohar. The Laplacian spectrum of graphs. Graph Theory, Combi-
natorics, and Applications, 2:871–898, 1991. 12

[117] B. Mohar and M. Juvan. Some applications of laplace eigenvalues
of graphs. In Graph Symmetry: Algebraic Methods and Applications,
volume 497 of NATO ASI Series C, volume 497, pages 227–275, 1997.
12

[118] A. L. Montgomery, S. Li, K. Srinivasan, and J. C. Liechty. Modeling
online browsing and path analysis using clickstream data. Marketing
Science, 23(4):579–595, 2004. 40, 85

[119] J. A. Nelder and R. Mead. A simplex method for function minimiza-
tion. The Computer Journal, 7(4):308–313, 1965. 16, 113

[120] N. Neubauer and K. Obermayer. Towards Community Detection in k-
Partite k-Uniform Hypergraphs. In Workshop on Analyzing Networks
and Learning with Graphs, NIPS 2009. 13

138

[121] M. E. J. Newman. Finding community structure in networks using
the eigenvectors of matrices. Physical Review E, 74(036104), 2006. 2,
3, 13

[122] M. E. J. Newman. Modularity and community structure in networks.
Proceedings of the National Academy of Sciences of the United States
of America, 103:8577–8582, 2006. 2, 3, 13

[123] A. Ng, M. Jordan, and Y. Weiss. On Spectral Clustering : Anal-
ysis and an Algorithm. Advances in Neural Information Processing
Systems: Proceedings of the 2002 Conference (NIPS), 2002. 12

[124] R. T. Ng and J. Han. Efficient and effective clustering methods for
spatial data mining. In Proceedings of the 20th International Confer-
ence on Very Large Data Bases (VLDB ’94), pages 144–155, 1994.
9

[125] T. S. E. Ng and H. Zhang. Predicting internet network distance with
coordinates-based approaches. In Proceedings of the Twenty-First An-
nual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM 2002), 2002. 6, 16, 98, 112, 113

[126] C. C. Noble and D. J. Cook. Graph-based anomaly detection. In
Proceedings of the ninth ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’03), pages 631–636,
2003. 3, 10, 44, 70

[127] J. D. Noh and H. Rieger. Random walks on complex networks. Physical
Review Letters, 92:118701, 2004. 15

[128] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlap-
ping community structure of complex networks in nature and society.
Nature, 435(7043):814–818, June 2005. 14

[129] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney. A
first look at modern enterprise traffic. In Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement (IMC ’05), pages 2–
2, 2005. 38, 49, 61, 84

[130] R. Pang, M. Allman, V. Paxson, and J. Lee. The devil and packet
trace anonymization. SIGCOMM Computer Communication Review,
36:29–38, January 2006. 39

139

[131] S. Papadimitriou, H. Kitagawa, P. B. Gibbons, and C. Faloutsos. Loci:
Fast outlier detection using the local correlation integral. In Proceed-
ings of the 19th International Conference on Data Engineering (ICDE
’03), pages 315–, 2003. 9

[132] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos. Parcube:
Sparse parallelizable tensor decompositions. In Proceedings of the Eu-
ropean Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases (ECML PKDD 2012), pages
521–536, 2012. 18

[133] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques.
In Proceedings of the 11th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD ’05), 2005. 14

[134] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis. Fast shortest path
distance estimation in large networks. In Proceedings of the 18th ACM
International Conference on Information and Knowledge Management
(CIKM ’09), pages 867–876, 2009. 6, 16, 98, 112, 113

[135] B. A. Prakash, M. Seshadri, A. Sridharan, S. Machiraju, and
C. Faloutsos. Eigenspokes: Surprising patterns and scalable commu-
nity chipping in large graphs. In proceedings of the 14th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD ’10),
pages 435–448, 2010. 14, 75, 76, 79

[136] M. J. Rattigan, M. E. Maier, and D. Jensen. Using structure indices
for efficient approximation of network properties. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD ’06), pages 357–366, 2006. 98

[137] M. J. Rattigan, M. E. Maier, and D. Jensen. Graph clustering with
network structure indices. In Proceedings of the 24th international
conference on Machine learning (ICML ’07), pages 783–790, 2007. 12

[138] M. Sales-Pardo, R. Guimerà, A. A. Moreira, and L. a. N. Amaral. Ex-
tracting the hierarchical organization of complex systems. Proceedings
of the National Academy of Sciences of the United States of America,
104(39):15224–9, Sept. 2007. 12

[139] S. E. Schaeffer. Graph clustering. Computer Science Review, 1(1):27–
64, 2007. 11, 25

140

[140] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson. Estimating the support of a high-dimensional distribu-
tion. Neural Computation, 13(7):1443–1471, 2001. 8

[141] A. Shashua and T. Hazan. Non-negative tensor factorization with
applications to statistics and computer vision. In Proceedings of the
22nd international conference on Machine learning (ICML ’05), pages
792–799, 2005. 18

[142] J. Shi and J. Malik. Normalized Cuts and Image Segmentation. IEEE
Transactions on Pattern Analysis and Machine Intelligence, pages
888–905, August 2000. 12

[143] M.-L. Shyu, S.-C. Chen, K. Sarinnapakorn, and L. Chang. A novel
anomaly detection scheme based on principal component classifier. In
Proceedings of the ICDM 2003 Workshop on Foundations and New
Directions in Data Mining, pages 171–179, 2003. 10

[144] A. Siebes, J. Vreeken, and M. van Leeuwen. Item sets that compress.
In Proceedings of the 2006 SIAM International Conference on Data
Mining (SDM ’06), pages 395–406, 2006. 10

[145] K. Smets and J. Vreeken. The odd one out: Identifying and char-
acterising anomalies. In Proceedings of the 2011 SIAM International
Conference on Data Mining (SDM ’11), pages 804–815, 2011. 10

[146] R. Smith, A. Bivens, M. Embrechts, C. Palagiri, and B. Szymanski.
Clustering approaches for anomaly based intrusion detection. Proceed-
ings of intelligent engineering systems through artificial neural net-
works, 2002. 9

[147] K. Stephenson and M. Zelen. Rethinking centrality: Methods and
examples. Social Networks, 11(1):1–37, Mar. 1989. 15

[148] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos. Neighborhood for-
mation and anomaly detection in bipartite graphs. In Proceedings of
the 2005 IEEE International Conference on Data Mining (ICDM ’05),
pages 418–425, 2005. 11, 44

[149] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos. Incre-
mental tensor analysis: Theory and applications. ACM Transactions
on Knowledge Discovery from Data, 2:11:1–11:37, October 2008. 18

141

[150] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos. Less is more: Compact
matrix decomposition for large sparse graphs. Proceedings of the 2007
SIAM International Conference on Data Mining (SDM ’07), pages
366–377, 2007. 3, 10, 70

[151] Y. Sun, Y. Yu, and J. Han. Ranking-based clustering of heterogeneous
information networks with star network schema. In Proceeding of the
15th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD ’09), pages 797–806, 2009. 11, 45

[152] L. Tang and M. Crovella. Virtual landmarks for the internet. In
Proceedings of the 3rd ACM SIGCOMM conference on Internet mea-
surement (IMC ’03), pages 143–152, 2003. 16, 98

[153] P. Tomancak, A. Beaton, R. Weiszmann, E. Kwan, S. Shu, S. Lewis,
S. Richards, M. Ashburner, V. Hartenstein, S. Celniker, and G. Ru-
bin. Systematic determination of patterns of gene expression dur-
ing Drosophila embryogenesis. Genome Biology, 3(12):research0088.1–
0088.14, 2002. 40, 63

[154] P. Tomancak, B. Berman, A. Beaton, R. Weiszmann, E. Kwan,
V. Hartenstein, S. Celniker, and G. Rubin. Global analysis of pat-
terns of gene expression during Drosophila embryogenesis. Genome
Biology, 8(7):R145, 2007. 40, 63

[155] G. Tomasi and R. Bro. A comparison of algorithms for fitting the
parafac model. Computational Statistics & Data Analysis, 50(7):1700–
1734, April 2006. 18

[156] H. Tong and C.-Y. Lin. Non-negative residual matrix factorization
with application to graph anomaly detection. In Proceedings of the
2011 SIAM International Conference on Data Mining (SDM ’11),
pages 143–153, 2011. 3, 11, 70

[157] H. Tong, S. Papadimitriou, J. Sun, P. S. Yu, and C. Faloutsos. Colibri:
fast mining of large static and dynamic graphs. In Proceeding of the
14th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD ’08), pages 686–694, 2008. 3, 10, 44, 70

[158] H. Tong, B. A. Prakash, C. E. Tsourakakis, T. Eliassi-Rad, C. Falout-
sos, and D. H. Chau. On the vulnerability of large graphs. In Pro-
ceedings of the 2010 IEEE International Conference on Data Mining
(ICDM ’10), pages 1091–1096, 2010. 14

142

[159] C. E. Tsourakakis. MACH: Fast randomized tensor decompositions.
In Proceedings of the 2010 SIAM International Conference on Data
Mining (SDM ’10), pages 689–700, 2010. 18

[160] C. E. Tsourakakis. Counting triangles in real-world networks using
projections. Knowledge and Information Systems (KAIS), 26(3):501–
520, 2011. 17

[161] A. Ukkonen, C. Castillo, D. Donato, and A. Gionis. Searching the
wikipedia with contextual information. In Proceedings of the 17th
ACM International Conference on Information and Knowledge Man-
agement (CIKM ’08), pages 1351–1352, 2008. 98

[162] T. Uno. An efficient algorithm for solving pseudo clique enumeration
problem. Algorithmica, 56(1):3–16, 2010. 14

[163] M. V. Vieira, B. M. Fonseca, R. Damazio, P. B. Golgher, D. de Cas-
tro Reis, and B. A. Ribeiro-Neto. Efficient search ranking in social
networks. In Proceedings of the 16th ACM International Conference
on Information and Knowledge Management (CIKM ’07), pages 563–
572, 2007. 98

[164] U. von Luxburg. A tutorial on spectral clustering. Statistics and
Computing, 17(4):395–416, 2007. 3, 12

[165] Y. Wang, S. Parthasarathy, and S. Tatikonda. Locality sensitive out-
lier detection: A ranking driven approach. In Proceedings of the 27th
International Conference on Data Engineering (ICDE ’11), pages 410–
421, 2011. 9

[166] S. White and P. Smyth. A spectral clustering approach to finding
communities in graphs. In Proceedings of the 2005 SIAM International
Conference on Data Mining (SDM ’05), pages 76–84, 2005. 13

[167] W.-K. Wong, A. W. Moore, G. F. Cooper, and M. M. Wagner. Rule-
based anomaly pattern detection for detecting disease outbreaks. In
Proceedings of the Eighteenth National Conference on Artificial In-
telligence and Fourteenth Conference on Innovative Applications of
Artificial Intelligence (AAAI/IAAI-02), pages 217–223, 2002. 9

[168] W.-K. Wong, A. W. Moore, G. F. Cooper, and M. M. Wagner.
Bayesian network anomaly pattern detection for disease outbreaks. In
Proceedings of the 20th international conference on Machine learning
(ICML ’03), pages 808–815, 2003. 9

143

[169] X. Yan and J. Han. gSpan: Graph-based substructure pattern mining.
In Proceedings of the 2002 IEEE International Conference on Data
Mining (ICDM ’02), pages 721–724, 2002. 44

[170] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data
clustering method for very large databases. In Proceedings of the
1996 ACM SIGMOD international conference on Management of data
(SIGMOD ’96), pages 103–114, 1996. 9

[171] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao. Orion:
Shortest path estimation for large social graphs. In Proceedings of the
Third USENIX Workshop on Online Social Networks (WOSN), pages
9–9, 2010. 6, 16, 98, 113

[172] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao. Fast and scalable analysis
of massive social graphs. Arxiv preprint, arXiv:1107.5114, 2011. 16,
98

[173] N. Zheng, Q. Li, S. Liao, and L. Zhang. Flickr group recommendation
based on tensor decomposition. In Proceeding of the 33rd international
ACM SIGIR conference on Research and development in information
retrieval (SIGIR ’10), pages 737–738, 2010. 46

144

	Introduction
	Motivation
	Overview of the Thesis

	Related Works
	Anomaly Detection
	Types of Anomaly Detection
	Anomaly Detection of Graph Data

	Community Detection
	Similarity-based Method
	Cut-based Method
	Information-theoretic Method
	Modularity-based Method
	Clique-based Method

	Path Analysis
	Centrality Analysis
	Shortest Path Distance Estimation

	Tensor Decomposition
	Tucker and CP Decomposition
	Non-negative Tensor Factorization
	Boolean Tensor Factorization

	Preliminaries
	Definitions
	Notations
	Basic Operation of Matrix and Tensor
	Graph and k,k-Hypergraph
	Adjacency Matrix and Adjacency Tensor
	Community Structure

	Matrix and Tensor Decomposition
	Eigen Decomposition
	Singular Value Decomposition
	Tensor Decomposition
	Common Properties of Decompositions

	Datasets Used

	Anomaly Detection Using Tensor Decomposition
	Introduction
	Related Work
	Problem Definition and Algorithm
	Problem Definition
	Algorithm Overview
	Data Decomposition
	Spike Detection in Histograms
	Visualization
	Substructure Discovery

	Evaluation of Accuracy and Scalability
	Putting Synthesized Anomalies on Datasets
	Compared Method
	Accuracy of Detecting Anomalies
	Scalability

	Empirical Results on Real Data
	Data and Environment
	LBNL Traffic Log
	RTW Knowledge Base
	BDGP Gene Annotation

	Conclusion

	Pattern Discovery Using Singular Value Decomposition
	Introduction
	Related Work
	The Method
	Problem Definition
	Preliminary - Main idea
	Plotting Properties of the Nodes
	Patterns in DS-plot
	Patterns in SDSD-plot

	Proposed Tool: EigenDiagnostics
	Main Algorithm
	Modified Hough Transform for Automatic Line Detection
	Pick Up Representative Nodes

	Experimental Evaluation
	Experimental Setup and Datasets
	Experiment on Real Data
	Scalability

	Conclusions

	Shortest Path Distance Estimation Using Eigen Decomposition
	Introduction
	Related Work
	Proposed Method
	Problem Definition
	Computing Distances by Eigenvectors
	Estimating Distances by Eigenvectors
	How to Determine Thresholds
	Estimating Distances More Accurately

	Empirical Results
	Data and Environment
	Compared Methods
	Evaluation Metric
	Estimation Accuracy
	Effect of Number of Eigenvalues
	Query Time
	Precomputation Time

	Conclusion

	Conclusion
	Summary of the Contributions
	Future Works

