
A Study on Distance-based Outlier

Detection on Uncertain Data

March 2014

Salman Ahmed SHAIKH

A Study on Distance-based Outlier

Detection on Uncertain Data

Graduate School of
Systems and Information Engineering

University of Tsukuba

March 2014

Salman Ahmed SHAIKH

Acknowledgements

All praises and thanks are due to Allah, our Lord and Creator, the Almighty, for
endowing me with strength, patience and knowledge to complete this disserta-
tion. I thank Allah, the Generous, for having finally made my dream come to
reality.

This work would not have been competed without the help and support from
many people and organizations. Here I would like to express my thankfulness to
every one who helped me or participated by any mean to accomplish this work.

First of all, I express my immense gratitude and sincere appreciation to my
academic advisor, Professor Hiroyuki Kitagawa, for his invaluable advices and
continuous encouragement throughout the whole dissertation process. Without
his keen supervision, scientific rigor, intellectual insights, and fruitful discus-
sions, this work would not have been completed in the present form. His ques-
tions during our meetings and seminars helped me a lot to develop patience,
intellect and meticulous attention to detail, and positive communication. I also
really appreciate his wise understating of my Islamic culture which made my
daily life much easier from the first days in his laboratory.

My gratitude goes also to Associate professor Toshiyuki Amagasa and As-
sistant professor Hideyuki Kawashima for their friendly discussions and hospi-
tality. I am extremely grateful for their many good advices, kind help, and in-
dispensable guidance on both academic and personal levels. I am also thankful
to Assistant professors Yasuhiro Hayase and Chiemi Watanabe for their fruitful
suggestions during the seminars to improve my work.

I would like to express my appreciation to the members of my dissertation
committee, Professor Mikio Yamamoto and Kazuhiro Fukui and Associate Pro-
fessors Jun Sakuma and Toshiyuki Amagasa for devoting time and effort to read
and evaluate the manuscript, and for their helpful comments to improve it.

Many thanks to all my colleagues and friends at KDE Laboratory for making

i

ii

it a delightful place to work. I really appreciate their kindness and cooperation.
Special thanks to a colleague Takahiro Komamizu for his help and support on
both academic and personal levels. I also want to thank Miss Yumiko Hisamatsu
and Miss Hiroko Odagiri who have been kind enough to advise and help in their
respective roles.

This thesis was made possible by a Japanese Government Scholarship. I
would like to acknowledge the financial, technical and administrative support of
the Ministry of Education, Culture, Sports, Science and Technology (MEXT),
particularly in the award of Monbukagakushou scholarship which undoubtedly
contributed to the success of my Ph.D. program.

I wish to express my sincere appreciation and thanks to my friends who
shared with me the joys and the hardships of living in Japan. Without their
unconditional support everything would be much harder.

A lot of thanks to my brothers, my sisters, and my family members who
constantly supported and encouraged me at all times of this thesis. Special
thanks goes to my wife for her unconditioned emotional and moral support and
great patience all along the way.

Most of all, I would like to express my deepest and endless gratitude and
thanks to my beloved parents. Despite the long distance, their prayers were al-
ways with me, which encouraged me a lot to complete this dissertation. Without
their strong support and continuous encouragement, the completion of this work
would be hardly possible. To them, I would like to dedicate this thesis.

Abstract

Recently, many new techniques for collecting data have resulted in an increase
in the availability of uncertain data. For example, many new hardware technolo-
gies such as sensors generate data which is imprecise, many scientific measure-
ment techniques are inherently imprecise, in many applications such as privacy-
preserving data mining, the data is modified by adding perturbations to it, many
mobile objects tracking applications generate imprecise data, etc. The uncer-
tainty information in the data is useful and can be used to improve the quality
of the underlying results. Therefore in this dissertation, we focus on one of
the challenging research problem in data mining, outlier detection on uncertain
data.

To address this problem, we focus on distance-based approach because the
distance-based approach is the simplest and the most commonly used. It can
be used as preprocessing before applying more sophisticated application de-
pendent outlier detection techniques. Moreover, it coincides well with other
data mining techniques i.e., k-nearest neighbors, clustering, etc. In this disser-
tation, the uncertainty of data is modeled by the Gaussian probability density
function, because in statistics it is the most important and the most commonly
used. Hence in this dissertation, the following problems are being solved re-
lated to outlier detection on uncertain data. 1) Distance-based outlier detection
on uncertain data (UDB outlier detection), 2) Top-k outlier detection on uncer-
tain data (kUDB outlier detection), 3) Continuous outlier detection on uncertain
data streams (CUDB outlier detection).

1) UDB Outlier Detection: In this research, we give a novel definition of
distance-based outliers on uncertain data. Since the distance probability com-
putation is expensive, a cell-based approach is proposed to index the dataset
objects and to speed up the outlier detection process. The proposed approach
identifies and prunes the cells containing only inliers based on its bounds on out-

iii

iv

lier score (#D-neighbors). Similarly it can also detect the cells containing only
outliers. Although the cell-based approach is very effective, yet it may leave
some cells undecided, i.e., they are neither identified as inlier cells nor as outlier
cells. For the uncertain data objects in such cells the Naive computation follows,
which is the use of nested loop to compute un-pruned objects’ #D-neighbors.
The computation of #D-neighbors is an expensive process due to the expen-
sive distance probability computation. Therefore, an approximate approach of
outlier detection using the bounded Gaussian uncertainty is also proposed. The
basic idea is that the bounded Gaussian distribution is a good approximation of
the Gaussian distribution and can increase the outlier detection efficiency at a
small loss of accuracy.

2) kUDB Outlier Detection: Existing approaches on outlier detection on
uncertain data including our proposed approach, UDB outlier detection, can
only perform binary classification, i.e., they can either classify an object as an
inlier or an outlier. However, end users are usually interested in strong outliers
and their ranking. Hence in this research, we present a top-k distance-based
outlier detection approach. In order to detect top-k distance-based outliers from
uncertain data efficiently, we propose a data structure, populated-cells list (PC-
list). The PC-list is a sorted list of non-empty cells of a d-dimensional grid,
where the grid is used to index dataset objects. Using the PC-list, the top-k out-
lier detection algorithm needs to consider only a fraction of the dataset objects
and hence quickly identifies candidate objects for the top-k outliers. Finally, ex-
act outlier score (#D-neighbors) is computed for each candidate object to find
the top-k outliers and their ranking. Since the computation of exact outlier score
is costly, two approximate top-k outlier detection approaches are also presented
to reduce this cost. The first approximate approach, approximates only the can-
didate objects’ #D-neighbors, while the second approximate approach makes
use of the bounded Gaussian uncertainty to increase the efficiency of the top-k
outlier detection.

3) CUDB Outlier Detection: Many of the automated data collection de-
vices generate time series data streams (e.g., WSNs, monitoring cameras, etc.),
which contain uncertainty. Outlier detection on uncertain static data is itself
a challenging research problem in data mining. Moreover, the continuous and
high speed arrival of data makes it more challenging. Hence in this part of
the dissertation, we propose continuous outlier detection approach on uncer-

v

tain time series data streams. Namely, a distance-based approach is proposed
to detect outliers continuously from a set of uncertain objects’ states that are
originated synchronously from a group of data sources (e.g., sensors in WSN).
A set of objects’ states at a timestamp is called a state set. Usually, the duration
between two consecutive timestamps is very short and the state of all the ob-
jects may not change much in this duration. Therefore, to avoid the unnecessary
computation at every timestamp, an incremental approach of outlier detection
is proposed which makes use of the outlier detection results obtained from the
previous timestamp to detect outliers in the current timestamp. Moreover, an
approximate continuous outlier detection approach using the bounded Gaussian
uncertainty is also proposed to further reduce the cost of the incremental outlier
detection.

Finally, extensive experimental evaluations on real and synthetic datasets are
presented for each of the proposed outlier detection approaches, to prove their
accuracy, efficiency and scalability.

Keywords Distance-based Outlier Detection, Continuous Outlier Detection,
Uncertain Data, Gaussian Uncertainty, Bounded Gaussian Uncertainty, Cell-
based Approach, PC-list based Approach.

Contents

Acknowledgements i

Abstract iii

List of Figures xi

List of Tables xii

List of Algorithms xv

1 Introduction 1
1.1 Background . 1

1.2 Dissertation Motivation . 3

1.3 Dissertation Contributions . 4

1.3.1 Outlier Detection on Uncertain Data (UDB Outlier De-
tection) . 4

1.3.2 Top-k Outlier Detection on Uncertain Data (kUDB Out-
lier Detection) . 5

1.3.3 Continuous Outlier Detection on Uncertain Data (CUDB
Outlier Detection) . 6

1.4 Dissertation Organization . 6

2 Preliminaries 9
2.1 Outlier Detection . 9

2.1.1 What is an Outlier? . 10

2.1.2 Outlier Detection Applications 11

2.1.3 Outlier Detection Approaches 14

2.2 Uncertain Data . 19

vii

viii CONTENTS

2.2.1 Causes of Uncertainty 20

2.2.2 Types of Uncertainty 21

3 Related work 25
3.1 Outlier Detection on Deterministic Data 25

3.1.1 Distance-based Outlier Detection on Static Data 27

3.1.2 Distance-based Outlier Detection on Data Streams . . . 28

3.2 Outlier Detection on Uncertain Data 28

3.2.1 Outlier Detection on Uncertain Static Data 29

3.2.2 Outlier Detection on Uncertain Data Streams 30

4 Outlier Detection on Uncertain Data 33
4.1 Overview . 33

4.2 Problem Formulation . 35

4.3 Cell-based Outlier Detection 38

4.3.1 Cell-based Pruning . 39

4.3.2 Object-wise Bounds Pruning 42

4.3.3 Un-pruned Objects Processing and Grid File Index . . . 44

4.3.4 Complexity Analysis 45

4.3.5 Discussion: Determination of Values for Parameters D,
p and l . 46

4.4 Cell-based Outlier Detection using the Bounded Gaussian Un-
certainty . 47

4.4.1 Cell-based Pruning for the Bounded Gaussian 48

4.4.2 Simple Object-wise Distance Pruning 52

4.4.3 Object-wise Bounds Pruning 52

4.4.4 Un-pruned Objects Processing for the Bounded Gaussian 53

4.4.5 Complexity Analysis 54

4.5 Discussion: Outlier Detection in
High-dimensional Data and Sub-space Outlier Detection 54

4.6 Experiments . 56

4.6.1 Datasets . 56

4.6.2 Accuracy . 59

4.6.3 Efficiency . 62

4.7 Summary . 69

Contents ix

5 Tok-k Outlier Detection on Uncertain Data 71
5.1 Overview . 71

5.2 Problem Formulation . 72

5.3 PC-list-based Outlier Detection 74

5.3.1 Grid (G) Structure . 75

5.3.2 PC-list Structure . 76

5.3.3 Cell Bounds . 77

5.3.4 Candidate Outlier Cells Detection 79

5.3.5 The kUDB(CG) and the kUDB(Approx) Algorithms . . 80

5.3.6 Complexity Analysis 82

5.4 PC-list-based Outlier Detection using the
Bounded Gaussian Uncertainty 83

5.4.1 Grid (G) and PC-list Structures for the Bounded
Gaussian . 84

5.4.2 Cell Bounds for the Bounded Gaussian 86

5.4.3 Candidate Outlier Cells Detection for the Bounded Gaus-
sian . 86

5.4.4 The kUDB(BG) Algorithm 87

5.4.5 Complexity Analysis 87

5.5 Experiments . 88

5.5.1 Accuracy . 89

5.5.2 Efficiency . 93

5.6 Summary . 97

6 Continuous Outlier Detection on Uncertain Data Streams 99
6.1 Overview . 99

6.2 Problem Formulation . 100

6.3 Cell-based Outlier Detection 102

6.3.1 Grid (G) Structure . 102

6.3.2 Cell Bounds . 104

6.3.3 Cell Pruning . 104

6.4 Incremental Outlier Detection 105

6.5 Incremental Outlier Detection using the
Bounded Gaussian Uncertainty 109

6.5.1 Bounded Gaussian Cell-based Outlier Detection 110

x CONTENTS

6.5.2 Bounded Gaussian Incremental Outlier Detection 111
6.6 Complexity Analysis . 111
6.7 Experiments . 113

6.7.1 Datasets . 114
6.7.2 Results . 115

6.8 Summary . 121

7 Conclusions and Future Works 123
7.1 Conclusions . 123

7.1.1 UDB Outlier Detection 123
7.1.2 kUDB Outlier Detection 124
7.1.3 CUDB Outlier Detection 125

7.2 Future Works . 125
7.2.1 Continuous Top-k Outlier Detection 126
7.2.2 UDB Outlier Detection for Very High Dimensional Data 126
7.2.3 UDB Outlier Detection for General Uncertainty Models 127

Appendix 129
A: A PDF for the Difference between Two Random Variables
following d-dimensional Gaussian Distributions 129
B: Transformation of a Correlated d-dimensional Gaussian Dis-
tribution into an Uncorrelated Gaussian Distribution 130
C: Approximate Values of the PDF for the Difference between
Two Random Variables following the d-dimensional Gaussian
PDF . 132

Bibliography 133

List of Publications 147

List of Figures

1.1 Sensors arrangement in a research lab [4], for the monitoring of
weather parameters . 2

2.1 Tuple-level uncertainty in radar dataset [102] 22

2.2 Attribute-level uncertainty in weather sensor dataset 23

3.1 Distance-based outlier by Knorr et al. [65] 26

4.1 Cell layers . 40

4.2 Cell and layers bounds . 42

4.3 Bounded gaussian cell grid . 50

4.4 Simple object-wise distance pruning 53

4.5 Datasets used in the experiments. 57

4.6 Precision-recall trade-off curves 58

4.7 Precision with increasing σp 59

4.8 Recall with increasing σp . 60

4.9 Naive vs. proposed Approaches 61

4.10 Varying parameter l . 63

4.11 Varying object’s uncertainty σ 64

4.12 Varying parameter D . 65

4.13 Varying parameter p . 65

4.14 Cell-based pruning . 66

4.15 Object-wise pruning . 66

4.16 Un-pruned objects’ processing 67

4.17 Vary dimensions d . 68

4.18 Vary dimensions d and parameter D 68

4.19 Pre-computation time . 69

xi

xii LIST OF FIGURES

5.1 Cell layers and bounds . 75
5.2 PC-list building . 77
5.3 Precision-recall trade-off curves 88
5.4 Precision with increasing σp 89
5.5 Recall with increasing σp . 90
5.6 Effectiveness of the PC-list based approach 91
5.7 Varying parameter l . 92
5.8 Varying object’s uncertainty σ 92
5.9 Varying parameter D . 93
5.10 Varying parameter k . 94
5.11 Vary dimensions d . 95
5.12 Vary dimensions d and parameter D 96

6.1 Cell Grid (G) . 103
6.2 State sets . 105
6.3 op moved among cells . 106
6.4 op moved within cell . 107
6.5 Met Office Weather (MOW) dataset [5] 114
6.6 Varying SC-object’s percentage for UG dataset 115
6.7 Varying SC magnitude for UG dataset 116
6.8 SC-objects within and among cells 116
6.9 Varying parameter D for UG dataset 117
6.10 Varying parameter D for MOW dataset 117
6.11 Varying parameter p for UG dataset 118
6.12 Varying parameter p for MOW dataset 118
6.13 Varying object’s uncertainty σ for UG dataset 119
6.14 Varying object’s uncertainty σ for MOW dataset 119
6.15 Varying dimensions d for UG dataset 120
6.16 Varying dimensions d and parameter D for UG dataset 120

List of Tables

2.1 Uncertainty in commercial sensor measurements 20

3.1 Existing and proposed techniques of outlier detection on uncer-
tain data . 29

4.1 Pruning techniques for outlier detection on uncertain data 35
4.2 Standard error percentage in execution times 62

xiii

List of Algorithms

4.1 UDB Outlier Detection: Naive Approach 38
4.2 UDB Outlier Detection: Cell-based Approach 43
4.3 UDB Outlier Detection: ObjectWisePruning 44
4.4 UDB Outlier Detection: Cell-based Approach (Bounded Gaussian) 51

5.1 kUDB Outlier Detection: Naive Approach 74
5.2 kUDB Outlier Detection: PC-list Approach 80

6.1 CUDB Outlier Detection: Incremental Approach 108

xv

Chapter 1

Introduction

In this chapter, the background, the motivation and the contributions of this
dissertation are discussed. Moreover, the dissertation organization is given at
the end of this chapter.

1.1 Background

In recent years, uncertain data has become ubiquitous because of new technolo-
gies for data collection data which can only measure and collect data in an im-
precise way, e.g., wireless sensor networks, RFID, GPS, etc. Uncertainty in data
is often caused by the limitations in underlying data collection equipments, in-
consistent supply voltage and delay or loss of data in transfer [98]. Furthermore,
many technologies such as privacy-preserving data mining create data which is
inherently uncertain in nature. The uncertainty information in the data is useful
which can be leveraged in order to improve the quality of underlying results.
Therefore, there is a need for tools and techniques for mining and managing
uncertain data. Hence in this dissertation, the problem of outlier detection from
uncertain data is addressed.

Outlier detection is a fundamental problem in data mining. It has appli-
cations in many domains including credit card fraud detection [41], network
intrusion detection [71], industrial damage detection [74], environment moni-
toring [49], medical sciences [14] etc. Several definitions of outlier have been
given in past, but there exists no universally agreed definition. Hawkins [52]
defined an outlier as an observation that deviates so much from other obser-

1

2 CHAPTER 1. INTRODUCTION

vations as to arouse suspicion that it was generated by a different mechanism.
Barnet and Lewis [20] mentioned that an outlying observation, or outlier, is one
that appears to deviate markedly from other members of the sample in which it
occurs.

In statistics, one can find over 100 outlier detection techniques. These have
been developed for different data distributions, parameters, desired number of
outliers and type of expected outliers [20, 73]. However, most statistical tech-
niques are not useful in computer science due to several reasons. For exam-
ple, most statistical techniques are univariate, in some techniques parameters
are difficult to determine, and in other techniques outliers cannot be obtained
until the underlying data distribution is known. In order to overcome these
problems, several outlier detection techniques have been proposed in data min-
ing [11, 63, 65, 68, 82, 86, 112, 120].

Most of the outlier detection techniques proposed in data mining are suit-
able only for deterministic data. However, due to the increasing usage of au-
tomated data collection technologies, data contains certain degree of inherent
uncertainty [39, 54, 81, 98]. In order to get reliable results from such data, un-
certainty needs to be considered in calculation. Hence this dissertation focuses
on outlier detection from uncertain data, where the uncertainty of data is mod-
elled by the most commonly used probability density function, i.e., the Gaussian
distribution.

Figure 1.1: Sensors arrangement in a research lab [4], for the monitoring of
weather parameters

1.2. Dissertation Motivation 3

1.2 Dissertation Motivation

Outlier detection is a fundamental problem in data mining with numerous appli-
cations in variety of domains. It is a well-studied problem both in statistics and
data mining on the deterministic data. However, due to the ubiquitous presence
of uncertain data, there is a need for outlier detection techniques on uncertain
data. Outlier detection on uncertain data is in its infancy and quite a few re-
searchers have explored this area. Table 3.1 lists some of the works proposed
on outlier detection from uncertain data. It is very clear from the table that there
are very few existing works on outlier detection from uncertain data. Specially
there is no work on outlier detection from uncertain data streams considering
the attribute-level uncertainty. Hence in this dissertation, our focus is outlier
detection from attribute-level uncertain static data and data streams.

Outlier detection on uncertain data has applications in many domains includ-
ing medical sciences where the accuracy has prime importance. At some places
speed is more important e.g., nuclear reactors. Therefore in this dissertation,
we present outlier-detection approaches on uncertain data. Namely, we present
distance-based outlier detection approaches on uncertain data of the Gaussian
distribution. The main objectives of this research are as follows.

1. To improve the accuracy of outlier detection in the presence of uncer-
tainty.

2. To speed up the outlier detection process from uncertain data.

As stated earlier, outlier detection on uncertain data has applications in many
domains, here we give two real world applications of outlier detection from
uncertain data.

Motivating example 1 (Endangered species monitoring): Several wildlife
conservation organizations monitor endangered species to prevent their loss.
This is normally achieved by attaching sensors directly on the endangered species
to monitor their activities and/or movement. Data obtained from these sensors
are time-series data streams and contain uncertainty. Outlier detection on such
data helps identify abnormal activities and/or movement of such species and let
their caretakers take appropriate actions in case of danger.�

4 CHAPTER 1. INTRODUCTION

Motivating example 2 (Identification of malfunctioning sensors): In WSNs
(e.g., WSN for the monitoring of weather parameters as shown in Fig. 1.1),
observations are obtained continuously and contain certain degree of inherent
uncertainty. Assuming that the observations are being generated synchronously
at a timestamp by all the sensors in the WSN, a set of observations is obtained
at every timestamp. An observation is outlier if it deviates markedly from other
observations in the set and the sensors generating outlying observations in the
majority of timestamps (say > 50%) are identified as malfunctioning.�

1.3 Dissertation Contributions

The ultimate goal of our research is to present accurate, scalable and efficient
outlier detection algorithms for uncertain data. This dissertation compiles a
study on distance-based outlier detection on uncertain data, where the uncer-
tainty of a data object is given by the well-known Gaussian distribution. The
Gaussian distribution is chosen to model an object’s uncertainty because in
statistics, the Gaussian distribution is the most famous and the most commonly
used. As discussed in chapter 3 and summarized in table 3.1, there are very few
existing works on outlier detection on uncertain data. Specially there is no work
on outlier detection from uncertain data streams considering the attribute-level
uncertainty. Hence, in this dissertation we focus on the attribute-level uncer-
tainty of data. Moreover in this dissertation, our focus is low-dimensional data
and we have used cell-based approach [65] to index the dataset objects and as
a main pruning technique. This dissertation consists of three main contribu-
tions. Two of the contributions deal with static data, while one focuses on data
streams. The main contributions are briefly described as follows.

1.3.1 Outlier Detection on Uncertain Data (UDB Outlier De-
tection)

In this research, we give a definition of distance-based outliers on uncertain
data. In order to compute distance-based outliers in uncertain data, their outlier
score (#D-neighbors) needs to be computed which is computationally very ex-
pensive. To efficiently obtain outliers from uncertain datasets, strong pruning
techniques are required. Hence a cell-based approach is proposed to index the

1.3. Dissertation Contributions 5

dataset objects and to speed up the outlier detection process. The proposed ap-
proach identifies and prunes the cells containing only inliers based on its bounds
on outlier score (#D-neighbors). Similarly it can also detect the cells contain-
ing only outliers. Although the cell-based technique is very effective, yet it may
leave some cells undecided, i.e., they are neither identified as inlier cells nor
as outlier cells. For the uncertain data objects in such cells the Naive compu-
tation follows, which is the use of nested loop to compute un-pruned objects’
#D-neighbors.

To further reduce the computation cost of outlier detection, an approximate
approach using the bounded Gaussian uncertainty is also proposed. The basic
idea is that the bounded Gaussian distribution is a good approximation of the
Gaussian distribution and can increase the outlier detection efficiency at a small
loss of accuracy. Finally, detailed experiments on real and synthetic datasets
are presented to prove the accuracy, efficiency and scalability of the proposed
approaches.

1.3.2 Top-k Outlier Detection on Uncertain Data (kUDB Out-
lier Detection)

In most of the existing outlier detection approaches on uncertain data including
our work UDB-outlier detection (Sec. 1.3.1), an object can be either classified
as outlier or inlier. Since there is no universally agreed definition of outliers,
different algorithms return different outliers depending upon the combination of
parameter values. Some combinations return a very few while others return a
lot of outliers. Moreover, no outlier ranking is available and users are unable
to differentiate between strong and weak outliers. Therefore in this research we
present a top-k approach of distance-based outlier detection, which returns k
objects with lowest outlier scores (#D-neighbors) or in other words, k strongest
outliers along with their ranking.

In this research, a populated-cells list (PC-list) is used to find the top-k out-
liers from uncertain datasets. The PC-list is a sorted list of non-empty cells of
a d-dimensional grid, where the grid is used to index data objects. Using PC-
list, the top-k outlier detection algorithm needs to consider only a fraction of
the dataset objects and hence quickly identifies candidate objects for the top-k
outliers. Finally, an exact outlier score (#D-neighbors) is computed for each

6 CHAPTER 1. INTRODUCTION

candidate object to find the top-k outliers and their ranking. Furthermore, two
approximate top-k outlier detection approaches are also presented in this work
to increase the efficiency of outlier detection. The first approximate approach,
approximates only the candidate objects’ #D-neighbors, while the second ap-
proximate approach makes use of the bounded Gaussian uncertainty to increase
the efficiency of the top-k outlier detection algorithm. Lastly, we present de-
tailed experiments on real and synthetic datasets to prove the accuracy, effi-
ciency and scalability of the proposed approaches.

1.3.3 Continuous Outlier Detection on Uncertain Data (CUDB
Outlier Detection)

In WSNs (e.g., moving objects monitoring, weather monitoring system, etc.),
uncertain data arrive continuously and at high speed. Detection of outliers from
uncertain static data is a challenging research problem in data mining and on top
of that, the continuous arrival of data makes it more challenging. Hence, in this
research, we present a continuous outlier detection approach on uncertain time
series data streams.

In particular, we propose a continuous distance-based outlier detection ap-
proach on a set of uncertain objects’ states that are originated synchronously
from a group of data sources (e.g., sensors in WSN) at every timestamp. A set
of objects’ states at a timestamp is called a state set. Generally, the duration be-
tween two consecutive timestamps is very short and the state of all the objects
may not change much in this duration. Therefore, we propose an incremental
approach of outlier detection, which makes use of the results obtained from the
previous state set to efficiently detect outliers in the current state set. In addition,
an approximate incremental outlier detection approach using the bounded Gaus-
sian uncertainty is proposed to further reduce the cost of the incremental outlier
detection. Finally, an extensive empirical study on synthetic and real datasets is
presented, which shows the effectiveness of the proposed approaches.

1.4 Dissertation Organization

In the above sections we have presented the background and motivations of this
work, and briefly presented the main contributions of this dissertation. In this

1.4. Dissertation Organization 7

section we detail the structure of this dissertation.

Chapter 2: In this chapter, we outline the basics of outlier detection, its ap-
plications and approaches. We also describe the uncertain data and the causes
and the types of data uncertainty.

Chapter 3: In this chapter, we review state-of-the-art research works in the
field related to our work. We first discuss some outlier detection works on de-
terministic data and then on uncertain data.

Chapter 4: This chapter introduces the uncertain distance-based outlier detec-
tion on uncertain data. We first define the distance-based outliers on uncertain
data and then present a cell-based pruning technique to speed-up the outlier de-
tection process. Moreover, an approximate approach of outlier detection is also
presented to further increase the outlier detection efficiency and scalability. Ac-
curacy, efficiency and scalability of the proposed approaches are proved with
the help of experiments.

Chapter 5: In this chapter, a top-k distance-based outlier detection approach
on uncertain data is presented. We present a populated-cells list approach to
quickly identify the top-k candidate outlier objects. In addition, to further in-
crease the efficiency of outlier detection, an approximate approach of top-k out-
lier detection is also presented. We also present detailed experiments to prove
the accuracy, efficiency and scalability of the proposed approaches.

Chapter 6: This chapter deals with continuous outlier detection approach on
uncertain data streams. We propose an incremental approach of outlier detec-
tion, which makes use of the results obtained from the previous timestamp to
efficiently detect outliers in the current timestamp. An approximate approach
is also presented to increase the efficiency of the incremental outlier detection.
Efficiency and scalability of the proposed approaches are demonstrated with the
help of experiments.

Chapter 7: In the final chapter, we give out the main conclusion on the work
of this dissertation and outline some directions for future work.

Chapter 2

Preliminaries

In this chapter, we outline the basics of outlier detection, its applications and
approaches. We also describe the uncertain data and the causes and the types of
data uncertainty.

2.1 Outlier Detection

Outlier detection refers to the problem of finding patterns in data that do not con-
form to expected behavior. These nonconforming patterns are often referred as
anomalies, outliers, discordant observations, exceptions, aberrations, surprises,
peculiarities, or contaminants in different application domains [32]. Of these,
outliers and anomalies are two terms used most commonly in the context of
anomaly detection.

Outlier detection has several applications in variety of domains such as
fraud detection for credit cards, insurance, or health care, intrusion detection
for cyber-security, fault detection in safety critical systems, anomaly detection
in text data, fault detection in web applications, identification of malfunction-
ing sensors in sensor networks, novelty detection in robot behavior and military
surveillance for enemy activities.

The importance of outlier detection is due to the fact that outliers some-
times contain more important and often critical, actionable information than
the normal data in a wide variety of application domains [32]. For example,
an abnormal data traffic pattern in a computer network could mean that some
hacker has gained access of a machine in a network and is accessing data from

9

10 CHAPTER 2. PRELIMINARIES

it [68]. Drastic variation in the credit card usage pattern may suggests credit
card theft [15], abnormal sensor readings from one or two sensors in a sensor
network indicates the presence of malfunctioning sensors in the sensor network
or an abnormal MRI data may suggest the presence of some disease [103].

Outliers or anomalies detection in data is quite an old field in the statis-
tics community. One can find outlier definitions and techniques since late 18th
century [48]. During this time, several outlier detection techniques have been
proposed by several researchers. However, majority of the statistical techniques
are univariate, many of them are distribution dependent, some of them are de-
veloped particularly for specific applications and only few of them are more
generic. Recently, this field has been explored by a lot of researches from data
mining community and one can find a lot of definitions and approaches of outlier
detection for different types of data, applications of data or dimensions of data.
In the following section, we will first discuss about some of the famous defini-
tions of outlier and then will explore some of the well-known outlier detection
applications.

2.1.1 What is an Outlier?

Outliers are patterns in data that do not conform to a well defined notion of nor-
mal behavior. Outliers might be induced in the data for a variety of reasons,
such as malicious activity, for example, credit card fraud, cyber-intrusion, ter-
rorist activity or breakdown of a system, but all of the reasons have the common
characteristic that they are interesting to the analyst. The interestingness or real
life relevance of anomalies is a key feature of anomaly detection [32].

Outlier detection is closely related to, but different from noise removal [56,
92,109]. Noise removal deals with identifying and discarding of unwanted noise
from data, with the aim of cleaning it. Noise is unwanted data, which is of no
interest to the data miners and if not removed affects the results of analysis.
Noise removal is therefore important and is needed for data cleaning before the
data analysis.

Novelty detection is another topic related to outlier detection and is studied
by wide variety of researchers [75, 76, 94]. It aims at detecting previously un-
observed patterns in the data, for example, a new topic of discussion in a news
group. The distinction between novel patterns and outliers is that the novel pat-

2.1. Outlier Detection 11

terns are typically incorporated into the normal model after being detected [32].

In contrast to noise and novelty in data, outlier is significant and useful in-
formation in the data, which is required by data miners to find the interesting
patterns in data. It is therefore, outliers are sometimes more important than the
normal data. In the following subsection, we will discuss some of the well-
known applications of outlier detection.

2.1.2 Outlier Detection Applications

Outlier detection is a fundamental problem in data mining and has several ap-
plications in variety of domains. In the following, we discuss some of the well-
known outlier detection applications.

Intrusion Detection

According to the Internet Security Dictionary [111], intrusion detection refers
to the detection of malicious activity (break-ins, penetrations, and other forms
of computer abuse) in a computer related system. These intrusions or attacks
or malicious activities are very important and useful from a computer security
perspective.

Intrusion detection is a security system for computers and networks. It mon-
itors various areas of computers and networks (ports, data sent, data received)
to prevent the computers and/or networks from possible internal or external at-
tacks [9]. An intrusion is different from the normal behavior of the system,
and therefore several outlier detection techniques have been proposed for the
intrusion detection. Intrusion detection is quite a challenging area of data min-
ing, because it is sometimes difficult to differentiate between the normal and
abnormal computer/network usage pattern. Moreover, huge data volume and its
continuous arrival require computationally efficient and online analysis [32].

Fraud Detection

Unauthorized usage of resources provided by commercial organizations such as
credit card companies, banks, stock market, web shops and so on is referred to
as fraud and detecting users involved in such activities is commonly referred as
fraud detection. The hackers involved in fraud try to use up the organization’s

12 CHAPTER 2. PRELIMINARIES

resources in an unauthorized way by posing as real customers. Such frauds must
be detected immediately to avoid economic losses.

In 1999, Fawcett and Provost [46] used a term activity monitoring for the
identification of fraud and gave a framework to detect such activities. According
to them the typical approach of outlier detection techniques in such domains is
to maintain a usage profile for each customer and monitor the profiles to identify
abnormalities.

Outlier Detection in Medical and Health Care

With the advancement in technology, medical facilities are improving and va-
riety of machines and sensors are used to diagnose patients and to keep track
of their health, respectively. Outlier detection in the medical and health care
usually deals with patient data and can have outliers due to malfunctioning in-
strument, unstable patient condition, environmental conditions, etc. In [116],
authors focused on detecting disease outbreaks in a specific area.

Outlier detection in this domain is critical and requires a very high degree of
accuracy. In this domain, we usually deal with patient records which consists of
several attributes including patient age, sex, heart beat, blood pressure, temper-
ature, etc. The records may also contain temporal aspect, e.g., blood pressure
values with respect to time and spatial aspect, e.g., heart beat at home versus at
gymnasium. The main objective of the existing outlier detection approaches in
this area is the identification of abnormal records.

Some of the medical devices produce time-series data, such as Electroen-
cephalograms (EEG) and Electrocardiograms (ECG). Therefore outlier detec-
tion from time-series data is another challenging research problem in this do-
main. [70] used collective outlier detection techniques to detect outliers from
such data.

Industrial Damage Detection

With the usage and passage of time, industrial units deteriorate. Early detection
of this deterioration is essential to avoid drastic damages and human loss. Sen-
sors are usually attached to these industrial units to early detect such damage.
Several outlier detection techniques have been applied to detect such damage in
this domain [74].

2.1. Outlier Detection 13

According to Varun et al. [32], industrial damage detection can be further
classified into two domains, one that deals with defects in mechanical compo-
nents such as motors, engines, and so on, and the other that deals with defects
in physical structures

Outlier Detection in Text Data

Outlier detection from text data is a challenging research problem in data min-
ing, due to very high dimensions and sparsity of data. Outlier detection ap-
proaches in this area primarily identify novel topics or events or news stories
from a collection of documents or news articles [104]. This domain is also used
by social networks, such as twitter and facebook for the detection of outlier
and/or novel issues, news and topics. The outliers are usually caused due to a
hot interesting event or an anomalous topic. Since the documents are collected
over time, the data also has a temporal aspect. According to Varun et al. [32], a
challenge for outlier detection approaches in this domain is the handling of the
large variations in documents belonging to one category or topic .

Sensor Networks Anomaly Detection

With the availability of low cost and small size sensors, they are being used in
several applications. Such as, sensor networks are popular for weather forecast-
ing, endangered species monitoring, industrial damage detection, etc. Due to
this reason, sensor networks have become a significant area of research. Usu-
ally the data obtained from sensors contain certain degree of inherent uncer-
tainty, due to the limitations of equipment, inconsistent supply voltage, delay or
loss of data in transfer, etc. Therefore, the sensor networks data is being studied
under the head of deterministic as well as the uncertain data management and
mining.

In the wireless sensor networks, the data is collected from several sensors.
One of the interesting outlier detection application from such data is the identi-
fication of malfunctioning sensors [97]. Since the sensor networks are also used
for the monitoring of endangered species, outlier detection from such data are
the abnormal activities and/or movements of endangered species.

The data generated by a sensor or sensor networks is generally in the form
of continuous streams. Therefore another challenging issue in this domain is

14 CHAPTER 2. PRELIMINARIES

the continuous and online outlier detection from such data. Moreover, due to
resource constraints, the algorithms to detect outliers from such data must be
efficient. Some authors have given distributed outlier detection approaches to
detect outliers at the sensor node where it is being generated [34, 84], while
others prefer to process sensor data at a central location [25]. In addition, the
presence of noise in the sensor data pose another challenge in the efficient and
accurate processing of such data.

2.1.3 Outlier Detection Approaches

Due to the importance of outlier detection in data mining, several outlier detec-
tion approaches have been proposed. Some are proposed for specific applica-
tions while others are more generic. In the following subsections, some of the
well-known approaches are discussed.

Nearest-Neighbor or Distance-based Outlier Detection

The concept of nearest neighbor analysis has been used in several outlier de-
tection techniques. Nearest neighbor techniques assume that normal data have
dense neighborhoods, while outliers exist far from their closest neighbors.

Nearest neighbor-based outlier detection techniques require a distance or
similarity measure defined between two data instances and that is why nearest-
neighbor outlier detection techniques are sometimes referred as distance-based
outlier detection techniques. Distance (or similarity) between two data instances
can be computed using Euclidean distance for continuous attributes, however
other measures can also be used [106]. A matching coefficient method is usually
used for the categorical attributes, however several works including [24,33] used
more complex distance measures.

For multidimensional data objects, similarity or distance is normally evalu-
ated for each attribute and then combined. Majority of the nearest neighbor ap-
proaches do not expect that the distance measure to be metric. Nearest neighbor-
based outlier detection methods can be generally classified into two categories:
1) methods that use the distance between a data instance and its kth nearest
neighbor as the outlier score; 2) methods that make use of the relative density
of each data object to compute its outlier score.

2.1. Outlier Detection 15

A basic nearest neighbor outlier detection technique is based on the follow-
ing definition: The outlier score of a data object in a given dataset can be defined
as its distance to its kth nearest neighbor. Guttormsson et al. [95] used the ba-
sic technique to detect shorted turns (outliers) in the DC field windings of large
synchronous turbine-generators. Similarly, Bayers at al. [30] applied this tech-
nique to detect land mines from satellite ground images. Normally, a threshold
is used to distinguish between an outlier or inlier object when using the basic
technique. On the other hand, Ramaswamy et al. [91] gave a slightly different
definition by selecting n instances with the largest outlier scores as the outliers.

Eskin et al. [44], Angiulli et al. [17] and Zhang et al. [119] computed the
outlier score of a data object as the sum of its distances from its k nearest neigh-
bors. Bolton and Hand [23] used a similar technique called Peer Group Analysis
to detect credit card frauds. Knorr et al. [63, 65] used the count of the number
of nearest neighbors that are not more than D distance apart from the given data
object to find if it is an outlier or not.

Wei et al. [69] in 2003 proposed a hypergraph-based technique, called HOT.
In that technique, authors modelled the categorical values using a hypergraph,
and measured distance between two data instances by analyzing the connectivity
of the graph. Otey et al. [83] used a distance measure for data containing a mix
of categorical and continuous attributes for outlier detection. They defined links
between two instances by adding distance for categorical and continuous at-
tributes separately. For categorical attributes, the number of attributes for which
the two instances have the same values defines the distance between them. For
continuous attributes, a covariance matrix is maintained to capture the depen-
dencies between the continuous values. Palshikar [85] adapted the technique
proposed in Knorr et al. [63] to continuous sequences. Kou et al. [67] extended
the technique proposed in Ramaswamy et al. [91] to spatial data.

Density-based Outlier Detection

In this approach of outlier detection, the density of the neighborhood of each
data object is estimated. An object is an outlier if it lies in a neighborhood with
low density. On the other hand a data object that lies in a dense neighborhood is
identified as normal.

If the dataset has varying densities, density-based techniques perform poorly.

16 CHAPTER 2. PRELIMINARIES

In order to handle the problem of varying dataset densities, several techniques
have been proposed to compute the relative neighborhood densities of the dataset
objects.

Breunig et al. [26, 27] proposed density-based outlier detection techniques
in which an outlier score is assigned to a data object, known as Local Outlier
Factor (LOF). The LOF score of an object is given by the ratio of average local
density of the k nearest neighbors of the data object and the local density of
the data object itself. In order to compute the local density of a data object,
the radius of the smallest hyper-sphere centered at the data object is found, that
contains its k nearest neighbors. The authors then compute the local density by
dividing k with the volume of this hyper-sphere. A data object is normal if it lies
in a dense region and its local density is similar to that of its neighbors. On the
hand, a data object is outlier, if its local density is lower than that of its nearest
neighbors. Hence the outlier instance gets a higher LOF score.

A variation of the LOF was discussed by Tang et al. [107] in 2002. They
called their approach Connectivity-based Outlier Factor (COF). The main dif-
ference between the COF and LOF lies in the way in which an object’s k neigh-
borhood is computed. Firstly, the nearest data object to the given data object is
added to the neighborhood set. The next data object added to the neighborhood
set is one whose distance to the existing neighborhood set is minimum among
the remaining data objects. The distance between an object and a set of objects
is obtained by computing the minimum distance between the given data object
and any object belonging to the given set. Objects are added in this manner
until the neighborhood size reaches k. After the neighborhood computation, the
outlier score (COF) is obtained in the similar manner as in the case of LOF.

Hautamaki et al. [51] in 2004 proposed a simpler version of LOF, which
computes Outlier Detection using In-degree Number (ODIN) for each data ob-
ject. For a target data object, ODIN is defined as the number of k nearest neigh-
bors of the data object which have the target data object in their k nearest neigh-
bor list. The outlier score of a data object is obtained by taking the inverse of
ODIN. Brito et al. [28] proposed a similar technique. In 2003, a measure called
Multi-Granularity Deviation Factor (MDEF), which is a variation of LOF, was
proposed by Papadimitriou et al. [86]. According to the authors, MDEF for a
target data object is equal to the standard deviation of the local densities of the
nearest neighbors (including the data object itself). The outlier score of the tar-

2.1. Outlier Detection 17

get data object is obtained by taking the inverse of the standard deviation. The
authors named their outlier detection technique as LOCI. LOCI finds outlier
micro-clusters in addition to the outlier objects.

Clustering-based Outlier Detection

Clustering [59, 106] is mainly designed to group similar data objects into clus-
ters. Primarily it is an unsupervised technique, however semisupervised cluster-
ing techniques have also been explored recently by few authors including [21].
Although the main purpose of clustering is quite different from outlier detection,
several works have been proposed for clustering-based outlier detection.

Clustering-based techniques are based on one of the following assumptions:
1) Normal data objects belong to a cluster in the data, while anomalies do not
belong to any cluster. 2) Normal data objects lie close to their closest cluster
centroid, while anomalies are far away from their closest cluster centroid. 3)
Normal data objects belong to large and dense clusters, while anomalies either
belong to small or sparse clusters.

Outlier detection techniques which follow the first assumption apply clustering-
based algorithm to the data set. These techniques declare a data object an out-
lier if it does not belong to any cluster. Several existing algorithms such as
DBSCAN [45], ROCK [50], and SNN clustering [42] do not force every data
instance to belong to a cluster and can be used as outlier detection technique un-
der the first assumption. In 2002, Yu et al. [117] proposed the FindOut algorithm
which is an extension of the WaveCluster algorithm given by Sheikholeslami et
al. [99]. In their algorithm, the detected clusters are removed from the data and
the remaining data objects are identified as outliers. Such techniques are mainly
designed for clustering and are not optimized to find outliers, which is one of
the disadvantage of such techniques.

Outlier detection techniques which follow the second assumption consist of
two steps. The data is clustered using a clustering algorithm in the first step. In
the second step, for each data object, its distance to its nearest cluster centroid is
calculated as its outlier score. Several outlier detection techniques proposed in
data mining follow this two step approach using different clustering algorithms.
In [101] authors proposed Self-Organizing Maps (SOM), K-means Clustering,
and Expectation Maximization (EM) to cluster training data. These clusters are

18 CHAPTER 2. PRELIMINARIES

then used to classify test data.

According to the third assumption, objects belonging to clusters whose size
and/or density is below a threshold are identified as outliers. In this category of
clustering-based outlier detection, several algorithms have been proposed [44,
53, 61, 72, 87]. He et al. [53] proposed a technique, called FindCBLOF. This
technique assigns an outlier score CBLOF (Cluster-Based Local Outlier Factor)
to each data object. The outlier score in this technique (CBLOF score) captures
the size of the cluster to which the data objects belongs and the distance of the
data object to its cluster centroid.

Classification-based Outlier Detection

In machine learning and data mining, classification [40, 106] is used to learn a
model (classifier) from a set of labeled data instances (training) and then, clas-
sify a test instance into one of the classes using the learned model (testing).
These techniques operate in two-phase fashion, like some of the clustering-
based techniques. The first phase (also known as training phase) learns a clas-
sifier using the available training data (the training data is also called labelled
data). The second phase (testing phase) classifies a test data object as normal or
outlier, using the classifier [32].

Statistical Outlier Detection

Statistical outlier detection techniques are very old and the earliest of such tech-
niques date back to early eighteenth century. The underlying principle of any
statistical outlier detection technique is: An anomaly is an observation which is
suspected of being partially or wholly irrelevant because it is not generated by
the stochastic model assumed [18]. These techniques are based on the assump-
tion that normal data objects lie in high probability regions of a stochastic model,
while outliers occur in the low probability regions of the stochastic model.

Statistical techniques first identify the data distribution using the given data
and then uses statistical inference test to find if a test data instance/object is con-
sistent with this distribution or not. Instances which either do not belong or have
a low probability of being generated from the learned distribution, based on the
applied test statistic, are identified as outliers. Under the statistical outlier de-
tection approaches, there exists parametric as well as nonparametric techniques.

2.2. Uncertain Data 19

The parametric techniques make use of the knowledge of the underlying data
distribution and find out the parameters from the given data [43]. However, the
nonparametric techniques do not consider knowledge of the underlying distri-
bution [37].

2.2 Uncertain Data

In recent years many new techniques for collecting data, e.g., sensors, RFIDs,
GPS have resulted in an increase in the availability of uncertain data [39,54,81,
98]. The causes of uncertainty may include but are not limited to limitation of
equipments, absence of data, inconsistent supply voltage and delay or loss of
data in transfer [98]. The uncertainty information in the data is useful informa-
tion which can be leveraged in order to improve the quality of the underlying
results. Some examples of applications which generate uncertain data are as
follows [10]:

• A lot of scientific measurement techniques are inherently imprecise. In
such cases, the level and type of uncertainty is derived from the errors in
the instrumentation used for experiments.

• Many new hardware technologies such as sensors, GPS, RFIDs generate
data which contains uncertainty. Table 2.1 lists the maximum measure-
ment errors in some of the commercially available sensors. In such cases,
the error in the sensor network readings can be modeled, and the resulting
data can be modeled as imprecise or uncertain data.

• In some applications like the tracking of mobile objects, the future trajec-
tory of the objects is modeled by forecasting techniques. Small errors in
current readings can get amplified over the forecast into the distant future
of the trajectory. This is usually encountered in cosmological applications
when one models the probability of encounters with Near-Earth-Objects
(NEOs). Errors in forecasting are also encountered in non-spatial appli-
cations such as electronic commerce.

• In several applications like privacy-preserving data mining, the data is
modified by adding noise to it. In such cases, the format of the output is
quite similar to that of uncertain data.

20 CHAPTER 2. PRELIMINARIES

Table 2.1: Uncertainty in commercial sensor measurements

Company Sensor Type Model Parameter Error (%)*

Stevens [6]
Weather WXT520

Air temperature 1
Barometric pressure 0.2
Relative humidity 5
Wind speed 5
Wind direction 3

Pyranometer LI200SA Solar radiation 5

Vaisala [7]
Weather

HMP155
Air temperature 0.1
Barometric pressure 0.05

WMT700
Relative humidity 1.7
Wind speed 2

PTB110 Wind direction 0.55
Pyranometer CM6B Solar radiation 2

Xylem [8]
Weather

WE100 Air temperature 1
WE550 Barometric pressure 0.2
WE570 Relative humidity 5
WE600 Wind speed 5
WE700 Wind direction 3

Pyranometer WE300 Solar radiation 5
*Maximum measurement error percentage : For some parameters,
percentages are calculated from their respective maximum error values.

Uncertain data management and mining has gained a lot of interest among re-
searchers in recent years because of a number of emerging fields which utilize
this kind of data. For example, in fields such as privacy-preserving data min-
ing, additional noise is added to data in order to hide the identity of the records.
Often-times the data may be represented using statistical methods such as fore-
casting. In such scenarios, the data is uncertain in nature. Such data sets may
often be probabilistic in nature. In other cases, databases may show existential
uncertainty in which the presence or absence of tuples in database is uncertain.
Such data sets lead to a number of unique challenges in managing and mining
the underlying data.

2.2.1 Causes of Uncertainty

The causes of uncertainty in data obtained from devices like sensors, RFIDs,
etc., may include but are not limited to limitation of equipments, inconsistent

2.2. Uncertain Data 21

supply voltage and delay or loss of data in transfer [98]. In this section, we
focus on the uncertainty in data caused by the hardware and software faults in
the data collection equipments.

The common hardware faults that have been observed to cause uncertainty
in data include low battery, short-circuited connections, calibration errors and
damaged sensors. Ramanathan et al. [89] and Szewczyk et al. [105] found that
one of the main cause behind abnormally large or small sensor readings is short-
circuit connections. They also identified that the low battery voltage results in
a combination of constant faults and noise in temperature sensors. An exam-
ple dataset available online (the Intel Lab, Berkeley deployment [4]), contains
several tuples affected by variation in battery voltage.

A well-known root cause for sensor data uncertainty is calibration errors
[79,89,90]. Calibration errors can corrupt the sensor measurements in different
ways: 1) the parameters associated with a sensors original calibration formulas
may change during a deployment (drift fault), 2) the measured value can differ
from its true value by a constant amount (offset fault), and 3) the rate of the
measured data can differ from the true/expected rate (gain fault). Calibration
errors may affect all the samples collected during a deployment, and the faulty
data may still exhibit normal patterns. For example, ambient temperature mea-
surements affected by an offset fault will still exhibit a periodic pattern. Without
the availability of ground-truth values or a model for expected sensor behavior,
detecting data faults due to calibration errors remains an open problem [98].

In 2003, authors in [29] made use of spatial correlation across sensor nodes
to develop methods for online sensor calibration that can be used to recover
from calibration errors during a deployment, once such an error is detected. An
example of software fault is given in Ni et al. [79] where the authors identify
instances of short faults due to software errors during communication and data
logging.

2.2.2 Types of Uncertainty

Uncertainty in datasets can be broadly divided into two types. 1) Tuple-level
uncertainty, 2) Attribute-level uncertainty. Although converting a dataset with
attribute-level uncertainty to a dataset with tuple-level uncertainty is a fairly
simple operation, this transformation usually leads to a loss of shared correlation

22 CHAPTER 2. PRELIMINARIES

structures (besides resulting in a database that requires storing a significantly
larger number of tuples).

Tuple-level Uncertainty

In tuple-level uncertainty, uncertainty lies in the existence of a tuple in a relation
or dataset. Tuple-level uncertainty is also known as existential uncertainty. Ac-
cording to [57], in the tuple-level uncertainty, tuples may belong to the database
with less than absolute confidence. A commonly used model to work out this
type of uncertainty is representing tuples as probabilistic events, and model the
database as a joint distribution defined on these events. Fig. 2.1 shows a rela-
tion with tuple-level uncertainty. In this relation, each tuple is associated with
the confidence of appearing in the relation. Most of the recent work in proba-
bilistic databases has been concentrated on the development of tuple-level un-
certainty [36, 47, 93].

Figure 2.1: Tuple-level uncertainty in radar dataset [102]

Attribute-level Uncertainty

In attribute-level uncertainty (also known as value-level uncertainty), each un-
certain attribute in a tuple is represented by its own independent probability
density function. For example, if readings are taken of wind speed and temper-
ature, each would be described by its own probability density function or other
statistical parameters such as variance, as knowing the reading for one mea-
surement would not provide any information about the other. Fig. 2.2 shows
a relation with attribute-level uncertainty. In the relation, minimum and max-

2.2. Uncertain Data 23

imum temperature values are uncertain and are given by a probability density
function.

Date City Min. Temp Max. Temp

11/04/2013 Tokyo

11/04/2013 Tsukuba

15�C 25�C

10�C 22�C

Figure 2.2: Attribute-level uncertainty in weather sensor dataset

Many applications produce data that is more naturally represented using
attribute-level uncertainty as opposed to tuple-level uncertainty, e.g., mobile ob-
jects databases [35], and sensor network datasets [38], etc. The focus of this
thesis is to detect outliers from uncertain data obtained from automated data
collecting devices like sensors, RFIDs, etc., in which each tuple’s attribute may
have uncertain values. A commonly used model to capture this type of uncer-
tainty is representing tuple attributes as probability density function. In this
dissertation, our focus is attribute-level uncertainty and we have used Gaussian
probability density function to represent the uncertainty of each tuple’s attribute.

Chapter 3

Related work

In this chapter, we review state-of-the-art research works related to our work.
There exists a lot of works on outlier detection from deterministic data, however
very few authors have explored outlier detection on uncertain data. In the fol-
lowing, we will first discuss some of the outlier detection approaches/techniques
given for deterministic data and then on uncertain data.

3.1 Outlier Detection on Deterministic Data

Outlier detection is one of the most important area of data mining research. Due
to this reason outlier detection encompasses a broad spectrum of techniques.
A lot of techniques given for outlier detection are basically identical but with
different names given by the authors. Such as, authors use outlier detection,
exception mining, novelty detection, noise detection, anomaly detection or de-
viation detection to describe their various approaches [55].

Several definitions of outlier have been given in literature, but there exists
no universally agreed definition. Hawkins [52] in 1980 defined an outlier as an
observation that deviates so much from other observations as to arouse suspicion
that it was generated by a different mechanism. Barnet and Lewis [20] in 1994
mentioned that an outlying observation, or outlier, is one that appears to deviate
markedly from other members of the sample in which it occurs.

According to John [62], an outlier may also be surprising veridical data,
a point belonging to class A but actually situated inside class B so the true
(veridical) classification of the point is surprising to the observer. Aggarwal and

25

26 CHAPTER 3. RELATED WORK

Yu [12] defined outliers as noise points lying outside a set of defined clusters or
alternatively outliers are the points that lie outside of the set of clusters but are
also separated from the noise. These outliers behave differently from the norm.

A brief survey of different outlier detection approaches and applications is
presented in chapter 2. In this dissertation our focus is distance-based outlier
detection approach, because the distance-based approach is the simplest and the
most commonly used. It can be used as preprocessing before applying more
sophisticated application dependent outlier detection techniques. Moreover, it
coincides well with other data mining techniques i.e., k-Nearest Neighbours,
clustering, etc. Hence in this section, our focus is distance based approach of
outlier detection. Although several definitions have been given for the distance-
based outlier, there exists no universally agreed definition. Three main defini-
tions of distance-based outlier on deterministic data to date are as follows.

• Outliers are the data points for which at least fraction p of the objects are
outside the distance D. [63]

• Outliers are the data points whose distance to their kth nearest neighbor is
largest. [91]

• Outliers are the data points whose average distance to their k nearest
neighbors is largest. [17]

D

K5

K6

K:

K9

K8

K7

K;

K=
K<

K54

x

y

Figure 3.1: Distance-based outlier by Knorr et al. [65]

3.1. Outlier Detection on Deterministic Data 27

3.1.1 Distance-based Outlier Detection on Static Data

The very first definition of distance-based outlier was given by Knorr et al. in
[65]. They defined a point p to be an outlier if at most M points are within
D-distance of p. In Fig. 3.1, object o6 is a distance-based outlier if the number
of objects within its D distance is less than or equal to M . They also presented
a cell-based approach to efficiently compute the distance-based outliers. They
proved with experiments that their proposed cell-based algorithm outperforms
the simple algorithms (the Naive algorithm using the nested-loop) for k ≤ 4,
where k denotes the number of dimensions. However for k > 4, the number of
cells increase exponentially and the performance of cell-based algorithm decline
significantly.

[91] formulated distance-based outliers as the data points whose distance
to their kth nearest neighbor is largest. They also ranked each point on the
basis of its distance to its kth nearest neighbor and declared the top n points in
this ranking to be outliers. In addition to developing relatively straightforward
solutions to finding such outliers based on the classical nested-loop join and
index join algorithms, they developed an efficient partition-based algorithm for
mining outliers. This algorithm first partitions the input data set into disjoint
subsets, and then prunes entire partitions as soon as it is determined that they
cannot contain outliers.

Angiulli et al. in [17] gave a slightly different definition of outliers than [91]
by considering the average distance to their k nearest neighbours. They called
the average distance, the weight. Outliers are the points with the largest values
of weight. In order to compute these weights in an efficient way, authors lin-
earized the search space through the Hilbert space filling curve. The algorithm
consists of two phases, the first phase provides an approximated solution, within
a small factor, after executing at most d+1 scans of the data set with a low time
complexity cost, where d is the number of dimensions of the data set. During
each scan the number of points candidate to belong to the solution set is sensi-
bly reduced. The second phase returns the exact solution by doing a single scan
which examines further a little fraction of the data set.

28 CHAPTER 3. RELATED WORK

3.1.2 Distance-based Outlier Detection on Data Streams

Beside the works discussed in Sec. 3.1.1 related to outlier detection from static
data, there are some works on the detection of distance-based outliers over
stream data including [16, 58, 66]. These works are based on the definition of
distance-based outliers by Knorr et al. [65].

In [16], a method for detecting distance-based outliers in data streams is
presented. They made use of the sliding window model, where outlier queries
are performed in order to detect anomalies in the current window. In their work,
two algorithms are presented. The first one exactly answers outlier queries, but
has larger space requirements. The second algorithm is directly derived from
the exact one, has limited memory requirements and returns an approximate
answer. Later on [66] extended [16] work by adding the concepts of multi-query
and micro-cluster based distance-based outlier detection.

In [58], authors gave a distance-based approach of outlier detection over data
streams and made use of cell-based approach proposed in [65]. They presented
an algorithm to detect outliers from time-series data streams, where streams
in their work is a sequence of states generated synchronously by a group of
objects. Their algorithm used a differential detection approach based on the
change between consecutive state sets to reduce the computation cost of outlier
detection in each state set.

All the works discussed in this section were given for deterministic data and
cannot handle uncertain data. However, in this dissertation, the focus is outlier
detection from uncertain data. Therefore in the next section, existing works
related to outlier detection from uncertain data are presented. Since there are
not many techniques proposed for outlier detection from uncertain data, we will
explore all the major outlier detection techniques proposed so far, rather than
sticking to distance-based approaches of outlier detection from uncertain data.

3.2 Outlier Detection on Uncertain Data

Recently a lot of research has focused on managing, querying and mining of
uncertain datasets [13,60,112]. Table 3.1 summarizes the related work of outlier
detection on uncertain data, both on static data and data streams. So far, very
few works have been proposed to detect outliers from uncertain data. In the

3.2. Outlier Detection on Uncertain Data 29

Table 3.1: Existing and proposed techniques of outlier detection on uncertain
data

Types of Uncertainty
Types of Data

Static Data Data Streams
Attribute-level Aggarwal et al.* [13]

CUDB outlier detection**
Jiang et al.* [60]
Matsumoto et al.* [77]
UDB outlier detection**
kUDB outlier detection**

Tuple-level Wang et al* [112]
Wang et al.* [113]
Cao et al.* [31]

*Existing outlier detection techniques on uncertain data.
**Proposed outlier detection techniques on uncertain data.

following subsections, these works are discussed precisely.

3.2.1 Outlier Detection on Uncertain Static Data

The problem of outlier detection on uncertain datasets was first studied by Ag-
garwal et al. in [13]. According to them an uncertain object o is a density-based
(δ, η) outlier, if the probability of existence of o in some subspace of a region
with density at least η is less than δ. In order to compute (δ, η) outliers, firstly
density of all subspaces needs to be computed and then the η-probability of each
o in the dataset is computed to find if o is an outlier. Since this computation is
very expensive, a sampling procedure is used to approximate the η-probability.
In contrast to [13] work, this dissertation addresses the problem of distance-
based outlier detection in full space, where the distance between two uncertain
objects is computed by the Gaussian difference distribution [114]. Hence, our
problem definition is quite different from [13]. Matsumoto et al. [77] extended
the Aggarwal’s work [13] by providing a parallel version of their algorithm us-
ing GPU (Graphics Processing Unit). In their work, parallelization is provided
by the cross-platform OpenCL framework, which is used for programming GPU
kernels.

Wang et al. in [112] also proposed outlier detection on uncertain data. Their
work focuses on the uncertainty in the existence of a tuple, i.e., tuple-level un-
certainty. Hence, each tuple in their work is associated with the confidence of

30 CHAPTER 3. RELATED WORK

appearance in the dataset (An example of tuple-level uncertainty is shown in
Table 2.1). In contrast, in this dissertation, attribute level uncertainty is consid-
ered, i.e., the uncertainty lies in the measurements obtained from sensors and
this uncertainty is given by the Gaussian probability density distribution, with
an assumption that sensor measurements may deviate from true values. In order
to increase the efficiency of outlier detection, dynamic programming approach
(DPA) and grid-based pruning approach (GPA) are used in their work.

In 2011, B. Jiang et al. [60] gave an outlier detection model considering
both uncertain objects and their instances. According to their model, an un-
certain object has some inherent attributes and consists of a set of instances
which are modeled by a probability density distribution. Outliers are detected at
both the instance level and the object level. To detect outlier instances, normal
instances are first identified. By assuming that uncertain objects with similar
properties tend to have similar instances, the normal instances for each uncer-
tain object are learned using the instances of objects with similar properties.
Consequently, outlier instances are detected by comparing against normal ones.
Finally the objects, most of whose instances are outliers are identified as outlier.
Technically, they used a Bayesian inference algorithm to solve the problem,
and developed an approximation algorithm and a filtering algorithm to speed
up the computation. However, in this dissertation, objects outlierness depends
on its #D-neighbors (expected number of objects that lie within D distance of
target object) rather than instances. Moreover, we have used the Gaussian dif-
ference distribution [114] to compute the probability that two uncertain objects
lie within the D distance of each other.

3.2.2 Outlier Detection on Uncertain Data Streams

Since outlier detection from uncertain data streams is quite a new research field,
only a couple of works are available related to it. Both the works focus on tuple-
level uncertainty in contrast to the proposed work in this dissertation which
focuses on attribute-level uncertainty.

In [113], Wang et al. proposed an outlier detection model for probabilis-
tic data stream and presented a definition of distance-based outlier over sliding
window. They showed the problem of detecting an outlier over a set of possible
world instances is equivalent to the problem of finding the kth element in its

3.2. Outlier Detection on Uncertain Data 31

neighborhood. Based on this observation, a dynamic programming algorithm
(DPA) is proposed to reduce the outlier detection cost. Their work mainly fo-
cuses on tuple-level uncertainty. In contrast, in this dissertation, attribute level
uncertainty is considered, i.e., the uncertainty lies in the measurements obtained
from sensors and this uncertainty is given by the Gaussian probability density
distribution, with an assumption that sensor measurements may deviate from
true values. Moreover in their work, sliding window is used to detect continu-
ous outliers from data streams. However, we have made use of an incremental
approach of outlier detection, which makes use of results obtained from the pre-
vious state set to efficiently detect outliers in the current state set, where state
set is a set of objects’ states at a particular timestamp.

Recently Cao et al in [31] gave a solution of distance-based outlier detec-
tion from uncertain data streams [113]. In their work, tuple-level uncertainty is
considered, where existential uncertainty lies in the tuple instances (attributes)
rather the complete tuple. Tuples’ outlierness depends on its outlier instances
(A tuple is an outlier if the sum of existential probability of its outlier instances
is less than the user defined threshold). In contrast to their work, in this dis-
sertation, attribute level uncertainty is considered and we have made use of an
incremental approach of outlier detection, which makes use of the results ob-
tained from the previous state set to efficiently detect outliers in the current state
set rather than using the sliding window approach.

Chapter 4

Outlier Detection on Uncertain
Data

The main goal of the research in this chapter is to identify distance-based out-
liers from uncertain data. Due to the surge in automated data collection tech-
nologies, data contain certain degree of inherent uncertainty. For example, data
obtained from sensors, RFIDs, etc. may contain uncertainty due to the reasons
discussed in Sec. 2.2. To obtain reliable results from such data, uncertainty
must be considered in their processing. Since the main focus of this dissertation
is outlier detection, in this chapter we will mainly focus on the outlier detection
in the presence of uncertainty in data, where the uncertainty lies in the individual
attributes of the dataset tuples and this uncertainty is modelled by the Gaussian
distribution function.

4.1 Overview

Outlier detection is a fundamental problem in data mining. It has applications
in many domains, credit card fraud detection [41], network intrusion detec-
tion [71], environment monitoring [49], medical sciences [14], etc. Several def-
initions of outlier have been given in past, but there exists no universally agreed
definition. Hawkins [52] defined outlier as an observation that deviates so much
from other observations as to arouse suspicion that it was generated by a differ-
ent mechanism. In statistics, one can find over 100 outlier detection approaches.
These have been developed for different data distributions, parameters, desired

33

34 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

numbers of outliers and types of expected outliers [20, 73]. However, most sta-
tistical approaches are not useful due to several reasons. For example, most
statistical approaches are univariate, in some approaches parameters are diffi-
cult to determine, and in other approaches outliers cannot be obtained until the
underlying data distribution is known. In order to overcome these problems,
several distance-based outlier detection approaches have been proposed in data
mining [63, 65, 82, 112].

Most of the outlier detection approaches proposed in data mining are suitable
only for deterministic data. However, due to the increasing usage of sensors,
RFIDs and similar devices for data collection, data contains certain degree of
inherent uncertainty [39, 54, 98]. The causes of uncertainty may include but
are not limited to limitation of equipments, absence of data, inconsistent supply
voltage and delay or loss of data in transfer [98]. In order to get reliable results
from such data, uncertainty needs to be considered in calculation. Hence this
chapter presents a distance-based outlier detection approach on uncertain data.

In order to obtain distance-based outliers from uncertain datasets, outlier
score (#D-neighbors) computation is required for each dataset object. How-
ever, the #D-neighbors computation is very expensive. Therefore, a cell-based
approach is proposed in this work. The use of cell-based approach is twofold
in this dissertation, i.e., indexing and pruning. As a pruning approach, the pro-
posed cell-based approach can identify and prune the cells containing only in-
liers using the cell bounds on #D-neighbors. Similarly it can also detect the
cells containing outliers. Although the cell-based pruning is very effective, yet
it may leave some cells undecided, i.e., they are neither identified as inlier cells
nor as outlier cells. For the uncertain data objects in undecided cell, an object-
wise bounds pruning approach is proposed. Finally nested-loop method is used
for the un-pruned objects to compute their outlier scores (#D-neighbors). A
property of the distance probability function used in this dissertation is that it
produces higher values for objects located nearby and low values for two objects
separated by a large distance. Hence, in the computation of #D-neighbors for
the un-pruned objects, nearer objects are considered before the farther objects.
In order to retrieve the nearer objects, cell-grid is used as an indexing approach.

In the cell-based approach, the unbounded nature of the Gaussian distribu-
tion prevents effective pruning. Moreover, #D-neighbors computation of un-
pruned objects becomes expensive, since it needs to consider all the objects in

4.2. Problem Formulation 35

Table 4.1: Pruning techniques for outlier detection on uncertain data

Pruning Techniques
Outlier Detection Approaches
UDB(CG) UDB(BG)

Cell-based pruning
√ √

Simple object-wise distance pruning ×
√

Object-wise bounds pruning
√ √

the dataset. Therefore an approximate outlier detection approach is also pro-
posed to reduce this cost. The basic idea is that the Gaussian distribution can be
appropriately approximated by the bounded Gaussian distribution [88], and this
bounded distribution allows to introduce strong pruning techniques. It saves a
lot of computation cost at a small cost of accuracy.

Hence the work in this chapter presents two cell-based approaches for distance-
based outlier detection on uncertain data. The exact approach using the con-
ventional Gaussian uncertainty is denoted by UDB(CG) and the approximate
approach using the bounded Gaussian uncertainty is denoted by UDB(BG) in
the rest of the dissertation. Since each approach handles different nature of ob-
ject’s uncertainty (i.e., unbounded and bounded), different pruning techniques
are proposed for both. Table 4.1 lists the pruning techniques proposed for both
the approaches.

4.2 Problem Formulation

The distance-based outlier detection approach on deterministic data was intro-
duced by Knorr et al. in [65]. They defined distance-based outliers as follows.

Definition 4.1 An object o in a dataset DB is a distance-based outlier, if at

least fraction p of the objects in DB lies greater than distance D from o.

Def. 4.1 was given for deterministic datasets. However, the focus of this work
is uncertain datasets whose attribute values are uncertain, where the uncertainty
is given by the Gaussian distribution. The Gaussian distribution is chosen for
representing uncertainty in this dissertation, because in statistics the Gaussian
distribution (or the normal distribution) is the most important and the most com-
monly used.

36 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

Let oi be d-dimensional uncertain objects, with attribute vector
−→
Ai = (xi,1,

..., xi,d)
T following the Gaussian PDF with mean vector −→µi = (µi,1, ..., µi,d)

T

and co-variance matrix Σi = diag(σ2
i,1, ..., σ

2
i,d), respectively. Namely, the

vector
−→
Ai is a random variable that follows the Gaussian distribution

−→
Ai ∼

N (−→µi ,Σi). Note that −→µi denotes the observed coordinates (attribute values)
of object oi. The complete database consists of a set of such objects, GDB =

{o1, ..., oN}, where N = |GDB| is the number of uncertain objects in GDB.
Hence Def. 4.1 can be extended naturally for uncertain datasets as follows.

Definition 4.2 An uncertain object o in a database GDB is a distance-based

outlier, if the expected number of objects oi ∈ GDB (including o itself) lying

within D-distance of o is less than or equal to threshold θ = N(1 − p), where

N is the number of uncertain objects in database GDB, and p is the fraction of

objects in GDB that lies farther than D-distance of o.

The objects that lie within the D-distance of oi are called its D-neighbors, and
the set of the D-neighbors of oi and the number of D-neighbours are denoted
by DN(oi) and #D-neighbors(oi), respectively. In order to find the distance-
based outliers in GDB, the #D-neighbors of the un-pruned objects needs to
be computed which requires the computation of distance probability. This dis-
tance probability is computed using the difference between two uncertain ob-
jects, which is given by another distribution known as the Gaussian difference
distribution [114].

Let
−→
Ai and

−→
Aj be two independent d-dimensional normal random vectors

with means −→µi = (µi,1, ..., µi,d)
T and −→µj = (µj,1, ..., µj,d)

T and diagonal covari-
ance matrices Σi = diag(σ2

i,1, ..., σ
2
i,d) and Σj = diag(σ2

j,1,..., σ
2
j,d), respectively.

Then |
−→
Ai −

−→
Aj| = N (−→µi − −→µj ,Σi + Σj) [114]. Let Pr(oi, oj, D) denotes the

probability that oj ∈ DN(oi). Then,

Pr(oi, oj, D) =

∫
R

N (−→µi −−→µj ,Σi + Σj)d
−→
A , (4.1)

where R is a sphere with centre (−→µi−−→µj) and radius D. Lemma 4.1 gives the 2-
dimensional expression for Pr(oi, oj, D). However, Pr(oi, oj, D) expressions
for higher dimensions can be derived using Eq. 4.1.

Lemma 4.1 Let oi and oj be two 2-dimensional uncertain objects with attributes
−→
Ai ∼ N (−→µi ,Σi) and

−→
Aj ∼ N (−→µj ,Σj), where−→µi = (µi,1, µi,2)

T ,−→µj = (µj,1, µj,2)
T ,

4.2. Problem Formulation 37

Σi = diag(σ2
i,1, σ

2
i,2) and Σj = diag(σ2

j,1, σ
2
j,2). The Pr(oi, oj, D) is given as

follows.

Pr(oi, oj, D) =
1

2π
√
(σ2

i,1 + σ2
j,1)(σ

2
i,2 + σ2

j,2)
×

∫ D

0

∫ 2π

0

exp

{
−
(
(r cos θ − α1)

2

2(σ2
i,1 + σ2

j,1)
+

(r sin θ − α2)
2

2(σ2
i,2 + σ2

j,2)

)}
r dθ dr ,

(4.2)

where α1 = µi,1 − µj,1 and α2 = µi,2 − µj,2.

Proof. See Appendix A.

This work assumes that the attributes of uncertain objects are independent
and the uncertainty of objects (standard deviation) is uniform in all dimensions,
hence σi,1 = σj,1 = σi,2 = σj,2 = σ, and let α2 = α2

1 + α2
2. This results in

a non-correlated diagonal covariance matrices, i.e., Σi = diag(σ2
i,1, σ

2
i,2) and

Σj = diag(σ2
j,1, σ

2
j,2) for the distance probability expression, Pr(oi, oj, D). On

the other hand, if the attributes of uncertain objects are dependent there exists a
correlation between them and it results in a correlated covariance matrix. Ap-
pendix B shows that the series of transformations, Principal Component Analy-
sis [100], is always possible to find alternative coordinates of an object, which
transform a correlated Gaussian distribution into an uncorrelated one. Hence
resulting in a diagonal, uncorrelated covariance matrix whose variance is uni-
form in all dimensions, which is consistent with the proposed probability func-
tion. Thus the proposed solution is equally applicable for the objects whose
attributes are correlated. In the light of above assumptions, Eq. 4.2 is simplified
as follows.

Pr(oi, oj, D) =
1

4πσ2

∫ D

0

∫ 2π

0

exp

{
−1
4σ2

(
r2 − 2αr cos θ + α2

)}
r dθ dr.

(4.3)

Note that Pr(oi, oj, D) only depends on α2 and not on the coordinates of
oi and oj . Hence Pr(oi, oj, D) is denoted by Pr(α,D) when there is no con-
fusion, where α denotes the ordinary euclidean distance between the means of

38 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

uncertain objects. Computing this probability is usually very costly, and needs
to be avoided as much as possible during the computation of outliers.

In the following part, the discussion focuses on 2-dimensional case. How-
ever, the discussion can be extended to higher dimensions without loss of gen-
erality. In addition, this work assumes σi,1 = σj,1 = σi,2 = σj,2 = σ to keep the
discussion simple.

Algorithm 4.1: UDB Outlier Detection: Naive Approach
Input: GDB, D, p, σ
Output: Set of UDB Outliers O

1: N ← number of objects in GDB;
2: θ ← N(1− p);
3: for each o in GDB do
4: #D-neighbors(o)← 0;
5: for each oi in GDB do
6: #D-neighbors(o) + = Pr(o, oi, D);
7: if #D-neighbors(o) > θ then
8: mark o as non-outlier, GOTO next o;
9: end if

10: end for
11: mark o as outlier, add o to O;
12: end for
13: return O

The Naive approach of the distance-based outlier detection uses Nested-loop
to compute #D-neighbors of each object. The #D-neighbors computation of
an object oi ∈ GDB requires computation of the expensive distance probability
with every other object in the GDB until oi can be decided as an outlier or in-
lier. In the worst case, this approach requires O(N2) evaluations of the distance
probability, which is very expensive. The Naive approach of the distance-based
outlier detection on uncertain data is given in Algorithm 4.1.

4.3 Cell-based Outlier Detection

In this section, we present a cell-based approach to index the dataset objects
and to speed up the outlier detection process by pruning the cells as outliers and
inliers. The proposed approach identifies and prunes the cells containing only

4.3. Cell-based Outlier Detection 39

inliers depending on the cell-bounds on #D-neighbors. Similarly it can also
detect the cells containing only outliers.

4.3.1 Cell-based Pruning

The cell-based technique is proposed to quickly identify and prune the cells
containing only inliers. Similarly, it can also detect cells containing outliers like
the cell-based approach of Knorr et al. [65]. Since the cell-based approach by
Knorr et al. deals with deterministic data only, they considered two cell layers
that lie within certain distances from a target cell for its pruning. However, in
this work, objects are infinitely uncertain, hence all the cell-layers in the cell-
grid need to be considered for the pruning of target cell.

Grid G Structure

In order to identify distance-based outliers using cell-based technique, mean of
each object oi ∈ GDB is mapped to a 2-dimensional space that is partitioned
into cells of length l. (The cell length is discussed in Sec. 4.3.5). Let Cx,y be
any cell in the grid G, where positive integers x and y denote the cell indices.
The layers (L1, ..., Ln) of Cx,y ∈ G are the neighbouring cells of Cx,y as shown
in Fig. 4.1 and are defined as follows.

L1(Cx,y) = {Cu,v|u = x± 1, v = y ± 1, Cx,y ̸= Cu,v}.

L2(Cx,y) = {Cu,v|u = x± 2, v = y ± 2, Cu,v /∈ L1(Cx,y), Cx,y ̸= Cu,v}.

L3(Cx,y), ..., Ln(Cx,y) are defined in a similar way. The considerable maxi-
mum number of layers depends on the position of the target cell in the cell-grid.
A cell Cx,y in G can have the maximum number of layers if it exists at the corner
of the G and the minimum number of layers if it exists at the centre of the G. Let
n denotes the maximum number of layers, then the minimum number of layers
is given by ⌈n/2⌉.

Cell Bounds

Like the cell-based approach by Knorr et al. [65], goal of the proposed cell-
based technique is to identify and prune cells which are guaranteed to contain

40 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

%ëáì

.5

.6

.á

Figure 4.1: Cell layers

only inliers or outliers. A cell Cx,y can be pruned as an outlier cell if the #D-
neighbors for any object in Cx,y according to Def. 4.2 is less than or equal
to the threshold θ. Similarly a cell can be pruned as an inlier cell if the #D-
neighbors for any object in cell Cx,y is greater than the θ. Hence bounds on
the #D-neighbors of Cx,y ∈ G are defined to prune them. The upper and lower
bounds bind the possible #D-neighbors without expensive object-wise distance
computation.

Upper Bound: The upper bound of a cell Cx,y, UB(Cx,y), binds the maxi-
mum #D-neighbors in grid G for any object in cell Cx,y. Since the Gaussian
distribution is infinite, two objects in the same cell may reside at the same co-
ordinate. Hence the maximum #D-neighbors in Cx,y for any object in cell Cx,y
itself is equal to the number of objects in Cx,y, denoted by N(Cx,y).

Similarly, the maximum #D-neighbors in cells in layer Lm(Cx,y)(1 ≤ m ≤
n) for any object in Cx,y can be obtained as follows.

n∑
m=1

N(Lm(Cx,y)) ∗ Pr((m− 1)l, D),

where N(Lm(Cx,y)) denotes the number of objects in layer Lm(Cx,y). Fig. 4.2
shows how the α = (m − 1)l values are obtained for computation of the upper
bound. Hence UB(Cx,y) of Cx,y ∈ G is derived as follows.

4.3. Cell-based Outlier Detection 41

UB(Cx,y) = N(Cx,y) +
n∑

m=1

N(Lm(Cx,y))× Pr((m− 1)l, D). (4.4)

Lower Bound: The lower bound of a cell Cx,y, LB(Cx,y), binds the mini-
mum #D-neighbors in grid G for any object in cell Cx,y. When two objects
in the same cell reside at the opposite corners, the probability that they are
D-neighbours takes the minimum value. Hence the minimum #D-neighbors
in Cx,y for any object in cell Cx,y itself is equivalent to 1 + (N(Cx,y) − 1) ×
Pr(
√
2l, D).

Similarly, the minimum #D-neighbors in cells in layer Lm(Cx,y) (1 ≤ m ≤
n) for any object in Cx,y can be obtained as follows.

n∑
m=1

N(Lm(Cx,y))× Pr((m+ 1)
√
2l, D).

Fig. 4.2 shows how the α = (m + 1)
√
2l values are obtained for the lower

bounds. Hence LB(Cx,y) of Cx,y ∈ G is derived as follows.

LB(Cx,y) = 1 + (N(Cx,y)− 1)× Pr(
√
2l, D)+

n∑
m=1

N(Lm(Cx,y))× Pr((m+ 1)
√
2l, D).

(4.5)

Lookup Table: The bounds discussed above are required by each Cx,y ∈ G
for pruning. Each bound computation requires evaluation of the costly distance
probability, Pr(α,D), and the object counts of respective cellCx,y and its layers
Lm(Cx,y). The number of distance probability computations for the bounds
calculation can be reduced by pre-computing Pr(α,D) values for Cx,y bounds.
Since the Pr(α,D) values are decided only by the α-values and are independent
from the locations of Cx,y, Pr(α,D) values need to be computed only for α =

m
√
2l (1 ≤ m ≤ n+1) and α = ml (0 ≤ m ≤ n−1). The pre-computed values

are stored in a lookup table to be used by the cell-based pruning technique.

42 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

%ëáì Y Y

.5

.á

Lower Bound

Max distance between

%ëáì and .á

Upper Bound

Min distance between

%ëáì and .á

Figure 4.2: Cell and layers bounds

Cell Pruning

Having defined bounds and lookup table, a cell Cx,y ∈ G can be pruned as an
inlier cell or identified as an outlier cell as follows.

If LB(Cx,y) is greater than θ, Cx,y cannot contain outliers. Hence it can be
pruned as an inlier cell. On the other hand if UB(Cx,y) is less than or equal to
θ, Cx,y is identified as an outlier cell. Lines 1 through 11 in Algorithm 4.2 show
the cell-based pruning technique.

4.3.2 Object-wise Bounds Pruning

Although the cell-based technique is very effective, yet it may leave some cells
undecided, i.e., they are neither pruned as inlier cells nor are identifies as out-
lier cells. For the pruning of uncertain data objects in such cells an object-wise
bounds pruning technique is proposed. This technique helps in the computation
of bounds on #D-neighbors for the un-pruned objects from the cell-based ap-
proach. Using this approach, a lot of expensive distance function computations
may be avoided.

In this technique, Pr(α,D) is pre-computed for some α values. In this work,
Pr(α,D) is computed for several α values between 0 and D + 3σ. α is chosen
in this range because Pr(α,D) values for α > D+3σ are negligibly small and
are usually not effective in pruning. The set of pre-computed Pr(α,D) values
is denoted by ψ and nbounds = |ψ|. These pre-computed values are used for

4.3. Cell-based Outlier Detection 43

Algorithm 4.2: UDB Outlier Detection: Cell-based Approach
Input: GDB, D, p, l
Output: Set of distance-based outliers O

1: Create cell grid G using the min. and max. dataset GDB objects means
and cell length l;

2: Initialize Countk of each cell Ck ∈ G;
3: Map each object o in GDB to an appropriate Ck, and increment Countk

by 1;
4: θ ← |GDB|(1− p), O = {}; (θ correspond to the threshold)

/*Pruning cells using bounds*/
5: for each non-empty Ck in G do
6: if LB(Ck) > θ then
7: Ck is an inlier cell, mark Ck green. GOTO Next Ck;
8: else if UB(Ck) ≤ θ then
9: Ck is an outlier cell, add objects of Ck to O, mark Ck black. GOTO

Next Ck;
10: end if
11: end for

/*Object-wise pruning*/
12: O = O ∪ObjectWisePruning(G, D, θ);

/*Unpruned objects processing*/
13: for each object oi in non-empty, uncoloured Ck ∈ G do
14: if oi is uncoloured then compute #D-neighbors(oi) using objects in Ck

and higher layers of Ck ∈ G;
15: if #D-neighbors(oi)≤ θ then oi is outlier. Add oi to O;
16: end for
17: return O;

the computation of bounds on #D-neighbors for the un-pruned objects. These
bounds are denoted by Pr(α,D)LB and Pr(α,D)UB, respectively. Algorithm
4.3 shows the object-wise bounds pruning.

For example, let D = 90 and σ = 10, then D + 3σ = 120. Therefore
Pr(α,D) values need to be computed for 0 < α ≤ 120 . Assuming that
Pr(α,D) is pre-calculated for α = 20, 40, 60, 80, 100, 120 then ψ = { 0.99,
0.9, 0.75, 0.5, 0.2, 0.001 }. If α = 70 for oi and oj then Pr(70, D)UB = 0.75

and Pr(70, D)LB = 0.5.

44 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

Algorithm 4.3: UDB Outlier Detection: ObjectWisePruning
Input: G, D, θ
Output: Set of distance-based outliers O

1: O = {};
2: for each non-empty uncoloured Ck in G do
3: for each oi in Ck do
4: for each oj in D3σ(Ck) (D3σ(Ck) corresponds to the cells within

D + 3σ distance of cells Ck) do
5: if 0 < α ≤ D + 3σ then
6: Update #D-neighbors(oi)LB and #D-neighbors(oi)UB using

precomputed bounds;
(#D-neighbors(oi)LB & #D-neighbors(oi)UB corresponds the
lower and upper bounds of #D-neighbors(oi) respectively.)

7: end if
8: end for
9: if #D-neighbors(oi)LB > θ then oi is inlier, mark oi green. GOTO

next oi;
10: else if #D-neighbors(oi)UB ≤ θ then oi is outlier, mark oi black.

Add oi to O;
11: end for
12: end for
13: return O;

4.3.3 Un-pruned Objects Processing and Grid File Index

There may be some undecided objects, i.e., they are neither pruned as inliers
nor identified as outliers, even after the cell-based pruning and the object-wise
bounds pruning. For all such uncertain objects, nested-loop computation fol-
lows. Usually the number of such objects is very small, yet it can be expensive
due to the costly distance probability computation. According to the distance
probability function, Pr(oi, oj, D) is higher when oi and oj are close. Hence for
an undecided object oi, if oj ∈ GDB nearer to oi are chosen earlier for the com-
putation of #D-neighbours of oi, the number of Pr(oi, oj, D) computations can
be reduced. If an un-pruned object oi is inlier, it will be pruned by considering
only nearer objects. Since the objects are already in grid structure, the grid can
be utilized as grid-file index [80] with no additional indexing cost to retrieve
nearer objects for the undecided objects. This helps in deciding the un-pruned
objects faster than using no index at all. Lines 13 through 16 of Algorithm 4.2
shows the processing of such objects.

4.3. Cell-based Outlier Detection 45

4.3.4 Complexity Analysis

We will first analyse the complexity of the UDB outlier detection algorithm
(Algorithm 4.2) for the 2D case. Line 1 creates the cell-grid by finding the
minimum and maximum means of the dataset GDB objects and cell length l. It
takes O(N) time. Line 2 takes O(m) time, where m ≪ N is the total number
of cells in the cell-grid G. Mapping N objects to the G require O(N) objects
evaluations. Line 4 contains only the initializations of variables. The main loop
of the algorithm in lines 5-11 is executed for all the cells in the G. The loop
computes the bounds of all the cells in G , each of which takes O(nL) time
(assuming that there are at-most nL layers in the G), because the cell bounds
computation require the contribution of all the cell layers in the G. Hence the
overall loop takes O(mnL) time. Assuming that there are n′ ≪ N un-pruned
objects in un-pruned cells from the cell-based pruning, the object wise pruning
takesO(n′N) time because, for the object-wise pruning, the bounds on the #D-
neighbours of each un-pruned object is computed using all the objects in the
dataset. Finally, computation of the accurate #D-neighbours in Lines 13-16
takes O(nN) time, where n ≪ N is the number of un-pruned objects from the
cell-based and the object-wise prunings. Thus, the average case time complexity
of the UDB outlier detection algorithm in 2D is O(nN + mnL). In the worst
case, none of the object is pruned by the cell-based algorithm, hence the worst
case time complexity of the UDB outlier detection algorithm in 2D is O(N2 +

mnL).

However, in the UDB outlier detection algorithm, the major cost lies in the
evaluation of accurate #D-neighbours of the un-pruned objects (Lines 13-16).
This cost is so high that it hides the cost of the rest of the algorithm. This is due
to the expensive distance probability computation between uncertain objects.
Therefore, we give the algorithm complexity in terms of the number of distance
probability evaluations. Hence the average case and the worst case time com-
plexities of the UDB outlier detection algorithm in 2D are O(nN) and O(N2),
respectively.

The complexities of the UDB outlier detection algorithm do not change with
the increase in dimensions d, as long as only the number of distance probability
evaluations are considered for the computation of the algorithm’s complexities.
Although with the increase in d, the number of grid cells increases exponen-

46 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

tially, yet the cost of evaluation of the #D-neighbours for the un-pruned objects
remains dominant and hence the complexities remain same for the average case
and the worst case, i.e., O(nN) and O(N2), respectively for higher dimensional
case.

From the above analysis, it is evident that the average case computational
complexity of the UDB outlier detection algorithm is lower than the Naive algo-
rithm, which is O(N2) in terms of the distance probability evaluations. Hence
the execution times of the cell-based UDB outlier detection algorithm is far
lower than the Naive algorithm. However, with the increase in d, the distance
probability computation between uncertain objects becomes so expensive that it
becomes impractical to detect outliers using the proposed approach from very
high dimensional data.

4.3.5 Discussion: Determination of Values for Parameters D,
p and l

Let us begin by stating that there is no universally correct value for parameters
D, p or l. Parameter D has an effect on the #D-neighbors of an object and
#D-neighbors are computed using Pr(oi, oj, D) function. Larger D values
result in larger Pr(oi, oj, D) values and therefore larger #D-neighbors and vice
versa. However very small or very large D value is not recommended as it
results in very small or very large #D-neighbors respectively for all the state
set objects and hides the difference between strong and weak outliers. Therefore
an appropriate D value must not be too large to cover the entire dataset objects
and not too small to cover only the object itself. Hence an appropriate D value
may be decided by considering the dataset distribution by the end user.

Since the parameter p is used in the determination of threshold, θ = N(1−
p), it affects the number of outliers returned by the proposed approaches. Since
an outlier occurs rarely, and therefore it is reasonable to select a value of p very
close to unity. Consider a dataset of size N = 1000, and p = 0.995. Given the
threshold expression θ = N(1 − p), where θ is the maximum #D-neighbors
of an outlier object o, this means that the maximum value of #D-neighbors of
o could be 5. If D is very large, very few or no outliers may occur. On the
other hand, for very small D many or all dataset objects may be outliers. From
experiments, we concluded that p should be close to unity. For example, for

4.4. Cell-based Outlier Detection using the Bounded Gaussian Uncertainty 47

N = 103, p = 0.995 may be appropriate, but for N = 106, may be far too small.
For the latter case, p = 0.99995 may be more appropriate.

Varying l has an affect on the performance of the proposed outlier detection
approaches rather than the accuracy. Smaller l values are good for cell pruning
as they result in tighter bounds, however very small l increases the number of
cells in the grid exponentially and the time required for the bounds computation.
On the other hand, larger l values result in looser bounds and hence reduce the
cell pruning capability. As the number of dimensions d increases, the number of
grid cells increases exponentially and therefore larger l values are recommended
for higher d. Therefore small l values are recommended for lower dimensions
and relatively larger values are recommended for higher dimensions.

4.4 Cell-based Outlier Detection using the Bounded
Gaussian Uncertainty

Despite the techniques presented in Sec. 4.3, unbounded nature of the Gaus-
sian distribution prevents from computing outliers very efficiently. Hence in
this section an approximate distance-based outlier detection approach using the
bounded Gaussian uncertainty is presented. Approximating the Gaussian distri-
bution by the bounded Gaussian distribution enables an approximate but more
efficient cell-based pruning technique along with simple object-wise distance
and bounds pruning techniques. According to this work’s assumption, attributes
of uncertain objects follow the Gaussian distribution. Therefore according to
the 3-sigma rule there is a 95.45% probability that uncertain objects’ attribute
values lie within 2 standard deviations of the observed values and 99.73% prob-
ability that the values lie within 3 standard deviations of the observed values
and so on [88]. Hence the conventional Gaussian distribution can be normalized
within certain boundaries to increase efficiency of outlier detection at a small
cost of accuracy.

In this section, we derive a distance probability function for the objects
following the bounded Gaussian uncertainty. Given a conventional Gaussian
function g−→A(x1, x2) with mean −→µ = (µ1, µ2)

T and co-variance matrix Σ =

diag(σ2, σ2), the bounded Gaussian distribution f−→A(x1, x2) can be defined fol-
lowing the practise of [108], as follows.

48 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

f−→A(x1, x2) =

g−→A (x1,x2)∫

(x1,x2)∈o.ur g−→A (x1,x2)dx1dx2
(x1, x2) ∈ o.ur

0 otherwise
(4.6)

where o.ur denotes the uncertainty region of the bounded Gaussian distribu-
tion. This paper assumes that the uncertainty region is a sphere with centre at
(µ1, µ2)

T and radius r. Note that,∫
o.ur

f−→A(x1, x2)dx1dx2 = 1.

When two objects oi and oj follow the bounded Gaussian distribution, Pr(oi, oj, D)

is given as follows.

Pr(oi, oj, D) =

r∫
0

2π∫
0

D∫
0

2π∫
0

f−→Ai
(r1 cos θ1, r1 sin θ1)×

f−→Aj
(r1 cos θ1 + r2 cos θ2, r1 sin θ1 + r2 sin θ2)r1r2dθ2dr2dθ1dr1.

(4.7)

Hence the uncertain data objects following the conventional Gaussian un-
certainty in dataset GDB = {o1, ..., oN} can be approximated by the bounded
Gaussian uncertainty. Namely, GDBb = {o1, ..., oN} denotes a set of objects
whose attributes

−→
Ai = (xi,1, xi,2)

T follow the bounded Gaussian uncertainty
with mean −→µi = (µi,1, µi,2)

T and co-variance matrix Σi = diag(σ2, σ2) respec-
tively and radius r.

4.4.1 Cell-based Pruning for the Bounded Gaussian

Approximating the Gaussian distribution by the bounded Gaussian distribution
enables better cell-based pruning. The proposed technique prunes cells con-
taining only inliers and identify outlier cells just like the cell-based approach
for conventional Gaussian distribution. In contrast to computing bounds using
many layers in the conventional Gaussian cell-based approach, cell size is set
in such a way that a target cell can be pruned by just counting objects within
the target cell and its neighbouring layers. Moreover, no pre-computation is
required for the cell-based technique using the bounded Gaussian uncertainty.

In order to identify distance-based outliers using the cell-based technique,

4.4. Cell-based Outlier Detection using the Bounded Gaussian Uncertainty 49

mean of each object oi ∈ GDBb is mapped to a d-dimensional space that is
partitioned into cells of length l (The cell length is discussed in Sec. 4.3.5).
Let Cx,y be a cell in the grid G, then cells in region R1(Cx,y) are those which
completely lie within D − 2r distance of the Cx,y, including the Cx,y itself, as
shown in Fig. 4.3. Let nR1 =

⌊
D−2r
l

⌋
− 1, then the region R1(Cx,y) is derived

as follows.

R1(Cx,y) = {Cu,v|u = x± nR1, v = y ± nR1,√
((|u|+ 1)l)2 + ((|v|+ 1)l)2 < D − 2r, Cu,v ̸= Cx,y} .

The number of cells in the region R1(Cx,y) vary depending upon nR1. Note
that the R1(Cx,y) satisfies the following property.

Property 1: If Cu,v ∈ R1(Cx,y), then the objects oi ∈ Cx,y and oj ∈ Cu,v are
at most D − 2r distance apart.

From property 1, the oi ∈ Cx,y and the oj ∈ R1(Cx,y) are guaranteed to be
D-neighbours mutually, hence the Pr(oi, oj, D) is always equal to 1. Cells in
region R2(Cx,y) are those which fall within D + 2r distance of the Cx,y. Let
nR2 =

⌈
D+2r
l

⌉
, then the region R2(Cx,y) is derived as follows.

R2(Cx,y) = {Cu,v|u = x± nR2, v = y ± nR2,√
((|u| − 1)l)2 + ((|v| − 1)l)2 < D + 2r, Cu,v /∈ R1(Cx,y), Cu,v ̸= Cx,y} .

Note that the R1(Cx,y) and the R2(Cx,y) satisfy following property.

Property 2: If Cu,v is neither in R1(Cx,y) nor in R2(Cx,y) and Cu,v ̸= Cx,y,
then the objects oi ∈ Cx,y and oj ∈ Cu,v are greater than D + 2r distance apart.

From property 2, it can be guaranteed that the oi ∈ Cx,y and oj ∈ Cu,v are
greater than D + 2r distance apart, hence the Pr(oi, oj, D) is always equal to
0. Two more types of cells help in pruning. These cells are named red cells and
pink cells and are denoted by Rr(Cx,y) and Rp(Cx,y) respectively. Let nR

diag
1 =⌊

D−2r
l
√
2

⌋
− 1 denotes number of diagonals within D− 2r distance of a cell Cx,y.

50 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

Then the red and the pink cells are defined as follows.

%ëáì

%ëáì

& E tN
& F tN

46

45

Red Cells

Pink Cells

Figure 4.3: Bounded gaussian cell grid

Rr(Cx,y) = {Cu,v|u = x± nr, v = y ± nr, Cu,v ̸= Cx,y};

nr = min{n | N(Cx,y) +
n∑
i=1

N(Li(Cx,y)) > θ , 0 < n ≤ ⌊nR
diag
1

2
⌋}.

where N(Li(Cx,y)) denotes the number of objects in Cx,y and its layer Li(Cx,y)
(1 ≤ i ≤ n). The nr value which meets above condition may not exist. If it
exists, Rp(Cx,y) is defined as follows.

Rp(Cx,y) = {Cu,v|u = x± np, v = y ± np,Cu,v /∈ Rr(Cx,y),

Cu,v ̸= Cx,y, nr < np < nR
diag
1 }.

For a Cx,y, Rr(Cx,y) is chosen in such a way that if the total number of
objects in the Cx,y and the Rr(Cx,y) are greater than threshold θ, then they can
prune all objects in the Cx,y, the Rr(Cx,y) and the Rp(Cx,y) as inliers. nr is
smaller the better, since the smaller nr results in larger np, hence more cells can
be pruned as inliers.

For example, in Fig. 4.3, nR
diag
1 = 3, and assume that nr = 1. Moreover,

assume that the total number of objects in Cx,y and L1(Cx,y) are greater than θ.
Then, np = 2, and all the objects in the Cx,y, the L1(Cx,y) and the L2(Cx,y) are

4.4. Cell-based Outlier Detection using the Bounded Gaussian Uncertainty 51

inliers. Note that combined thickness of Cx,y and Rr(Cx,y) is always less than
nR

diag
1 , hence they can prune cells inRp(Cx,y), just like Cx,y can pruneR1(Cx,y)

cells according to Property 3a.

Algorithm 4.4: UDB Outlier Detection: Cell-based Approach (Bounded
Gaussian)

Input: GDBb, D, p, l r, nbounds
Output: Set of distance-based outliers O

1: Compute nbounds bounds between D − 2r and D + 2r;
2: Create cell Grid G using the min. and max. dataset GDBb objects means

and cell length l and initialize the count of each cell Ck ∈ G, Countk ← 0;
3: Map each object o ∈ GDBb to an appropriate cell Ck, and increment
Countk by 1;

4: θ ← |GDBb|(1− p),O = {};
/* Cell-based Pruning */

5: For each non-empty Ck ∈ G, If Countk > θ, Ck is an inlier cell, mark Ck
green;

6: For each green cell Ck ∈ G, mark R1(Ck) cells blue, provided the
neighbour has not already been marked green;

7: For each non-empty, uncoloured cell Ck ∈ Grid, If
Countk +

∑
m∈Rr(Ck)

Countm > θ, then mark Ck, Rr(Ck) and Rp(Ck)
blue;

8: for each non-empty, uncoloured cell Ck in G do
9: Countk2 ← Countk +

∑
m∈R1(Ck)

Countm;
10: if Countk2 > θ then
11: Ck is an inlier cell, mark Ck blue. GOTO next Ck;
12: else if Countk2 +

∑
m∈R2(Ck)

Countm ≤ θ then
13: Ck is an outlier cell, add objects of Ck to O. GOTO next Ck;
14: end if
15: end for

/*Object-wise pruning*/
16: O = O ∪ObjectWisePruning(G, D, θ);

/*Unpruned objects processing*/
17: for each object oi in non-empty, uncoloured Ck ∈ G do
18: if oi is uncoloured then compute #D-neighbors(oi) using objects in Ck

and higher layers (layers within D + 3σ distance of oi) of Ck ∈ G;
19: if #D-neighbors(oi)≤ θ then oi is outlier. Add oi to O;
20: end for
21: return O;

52 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

Property 3: Cell pruning.

(a) If N(Cx,y) > θ, all the objects in Cx,y and R1(Cx,y) are inliers.

(b) If N(Cx,y) +N(R1(Cx,y)) > θ, all the objects in Cx,y are inliers.

(c) IfN(Cx,y)+N(Rr(Cx,y)) > θ, all the objects inCx,y,Rr(Cx,y) andRp(Cx,y)

are inliers.

(d) If N(Cx,y) + N(R1(Cx,y)) + N(R2(Cx,y)) ≤ θ, every object in Cx,y is an
outlier.

where N(.) denotes the number of objects. Algorithm 4.4 shows the cell-based
calculation for the bounded Gaussian distribution.

4.4.2 Simple Object-wise Distance Pruning

Although the cell-based technique is very effective, yet it may leave some cells
undecided, i.e., they are neither pruned as the inlier cells nor are identifies as the
outlier cells. For pruning of uncertain data objects in such cells, an object-wise
distance pruning technique is proposed. A similar technique was used in [78]
for finding distance between an object and a cluster representative.

Since the uncertainty of objects in GDBb is bounded, it can be found weather
two objects are within theD-distance only by calculating distance between their
observed coordinates. The distance computation in this case is just ordinary Eu-
clidean and is cheap. Since α denotes an ordinary Euclidean distance between
observed coordinates of two objects. Let the objects be oi, oj ∈ GDBb. If
α ≤ D − 2r, it is guaranteed that object oj lies within the D-distance of oi. In
other words, Pr(oi, oj, D) = 1. On the other hand, if α > D+2r, then object oj
is guaranteed to lie outside the D-distance of oi. In this case, Pr(oi, oj, D) = 0.
For example, in Fig. 4.4, α < D − 2r for oi and op and α > D + 2r for oi
and oq. Therefore Pr(oi, op, D) = 1 and Pr(oi, oq, D) = 0. This object-wise
distance pruning helps in computing #D-neighbours of the un-pruned objects.
Using this approach, a lot of expensive distance probability computations may
be avoided.

4.4.3 Object-wise Bounds Pruning

Using simple object-wise distance pruning of Sec. 4.4.2, Pr(oi, oj, D) can be
computed only for the objects whose D + 2r < α ≤ D− 2r. However in order

4.4. Cell-based Outlier Detection using the Bounded Gaussian Uncertainty 53

%ëáì

%ëáì

46

45

Kä

Kã

KÜ

O & F tN

P & E tN

Figure 4.4: Simple object-wise distance pruning

to compute the #D-neighbours for an object oi ∈ GDBb, the Pr(oi, oj, D)

needs to be computed for all oj ∈ GDBb within the regions R1(Cx,y) and
R2(Cx,y). Here Cx,y is the cell containing oi. Hence a technique similar to
the object-wise bounds pruning of Sec. 4.3.2 can be used to compute bounds of
the Pr(oi, oj, D) for D − 2r < α ≤ D + 2r. The object-wise bounds pruning
for the bounded Gaussian is exactly similar to that of the conventional Gaussian
with an exception that in the bounded Gaussian, the bounds need to be computed
for D − 2r < α ≤ D + 2r only.

4.4.4 Un-pruned Objects Processing for the Bounded Gaus-
sian

Un-pruned objects processing for the bounded Gaussian distribution is same as
the one presented in Algorithm 4.2. The only difference between the un-pruned
objects processing of the conventional Gaussian uncertainty and the bounded
Gaussian uncertainty is that the later needs to consider objects in only 2 regions,
i.e., R1(Cx,y) and R2(Cx,y) for the computation of the #D-neighbours of an
un-pruned object oi ∈ Cx,y. In contrast, the conventional Gaussian needs to
consider objects in the complete grid G.

54 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

4.4.5 Complexity Analysis

The major part of the UDB(BG) algorithm is same as that of the UDB(CG) al-
gorithm, hence the computational complexity of the UDB(BG) algorithm is also
similar to that of the UDB(CG) algorithm. Just like the UDB(CG) algorithm,
the major cost of the UDB outlier detection lies in the evaluation of the exact
#D-neighbours of the un-pruned objects. This cost is so high that it hides the
cost of the rest of the algorithm. This is due to the expensive distance probability
computation between the uncertain objects. Therefore we give the complexities
of the UDB(BG) algorithm in terms of the number of distance probability eval-
uations, which are O(nN ′) and O(N2) in 2-dimensional case, for the average
case and the worst case respectively; where n≪ N is the number of un-pruned
objects and N ′ ≤ N is the number of objects that lie within D + 2r distance of
the un-pruned objects. Although the number of distance probability evaluations
required for the processing of un-pruned objects in the UDB(BG) algorithm is
far less than the UDB(CG), its worst case complexity is still O(N2) in 2D case,
since it assumes that none of the objects are pruned through the cell-based ap-
proach and all the dataset objects lie within D + 2r distance of the un-pruned
objects.

The complexities of the UDB(BG) algorithm do not change with the increase
in dimensions d, as long as only the number of distance probability evaluations
are considered for the computation of the algorithm’s complexity. Although
with the increase in d, the number of grid cells increases exponentially, yet
the cost of evaluation of the #D-neighbours for the un-pruned objects remains
dominant and hence the complexities remain same for the average case and the
worst case, i.e., O(nN ′) and O(N2), respectively for higher dimensional case.

4.5 Discussion: Outlier Detection in
High-dimensional Data and Sub-space Outlier
Detection

High dimensional data in Euclidean space pose challenges to data mining al-
gorithms, mainly due to the data sparsity. Based on this observation, Bayer et
al. in [22] proved that in high dimensional space, all pairs of points are almost

4.5. Discussion: Outlier Detection in
High-dimensional Data and Sub-space Outlier Detection 55

equidistant from one another for a wide range of data distributions and distance
functions. Therefore the task of outlier detection has found new specialized so-
lutions for tackling high dimensional data in Euclidean space. These approaches
fall under mainly two categories [121], namely 1) Considering subspaces (sub-
sets of attributes) for the outlier detection, 2) Not considering subspaces for the
detection of outliers.

In the first category, irrelevant attributes are usually not filtered and all the
subspaces (subset of attributes) are included in the outlier detection process. The
second category filters the irrelevant attributes and is more concerned with gen-
eral issues of efficiency and effectiveness. Nevertheless, both types of special-
ized outlier detection algorithms tackle challenges specific to high dimensional
data.

The work presented in this dissertation can be used for the first category, i.e.
subspace outlier detection. Subspace outlier detection aims at finding outliers
in relevant subspaces that are not outliers in the full-dimensional space (where
they are covered by irrelevant attributes) [121]. Predominant issues in subspace
outlier detection are: 1) identication of subspaces: Which subspace is relevant
and why?, 2) comparability of outlier scores: How to compare outlier results
from different subspaces.

First approach for high-dimensional (subspace) outlier detection was given
by Aggarwal and Yu [12]. Their approach resembles a grid-based subspace clus-
tering approach but not searching dense but sparse grid cells and report objects
contained within sparse grid cells as outliers.

Zhang et al. [118] also studied the identification of outliers in the subspaces.
They defined the outlying degree of a point w.r.t. a certain space s in terms of
the sum of distances to the k nearest neighbors in this (sub-)space s. For a fixed
subspace s, this is the outlier model of Angiulli and Pizzuti [17].

In our work, subspace outlier detection can be incorporated using the sub-
space distance-based outlier detection approach presented by Knorr et al. in [64]
for deterministic data. With the increase in dimensions, the number of subspaces
need to be considered for outlier detection increases exponentially and due to
this reason identification of relevant subspaces for outlier detection is a known
research problem. Authors in [64] proposed to select subspaces at random and
search for outliers in them. Using this approach, if a subspace A does not con-
tain any outlier, then none of its subspaces B ⊂ A can contain an outlier, in

56 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

this way a lot of subspaces can be pruned from consideration. Experimentally,
authors in [64] found d = 3 (d denotes the number of subspace dimensions) as
a good starting point for random subspace selection, however further research is
needed to identify relevant subspaces.

4.6 Experiments

Extensive experiments are conducted on synthetic and real datasets to evaluate
the effectiveness and efficiency of the proposed approaches. In the experiments,
Knorr et al. [63] approach of outlier detection on deterministic data is used as
the baseline to compare the accuracy of outlier detection. All algorithms are im-
plemented in C++, GNU compiler. All experiments are performed on a system
with an Intel Core 2 Duo CPU E8400 3.00GHz CPU and 2GB main memory
running Ubuntu 12.04 OS. All programs run in main memory and no I/O cost
is considered. Each experiment is performed 3 times and the average values are
used in the graphs. We have also used error bars in the graphs, showing the stan-
dard error in the execution time measurements of each approach. However, in
majority of the graphs they are not visible due to very small standard error in the
execution times. Therefore, a table is used to show the percentage of standard
error in the execution times.

Pre-computation time is not included in the measurements. Unless specified,
the following parameter values are used in experiments: D = 100, σ = 10,
l = 10, nbounds = 10, r = 2σ, and p = 0.998. In the figures, the Knorr
et al. [65] approach is denoted by Knorr and the approaches proposed in this
chapter are denoted by UDB(CG) and UDB(BG), respectively.

4.6.1 Datasets

In this work two synthetic and three real datasets are used for experiments, as
shown in Figs. 4.5. Unless specified, synthetic datasets, the unimodal Gaussian
(UG) and the trimodal Gaussian (TG) are 2-dimensional each and are generated
using the BoxMuller method [110]. This method generates pair of indepen-
dent, standard, normally distributed (zero mean, unit variance) random numbers,
given a source of uniformly distributed random numbers. Higher-dimensional
unimodal Gaussian datasets (for up to 5 dimensions) are also generated and used

4.6. Experiments 57

(a) UG (b) TG

(c) ADAPTE (d) SDSS

(e) ISPD

Figure 4.5: Datasets used in the experiments.

58 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Knorr

UDB(CG)

UDB(BG)

(a) TG

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Knorr

UDB(CG)

UDB(BG)

(b) ADAPTE

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Knorr

UDB(CG)

UDB(BG)

(c) SDSS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Knorr

UDB(CG)

UDB(BG)

(d) ISPD

Figure 4.6: Precision-recall trade-off curves (D = 100, σ = 10, σp = 20,
l = 10, nbounds = 10, r = 3σ, and p is selected in such a way that approximately
0.5 % outliers are returned by all the algorithms.)

for the evaluation of the proposed approaches on higher-dimensional datasets.
Unless specified, synthetic datasets consist of 5,000 tuples each.

As for real-world data, three datasets are used: ADAPTE, SDSS and ISPD.
ADAPTE and ISPD are obtained from CISL Research data archive [1] and
SDSS is obtained from Sloan Digital Sky Survey [3]. ADAPTE consists of
about 1,851 maximum and minimum temperature values collected from the
National Polytechnic Institute of Mexico and National Meteorological System.
SDSS dataset contains 10,136 Right Ascension and Declination coordinates of
stars and galaxies. SDSS dataset used in the experiments is a subset of SDSS
Data Release 7 (DR7), which includes a huge collection of more than 6 mil-
lion stars, 8 million galaxies, and 4,500 quasars [3]. The International Surface
Pressure Databank (ISPD) dataset consists of 108,015 values of sea level pres-
sure and surface pressure, which is the world’s largest collection of pressure
observations [2].

All the datasets are normalized to have a domain of [0,1000] on every di-
mension. For each point z in any dataset, an uncertain object o is created, whose

4.6. Experiments 59

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

P
re

ci
si

o
n

Uncertainty Level

knorr UDB(CG) UDB(BG)

(a) TG

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

P
re

ci
si

o
n

Uncertainty Level

knorr UDB(CG) UDB(BG)

(b) ADAPTE

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

P
re

ci
si

o
n

Uncertainty Level

knorr UDB(CG) UDB(BG)

(c) SDSS

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

P
re

ci
si

o
n

Uncertainty Level

knorr UDB(CG) UDB(BG)

(d) ISPD

Figure 4.7: Precision with increasing σp (D = 100, σ = 10, l = 10, nbounds =
10, r = 3σ, and p is selected in such a way that approximately 0.5 % outliers
are returned by all the algorithms.)

uncertainty is given by the Gaussian distribution with mean z and standard de-
viation σ in all the dimensions.

4.6.2 Accuracy

Firstly, experiments are performed to evaluate the accuracy of the proposed ap-
proaches. Since there are no known approaches for the distance-based outlier
detection on uncertain data, the deterministic distance-based outlier detection
approach given by Knorr et al. in [65] is used as a baseline. Since the outliers
are not known, for both the synthetic and the real datasets, the baseline approach
is used to determine the outliers on the original datasets. The results obtained
from the baseline approach are used as the ground truth. In order to judge the ac-
curacy of the proposed approaches, the precision and recall are measured on the
perturbed dataset for the baseline approach and the proposed approaches. The
precision is defined as the ability of the algorithm to present only true outliers.
The recall is defines as the ability of the algorithm to present all true outliers.
In order to compute the precision and recall, the #D-neighbors are computed

60 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

R
e

ca
ll

Uncertainty Level

knorr UDB(CG) UDB(BG)

(a) TG

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

R
e

ca
ll

Uncertainty Level

knorr UDB(CG) UDB(BG)

(b) ADAPTE

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

R
e

ca
ll

Uncertainty Level

knorr UDB(CG) UDB(BG)

(c) SDSS

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

R
e

ca
ll

Uncertainty Level

knorr UDB(CG) UDB(BG)

(d) ISPD

Figure 4.8: Recall with increasing σp (D = 100, σ = 10, l = 10, nbounds = 10,
r = 3σ, and p is selected in such a way that approximately 0.5 % outliers are
returned by all the algorithms.)

for the outliers returned by each of the approach used in the experiments. The
outliers are then listed in an increasing order of their #D-neighbors for the
computation of their precision and recall. The perturbed dataset is obtained by
adding normal random numbers with zero mean and standard deviation σp to
each of the tuple values of the original dataset. The σp was varied from 10
to 30 (with a step of 5) to generate perturbed datasets of five different levels.
Experiments show that the proposed approaches are superior than the baseline
approach, since they do not degrade quite as much with increasing uncertainty.

Unless specified, the following parameter values are used for the experi-
ments in this subsection: D = 100, σ = 10, σp = 20, l = 10, nbounds = 10,
r = 3σ, and p is selected in such a way that the baseline approach and the
proposed approaches return approximately 0.5% outliers.

Firstly the precision-recall trade-off curves are presented for the different
datasets. In all the graphs in Fig. 4.6, the trade-off curves are higher for the
proposed approaches, showing the higher precision and recall of the proposed
approaches. In Figs. 4.6b and 4.6c, the precision-recall curves are somewhat

4.6. Experiments 61

closer for all three approaches due to the presence of obvious outliers in these
datasets. Addition of perturbation could not change a lot of outliers in these
datasets. Yet the recall, i.e. the number of true outliers retrieved, of the proposed
approaches is better than the baseline approach in both the datasets. The number
of false positive outliers returned by the baseline approach in Figs. 4.6a and 4.6d
is very large. This can be observed from the very low precision of the trade-off
curves of the baseline approach. On the other hand, the trade-off curves for
the proposed approaches are far higher, which shows the higher accuracy of the
proposed approaches.

The precision of the proposed approaches is also tested with increasing level
of uncertainty. From Fig. 4.7, it is clear that the precision falls with increasing
uncertainty level. Moreover, the precision results for the proposed approaches
are superior than the results of the baseline approach for all the uncertainty lev-
els in Fig. 4.7. Furthermore, the difference between the baseline approach and
the proposed approaches increases with increasing uncertainty. Please note the
sharp decrease in precision in Fig.4.7d. Since the dataset of Fig. 4.7d is very
large and dense, addition of even low level of perturbation produced a lot of
false positive outliers in case of the baseline approach. On the other hand, the
proposed approaches produced better precisions for all the datasets. Similar re-
sults are illustrated for recall in Fig. 4.8. In all four plots of Fig. 4.8, the recall
is somewhat consistent with increasing uncertainty level for the proposed ap-
proaches. Which proves that the proposed approaches are capable of retrieving
true outliers, even from the noisy data.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1000 2000 3000 4000 5000

E
x
e

cu
ti

o
n

 T
im

e
(s

)

N

UDB(CG)

UDB(BG)

Naive

Figure 4.9: Naive vs. proposed Approaches

62 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

Table 4.2: Standard error percentage in execution times

Naive UDB(CG) UDB(BG)

N
Avg.Exec.

Time(s)
Std.

Error(%)
Avg.Exec.

Time(s)
Std.

Error(%)
Avg.Exec.

Time(s)
Std.

Error(%)
1000 918.355 0.00038 0.13433 0.40520 0.15967 0.34092
2000 3236.21 0.00248 0.43133 0.12619 0.424 0
3000 7622.91 9.44E-05 1.34 0 0.48833 0.05573
4000 13460.5 0.00020 71.4207 0.00101 1.01167 0.02690
5000 17493.9 0.00031 88.9793 0.00061 0.68666 0.03964

4.6.3 Efficiency

In this subsection, experiments are conducted to evaluate efficiency of the pro-
posed outlier detection approaches presented in sections 4.3 and 4.4. The time
taken by the Naive approach is too high. It takes several hours even on the
smallest sample (of 5000 tuples) of the synthetic dataset as can be observed
from Fig. 4.9. On the other hand, the proposed approaches, i.e., the UDB(CG)
and the UDB(BG) are several times faster than the Naive approach. Note that the
UDB(BG) approach require far less time to detect outliers than the UDB(CG),
since the computation of #D-neighbors in the UDB(BG) is far less expensive
than the UDB(CG) due to the reasons discussed in Sec. 4.4.

As stated previously, each experiment is performed 3 times and the average
values are used in the graphs. Besides, error bars are also used in the graphs,
showing the standard error in the execution time measurements of each ap-
proach. However, due to very small standard error in the execution times, it
is not visible in the figures. Hence for the Fig. 4.9, we have used a table to
present the average execution times and the standard error percentages used to
plot the graphs in Fig. 4.9. Due to the usage of dedicated computers for the
experiments, the deviations in execution times is very small as can be observed
from Table 4.2. Hence, in the rest of the experiments only figures are used for
the evaluation of the proposed approaches.

Graphs in Fig. 4.10 show the effect of varying cell lengths on the execution
times of the proposed approaches. The smaller cell lengths l require the lower
execution times and vice versa, which can be observed from Fig. 4.10, specially
the UDB(BG) curves. Smaller l values are good for cell pruning as they result
in tighter bounds, however very small l increases the number of cells in the grid

4.6. Experiments 63

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 5 10 15 20

E
xe

cu
ti

o
n

 T
im

e
(s

)

Cell Length

UDB(CG)

UDB(BG)

(a) UG

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 5 10 15 20

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Cell Length

UDB(CG)

UDB(BG)

(b) TG

1.E+00

1.E+01

1.E+02

1.E+03

1 5 10 15 20

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Cell Length

UDB(CG)

UDB(BG)

(c) SDSS

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1 5 10 15 20

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Cell Length

UDB(CG)

UDB(BG)

(d) ADAPTE

Figure 4.10: Varying parameter l (D = 100, σ = 10, nbounds = 10, r = 2σ,
p = 0.998)

exponentially and the time required for the bounds computation. On the other
hand, larger l values result in looser bounds and hence reduce the cell pruning
capability. Moreover, as the number of dimensions d increases, the number of
grid cells increases exponentially. Therefore, smaller l values are recommended
for lower dimensions and relatively larger values are recommended for higher
dimensions. Furthermore if can be observed from the graphs in Fig. 4.10 that
the UDB(BG) approach is more efficient than the UDB(CG) approach. The
sharp increase of the UDB(BG) curves at cell length 1 is due to the exponential
increase in the number of cells in grid.

Next, experiments are performed by varying the dataset objects’ uncertainty
which is denoted by σ. As σ increases, the uncertainty of the dataset objects
also increases. This increase in uncertainty results in smaller Pr(oi, oj, D) val-
ues even if oi and oj are located nearby. Hence the number of distance func-
tion evaluations required increases for un-pruned objects during the processing
of un-pruned objects, which results in higher execution times as can be ob-
served from Fig. 4.11. However in Fig. 4.11b, the fall in execution time of
the UDB(CG) curve is due to the decrease in number of un-pruned objects. In

64 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

UDB(CG)

UDB(BG)

(a) UG

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

3 6 9 12 15

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

UDB(CG)

UDB(BG)

(b) TG

1.E+00

1.E+01

1.E+02

1.E+03

3 6 9 12 15

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

UDB(CG)

UDB(BG)

(c) SDSS

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

3 6 9 12 15

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

UDB(CG)

UDB(BG)

(d) ADAPTE

Figure 4.11: Varying object’s uncertainty σ (D = 100, l = 10, nbounds = 10,
r = 2σ, p = 0.998)

our proposed approaches, the main execution cost lies in the processing of un-
pruned objects (This phenomenon is discussed in Fig. 4.16). Hence the decrease
in the execution time of the UDB(CG) curve is due to the decrease in number of
un-pruned objects with the increase in the dataset objects’ uncertainty.

Fig. 4.12 shows the effect of varying the distance parameter D. Increase in
D results in an increase in D-neighbours of dataset objects. As a result, objects
are more easily pruned as inliers, bringing down execution time of the overall
algorithm for larger values of D. Unusual curves in Fig. 4.12d is due to the
variation in the number of un-pruned objects for D = 100 and D = 120.

In Fig. 4.13, the number of outliers are varied by varying the parameter p.
As can be observed from the graphs in Fig. 4.13, increase in p results in decrease
in execution times of the algorithms. This is due to the fact that increase in p,
results in decrease of the threshold value θ. Hence the dataset objects are pruned
more easily, bringing down the algorithm execution time. Unusual curves in
Fig. 4.13d is again due to the variation in the number of un-pruned objects for
p = 0.998. In experiments, the number of un-pruned objects are quite small or
even zero for some parameter values, resulting in dramatic decrease in execution

4.6. Experiments 65

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

UDB(CG)

UDB(BG)

(a) UG

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

UDB(CG)

UDB(BG)

(b) TG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

UDB(CG)

UDB(BG)

(c) SDSS

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

UDB(CG)

UDB(BG)

(d) ADAPTE

Figure 4.12: Varying parameter D (l = 10, σ = 10, nbounds = 10, r = 2σ,
p = 0.998)

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.995 0.996 0.997 0.998 0.999

E
xe

cu
ti

o
n

 T
im

e
(s

)

p

UDB(CG)

UDB(BG)

(a) UG

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

0.995 0.996 0.997 0.998 0.999

E
x
e

cu
ti

o
n

 T
im

e
(s

)

p

UDB(CG)

UDB(BG)

(b) TG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

0.995 0.996 0.997 0.998 0.999

E
xe

cu
ti

o
n

 T
im

e
(s

)

p

UDB(CG)

UDB(BG)

(c) SDSS

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

0.995 0.996 0.997 0.998 0.999

E
x
e

cu
ti

o
n

 T
im

e
(s

)

p

UDB(CG)

UDB(BG)

(d) ADAPTE

Figure 4.13: Varying parameter p (D = 100, l = 10, σ = 10, nbounds = 10,
r = 2σ)

66 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

times of the algorithms, while in some experiments the number of un-pruned
objects are quite large for some parameter values, resulting in sharp increase in
the execution times of the algorithms.

0%

20%

40%

60%

80%

100%

UG TG SDSS ADAPTE

P
e

rc
e

n
ta

g
e

Dataset UDB(CG) UDB(BG)

(a) Cell-based Pruning Percentage

0.00%

0.01%

0.10%

1.00%

10.00%

UG TG SDSS ADAPTE

P
e

rc
e

n
ta

g
e

Dataset UDB(CG) UDB(BG)

(b) Cell-based Pruning Time

Figure 4.14: Cell-based pruning

Next we present some graphs discussing the effect of different pruning ap-
proaches for both the proposed approaches i.e., the UDB(CG) and the UDB(BG).
Fig. 4.14a shows the percentage of objects pruned by the cell-based approach
for different datasets. From the figure, it is very clear that the cell-based ap-
proach is very effective and capable of pruning more than 95% of the dataset
objects in all the datasets. Fig. 4.14b shows the percentage of the execution
time taken by the cell-based approach by the different datasets.

0%

1%

2%

3%

4%

UG TG SDSS ADAPTE

P
e

rc
e

n
ta

g
e

Dataset UDB(CG) UDB(BG)

(a) Object-wise Pruning Percentage

0.000%

0.001%

0.010%

0.100%

1.000%

10.000%

UG TG SDSS ADAPTE

P
e

rc
e

n
ta

g
e

Dataset UDB(CG) UDB(BG)

(b) Object-wise Pruning Time

Figure 4.15: Object-wise pruning

Fig. 4.15 shows the percentage of objects pruned and the time required,
respectively by the object-wise pruning approach. Since the object-wise prun-
ing approach is executed after the cell-based pruning approach, it is capable of
pruning very small percentage of object. Fig. 4.16a shows the percentage of
un-pruned objects. Since the un-pruned objects require exact #D-neighbors

4.6. Experiments 67

evaluation, which is computationally very expensive, the percentage of algo-
rithms’ time required by both the approaches is quite high, as can be observed
from Fig. 4.16b. Although the percentage of un-pruned objects is very small and
the percentages of objects pruned by the cell-based and the object-wise pruning
approaches is quite large, however the percentage of time taken by the prun-
ing approaches is quite small as compared to the un-pruned objects’ processing
time.

0.00%

0.05%

0.10%

0.15%

0.20%

UG TG SDSS ADAPTE

P
e

rc
e

n
ta

g
e

Dataset UDB(CG) UDB(BG)

(a) Percentage of Un-pruned Objects

0%

20%

40%

60%

80%

100%

UG TG SDSS ADAPTE

P
e

rc
e

n
ta

g
e

Dataset UDB(CG) UDB(BG)

(b) Un-pruned Objects’ Processing Time

Figure 4.16: Un-pruned objects’ processing

Next, we perform experiments by varying the number of dimensions d. We
varied the number of dimensions from 2 to 5 with a step of 1. For this experi-
ment, dataset UG of size 500 tuples is used. As d increases the number of cells
in the grid increases exponentially and the memory and the processing time
required to hold and process the large number of cells, respectively increases
dramatically. Therefore, the proposed cell-based approach is not much effective
for the high-dimensional data as can be observed from Fig. 4.17. Moreover,
from Fig. 4.17 we can observe that as the number of d increases, the differ-
ence in execution times of the Naive approach and the CUDB(CG) approach
decreases. This is due to the fact that with the increase in d, objects get sparse
and their #D-neighbors become very small. Hence, the cell-based approach
can not prune objects in higher dimensional data resulting in an increase in un-
pruned objects. For very high d, none of the objects is pruned by the cell-based
approach and the cell-based approach become as expensive as that of the Naive
approach.

We also performed experiments by varying the number of dimensions d and
the parameterD in parallel. In the experiments shown in Fig. 4.17, parameterD
was kept constant, due to which the number of outliers increases dramatically

68 CHAPTER 4. OUTLIER DETECTION ON UNCERTAIN DATA

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

2 3 4 5

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Dimensions (d)

UDB(CG)

UDB(BG)

Naive

Figure 4.17: Vary dimensions d (N = 500, D = 100, l = 10, σ = 10, nbounds =
10, r = 2σ and p = 0.997)

with the increase in d. With the increase in d, objects get sparse and the pa-
rameter D must be increased accordingly to find the limited number of outliers.
Hence in Fig. 4.18, we increased the parameter D with the increase in d, in
proportion to the average distance between the dataset objects. By doing so, we
obtained almost same percentage of outliers from all the dimensions. Moreover,
the execution times of all the approaches fall dramatically as can be observed
from Fig. 4.18. In addition, the difference between the execution times of the
Naive approach and the CUDB(CG) approach continues to decrease with the
increase in d. This is mainly due to the exponential increase in the number of
cells with the increase in d, whose processing require a major percentage of the
overall algorithm execution time.

1.E-03

1.E-02

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

2 3 4 5

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Dimensions (d)

UDB(CG)

UDB(BG)

Naive

Figure 4.18: Vary dimensions d and parameter D (N = 500, l = 10, σ = 10,
nbounds = 10, r = 2σ and p = 0.997)

Finally, Fig. 4.19 compares the pre-computation times of the CUDB(CG)
and the CUDB(BG) approaches. Since the CUDB(CG) approach needs to com-
pute two types of bounds, i.e., Pr(α,D) values for cell bounds and object-

4.7. Summary 69

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5

P
re

-c
o

m
p

u
ta

ti
o

n
 T

im
e

(s
)

Dimensions (d)

UDB(CG)

UDB(BG)

Figure 4.19: Pre-computation time

wise bounds, the pre-computation cost of the CUDB(CG) is higher than the
CUDB(BG). Furthermore, the pre-computation time increases with the increase
in number of dataset’s dimensions. This is due to the fact that the distance
probability computation Pr(oi, oj, D), which is required for pre-computation,
becomes expensive with the increase in dimensions.

4.7 Summary

In this chapter, two approaches of distance-based outlier detection on uncertain
datasets are proposed. Firstly a cell-based approach of distance-based outlier
detection on uncertain objects following the conventional Gaussian uncertainty
is proposed. Secondly an approximate cell-based approach of outlier detection
using the bounded Gaussian uncertainty is proposed to increase the efficiency
of outlier detection. Experiments prove that the accuracy of the proposed UDB
outlier detection approaches (UDB(CG) and UDB(BG)) is far higher than the
baseline algorithm. The cell-based pruning is quite effective and is able to
prune more than 95% objects in almost all the experiments, due to which the
UDB(CG) and the UDB(BG) are several times faster than the Nave approach.
In addition the UDB(BG) saves a lot more computation time than the UDB(CG)
at a small loss of accuracy.

Chapter 5

Tok-k Outlier Detection on
Uncertain Data

The main goal of the research in this chapter is to find top-k distance-based
outliers or in other words to obtain k strongest outliers along with their rank-
ing from uncertain datasets. In the outlier detection approach presented in
chapter 4 and in other existing works on outlier detection from uncertain data
[13, 60, 77, 112], an object can be either classified as outlier or inlier. Since
there is no universally agreed definition of outliers, different algorithms return
different outliers depending upon the combination of parameter values. Some
combinations return a very few while others return a lot of outliers. More-
over, no outlier ranking is available and users are unable to differentiate between
strong and weak outliers. Hence in this chapter we present a top-k approach of
distance-based outlier detection on uncertain data.

5.1 Overview

Existing algorithms on outlier detection from uncertain data [13, 60, 77, 112]
can only perform binary classification, i.e., they can either classify an object
as an inlier or an outlier. However, end users are usually interested in strong
outliers and their ranking. Hence in this work, we present a top-k approach of
distance-based outliers.

To obtain the top-k distance-based outliers from uncertain datasets efficiently
we have proposed a novel data structure, PC-list (populated-cells list). The PC-

71

72 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

list is a sorted list of non-empty cells of a d-dimensional grid, where grid is
used to index data objects [80]. Using PC-list, the top-k outlier detection algo-
rithm needs to consider only a fraction of the dataset objects and hence quickly
identifies candidate objects for top-k outliers. Finally exact outlier score (#D-
neighbors) is computed for each candidate object to find the top-k outliers and
their ranking. Furthermore, two approximate top-k outlier detection algorithms
are presented in this work to increase the efficiency of the top-k outlier detec-
tion algorithm. The first approximate algorithm, approximates only the candi-
date objects’ #D-neighbors. According to our distance probability function,
major contribution in #D-neighbors computation of an object is made by the
nearer objects. Hence the first approximate algorithm, approximates the candi-
date objects’ #D-neighbors computation by considering only the objects which
can affect the #D-neighbors in a dramatic way. The second approximate algo-
rithm makes use of the bounded Gaussian uncertainty to increase the efficiency
of the top-k outlier detection algorithm. The exact top-k outlier detection ap-
proach is denoted by kUDB(CG) and the approximate approaches are denoted
by kUDB(Approx) and kUDB(BG), respectively in the rest of the dissertation.

5.2 Problem Formulation

Since the focus of this work is the detection of top-k distance-based outliers
from uncertain data and to obtain their ranking, the definition 4.2 of distance-
based outlier detection on uncertain data given in chapter 4 can be modified for
the top-k outliers as follows.

Definition 5.1 The top-k distance-based outliers are the k uncertain objects in

the dataset GDB for which the expected number of objects oi ∈ GDB lying

within their D-distance (#D-neighbors) is smallest.

The objects that lie within the D-distance of oi are called its D-neighbors,
and the set of the D-neighbors of oi and the number of D-neighbours are de-
noted by DN(oi) and #D-neighbors(oi) or #D(oi), respectively. In order to
find the top-k distance-based outliers in GDB, the #D-neighbors of candidate
outlier objects needs to be computed which requires the computation of dis-
tance probability. This distance probability is computed using the difference

5.2. Problem Formulation 73

between two uncertain objects, which is given by another distribution known as
the Gaussian difference distribution [114].

Let
−→
Ai and

−→
Aj be two independent d-dimensional normal random vectors

with means −→µi = (µi,1, ..., µi,d)
T and −→µj = (µj,1, ..., µj,d)

T and diagonal covari-
ance matrices Σi = diag(σ2

i,1, ..., σ
2
i,d) and Σj = diag(σ2

j,1,..., σ
2
j,d), respectively.

Then |
−→
Ai −

−→
Aj| = N (−→µi − −→µj ,Σi + Σj) [114]. Let Pr(oi, oj, D) denotes the

probability that oj ∈ DN(oi). Then,

Pr(oi, oj, D) =

∫
R

N (−→µi −−→µj ,Σi + Σj)d
−→
A , (5.1)

where R is a sphere with centre (−→µi −−→µj) and radius D. Please refer to 4.1 for
the 2-dimensional derivation for Pr(oi, oj, D). Pr(oi, oj, D) expressions for
higher dimensions can be derived using Eq. 5.1.

This work assumes that the attributes of uncertain objects are independent
and the uncertainty of objects (standard deviation) is uniform in all dimensions,
hence σi,1 = σj,1 = σi,2 = σj,2 = σ, and let α2 = α2

1 + α2
2. This results in

a non-correlated diagonal covariance matrices, i.e., Σi = diag(σ2
i,1, σ

2
i,2) and

Σj = diag(σ2
j,1, σ

2
j,2) for the distance probability expression, Pr(oi, oj, D). On

the other hand, if the attributes of uncertain objects are dependent there ex-
ists a correlation between them and it results in a correlated covariance matrix.
Appendix B shows that the series of transformations is always possible to find
alternative coordinates of an object, which eliminates the correlation among an
object’s coordinates. Hence resulting in a diagonal covariance matrix whose
variance is uniform in all dimensions, which is consistent with the proposed
probability function. Thus the proposed solution is equally applicable for the
objects whose attributes are correlated. In the light of above assumptions, the
2-dimensional expression for Pr(oi, oj, D) is given as follows.

Pr(oi, oj, D) =
1

4πσ2

∫ D

0

∫ 2π

0

exp

{
−1
4σ2

(
r2 − 2αr cos θ + α2

)}
r dθ dr.

(5.2)

Note that Pr(oi, oj, D) only depends on α2 and not on the coordinates of
oi and oj . Hence Pr(oi, oj, D) is denoted by Pr(α,D) when there is no con-
fusion, where α denotes the ordinary euclidean distance between the means of

74 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

uncertain objects. Computing this probability is usually very costly, and needs
to be avoided as much as possible during the computation of outliers.

The Naive approach of the top-k outlier detection given in Algorithm 5.1
uses Nested-loop. In order to find whether an object oi ∈ GDB is a top-k
outlier, its #D-neighbours (#D(oi)) are computed. Computation of #D(oi)

for an object oi ∈ GDB requires N expensive distance probability evaluations.
During the computation of #D(oi), if it becomes greater than threshold θ, oi
is an inlier and the computation of #D(oi) is stopped. On the other hand, if
#D(oi) is less than or equal to θ, oi is added to the candidate list of outliers
Cobj , along with its #D-neighbours. The Cobj is kept sorted in ascending order
of #D-neighbours and the k objects in it with the lowest #D-neighbours are
selected as outliers. In the worst case, this approach requires O(N2) evaluations
of the costly distance probability, which is computationally very expensive.

Algorithm 5.1: kUDB Outlier Detection: Naive Approach
Input: GDB, D, k
Output: Top-k Distance-based Outliers

1: N ← |GDB|, θ ←∞, Cobj ← ϕ
2: for each oi in GDB do
3: #D(oi)← 0; (#D-neighbours of oi)
4: for each oj in GDB do
5: #D(oi)+ = Pr(oi, oj, D);
6: if #D(oi) > θ then GOTO next oi;
7: end for
8: Insert oi and its #D(oi) into Cobj (Keep Cobj sorted of #D(oi));
9: if |Cobj| > k then

10: Set θ = #D(o′), where o′ is the kth object in Cobj;
11: Remove all o′′ ∈ Cobj , such that #D(o′′) > θ;
12: end if
13: end for
14: return Cobj;

5.3 PC-list-based Outlier Detection

The Naive approach requires a lot of computation time to detect top-k outliers
even from a small dataset due to the costly distance probability calculation. To
overcome this problem a populated-cells list (PC-list) based approach of the top-

5.3. PC-list-based Outlier Detection 75

%

.5

.6
M

in
 d

is
t
a

n
c
e

b
e

t
w

e
e

n
 o

 a
n

d
 x
Û

.á

4½>ç�:%;

& E Pê

Figure 5.1: Cell layers and bounds

k distance-based outlier detection is proposed. PC-list is an array of non-empty
cells of a d-dimensional grid, where the grid is used to index the dataset objects.
The PC-list helps in the detection of top-k distance-based outliers by identifying
the grid cells containing candidate outliers.

Lemma 5.1 Let oi, oj ∈ GDB be two d-dimensional uncertain data objects

following the Gaussian distribution and α denotes an ordinary Euclidean dis-

tance between the means of oi and oj . Then for t ∈ R, denoting the number of

standard deviations required to enclose a large probability (say > 99%) of a

d-dimensional Gaussian difference distribution, following statements hold.

1. If α ≤ D − tσ′, P r(oi, oj, D) ≈ 1.

2. If α ≥ D + tσ′, P r(oi, oj, D) ≈ 0.

where σ′ is the standard deviation of the Gaussian difference distribution in

any one dimension (assuming that the standard deviation is uniform in all the

dimensions).

Proof. See Appendix C.

5.3.1 Grid (G) Structure

In order to find the top-k distance-based outliers from uncertain dataset using
the PC-list, mean of each object in GDB is quantized to a d-dimensional grid

76 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

G that is partitioned into cells of length l (The cell length is discussed in Sec.
4.3.5). Let Cψ1,...,ψd

be any cell in G, where positive integers ψ1, ..., ψd denote
the cell indices. The layers (L1, ..., Ln) of Cψ1,...,ψd

∈ G are the neighbouring
cells of Cψ1,...,ψd

, as shown in Fig. 5.1 and are derived as follows.

L1(Cψ1,...,ψd
) = {Cx1,...,xd |x1 = ψ1 ± 1, ..., xd = ψd ± 1, Cx1,...,xd ̸= Cψ1,...,ψd

}.

L2(Cψ1,...,ψd
) = {Cx1,...,xd |x1 = ψ1 ± 2,

..., xd = ψd ± 2, Cx1,...,xd /∈ L1(Cψ1,...,ψd
), Cx1,...,xd ̸= Cψ1,...,ψd

}.

L3(Cψ1,...,ψd
), ..., Ln(Cψ1,...,ψd

) are derived in a similar way. We will use C
to denote Cψ1,...,ψd

when there is no confusion.

Let RD−tσ(C) denotes a region formed by
⌊
D−tσ
l
√
d
− 1

⌋
neighbouring layers

of C ∈ G as shown in Fig. 5.2. The region RD−tσ(C) is chosen in such a
way that for each oi ∈ C and oj ∈ RD−tσ(C), Pr(oi, oj, D) ≈ 1. Similarly
RD+tσ(C) denotes a region formed by

⌈
D+tσ
l

⌉
neighbouring layers of cell C ∈

G as shown in Fig. 5.1. Region RD+tσ(C) is chosen in such a way that for each
oi ∈ C and oj /∈ RD+tσ(C), Pr(oi, oj, D) approaches zero.

5.3.2 PC-list Structure

Populated-cells list (PC-list) is an array of non-empty cells of a d-dimensional
grid. Let N(C) be the number of objects in C, and ND−tσ(C) is the number of
objects within cells in region RD−tσ(C) (including C itself). Then the PC-list
(PC) is a sorted list containing N(C) and ND−tσ(C) for each non-empty cell
C ∈ G as shown in Fig. 5.2. The tuples in the PC-list are sorted in an ascending
order of ND−tσ(C) column. The idea behind sorting is that outliers tend to exist
in sparse regions. Sorting tuples in the PC-list, lets us identify cells with few
number of neighbouring objects or cells in sparse regions.

The PC-list constructed in such a way that the majority of cells at the top of
the PC-list contain candidate outlier objects. To prune the cells in the PC-list
which cannot contain top-k outliers, cell bounds are computed. In practise, only
small percentage of cells at the top of the PC-list require bounds computation.
Rest of the cells are pruned as inlier cells i.e., the cells containing only inlier
objects or the cells which do not contain the top-k outliers.

5.3. PC-list-based Outlier Detection 77

0 1 2 3 4

0

 1

 2

 3

 4

ð5

ð
6

4½?ç�:%56;
o��� z:o; zp?�Ì:o;

%56 2 7

%55 1 10

%76 1 10

%66 2 13

%74 3 13

%64 3 14

%75 5 16

%65 2 19

Figure 5.2: PC-list building

5.3.3 Cell Bounds

In order to identify cellsC ∈ PC, containing only inliers or candidate top-k out-
liers, their bounds on the #D-neighbours are used. A cell C can be pruned as
an inlier cell if the minimum #D-neighbours for any object in C is greater than
threshold θ (θ is discussed shortly). Similarly a cell can be identified as contain-
ing top-k outliers (candidate outlier cell) if the maximum #D-neighbours for
any object in C is less than θ. Since the Gaussian distribution is unbounded,
Pr(oi, oj, D) is always greater than zero for oi, oj ∈ GDB. Therefore all
the cells in the PC-list need to be considered for the computation of bounds
of C ∈ PC. To compute cell bounds, the minimum and the maximum ordi-
nary Euclidean distances between cells are required. Beside this, object count
of each C ∈ PC and Pr(α,D) values for α ranging from the minimum to the
maximum ordinary Euclidean distances between cells in G are also required.
The Pr(α,D) values are precomputed and stored in a look-up table to be used
by the top-k outlier detection algorithm.

Distance between Cells

Let Cp and Cq are two cells in PC with indices ψp1, ..., ψpd and ψq1, ..., ψqd re-
spectively. Let ∆min(Cp, Cq) and ∆max(Cp, Cq) denote the minimum and the
maximum ordinary Euclidean distances between Cp and Cq respectively. Dis-
tance between Cp and Cq depends on their positions in the grid G and can be
derived as follows.

78 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

∆min(Cp, Cq) = l × (
d∑
s=1

δ2min,s)
1/2 (5.3)

where δmin,s =

ψps − (ψqs + 1) ψps > ψqs

(ψps + 1)− ψqs ψps < ψqs

ψps − ψqs ψps = ψqs

∆max(Cp, Cq) = l × (
d∑
s=1

δ2max,s)
1/2 (5.4)

where δmax,s =

(ψps + 1)− ψqs ψps ≥ ψqs

ψps − (ψqs + 1) ψps < ψqs

Now the bounds for the PC-list cells can be obtained using pre-computed
Pr(α,D) values and the information available in the PC-list. LetLB(Pr(Cp, Cq))

and UB(Pr(Cp, Cq)) denote Pr(α,D) values at minimum α ≥ ∆max(Cp, Cq)

and maximum α ≤ ∆min(Cp, Cq), respectively. Then for a C ∈ PC, its lower
bound LB(C) and upper bound UB(C) are defined as follows.

LB(C) =
∑
C′∈PC

LB(Pr(C,C ′))×N(C ′). (5.5)

UB(C) =
∑
C′∈PC

UB(Pr(C,C ′))×N(C ′). (5.6)

Since the major contribution in the bounds for C ∈ PC is done by the cells
in region RD+tσ(C), the bounds for C ∈ PC can be redefined to reduce the
number of pre computations and the bounds computation time, as follows.

5.3. PC-list-based Outlier Detection 79

LB(C) =
∑

C′∈{PC∩RD+tσ(C)}

LB(Pr(C,C ′))×N(C ′). (5.7)

UB(C) =
∑

C′∈{PC∩RD+tσ(C)}

UB(Pr(C,C ′))×N(C ′)+

Pr(l
√
d(⌈D + tσ

l
⌉+ 1), D)× (N −

∑
C′∈{PC∩RD+tσ(C)}

N(C ′)). (5.8)

Number of Pr(α,D) Pre-computations

Since the bounds of C ∈ PC are computed using the cells in region RD+tσ(C),
Pr(α,D) values need to be computed only for the neighbouring layers within
D + tσ distance of a cell. For

⌈
D+tσ
l

⌉
neighbouring layers, we require 2⌈D+tσ

l
⌉

pre-computations. Two more pre-computations are required for the cell C itself
and the objects that lie greater than D + tσ distance of a cell. Hence the total
number of pre-computations of Pr(α,D) required are only 2⌈D+tσ

l
⌉+ 2.

5.3.4 Candidate Outlier Cells Detection

Using the bounds discussed in Sec. 5.3.3, a cell can be pruned as an inlier cell
i.e., a cell containing only inlier objects or can be identified as containing top-
k outlier candidates. Let Ccell is a list for holding candidate outlier cells from
PC-list, sorted in ascending order of UB(C). Let Ck ∈ Ccell is a cell with the
minimum upper bound containing the kth object. A C ∈ PC is a candidate
outlier cell whenever

∑
C′∈Ccell

N(C ′) < k or LB(C) ≤ θ, where θ = UB(Ck)

denotes the threshold.

For aC ∈ PC, ifLB(C) > θ,C cannot contain any of the top-k outliers and
can be pruned. On the other hand, if LB(C) ≤ θ, C may contain top-k outliers.
C is added to Ccell, such that Ccell remain sorted of its UB(C) attribute. Set
θ = UB(Ck) and remove C ′ from Ccell, such that LB(C ′) > θ, as they cannot
contain the top-k outliers.

Stopping Condition: The PC-list is scanned from top for candidate outlier
cells. During the scanning, if a C ′ ∈ PC is found such that Pr(D − tσ,D) ×
ND−tσ(C

′) > θ, which is a lower bound on #D-neighbours of C ′, C ′ can-

80 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

not contain top-k outliers and can be pruned. Since the PC-list is sorted of
ND−tσ(C), any cell after C ′ must have ND−tσ(C) ≥ ND−tσ(C

′). Hence the
lower bound of C ∈ PC after C ′ must be greater than or equal to the lower
bound of C ′ ∈ PC and cannot contain top-k outliers. Hence the PC-list scan-
ning can be stopped at this point.

Algorithm 5.2: kUDB Outlier Detection: PC-list Approach
Input: GDB, D, l, k
Output: Top-k Distance-based Outliers

1: N ← |GDB|, θ ←∞;
2: Ccell ← ϕ, Cobj ← ϕ; (Candidate outlier cells list and top-k candidate

outlier objects list respectively)
3: Map each o ∈ GDB to an appropriate cell C of grid G;
4: Create PC-list PC, using non-empty cells of G;
5: Sort PC w.r.t. ND−tσ(C) column;

/*Searching candidate outlier cells*/
6: for each C in |PC| do
7: /*Stopping condition*/
8: if ND−tσ(C)× Pr(D − tσ,D) > θ then Exit for loop.
9: Compute LB(C) and UB(C);

10: if LB(C) ≤ θ then
11: Add C to Ccell (keep Ccell sorted of UB(C) attribute);
12: if Ccell contains ≥ k objects then
13: Set θ = UB(Ck), such that Ck contain the kth object;
14: Remove all C from Ccell, such that LB(C) > θ;
15: end if
16: end if
17: end for

/*Calculating #D-neighbors(o) of candidate top-k outliers*/
18: The computation of #D-neighbors(o) is similar to that of the Naive

approach. The only difference between the Naive algorithm and in this
algorithm is that in this algorithm, #D-neighbors(o) are computed for the
candidate objects in Ccell only, however in the Naive case, all the objects in
the dataset are considered for the computation of #D-neighbors.

5.3.5 The kUDB(CG) and the kUDB(Approx) Algorithms

In this section, we present two algorithms to detect top-k distance-based out-
liers from uncertain datasets. The first algorithm (kUDB(CG)) computes ac-
curate #D-neighbours for all the un-pruned objects, however the second algo-

5.3. PC-list-based Outlier Detection 81

rithm (kUDB(Approx)) approximates the #D-neighbours to reduce the algo-
rithm computation cost. In Sec. 5.4, we will present another approximate top-k
algorithm using the bounded Gaussian uncertainty (kUDB(BG)).

The kUDB(CG) Algorithm

The Algorithm 5.2 first maps dataset objects to appropriate grid cells and creates
the PC-list in lines 4 and 5 respectively. Since the PC-list is sorted in the ascend-
ing order of its ND−tσ(C) column, it guarantees that cells in the sparse regions
of the grid G are at the top of the PC-list. Hence the candidate outlier cells are
expected to be at the top of the list. We scan the PC-list and add the candidate
outlier cells in Ccell until the stopping condition on line 8 becomes true. The
number of objects in Ccell may be greater than k, hence their #D-neighbours are
computed to find the top-k outliers and their ranking. The object is then added
to the Cobj (set of candidate outlier objects) along with its #D-neighbors(o).
The objects in Cobj are sorted in ascending order of #D-neighbors(o) column.
As the kth object’s #D-neighbors(o) is found, threshold θ is set (refer line 13
of Algorithm 5.2). During the calculation of #D-neighbors(o), if for some o′,
#D-neighbors(o’) becomes greater than θ, then o′ can not be among the top-k
outliers and is removed from further consideration.

The kUDB(Approx) Algorithm

In the kUDB(CG) algorithm, the minimum number of distance probability com-
putations required for the evaluation of k #D-neighbors(o) is kN , however the
candidate outlier objects which require the evaluation of #D-neighbors(o), may
be greater that k. When the distance probability is expensive to compute (as in
our case), computation of even k #D-neighbors(o) is very expensive. Accord-
ing to our distance probability function, the major contribution in the evaluation
of #D-neighbors(o) is done by the nearer objects. Hence #D-neighbors(o)
for each un-pruned o can be approximated with high accuracy by considering
objects only within D + tσ distance of o according to Lemma 5.1, rather than
considering all the objects in dataset. It saves a lot of computation time. Rest of
the algorithm is same as that of the accurate top-k algorithm.

82 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

Maximum Approximation Error: For any o ∈ GDB, maximum approxi-
mation error (εmax) happens if all the o′ ∈ GDB \ o are at a distance slightly
greater than D + tσ from o. Hence εmax = (N − 1) × Pr(D + tσ + β,D),
where β ∈ R is a very small real value to make distance greater than D + tσ.
For example for t = 9, d = 2 and N = 105 objects, εmax ≈ 10−5. εmax depends
mainly on t. In practice t ≥ 3 gives sufficiently accurate #D-neighbors(o) for
d = 2 and 3. For higher d values, we need to increase t value according to
Lemma 5.1.

5.3.6 Complexity Analysis

We will first analyse the complexity of the top-k algorithm for the 2D case.
Lines 1 and 2 contain only the initializations of variables. Since there are N
objects in the dataset GDB, line 3 takes O(N) time. Line 4 takes O(m) time,
where m ≪ N is the total number of populated cells in the cell-grid. Sorting
m cells in the PC-list in line 5 takes O(mlog(m)) time. The main loop of the
algorithm in lines 6-17 is executed for all the cells in the PC-list in the worst
case. The loop computes the lower and upper cell bounds, each of which takes
O(m) time because the cell bounds computation require the contribution of all
the cells in the PC-list. Keeping the Ccell sorted in Line 11 takes O(m) time in
the worst case. Lines 13 and 14 within the loop takes at-mostO(m) each. Hence
the overall loop takes O(m2) time. Finally, computation of the #D-neighbours
in Line 18 takes O(nN) time, where n≪ N is the number of candidate objects
for the top-k outliers. Thus, the average case time complexity of the kUDB
outlier detection algorithm in 2D is O(nN + m2). In the worst case, none of
the objects is pruned by the cell and PC-list based pruning, hence the worst
case time complexity of the kUDB(CG) outlier detection algorithm in 2D is
O(N2 +m2).

However, in the kUDB(CG) algorithm, the major cost lies in the evaluation
of #D-neighbours of the candidate outlier objects (Line 18). This cost is so
high that it hides the cost of the rest of the algorithm. This is due to the expen-
sive distance probability computation between uncertain objects. Therefore, we
give the kUDB(CG) algorithm complexity in terms of the number of distance
probability evaluations. Hence the average case and the worst case time com-
plexities of the kUDB(CG) outlier detection algorithm in 2D are O(nN) and

5.4. PC-list-based Outlier Detection using the
Bounded Gaussian Uncertainty 83

O(N2), respectively.

Since the kUDB(Approx) approach considers objects only withinD+tσ dis-
tance of the candidate outlier objects for the computation of their #D-neighbours,
the average case and the worst case time complexities of the kUDB(Approx)
outlier detection algorithm in 2D are O(nN ′′) and O(N2), respectively; where
N ′′ ≤ N is the number of objects that lie within D + tσ distance of the candi-
date objects. In the kUDB(Approx) algorithm, the worst case time complexity
assumes that none of the objects is pruned by the cell and PC-list based pruning
and all the dataset objects lie within D + tσ distance of the candidate outlier
objects.

The complexities of the proposed algorithms do not change with the increase
in dimensions d, as long as only the number of the distance probability computa-
tions are considered for the computation of algorithms’ complexities. Although
with the increase in d, the number of grid cells increases exponentially, yet the
cost of the evaluation of the #D-neighbours for the candidate outlier objects
remains dominant and hence the complexities remain same as discussed above
for higher dimensional case.

From the above analysis, it is evident that the computational complexity of
the proposed algorithms is lower than the Naive algorithm, which is O(N2) in
terms of the distance probability computations. Hence the execution times of the
proposed algorithms is far lower than the Naive algorithm. However, with the
increase in d, the distance probability computation between uncertain objects
becomes very expensive and it becomes impractical to detect outliers using the
proposed approach from very high dimensional data.

5.4 PC-list-based Outlier Detection using the
Bounded Gaussian Uncertainty

Approximating the Gaussian uncertainty by the bounded Gaussian uncertainty
enables an approximate but more efficient outlier detection. According to this
paper’s assumption, attributes of uncertain objects follow the Gaussian distribu-
tion. Therefore according to the 3-sigma rule there is a 95.45% chance that un-
certain objects’ attribute values lie within 2 standard deviations of the observed
values and 99.73% chance that the values lie within 3 standard deviations of the

84 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

observed values [88]. Hence the conventional Gaussian distribution can be nor-
malized within certain boundaries to increase the efficiency of the top-k outlier
detection at a small cost of accuracy.

Given a two dimensional conventional Gaussian function g−→A(x1, x2) with
mean −→µ = (µ1, µ2) and co-variance matrix Σ = diag(σ2, σ2), the bounded
Gaussian distribution f−→A(x1, x2) can be defined following the practise of Tao et
al. [108], as follows.

f−→A(x1, x2) =

g−→A (x1,x2)∫

(x1,x2)∈o.ur g−→A (x1,x2)dx1dx2
(x1, x2) ∈ o.ur

0 otherwise
(5.9)

where o.ur denotes the uncertainty region of the bounded Gaussian distribution.
This work assumes that the uncertainty region is a sphere with centre (µ1, µ2)

and radius r = tσ (t is discussed in Lemma 5.1).

By bounding the Gaussian uncertainty, a cell can be pruned by simply count-
ing the number of objects in its neighbouring cells. Moreover the major cost of
outlier detection, that is, the processing of un-pruned objects also reduces sig-
nificantly. This is because, with the bounded Gaussian uncertainty, the outlier
detection algorithm needs to consider limited number of objects for the compu-
tation of an object’s #D-neighbors rather than all the objects in the dataset. For
details on the bounded Gaussian uncertainty, please refer Sec. 4.4.

5.4.1 Grid (G) and PC-list Structures for the Bounded
Gaussian

In order to identify distance-based outliers using the PC-list, mean of each object
in GDB is mapped to a d-dimensional space that is partitioned into cells of
length l (l is discussed in Sec. 4.3.5). Let Cψ1,...,ψd

be a cell in the Grid G, then
cells in region RD−2r(Cψ1,...,ψd

) are those which completely lie within D − 2r

distance of the Cψ1,...,ψd
, including the Cψ1,...,ψd

itself. Let nD−2r =
⌊
D−2r
l

⌋
− 1,

then the region RD−2r(Cψ1,...,ψd
) is derived as follows.

5.4. PC-list-based Outlier Detection using the
Bounded Gaussian Uncertainty 85

RD−2r(Cψ1,...,ψd
) = {Cx1,...,xd |x1 = ψ1 ± nD−2r, ..., xd = ψd ± nD−2r,√√√√ d∑

i=1

((xi + 1)l)2 < D − 2r, Cx1,...,xd ̸= Cψ1,...,ψd
.

(5.10)

The number of cells in the region RD−2r(Cψ1,...,ψd
) vary depending upon

nD−2r. Note that the region RD−2r(Cψ1,...,ψd
) satisfies the following property.

Property 1: If Cx1,...,xd ∈ RD−2r(Cψ1,...,ψd
), then the objects oi ∈ Cψ1,...,ψd

and oj ∈ Cx1,...,xd are at most D − 2r distance apart.

From property 1, the oi ∈ Cψ1,...,ψd
and the oj ∈ RD−2r(Cψ1,...,ψd

) are guar-
anteed to be D-neighbours mutually, hence the Pr(oi, oj, D) is always equal
to 1. Cells in region RD+2r(Cψ1,...,ψd

) are those which fall within D + 2r dis-
tance of the Cψ1,...,ψd

. Let nD+2r =
⌈
D+2r
l

⌉
, then the region RD+2r(Cψ1,...,ψd

) is
derived as follows.

RD+2r(Cψ1,...,ψd
) = {Cx1,...,xd |x1 = ψ1 ± nD+2r, ..., xd = ψd ± nD+2r,√√√√ d∑

i=1

((xi − 1)l)2 < D + 2r, Cx1,...,xd /∈ RD−2r(Cψ1,...,ψd
), Cx1,...,xd ̸= Cψ1,...,ψd

.

(5.11)

Note that the region RD−2r(Cψ1,...,ψd
) and the region RD+2r(Cψ1,...,ψd

) sat-
isfy the following property.

Property 2: If Cx1,...,xd is neither in RD−2r(Cψ1,...,ψd
) nor in RD+2r(Cψ1,...,ψd

)

and Cx1,...,xd ̸= Cψ1,...,ψd
, then the objects oi ∈ Cψ1,...,ψd

and oj ∈ Cx1,...,xd are
greater than D + 2r distance apart.

From property 2, it can be guaranteed that the oi ∈ Cψ1,...,ψd
and oj ∈

Cx1,...,xd are greater than D + 2r distance apart, hence the Pr(oi, oj, D) is al-
ways equal to 0. In the following, C is used to denote Cψ1,...,ψd

when there is no
confusion.

86 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

The PC-list structure for the bounded Gaussian is similar to that of the con-
ventional Gaussian (refer Sec. 5.3.2) except the column ND−tσ(C). Instead of
N(C) and ND−tσ(C), the PC-list contains N(C) and ND−2r(C) for each non-
empty cell of G. The tuples in the PC-list are sorted in an ascending order of
ND−2r(C) column.

5.4.2 Cell Bounds for the Bounded Gaussian

In order to identify cells C ∈ PC, containing only inliers or candidate top-k
outliers, their bounds on the #D-neighbours are used. A cell C can be pruned
as an inlier cell if the minimum #D-neighbours for any object in C is greater
than threshold θ (θ is discussed in Sec. 5.3.4). Similarly a cell can be identified
as containing top-k outliers if the maximum #D-neighbours for any object in C
is less than θ. In case of the bounded Gaussian distribution, Pr(oi, oj, D) = 0

if the means of oi and oj are greater than D + 2r distance. Hence only cells
within regions RD−2r and RD+2r of a C ∈ PC need to be considered for the
computation of its lower and upper bounds respectively.

Thus for a C ∈ PC, its lower bound LB(C) and upper bound UB(C) are
defined as follows.

LB(C) =
∑

C′∈{PC∩RD−2r(C)}

N(C ′) (5.12)

UB(C) =
∑

C′∈{PC∩RD+2r(C)}

N(C ′) (5.13)

5.4.3 Candidate Outlier Cells Detection for the Bounded Gaus-
sian

For the bounded Gaussian case, the procedure of candidate outlier cell detec-
tion is similar to that discussed in Sec. 5.3.4. However the stopping condition
is slightly different. During the scanning of PC-list, if a C ′ ∈ PC is found
such that ND−2r(C

′) > θ, which is a lower bound on #D-neighbors of C ′, C ′

cannot contain top-k outliers and can be pruned. Since the PC-list is sorted of
ND−2r(C), any cell after C ′ must have ND−2r(C) ≥ ND−2r(C

′). Hence the
PC-list scanning can be stopped safely at this position.

5.4. PC-list-based Outlier Detection using the
Bounded Gaussian Uncertainty 87

5.4.4 The kUDB(BG) Algorithm

Major part of the kUDB(BG) algorithm is same as that of the kUDB(CG) al-
gorithm (Algorithm 5.2). The main difference lies in the construction of the
PC-list and the computation of bounds as discussed in Secs. 5.4.1 and 5.4.2,
respectively. Moreover evaluation of the candidate outlier objects now only re-
quire objects withinD+2r distance of the target object rather than all the objects
in the dataset, bringing down the overall cost of execution.

5.4.5 Complexity Analysis

As discussed in Sec. 5.4.4, the major part of the kUDB(BG) algorithm is
same as that of the kUDB(CG) algorithm, the computational complexity of the
kUDB(BG) algorithm is also similar to that of the kUDB(CG) algorithm. Just
like the kUDB(CG) algorithm, the major cost of the top-k outlier detection lies
in the evaluation of the #D-neighbours of the candidate outlier objects. This
cost is so high that it hides the cost of the rest of the algorithm. This is due to
the expensive distance probability computation between the uncertain objects.
Therefore we give the complexities of the kUDB(BG) algorithm in terms of the
number of distance probability evaluations, which are O(nN ′) and O(N2) in
2-dimensional case, for the average case and the worst case respectively; where
n≪ N is the number of candidate outlier objects and N ′ ≤ N is the number of
objects that lie withinD+2r distance of the candidate outlier objects. Although
the number of distance probability evaluations required for the processing of un-
pruned objects in the kUDB(BG) algorithm is far less than the kUDB(CG), its
worst case complexity is still O(N2) in 2D case, since it assumes that none of
the objects are pruned through the cell and PC-list based pruning and all the
dataset objects lie within D + 2r distance of the candidate outlier objects.

The complexities of the kUDB(BG) algorithm do not change with the in-
crease in dimensions d, as long as only the number of distance probability eval-
uations are considered for the computation of the algorithm’s complexity. Al-
though with the increase in d, the number of grid cells increases exponentially,
yet the cost of evaluation of the #D-neighbours for the candidate outlier objects
remains dominant and hence the complexities remain same for the average case
and the worst case, i.e.,O(nN ′) andO(N2), respectively for higher dimensional
case.

88 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

From the above analysis, it is evident that the computational complexities
of the proposed algorithms is lower than the Naive algorithm, which is O(N2)

in terms of the distance probability evaluation. Hence the execution time of the
kUDB(BG) algorithm is far lower than the Naive algorithm. However, with the
increase in d, the distance probability computation between uncertain objects
becomes very expensive and it becomes impractical to detect outliers using the
proposed approach from very high dimensional data.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Knorr

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(a) UG

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Knorr

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(b) ADAPTE

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Knorr

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(c) SDSS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

o
n

Recall

Knorr

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(d) ISPD

Figure 5.3: Precision-recall trade-off curves (D = 70, σ = 10, σp = 30, l = 10,
t = 3 and k = 50)

5.5 Experiments

Extensive experiments are conducted on synthetic and real datasets to evaluate
the effectiveness and efficiency of the proposed approaches. In the experiments,
Knorr et al. [63] approach of outlier detection on deterministic data is used as
the baseline to compare the accuracy of outlier detection. All algorithms are im-
plemented in C++, GNU compiler. All experiments are performed on a system
with an Intel Core 2 Duo CPU E8400 3.00GHz CPU and 2GB main memory
running Ubuntu 12.04 OS. All programs run in main memory and no I/O cost

5.5. Experiments 89

is considered. Each experiment is performed 3 times and the average values are
used in the graphs. We have also used error bars in the graphs, showing the
standard error in the execution time measurements of each approach. However,
in majority of the graphs they are not visible due very small standard error in
the execution times.

Pre-computation time is not included in the measurements. Unless specified,
the following parameter values are used in experiments: D = 100, σ = 10,
l = 10, t = 2, r = tσ and k = 15. In figures, the Knorr et al. [65] approach
is denoted by Knorr and the proposed approaches, i.e., the top-k, the top-k
approximate and the top-k approximate using the bounded Gaussian uncertainty
are denoted by kUDB(CG), kUDB(Approx) and kUDB(BG) respectively. The
datasets used in the experiments are discussed in Sec. 4.6.1 of chapter 4.

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

P
re

ci
si

o
n

Uncertainty Level

knorr kUDB(CG) kUDB(BG) kUDB(Approx)

(a) UG

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

P
re

ci
si

o
n

Uncertainty Level

knorr kUDB(CG) kUDB(BG) kUDB(Approx)

(b) ADAPTE

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

P
re

ci
si

o
n

Uncertainty Level

knorr kUDB(CG) kUDB(BG) kUDB(Approx)

(c) SDSS

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

P
re

ci
si

o
n

Uncertainty Level

knorr kUDB(CG) kUDB(BG) kUDB(Approx)

(d) ISPD

Figure 5.4: Precision with increasing σp (D = 70, σ = 10, l = 10, t = 3 and
k = 50)

5.5.1 Accuracy

Firstly, experiments are performed to evaluate the accuracy of the proposed ap-
proaches. Since there are no known approaches for the top-k distance-based

90 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

R
e

ca
ll

Uncertainty Level

knorr kUDB(CG) kUDB(BG) kUDB(Approx)

(a) UG

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

R
e

ca
ll

Uncertainty Level

knorr kUDB(CG) kUDB(BG) kUDB(Approx)

(b) ADAPTE

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

R
e

ca
ll

Uncertainty Level

knorr kUDB(CG) kUDB(BG) kUDB(Approx)

(c) SDSS

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50

R
e

ca
ll

Uncertainty Level

knorr kUDB(CG) kUDB(BG) kUDB(Approx)

(d) ISPD

Figure 5.5: Recall with increasing σp (D = 70, σ = 10, l = 10, t = 3 and
k = 50)

outlier detection on uncertain data, the deterministic approach for the distance-
based outlier detection given by Knorr et al. [65] is used as a baseline. Slight
changes are made in the Knorr’s algorithm to obtain top-k outliers from it. Since
the outliers are not known, for both the synthetic and the real datasets, the base-
line algorithm is used to determine the outliers on the original datasets. The re-
sults obtained from the baseline approach are used as the ground truth. In order
to judge the accuracy of the proposed approaches, the precision and recall are
measured on the perturbed dataset for the baseline approach and the proposed
approaches. The precision is defined as the ability of the algorithm to present
only true outliers. The recall is defined as the ability of the algorithm to present
all true outliers. The perturbed dataset is obtained by adding normal random
numbers with zero mean and standard deviation σp to each of the tuple values
of the original dataset. The σp was varied from 10 to 50 (with a step of 10) to
generate perturbed datasets of five different levels. Experiments show that the
proposed approaches are superior than the baseline approach, since they do not
degrade quite as much with increasing uncertainty. Unless specified, the follow-
ing parameter values are used for the experiments in this subsection: D = 70,

5.5. Experiments 91

σ = 10, σp = 30, l = 10, t = 3, r = tσ and k = 50.
Firstly the precision-recall trade-off curves are presented for different datasets.

In all the graphs in Fig. 5.3, both the precisions and recalls of the proposed ap-
proaches are higher than the baseline approach. Moreover the precision-recall
curves of the kUDB(CG) and the kUDB(Approx) are exactly same. This is
due to the fact that both the approaches returned same outliers. Although there
was a slight difference in the #D-neighbours of the outliers returned by both
the proposed approaches, but this difference was not big enough to change the
top-k outlier objects or their ranking. The precision-recall of the kUDB(BG)
approach is also better than the baseline approach and in most of the datasets is
equal to the kUDB(CG) approach.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1000 2000 3000 4000 5000

E
x
e

cu
ti

o
n

 T
im

e
(s

)

N

kUDB(CG) kUDB(BG) kUDB(Approx) Naive

(a) Naive vs. PC-list

0%

20%

40%

60%

80%

100%

UG TG SDSS ADAPTE

P
e

rc
e

n
ta

g
e

Dataset kUDB(CG) kUDB(BG)

(b) Pruning Percentage

0%

5%

10%

15%

20%

25%

30%

UG TG SDSS ADAPTE

P
e

rc
e

n
ta

g
e

Dataset kUDB(CG) kUDB(BG)

(c) Stopping Condition

Figure 5.6: Effectiveness of the PC-list based approach (D = 100, l = 10,
σ = 10, t = 3, r = tσ, and k = 15)

In Fig. 5.3a, the precision-recall curves are almost same for all the ap-
proaches, however in Figs. 5.3b, 5.3c and 5.3d the precision-recall curves of
the proposed approaches are comparatively higher than the baseline approach.
Specially the low recall in Figs. 5.3c and 5.3d shows the presence of a large
number of false positive outliers in the outliers obtained from the baseline ap-
proach.

92 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1 5 10 15 20

E
xe

cu
ti

o
n

 T
im

e
(s

)

Cell Length

kUDB(CG) kUDB(BG) kUDB(Approx)

(a) UG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1 5 10 15 20

E
xe

cu
ti

o
n

 T
im

e
(s

)

Cell Length

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(b) TG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1 5 10 15 20

E
xe

cu
ti

o
n

 T
im

e
(s

)

Cell Length

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(c) SDSS

1.E+00

1.E+01

1.E+02

1.E+03

1 5 10 15 20

E
xe

cu
ti

o
n

 T
im

e
(s

)

Cell Length

kUDB(CG) kUDB(BG) kUDB(Approx)

(d) ADAPTE

Figure 5.7: Varying parameter l (D = 100, σ = 10, t = 3, r = tσ, and k = 15)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(a) UG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(b) TG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(c) SDSS

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(d) ADAPTE

Figure 5.8: Varying object’s uncertainty σ (D = 100, l = 10, t = 3, r = tσ,
and k = 15)

5.5. Experiments 93

The accuracy of the proposed approaches is also evaluated with the increas-
ing level of uncertainty. From Fig. 5.4, it is clear that the precision falls with in-
creasing uncertainty level. Moreover, the precision of the proposed approaches
is always higher than the baseline approach in Fig. 5.4, which means that fewer
false-positive outliers were returned by the proposed approaches than the base-
line approach. Similar results are illustrated for recall in Fig. 5.5. In all four
plots of Fig. 5.5, the recall is somewhat consistent with increasing uncertainty
level for the proposed approaches. Which proves that the proposed approaches
are better than the baseline approach in retrieving only true outliers, even from
the noisy data.

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(a) UG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(b) TG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(c) SDSS

1.E+00

1.E+01

1.E+02

1.E+03

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(d) ADAPTE

Figure 5.9: Varying parameter D (l = 10, σ = 10, t = 3, r = tσ, and k = 15)

5.5.2 Efficiency

In this subsection, experiments are conducted to evaluate the efficiency of the
proposed top-k outlier detection approaches presented in Secs. 5.3 and 5.4. Fig.
5.6a compares the execution times of the Naive and the proposed approaches
on the UG dataset. Please note the use of logarithmic scale in all the efficiency
graphs to keep the graph lines visible. The proposed approaches are several

94 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

times faster than its Naive counterpart due to their strong pruning capability as
can be observed from Fig.5.6b. Stopping condition discussed in Secs. 5.3.4 and
5.4.3 helps identify candidate outlier cells very quickly. Fig. 5.6c shows the
percentage of cells considered in the PC-list to identify candidate outlier cells.
The percentage is comparatively higher for trimodal Gaussian dataset because
the dataset is relatively sparse and hence results in larger number of candidate
outlier cells. Moreover, the kUDB(Approx) and the kUDB(BG) approaches
are several times faster than the kUDB(CG) approach. This is due to the fact
that these approaches, in contrast to the kUDB(CG) approach, do not consider
all the dataset objects for the computation of #D-neighbors of the candidate
objects. From theoretical analysis in Sec. 5.3.5 and experiments, we found that
the kUDB(Approx) approach gives an accuracy of up to several decimal digits
in the evaluation of #D-neighbors(o) and hence the outliers obtained from the
kUDB(CG) and the kUDB(Approx) are same. In addition the execution time
of the kUDB(Approx) approach in all the experiments is several times lower
than its exact counterpart. On the other hand, the accuracy of the kUDB(BG)
approach is not as high as that of the kUDB(Approx) approach, however it does
not require any pre-computation.

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

5 10 15 20 25

E
x
e

cu
ti

o
n

 T
im

e
(s

)

k

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(a) UG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

5 10 15 20 25

E
x
e

cu
ti

o
n

 T
im

e
(s

)

k

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(b) TG

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

5 10 15 20 25

E
x
e

cu
ti

o
n

 T
im

e
(s

)

k

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(c) SDSS

1.E-01

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

5 10 15 20 25

E
x
e

cu
ti

o
n

 T
im

e
(s

)

k

kUDB(CG)

kUDB(BG)

kUDB(Approx)

(d) ADAPTE

Figure 5.10: Varying parameter k (D = 100, σ = 10, t = 3, r = tσ, and l = 15)

5.5. Experiments 95

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

2 3 4 5

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Dimensions (d)

kUDB(CG)

kUDB(BG)

kUDB(Approx)

Figure 5.11: Vary dimensions d (N = 500, D = 100, l = 10, σ = 10, t = 3,
r = tσ, and k = 15)

Graphs in Figs. 5.7, 5.8, 5.9 and 5.10 show the affect of varying different
parameters on the execution times. Firstly, consider the variation of parameter
l in Fig. 5.7. The smaller cell lengths l require the lower execution times and
vice versa, which can be observed from Fig. 4.10. Smaller l values are good for
cell pruning as they result in tighter bounds, however very small l increases the
number of cells in the grid exponentially and the time required for the bounds
computation. On the other hand, larger l values result in looser bounds and
hence reduce the cell pruning capability. Moreover, as the number of dimen-
sions d increases, the number of grid cells increases exponentially. Therefore,
smaller l values are recommended for lower dimensions and relatively larger
values are recommended for higher dimensions.

Next, experiments are performed by varying the dataset objects’ uncertainty
which is denoted by σ. As σ increases, the uncertainty of objects also increases.
This increase in uncertainty results in smaller Pr(oi, oj, D) values even if oi
and oj are located nearby. Hence the number of distance probability evaluations
required increases for un-pruned objects, which results in higher execution times
as can be observed from graphs in Fig. 5.8. Moreover it can be observed from
Fig. 5.8 that for smaller σ, the computation cost is lowest for the kUDB(BG)
approach. Please recall that the bounded Gaussian uncertainty is bounded by
radius r = tσ. Hence smaller σ results in smaller r and it helps in early pruning
of objects, brining down the overall cost of the algorithm. However large σ
results in larger r and in an increase in the number of objects required for the
computation of #D-neighbors. Which is the cause of higher execution times
for the kUDB(BG) for higher σ values.

Graphs in Fig. 5.9 show the affect of varying parameter D. For each un-

96 CHAPTER 5. TOK-K OUTLIER DETECTION ON UNCERTAIN DATA

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

2 3 4 5

E
xe

cu
ti

o
n

 T
im

e
(s

)

Dimensions (d)

kUDB(CG)

kUDB(BG)

kUDB(Approx)

Figure 5.12: Vary dimensions d and parameter D (N = 500, l = 10, σ = 10,
t = 3, r = tσ, and k = 15)

pruned o from the PC-list-based pruning, increase in D results in an increase in
the #D-neighbours which need to be considered for the approximation of #D-
neighbors(o). Therefore it increases the execution time of the kUDB(Approx)
approach. However, in case of the kUDB(CG) and kUDB(BG) approaches,
algorithm execution times decreases with the increase in D. This is due to the
fact that for larger D, Pr(oi, oj, D) is higher. Hence objects are more easily
pruned if it is an inlier, reducing the overall cost of the algorithms.

From graphs in Fig. 5.10, increase in k results in an increase in execution
times of the algorithms, which is quite obvious behaviour of the algorithms.

Finally, experiments are performed by varying the number of dimensions.
Experiments in Fig. 5.11 are performed on the synthetic dataset UG with N =

500. Computation cost of all the algorithms increases with the increase in di-
mensions as can be observed from Fig. 5.11, however the computation cost of
the kUDB(BG) and the kUDB(Approx) decreases for d = 5. This is due to
the fact that as d increases, objects get sparse and very few objects lie within
the D + 2r and the D + tσ distance of the candidate objects in the kUDB(BG)
and the kUDB(Approx) approaches, respectively. Hence, #D-neighbors com-
putation of the candidate objects in the kUDB(BG) and the kUDB(Approx)
approaches require relatively less time than the kUDB(CG).

We also performed experiments by varying the number of dimensions d and
the parameterD in parallel. In the experiments shown in Fig. 5.11, parameterD
was kept constant, due to which the number of outliers increases dramatically
with the increase in d. With the increase in d, objects get sparse and the pa-
rameter D must be increased accordingly to find the limited number of outliers.
Hence in Fig. 5.12, we increased the parameter D with the increase in d, in

5.6. Summary 97

proportion to the average distance between the dataset objects. By doing so, we
obtained almost same percentage of outliers from all the dimensions. Moreover,
the execution times of all the approaches are far low in Fig. 5.11 as compared
to the Fig. 5.11, specially for dimensions 3 and higher. Computation cost of all
the algorithms increases with the increase in dimensions due to the exponential
increase in the number of cells in the grid. In addition, the distance probability
becomes expensive with the increase in d, which is another cause of the increase
in algorithms’ execution times.

5.6 Summary

In this chapter, an exact (kUDB(CG)) and two approximate (kUDB(Approx)
and kUDB(BG)) approaches on top-k distance-based outlier detection from
uncertain datasets are proposed. All the approaches make use of a cell grid
and a PC-list (populated-cells list) to quickly identify the candidate outlier ob-
jects. The only difference between the kUDB(CG) and the kUDB(Approx)
approaches is the computation of #D-neighbours. The kUDB(CG) approach
computes the #D-neighbours of the top-k candidate objects by considering
all the objects in the dataset, however the kUDB(Approx) approach considers
only nearer objects for its #D-neighbour computation to reduce its computation
cost. The kUDB(BG) approach makes use of the bounded Gaussian uncertainty
to reduce the computation cost of outlier detection. Experiments prove that
the accuracy of all the proposed algorithms (kUDB(CG), kUDB(Approx) and
kUDB(BG)) is far higher than the baseline algorithm. The PC-list based ap-
proach is effective in reducing the number of objects need to be considered for
the top-k outlier detection, due to which the proposed approaches are several
times faster than the Naive approach. In addition, the approximate approaches
save a lot more computation time at a small loss of accuracy.

Chapter 6

Continuous Outlier Detection on
Uncertain Data Streams

The main goal of the research in this chapter is to obtain distance-based outliers
from uncertain time series data streams. In data streams, data arrive contin-
uously at high rate. Such streams are common due to the incremental usage
of automated data collection devices (e.g., WSNs, monitoring cameras, etc.),
which generate streams of uncertain data. The uncertainty in data from such
devices is unavoidable and its causes are discussed in chapter 2. Hence an ap-
proach is required which can detect outliers continuously and at high speed.
Hence, in this chapter we present an incremental outlier detection approach on
uncertain data.

6.1 Overview

Outlier detection on uncertain static data is a challenging research problem in
data mining. Moreover, the continuous and high speed arrival of data makes it
more challenging. The problem of outlier detection from uncertain data streams
is an important research problem in data mining but there exists very few works
related to this problem as discussed in Sec. 3.2. None of the proposed works so
far deals with the attribute-level uncertainty, which is the focus of this disserta-
tion.

In this chapter, we propose a continuous outlier detection approach for un-
certain time series data streams. Namely, a distance-based approach is proposed

99

100
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

to detect outliers continuously from a set of uncertain objects’ states that are
originated synchronously from a group of data sources (e.g., sensors in WSN).
A set of objects’ states at a timestamp is called a state set. Usually, the duration
between two consecutive timestamps is very short and the state of all the objects
may not change much in this duration. Therefore, to eliminate the unnecessary
computation at every timestamp, an incremental approach of outlier detection is
proposed which makes use of outlier detection results obtained from previous
timestamp to detect outliers in current timestamp. Moreover, an approximate
continuous outlier detection approach using the bounded Gaussian uncertainty
is proposed to further reduce the cost of incremental outlier detection. A cell-
based approach, similar to one discussed in Sec. 4.3 is utilized to reduce the cost
of distance-based outlier detection within a state set. The exact continuous out-
lier detection approach using the conventional Gaussian uncertainty is denoted
by CUDB(CG) and the approximate continuous outlier detection approach us-
ing the bounded Gaussian uncertainty is denoted by CUDB(BG) in the rest of
the dissertation.

6.2 Problem Formulation

We defined the distance-based outliers on uncertain static datasets in chapter 4
as follows.

Definition 6.1 An uncertain object oi in a database GDB is a distance-based

outlier, if the expected number of objects lying within D-distance of oi are less

than or equal to threshold θ = N(1 − p), where N is the number of uncertain

objects in GDB, and p is the fraction of GDB objects that lie farther than D-

distance of oi.

However, the focus of this work is uncertain time series data streams, where
streams are the sequences of objects’ states generated over time. This work
assumes that the states of all the objects are generated synchronously at every
timestamp and the set of states at a timestamp is called a state set. It is further
assumed that the objects’ uncertainty follows the Gaussian distribution.

Formally, in this work, d-dimensional uncertain objects oi are considered,
with attribute vector

−→
Ai = (xi1, ..., xid) following the Gaussian distribution

with mean −→µi = (µi1, ..., µid) and co-variance matrix Σi = diag(σ2
i1, ..., σ

2
id).

6.2. Problem Formulation 101

Namely,
−→
Ai is a random variable that follows the Gaussian distribution

−→
Ai ∼

N (−→µi ,Σi). Assuming that there are N objects whose states may change over

time, Sj = {
−→
Aj1, ...,

−→
AjN} denotes a state set of N objects at time tj . Note that

the
−→
µji denotes the observed coordinates (attribute values) of an object oi at time

tj . Hence, Def. 6.1 can be extended naturally for uncertain time-series data
streams as follows.

Definition 6.2 An uncertain object oi is a distance-based outlier at time tj , if

the expected number of objects in Sj lying within D-distance of oi are less than

or equal to threshold θ = N(1 − p), where p is the fraction of objects that lie

farther than D-distance of oi ∈ Sj .

The objects that lie within the D-distance of oi are called its D-neighbors,
and the set of the D-neighbors of oi and the number of D-neighbours are de-
noted by DN(oi) and #D-neighbors(oi), respectively. In order to find the
distance-based outliers from the state set Sj at time tj , the #D-neighbors of
the un-pruned objects needs to be computed which requires the computation
of distance probability. This distance probability is computed using the dif-
ference between two uncertain objects, which is given by another distribution
known as the Gaussian difference distribution [114]. For example, if attributes
−→Ap and

−→Aq of objects op and oq, respectively follow the Gaussian distribution,
then |

−→
Ap −

−→
Aq| = N (−→µp − −→µq,Σp + Σq) also follows the Gaussian distribu-

tion [114]. Let Pr(op, oq, D) denotes the probability that oq ∈ DN(op). Then,

Pr(op, oq, D) =

∫
R

N (−→µp −−→µq,Σp + Σq)d
−→
A , (6.1)

where R is a sphere with centre (−→µp − −→µq) and radius D. For the expression
and derivation of Pr(op, oq, D), please refer Sec. 4.2. Furthermore, we will use
Pr(α,D) to denote Pr(op, oq, D) when there is no confusion, where α is an
ordinary Euclidean distance between the means of op and oq. Computing this
probability is usually very costly, and it gets more expensive with the increase
in data dimensionality.

In the following part, the discussion focuses on 2-dimensional case. How-
ever, the solution can be extended to higher dimensional cases without loss of
generality. In addition, this work assumes that the standard deviations are uni-
form in all dimensions of an object, to keep the discussion simple. The proposed

102
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

incremental outlier detection approaches make use of results obtained from pre-
vious state set (Sj−1) to detect outliers in current state set (Sj). However, to
reduce the cost of distance-based outlier detection within a state set, a cell-
based approach similar to our previous work [96] is utilized. Hence in Sec. 6.3,
a quick overview of the cell-based outlier detection approach [96] is presented.
The proposed continuous outlier detection and the approximate continuous out-
lier detection approaches are presented in Secs. 6.4 and 6.5, respectively.

6.3 Cell-based Outlier Detection

The Naive approach of the distance-based outlier detection within a state set Sj ,
is the use of nested loop to find the #D-neighbors of each oi ∈ Sj . This ap-
proach is very expensive and on average it requires O(N2) expensive probabil-
ity (Pr(oi, oj, D)) evaluations. To reduce this costly computation, a cell-based
approach [96] is used in this work.

The cell-based approach is aimed at reducing the number of costly proba-
bility evaluations. It maps a dataset objects to a cell-grid and identify the cells
containing only inliers or outliers based on the bounds on the #D-neighbors.
This approach will be utilized in Secs. 6.4 and 6.5 for the proposed continuous
outlier detection approaches.

6.3.1 Grid (G) Structure

To identify distance-based outliers using the cell-based approach, the objects
in the state set Sj are mapped to a 2-dimensional space that is partitioned into
cells of length l = D−wσ

2
√
2

as shown in Fig. 6.1. Let Cx1,x2 be a cell at the
intersection of row x1 and column x2. The Layer 1 (L1) neighbors of Cx1,x2
are the immediate neighbouring cells of Cx1,x2 , defined as follows and satisfies
property 1.

L1(Cx1,x2) = {Cu1,u2 |u1 = x1 ± 1, u2 = x2 ± 1, Cu1,u2 ̸= Cx1,x2}.

6.3. Cell-based Outlier Detection 103

o�Úá�Û

H L
& FSê

t¾t

.5

4½>ê�:%ë-áë.;

&
E
S
ê

.6

Figure 6.1: Cell Grid (G)

Property 1: If Cu1,u2 ∈ L1(Cx1,x2), then op ∈ Cx1,x2 and oq ∈ Cu1,u2 are at
most D − wσ apart.

From Property 1 and Lemma 5.1, Pr(op, oq, D) ≈ 1. The Layer 2 (L2)

neighbors of Cx1,x2 are the immediate neighbouring cells of L1(Cx1,x2) and are
defined as follows.

L2(Cx1,x2) = {Cu1,u2 |u1 = x1 ± 2, u2 = x2 ± 2, Cu1,u2 /∈L1(Cx1,x2),

Cu1,u2 ̸= Cx1,x2}.

L3(Cx1,x2) and higher layers are defined in a similar way. Let nD+wσ =
⌈
D+wσ

l

⌉
,

then the region RD+wσ of Cx1,x2 is defined as follows and satisfies property 2.

RD+wσ(Cx1,x2) = {Cu1,u2 |u1 = x1±nD+wσ, u2 = x2 ± nD+wσ,

Cu1,u2 /∈ L1(Cx1,x2), Cu1,u2 ̸= Cx1,x2}.

Property 2: If Cu1,u2 is neither an L1 nor an RD+wσ neighbour of Cx1,x2 and
Cu1,u2 ̸= Cx1,x2 , then op ∈ Cx1,x2 and oq ∈ Cu1,u2 are at least D + wσ apart.

From Property 2 and Lemma 5.1, Pr(op, oq, D) ≈ 0.

104
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

6.3.2 Cell Bounds

Cell bounds on #D-neighbors are computed to prune a cell as inlier or out-
lier, without expensive object-wise distance computation. The upper bound of
Cx1,x2 , UB(Cx1,x2), binds the maximum #D-neighbors in the G for any object
in Cx1,x2 , and is defined as follows.

UB(Cx1,x2) =N(Cx1,x2) +

nD+wσ∑
m=1

N(Lm(Cx1,x2))× Pr((m− 1)l, D)+

(N −N(Cx1,x2)−
nD+wσ∑
m=1

N(Lm(Cx1,x2)))× Pr(nD+wσl, D),

where N(.) denotes the number of objects. On the other hand, the lower bound
ofCx1,x2 , LB(Cx1,x2), binds the minimum #D-neighbors in the G for any object
in Cx1,x2 and is defined as follows.

LB(Cx1,x2) = 1 + (N(Cx1,x2)− 1)× Pr(
√
2l, D)+

nD+wσ∑
m=1

N(Lm(Cx1,x2))× Pr((m+ 1)
√
2l, D).

Since Pr(α,D) value is dependent on α and is independent from the lo-
cation of Cx1,x2 , the Pr(α,D) values required for the bounds computation are
pre-computed to reduce the cost of the bounds computation. The Pr(α,D) val-
ues need to be computed only for α = m

√
2l (1 ≤ m ≤ nD+wσ+1) and α = ml

(0 ≤ m ≤ nD+wσ − 1). The pre-computed values are stored in a lookup table
to be used for the bounds computation.

6.3.3 Cell Pruning

Let θ′ =
⌈

θ
Pr(D−wσ,D)

⌉
, where θ is threshold and is dependent on parameter p,

then the grid cells can be pruned using the following property.

Property 3:

1. If N(Cx1,x2) > θ′, all the objects in Cx1,x2 and L1(Cx1,x2) are inliers.

2. If N(Cx1,x2) +N(L1(Cx1,x2)) > θ′, all the objects in Cx1,x2 are inliers.

6.4. Incremental Outlier Detection 105

3. If LB(Cx1,x2) > θ, all the objects in Cx1,x2 are inliers.

4. If UB(Cx1,x2) ≤ θ, all the objects in Cx1,x2 are outliers.

For all the un-pruned objects in the un-pruned cells, the Naive approach is
used to find their #D-neighbors, to determine whether the un-pruned objects
are inliers or outliers.

6.4 Incremental Outlier Detection

This section presents the proposed continuous outlier detection approach for
time series data steams. Streams are the sequence of objects’ states gener-
ated over time. We assume that the states of all the objects are generated syn-
chronously and the set of states at a timestamp tj is called a state set Sj , as
shown in Fig. 6.2. The straightforward approach to detect outliers from each
state set is to use the cell-based approach discussed in Sec. 6.3 for every times-
tamp. However, it is the wastage of computational resources since the duration
between two consecutive timestamps is very short and the state of all the objects
may not change in this duration. Hence, we propose an incremental approach
of outlier detection, which makes use of outlier detection results obtained from
state set Sj−1 at tj−1 to detect outliers in state set Sj at tj . This eliminates
the need to process all the objects’ states at every timestamp and saves a lot of
computation time.

Time State set �Ú �Û Y �z

P5 5
5

 Û5
5

 Û6
5

Y

ÛÇ
5

P6 5
6

 Û5
6

 Û6
6

Y

ÛÇ
6

 Y
�

 Y

 Y

 Y

 Y

 Y

PÝ?5 5
Ý?5

Û5

Ý?5
 Û

6

Ý?5

Y
Û
Ç

Ý?5

PÝ 5
Ý

Û5

Ý
 Û

6

Ý

Y
Û
Ç

Ý

Figure 6.2: State sets

Let SCj at timestamp tj denotes a set of objects whose states change be-
tween timestamps tj−1 and tj . We call such objects, SC-objects (state-change

106
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

objects). Note that SCj ⊆ Sj . The main idea of the incremental outlier pro-
cessing is to process only the objects which are either SC-objects or are affected
by the SC-objects. We will utilize the cell-based algorithm discussed in Sec.
6.3 to process only the SC-objects. The proposed incremental approach targets
all state sets except the initial state set (S1). For the S1, no results are available
from the previous state set, hence all the objects in the S1 need to be processed
using the cell-based approach. To simplify the problem, consider the case with
one SC-object, op. Let Cj

x1,x2
represents a cell Cx1,x2 at time tj . As a result of

state change, op ∈ G can move in the following two ways.
[Case 1] op moved to a different cell:

op ∈ Cj−1
x1,x2

, op ∈ Cj
x1,x2

, Cj−1
x1,x2

̸= Cj
x1,x2

.

[Case 2] op moved within a cell:

op ∈ Cj−1
x1,x2

, op ∈ Cj
x1,x2

, Cj−1
x1,x2

= Cj
x1,x2

.

o�Úá�Û
�?Ú

o�Úá�Û
�

Kã

4½>ê�:%ë-áë.
Ý

;

4½>ê�:%ë-áë.
Ý?5

;

Figure 6.3: op moved among cells

Recall that in the cell-based approach, for the computation of cell bounds on
#D-neighbors, the cells within region RD+wσ are considered and for the upper
bound, the cells outside the region RD+wσ are also considered. Hence, when
an object moves among cells (case 1), it affects the cell bounds of all the cells
within region RD+wσ of the Cj−1

x1,x2
and Cj

x1,x2
and the #D-neighbors of all the

6.4. Incremental Outlier Detection 107

un-pruned objects in the G. Namely in case 1, op affects cellsCj−1
x1,x2

,Cj
x1,x2

, their
L1 and RD+wσ neighbors and all the objects in un-pruned cells in the G. This
movement does not affect the cell-based pruned cells outside RD+wσ region,
because the number of objects outside the region RD+wσ is not affected by this
movement. Fig. 6.3 shows the movement of op between Cj−1

x1,x2
and Cj

x1,x2
and

their L1 and RD+wσ neighbors.

&
E
S
ê

o�Úá�Û
�

4½>ê�:%ë-áë.
Ý

;

Kã

Figure 6.4: op moved within cell

On the other hand, when an object moves within a cell (case 2), it does
not affect the bounds of any grid cell, however, this movement affects the #D-
neighbors of all the un-pruned objects in the G. Fig. 6.4 shows the movement of
op between Cj−1

x1,x2
and Cj

x1,x2
where Cj−1

x1,x2
= Cj

x1,x2
. We call the cells affected

by the SC-objects target cells. Target cells require re-outlier detection with the
arrival of new state set.

Target Cells

In practise, there are more than one SC-objects between tj−1 to tj . Therefore,
we expand the idea to more than one SC-objects. Hence, the target cells can be
classified into following 3 types.

Type A: Cells containing SC-objects which have moved to or from another cell
at time tj (Cj−1

x1,x2
and Cj

x1,x2
in Fig. 6.3).

108
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

Algorithm 6.1: CUDB Outlier Detection: Incremental Approach
Input: Sj , G, θ
Output: Set of distance-based outliers O

/*Identifying state change objects*/
1: for each oi ∈ Sj do
2: if oi is case-1 SC-object then
3: Add oi to appropriate cell Cj , increase N(Cj) by 1;
4: Delete oi from its old cell Cj−1, decrease N(Cj−1) by 1;
5: Label Cj and Cj−1 A and their L1 and RD+wσ neighbouring cells B;
6: end if
7: end for
8: Label each Cj ∈ G C, if Cj is non-empty, un-pruned and not labelled A or

B;
/*Processing cells of types A, B and C*/

9: for each C ∈ G do
10: if C is labelled A, B or C, process them using cell-based approach of

Sec. 6.3 (Algorithm 4.2) and obtain set of outliers O;
11: end for
12: for each oi in un-pruned cells do
13: Compute #D-neighbors(oi) using the Pr(oi, o,D) values available in

Hash table; (Pr(oi, o,D) computation is required if either oi or o or both
are SC-objects or Pr(oi, o,D) is not available in the Hash table)

14: if #D-neighbors(oi) ≤ θ then oi is outlier. Add oi to O;
15: end for
16: return O;

Type B: L1 and RD+wσ neighbouring cells of Type A cells except those classi-
fied as Type A.

Type C: Un-pruned cells of the grid G. Type C cells may include Type A and
B cells.

All three cell types, i.e., A, B and C require re-outlier detection with the
arrival of new state set, while rest of the cells do not need to be processed. Lines
1-11 of the incremental algorithm (Algorithm 6.1) is used for the processing of
target cells.

6.5. Incremental Outlier Detection using the
Bounded Gaussian Uncertainty 109

Un-pruned Objects Processing

Due to expensive #D-neighbors computation, the main cost of our proposed
incremental algorithm (CUDB(CG)) lies in the processing of un-pruned ob-
jects (Type C cells). The #D-neighbors computation of an object op requires
distance probability computation, Pr(op, oq, D), between op and each oq ∈
Sj . In the CUDB(CG) algorithm, this cost can be reduced by utilizing the
Pr(op, oq, D) values computed in processing the previous state set. Namely,
a Hash table is used to store Pr(op, oq, D) values computed at time tj−1. At
time tj , these values are retrieved from the Hash table in O(1) time. Hence at
time tj , Pr(op, oq, D) values need to be computed only in two cases; 1) States of
op, oq or both have changed, 2) Pr(op, oq, D) is not available in the Hash table.
Since un-pruned objects form a fraction of the state set, the memory required
to hold the Hash table is not significant. However it saves a lot of computation
time. Lines 12-15 of Algorithm 6.1 shows the processing of un-pruned objects.

6.5 Incremental Outlier Detection using the
Bounded Gaussian Uncertainty

Approximating the Gaussian uncertainty by the bounded Gaussian uncertainty
enables an approximate but more efficient outlier detection. According to this
paper’s assumption, attributes of uncertain objects follow the Gaussian distribu-
tion. Therefore according to the 3-sigma rule there is a 95.45% chance that un-
certain objects’ attribute values lie within 2 standard deviations of the observed
values and 99.73% chance that the values lie within 3 standard deviations of the
observed values [88]. Hence the conventional Gaussian distribution can be nor-
malized within certain boundaries to increase the efficiency of outlier detection
at a small cost of accuracy.

Given a two dimensional conventional Gaussian function g−→A(x1, x2) with
mean −→µ = (µ1, µ2) and co-variance matrix Σ = diag(σ2, σ2), the bounded
Gaussian distribution f−→A(x1, x2) can be defined following the practise of [108],

110
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

as follows.

f−→A(x1, x2) =

g−→A (x1,x2)∫

(x1,x2)∈o.ur g−→A (x1,x2)dx1dx2
(x1, x2) ∈ o.ur

0 otherwise
(6.2)

where o.ur denotes the uncertainty region of the bounded Gaussian distribution.
This paper assumes that the uncertainty region is a sphere with centre (µ1, µ2)

and radius r.

By bounding the Gaussian uncertainty, a cell can be pruned by simply count-
ing the number of objects in its neighbouring layers. Moreover the major cost
of outlier detection, that is, the processing of un-pruned objects also reduces
significantly. This is because, with the bounded Gaussian, the outlier detection
algorithm needs to consider limited number of objects for the computation of an
object’s #D-neighbors rather than all the objects, as in the case of the conven-
tional Gaussian uncertainty. For details on the bounded Gaussian uncertainty,
please refer Sec. 4.4.

6.5.1 Bounded Gaussian Cell-based Outlier Detection

Like the grid structure of the conventional Gaussian uncertainty in Sec. 6.3.1,
objects in the state set Sj are mapped to a 2-dimensional space that is partitioned
into cells of length l = D−2r

2
√
2

. The cell layers are defined in a similar manner as
that of Sec. 6.3.1 and cell length l is chosen in such a way to satisfy the property
4.

Property 4: If Cu1,u2 ∈ L1(Cx1,x2), then op ∈ Cx1,x2 and oq ∈ Cu1,u2 are at
most D − 2r distance apart.

From property 4, an op ∈ Cx1,x2 and an oq ∈ Cu1,u2 are guaranteed to be D-
neighbors mutually, with the Pr(op, oq, D) = 1. Cells in region RD+2r(Cx1,x2)

are those which fall within D + 2r distance of Cx1,x2 . Let nD+2r =
⌈
D+2r
l

⌉
,

then the region RD+2r of Cx1,x2 is defined as follows and satisfies property 5.

RD+2r(Cx1,x2) = {Cu1,u2 |u1 = x1 ± nD+2r, u2 = x2 ± nD+2r,

Cu1,u2 /∈ L1(Cx1,x2), Cu1,u2 ̸= Cx1,x2}.

6.6. Complexity Analysis 111

Property 5: If Cu1,u2 is neither an L1 nor an RD+2r neighbour of Cx1,x2 and
Cu1,u2 ̸= Cx1,x2 , then op ∈ Cx1,x2 and oq ∈ Cu1,u2 are at least D + 2r apart.

From property 5, it can be guaranteed that an op ∈ Cx1,x2 and an oq ∈ Cu1,u2
are greater than D + 2r distance apart, hence Pr(op, oq, D) = 0. Using the
properties 4 and 5, grid cells can be pruned as follows.

Property 6:

1. If N(Cx1,x2) > θ, all the objects in Cx1,x2 and L1(Cx1,x2) are inliers.

2. If N(Cx1,x2) +N(L1(Cx1,x2)) > θ, all the objects in Cx1,x2 are inliers.

3. If N(Cx1,x2)+N(L1(Cx1,x2))+N(RD+2r(Cx1,x2)) ≤ θ, all the objects in
Cx1,x2 are outliers.

For the un-pruned objects in the un-pruned cells from the cell-based pruning,
#D-neighbors are computed using only the objects within D + 2r distance of
the target object, to find whether the un-pruned objects are inliers or outliers.

6.5.2 Bounded Gaussian Incremental Outlier Detection

As a result of state change, an object can either move within the cell or among
the cells. Hence the two cases are similar to the one discussed in Sec. 6.4
for the conventional Gaussian uncertainty. Since the uncertainty of an object is
bounded, as a result of change in their state, fewer number of neighbouring cells
are affected as compared to the conventional Gaussian uncertainty, reducing the
number of target cells requiring re-outlier detection. Similarly, Type C cells now
do not contain all the un-pruned cells of the grid. However, they contain only
the un-pruned cells within region RD+2r of the cell containing an SC-object. As
a result, the computational cost of the incremental outlier detection algorithm
using the bounded Gaussian uncertainty reduces significantly than the conven-
tional Gaussian uncertainty.

6.6 Complexity Analysis

Since the basic cell-based algorithms used by the incremental outlier detection
approaches is UDB outlier detection algorithms (Algorithms 4.2 and 4.4), we

112
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

will not derive the complexities of the CUDB outlier detection algorithms from
scratch. However, we will use the complexities of the UDB outlier detection
algorithms to derive the complexities of the CUDB outlier detection algorithms
in this section. From the UDB outlier detection algorithms, the major cost lies
in the evaluation of accurate #D-neighbours of the un-pruned objects. This
cost is so high that it hides the cost of the rest of the algorithms and therefore
the complexities of the UDB outlier detection algorithms were given in terms of
the number of distance probability evaluations. Hence the average case and the
worst case complexities of the UDB(CG) outlier detection algorithm obtained
in Sec. 4.3.4 are O(nN) and O(N2) respectively, where N is the number of
dataset objects and n ≪ N is the number of un-pruned objects. The average
case and the worst case time complexities of the UDB(BG) outlier detection
algorithm are O(nN ′) and O(N2) respectively, where N ′ ≤ N is the number of
objects that lie within D + 2r distance of the un-pruned objects.

In the CUDB algorithms (the CUDB(CG) and the CUDB(BG)), the UDB
outlier detection algorithms are utilized only for the objects affected by the SC-
objects. Assuming that there are nsc objects affected by the SC-objects and
nsc ≤ n, then the average case computation complexities of the CUDB(CG) and
the CUDB(BG) algorithms are given by O(nscN) and O(nscN ′), respectively
for the 2D case. However, the worst case complexity remains same, i.e., O(N2)

for the CUDB(CG) and the CUDB(BG) algorithms, assuming that all the objects
are affected by the SC-objects. Hence, the average computation complexities
of the CUDB algorithms remain less than the UDB algorithms, as long as the
nsc < n.

The complexities of the CUDB outlier detection algorithms do not change
with the increase in dimensions d, as long as only the number of distance prob-
ability evaluations are considered for the computation of the algorithms’ com-
plexities. Although with the increase in d, the number of grid cells increases
exponentially, yet the cost of evaluation of the #D-neighbours of the un-pruned
objects remains dominant and hence the complexities remain same (as discussed
above for the 2D case) for the higher dimensional case for both the CUDB al-
gorithms, i.e., the CUDB(CG) and the CUDB(BG).

The stream data arrive continuously and at high speed and has high memory
requirements, therefore the memory complexity of the CUDB algorithms is also
presented. According to the problem formulation of this chapter, streams are

6.7. Experiments 113

the sequences of objects’ states generated over time and a state set is a set of
uncertain objects’ states that are originated synchronously from a group of data
sources. The proposed incremental algorithms make use of the results obtained
from the previous state set to efficiently detect outliers in the current state set.
Hence, two state sets need to be kept in memory always, a current and a pre-
vious, each of which require O(N) memory. In addition, a hash table is used
by all the un-pruned objects, each of which requires O(N) memory. Hence, on
average the memory complexity of the CUDB algorithms is O(nN), where N
is the number of dataset objects and n ≪ N is the number of un-pruned ob-
jects. In the worst case, none of the dataset objects is pruned by the cell-based
pruning, resulting in O(N2) memory complexity.

6.7 Experiments

We conducted extensive experiments on synthetic and real datasets to evaluate
the effectiveness of the proposed approaches. All algorithms were implemented
in C++, GNU compiler. All experiments were performed on a system with an
Intel Core 2 Duo CPU E8400 3.00GHz CPU and 2GB main memory running
Ubuntu 12.04 OS. All programs run in main memory and no I/O cost is consid-
ered. Each experiment is performed 3 times and the average values are used in
the graphs. We have also used error bars in the graphs, showing the standard er-
ror in the execution time measurements of each approach. However, in majority
of the graphs they are not visible due very small standard error in the execution
times.

Pre-computation time is not included in the measurements. Unless speci-
fied, the following parameter values are used in experiments: D = 100, σ = 10,
t = 2, r = tσ and p = 0.998. SC-objects ratio = 30% is used for the UG dataset
(SC-objects ratio for the MOW dataset depends on the number of objects chang-
ing states between two forecasts). In figures, the incremental approaches using
the conventional Gaussian and the bounded Gaussian uncertainties are denoted
by the CUDB(CG) and the CUDB(BG), respectively. These two approaches
are compared with the simple cell-based approaches on the conventional and
the bounded Gaussian uncertainties, presented in chapter 4. In the simple cell-
based approaches, the cell-based algorithms presented in Secs. 4.3 and 4.4 are
executed for all the objects in the state set at every timestamp. The simple cell-

114
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

based approaches are denoted by the UDB(CG) and the UDB(BG), respectively
in the figures.

6.7.1 Datasets

In this work one synthetic and one real datasets are used for experiments. Syn-
thetic dataset, uni-modal Gaussian (UG) is 2-dimensional and is generated using
Box Muller method [110]. This method generates pair of independent, stan-
dard, normally distributed (zero mean, unit variance) random numbers, given a
source of uniformly distributed random numbers. In order to provide the stream
behaviour in synthetic dataset, states of the fraction of dataset objects are modi-
fied by adding normal random numbers with zero mean and standard deviation
σSC at every time instance. The proposed incremental algorithm is executed on
this modified dataset. Unless specified, the synthetic dataset consists of 5,000
tuples.

As for real-world data, we have used three hourly met office weather (MOW)
forecast data available at [5]. In the experiments on real data, we have used a
two dimensional subset of MOW data, which consists of screen and feels like
temperature forecast values for 5,802 weather stations around UK. Consecutive
forecasts are used as data stream in these experiments.

Figure 6.5: Met Office Weather (MOW) dataset [5]

6.7. Experiments 115

Both the datasets are normalized to have a domain of [0,1000] on every di-
mension. For each point z in the datasets, an uncertain object o is created, whose
uncertainty is given by the Gaussian distribution with mean z and standard de-
viation σ in both the dimensions. The dataset UG used in the experiments is
given in Fig. 4.5 and the dataset MOW is given in Fig. 6.5.

6.7.2 Results

Experiments are conducted to evaluate the efficiency and scalability of the pro-
posed algorithms in this chapter. Since there are no known algorithms for
distance-based outlier detection on uncertain data streams, the simple cell-based
methods (the UDB(CG) and the UDB(BG)) are used as baseline. We did not
perform experiments to evaluate the accuracy in this chapter, because the ba-
sic approach used to find the outliers is same as the one presented in chapter
4. Therefore, the accuracy of the experiments is similar to the one presented in
Sec. 4.6.2.

0

500

1000

1500

2000

10 20 30 40 50 60 70 80 90 100

E
xe

cu
ti

o
n

 T
im

e
(s

)

SC Objects Percentage

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

5

10

15

20

25

30

10 20 30 40 50 60 70 80 90 100

E
xe

cu
ti

o
n

 T
im

e
(s

)

SC Objects Percentage

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.6: Varying SC-object’s percentage for UG dataset (D = 100, σ = 10,
t = 2, r = tσ, and p = 0.998)

Firstly, experiments are performed on the synthetic dataset UG by varying
the percentage of SC-objects. Figs. 6.6a and 6.6b show the effect of varying the
SC-objects’ percentage on the execution time. In the figures, as the percentage
of the SC-objects increases, the number of target cells requiring re-evaluation
also increases. As a result the execution times of the proposed approaches the
CUDB(CG) and the CUDB(BG) also increase. The graphs of the CUDB(CG)
and the UDB(CG) in Fig. 6.6a meets when all the objects in the dataset change
their states i.e., when the percentage of SC-Objects is 100%. At this point, the
CUDB(CG) algorithm becomes similar to that of UDB(CG) algorithm, that is,

116
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

0

500

1000

1500

2000

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

SC Magnitude (V_sc)

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

5

10

15

20

25

30

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

SC Magnitude (V_sc)

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.7: Varying SC magnitude for UG dataset (D = 100, SC-objects =
30%, σ = 10, t = 2, r = tσ, and p = 0.998)

executing cell-based algorithm for the complete state set rather than only for SC-
objects. Similar trends can be observed for the CUDB(BG) and the UDB(BG) in
Fig. 6.6b. As discussed in previous sections, the main cost of our algorithms lies
in the processing of un-pruned objects. In the bounded Gaussian case, for the
computation of #D-neighbors of un-pruned objects, limited number of objects
within certain boundary are considered. However, the conventional Gaussian
algorithm needs to consider all the object in the grid for the computation of
#D-neighbors of an un-pruned object. Therefore the approach CUDB(BG) is
far less expensive than the CUDB(CG). The variation in the UDB(CG) graph is
due to the change in percentage of moving objects, which results in the variation
in the state set distribution and consequently in the number of outliers returned
by the algorithms.

0%

20%

40%

60%

80%

100%

UG MOW

P
e

rc
e

n
ta

g
e

SC Magnitude (V_sc)

SC-objects within cell SC-objects among cells

Figure 6.8: SC-objects within and among cells (D = 100, σ = 10, SC-objects
= 30%, t = 2, r = tσ, and p = 0.998)

Next, experiments are performed by varying the magnitude of movement
of SC-objects. The magnitude was varied by varying the σsc. From Fig. 6.7,

6.7. Experiments 117

we can observe that as σsc increases, the execution times of all the algorithms
increase. This is due to the fact that the increase in σsc, results in an increase in
the number of objects that move among cells. Hence the number of target cells
increases, which is the cause of increase in the execution times. Furthermore,
from Fig. 6.7, the proposed incremental approaches are computationally less
expensive than executing the cell-based algorithm for all the dataset objects.
Moreover, it can be observed from Figs. 6.7a and 6.7b that the approach using
the bounded Gaussian uncertainty is far less expensive computationally than
the approach using the conventional Gaussian uncertainty. This is due to the
fact that the bounded Gaussian approach requires limited number of objects for
the computation of un-pruned objects’ #D-neighbors. On the other hand, the
conventional Gaussian approach needs to consider all the objects in the dataset
for the computation of un-pruned objects’ #D-neighbors.

0

1000

2000

3000

4000

5000

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

10

20

30

40

50

60

70

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.9: Varying parameter D for UG dataset (σ = 10, SC-objects = 30%,
t = 2, r = tσ, and p = 0.998)

0

2000

4000

6000

8000

10000

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

200

400

600

800

1000

1200

1400

80 90 100 110 120

E
x
e

cu
ti

o
n

 T
im

e
(s

)

D

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.10: Varying parameter D for MOW dataset (σ = 10, SC-objects =
30%, t = 2, r = tσ, and p = 0.998)

Figure 6.8 shows the percentage of objects moving within and among cells

118
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

for both the datasets. Percentage of objects that move within and among the
cells depend on the magnitude of SC-objects, i.e., the σsc. Larger the σsc, bigger
the number of cells affected by the SC-objects which results in higher algorithm
execution times.

0

1000

2000

3000

4000

5000

6000

0.995 0.996 0.997 0.998 0.999

E
xe

cu
ti

o
n

 T
im

e
(s

)

p

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

50

100

150

200

0.995 0.996 0.997 0.998 0.999
E

xe
cu

ti
o

n
 T

im
e

(s
)

p

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.11: Varying parameter p for UG dataset (D = 100, SC-objects = 30%,
σ = 10, t = 2, and r = tσ)

0

500

1000

1500

2000

2500

3000

0.983 0.984 0.985 0.986 0.987

E
xe

cu
ti

o
n

 T
im

e
(s

)

p

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

200

400

600

800

1000

1200

1400

1600

0.983 0.984 0.985 0.986 0.987

E
xe

cu
ti

o
n

 T
im

e
(s

)

p

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.12: Varying parameter p for MOW dataset (D = 100, SC-objects
= 30%, σ = 10, t = 2, and r = tσ)

Next, experiments are performed by varying the parameter D. As D in-
creases, number of D-neighbors also increases. As a result, objects are more
easily pruned and we obtain fewer outliers. This results in the decline in the ex-
ecution times for all the algorithms and for both the datasets i.e., UG and MOW,
as can be observed from Figs. 6.9 and 6.10. Again, it is quite obvious from the
Figs. 6.9 and 6.10 that the CUDB(BG) is far less computationally expensive
than the CUDB(CG).

We also performed experiments by varying the parameter p. As p increases,
threshold θ and consequently the number of outliers returned by the algorithms
decreases, which results in a decline in execution times of all the algorithms

6.7. Experiments 119

0

500

1000

1500

2000

2500

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

20

40

60

80

100

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.13: Varying object’s uncertainty σ for UG dataset (D = 100, SC-
objects = 30%, t = 2, r = tσ, and p = 0.998))

0

500

1000

1500

2000

2500

3000

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

200

400

600

800

1000

1200

1400

3 6 9 12 15

E
xe

cu
ti

o
n

 T
im

e
(s

)

Object's Uncertainty

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.14: Varying object’s uncertainty σ for MOW dataset (D = 100, SC-
objects = 30%, t = 2, r = tσ, and p = 0.998))

for both the datasets. Please note that the proposed incremental approaches are
faster than using the simple cell-based approach, in case of both uncertainty
types, i.e., the conventional Gaussian and the bounded Gaussian. This can be
observed from Figs. 6.11 and 6.12.

The effectiveness of the proposed approaches is also measured with the in-
creasing level of objects’ uncertainty. Figs. 6.13 and 6.14 show the effect of
increasing the dataset objects’ uncertainty level. As standard deviation (σ) in-
creases, the uncertainty level of the objects increases which results in the decline
in Pr(op, oq, D) values, even if the Euclidean distance between the op and the
oq is small. As a result, un-pruned objects are not pruned easily and their pro-
cessing becomes expensive, which causes increase in the execution times of the
algorithms.

Next, experiments are performed by varying the number of dimensions d.
As d increases, the execution time of all the approaches increases. Moreover,
the difference between the execution times for the incremental and the simple

120
CHAPTER 6. CONTINUOUS OUTLIER DETECTION ON UNCERTAIN

DATA STREAMS

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

2 3 4 5

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Dimensions (d)

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

2 3 4 5

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Dimensions (d)

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.15: Varying dimensions d for UG dataset (D = 100, σ = 10, SC-
objects = 30%, t = 2, r = tσ, and p = 0.9997)

cell-based approaches also decrease with the increase in d. This is due to the fact
that with the increase in d, the number of cells increases; and the percentage of
the time taken by the cell-based processing increases. Since in the CUDB(CG)
and the CUDB(BG) approaches, the main benefit in the execution time, i.e.,
the reduction in the execution times, is obtained from the processing of the un-
pruned objects, however with the increase in d, this benefit reduces due to the
shifting of the main cost of the algorithm from the un-pruned objects process-
ing to the cell-based processing. As a result, the proposed incremental outlier
detection approaches do not remain much effective for the higher dimensional
data as can be observed from Fig. 6.15.

0

2000

4000

6000

8000

10000

12000

2 3 4 5

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Dimensions (d)

CUDB(CG)

UDB(CG)

(a) Conventional Gaussian Uncertainty

0

10

20

30

40

50

60

2 3 4 5

E
x
e

cu
ti

o
n

 T
im

e
(s

)

Dimensions (d)

CUDB(BG)

UDB(BG)

(b) Bounded Gaussian Uncertainty

Figure 6.16: Varying dimensions d and parameter D for UG dataset (σ = 10,
SC-objects = 30%, t = 2, r = tσ, and p = 0.999)

We also performed experiments by varying the number of dimensions d and
the parameter D in parallel. In the experiments shown in Fig. 6.15, parameter
D was kept constant, due to which the number of outliers increases dramati-
cally with the increase in d. With the increase in d, objects get sparse and the

6.8. Summary 121

parameter D must be increased accordingly to find the limited number of out-
liers. Hence in Fig. 6.16, we increase the parameter D with the increase in d, in
proportion to the average distance between the dataset objects. By doing so, we
obtain almost same percentage of outliers from all the dimensions. Therefore,
the execution times of all the approaches are far low in Fig. 6.16 as compared
to the Fig. 6.15, specially for dimensions 3 and higher.

To summarize, as d increases the execution time of all the approaches in-
creases, and the difference between the execution times for the incremental and
the simple cell-based approaches decrease with the increase in d, due to the rea-
sons discussed for the Fig. 6.15. As a result, the proposed incremental outlier
detection approaches do not remain much effective for the higher dimensional
data.

6.8 Summary

In this chapter, two continuous distance-based outlier detection approaches (an
exact and an approximate) are proposed for uncertain time series data streams.
The proposed approaches are based on the incremental processing of the state
change objects, that is, they process only those objects which are affected by the
change in objects’ states. We employed a cell-based algorithm for the efficient
detection of outliers within a state set in both the incremental algorithms. An
extensive empirical study on synthetic and real datasets demonstrates the effi-
ciency and scalability of the proposed approaches. From the experiments we
found that the proposed incremental outlier detection techniques (CUDB(CG)
and CUDB(BG)) are faster than the UDB(CG) and the UDB(BG). Moreover
CUDB(BG) is computationally less expensive than the CUDB(CG), because
the SC-Objects in the CUDB(BG) affects very few neighboring cells.

Chapter 7

Conclusions and Future Works

In this chapter, we conclude this dissertation by summarizing its main contribu-
tions and outlining some directions for future work.

7.1 Conclusions

In this dissertation, we addressed the problem of distance-based outlier detec-
tion on uncertain static data and uncertain data streams, and proposed three
approaches. Two of the approaches UDB Outlier Detection and kUDB Out-

lier Detection are proposed for uncertain static data while one approach CUDB

Outlier Detection is proposed for uncertain data streams. In the following sub-
sections, we summarize the contributions of each of the proposed approaches.

7.1.1 UDB Outlier Detection

In chapter 4, we proposed a distance-based outlier technique on uncertain data.
In the proposed work, an object’s uncertainty is given by the Gaussian distribu-
tion. Since the distance computation between uncertain data objects is computa-
tionally expensive, we proposed a cell-based approach. The cell-based approach
is capable of indexing the dataset objects besides speeding up the outlier detec-
tion process. The cell-based approach identifies and prunes the cells containing
only inliers based on its bounds on outlier score (#D-neighbors). Similarly
cell-based approach is also used for detecting the cells containing only outliers.
Although the cell-based technique is very effective, yet it may leave some cells
undecided, i.e., they are neither identified as inlier cells nor as outlier cells. For

123

124 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

the uncertain data objects in such cells the Naive computation follows, which is
the use of nested loop to compute un-pruned objects’ #D-neighbors.

The infinite nature of the Gaussian distribution makes it expensive to com-
pute #D-neighbors of a dataset object, therefore to further reduce the com-
putation cost of outlier detection, an approximate approach using the bounded
Gaussian uncertainty is also proposed in this research. The basic idea is that the
bounded Gaussian distribution is a good approximation of the Gaussian distribu-
tion and can increase the outlier detection efficiency at a small cost of accuracy.
Finally, detailed experiments are performed on real and synthetic datasets to
show the accuracy, efficiency and scalability of the proposed approaches. From
the experiments, we found that the proposed approaches are more accurate than
the baseline approach (Knorr et al. [63] of outlier detection). Furthermore, we
found that the approximate approach using the bounded Gaussian uncertainty
is computationally less expensive than the accurate approach, however it is less
accurate as compared to the accurate one.

7.1.2 kUDB Outlier Detection

In chapter 5, a top-k approach of distance-based outlier detection is presented,
which returns k objects with lowest outlier scores (#D-neighbors) or in other
words, k strongest outliers along with their ranking. In order to compute the
top-k outliers from uncertain datasets efficiently, a populated-cells list (PC-list)
is proposed. The PC-list is a sorted list of non-empty cells of a d-dimensional
grid, where the grid is used to index data objects. Using PC-list, the top-k outlier
detection algorithm needs to consider only a fraction of the dataset objects and
hence quickly identifies candidate objects for the top-k outliers. Finally, an exact
outlier score (#D-neighbors) is computed for each candidate object to find the
top-k outliers and their ranking.

From experiments we found that, computationally the most expensive part of
the kUDB outlier detection approach is the computation of exact outlier scores
of the candidate objects. In order to reduce this cost, two approximate kUDB
outlier detection approach are also proposed. The first approximate algorithm,
approximates only the candidate objects’ #D-neighbors. According to our dis-
tance probability function, major contribution in #D-neighbors computation of
an object is made by the nearer objects. Hence the first approximate algorithm,

7.2. Future Works 125

approximates the candidate objects’ #D-neighbors computation by consider-
ing only the nearer objects. The second approximate algorithm makes use of
the bounded Gaussian uncertainty to increase the efficiency of the top-k outlier
detection algorithm. Finally, detailed experiments on real and synthetic datasets
are performed to prove the accuracy, efficiency and scalability of the proposed
approaches. From the experiments, we found that the accuracy of outlier detec-
tion improves with the consideration of data uncertainty. In addition, we found
that both of the approximate algorithms are several times faster than the exact
counterpart.

7.1.3 CUDB Outlier Detection

In chapter 6, we proposed a continuous outlier detection technique for uncertain
time series data streams. In particular, we presented a continuous distance-
based outlier detection approach on a set of uncertain objects’ states that are
originated synchronously from a group of data sources (e.g., sensors in WSN)
at every timestamp. A set of objects’ states at a timestamp is called a state set.
In this research we assume that the duration between two consecutive times-
tamps is very short and the state of all the objects may not change much in this
duration. Therefore, we proposed an incremental approach of outlier detection,
which makes use of results obtained from the previous state set to efficiently
detect outliers in the current state set. An approximate incremental outlier de-
tection approach using the bounded Gaussian uncertainty is also presented to
further reduce the cost of incremental outlier detection. Finally, an extensive
empirical study on synthetic and real datasets is presented. From experiments,
we found that the incremental outlier detection algorithm is quite effective than
using the cell-based algorithm for the complete dataset at every timestamp, spe-
cially when the percentage of state change objects is small.

7.2 Future Works

In the following, we present some possible future research issues and some sug-
gestions to extend and improve the work presented in this dissertation.

126 CHAPTER 7. CONCLUSIONS AND FUTURE WORKS

7.2.1 Continuous Top-k Outlier Detection

In this dissertation, we proposed three approaches of outlier detection on uncer-
tain datasets. Two of the approaches UDB Outlier Detection and kUDB Outlier

Detection are proposed for uncertain static data while one approach CUDB Out-

lier Detection is proposed for uncertain data streams.

Just like the need of top-k outlier detection on uncertain static data, there is
a need to obtain k strongest outliers and their ranking continuously on uncertain
data streams. Hence, one of the natural extension of this work is Continuous

top-k outlier detection on uncertain data streams.

7.2.2 UDB Outlier Detection for Very High Dimensional Data

In the current work, we have presented an outlier detection solution for relatively
low-dimensional data. We performed experiments on at most 5-dimensional
data. From the experimental evaluations in different chapters, it is very clear
that the computation cost of the proposed solutions increase dramatically with
the increase in dimensions. This is due to the fact that with the increase in
dimensions, number of cells increase exponentially. Moreover, the probability
computation Pr(oi, oj, D) becomes too expensive for high dimensional data.

Hence, in order to detect outliers from very high dimensional uncertain data,
dimensionality reduction and subspace mining techniques are required. In addi-
tion, an alternative of cell-based indexing/pruning is required. In our work, sub-
space outlier detection can be incorporated using the subspace distance-based
outlier detection approach presented by Knorr et al. in [64] for deterministic
data. With the increase in dimensions, the number of subspaces need to be
considered for outlier detection increases exponentially and due to this reason
identification of relevant subspaces for outlier detection is a known research
problem. Authors in [64] proposed to select subspaces at random and search
for outliers in them. Using this approach, if a subspace A does not contain any
outlier, then none of its subspaces B ⊂ A can contain an outlier, in this way
a lot of subspaces can be pruned from consideration. Experimentally, authors
in [64] found d = 3 (d denotes the number of subspace dimensions) as a good
starting point for random subspace selection, however further research is needed
to identify relevant subspaces.

7.2. Future Works 127

7.2.3 UDB Outlier Detection for General Uncertainty Models

In this dissertation, objects uncertainty is modelled by the Gaussian distribution.
The Gaussian distribution is chosen to represent an object’s uncertainty, because
in Statistics it is the most important and the most commonly used. However, a
general uncertainty model is required so that any distribution can be used to
represent an object’s uncertainty depending upon the requirements. For such
an uncertainty model, the proposed cell-based pruning is not effective and we
require a pruning technique which can handle data with arbitrary uncertainty
distribution. A pruning technique presented by Tal et al. in [108] for finding
nearest-neighbours from multi-dimensional uncertain data could be one option.
In addition, an indexing technique is also required to index uncertain data.

Appendix

A: Probability Density Function for the Difference
between Two Random Variables following the
d-dimensional Gaussian Distributions

Let o be a k-dimensional uncertain object with attributes
−→
A = (x1, ..., xk), mean

−→µ = (µ1, ..., µk)
T and a diagonal covariance matrix Σ = diag(σ2

1, ..., σ
2
k). The

probability density function of o can be expressed as follows.

f−→A(x1, ..., xk) =
1√

(2π)kdetΣ
exp

{
− (
−→
A −−→µ)TΣ−1(

−→
A −−→µ)

2

}
.

Since Σ is diagonal, the distribution functions are independent in coordi-
nates. Hence the k-dimensional normal distribution function is given by the
product of k 1-dimensional normal distribution functions.

f−→A(x1, ..., xk) =
∏

1≤i≤k

1√
2πσ2

i

exp

{
− (xi − µi)2

2σ2
i

}
. (7.1)

Let oi and oj are two k-dimensional uncertain objects with attributes
−→
Ai =

(xi,1, ..., xi,k)
T and

−→
Aj = (xj,1, ..., xj,k)

T , means −→µi = (µi,1, ..., µi,k)
T and −→µj =

(µj,1, ..., µj,k)
T and diagonal covariance matrices Σi = diag(σ2

i,1, ..., σ
2
i,k) and

Σj = diag(σ2
j,1,..., σ

2
j,k), respectively. Assuming that

−→
Ai and

−→
Aj are independent

random vectors, then
−→
Ai −

−→
Aj = N (−→µi −−→µj ,Σi + Σj) [114].

Since Σi and Σj are diagonal matrices, the k-dimensional normal difference
distribution function can be given by the product of k 1-dimensional normal
distribution functions as follows.

129

130 APPENDIX

f−→Ai−
−→
Aj
(x1, ..., xk) =

∏
1≤m≤k

1√
2π(σ2

i,m + σ2
j,m)

exp

{
−(xm − (µi,m − µj,m))2

2(σ2
i,m + σ2

j,m)

}
.

(7.2)

Since this lemma focus on 2-dimensional Pr(oi, oj, D). The normal differ-
ence distribution of 2-dimensional uncertain objects oi and oj is given by,

f−→Ai−
−→
Aj
(x1, x2) =

1

2π
√
(σ2

i,1 + σ2
j,1)(σ

2
i,2 + σ2

j,2))
×

exp

{
−

(
(x1 − α1)

2

2(σ2
i,1 + σ2

j,1)
+

(x2 − α2)
2

2(σ2
i,2 + σ2

j,2)

)}
,

(7.3)

where α1 = µi,1 − µj,1 and α2 = µi,2 − µj,2 are the differences between the
means of objects oi and oj respectively. Hence the probability that oj ∈ DN(oi)

denoted by Pr(oi, oj, D), is given as follows.

Pr(oi, oj, D) =
1

2π
√

(σ2
i,1 + σ2

j,1)(σ
2
i,2 + σ2

j,2)
×

∫ D

0

∫ 2π

0

exp

{
−
(
(r cos θ − α1)

2

2(σ2
i,1 + σ2

j,1)
+

(r sin θ − α2)
2

2(σ2
i,2 + σ2

j,2)

)}
r dθ dr �

(7.4)

B: Transformation of a Correlated d-dimensional
Gaussian Distribution into an Uncorrelated
d-dimensional Gaussian Distribution

This appendix shows that a correlated d-dimensional Gaussian distribution can
be transformed into an uncorrelated d-dimensional Gaussian distribution with
appropriate coordinate transformation (Principal Component Analysis [100]).
Hence resulting in a diagonal, uncorrelated covariance matrix whose variance
is uniform in all dimensions, which is consistent with the proposed distance
probability function (Eq. 4.3) in this dissertation, for the computation of outlier
score (#D-neighbors).

Assuming that we have two-dimensional Gaussian distribution with attribute

Appendix 131

vector x =

[
x

y

]
, mean vector µ =

[
µx

µy

]
and covariance matrixCx =

[
σ2
x σxy

σxy σ2
y

]
.

The covariance matrixCx is a symmetric, positive-definite and real-valued square
matrix. Therefore Cx has real-valued eigenvalues which are non-zero and are
orthogonal. Hence real-valued eigenvectors may be defined by Cxϕ = λϕ. If
any eigenvalues of the covariance matrix are identical, orthogonal eigenvectors
may still be obtained, however they are not unique. Choosing the eigenvectors
to have unit magnitude, they may be put together into an eigenvector matrix
Φ =

[
ϕ1, ..., ϕn

]
such that CxΦ = ΦΛ where Λ = diag(λ1, ..., λn) and the

eigenvector matrix is orthonormal, Φ−1 = Φt.

In order to transform a correlated d-dimensional Gaussian Distribution into
an Uncorrelated d-dimensional Gaussian Distribution, a series of coordinate
transformations is required which are as follows.

1. Shift the mean to the coordinate origin x’ = x−µ. According to the defini-
tion, the mean of the shifted set is zero,E{x′} =E{x− µ} =E{x}−µ =

0, where E{} denotes the expectation operator, thus this transformation
of coordinate has no effect on the covariance, Cx′ = E{(x′)(x′)t} =

E{(x− µ)(x− µ)t} = Cx.

2. After the shifting of mean, consider the following transformation x′′ = Φtx′.
This results in a diagonal covariance matrix which is equal to rotating the
coordinate axes: Cx′′ =E{(x′′)(x′′)t} =E{(Φtx′)(Φtx′)t} =ΦtE{(x′)(x′)t}Φ,
hence Cx′′ = ΦtCxΦ = Φ−1CxΦ = Λ.

3. Finally, consider the following transformation, x′′′ = S−1x′′, where S =

diag(
√
λ1, ...,

√
λn). This results in a unity covariance matrix and is equal

to re-scaling the coordinate axes: Cx′′′ =E{(x′′′)(x′′′)t} =E{(S−1x′′)(S−1x′′)t} =
S−1E{(x′′)(x′′)t}S−t, hence Cx′′′ = S−1ΛS−t = I, i.e.,

Cx′′′ =

1√
λ1

0
. . .

0 1√
λn

λ1 0

. . .

0 λn

1√
λ1

0
. . .

0 1√
λn

 =

1 0

. . .

0 1

With this series of transformations it is always possible to define alternative

132 APPENDIX

coordinates for an uncertain object, with a diagonal, uncorrelated covariance
matrix whose variance is uniform in all dimensions [100, 115].�

C: Approximate Values of d-dimensional Probabil-
ity Density Function for the Difference between Two
Random Variables following the d-dimensional Gaus-
sian Distributions

According to the well known three sigma rule or the empirical rule of the Gaus-
sian distribution, approximately 68.27% of the values lie within one standard
deviation of the mean. Similarly, approximately 95.45% of the values lie within
two standard deviations of the mean. Nearly all (99.73%) of the values lie within
three standard deviations of the mean [88]. Since the difference between two
Gaussian distributions follows the Gaussian distribution [114], the three sigma
rule is applicable to the Gaussian difference distribution and to our proposed
probability distribution function which is based on the Gaussian difference dis-
tribution, Pr(oi, oj, D), as long as D ≥ 3σ, where σ is the standard deviation of
the Gaussian difference distribution used in Pr(oi, oj, D). However, the above
mentioned values of the three sigma rule is only valid for the 1-dimensional
Gaussian distribution.

The number of standard deviations s needed to enclose a given percentage
of values for a d-dimensional random variable X following the Gaussian distri-
bution can be obtained using the expression Pr{dM(X,µ) ≤ s} = Gd(s

2) [19],

where dM(X,µ) =
√

(X − µ)T
∑−1(X − µ) is the Mahalanobis distance and

Gd(s
2) is the CDF of the chi-squared distribution with d-degrees of freedom. In

this dissertation we assume that there exists no correlation between the attributes
of uncertain objects. Appendix B shows that the series of transformations is al-
ways possible to find alternative coordinates of an object, which eliminates the
correlation among an object’s coordinates.

Hence if t denotes the value of s, such that Pr{dM(X,µ) ≤ t} covers
a large area of the Gaussian distribution (say > 99%), then for α ≤ D −
tσ′, P r(oi, oj, D) ≈ 1 and for α ≥ D + tσ′, P r(oi, oj, D) ≈ 0.�

Bibliography

[1] Cisl research data archive. http://rda.ucar.edu, 2012. [Online;
accessed 06-July-2012].

[2] International surface pressure databank (ispdv2) 17682010. http://

rda.ucar.edu, 2012. [Online; accessed 06-July-2012].

[3] Sloan digital sky survey. http://www.sdss.org, 2012. [Online;
accessed 06-July-2012].

[4] Intel berkeley research lab sensor data. https://www.

intel-university-collaboration.net/, 2013. [Online;
accessed 31-October-2013].

[5] Met office weather data. http://data.gov.uk/data, 2013. [On-
line; accessed 03-September-2013].

[6] Stevens water monitoring systems, inc. http://www.

stevenswater.com/, 2013. [Online; accessed 07-March-2013].

[7] Vaisala corporation. http://www.vaisala.com/, 2013. [Online;
accessed 07-March-2013].

[8] Xylem corporation. http://www.globalw.com/, 2013. [Online;
accessed 07-March-2013].

[9] Techtarget: Intrusion detection definition. http://techtarget.

com/, 2014. [Online; accessed 05-January-2014].

[10] Charu C. Aggarwal. Managing and Mining Uncertain Data. Springer
Publishing Company, Incorporated, 2009.

133

http://rda.ucar.edu
http://rda.ucar.edu
http://rda.ucar.edu
http://www.sdss.org
https://www.intel-university-collaboration.net/
https://www.intel-university-collaboration.net/
http://data.gov.uk/data
http://www.stevenswater.com/
http://www.stevenswater.com/
http://www.vaisala.com/
http://www.globalw.com/
http://techtarget.com/
http://techtarget.com/

134 BIBLIOGRAPHY

[11] Charu C. Aggarwal. Outlier Analysis. Springer-Verlag New-York, 2013.

[12] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimen-
sional data. In Proceedings of the ACM SIGMOD International Confer-

ence on Management of Data, pages 37–46, 2001.

[13] Charu C. Aggarwal and Philip S. Yu. Outlier detection with uncertain
data. In SIAM International Conference on Data Mining (SDM), 2008.

[14] Noor Alaydie, Farshad Fotouhi, Chandan K. Reddy, and Hamid
Soltanian-Zadeh. Noise and outlier filtering in heterogeneous medical
data sources. In DEXA Workshop on Database and Expert Systems Ap-

plications, 2010.

[15] E. Aleskerov, B. Freisleben, and B. Rao. Cardwatch: A neural network
based database mining system for credit card fraud detection. In In Pro-

ceedings of the IEEE Conference on Computational Intelligence for Fi-

nancial Engineering, pages 220–226, 1997.

[16] Fabrizio Angiulli and Fabio Fassetti. Detecting distance-based outliers in
streams of data. In ACM 16th Conference on Information and Knowledge

Management (CIKM), pages 811–820, 2007.

[17] Fabrizio Angiulli and Clara Pizzuti. Fast outlier detection in high dimen-
sional spaces. In Principles of Data Mining and Knowledge Discovery,
pages 15–27. 2002.

[18] F. J. Anscombe and Irwin Guttman. Rejection of outliers. Technometrics,
2(2):123147, 1960.

[19] Peter Bajorski. Statistics for Imaging, Optics, and Photonics. Wiley
Series in Probability and Statistics, 2012.

[20] Vic Barnett and Toby Lewis. Outliers in statistical data. 1994.

[21] Sugato Basu, Mikhail Bilenko, and Raymond J. MooneyBasu. A prob-
abilistic framework for semi-supervised clustering. In In Proceedings of

the 10th ACM SIGKDD International Conference on Knowledge Discov-

ery and Data Mining, page 5968, 2004.

Bibliography 135

[22] Kevin Beyer, Jonathan Goldstein, Raghu Ramakrishnan, and Uri Shaft.
When is nearest neighbors meaningful? In Proceedings of the Interna-

tional Conference on Database Theory, pages 217–235, 1999.

[23] Richard J. Bolton and David J. Hand. Unsupervised profiling methods for
fraud detection. In In Proceedings of the Conference on Credit Scoring

and Credit Control VII, 1999.

[24] Shyam Boriah, Varun Chandola, and Vipin Kumar. Similarity measures
for categorical data: A comparative evaluation. In In Proceedings of the

8th SIAM International Conference on Data Mining, page 243254, 2008.

[25] Joel Branch, Boleslaw Szymanski, Chris Giannella, Ran Wolff, and
Hillol Kargupta. In-network outlier detection in wireless sensor net-
works. In Proceedings of the 26th IEEE International Conference on

Distributed Computing Systems (ICDCS), 2006.

[26] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg
Sander. Optics-of: Identifying local outliers. In In Proceedings of the

3rd European Conference on Principles of Data Mining and Knowledge

Discovery, page 262270, 1999.

[27] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jorg
Sander. Lof: Identifying density-based local outliers. In In Proceed-

ings of the ACM SIGMOD International Conference on Management of

Data, page 93104, 2000.

[28] M.R. Brito, E.L. Chfivez, A.J. Quiroz, and J.E. Yukich. Connectivity of
the mutual k-nearestneighbor graph in clustering and outlier detection.
Statistics and Probability Letters, 35(1):3342, 1997.

[29] Vladimir Bychkovskiy, Seapahn Megerian, Deborah Estrin, and Miodrag
Potkonjak. A collaborative approach to in-place sensor calibration. In
Proceedings of the 2nd International Conference on Information Pro-

cessing in Sensor Networks, pages 301–316, 2003.

[30] Simon Byers and Adrian E. Raftery. Nearest neighbor clutter removal for
estimating features in spatial point processes. Journal of the American

Statistical Association, page 577584, 1998.

136 BIBLIOGRAPHY

[31] Keyan Cao, Donghong Han, Guoren Wang, Yachao Hu, and Ye Yuan. An
algorithm for outlier detection on uncertain data stream. In In Proceed-

ings of the 15th Asia-Pacific Web Conference (APWeb), pages 449–460,
2013.

[32] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detec-
tion: A survey. ACM Computing Surveys, 41(3):15:1 – 15:58, 2009.

[33] Varun Chandola, Shyam Boriah, and Vipin Kumar. Understanding cate-
gorical similarity measures for outlier detection. Technical report, Uni-

versity of Minnesota, 2008.

[34] V. Chatzigiannakis, S. Papavassiliou, M. Grammatikou, and B. Maglaris.
Hierarchical anomaly detection in distributed large-scale sensor net-
works. In In Proceedings of the 11th IEEE Symposium on Computers

and Communications (ISCC), page 761767, 2006.

[35] Reynold Cheng, Dmitri V. Kalashnikov, and Sunil Prabhakar. Evaluating
probabilistic queries over imprecise data. In In Proceedings of the 2003

ACM SIGMOD International Conference on Management of Data, pages
551–562, 2003.

[36] Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic
databases. volume 16, pages 523–544. Springer-Verlag New York, Inc.,
2007.

[37] M. J. Desforges, P. J. Jacob, and J. E. Cooper. Applications of probability
density estimation to the detection of abnormal conditions in engineering.
In In Proceedings of the Institute of the Mechanical Engineers., volume
212, page 687703, 1998.

[38] Amol Deshpande, Carlos Guestrin, Samuel R. Madden, Joseph M.
Hellerstein, and Wei Hong. Model-driven data acquisition in sensor net-
works. In In Proceedings of the Thirtieth International Conference on

Very Large Data Bases (VLDB), 2004.

[39] Yanlei Diao, Boduo Li, Anna Liu, Liping Peng, Charles Sutton, Thanh
Tran, and Michael Zink. Capturing data uncertainty in high-volume

Bibliography 137

stream processing. In In Proceedings of 4th Biennial Conference on Data

Systems (CIDR), 2009.

[40] Richard Duda, Peter Hart, and David Stork. Pattern Classification. 2nd
Ed. Wiley-Interscience, 2000.

[41] Arturo Elias, Alberto Ochoa-Zezzatti, Alejandro Padilla, and Julio Ponce.
Outlier analysis for plastic card fraud detection a hybridized and multi-
objective approach. In Hybrid Artificial Intelligent Systems, pages 1–9.
2011.

[42] Levent Ertloz, Michael Steinbach, and Vipin Kumar. Finding topics in
collections of documents: A shared nearest neighbor approach. In Clus-

tering and Information Retrieval, page 83104, 2003.

[43] Eleazar Eskin. Anomaly detection over noisy data using learned probabil-
ity distributions. In In Proceedings of the 17th International Conference

on Machine Learning, page 255262, 2000.

[44] Eleazar Eskin, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal
Stolfo. Ageometric framework for unsupervised anomaly detection. In In

Proceedings of the Conference on Applications of Data Mining in Com-

puter Security, page 78100, 2002.

[45] Martin Ester, Hans-Peter Kriegel, Jrg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In In Proceedings of the 2nd International Conference on Knowl-

edge Discovery and Data Mining, page 226231, 1996.

[46] Tom Fawcett and Foster Provost. Activity monitoring: Noticing interest-
ing changes in behavior. In In Proceedings of the 5th ACM SIGKDD In-

ternational Conference on Knowledge Discovery and Data Mining, pages
53–62, 1999.

[47] Norbert Fuhr and Thomas Rolleke. A probabilistic relational algebra
for the integration of information retrieval and database systems. ACM

Transactions on Information Systems, 1997.

[48] Edgeworth F.Y. Xli. on discordant observations. Philosophical Magazine

Series 5, 23(143):364–375, 1887.

138 BIBLIOGRAPHY

[49] Hugo Garces and Daniel Sbarbaro. Outliers detection in environmental
monitoring databases. Engineering Applications of Artificial Intelligence,
24(2):341 – 349, 2011.

[50] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Rock: A robust clus-
tering algorithm for categorical attributes. Information Systtems Journal,
25(5):345–366, 2000.

[51] Ville Hautamaki, Ismo Karkkainen, and Pasi Franti. Outlier detection
using k-nearest neighbour graph. In In Proceedings of the 17th Interna-

tional Conference on Pattern Recognition, page 430433, 2004.

[52] D.M. Hawkins. Identification of outliers. Monographs on Applied Prob-
ability and Statistics, pages 1–12. 1980.

[53] Zengyou He, Xiaofei Xu, and Shengchun Deng. Discovering cluster-
based local outliers. Pattern Recognition Letters, 24(9-10):16411650,
2003.

[54] Irja Helm, Lauri Jalukse, and Ivo Leito. Measurement uncertainty esti-
mation in amperometric sensors, a tutorial review. Sensors, 10(5):4430–
4455, 2010.

[55] Victoria Hodge and Jim Austin. A survey of outlier detection methodolo-
gies. Artificial Intelligence Review, 22(2):85–126, 2004.

[56] Peter Huber and Elvezio Ronchetti. Robust Statistics. Wiley, New York,
1974.

[57] Ihab Ilyas, George Beskales, and Mohamed Soliman. A survey of top-k
query processing techniques in relational database systems. ACM Com-

puting Surveys, 40(4):11:1–11:58, 2008.

[58] Kozue Ishida and Hiroyuki Kitagawa. Detecting current outliers: Con-
tinuous outlier detection over time-series data streams. In In proceedings

of the 19th International Conference on Database and Expert Systems

(DEXA), 2008.

[59] Anil Jain and Richard Dubes. Algorithms for Clustering Data. Prentice-
Hall, Inc., 1988.

Bibliography 139

[60] Bin Jiang and Jian Pei. Outlier detection on uncertain data: Objects, in-
stances, and inferences. In IEEE 27th International Conference on Data

Engineering (ICDE), pages 422–433. IEEE, 2011.

[61] M.F. Jiang, S.S. Tseng, and C.M. Su. Two-phase clustering process for
outliers detection. Pattern Recognition Letters, 22(6-7), 2001.

[62] George H. John. Robust decision trees: Removing outliers from
databases. In Proceedings of the First International Conference on

Knowledge Discovery and Data Mining, page 174179, 1995.

[63] Edwin M. Knorr and Raymond T. Ng. Algorithms for mining distance-
based outliers in large datasets. In In Proceedings of the 24rd Interna-

tional Conference on Very Large Data Bases (VLDB), 1998.

[64] Edwin M. Knorr and Raymond T. Ng. Finding intensional knowledge of
distance-based outliers. In Proceedings of the 25th International Confer-

ence on Very Large Data Bases, VLDB, pages 211–222, 1999.

[65] Edwin M. Knorr, Raymond T. Ng, and V. Tucakov. Distance-based
outliers: Algorithms and applications. VLDB Journal, 8(3-4):237–253,
2000.

[66] Maria Kontaki, Anastasios Gounaris, Apostolos N. Papadopoulos, Kostas
Tsichlas, and Yannis Manolopoulos. Continuous monitoring of distance-
based outliers over data streams. In In Proceedings of the IEEE 27th

International Conference on Data Engineering (ICDE), 2011.

[67] Yufeng Kou, Chang-Tien Lu, and Dechang Chen. Spatial weighted out-
lier detection. In In Proceedings of the SIAM Conference on Data Mining,
2006.

[68] Vipin Kumar. Parallel and distributed computing for cybersecurity. IEEE

Distributed Systems Online, 6(10):1–9, 2005.

[69] Weining Qian Li Wei, Aoying Zhou, Wen Jin, and Jeffrey X. Yu. Hot:
Hypergraph-based outlier test for categorical data. In In Proceedings of

the 7th Pacific-Asia Conference on Knowledge and Data Discovery, page
399410, 2003.

140 BIBLIOGRAPHY

[70] Jessica Lin, Eamonn Keogh, Ada Fu, and Helga Van Herle. Approxima-
tions to magic: Finding unusual medical time series. In In Proceedings

of the 18th IEEE Symposium on Computer-Based Medical Systems, pages
329–334, 2005.

[71] Matthew V. Mahoney and Philip K. Chan. Learning rules for anomaly
detection of hostile network traffic. In In Proceedings of the 3rd IEEE

International Conference on Data Mining, 2003.

[72] Matthew V. Mahoney and Philip K. Chan. Learning rules for anomaly
detection of hostile network traffic. In In Proceedings of the 3rd IEEE

International Conference on Data Mining (ICDM), 2003.

[73] Oded Maimon and Lior Rokach. Data Mining and Knowledge Discovery

Handbook, 2nd ed. Springer, 2010.

[74] Graeme Manson, Gareth Pierce, and Keith Worden. On the long-term
stability of normal condition for damage detection in a composite panel.
Key Engineering Materials, 204(1):359–369, 2001.

[75] Markos Markou and Sameer Singh. Novelty detection: A review part
1: Neural network based approaches. Signal Processing, 83(12):2481 –
2497, 2003.

[76] Markos Markou and Sameer Singh. Novelty detection: A review part
2: Neural network based approaches. Signal Processing, 83(12):2499 –
2521, 2003.

[77] Takazumi Matsumoto and Edward Hung. Accelerating outlier detection
with uncertain data using graphics processors. In In the 16th Pacific-Asia

Conference on Knowledge Discovery and Data Mining (PAKDD), pages
169–180, 2012.

[78] Wang Kay Ngai, Ben Kao, Chun-Kit Chui, M. Chau R. Cheng, and K.Y.
Yip. Efficient clustering of uncertain data. In In Proceedings of the 6th In-

ternational Conference on Data Mining, (ICDM), pages 436–445, 2006.

[79] Kevin Ni, Nithya Ramanathan, Mohamed Nabil Hajj, Laura Balzano,
Sheela Nair, Sadaf Zahedi, Eddie Kohler, Greg Pottie, Mark Hansen, and

Bibliography 141

Mani Srivastava. Sensor network data fault types. ACM Transactions on

Sensor Networks, 5(3):25:1–25:29, 2009.

[80] Jurg Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. The grid file:
An adaptable, symmetric multikey file structure. ACM Transactions on

Database Systems, 9(1):38–71, 1984.

[81] Ashrar Omer, Johnson Thomas, and Ling Zhu. Mutual authentication
protocols for rfid systems. International Journal of Automation and Com-

puting, 5(4):348–365, 2008.

[82] Gustavo H. Orair, Carlos H. C. Teixeira, Wagner Meira Jr., and Ye Wang
ane Srinivasan Parthasarathy. Distance-based outlier detection: Consoli-
dation and renewed bearing. Proceedings of the VLDB Endowment, 3(1-
2):1469–1480, 2010.

[83] Matthew Eric Otey, Amol Ghoting, and Srinivasan Parthasarathy. Fast
distributed outlier detection in mixed-attribute data sets. Data Mining

and Knowledge Discovery, 12(2-3):203–228, 2006.

[84] Themistoklis Palpanas, Dimitris Papadopoulos, Vana Kalogeraki, and
Dimitrios Gunopulos. Distributed deviation detection in sensor networks.
ACM SIGMOD Records, 32(4):77–82, 2003.

[85] Girish Keshav Palshikar. Distance-based outliers in sequences. Lecture

Notes in Computer Science, 3816:547–552, 2005.

[86] Spiros Papadimitriou, Hiroyuki Kitagawa, Phillip B. Gibbons, and Chris-
tos Faloutsos. Loci: Fast outlier detection using the local correlation inte-
gral. IEEE 29th International Conference on Data Engineering (ICDE),
pages 315–326, 2003.

[87] A.M. Pires and C.M. Santos-Pereira. Using clustering and robust esti-
mators to detect outliers in multivariate data. In In Proceedings of the

International Conference on Robust Statistics, 2005.

[88] Friedrich Pukelsheim. The three sigma rule. The American Statistician,
48(2):88–91, 1994.

142 BIBLIOGRAPHY

[89] Nithya Ramanathan, Laura Balzano, Marci Burt, Deborah Estrin, Tom
Harmon, Charlie Harvey, Jenny Jay, Eddie Kohler, Sarah Rothenberg,
and Mani Srivastava. Rapid Deployment with Confidence: Calibration
and Fault Detection in Environmental Sensor Networks. CENS Tech Re-

port #62, 2006.

[90] Nithya Ramanathan, Laura Balzano, Marci Burt, Deborah Estrin, Tom
Harmon, Charlie Harvey, Jenny Jay, Eddie Kohler, Sarah Rothenberg,
and Mani Srivastava. Rapid Deployment with Confidence: Calibration
and Fault Detection in Environmental Sensor Networks. CENS Tech Re-

port #68, 2006.

[91] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. Efficient algo-
rithms for mining outliers from large datasets. ACM SIGMOD Record,
29(2), 2000.

[92] Peter J. Rousseeuw and Annick M. Leroy. Robust regression and outlier
detection. John Wiley and Sons, Inc., 1987.

[93] Anish Das Sarma, Omar Benjelloun, Alon Halevy, and Jennifer Widom.
Working models for uncertain data. In Proceedings of the 22nd Interna-

tional Conference on Data Engineering (ICDE), pages 7–7, April 2006.

[94] Rob Saunders and John S. Gero. The importance of being emergent. In In

Proceedings of the Conference on Artificial Intelligence in Design, 2000.

[95] Guttormsson S.E., Marks R.J., El-Sharkawi M.A., and Kerszenbaum I.
Elliptical novelty grouping for online short-turn detection of excited run-
ning rotors. IEEE Transactions on Energy Conversion, 14(1), 1999.

[96] Salman Ahmed Shaikh and Hiroyuki Kitagawa. Efficient distance-based
outlier detection on uncertain datasets of gaussian distribution. World

Wide Web, pages 1–28, 2013.

[97] Salman Ahmed Shaikh and Hiroyuki Kitagawa. Top-k outlier detection
from uncertain data. International Journal of Automation and Computing

(IJAC), 2014.

Bibliography 143

[98] Abhishek B. Sharma, Leana Golubchik, and Ramesh Govindan. Sensor
faults: Detection methods and prevalence in real-world datasets. ACM

Transactions on Sensor Networks, 6(3):23:1–23:39, 2010.

[99] Gholamhosein Sheikholeslami, Surojit Chatterjee, and Aidong Zhang.
Wavecluster: A multi-resolution clustering approach for very large spa-
tial databases. In In Proceedings of the 24rd International Conference on

Very Large Databases, page 428439, 1998.

[100] Lindsay I Smith. A tutorial on principal components analysis. In Student

Tutorials, University of Otago, New Zealand, 2002.

[101] R. Smith, A. Bivens, M. Embrechts, C. Palagiri, and B. Szymanski. Clus-
tering approaches for anomaly-based intrusion detection. In In Proceed-

ings of the Intelligent Engineering Systems through Artificial Neural Net-

works, page 579584, 2002.

[102] Mohamed A. Soliman, Ihab F. Ilyas, and Kevin Chen-Chuan Chang. Top-
k query processing in uncertain databases. In In proceedings of the 23rd

International Conference on Data Engineering (ICDE), pages 345–360,
2007.

[103] Clay Spence, Lucas Parra, and Paul Sajda. Detection, synthesis and
compression in mammographic image analysis with a hierarchical image
probability model. In In Proceedings of the IEEE Workshop on Mathe-

matical Methods in Biomedical Image Analysis. IEEE Computer Society,
pages 3–10, 2001.

[104] A. Srivastava and B. Zane-Ulman. Discovering recurring anomalies in
text reports regarding complex space systems. In In Proceedings of the

IEEE Aerospace Conference, page 38533862, 2005.

[105] Robert Szewczyk, Joseph Polastre, Alan M. Mainwaring, and David E.
Culler. Lessons from a sensor network expedition. In Wireless Sensor

Networks, pages 307–322, 2004.

[106] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to

Data Mining. Addison-Wesley, 2005.

144 BIBLIOGRAPHY

[107] Jian Tang, Zhixiang Chen, Ada Wai chee Fu, and David W. Cheung. En-
hancing effectiveness of outlier detections for low density patterns. In In

Proceedings of the Pacific-Asia Conference on Knowledge Discovery and

Data Mining, page 535548, 2002.

[108] Yufei Tao, Xiaokui Xiao, and Reynold Cheng. Range search on mul-
tidimensional uncertain data. ACM Transactions on Database Systems,
32(3), 2007.

[109] Henry S. Teng, Kaihu Chen, and Stephen C. Y. Lu. Adaptive real-time
anomaly detection using inductively generated sequential patterns. In
IEEE Symposium on Security and Privacy, pages 278–284, 1990.

[110] William Thistleton, John A. Marsh, Kenric Nelson, and Constantino Tsal-
lis. Generalized box-muller method for generating q-gaussian random
deviates. IEEE Transactions on Information Theory, 53(12):4805–4810,
2007.

[111] Phoha Vir. The Springer Internet Security Dictionary. Springer-Verlag,
2002.

[112] Bin Wang, Gang Xiao, Hao Yu, and Xiaochun Yang. Distance-based
outlier detection on uncertain data. In In Proceedings of the 9th IEEE In-

ternational Conference on Computer and Information Technology (CIT),
2009.

[113] Bin Wang, Xiao-Chun Yang, Guo-Ren Wang, and Ge Yu. Outlier de-
tection over sliding windows for probabilistic data streams. Journal of

Computer Science and Technology, 25(3):389–400, 2010.

[114] Eric W. Weisstein. Normal difference distribution. from mathworld–
a wolfram web resource. http://mathworld.wolfram.com/,
2013. [Online; accessed 03-September-2013].

[115] Eric W. Weisstein. Matrix diagonalization. from mathworld–a wolfram
web resource. http://mathworld.wolfram.com/, 2014. [On-
line; accessed 01-January-2014].

http://mathworld.wolfram.com/
http://mathworld.wolfram.com/

Bibliography 145

[116] Weng-Keen Wong, Andrew Moore, Gregory Cooper, and Michael Wag-
ner. Bayesian network anomaly pattern detection for disease outbreaks.
In In Proceedings of the 20th International Conference on Machine

Learning. AAAI, page 808815, 2003.

[117] Dantong Yu, Gholamhosein Sheikholeslamiy, and Aidong Zhang. Find-
out: Finding outliers in very large datasets. Knowledge and Information

Systems, 4(4):387412, 2002.

[118] Ji Zhang, Meng Lou, and Hai H. Wang Tok Wang Lin and. Hos-miner:
A system for detecting outlying subspaces of digh-dimensional data. In
In Proceedings of the 30th International Conference on Very Large Data

Bases (VLDB), page 12651268, 2004.

[119] Ji Zhang and Hai Wang. Detecting outlying subspaces for high-
dimensional data: The new task, algorithms, and performance. Knowl-

edge and Information Systems, 10(3):333–355, 2006.

[120] Cui Zhu, Hiroyuki Kitagawa, Spiros Papadimitriou, and Christos Falout-
sos. Outlier detection by example. Journal of Intelligent Information

Systems, 36(2):217–247, 2011.

[121] Arthur Zimek, Erich Schubert, and Hans-Peter Kriegel. A survey
on unsupervised outlier detection in high-dimensional numerical data.
5(5):363–387, 2012.

List of Publications

Refereed Journal Papers

1. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Top-k Outlier Detection
from Uncertain Data”. International Journal of Automation and Comput-

ing (IJAC), Springer. (to appear)

2. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Efficient distance-based
outlier detection on uncertain datasets of Gaussian distribution”. World

Wide Web (WWW), Springer, April 2013. (published online)

Refereed Conference Papers

1. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Continuous Outlier De-
tection on Uncertain Data Streams”. In IEEE 9th International Confer-

ence on Intelligent Sensors, Sensor Networks and Information Processing

(ISSNIP). Singapore, April 21-24, 2014. (to appear)

2. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Fast Top-k Distance-
based Outlier Detection on Uncertain Data”. In 14th International Con-

ference on Web-Age Information Management (WAIM), pages 301-313.
Beidaihe, China, June 14-16, 2013.

3. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Distance-based Outlier
Detection on Uncertain Data of Gaussian Distribution”. In 14th Asia-

Pacific Web Conference (APWeb), pages 109-121. Kunming, China, April
11-13, 2012.

147

148

Domestic Conference Papers

1. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Differential Outlier De-
tection on Uncertain Streams of the Gaussian Distribution”. In 5th In-

ternational Workshop with Mentors on Databases, Web and Information

Management for Young Researchers (iDB2013). Sapporo, Japan, July 21-
23, 2013.

2. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Top-k Distance-based
Outlier Detection on Uncertain Dataset”. In 5th Forum on Data Engi-

neering and Information Management (DEIM 2013). Koriyama, Japan,
March 3-5, 2013.

3. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Distance-based Outlier
Detection on Uncertain Data of Bounded Gaussian Distribution”. In 4th

International Workshop with Mentors on Databases, Web and Information

Management for Young Researchers (iDB2012). Nagoya, Japan, July 31-
August 1, 2012.

4. Salman Ahmed Shaikh and Hiroyuki Kitagawa. “Outlier Detection on
Uncertain Data of Gaussian Distribution”. In 4th Forum on Data Engi-

neering and Information Management (DEIM 2012). Kobe, Japan, March
3-5, 2012.

	 Acknowledgements
	 Abstract
	 List of Figures
	 List of Tables
	 List of Algorithms
	1 Introduction
	1.1 Background
	1.2 Dissertation Motivation
	1.3 Dissertation Contributions
	1.3.1 Outlier Detection on Uncertain Data (UDB Outlier Detection)
	1.3.2 Top-k Outlier Detection on Uncertain Data (kUDB Outlier Detection)
	1.3.3 Continuous Outlier Detection on Uncertain Data (CUDB Outlier Detection)

	1.4 Dissertation Organization

	2 Preliminaries
	2.1 Outlier Detection
	2.1.1 What is an Outlier?
	2.1.2 Outlier Detection Applications
	2.1.3 Outlier Detection Approaches

	2.2 Uncertain Data
	2.2.1 Causes of Uncertainty
	2.2.2 Types of Uncertainty

	3 Related work
	3.1 Outlier Detection on Deterministic Data
	3.1.1 Distance-based Outlier Detection on Static Data
	3.1.2 Distance-based Outlier Detection on Data Streams

	3.2 Outlier Detection on Uncertain Data
	3.2.1 Outlier Detection on Uncertain Static Data
	3.2.2 Outlier Detection on Uncertain Data Streams

	4 Outlier Detection on Uncertain Data
	4.1 Overview
	4.2 Problem Formulation
	4.3 Cell-based Outlier Detection
	4.3.1 Cell-based Pruning
	4.3.2 Object-wise Bounds Pruning
	4.3.3 Un-pruned Objects Processing and Grid File Index
	4.3.4 Complexity Analysis
	4.3.5 Discussion: Determination of Values for Parameters D, p and l

	4.4 Cell-based Outlier Detection using the Bounded Gaussian Uncertainty
	4.4.1 Cell-based Pruning for the Bounded Gaussian
	4.4.2 Simple Object-wise Distance Pruning
	4.4.3 Object-wise Bounds Pruning
	4.4.4 Un-pruned Objects Processing for the Bounded Gaussian
	4.4.5 Complexity Analysis

	4.5 Discussion: Outlier Detection inHigh-dimensional Data and Sub-space Outlier Detection
	4.6 Experiments
	4.6.1 Datasets
	4.6.2 Accuracy
	4.6.3 Efficiency

	4.7 Summary

	5 Tok-k Outlier Detection on Uncertain Data
	5.1 Overview
	5.2 Problem Formulation
	5.3 PC-list-based Outlier Detection
	5.3.1 Grid (G) Structure
	5.3.2 PC-list Structure
	5.3.3 Cell Bounds
	5.3.4 Candidate Outlier Cells Detection
	5.3.5 The kUDB(CG) and the kUDB(Approx) Algorithms
	5.3.6 Complexity Analysis

	5.4 PC-list-based Outlier Detection using the Bounded Gaussian Uncertainty
	5.4.1 Grid (G) and PC-list Structures for the BoundedGaussian
	5.4.2 Cell Bounds for the Bounded Gaussian
	5.4.3 Candidate Outlier Cells Detection for the Bounded Gaussian
	5.4.4 The kUDB(BG) Algorithm
	5.4.5 Complexity Analysis

	5.5 Experiments
	5.5.1 Accuracy
	5.5.2 Efficiency

	5.6 Summary

	6 Continuous Outlier Detection on Uncertain Data Streams
	6.1 Overview
	6.2 Problem Formulation
	6.3 Cell-based Outlier Detection
	6.3.1 Grid (G) Structure
	6.3.2 Cell Bounds
	6.3.3 Cell Pruning

	6.4 Incremental Outlier Detection
	6.5 Incremental Outlier Detection using the Bounded Gaussian Uncertainty
	6.5.1 Bounded Gaussian Cell-based Outlier Detection
	6.5.2 Bounded Gaussian Incremental Outlier Detection

	6.6 Complexity Analysis
	6.7 Experiments
	6.7.1 Datasets
	6.7.2 Results

	6.8 Summary

	7 Conclusions and Future Works
	7.1 Conclusions
	7.1.1 UDB Outlier Detection
	7.1.2 kUDB Outlier Detection
	7.1.3 CUDB Outlier Detection

	7.2 Future Works
	7.2.1 Continuous Top-k Outlier Detection
	7.2.2 UDB Outlier Detection for Very High Dimensional Data
	7.2.3 UDB Outlier Detection for General Uncertainty Models

	 Appendix
	 A: A PDF for the Difference between Two Random Variables following d-dimensional Gaussian Distributions
	 B: Transformation of a Correlated d-dimensional Gaussian Distribution into an Uncorrelated Gaussian Distribution
	 C: Approximate Values of the PDF for the Difference between Two Random Variables following the d-dimensional Gaussian PDF

	 Bibliography
	 List of Publications

