筑 波 大 学博士(医学)学位論文

神経内分泌系腫瘍における ロゼット構造の形態学的検討と その病理診断への応用

2011

筑波大学大学院博士課程人間総合科学研究科

里見 介史

略語一覧

SCLC	:	small cell lung carcinoma
NSCLC	:	non-small cell lung carcinoma
FFPE	:	formalin-fixed paraffin-embedded
HE	:	hematoxilin eosin
N/C	:	nuclear/cytoplasmic
LCNEC	:	large cell neuroendocrine carcinoma
ZO-1	:	zonula occludens-1
ES	:	embryonic stem
hESCs	:	human embryonic stem cells
RoI	:	Rosette Index
LC-MS/MS	:	liquid chromatography/tandem mass spectrometry
iPS cell	:	induced pluripotent stem cell
TE緩衝液	:	Tris-EDTA緩衝液
DAPI	:	4',6-diamidino-2-phenylindole
OS	:	organism name
GN	:	gene name
PE	:	protein existence
SV	:	sequence version

目次

略語一覧	•••1
目次	•••2
はじめに	•••7
図1 腫瘍において認められるロゼット構造	•••12
第1章 ロゼットにおけるZO-1, およびN-cadherinの特徴的局在	•••13
1. 背景	•••14
2. 方法と対象	•••16
2.1. 症例と組織切片	•••16
2.2. 免疫組織化学	•••17
2.3. ロゼット構造の評価方法	•••17
2.4. 免疫組織化学の評価方法	•••18
2.5. 統計解析	•••19
3. 結果	•••19
3.1. 患者背景	•••19
3.2. 肺神経内分泌腫瘍とそのほかのロゼット構造を呈する腫瘍	•••19

	3.	3. 肺神経内分泌腫瘍における検討	•	•	• 21
	4.	考察	•	•	• 22
	5.	本章の検討における限界と展望	•	•	• 23
	図2	胎生期の神経管形成	•	•	• 25
	図3	未熟奇形腫における免疫組織化学による検討結果	•	•	• 26
	図4	神経芽腫における免疫組織化学による検討結果	•	•	• 27
	図5	肺大細胞神経内分泌癌(LCNEC)における免疫組織化学による検討結果	•	•	• 28
	図6	小細胞肺癌(SCLC)における免疫組織化学による検討結果	•	•	• 29
	図7	肺神経内分泌腫瘍におけるZO-1のrosette index(RoI)の比較	•	•	• 30
	表1	第1章で用いた抗体名、クローン名、販売元、抗原賦活化方法、			
		および希釈倍率	•	•	• 31
	表2	ロゼット構造を呈する腫瘍における、ZO-1とN -cadherinの発現	•	•	• 32
	表3	Flexner typeとHomer-Wright typeの肺神経内分泌腫瘍における病理診断	•	•	• 33
第	\$2章	プロテオーム解析によるロゼット特異的マーカーの探索	•	•	• 34
	1.	背景	•	•	• 35
	2.	方法と対象	•	•	• 37
	2.	1. iPS細胞から形成された未熟奇形腫	•	•	• 37

2.2. プロテオーム解析のための検体採取と前処理	•••37
2.3. 質量分析	•••38
2.4. 半定量解析	•••39
2.5. 蛍光二重免疫組織化学	•••39
3. 結果	•••40
3.1. プロテオーム解析	•••40
3.2. APEXによる半定量解析	•••40
3.3. 蛍光二重免疫組織化学	• • • 41
4. 考察	•••42
5. 本章の検討における限界と展望	•••47
図8 iPS細胞から形成された未熟奇形腫のHE組織所見	•••48
図9 iPS細胞から形成された未熟奇形腫の免疫組織化学による検討	•••49
図10 レーザーマイクロダイセクションによる分割採取	•••50
図11 APEXによる2群間の発現タンパクの比較	•••51
図12 Nestinの蛍光二重免疫組織化学	•••52
図13 Fascin(clone:55K2)の蛍光二重免疫組織化学	•••53
図14 Fascin(clone:IM20)の蛍光二重免疫組織化学	•••54
図15 Ku80の蛍光二重免疫組織化学	• • • 55

図16 Titinの蛍光二重免疫組織化学	•••56
図17 同定されたタンパク分子量の分布の検討	•••57
表4 第2章で用いた抗体名、クローン名、免疫動物種、販売元、	
および希釈倍率	•••58
表5 質量分析解析システムによる同定されたタンパクのSaffoldによる表示	示 •••59
表6 APEXによる半定量解析結果	•••72
第3章 ZO-1, N-cadherin, nestinの神経内分泌腫瘍診断への応用	•••75
1. 背景	•••76
2. 方法と対象	•••77
2.1. 症例と組織切片	•••77
2.2. 免疫組織化学	•••77
2.3. 免疫組織化学の評価方法	•••78
2.4. 統計解析	•••78
3. 結果	•••79
3.1. 神経内分泌腫瘍におけるロゼット構造と腺癌における腺腔構造の	濫別
	•••79
3.2. 肺神経内分泌腫瘍の新規マーカーとしてのnestin	•••79

4. 考察	• • • 80
5. 本章の検討における限界と展望	•••82
図18 肺腺癌における免疫組織化学による検討結果	•••83
図19 胃管状腺癌における免疫組織化学による検討結果	•••84
図20 膵管状腺癌における免疫組織化学による検討結果	• • • 85
図21 浸潤性乳管癌における免疫組織化学による検討結果	•••86
図22 LCNECにおけるnestinの免疫組織化学による検討結果	•••87
表7 第3章で用いた抗体名、クローン名、免疫動物種、販売元、	
抗原賦活化方法、および希釈倍率	• • • 88
表8 腺管構造を呈する癌における免疫組織化学による検討結果	•••89
表9 神経内分泌腫瘍におけるnestinの免疫組織化学による検討結果	•••90
総括	•••91
図23 本研究のまとめ	•••93
謝辞	•••94
参考文献	•••95

はじめに

現在、日本における死因の第1位は悪性腫瘍である。WHO死亡統計データベースによれ ば、フランス、イタリア、日本、イギリス、アメリカにおける、1960年から2000年(イギ リスは1999年)の比較では、日本を除く各国の男性では、1980年から1990年の間にピーク を迎え減少傾向が認められ、女性では、日本とフランスとでは安定した減少傾向が認めら れる。ただし、全悪性腫瘍による2000年の死亡総数は日本では295,470件(男性179,127 件、女性116,343件)と未だに高値である[1]。

これら悪性腫瘍による死亡数の粗率では、男女とも死亡数の1位は肺癌である。肺癌 は、病理組織学的に定義される組織型によって臨床経過や治療に対する反応も異なり、他 の臓器発生の悪性腫瘍と同様、病理組織学的分類に基づく治療方針の決定および予後予測 がなされる。2004年に出版されたWHO分類(World Health Organization Classification of Tumours)[2]では、肺の悪性上皮性腫瘍として、扁平上皮癌、小細胞癌、腺癌、および大細 胞癌といった主要な組織型のほか、腺扁平上皮癌、肉腫様癌、カルチノイド腫瘍、および 唾液腺型腫瘍が定義されている。

肺癌の治療方針の決定に際しては、まず小細胞肺癌(SCLC)と非小細胞肺癌(NSCLC)とに 大別される。これは、SCLCは化学療法や放射線療法に対する感受性が高いものの進行が 早く容易に再発し、極めて予後が不良であることから、NSCLCと比して外科的手術療法は 基本的に選択されないためである。肺癌の診断には、他の悪性腫瘍と同様、病理組織診断 が必須であるが、その診断方法はホルマリン固定パラフィン包埋(FFPE)材料のヘマトキシ リン・エオジン(HE)染色標本による組織形態を基準としている。免疫組織化学や電子顕微 鏡による超微形態は、診断の補助として用いられる。即ち、病理診断に際しては、扁平上 皮癌であれば角化や細胞間橋の形成を、腺癌であれば肺胞上皮置換性増殖(lepidic growth pattern)や粘液産生を、SCLCは極めて高い核-胞体比(N/C比)を呈し裸核状となる腫瘍細胞 が緩い結合性をもってみられることやロゼット構造、柵状配列、索状配列、および類臓器 構造を認めることで診断がなされる。一方で、大細胞癌はそのほかの主要組織型の腫瘍の 形態学的特徴を有さず、腺扁平上皮癌、肉腫様癌、カルチノイド腫瘍、および唾液腺型腫 瘍とする形態学的所見も認められない際に、除外診断として病理診断が下され得る。

SCLCは神経内分泌性格を有する、即ち神経内分泌腫瘍の一つであることが知られてい る[3]。神経内分泌腫瘍は、全身の諸臓器に発生する腫瘍で、いわゆるカルチノイド腫瘍や 小細胞癌が包含されている[4]。SCLCもカルチノイド腫瘍も、歴史的にはFFPE材料のHE染 色を基本として診断・分類されており、腫瘍細胞のロゼット構造、柵状配列、索状配列、 および類臓器構造といった形態学的所見が診断の重要な要素であったが、これらの腫瘍が 免疫組織化学による神経内分泌マーカー(synaptophysin, chromogranin-A, CD56/NCAM)や超 微形態による神経内分泌顆粒を有するといった神経内分泌形質を有することが判明してき たため、現在では病理診断に際して、神経内分泌形質の証明を診断の補助として頻繁に用 いられるようになってきた。 SCLCの病理診断に神経内分泌形質の証明は必須ではないものの、神経内分泌腫瘍とし ての側面が知られるようになってくると、大細胞癌と診断されていた腫瘍の中にも、神経 内分泌形態と神経内分泌形質の両者を兼ね備えるものが存在することが示されるようにな り[5]、一つの組織亜型(大細胞癌)から、独立した疾患概念としてほぼ確立している[2][6]。 即ち、大細胞神経内分泌癌(large cell neuroendocrine carcinoma; LCNEC)の疾患概念の誕 生である。形態学的にはSCLCとは異なり、十分な胞体を有するほか、SCLCの多くは核ク ロマチンが繊細であるのに対し、核クロマチンが粗造で明瞭な核小体も有するといった特 徴が認められる。ただし、腫瘍細胞のロゼット構造、柵状配列、索状配列、および類臓器 構造といった神経内分泌形態を呈するほか、免疫組織化学による神経内分泌形質を有する こと、超微形態による神経内分泌顆粒が存在することが確認される。

以上より、肺の悪性上皮性腫瘍の中で、カルチノイド腫瘍、LCNEC、およびSCLCが神 経内分泌腫瘍としてのスペクトラムを持ったカテゴリーとしても括られ得ることとなっ た。また、LCNECは時にSCLCと類似した臨床経過をとることが経験される。即ち、化学 療法や放射線療法に対する感受性が高いものの進行が早く容易に再発し、極めて予後が不 良である[7-17]。

ここで問題となるのは、LCNECは大細胞癌の一組織亜型として疾患概念が確立してきた 過程から、NSCLCとしての治療方針が選択されてきた。ただし、LCNECとSCLCとの類似 性を考慮すると、SCLCに準じた治療方針とすべき可能性も考えられ、現在本邦でも臨床 試験が進行中である[18,19]。

加えて、LCNECとSCLCの形態学的鑑別診断も時に困難である。即ち、LCNECもSCLC も神経内分泌形態と神経内分泌形質を有しており、典型的には形態像における胞体の有無 と核所見の違いがあるとされるが、その中間的な形態を有するものやLCNECとSCLCの所 見が混在する症例もしばしば経験され、今後治療方針の決定やエビデンスの確立にあた り、混乱が生じることが予想される。よって、LCNECの詳細な病態生理の解明は、診断 法、治療法、および予防法の改善ないし新規開発のためには緊急の課題である。

本研究では、LCNECを含む神経内分泌腫瘍において広く認知されている神経内分泌的性 格の診断形態学的根拠である『ロゼット』構造に着目し、分子病理学的特徴を詳細に解析 する。また、ロゼット構造の診断根拠をより明確にすることとした。ここでロゼット構造 とは、フランス語の「花びら」を語源とし、腫瘍細胞の放射状ないし花弁状の配列を言 う。古典的に、ロゼットは内腔面を有し腫瘍細胞が放射状ないし車輪状に配列する真のロ ゼット、即ちFlexner型と、内腔面を有さない腫瘍細胞の放射状ないし花弁状の配列である Homer-Wright型に大別される[20]。ロゼット構造は、神経内分泌腫瘍のみならず、上衣 腫、髄芽腫、神経芽腫、神経細胞腫、嗅神経芽腫、松果体芽腫、網膜芽腫、原始神経外胚 葉性腫瘍といった、神経上皮と密接な関連を持つ神経内分泌系腫瘍でも認められる特徴的 な形態である (図1)。

悪性腫瘍は、発生母地となる組織形態を模倣しており、その正常構築との乖離の程度に より高分化型から低分化型と表現され、一般に低分化型腫瘍は高分化型腫瘍に比して、悪 性度が高い。神経内分泌腫瘍は、その発生母地には諸説あるものの、少なくとも特徴的な 組織構築が明瞭であるにも関わらず、悪性度が高いという特殊性がある。よって、その特 徴的な組織形態としてロゼット構造の解析を行うことは、LCNECを含む神経内分泌腫瘍の みならず、神経内分泌系腫瘍の病態生理の理解のためにも重要である。

さらに、ロゼット構造は、腺癌などでみられる腺腔構造と時に類似し、組織形態のみで 鑑別することが困難である症例もあるが、両者の治療方針は大きく異なるため、正確な鑑 別診断が求められる。免疫組織化学による検討で神経内分泌マーカーが陽性となることや PAS染色ないしAlcian blue染色で粘液産生が示されることで鑑別が可能となる場合もある一 方で、神経内分泌マーカー陽性となる腺癌やPAS染色ないしAlcian blue染色で陽性像を示す 神経内分泌腫瘍も経験される。

以上より、本研究の目的として、神経内分泌系腫瘍の病態生理の理解と、既存の病理診 断方法に加えて、上記問題点を鑑別可能な新たなマーカーを探索することとした。

図1 腫瘍において認められるロゼット構造

腫瘍細胞の放射状配列としてロゼット構造が認められる。 明瞭な内腔面を呈するロゼット構造であるFlexner rosette(a:LCNEC, b:未熟奇形種)と 内腔 面を呈さないHomer-Wright rosette(c:神経芽腫, d:網膜芽腫)に大別される。 Scale Bar = 50 μm

第1章

ロゼットにおけるZO-1, およびN-cadherinの特徴的局在

1. 背景

肺神経内分泌腫瘍には、定型カルチノイド、非定型カルチノイド、LCNEC、および SCLCが含まれる。これらのうち、定型カルチノイド、非定型カルチノイドは比較的進行 が遅く、低悪性度腫瘍とされている一方、LCNECとSCLCは極めて予後不良な高悪性度腫 瘍とされる。

肺神経内分泌腫瘍では、ロゼット構造、類器官構造、柵状構造、および索状構造が特徴 的な組織形態学的所見として知られている。これらの形態所見は肺のみならず、全身の諸 臓器に発生する神経内分泌腫瘍のいずれにおいても認められる。

発生学的に、神経上皮は陥入して神経管構造を形成する(図2a-e)。さらに未熟奇形腫で は、多くの場合神経管様構造の形成がみられるが、これは脊索の存在なしに自己組織化に よって形成される管状構造ないしロゼット構造である(図2f,g)。そこで、未熟奇形腫におけ る神経ロゼットと腫瘍におけるロゼット構造との形態学的類似性に着目し、両者に共通し て存在する因子を解析することとした。

神経ロゼットの形成に関与する因子としては、PAX6, nestin, Sox1, Sox2, および *N*-cadherinのほか、PLZF, DACH1, MMRN1, PLAGL1, NF2F1, DMTR3, LMO3, FAM70A, EVI1, ZNF312, LIX1, RSPO3, Shroom-3, およびZonula occludens-1 (ZO-1)が既に知られている [21-24]。特に、ZO-1と*N*-cadherinは、ヒトES細胞(hESCs)を神経分化させることによって形 成された神経ロゼットにおいて特徴的な局在を示すことが示されている[22]。 ZO-1はtight junction protein 1としても知られる225-kDaのtight junction関連タンパクである [25] 。これはtight junctionsに局在するだけではなく、非上皮組織ではcadherin分子と共局在 することも知られている[26]。ZO-1欠損マウスは胎生致死であり、ZO-1は発生期において 重要な役割を果たしていると考えられる[27,28]とともに、トリとマウスでは神経管の閉鎖 において、神経上皮におけるZO-1の発現が知られている[23]。

N-cadherinはcadherin 2としても知られるカドヘリンファミリーの一つで、トリおよびマ ウスの胎児における神経上皮において、その内腔側に局在することが知られている adherens junctionsタンパクである[29,30]。ヒトの腫瘍でもN-cadherinは神経内分泌腫瘍のみ ならず、神経内分泌過形成や神経上皮と密接な関連のある腫瘍で発現することが知られて いる[31-35]。

なお、hESCsにおいて、神経ロゼットの形成は細胞極性の取得によって始まり、細胞表 面にびまん性に存在していたZO-1が神経ロゼットの内腔面に再分配されており、神経ロゼ ット形成においてZO-1とN-cadheirnが重要であることが示唆されている[22]。

本章では、ロゼット構造の形態形成ないし形態維持に関与する因子としてZO-1と *N*-cadherinに着目し、ロゼット構造を形成するヒトの神経内分泌系腫瘍においてFFPE材料 を用いた免疫組織化学による評価を行うことで、これらの局在を明らかにすることを目的 とした。さらに、ZO-1と*N*-cadherinの陽性症例割合の検討に加えて、肺神経内分泌腫瘍に おいて神経ロゼットと特に形態学的に類似するFlexner typeのロゼット構造を有する症例群 と、Homer-Wright typeのロゼット構造を有する症例群に分類して、ZO-1と

N-cadherinの陽性割合を比較した。

2. 方法と対象

2.1. 症例と組織切片

1975年から2009年までに筑波大学附属病院で外科的に切除された58症例のロゼット構造 を呈する腫瘍を用いた。書面による同意を得ており、すべての症例は連結可能匿名化され ている。症例の内訳は、2例の髄芽腫、1例の上衣腫、3例の神経芽腫、1例の嗅神経芽腫、 2例の網膜芽腫、2例の未熟奇形腫、1例の成熟奇形腫、1例の松果体芽腫、1例の神経細胞 腫、1 例の大腸非定型カルチノイド、1例の縦隔非定型カルチノイド、2例の肺大細胞癌、 5例の肺定型カルチノイド、2例の肺非定型カルチノイド、25例のLCNEC、8例のSCLCであ る。

いずれの症例でも、外科的に切除された検体を15%中性緩衝ホルマリンにて固定し、 FFPE材料を作成した。腫瘍の最大割面から作成したFFPE検体から3µmの厚さで連続した組織切片を作成し、各種染色に供した。 2.2. 免疫組織化学

組織切片をキシレンにて脱パラフィン処理をしたのち、再水和し、各一次抗体に対応し た抗原の賦活化を加えた。ペルオキシダーゼのブロックのため、ChemMate POD Blocking Solution (Dako, Copenhagen, Denmark)を室温で5分間反応させたのち、Dako REAL Antibody Diluent (Dako)にて適切な濃度に希釈された各種一次抗体を加え、室温で30分間反応させ た。使用した一次抗体について、その抗体名、クローン名、販売元、抗原賦活化方法、お よび希釈倍率を表1に示す。

二次抗体として、ポリマー法による増感作用を利用したENVISION+Dual Link Polymer (Dako)を室温で30分反応させた。可視化のために、DAB+Liquid System (Dako)を室温で5分 間反応させた。純水で洗浄したのち、ヘマトキシリンによるcounter stainを行い、封入し た。これらの免疫組織化学は、histostainer (Nichirei Biosciences, Tokyo, Japan)によって施行 した。

2.3. ロゼット構造の評価方法

ロゼット構造は、歴史的にFlexner typeとHomer-Wright typeに分類されてきたが、内腔面 を有するロゼット構造をFlexner typeのロゼット構造、内腔面を有さないロゼット構造を Homer-Wright typeのロゼット構造として、各腫瘍に含まれるロゼット構造がいずれのtype が優位であるかをもって、腫瘍をFlexner-type tumorsとHome-Wright-type tumorsに分類した

2.4. 免疫組織化学の評価方法

N-cadherinは神経ロゼットを構成する個々の細胞の胞体と細胞膜のいずれかまたは両者 に陽性となり、この陽性像をもって判定基準とした。ZO-1はFlexner typeでは神経ロゼット を形成する個々の細胞の内腔面に陽性像が得られ、Homer-Wright typeでは神経ロゼットの 中心におけるドット状の陽性像が得られ、これらを判定基準とした。なお、神経ロゼット として、未熟奇形腫を参照した(図3)。

免疫組織化学による陽性像の定量的な評価のため、Rosette Index (RoI)を定義した。 RoI は腫瘍におけるロゼット構造の全体数における陽性となるロゼット構造の割合の百分率と して定義した。この際、全体のロゼット構造の計測数が100を超えるようにした。RoIが5% 未満は0%とした。RoIは全症例において、ZO-1とN-cadherinについて筆者を含む3人の病理 医によって臨床情報・病理組織学的情報を盲検化して独立に計測した。各病理医による計 測値のずれが10%以内であれば筆者の計測値を採用し、10%を超える場合には3人の病理医 が同時に検鏡した上で再計測し、同意した計測値を採用した。ZO-1では血管内皮等、Ncadherinでは神経線維等が陽性となるため、誤って陽性像の判定を下さないように細心の注 意を払った。

2.5. 統計解析

統計解析は、SPSS 9.0 software package (SPSS Inc., Chicago, IL, USA)を用いて、Mann-Whitney U testおよびFisher's exact test を行った。有意水準はp < 0.05とした。

3. 結果

3.1. 患者背景

40例の肺神経内分泌腫瘍、即ち、5例の肺定型カルチノイド、2例の肺非定型カルチノイ

ド、25例のLCNEC、および8例のSCLCについて、臨床病理学的な検討を行ったが、

性(p=0.230, p=0.180)、病理ステージ(p=0.550, p=0.312)、リンパ管侵襲像(Ly factor; p=

0.842, p=0.816)、血管侵襲像(V factor; p=0.822, p=0.218)、リンパ節転移の有無(N factor; p

= 0.071, p = 0.836)のいずれにおいてもZO-1と

N-cadherinの陽性例と陰性例の間に有意差はみられなかった(p値はそれぞれ、ZO-1、

N-cadherinに対するもの)。

3.2. 肺神経内分泌腫瘍とそのほかのロゼット構造を呈する腫瘍

計58例のロゼット構造を呈する腫瘍についての陽性割合のまとめを表2に示す。なお、 いずれの腫瘍も現在、神経内分泌腫瘍の免疫組織化学的診断マーカーとして用いられてい るsynaptophysin, chromogranin-A,およびCD56/NCAMの少なくとも一つが陽性となることを 確認した。免疫組織化学による検討結果、ロゼット構造を呈する腫瘍であってもZO-1とNcadherinの陽性像に違いが認められた。即ち、未熟奇形腫における神経ロゼット(図3b)、神 経芽腫(図4b)、LCNEC(図5b)、およびSCLC(図6b)のいずれにおいてもN-cadherinは胞体と細 胞膜の一方ないし両者に陽性となっていた。N-cadherin陽性となる腫瘍では、18例(49%)が 胞体と細胞膜に強陽性となり、19例(51%)は細胞膜に強陽性となった。N-cadherinの陽性 像は、ロゼット構造のみならず、そのほかの腫瘍細胞にも陽性となった。一方、ZO-1の陽 性像は未熟奇形腫における神経ロゼット(図3c)、LCNEC(図5c)、およびSCLC(図6c)におけ るロゼット構造を形成する腫瘍細胞の内腔面ないし中心に陽性像がみられた。神経芽腫(図 4c)では、ZO-1の陽性像は認められなかった。

ZO-1とN-cadherinの陽性となる症例の相関は明らかではなく(p = 0.28)、ZO-1と N-cadherinの局在が異なる症例(胞体と細胞膜が陽性となる症例および細胞膜のみに陽性と なる症例)の相関も明らかではなかった(p = 0.43)。

N-cadherinが陽性となる腫瘍の割合は、ほとんどの症例でZO-1の陽性割合を超えていた。肺の神経内分泌腫瘍における比較では、N-cadherinとZO-1が陽性となる症例の割合は 55%と45%(p=0.021)であり、その他のロゼット構造を形成する腫瘍における陽性となる症 例の割合が83%と22%(p=0.03)であることと併せて、N-cadherin陽性となる症例の割合と ZO-1陽性となる症例の割合に有意差が認められた。ただし、肺のLCNECのみでは、ZO-1 が陽性となる症例の割合はN-cadherinが陽性となる症例の割合よりも高値を示す傾向が認 められた(52% vs 44%, p = 0.12)。なお、症例数は限られているものの、神経ロゼット構造 を有する未熟奇形種ではZO-1もN-cadherinも100%の陽性割合がみられた(表2)。

3.3. 肺神経内分泌腫瘍における検討

「方法と対象」で前述したとおり、ロゼット構造を有する腫瘍ではFlexner-typeのロゼッ ト構造が優位となる症例とHomer-Wright-typeのロゼット構造が優位となる症例が認めら れ、肺の神経内分泌腫瘍をFlexner-type tumorとHomer-Wright-type tumorに分類したところ、 16例のFlexner-type tumorと24例のHomer-Wright-type tumorに分けられた。その内訳は、1例 のカルチノイド腫瘍(1/7, 14.3%)、12例のLCNEC(12/25, 48%)、および3例のSCLC(3/8, 37.5%)がFlexner-type tumorに含まれた(表 3)。

次に、ZO-1と*N*-cadherinの両者についてRoIを算出した。Flexner-type tumorでは、Homer-Wright-type tumorに比して、ZO-1のRoIが有意差をもって高値を呈していた。(Flexner-type tumor vs Homer-Wright-type tumor: median, 38.8% vs 0%; 25th percentile, 19.3% vs 0%; 75th percentile, 55.5% vs 0%; p < 0.001)(図7)。

一方、N-cadherinのRolは両者で有意差は認められなかった(Flexner-type tumor vs Homer-Wright-type tumor: median and mean, 52.2% vs 6.7% and 38.4% vs 24.6%,

 $p=0.387)_{\circ}$

4. 考察

本章では、肺の神経内分泌腫瘍を含むロゼット構造を有する各種腫瘍について、ZO-1と *N*-cadherinの免疫組織化学による検討結果を示した。特に肺の神経内分泌腫瘍では、腫瘍 におけるロゼット構造は神経ロゼットと形態的な類似性が認められるのに加え、ZO-1と*N*cadherinの局在からもその類似性が示唆された。即ち、本検討で未熟奇形種において認めら れた神経ロゼットと腫瘍におけるロゼット構造にはZO-1と*N*-cadherinが陽性となり、殊に 肺神経内分泌腫瘍においては、神経ロゼットとの類似性が強いFlexner typeのロゼット構造 を有するFlexner type tumorでは、Homer-Wright type tumorに比して、ZO-1のRoIが有意差を もって高値を示していた。

なお、*N*-cadherinのRolについては有意差は認められなかったが、*N*-cadherinを神経上皮 への分化傾向を呈するマーカーととらえれば、この結果はむしろ、肺神経内分泌腫瘍にお いて神経分化傾向に有意差がみられないということであり、腫瘍のロゼット構造の形成に おけるtight junction関連タンパクとしてのZO-1の重要性が強調される。また、神経ロゼッ トと同様に、Flexner type tumorではZO-1と*N*-cadherinの陽性像には相関がみられ(R = 0.595, p = 0.004)、腫瘍におけるロゼット構造の形態形成においてはZO-1と*N*-cadherinが協働する 分子メカニズムの存在が推察される。

神経発生の初期段階では、ZO-1はtight junction関連タンパクとしてロゼット構造の形成 に関与しており、神経幹細胞の対称分裂および非対称分裂の制御に関わるとされている。 ZO-1はα-カテニンや細胞骨格タンパクとのcross-linkerとして作用するほか、ラット筋細胞 においてはその介在板でadherens junctionとgap junction両者の安定化に関わるとされてい る。ヒト腫瘍では、悪性黒色腫において、ZO-1とN-cadherinがいわゆる"cadherin switch"に 関与し、その高い浸潤能・転移能との関連が示唆されている[36,37]。肺神経内分泌腫瘍に おいても同様の機構による腫瘍の悪性性格が規定されている可能性も考えられる。 以上より、神経ロゼットと肺神経内分泌腫瘍のロゼット構造と形態的に類似するほか、免 疫組織化学による検討ではZO-1とN-cadherinの局在も類似していることを示した。

5. 本章の検討における限界と展望

神経ロゼットの参照として、本来ならば胎児組織における神経管構造やhESCsによって 形成された奇形腫における神経ロゼットを用いるべきであるが、いずれの場合においても 極めて高度の倫理的配慮が求められる。そこで、未熟奇形種における神経ロゼットを用い た。腫瘍としての未熟奇形腫はその発生母地として生体組織に残存した胎生期の胚細胞が 想定されているが、何らかのgeneticないしepigeneticな変化が加わっていると考えられる。

また、免疫組織化学は抗原抗体反応を利用した、タンパク局在の可視化技術であり、抗 体の認識するエピトープによっては異なるタンパクとの交叉反応も知られている。さらに FFPE材料を用いた免疫組織化学では、ほぼ全例で抗原の賦活化およびシグナルの増感法の 併用が必要である。本章の検討においては、抗体の選択および染色条件の設定において、 既知のタンパク局在と比較して検討したほか、全染色操作で、得られる場合は内在性の陽 性対照・陰性対照との比較を行ったほか、これらが得られない場合には陽性対照切片・陰 性対照切片と必ず同時に染色して比較・検討を行うようにした。

以上、第一点の限界としてヒト組織を用いようとする限り、真の神経ロゼットとの類似 性の比較ができていない可能性がある。第二点の限界として、用いる抗体が異なるタンパ クとの交叉反応の可能性があるほか、第三点の限界として技術的な操作によるアーチファ クトの可能性がある。

また、本検討は腫瘍という自然発生による現象の記述に止まる。タンパク局在やタンパ ク相互作用については統計学的解析から推測がなされるだけであり、今後、実験的操作に よる因果関係の証明が求められる。

図2 胎生期の神経管形成

胎生期の神経管形成の模式図と組織所見を示す。

Carnegie stage 10で神経胚形成が始まり、神経板の陥入により神経管が形成される (a,b,c)。

妊娠5-6週相当の胚子の組織所見を示す。神経板の陥入により神経管が形成されている ほか、神経堤も認められる(d,e)。一方、未熟奇形腫では神経上皮細胞の自己組織化に より、神経管様構造が形成されると考えられる(f,g)。 Scale Bar = 200 µm NP:神経板、NCH:脊索、SE:体表外胚葉、NCR:神経堤、NT:神経管

図3 未熟奇形腫における免疫組織化学による検討結果

卵巣発生の未熟奇形腫の組織所見を示す。

HE染色(a)で認められた神経ロゼットでは、ロゼット構造の内腔面とこれらを構成する 個々の細胞の細胞膜がN-cadherinに陽性となった(b)ほか、ロゼット構造の内腔面 がZO-1(c)に陽性となった。

Scale Bar = $50 \ \mu m$

図4 神経芽腫における免疫組織化学による検討結果

神経芽腫の組織所見を示す。

HE染色(a)で認められたロゼットでは、ロゼット構造を構成する個々の細胞の細胞膜 ないし神経細線維がN-cadherinに陽性となった(b)ものの、ロゼット構造における ZO-1(c)の陽性像はみられなかった。 Scale Bar = 50 μ m

図5 肺大細胞神経内分泌癌(LCNEC)における免疫組織化学による検討結果

肺大細胞神経内分泌癌の組織所見を示す。

HE染色(a)で認められたロゼットでは、ロゼット構造の内腔面とこれらを構成する 個々の細胞の細胞膜がN-cadherinに陽性となった(b)ほか、ロゼット構造の内腔面 がZO-1(c)に陽性となった。 Scale Bar = 50 μm

図6 小細胞肺癌(SCLC)における免疫組織化学による検討結果

小細胞肺癌の組織所見を示す。

HE染色(a)で認められたロゼットでは、ロゼット構造の内腔面とこれらを構成する 個々の細胞の細胞膜がN-cadherinに陽性となった(b)ほか、ロゼット構造の内腔面 がZO-1(c)に陽性となった。 Scale Bar = 50 μm

図7 肺神経内分泌腫瘍におけるZO-1のrosette index(RoI)の比較

免疫組織化学による陽性像の定量的な評価のため、Rosette Index (RoI:腫瘍における ロゼット構造の全体数における陽性となるロゼット構造の割合の百分率)を定義して、 2群の比較を行った結果を示す。

(*:平均, 実線:50パーセンタイル, 破線:25パーセンタイル・75パーセンタイル) Mann-WhitneyのU検定によるRoIの比較では、有意差をもってFlexner-type tumor群が高 値となった。(*p* < 0.001)

表1 第1章で用いた抗体名、クローン名、販売元、抗原賦活化方法、および希釈倍率

抗体名	クローン名、免疫動物種	販売元	抗原賦活化方法	希釈倍率
anti ZO-1	- ^a , rabbit polyclonal	Zymed Laboratories ^b	proteinase K 室温5分	1:50
anti N-cadherin	6G11, mouse monoclonal	Dako	TE緩衝液 105℃ 15分	1:50
anti synaptophysin	27 G12, mouse monoclonal	Nichirei Bioscience ^c	TE緩衝液 105℃ 15分	希釈済み抗体
anti chromogranin-A	A0430, rabbit polyclonal	Dako	クエン酸緩衝液 120℃ 10分	1:500
anti CD56/NCAM	1B6, mouse monoclonal	Nichirei Bioscience	クエン酸緩衝液 120℃ 10分	希釈済み抗体

a epitope; residues 463-1109 of ZO-1

b Zymed Laboratories, San Francisco, USA

c Nichirei Bioscience, Tokyo, Japan

表2 ロゼット構造を呈する腫瘍における、ZO-1とN-cadherinの発現

肺神経内分泌腫瘍	陽性症例数(割合)***			
	Total	N-cadherin	ZO-1	p-value [†]
Typical carcinoid of the lung	5	4(80%)	1(20%)	0.068
Atypical carcinoid of the lung	2	1(50%)	1(50%)	0.66
LCNEC* of the lung	25	11(44%)	13(52%)	0.12
Small cell carcinoma of the lung	8	5(62.5%)	3(37.5%)	0.043
	40	22(55%)	18(45%)	0.021

その他の腫瘍				
	Total	N-cadherin	ZO-1	p-value [†]
Large-cell carcinoma of the lung	2	2(100%)	0(0%)	0.16
Immature teratoma	2	2(100%)	2(100%)	0.18
Others**	14	11(78.6%)	2(14.3%)	0.008
	18	15(83.3%)	4(22.2%)	0.03

* LCNEC; large-cell neuroendocrine carcinoma

**Others: Ependymoma, Mature teratoma, Medulloblastoma, Neuroblastoma, Neurocytoma,

Olfactory neuroblastoma, Pineoblastoma, Retinoblastoma, and Atypical carcinoid of the colon ****ロゼット構造のうち、5%以上が陽性となった症例を陽性症例とした

†N-cadherinに陽性となる症例の割合とZO-1に陽性となる症例の割合との比較

(Mann-Whitney U-test)

表3 Flexner typeとHomer-Wright typeの肺神経内分泌腫瘍における病理診断

肺神経内分泌腫瘍				
	Total	Flexner type	Homer-Wright type	
Typical carcinoid	5	0(0%)	5(100%)	
Atypical carcinoid	2	1(50%)	1(50%)	
LCNEC*	25	12(48%)	13(52%)	
Small-cell lung carcinoma	8	3(37.5%)	5(62.5%)	
	40	14(35%)	26(65%)	

* LCNEC; large-cell neuroendocrine carcinoma
第2章

プロテオーム解析による ロゼット特異的マーカーの探索

1. 背景

近年、プロテオーム解析技術は、質量分析計の進化と相まって劇的に進歩している。ト リプシンなどでペプチドレベルにまでタンパクを消化した上で、液体クロマトグラフィー と2段階の質量分析計とをオンラインで結合するショットガンプロテオミクス(liquid chromatography/tandem mass spectrometry:LC-MS/MS)は、ペプチドマスフィンガープリント 法[38]とデータマイニングツールにより、プロテオーム解析を可能としている。

ここで注目すべきは、FFPE材料はホルマリンによる共有結合的クロスリンクが障壁となりFFPE材料を用いたプロテオーム解析は困難とされてきたが、FFPE材料からタンパクを 抽出する技術が開発され、プロテオーム解析が可能となってきている[39-63]。

一般に、プロテオーム解析では複数検体の定量比較を行うためには、SILAC(stable isotope labeling using amino acids in cell culture)[64]やiTRAQ(isobaric tag for relative and absolute quantitation) [65]などといったラベル化法が必要である。ただし、FFPE材料を用いたプロテ オーム解析ではラベル化法を導入することは不可能であり、ラベルフリー法による定量比 較手法が必須である。

神経ロゼットを外科手術によって摘出された検体で得るためには、腫瘍としての未熟奇 形腫があるが、不死化した細胞株として多系統への分化能力と組織構築能を有するものは 渉猟しえた範囲で得られなかった。

その点、iPS(induced pluripotent stem)細胞は、山中らによって作成された、体細胞に数種

類の遺伝子を導入することで多能性幹細胞を誘導する技術で、実験動物の皮下や精巣に移 植することで、多系統への細胞分化を誘導し、未熟奇形腫に相当する組織形成が得られる [66]。ヒトES細胞の取り扱いには、極めて高度の倫理的配慮が求められるが、iPS細胞では 胚盤胞の滅失なしに多能性幹細胞を得ることができ、倫理的問題を抜本的に回避すること が可能である。さらに、iPS細胞から樹立された奇形腫は、エピジェネティック変化のみに よる奇形腫および神経ロゼットの形成であることが期待され、*in vitro*ないし*in vivo*におけ る実験的な解析へ速やかに移行することも可能である。

ただし、未熟奇形腫は脂肪組織や硬組織も含むため、凍結切片による形態観察は極めて 困難であり、殊に神経管構造は非常に脆弱であり形態観察はほとんど不可能である。よっ て、iPS細胞から樹立された未熟奇形腫に相当する組織のFFPE材料を用いてLC-MS/MSによ るプロテオーム解析を行うことは、詳細な組織形態の観察に基づくタンパク解析と実験的 操作の両者を満たす有用な研究方法と考えられた。

第1章では、肺神経内分泌腫瘍におけるロゼット構造が神経ロゼットと形態所見とZO-1 とN-cadherinの局在が類似していることを示した。本章ではiPS細胞から樹立された奇形腫 のFFPE検体を用いた、LC-MS/MSによるタンパクの網羅的解析により、神経ロゼットを構 成する細胞と神経ロゼット周囲に存在する神経上皮細胞との局在タンパク群を比較し、神 経ロゼットに特徴的に局在するタンパクの網羅的探索を行うことを目的とした。 2. 方法と対象

2.1. iPS細胞から形成された未熟奇形腫

成人皮膚線維芽細胞に山中4因子であるOCT3/4、SOX2、KLF4、およびC-MYCをセンダ イウイルスベクターにより導入した[67]。フィーダー細胞とともに培養したうえで、マウ ス皮下に移植した。8週後にマウスを安楽死させた上で、未熟奇形腫を採取し、15%中性緩 衝ホルマリン溶液で固定し、FFPE材料とした。

なお、iPS細胞の樹立と未熟奇形腫の試料は、理化学研究所神戸研究所発生・再生科学総 合研究センター、西川伸一先生、小林健一郎先生の研究によった。

2.2. プロテオーム解析のための検体採取と前処理

iPS細胞から形成された未熟奇形腫のFFPE材料を3µmの厚さの連続切片を作成し、HE染 色ならびに、第一章で用いられた方法と同様の方法によりZO-1とN-cadherinによる免疫組 織化学の検討を行った。神経管構造ないし神経ロゼット構造が含まれることを確認した(図 8、図9)。10µmの厚さで組織切片を作成し、DIRECTORTM Laser Microdisection Slides(Expression Pathology, Rockville, USA)に貼付し、脱パラフィンおよび再水和の後、ヘ マトキシリンにて単染色を行い、自然乾燥させた。HE染色標本および免疫染色標本を参照 しながら、LMD6000(Leica Microsystems Japan, Tokyo, Japan)を用いて、神経ロゼット領域お よび神経ロゼット以外で神経上皮分化を呈する領域をマイクロダイセクション法により分 割採取した(図10)。採取量としては、各群80,000µ㎡が確保されるように行った。 採取された検体はLiquid Tissue[™] MS Protein Prep Kit (AMR, Tokyo, Japan)を用いて、ト

リプシン消化を含む前処理を行った。

2.3. 質量分析

HPLC-MS/MSシステム(ZAPLOUS System[™], AMR)による解析を行った。これは、オート サンプラー(HTC-PAL, CTC analysis, Basel, Switzerland)によるサンプル投入、高速液体クロ マトグラフィーであるParadigm MS4 (Michrom BioResources, Auburn, USA)および質量分析 計であるFinnigan LXQ(Thermo Fisher Scientific, Waltham, USA)までオンライン接続される。 分析カラムとしてMAGIC C18AQ 3u 100A 0.1mmID x 150mm (Michrom BioResources)を、イ オン源としてADVANCE Nano Spray Source (Michrom BioResources)を用いた。タンパク同定 のために、SwissProtをデータベースとして、MASCOT (Matrix Science, Boston, USA)を用い た。いずれのサンプルでも、同一サンプルを5回測定し、その測定結果をMASCOTのmerge 機能によって仮想的に一つのDAT形式のファイルに変換して、その後の解析を行った。 解析結果は、X! Tandemによるデータベース情報を加えてScaffold (version 3.1.2)(Proteome

Software Inc., Portland, USA)による解析を加えて表示した。

なお、本質量分析解析システムは、文部科学省のナノテクノロジーネットワークの

支援を受け、独立行政法人物質材料研究機構、中核機能部門 ナノテクノロジー融合ステ ーションを利用した。

2.4. 半定量解析

噴量分析計により解析された結果を、APEX Quantitative proteomics tool,
version 1.1.0 (J.Craig.Venter institute, Rockville, USA)を用いて半定量解析を行った[68-72]。
本ソフトウェアは、FASTA形式のsequence fileを元に、training dataからOi fileを生成した
上で*in silico*解析により、絶対定量値を帰すことができる。Oi fileは、サンプル形態ならび
に解析システム機器の総体によって決定される固有値の群からなるファイルであり、本検
討では先行研究として施行された、肺神経内分泌腫瘍のFFPE材料からMASCOTにより同定
されたタンパクセットをtraining dataとして用いた。2群間の発現量比較では、false positive
rateを0.05に設定した。

2.5. 蛍光二重免疫組織化学

LC-MS/MS解析に用いたものと同一のFFPE材料から、3µmの厚さで組織切片を作成し た。キシレンで脱パラフィンをした後、再水和した。抗原賦活化のため、TE緩衝液中で 105℃15分の加熱を加えた。一次抗体は室温で16時間反応させた。用いた一次抗体の希釈 倍率および組み合わせは表4に示しており、N-cadherinは神経ロゼット構造を確認するため に用いた。二次抗体として、100倍希釈したTRITC標識donky抗ウサギIgG抗体(sc-2095, Santa Cruz Biotechnology, Santa Cruz, USA)と100倍希釈したFITC標識goat抗マウスIgG抗体 (sc-2010, Santa Cruz Biotechnology)を室温で16時間反応させた。自家蛍光を減弱させる目的 で、70%エタノールに溶解した1%ズダンブラック溶液による染色を室温で60分間行い、 70%エタノールとDako Wash Buffer(Dako)による洗浄を行った後に4',6-diamidino-2phenylindole(DAPI)(DAPI I Counterstain, Abbott Japan, Tokyo, Japan)で核染色を行った。標本 観察は、HSオールインワン蛍光顕微鏡 BZ-9000(Keyence Japan, Osaka, Japan)を用いた。

3. 結果

3.1. プロテオーム解析

神経ロゼット領域と神経ロゼット以外で神経上皮分化を呈する領域のそれぞれから質量 分析計にて得られた計測結果をMASCOTにより解析し、Scaffoldを用いて表示した結果を 表5に示す。なお、第1章で特徴的な局在が認められたZO-1と*N*-cadherinは、いずれの解析 結果においても同定されていなかった。

3.2. APEXによる半定量解析

MASCOTによる解析とは別に、質量分析計から得られたDATファイルとSwiss Protの FASTAファイルを用いてAPEXファイルを生成し、二群間の発現量の半定量比較を行った (図11)。ここで、プロットのひとつが1種類のタンパクに対応し、青プロットは二群間に発 現量の有意差がなかったもの、赤プロットは有意差があったものが示される。APEXは 種々の動物種の情報を含有するSwiss Protをデータベースとして参照するため、これらのプ ロットにはヒト以外のタンパクも同定される。ヒト由来タンパクに限定した、神経ロゼッ ト領域と神経ロゼット以外で神経上皮分化を呈する領域で有意差がみられたものは、神経 ロゼットに有意に発現が高いタンパク(Rosette_3S:図11の横軸に相当)としてnestinとtitin が、逆に低いタンパク(Nonrosette_4S:図11の縦軸に相当)としてfascinとATP-dependent DNA helicase 2 subunit 2(Ku80, X-ray repair cross-complementing 5:XRCC5)が得られた(表6)。

3.3. 蛍光二重免疫組織化学

プロテオーム解析で神経ロゼット領域と神経ロゼット以外で神経上皮分化を呈する領域 で発現量に有意差があると判定されたタンパクセットについて、検討を行った。

Nestinは、神経ロゼットに集簇する陽性像が認められた(図12)。一方で、神経ロゼット以 外で神経上皮分化を呈する領域に相対的に強い陽性像が認められたのは、fascin(図13, 図 14)とKu80(図15)であった。なお、titinは神経ロゼットと関連した陽性像は得られず、その 周囲の粘液上皮における筋上皮細胞に陽性像がみられた(図16)。

4. 考察

本章では神経ロゼットに特徴的に局在が亢進する、あるいは低下するタンパクの網羅的 探索を目的として、iPS細胞から樹立された奇形腫のFFPE検体を用いてプロテオーム解析 を行い、その半定量比較と蛍光二重免疫染色による確認を行った。

プロテオーム解析では、2群のタンパクの定量比較を行うためには、安定同位体やマーカ ーペプチドを用いたラベル化法が行われるが、ラベルフリー法により比較するためには、 スペクトラルカウントを利用する方法[49, 50, 73]やバイオインフォマティクス的な手法[74-78]が報告されている。

FFPE材料からのプロテオーム解析はまだ知見の蓄積が少なく、一般にFFPE材料は種々 の修飾が加わるため、本研究のLC-MS/MS解析手法の妥当性には議論の余地がある。最も 考慮するべきはsequence coverageの低下と考えられる。そこで本検討では、MASCOTの 「merge」機能を利用して、解析データを重複させることでsequence coverageの低下を補う こととした。先行研究から、同一サンプルを5重複してMASCOTにより解析した際に、同 定されたタンパクの確からしさの指標である「score」の中央値が最大となることがわかっ た。さらに、同定されたタンパクの一覧からは、100kDa程度までの分子量を有するタンパ クが多く含まれている可能性が考えられた一方、spectral countと同定されるタンパクの分 子量の偏りは明らかではなかった(図17a)。同定されるタンパクの分子量の分布に偏りが認 められれば、タンパク同定の過程で何らかのパイアスが加わった可能性が考えられるた め、対数正規分布によるパラメトリックな評価を行った。同一のFFPE材料から得られた組 織切片から神経ロゼット領域と神経ロゼット以外で神経上皮分化を呈する領域を採取し、 2回のLC-MS/MS解析により得られたデータから、タンパクの分子量を抽出し、プロットし た。横軸に分子量の対数を、縦軸に確率密度を取ると、これらのサンプルデータは正規分 布に従うことが判明した。即ち、同定されたタンパクの分子量は対数正規分布に従うこと が判明したほか、分散分析ではいずれのタンパクセットにおいても有意な群間差はなかっ た。ただし、Swiss Protに含まれるタンパクセットにおいても有意な群間差はなかっ た。ただし、Swiss Protに含まれるタンパクセットのら抽出したタンパク分子量の分布と比 較すると有意な群間差が認められ、いずれのサンプルデータとも一致しなかった(図17b)。 即ち、データベースであるSwiss Protに含まれるタンパク分子量の分布と比較すると、サン プルデータのタンパク分子量の分布は、より低分子量よりに偏っているとされた。その原 因としては、解析ソフトウェア(MASCOT)の特性、タンパク抽出キットの特性、膜タンパ クなど高分子量タンパクの溶解度の特性、およびFFPE材料の特性が考えられた。

第1章で特徴的な局在が認められたZO-1と*N* -cadherinは、いずれの解析結果においても同 定されておらず、当初はSwissProtのFASTAファイルにZO-1と*N* -cadherinがエントリとして 記述されていないためと考えられた。ただし、これらをエントリとして加えたFASTAファ イルを用いて解析し直しても同定されなかったことから、原因としては上述の通りZO-1と *N* -cadherinが高分子量(ZO-1:約220kDa, *N* -cadherin:約135kDa)であるために同定されにくか った可能性のほか、タンパク抽出キットの特性、膜タンパクの難溶性によるもの、および FFPE材料特有の修飾に伴うものの可能性が考えられた。

しかし、解析サンプル間では偏りが認められず、Swiss Protにおけるエントリが細胞内・ 組織内のタンパクを網羅しているわけではないことからも、一定の限定はあるもののFFPE 材料からのプロテオーム解析は妥当であると考えられた。

上述したような解析上の制限が加わることから、定性比較や絶対定量は適切な解析結果 が得られない可能性が高いと判断し、本検討では*in silico*解析を併用したAPEXを用いる事 で、二群のタンパクの半定量比較を行うこととした。APEXの特徴は、先行研究の結果を 「training data」として用いることで、サンプル形態ならびに解析システム機器の総体によ って決定される固有の値をとるOiファイルを生成する。その上で、質量分析計による実際 の解析結果を参照して、Oiファイルを利用した*in silico*での解析結果としてAPEX値を得る ことで、非ラベル化法における定量性を担保している。さらに、APEX値を利用すると、2 群のタンパクの比較解析を行うことも可能である[79]。

ただし、本ソフトウェアは、FFPE材料を用いたLC-MS/MSによる解析は報告されておら ず、その解析の頑健性や妥当性は評価が定まっていない。そこで、本検討ではAPEXによ る解析結果を、LC-MS/MSによる解析で用いたものと同一のFFPE材料を用いて確認するこ ととした。

FFPE材料を用いてタンパクの存在を確認するためには、免疫組織化学による検討が考え られるが、一般にFFPE材料を用いた免疫組織化学は抗原の賦活化に加えて、ポリマー法に よる増感操作が必要とされ、タンパク存在量の定量的な比較は極めて困難である。そこで 本検討では蛍光二重免疫組織化学を用いることとした。これは増感作用が比較的小さく、 タンパク存在量の差を可視化することができるほか、異なる動物種由来の一次抗体を用い ることで容易に二重免疫組織化学ができるためである。

以上より、iPS細胞から樹立された奇形腫において、神経ロゼット領域と神経ロゼット以 外で神経上皮分化を呈する領域の2群において、有意差をもって神経ロゼットに多く存在 するタンパクとして、nestinとtitinが同定された。免疫組織化学による確認では、nestinのみ が神経ロゼット構造に多く観察された。Nestinは、中間径フィラメントであり、神経幹細 胞で陽性となることが広く知られており、神経上皮の分化が進むと消失し、成体では一部 の腫瘍で陽性となることが知られている。また、生理学的には単に細胞骨格として機能だ けでなく、核内への情報伝達、細胞代謝機能への関与が示唆されており、nestinのノックア ウトマウスは胎生致死となり、神経上皮における神経幹細胞の減少とアポトーシスの増加 が観察される[80]。また、nestinは細胞骨格における構造変化には寄与しないとされている ほか、nestinと神経ロゼットの形態形成ないし維持を積極的に示唆する知見は得られていな い。Nestinやその関連因子で、神経ロゼットの形態形成ないし維持に関与するものがある のか、今後の検討課題と考えられる。

Fascinはアクチンのcross-linkingタンパクならびにβ-catenin結合タンパクで、細胞骨格の 制御および細胞接着に関与することが知られている[81]。一方、Ku80はKu70と協同して

45

DNA修復に関与しているほか、テロメアの長さを維持するのに必要であるほか、サブテロ メア遺伝子のサイレンシングに関与している[82]。FascinとKu80のいずれのタンパクも神 経ロゼット形成への直接の関与は報告されていないが、いずれも神経上皮の分化後の組織 において、合目的的に作用している可能性がある。

Titinは、その存在量が少ない事や蛍光二重免疫組織化学で神経ロゼットとの関与が認め られなかった事から、レーザーマイクロダイセクションの際にコンタミネーションしたも のと考えられた。

以上より、FFPE材料を用いたLC-MS/MS解析とAPEXによる解析により、タンパクの半 定量解析が可能であり、nestinが神経ロゼットの形態に関与する因子として同定され、蛍光 免疫組織化学によりその結果が確認された。FFPE材料を用いたLC-MS/MS解析もAPEXを 用いた比較解析も、まだ新しい技術であり、第1章では特徴的な局在が認められたZO-1と *N*-cadherinが同定されなかったことからも、その解析方法の妥当性や技術的な改良を含め 議論の余地は残されているが、少なくとも一定水準での解析が可能であると考えられる。 また、FFPE材料は多量のアーカイブが利用可能であることや臨床病理学的な付加情報が得 られることから、今後の医学研究において重要な研究手法の一つとなり得るものと考えら れる。

5. 本章の検討における限界と展望

一般に、FFPE材料よりも凍結材料の方が、質の高い生体情報が得られることは明らかで ある。ただし、凍結材料では凍結によるアーチファクトや薄切の手技的問題から、FFPE材 料に比して詳細な組織形態の観察に耐えうる組織像の観察が困難である。本章では、組織 形態の評価を優先するためFFPE材料を使用したが、凍結材料との差の検討は詳細には検討 されていない。質量分析計は、その網羅性・再現性とも未だに発達過程であり、sequence coverageは解析方法により大きく変動するといわれている。

また、iPS細胞は近年、山中4因子を導入する細胞や導入方法によって大きくその性格が 異なることが知られるほか、ES細胞との類似性に一定の制限があることが知られるように なった[83-85] 。iPS細胞から形成された未熟奇形腫の神経ロゼットによる一般化には、注 意が必要であると考えられる。

本検討はiPS細胞から形成された未熟奇形腫を用いているものの、神経ロゼットの形態形 成ないし維持作用との因果関係について、実験的な解析による証明が必要である。

図8 iPS細胞から形成された未熟奇形腫のHE組織所見

iPS細胞から形成された未熟奇形腫の組織所見を示す。

切片上、幼若な神経上皮によって形成される神経管様構造(a)のほか、神経膠組織、

骨、軟骨、脂肪、脈絡叢、粘液上皮(消化管上皮、気道上皮)、平滑筋、横紋筋が認め られた。

これらのうち、幼若な神経上皮によって形成される神経管様構造では、より小型の 神経ロゼットも認められた(b)。

図9 iPS細胞から形成された未熟奇形腫の免疫組織化学による検討

iPS細胞から形成された未熟奇形腫の組織所見を示す。

HE染色(a)で認められた神経ロゼットでは、ロゼット構造を構成する個々の細胞の細胞膜ないし胞体が*N*-cadherinに陽性となった(b)ほか、ロゼット構造の内腔面がZO-1(c)に陽性となった。

Scale Bar = $100 \ \mu m$

- 図10 レーザーマイクロダイセクション
 による分割採取
 レーザーマイクロダイセクション操作
 により、顕微鏡下で任意領域を選択し
 て分割採取した。
 a:採取前
 b:神経ロゼットの選択(緑線)
 c:神経ロゼットの採取
 d:神経ロゼット周囲組織の選択(黄線)
- e:神経ロゼット周囲組織の採取

Scale Bar = $100 \ \mu m$

図11 APEXによる2群間の発現タンパクの比較

APEXによる、2群のタンパクプロファイルの半定量比較結果を示す。 横軸(Rosette_3S)は神経ロゼット領域に相当し、縦軸(Nonrosette_4S)は神経ロゼット周 囲の領域に相当する。

プロット1個が同定されたタンパク1種に対応し、青色のプロットは2群間に有意差が みられなかったもの、赤色のプロットは有意差がみられものとを示す。 神経ロゼットに有意に発現が高いタンパクとしてnestinとtitinが、低いタンパクとして fascinとATP-dependent DNA helicase 2 subunit 2(Ku80)が得られた。

図12 Nestinの蛍光二重免疫組織化学

iPS細胞から形成された未熟奇形腫における蛍光二重免疫組織化学の所見を示す。 神経ロゼットに集簇するようにFITC陽性像が認められ、nestinの局在が認められた。(a,d) 神経ロゼットの認識を容易にするために、*N*-cadherinはTRITC陽性とした。(b,e) 核染色としてDAPIを用いて、FITCおよびTRITCとの合成像を示す。(c,f) Scale Bar = 100 μm

図13 Fascin(clone:55K2)の蛍光二重免疫組織化学

iPS細胞から形成された未熟奇形腫における蛍光二重免疫組織化学の所見を示す。 神経ロゼット以外の領域に集簇するようにFITC陽性像が認められ、fascinの局在が認め られた。(a,d) 神経ロゼットの認識を容易にするために、*N*-cadherinはTRITC陽性とした。(b,e) 核染色としてDAPIを用いて、FITCおよびTRITCとの合成像を示す。(c,f) Scale Bar = 100 μm

図14 Fascin(clone: IM20)の蛍光二重免疫組織化学

iPS細胞から形成された未熟奇形腫における蛍光二重免疫組織化学の所見を示す。 神経ロゼット以外の領域に集簇するようにFITC陽性像が認められ、異なるクローンの一 次抗体を用いてもfascinの局在が認められた。(a,d) 神経ロゼットの認識を容易にするために、*N*-cadherinはTRITC陽性とした。(b,e) 核染色としてDAPIを用いて、FITCおよびTRITCとの合成像を示す。(c,f) Scale Bar = 100 μm

図15 Ku80の蛍光二重免疫組織化学

iPS細胞から形成された未熟奇形腫における蛍光二重免疫組織化学の所見を示す。 神経ロゼット以外の領域に集簇するようにTRITC陽性像が認められ、Ku80の局在が認め られた。(a,d) 神経ロゼットの認識を容易にするために、*N*-cadherinはFITC陽性とした。(b,e) 核染色としてDAPIを用いて、FITCおよびTRITCとの合成像を示す。(c,f) Scale Bar = 100 μm

図16 Titinの蛍光二重免疫組織化学

iPS細胞から形成された未熟奇形腫における蛍光二重免疫組織化学の所見を示す。 神経ロゼットないし神経ロゼット周囲でもFITC陽性像は認められず、titinの局在は明らかで はなかった。ただし、神経ロゼットに隣接した粘膜上皮の筋上皮細胞にFITC陽性像が認め られた。(矢頭)

なお、神経ロゼットの認識を容易にするために、*N*-cadherinはTRITC陽性とした。(b,e) 核染色としてDAPIを用いて、FITCおよびTRITCとの合成像を示す。(c,f) Scale Bar = 100 μm

図17 同定されたタンパク分子量の分布の検討

MASCOT解析により同定されたタンパクセットにおける分子量の分布の検討結果を示す。

- a: 横軸に同定されたタンパクにおけるspectral count値をとり、縦軸に分子量をとった。 100kDa程度までの分子量を有するタンパクが多く含まれている可能性が考えられた一方、 spectral countと同定されるタンパクの分子量の偏りは明らかではなかった。
- b:タンパク分子量の分布における偏りの検討のため、分子量の対数をとった上で、

パラメトリックな検討を行った。黄点ないし赤点で示した神経ロゼット領域で同定されたタン パクの分子量の対数と青点ないし水点で示した神経ロゼット以外の領域で同定されたタンパク の分子量の対数はいずれも正規分布に従っており、同定されたタンパクの分子量が対数正規分 布に従っていた。

分散分析による検討では、いずれのタンパクセットにおいても有意な群間差は認められなかった。

一方、紫点で示すSwiss Protのエントリに記載されているタンパクの分子量は対数正規分布には 従っておらず、分散分析による検討では上記タンパクセットとの群間差が認められた。

表4 第2章で用いた抗体名、クローン名、免疫動物種、販売元、および希釈倍率

抗体名	クローン名,免疫動物種	販売元	希釈倍率
anti Nestin	10C2, mouse monoclonal	Abcam	1:500
anti Titin	T11, mouse monoclonal	Abcam	1:50
anti Fascin	55K2, mouse monoclonal	Abcam	1:5000
anti Fascin(carboxyterminal end)	IM20, mouse monoclonal	Abcam	1:500
anti Ku80	EPR3468, rabbit monoclonal	Abcam	1:500
anti N-cadherin	6G11, mouse monoclonal	Dako	1:100
anti N-cadherin	- [*] , rabbit polyclonal	IBL	1:100

* ウサギIgG親和性精製抗体であり、クローン名なし

Protein Informa	ation					Unweighted Spectrum Count *6		
					分子量	神経ロゼット	神経ロゼット以外	
Identified Proteins ^{*1}	$OS *^2$	GN ^{*3}	PE *4	SV *5	(kDa)	Rosette_3S	Nonrosette_4S	
Histone H2B type 1-D	Homo sapiens	HIST1H2BD	1	2	14	135	63	
Tubulin beta chain	Homo sapiens	TUBB	1	2	50	90	54	
Tubulin beta-2B chain	Homo sapiens	TUBB2B	1	1	50	81	50	
Tubulin beta-2C chain	Homo sapiens	TUBB2C	1	1	50	71	38	
Tubulin alpha-1A chain	Homo sapiens	TUBA1A	1	1	50	60	33	
Tubulin beta-3 chain	Homo sapiens	TUBB3	1	2	50	59	36	
Tubulin alpha-1B chain	Homo sapiens	TUBA1B	1	1	50	59	0	
Histone H4	Homo sapiens	HIST1H4A	1	2	11	56	28	
Histone H2A type 1-D	Homo sapiens	HIST1H2AD	1	2	14	51	29	
Actin, cytoplasmic 1	Homo sapiens	ACTB	1	1	42	42	35	
Vimentin	Homo sapiens	VIM	1	4	54	39	34	
Histone H1.3	Homo sapiens	HIST1H1D	1	2	22	36	17	
Heterogeneous nuclear ribonucleoprotein M	Homo sapiens	HNRNPM	1	3	78	30	25	
Pyruvate kinase isozymes M1/M2	Homo sapiens	PKM2	1	4	58	28	15	
Glyceraldehyde-3-phosphate dehydrogenase	Homo sapiens	GAPDH	1	3	36	27	17	
Heat shock cognate 71 kDa protein	Homo sapiens	HSPA8	1	1	71	24	20	
Histone H1.5	Homo sapiens	HIST1H1B	1	3	23	23	21	
Nestin	Homo sapiens	NES	1	2	177	22	8	
Heterogeneous nuclear ribonucleoprotein K	Homo sapiens	HNRNPK	1	1	51	19	17	
Elongation factor 1-alpha 1	Homo sapiens	EEF1A1	1	1	50	19	7	
Alpha-enolase	Homo sapiens	ENO1	1	2	47	18	11	
Creatine kinase B-type	Homo sapiens	CKB	1	1	43	18	4	
78 kDa glucose-regulated protein	Homo sapiens	HSPA5	1	2	72	18	10	
Non-POU domain-containing octamer-binding protein	Homo sapiens	NONO	1	4	54	16	10	
Actin, alpha cardiac muscle 1	Homo sapiens	ACTC1	1	1	42	16	15	
Nucleolin	Homo sapiens	NCL	1	3	77	15	6	
Matrin-3	Homo sapiens	MATR3	1	2	95	15	5	
Triosephosphate isomerase	Homo sapiens	TPI1	1	2	27	14	11	
Heat shock protein HSP 90-alpha	Homo sapiens	HSP90AA1	1	5	85	14	6	
Splicing factor, proline- and glutamine-rich	Homo sapiens	SFPQ	1	2	76	13	11	
Heterogeneous nuclear ribonucleoproteins A2/B1	Homo sapiens	HNRNPA2B1	1	2	37	12	18	
Heterogeneous nuclear ribonucleoprotein A1	Homo sapiens	HNRNPA1	1	5	39	12	18	

表5 質量分析解析システムによる同定されたタンパクのSaffoldによる表示

Heat shock protein HSP 90-beta	Homo sapiens	HSP90AB1	1	4	83	12	8
Heterogeneous nuclear ribonucleoprotein H	Homo sapiens	HNRNPH1	1	4	49	12	9
Microtubule-associated protein 1B	Homo sapiens	MAP1B	1	2	271	12	3
14-3-3 protein zeta/delta	Homo sapiens	YWHAZ	1	1	28	12	7
Heat shock 70 kDa protein 1-like	Homo sapiens	HSPA1L	1	2	70	12	0
Heterogeneous nuclear ribonucleoproteins C1/C2	Homo sapiens	HNRNPC	1	4	34	11	11
Lamin-B1	Homo sapiens	LMNB1	1	2	66	11	10
ATP synthase subunit beta, mitochondrial	Homo sapiens	ATP5B	1	3	57	11	4
60 kDa heat shock protein, mitochondrial	Homo sapiens	HSPD1	1	2	61	11	0
Peptidyl-prolyl cis-trans isomerase A	Homo sapiens	PPIA	1	2	18	10	7
Peroxiredoxin-2	Homo sapiens	PRDX2	1	5	22	10	1
Heat shock 70 kDa protein 1A/1B	Homo sapiens	HSPA1A	1	5	70	10	0
Heterogeneous nuclear ribonucleoprotein D0	Homo sapiens	HNRNPD	1	1	38	9	4
Rab GDP dissociation inhibitor beta	Homo sapiens	GDI2	1	2	51	9	7
Cleavage and polyadenylation specificity factor subunit 6	Homo sapiens	CPSF6	1	2	59	9	1
Transitional endoplasmic reticulum ATPase	Homo sapiens	VCP	1	4	89	9	1
Keratin, type II cytoskeletal 8	Homo sapiens	KRT8	1	7	54	9	4
Fatty acid synthase	Homo sapiens	FASN	1	3	273	9	2
Heterogeneous nuclear ribonucleoprotein A3	Homo sapiens	HNRNPA3	1	2	40	8	13
D-3-phosphoglycerate dehydrogenase	Homo sapiens	PHGDH	1	4	57	8	4
Heterogeneous nuclear ribonucleoprotein G	Homo sapiens	RBMX	1	3	42	8	2
Probable ATP-dependent RNA helicase DDX5	Homo sapiens	DDX5	1	1	69	8	10
Histone H2A.V	Homo sapiens	H2AFV	1	3	14	8	0
Heterogeneous nuclear ribonucleoprotein A1-like 2	Homo sapiens	HNRNPA1L2	2	2	34	8	0
Myristoylated alanine-rich C-kinase substrate	Homo sapiens	MARCKS	1	4	32	7	8
14-3-3 protein epsilon	Homo sapiens	YWHAE	1	1	29	7	5
40S ribosomal protein SA	Homo sapiens	RPSA	1	4	33	7	3
Chromobox protein homolog 3	Homo sapiens	CBX3	1	4	21	7	1
X-ray repair cross-complementing protein 6	Homo sapiens	XRCC6	1	2	70	7	2
60S ribosomal protein L6	Homo sapiens	RPL6	1	3	33	7	0
Nucleophosmin	Homo sapiens	NPM1	1	2	33	7	2
Importin subunit beta-1	Homo sapiens	KPNB1	1	2	97	7	0
Transketolase	Homo sapiens	TKT	1	3	68	7	0
Elongation factor 2	Homo sapiens	EEF2	1	4	95	7	0

Glucose-6-phosphate isomerase	Homo sapiens	GPI	1	4	63	7
Histone H3.1t	Homo sapiens	HIST3H3	1	3	16	6
Heterogeneous nuclear ribonucleoprotein U	Homo sapiens	HNRNPU	1	6	91	6
Filamin-A	Homo sapiens	FLNA	1	4	281	6
Probable ATP-dependent RNA helicase DDX17	Homo sapiens	DDX17	1	1	72	6
Fascin	Homo sapiens	FSCN1	1	3	55	6
Cofilin-1	Homo sapiens	CFL1	1	3	19	6
40S ribosomal protein S3	Homo sapiens	RPS3	1	2	27	6
Trypsin-3	Homo sapiens	PRSS3	1	2	33	6
Heterogeneous nuclear ribonucleoprotein R	Homo sapiens	HNRNPR	1	1	71	6
ATP synthase subunit O, mitochondrial	Homo sapiens	ATP5O	1	1	23	6
L-lactate dehydrogenase B chain	Homo sapiens	LDHB	1	2	37	5
ATP synthase subunit alpha, mitochondrial	Homo sapiens	ATP5A1	1	1	60	5
SAP domain-containing ribonucleoprotein	Homo sapiens	SARNP	1	3	24	5
60S acidic ribosomal protein P2	Homo sapiens	RPLP2	1	1	12	5
Annexin A5	Homo sapiens	ANXA5	1	2	36	5
Drebrin	Homo sapiens	DBN1	1	4	71	5
40S ribosomal protein S10	Homo sapiens	RPS10	1	1	19	5
Tubulin alpha chain-like 3	Homo sapiens	TUBAL3	1	2	50	5
ADP-ribosylation factor 1	Homo sapiens	ARF1	1	2	21	5
T-complex protein 1 subunit zeta	Homo sapiens	CCT6A	1	3	58	5
Nucleosome assembly protein 1-like 1	Homo sapiens	NAP1L1	1	1	45	5
Peroxiredoxin-1	Homo sapiens	PRDX1	1	1	22	5
Endoplasmin	Homo sapiens	HSP90B1	1	1	92	4
Myosin-10	Homo sapiens	MYH10	1	3	229	4
Poly [ADP-ribose] polymerase 1	Homo sapiens	PARP1	1	4	113	4
X-ray repair cross-complementing protein 5	Homo sapiens	XRCC5	1	3	83	4
Spliceosome RNA helicase BAT1	Homo sapiens	BAT1	1	1	49	4
Protein disulfide-isomerase A6	Homo sapiens	PDIA6	1	1	48	4
60S ribosomal protein L8	Homo sapiens	RPL8	1	2	28	4
Profilin-1	Homo sapiens	PFN1	1	2	15	4
Protein disulfide-isomerase A3	Homo sapiens	PDIA3	1	4	57	4
Serpin H1	Homo sapiens	SERPINH1	1	2	46	4
Insulin-like growth factor 2 mRNA-binding protein 1	Homo sapiens	IGF2BP1	1	2	63	4

40S ribosomal protein S28	Homo sapiens	RPS28	1	1	8	4	
Nuclear autoantigenic sperm protein	Homo sapiens	NASP	1	2	85	4	
Histone H1x	Homo sapiens	H1FX	1	1	22	4	
60S ribosomal protein L7	Homo sapiens	RPL7	1	1	29	4	
6-phosphogluconate dehydrogenase, decarboxylating	Homo sapiens	PGD	1	3	53	4	
Adenosylhomocysteinase	Homo sapiens	AHCY	1	4	48	4	
Fructose-bisphosphate aldolase A	Homo sapiens	ALDOA	1	2	39	4	
Alpha-internexin	Homo sapiens	INA	1	2	55	4	
Small nuclear ribonucleoprotein Sm D3	Homo sapiens	SNRPD3	1	1	14	4	
L-lactate dehydrogenase A chain	Homo sapiens	LDHA	1	2	37	4	
40S ribosomal protein S9	Homo sapiens	RPS9	1	3	23	4	
Alpha-centractin	Homo sapiens	ACTR1A	1	1	43	4	
40S ribosomal protein S5	Homo sapiens	RPS5	1	4	23	4	
Putative pre-mRNA-splicing factor ATP-dependent RNA helicase DHX15	Homo sapiens	DHX15	1	2	91	4	
General transcription factor II-I	Homo sapiens	GTF2I	1	2	112	4	
Far upstream element-binding protein 2	Homo sapiens	KHSRP	1	4	73	3	
60S ribosomal protein L13	Homo sapiens	RPL13	1	4	24	3	
Collagen alpha-2(I) chain	Homo sapiens	COL1A2	1	7	129	3	
Lamin-B2	Homo sapiens	LMNB2	1	3	68	3	
60S ribosomal protein L4	Homo sapiens	RPL4	1	5	48	3	
Heterogeneous nuclear ribonucleoprotein H3	Homo sapiens	HNRNPH3	1	2	37	3	
ELAV-like protein 1	Homo sapiens	ELAVL1	1	2	36	3	
Heterogeneous nuclear ribonucleoprotein Q	Homo sapiens	SYNCRIP	1	2	70	3	
Cytoplasmic dynein 1 heavy chain 1	Homo sapiens	DYNC1H1	1	5	532	3	
Moesin	Homo sapiens	MSN	1	3	68	3	
40S ribosomal protein S18	Homo sapiens	RPS18	1	3	18	3	
Putative RNA-binding protein Luc7-like 2	Homo sapiens	LUC7L2	1	2	47	3	
Poly(rC)-binding protein 1	Homo sapiens	PCBP1	1	2	37	3	
ATP-dependent RNA helicase A	Homo sapiens	DHX9	1	4	141	3	
Phosphatidylethanolamine-binding protein 1	Homo sapiens	PEBP1	1	3	21	3	
Far upstream element-binding protein 1	Homo sapiens	FUBP1	1	3	68	3	
40S ribosomal protein S14	Homo sapiens	RPS14	1	3	16	3	
40S ribosomal protein S26	Homo sapiens	RPS26	1	3	13	3	
T-complex protein 1 subunit beta	Homo sapiens	CCT2	1	4	57	3	

 $\begin{array}{c} 2 \\ 2 \\ 1 \\ 0 \\ 4 \\ 1 \\ 5 \\ 0 \\ 3 \\ 0 \\ 0 \end{array}$

T-complex protein 1 subunit epsilon	Homo sapiens	CCT5	1	1	60	3
Interleukin enhancer-binding factor 2	Homo sapiens	ILF2	1	2	43	3
DNA replication licensing factor MCM4	Homo sapiens	MCM4	1	5	97	3
Proliferating cell nuclear antigen	Homo sapiens	PCNA	1	1	29	3
40S ribosomal protein S8	Homo sapiens	RPS8	1	2	24	3
Hypoxia up-regulated protein 1	Homo sapiens	HYOU1	1	1	111	3
DNA replication licensing factor MCM3	Homo sapiens	MCM3	1	3	91	3
Leucyl-tRNA synthetase, cytoplasmic	Homo sapiens	LARS	1	2	134	3
60S ribosomal protein L36	Homo sapiens	RPL36	1	3	12	3
60S ribosomal protein L21	Homo sapiens	RPL21	1	2	19	3
Solute carrier family 2, facilitated glucose transporter member 1	Homo sapiens	SLC2A1	1	2	54	3
116 kDa U5 small nuclear ribonucleoprotein component	Homo sapiens	EFTUD2	1	1	109	3
Lamina-associated polypeptide 2, isoforms beta/gamma	Homo sapiens	TMPO	1	2	51	2
Heterogeneous nuclear ribonucleoprotein A0	Homo sapiens	HNRNPA0	1	1	31	2
Transcription intermediary factor 1-beta	Homo sapiens	TRIM28	1	5	89	2
Serine/arginine-rich splicing factor 1	Homo sapiens	SRSF1	1	2	28	2
Ubiquitin-60S ribosomal protein L40	Homo sapiens	UBA52	1	2	15	2
DNA-dependent protein kinase catalytic subunit	Homo sapiens	PRKDC	1	3	469	2
Interleukin enhancer-binding factor 3	Homo sapiens	ILF3	1	3	95	2
Ubiquitin-like modifier-activating enzyme 1	Homo sapiens	UBA1	1	3	118	2
Dihydropyrimidinase-related protein 1	Homo sapiens	CRMP1	1	1	62	2
Serine/arginine-rich splicing factor 3	Homo sapiens	SRSF3	1	1	19	2
60S ribosomal protein L7a	Homo sapiens	RPL7A	1	2	30	2
60S ribosomal protein L15	Homo sapiens	RPL15	1	2	24	2
Stress-70 protein, mitochondrial	Homo sapiens	HSPA9	1	2	74	2
Heat shock 70 kDa protein 4	Homo sapiens	HSPA4	1	4	94	2
60S acidic ribosomal protein P0	Homo sapiens	RPLP0	1	1	34	2
Polyadenylate-binding protein 1	Homo sapiens	PABPC1	1	2	71	2
Myosin light polypeptide 6	Homo sapiens	MYL6	1	2	17	2
40S ribosomal protein S3a	Homo sapiens	RPS3A	1	2	30	2
Elongation factor 1-delta	Homo sapiens	EEF1D	1	5	31	2
Lysine-specific histone demethylase 1A	Homo sapiens	KDM1A	1	2	93	2
THO complex subunit 4	Homo sapiens	THOC4	1	3	27	2
Transformer-2 protein homolog beta	Homo sapiens	TRA2B	1	1	34	2

ATP-dependent RNA helicase DDX1	Homo sapiens	DDX1	1	2	82	2	(
Phosphoglycerate kinase 1	Homo sapiens	PGK1	1	3	45	2	(
Myosin regulatory light chain 12A	Homo sapiens	MYL12A	1	2	20	2	4
Protein Jumonji	Homo sapiens	JARID2	1	2	139	2	(
Chromodomain-helicase-DNA-binding protein 3	Homo sapiens	CHD3	1	3	227	2	(
14-3-3 protein theta	Homo sapiens	YWHAQ	1	1	28	2	(
40S ribosomal protein S4, X isoform	Homo sapiens	RPS4X	1	2	30	2	(
Sodium/potassium-transporting ATPase subunit alpha-2	Homo sapiens	ATP1A2	1	1	112	2	(
DNA replication licensing factor MCM5	Homo sapiens	MCM5	1	5	82	2	(
T-complex protein 1 subunit alpha	Homo sapiens	TCP1	1	1	60	2	(
Protein KIAA1967	Homo sapiens	KIAA1967	1	2	103	2	(
Dihydropyrimidinase-related protein 2	Homo sapiens	DPYSL2	1	1	62	1	4
Heterogeneous nuclear ribonucleoprotein L	Homo sapiens	HNRNPL	1	2	64	1	2
High mobility group protein B1	Homo sapiens	HMGB1	1	3	25	1	2
Cellular retinoic acid-binding protein 1	Homo sapiens	CRABP1	1	2	16	1	1
Nuclear mitotic apparatus protein 1	Homo sapiens	NUMA1	1	2	238	1	(
Tropomyosin alpha-4 chain	Homo sapiens	TPM4	1	3	29	1	
Fibronectin	Homo sapiens	FN1	1	4	263	1	1
Stathmin	Homo sapiens	STMN1	1	3	17	1	1
Serine/arginine-rich splicing factor 7	Homo sapiens	SRSF7	1	1	27	1	2
Fibrous sheath-interacting protein 2	Homo sapiens	FSIP2	1	4	781	1	(
T-complex protein 1 subunit theta	Homo sapiens	CCT8	1	4	60	1	
Histone-lysine N-methyltransferase MLL3	Homo sapiens	MLL3	1	3	541	1	(
Nuclear pore complex protein Nup153	Homo sapiens	NUP153	1	2	154	1	(
Dihydropyrimidinase-related protein 4	Homo sapiens	DPYSL4	1	2	62	1	
Spectrin alpha chain, brain	Homo sapiens	SPTAN1	1	3	285	1	2
TATA-binding protein-associated factor 2N	Homo sapiens	TAF15	1	1	62	1	2
40S ribosomal protein S6	Homo sapiens	RPS6	1	1	29	1	(
Hemoglobin subunit alpha	Homo sapiens	HBA1	1	2	15	1	(
Polyadenylate-binding protein 2	Homo sapiens	PABPN1	1	3	33	1	(
DNA replication licensing factor MCM2	Homo sapiens	MCM2	1	4	102	1	2
Elongation factor Tu, mitochondrial	Homo sapiens	TUFM	1	2	50	1	(
Interferon-induced very large GTPase 1	Homo sapiens	GVIN1	2	2	279	1	(
DNA topoisomerase 2-beta	Homo sapiens	TOP2B	1	3	183	1	

C-1-tetrahydrofolate synthase, cytoplasmic	Homo sapiens	MTHFD1	1	3	102	1	0
Katanin p60 ATPase-containing subunit A-like 1	Homo sapiens	KATNAL1	2	1	55	1	0
Cold-inducible RNA-binding protein	Homo sapiens	CIRBP	1	1	19	1	1
Vinculin	Homo sapiens	VCL	1	4	124	1	0
Translational activator GCN1	Homo sapiens	GCN1L1	1	6	293	1	0
Spectrin beta chain, brain 1	Homo sapiens	SPTBN1	1	2	275	1	0
Collagen alpha-5(IV) chain	Homo sapiens	COL4A5	1	2	161	1	0
60S ribosomal protein L5	Homo sapiens	RPL5	1	3	34	1	0
von Willebrand factor A domain-containing protein 3A	Homo sapiens	VWA3A	2	3	134	1	0
Polypyrimidine tract-binding protein 1	Homo sapiens	PTBP1	1	1	57	1	0
U5 small nuclear ribonucleoprotein 200 kDa helicase	Homo sapiens	SNRNP200	1	2	245	1	0
Nuclear pore complex protein Nup133	Homo sapiens	NUP133	1	2	129	1	0
RNA-binding protein 39	Homo sapiens	RBM39	1	2	59	1	0
26S proteasome non-ATPase regulatory subunit 2	Homo sapiens	PSMD2	1	3	100	1	0
Protein transport protein Sec23A	Homo sapiens	SEC23A	1	2	86	1	0
Keratin, type I cytoskeletal 19	Homo sapiens	KRT19	1	4	44	1	0
Alpha-actinin-1	Homo sapiens	ACTN1	1	2	103	1	0
Proteasome subunit beta type-5	Homo sapiens	PSMB5	1	3	28	1	0
Reticulon-4	Homo sapiens	RTN4	1	2	130	1	0
Proline-, glutamic acid- and leucine-rich protein 1	Homo sapiens	PELP1	1	2	120	1	0
Regulator of nonsense transcripts 2	Homo sapiens	UPF2	1	1	148	1	0
ATP-citrate synthase	Homo sapiens	ACLY	1	3	121	1	0
Uncharacterized protein C17orf85	Homo sapiens	C17orf85	1	2	71	1	0
28S ribosomal protein S29, mitochondrial	Homo sapiens	DAP3	1	1	46	1	0
Exostosin-like 3	Homo sapiens	EXTL3	1	1	105	1	0
RNA-binding protein Nova-2	Homo sapiens	NOVA2	1	1	49	1	0
Serine/threonine-protein phosphatase 4 regulatory subunit 3A	Homo sapiens	SMEK1	1	1	95	1	0
Guanylate kinase	Homo sapiens	GUK1	1	2	22	1	0
Putative oxidoreductase GLYR1	Homo sapiens	GLYR1	1	3	61	1	0
RuvB-like 2	Homo sapiens	RUVBL2	1	3	51	1	0
Thioredoxin-dependent peroxide reductase, mitochondrial	Homo sapiens	PRDX3	1	3	28	1	0
RuvB-like 1	Homo sapiens	RUVBL1	1	1	50	1	0
Mitochondrial antiviral-signaling protein	Homo sapiens	MAVS	1	2	57	1	0
Short stature homeobox protein 2	Homo sapiens	SHOX2	2	4	35	0	0

Calcium-activated potassium channel subunit alpha-1	Homo sapiens	KCNMA1	1	2	138	0	0
Macrophage migration inhibitory factor	Homo sapiens	MIF	1	4	12	0	0
Zinc finger protein 503	Homo sapiens	ZNF503	1	1	63	0	0
N(G),N(G)-dimethylarginine dimethylaminohydrolase 2	Homo sapiens	DDAH2	1	1	30	0	0
60S ribosomal protein L18	Homo sapiens	RPL18	1	2	22	0	2
Core histone macro-H2A.1	Homo sapiens	H2AFY	1	4	40	0	2
40S ribosomal protein S15	Homo sapiens	RPS15	1	2	17	0	2
RNA-binding protein Raly	Homo sapiens	RALY	1	1	32	0	0
Eukaryotic initiation factor 4A-I	Homo sapiens	EIF4A1	1	1	46	0	3
BTB/POZ domain-containing protein KCTD12	Homo sapiens	KCTD12	1	1	36	0	3
60S ribosomal protein L23	Homo sapiens	RPL23	1	1	15	0	0
40S ribosomal protein S24	Homo sapiens	RPS24	1	1	15	0	3
RNA-binding protein FUS	Homo sapiens	FUS	1	1	53	0	2
Collagen alpha-1(XXVII) chain	Homo sapiens	COL27A1	1	1	187	0	1
Annexin A6	Homo sapiens	ANXA6	1	3	76	0	2
Malate dehydrogenase, mitochondrial	Homo sapiens	MDH2	1	3	36	0	1
Hemoglobin subunit delta	Homo sapiens	HBD	1	2	16	0	2
E3 ubiquitin-protein ligase HUWE1	Homo sapiens	HUWE1	1	3	482	0	0
Cytoskeleton-associated protein 4	Homo sapiens	CKAP4	1	2	66	0	0
Collagen alpha-1(VII) chain	Homo sapiens	COL7A1	1	2	295	0	1
Putative RNA-binding protein 3	Homo sapiens	RBM3	1	1	17	0	2
Protein SET	Homo sapiens	SET	1	3	33	0	4
Isocitrate dehydrogenase [NADP], mitochondrial	Homo sapiens	IDH2	1	2	51	0	0
Tubulin beta-6 chain	Homo sapiens	TUBB6	1	1	50	0	0
Collagen alpha-1(I) chain	Homo sapiens	COL1A1	1	5	139	0	1
Protein disulfide-isomerase A4	Homo sapiens	PDIA4	1	2	73	0	1
40S ribosomal protein S2	Homo sapiens	RPS2	1	2	31	0	1
Heterochromatin protein 1-binding protein 3	Homo sapiens	HP1BP3	1	1	61	0	2
SKI family transcriptional corepressor 1	Homo sapiens	SKOR1	1	1	100	0	0
Nesprin-2	Homo sapiens	SYNE2	1	3	796	0	1
Collagen alpha-1(II) chain	Homo sapiens	COL2A1	1	3	142	0	1
Serine/arginine repetitive matrix protein 2	Homo sapiens	SRRM2	1	2	300	0	0
Death-inducer obliterator 1	Homo sapiens	DIDO1	1	5	244	0	0
Heterogeneous nuclear ribonucleoprotein D-like	Homo sapiens	HNRPDL	1	3	46	0	6

Filamin-C	Homo sapiens	FLNC	1	3	291	0
Staphylococcal nuclease domain-containing protein 1	Homo sapiens	SND1	1	1	102	0
Collagen alpha-1(X) chain	Homo sapiens	COL10A1	1	2	66	0
Splicing factor 3B subunit 1	Homo sapiens	SF3B1	1	3	146	0
Signal recognition particle 14 kDa protein	Homo sapiens	SRP14	1	2	15	0
ATP-dependent RNA helicase DDX3Y	Homo sapiens	DDX3Y	1	2	73	0
Transcription elongation regulator 1	Homo sapiens	TCERG1	1	2	124	0
Dihydropyrimidinase-related protein 3	Homo sapiens	DPYSL3	1	1	62	0
Perilipin-4	Homo sapiens	PLIN4	2	2	134	0
Tubulin beta-4 chain	Homo sapiens	TUBB4	1	2	50	0
Zona pellucida sperm-binding protein 2	Homo sapiens	ZP2	1	1	82	0
Acidic leucine-rich nuclear phosphoprotein 32 family member A	Homo sapiens	ANP32A	1	1	29	0
Prolow-density lipoprotein receptor-related protein 1	Homo sapiens	LRP1	1	2	505	0
Utrophin	Homo sapiens	UTRN	1	2	394	0
60S ribosomal protein L17	Homo sapiens	RPL17	1	3	21	0
Septin-9	Homo sapiens	SEPT9	1	2	65	0
Serine/arginine-rich splicing factor 2	Homo sapiens	SRSF2	1	4	25	0
Calmodulin	Homo sapiens	CALM1	1	2	17	0
Filamin-B	Homo sapiens	FLNB	1	2	278	0
Microtubule-associated protein 4	Homo sapiens	MAP4	1	3	121	0
Calnexin	Homo sapiens	CANX	1	2	68	0
Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas	Homo sapiens	GNAS	1	2	111	0
ADP-ribosylation factor-like protein 6-interacting protein 4	Homo sapiens	ARL6IP4	1	1	38	0
40S ribosomal protein S16	Homo sapiens	RPS16	1	2	16	0
Nuclear factor of activated T-cells, cytoplasmic 4	Homo sapiens	NFATC4	1	2	95	0
EMILIN-1	Homo sapiens	EMILIN1	1	2	107	0
Small ubiquitin-related modifier 4	Homo sapiens	SUMO4	1	2	11	0
Zinc finger protein 469	Homo sapiens	ZNF469	1	3	410	0
DNA-(apurinic or apyrimidinic site) lyase	Homo sapiens	APEX1	1	2	36	0
Glutathione S-transferase P	Homo sapiens	GSTP1	1	2	23	0
Aspartate aminotransferase, mitochondrial	Homo sapiens	GOT2	1	3	48	0
Heterogeneous nuclear ribonucleoprotein F	Homo sapiens	HNRNPF	1	3	46	0
Obg-like ATPase 1	Homo sapiens	OLA1	1	2	45	0
Vacuolar protein sorting-associated protein 13C	Homo sapiens	VPS13C	1	1	422	0

 $\begin{array}{c} 2 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 2 \\ 0 \\ 0 \\ 1 \end{array}$

26S protease regulatory subunit 10B	Homo sapiens	PSMC6	1	1	44	0
14-3-3 protein gamma	Homo sapiens	YWHAG	1	2	28	0
40S ribosomal protein S19	Homo sapiens	RPS19	1	2	16	0
Zinc finger protein 425	Homo sapiens	ZNF425	2	1	88	0
Putative RNA-binding protein 15	Homo sapiens	RBM15	1	2	107	0
60S ribosomal protein L38	Homo sapiens	RPL38	1	2	8	0
60S ribosomal protein L22	Homo sapiens	RPL22	1	2	15	0
Nascent polypeptide-associated complex subunit alpha	Homo sapiens	NACA	1	1	23	0
60S ribosomal protein L23a	Homo sapiens	RPL23A	1	1	18	0
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1	Homo sapiens	RPN1	1	1	69	0
Sickle tail protein homolog	Homo sapiens	SKT	1	2	214	0
Trinucleotide repeat-containing gene 18 protein	Homo sapiens	TNRC18	1	3	315	0
G patch domain-containing protein 8	Homo sapiens	GPATCH8	1	2	164	0
Ferritin light chain	Homo sapiens	FTL	1	2	20	0
StAR-related lipid transfer protein 9	Homo sapiens	STARD9	2	2	507	0
Lysine-specific demethylase 7	Homo sapiens	JHDM1D	1	2	107	0
Kinesin-like protein KIF3C	Homo sapiens	KIF3C	1	3	89	0
Histone-lysine N-methyltransferase SETD2	Homo sapiens	SETD2	1	3	288	0
C-Jun-amino-terminal kinase-interacting protein 1	Homo sapiens	MAPK8IP1	1	1	78	0
Structural maintenance of chromosomes protein 1A	Homo sapiens	SMC1A	1	2	143	0
Collagen alpha-3(VI) chain	Homo sapiens	COL6A3	1	5	344	0
Tropomyosin alpha-3 chain	Homo sapiens	TPM3	1	1	33	0
Hydroxyacyl-coenzyme A dehydrogenase, mitochondrial	Homo sapiens	HADH	1	3	34	0
60S ribosomal protein L11	Homo sapiens	RPL11	1	2	20	0
Collagen alpha-2(VI) chain	Homo sapiens	COL6A2	1	4	109	0
Poly(rC)-binding protein 3	Homo sapiens	PCBP3	1	2	39	0
Fibrinogen gamma chain	Homo sapiens	FGG	1	3	52	0
Talin-1	Homo sapiens	TLN1	1	3	270	0
Splicing factor 3B subunit 2	Homo sapiens	SF3B2	1	2	100	0
Cullin-associated NEDD8-dissociated protein 1	Homo sapiens	CAND1	1	2	136	0
Splicing factor 3B subunit 3	Homo sapiens	SF3B3	1	4	136	0
Rab GDP dissociation inhibitor alpha	Homo sapiens	GDI1	1	2	51	0
Histone H2B type 1-O	Homo sapiens	HIST1H2BO	1	3	14	0
Cell death regulator Aven	Homo sapiens	AVEN	1	1	39	0

Midasin	Homo sapiens	MDN1	1	2	633	0
Zinc finger protein 687	Homo sapiens	ZNF687	1	1	130	0
Specifically androgen-regulated gene protein	Homo sapiens	SARG	1	2	64	0
Neurobeachin-like protein 1	Homo sapiens	NBEAL1	2	3	307	0
Serine/arginine-rich splicing factor 5	Homo sapiens	SRSF5	1	1	31	0
TAR DNA-binding protein 43	Homo sapiens	TARDBP	1	1	45	0
Peptidyl-prolyl cis-trans isomerase FKBP3	Homo sapiens	FKBP3	1	1	25	0
Cleavage and polyadenylation specificity factor subunit 7	Homo sapiens	CPSF7	1	1	52	0
Poly(U)-binding-splicing factor PUF60	Homo sapiens	PUF60	1	1	60	0
High mobility group protein B2	Homo sapiens	HMGB2	1	2	24	0
Metastasis suppressor protein 1	Homo sapiens	MTSS1	1	2	82	0
T-complex protein 1 subunit delta	Homo sapiens	CCT4	1	4	58	0
Structural maintenance of chromosomes flexible hinge domain-containing	Homo sapiens	SMCHD1	1	2	226	0
Smoothelin-like protein 1	Homo sapiens	SMTNL1	2	1	49	0
60S ribosomal protein L14	Homo sapiens	RPL14	1	4	23	0
Dystrobrevin beta	Homo sapiens	DTNB	1	1	71	0
RING finger protein 213	Homo sapiens	RNF213	1	2	374	0
Serine/arginine-rich splicing factor 10	Homo sapiens	SRSF10	1	1	31	0
60S ribosomal protein L27	Homo sapiens	RPL27	1	2	16	0
Prefoldin subunit 2	Homo sapiens	PFDN2	1	1	17	0
Eukaryotic translation initiation factor 5A-2	Homo sapiens	EIF5A2	1	3	17	0
AT-rich interactive domain-containing protein 5B	Homo sapiens	ARID5B	1	3	132	0
Importin-5	Homo sapiens	IPO5	1	4	124	0
NEDD4-binding protein 2	Homo sapiens	N4BP2	1	2	199	0
Inositol polyphosphate 5-phosphatase OCRL-1	Homo sapiens	OCRL	1	3	104	0
DNA-directed RNA polymerase I subunit RPA1	Homo sapiens	POLR1A	1	2	195	0
Friend of PRMT1 protein	Homo sapiens	Clorf77	1	2	26	0
Putative POM121-like protein 1	Homo sapiens	POM121L1P	5	2	45	0
Tyrosine-protein phosphatase non-receptor type 23	Homo sapiens	PTPN23	1	1	179	0
Putative tumor antigen NA88-A	Homo sapiens	VENTXP1	5	1	3	0
ATP-binding cassette sub-family A member 6	Homo sapiens	ABCA6	1	2	184	0
Coatomer subunit gamma	Homo sapiens	COPG	1	1	98	0
SURP and G-patch domain-containing protein 2	Homo sapiens	SUGP2	1	2	120	0
Caldesmon	Homo sapiens	CALD1	1	2	93	0

 $\begin{array}{c}
1 \\
0 \\
0 \\
1 \\
1 \\
0 \\
0 \\
0 \\
0 \\
0 \\
1
\end{array}$
Rhophilin-1	Homo sapiens	RHPN1	2	1	76	0	0
Keratin-associated protein 5-2	Homo sapiens	KRTAP5-2	2	1	16	0	1
UPF0407 protein C2orf39	Homo sapiens	C2orf39	2	2	87	0	0
SH3 domain-binding glutamic acid-rich-like protein 3	Homo sapiens	SH3BGRL3	1	1	10	0	1
Uncharacterized protein C16orf59	Homo sapiens	C16orf59	2	1	46	0	0
Biliverdin reductase A	Homo sapiens	BLVRA	1	2	33	0	0
Adenylate cyclase type 4	Homo sapiens	ADCY4	1	1	120	0	0
ARF GTPase-activating protein GIT2	Homo sapiens	GIT2	1	2	85	0	0
Zinc finger protein 219	Homo sapiens	ZNF219	1	2	77	0	1
Apoptosis regulator BAX	Homo sapiens	BAX	1	1	21	0	0
Septin-6	Homo sapiens	SEPT6	1	4	50	0	0
Rho guanine nucleotide exchange factor 12	Homo sapiens	ARHGEF12	1	1	173	0	1
IQ and AAA domain-containing protein 1	Homo sapiens	IQCA1	2	1	95	0	1
Myeloid cell nuclear differentiation antigen	Homo sapiens	MNDA	1	1	46	0	0
Stress-induced-phosphoprotein 1	Homo sapiens	STIP1	1	1	63	0	0
Metal transporter CNNM1	Homo sapiens	CNNM1	2	3	104	0	0
Uncharacterized protein KIAA1486	Homo sapiens	KIAA1486	1	3	71	0	0
ATP-binding cassette sub-family A member 3	Homo sapiens	ABCA3	1	2	191	0	0
Serine protease 55	Homo sapiens	PRSS55	2	2	39	0	1

*1 神経ロゼットにおけるUnweighted Spectrum Countの数値に従って列挙した *2 organism name, ヒトタンパクのみの表示とした

*3 gene name *4 protein existence, 独立したアイソフォームではないcDNA配列の数による

*5 sequence version *6 重み付けのないスペクトル数であり、相対発現量の考慮はされていない

表6	APEXによ	:る判	全量	解析	結身
表6	APEXICJ	くるき	正重	胖 朳;	治:

Protein Information					APEX値 ^{*6}				
Identified Proteins ^{*1}	$OS = ^{*2}$	GN ^{*3}	PE *4	SV *5	神経ロゼット (Rosette 3S)	神経ロゼット以外 (Nonrosette 4S)	z-score	<i>p</i> -value	
Titin	Homo sapiens	TTN	1	2	3.740E-05	3.230E-06	2.395	0.017	
Annexin A6	Rattus norvegicus	Anxa6	1	2	4.140E-04	1.917E-03	-2.246	0.025	
60 kDa heat shock protein, mitochondrial	Gallus gallus	HSPD1	1	1	2.340E-04	1.505E-03	-2.069	0.039	
Nestin	Homo sapiens	NES	1	2	2.698E-03	1.407E-03	2.042	0.041	
Fascin	Homo sapiens	FSCN1	1	3	1.583E-03	4.380E-03	-1.926	0.054	
ATP-dependent DNA helicase 2 subunit 2	Homo sapiens	XRCC5	1	3	1.057E-03	3.243E-03	-1.875	0.061	
Nucleophosmin	Mus musculus	Npm1	1	1	3.320E-03	1.058E-02	-1.875	0.061	
Hemoglobin subunit beta	Papio anubis	HBB	2	2	5.080E-04	2.300E-03	-1.840	0.066	
60S ribosomal protein L24	Mus musculus	Rpl24	2	2	1.054E-03	4.872E-03	-1.587	0.113	
ATP synthase subunit O, mitochondrial	Pongo abelii	ATP5O	2	1	7.170E-04	3.353E-03	-1.587	0.113	
Importin subunit beta-1	Homo sapiens	KPNB1	1	2	2.050E-03	7.070E-04	1.575	0.115	
Far upstream element-binding protein 2	Rattus norvegicus	Khsrp	1	1	4.024E-03	2.082E-03	1.502	0.133	
Collagen alpha-2(I) chain	Homo sapiens	COL1A2	1	6	4.720E-04	1.185E-03	-1.445	0.148	
Actin, alpha skeletal muscle	A. microlepidota *	⁷ ACTA1	2	1	3.263E-03	4.885E-03	-1.424	0.154	
Isocitrate dehydrogenase [NADP] cytoplasmic	M. mexicanus *8	IDH1	2	1	1.361E-03	3.120E-04	1.386	0.166	
Malate dehydrogenase, mitochondrial	S. pombe ^{*9}	MDH1	2	1	5.640E-04	1.600E-03	-1.361	0.174	
Splicing factor, arginine/serine-rich 7	Mus musculus	Sfrs7	1	1	6.220E-03	2.325E-03	1.328	0.184	
Small nuclear ribonucleoprotein Sm D2	Bos taurus	SNRPD2	3	1	1.038E-03	3.844E-03	-1.299	0.194	
Dihydropyrimidinase-related protein 3	Homo sapiens	DPYSL3	1	1	2.680E-04	1.098E-03	-1.299	0.194	
60S ribosomal protein L18	Bos taurus	RPL18	2	3	1.189E-02	5.965E-03	1.296	0.195	
60S ribosomal protein L6	Homo sapiens	RPL6	1	3	5.994E-03	2.757E-03	1.224	0.221	
Peroxiredoxin-1	Myotis lucifugus	PRDX1	1	1	3.268E-03	1.202E-03	1.187	0.235	
Peptidyl-prolyl cis-trans isomerase B	Bos taurus	PPIB	1	4	2.921E-03	9.710E-04	1.187	0.235	
T-complex protein 1 subunit beta	M. fascicularis ^{*10}	CCT2	2	3	1.122E-03	4.180E-04	1.187	0.235	
Nuclear protein Hcc-1	Pongo abelii	HCC1	2	3	8.678E-03	4.434E-03	1.144	0.253	
Dihydropyrimidinase-related protein 2	Pongo abelii	DPYSL2	2	1	4.261E-03	2.613E-03	1.101	0.271	
Heterogeneous nuclear ribonucleoprotein A0	Homo sapiens	HNRNPA(1	1	2.722E-03	5.008E-03	-1.089	0.276	

Protein SET	Mus musculus	Set	1	1	1.762E-03	4.054E-03	-1.084	0.279
Ubiquitin	Equus caballus	UBB	3	2	3.904E-03	8.991E-03	-1.084	0.279
MARCKS-related protein	Rattus norvegicus	Marcks11	2	3	2.365E-03	5.421E-03	-1.084	0.279
Interleukin enhancer-binding factor 3	Mus musculus	Ilf3	1	2	1.374E-03	6.320E-04	1.060	0.289
Protein transport protein Sec23A	Pongo abelii	SEC23A	2	1	5.660E-04	2.250E-04	1.040	0.299
60S acidic ribosomal protein P0	Homo sapiens	RPLP0	1	1	6.770E-04	1.884E-03	-0.962	0.336
Poly(rC)-binding protein 2	Mus musculus	Pcbp2	1	1	3.070E-04	9.440E-04	-0.962	0.336
Histone H1x	Homo sapiens	H1FX	1	1	2.643E-03	4.865E-03	-0.943	0.346
Heterogeneous nuclear ribonucleoprotein H3	Homo sapiens	HNRNPH3	1	2	3.645E-03	2.096E-03	0.904	0.366
Heterogeneous nuclear ribonucleoprotein M	Homo sapiens	HNRNPM	1	3	5.449E-03	6.556E-03	-0.889	0.374
Trypsin-3	Homo sapiens	PRSS3	1	2	2.717E-03	1.177E-03	0.865	0.387
Lamin-B2	Homo sapiens	LMNB2	1	3	1.602E-03	9.830E-04	0.852	0.394
Transketolase	Pan troglodytes	TKT	2	1	5.066E-03	3.106E-03	0.852	0.394
Serpin H1	Pongo abelii	SERPINH 1	2	1	1.818E-03	2.928E-03	-0.841	0.400
Non-POU domain-containing octamer-binding protein	Pongo abelii	NONO	2	3	8.149E-03	9.996E-03	-0.804	0.421
60S ribosomal protein L29	Homo sapiens	RPL29	1	2	5.825E-03	1.036E-02	-0.770	0.442
Stathmin	Sus scrofa	STMN1	1	3	1.783E-03	3.334E-03	-0.770	0.442
Elongation factor 2	Pongo abelii	EEF2	2	3	3.920E-04	7.590E-04	-0.770	0.442
Splicing factor 3B subunit 1	Mus musculus	Sf3b1	1	1	2.550E-04	5.350E-04	-0.770	0.442
DNA-dependent protein kinase catalytic subunit	Homo sapiens	PRKDC	1	3	2.050E-04	3.020E-04	-0.763	0.445
Nuclear autoantigenic sperm protein	Homo sapiens	NASP	1	2	1.008E-03	5.560E-04	0.763	0.445
Far upstream element-binding protein 1	Homo sapiens	FUBP1	1	3	1.284E-03	7.090E-04	0.763	0.445
Splicing factor, arginine/serine-rich 1-like protein 1	Danio rerio	sfrs11	2	1	2.204E-03	1.219E-03	0.763	0.445
Nucleosome assembly protein 1-like 1	Pongo abelii	NAP1L1	2	1	4.657E-03	2.575E-03	0.763	0.445
60S ribosomal protein L15	Mus musculus	Rpl15	2	4	8.769E-03	5.420E-03	0.695	0.487
Heterochromatin protein 1-binding protein 3	Rattus norvegicus	Hp1bp3	2	1	1.073E-03	1.665E-03	-0.653	0.514
EMILIN-1	Homo sapiens	EMILIN1	1	2	4.740E-04	7.490E-04	-0.653	0.514
60S ribosomal protein L8	I. punctatus ^{*11}	rpl8	2	3	6.272E-03	4.122E-03	0.646	0.518
Splicing factor, arginine/serine-rich 3	Bos taurus	SFRS3	2	1	8.033E-03	5.284E-03	0.646	0.518
Nascent polypeptide-associated complex subunit alpha	Danio rerio	naca	1	1	1.340E-04	5.230E-05	0.611	0.541

Obg-like ATPase 1	Homo sapiens	OLA1	1	2	7.660E-04	3.520E-04	0.611	0.541
Histone-binding protein RBBP4	Gallus gallus	RBBP4	1	3	1.175E-03	4.800E-04	0.611	0.541
Tubulin-specific chaperone A	Homo sapiens	TBCA	1	3	1.462E-03	6.100E-04	0.611	0.541
Putative RNA-binding protein Luc7-like 2	Homo sapiens	LUC7L2	1	2	4.422E-03	3.051E-03	0.608	0.543
Heterogeneous nuclear ribonucleoprotein R	Homo sapiens	HNRNPR	1	1	2.347E-03	1.619E-03	0.608	0.543
40S ribosomal protein S16	H. fossilis ^{*12}	rps16	2	1	9.340E-04	1.728E-03	-0.544	0.586
Neural cell adhesion molecule 1	Bos taurus	NCAM1	1	1	2.570E-04	4.280E-04	-0.544	0.586
60S ribosomal protein L3	D. hansenii *13	RPL3	3	1	4.720E-04	8.070E-04	-0.544	0.586
Elongation factor 1-delta	Homo sapiens	EEF1D	1	5	3.340E-04	6.960E-04	-0.544	0.586
40S ribosomal protein S23	S. frugiperda ^{*14}	RpS23	2	1	2.504E-03	5.607E-03	-0.544	0.586
Heterogeneous nuclear ribonucleoprotein D0	Rattus norvegicus	Hnrnpd	2	1	5.720E-03	6.706E-03	-0.504	0.614
Elongation factor Tu, mitochondrial	Homo sapiens	TUFM	1	2	7.240E-04	4.210E-04	0.491	0.623
Peroxiredoxin-6	Pongo abelii	PRDX6	2	3	1.325E-03	8.500E-04	0.491	0.623
Probable small nuclear ribonucleoprotein E	D. melanogaster ^{*15}	CG18591	1	1	3.969E-03	1.961E-03	0.491	0.623
Signal recognition particle 14 kDa protein	Pongo abelii	SRP14	2	1	4.038E-03	2.786E-03	0.430	0.667
Nuclear mitotic apparatus protein 1	Homo sapiens	NUMA1	1	2	2.410E-04	1.660E-04	0.430	0.667
40S ribosomal protein S24	Pongo abelii	RPS24	2	1	4.602E-03	3.340E-03	0.430	0.667
Transformer-2 protein homolog beta	Bos taurus	TRA2B	2	1	1.342E-03	1.860E-03	-0.404	0.686
Nucleolysin TIAR	Homo sapiens	TIAL1	1	1	1.301E-03	1.891E-03	-0.404	0.686
Polyadenylate-binding protein 2-A	Xenopus laevis	pabpn1-A	2	1	1.510E-03	2.092E-03	-0.404	0.686
RNA-binding protein Raly	Homo sapiens	RALY	1	1	1.147E-03	1.805E-03	-0.404	0.686
Cytoskeleton-associated protein 4	Homo sapiens	CKAP4	1	2	9.030E-04	6.640E-04	0.392	0.695
Interleukin enhancer-binding factor 2	Mus musculus	Ilf2	1	1	2.985E-03	2.198E-03	0.392	0.695
60S acidic ribosomal protein P2	Equus caballus	RPLP2	3	1	6.493E-03	4.777E-03	0.392	0.695
Trypsin-1	Homo sapiens	PRSS1	1	1	1.446E-02	1.662E-02	-0.390	0.697
60S ribosomal protein L23	I. punctatus ^{*15}	rpl23	2	2	7.493E-03	5.750E-03	0.367	0.714
Poly(rC)-binding protein 1	Bos taurus	PCBP1	2	1	1.938E-03	2.146E-03	-0.237	0.812
40S ribosomal protein S15	Pongo abelii	RPS15	2	3	4.285E-02	4.596E-02	-0.208	0.836
Drebrin	Homo sapiens	DBN1	1	4	2.416E-03	2.608E-03	-0.208	0.836

Protein disulfide-isomerase A6	Pongo abelii	PDIA6	2	1	3.460E-03	3.638E-03	-0.183	0.855
14-3-3 protein epsilon	Gallus gallus	YWHAE	1	1	3.325E-03	3.399E-03	-0.145	0.885
Heterogeneous nuclear ribonucleoprotein U	Homo sapiens	HNRNPU	1	5	4.396E-03	4.381E-03	-0.103	0.918
Triosephosphate isomerase	Pongo abelii	TPI1	2	1	6.811E-03	6.714E-03	-0.081	0.935
Profilin-1	Homo sapiens	PFN1	1	2	2.388E-03	2.198E-03	0.068	0.946
Nuclease-sensitive element-binding protein 1	O. cuniculus ^{*16}	YBX1	1	3	3.224E-03	2.967E-03	0.068	0.946
Chromobox protein homolog 3	Pongo abelii	CBX3	2	1	4.476E-03	4.122E-03	0.062	0.951
Isocitrate dehydrogenase [NADP], mitochondrial	M. fascicularis *10	IDH2	2	1	1.957E-03	1.808E-03	0.062	0.951
Histone H3	M. balamuth *17	-	2	1	5.999E-02	6.173E-02	0.062	0.951
E3 ubiquitin-protein ligase HUWE1	Homo sapiens	HUWE1	1	3	1.970E-04	1.980E-04	0.055	0.956
Splicing factor, arginine/serine-rich 6	Bos taurus	SFRS6	2	1	2.228E-03	2.029E-03	0.048	0.962
Rho GDP-dissociation inhibitor 1	M. fascicularis ^{*10}	ARHGDIA	2	1	3.000E-03	2.817E-03	0.048	0.962
Protein NipSnap homolog 1	Homo sapiens	NIPSNAP1	1	1	1.848E-03	1.789E-03	0.048	0.962
40S ribosomal protein S2 (Fragment)	Cricetulus griseus	RPS2	2	1	1.242E-03	1.361E-03	0.048	0.962
Protein arginine N-methyltransferase 5	Mus musculus	Prmt5	1	3	8.230E-04	9.670E-04	0.048	0.962
Ubiquitin-conjugating enzyme E2 N	Pongo abelii	UBE2N	2	1	1.600E-03	1.523E-03	0.039	0.969
Polyadenylate-binding protein 1	Rattus norvegicus	Pabpc1	2	1	5.200E-04	5.180E-04	0.039	0.969
Heat shock 70 kDa protein 4	Mus musculus	Hspa4	1	1	3.000E-04	2.630E-04	0.039	0.969
Protein disulfide-isomerase A4	Homo sapiens	PDIA4	1	2	2.040E-04	1.860E-04	0.028	0.978
Platelet-activating factor acetylhydrolase IB subunit gamma	Mus musculus	Pafah1b3	1	1	1.015E-03	9.350E-04	0.028	0.978
Alpha-actinin-1	Rattus norvegicus	Actn1	1	1	1.780E-04	1.650E-04	0.028	0.978
Nuclear pore complex protein Nup153	Homo sapiens	NUP153	1	2	1.190E-04	1.170E-04	0.028	0.978

ヒトタンパクのうち、相対発現量に有意差がみられたものに網掛けがしてある

*1 p-valueが小さいものから列挙した

*2 organism name, Swiss-Protに記載されている種による

*4 protein existence, 独立したアイソフォームではないcDNA配列の数による

*5 sequence version

*6 ソフトウェアにより算出された半定量値で、z-scoreおよびp-valueの算出には直接寄与しない

*7 Atractaspis microlepidota *10 Macaca fascicularis

*11 Ictalurus punctatus

*16 Oryctolagus cuniculus *13 Debaryomyces hansenii

*14 Spodoptera frugiperda *17 Mastigamoeba balamuth

*8 Microtus mexicanus *9 Schizosaccharomyces pombe *12 Heteropneustes fossilis

*15 Drosophila melanogaster

^{*3} gene name

第3章

ZO-1, N -cadherin, nestin \mathcal{O}

神経内分泌腫瘍診断への応用

1. 背景

第1章では、神経ロゼットと肺神経内分泌腫瘍のロゼット構造とは、形態的に類似するほか、免疫組織化学による検討ではZO-1とN-cadherinの局在も類似していることを示した。 第2章では、FFPE材料を用いたLC-MS/MS解析とAPEXによる解析により、慎重な解釈を要 するもののnestinが神経ロゼットに特徴的に局在し、その形態に関与する可能性が示された。

本章では、肺神経内分泌腫瘍の外科病理診断における、ZO-1, N-cadherin, およびnestinの応用可能性について2つの検討を行った。

第1に、神経内分泌腫瘍におけるロゼット構造と腺癌における腺腔構造の鑑別可能性の検 討である。神経内分泌腫瘍は、その特徴的な組織形態としてロゼット構造、類器官構造、 柵状構造、および索状構造が知られているが、形態認識は多分に主観的要素が強く、観察 者間でのばらつきも少なくない。特にロゼット構造は、腺癌などでみられる腺腔構造と時 に類似し、組織形態のみで鑑別することが困難である症例もある。免疫組織化学による検 討で神経内分泌マーカーが陽性となることやPAS染色ないしAlcian blue染色で粘液産生が示 されることで鑑別が可能となる場合もあるが、実際には神経内分泌マーカー陽性となる腺 癌やPAS染色ないしAlcian blue染色で陽性像を示す神経内分泌腫瘍も経験される。ZO-1とN -cadherinを用いて、神経内分泌腫瘍と腺腔構造を伴う癌腫との陽性割合の検討を行うこと とした。

第2に、神経ロゼットに関与する因子として同定されたnestinによる、肺神経内分泌腫瘍 の新規マーカーとしての応用可能性の検討である。NSCLCでは、20%程度の症例にnestinが 陽性となることが報告されている[86-88]が、多数例の肺神経内分泌腫瘍を用いた検討は行 われていない。また、種々の臓器で発生する神経内分泌腫瘍における検討も行われていな い。本検討では、神経内分泌腫瘍における陽性割合の記述を行うほか、その陽性パターン について検討を行うこととした。

2. 方法と対象

2.1. 症例と組織切片

神経内分泌腫瘍におけるロゼット構造と腺癌における腺腔構造の鑑別可能性の検討のた め、1975年から2009年までに筑波大学附属病院で外科的に切除された101症例を用いた。症 例の内訳は、第1章で用いた58症例に加え、43例の腺癌(10例の胃管状腺癌、10例の大腸管 状腺癌、5例の膵管状腺癌、5例の胆道管状腺癌、10例の浸潤性乳管癌、3例の肺腺癌)を用 いた。

Nestinによる、肺神経内分泌腫瘍の新規マーカーとしての応用可能性の検討のために は、これら101例に加えて、70例の肺以外に発生した神経内分泌腫瘍(25例の膵発生、15例 の消化管発生、10例の子宮発生、7例の泌尿器発生、4例の頭頚部発生、3例の乳腺発生、3 例の胆道発生、3例の卵巣発生)を用いた。

いずれの症例でも、外科的に切除された検体を15%中性緩衝ホルマリンにて固定し、 FFPE検体を作成した。腫瘍の最大割面から作成したFFPE材料から3µmの厚さで連続した組織切片を作成し、各種染色に供した。

2.2. 免疫組織化学

組織切片をキシレンにて脱パラフィン処理をしたのち、再水和し、各一次抗体に対応し た抗原の賦活化を加えた。ペルオキシダーゼのブロックのため、ChemMate POD Blocking Solution (Dako, Copenhagen, Denmark)を室温で5分間反応させたのち、Dako REAL Antibody Diluent (Dako)にて適切な濃度に希釈された各種一次抗体を加え、室温で30分間反応させ た。使用した一次抗体について、その抗体名、クローン名、販売元、抗原賦活化方法、お よび希釈倍率を表7に示す。

二次抗体として、ポリマー法による増感操作を利用したENVISION+Dual Link Polymer (Dako)を室温で30分反応させた。可視化のために、DAB+Liquid System (Dako)を室温で5分 間反応させた。純水で洗浄したのち、ヘマトキシリンによる対比染色を行い、封入した。 これらの免疫組織化学は、histostainer (Nichirei Biosciences, Tokyo, Japan)によって施行した。

2.3. 免疫組織化学の評価方法

ZO-1とN-cadherinは第一章と同様、N-cadherinは神経ロゼットを構成する個々の細胞の 胞体と細胞膜のいずれかまたは両者の陽性像をもって、ZO-1はFlexner typeのロゼット構造 ではロゼットを形成する個々の細胞の内腔面の陽性像を、Homer-Wright typeではロゼット の中心におけるドット状の陽性像をもって陽性とした。Nestinは、腫瘍細胞における胞体 の陽性像ないしGolgi野におけるドット状の陽性像をもって陽性と判定した。

いずれの判定も筆者を含む3人の病理医によって臨床情報・病理組織学的情報を盲検化して独立に判定された。各病理医による判定結果にずれが生じた場合は筆者を含む3人の病理 医が同時に検鏡した上で再評価し、同意した判定結果を採用した。ZO-1では血管内皮等、 *N*-cadherinでは神経線維等が陽性となるほか、nestinでも血管内皮の陽性像が認められるため、誤って陽性像の判定を下さないように細心の注意を払った。

2.4. 統計解析

統計解析は、SPSS 9.0 software package (SPSS Inc., Chicago, IL, USA)を用いて、カイ2乗検 定を行った。有意水準はp < 0.05とした。 3. 結果

3.1. 神経内分泌腫瘍におけるロゼット構造と腺癌における腺腔構造の鑑別

免疫組織化学による検討結果、43例の腺腔構造を呈する癌ではN-cadherinに陽性となる 症例は認められなかった(図18-21b)。ZO-1もほぼ全例が陰性であったものの(図18-21c)、1 例の浸潤性乳管癌の浸潤巣において腺腔の内腔側に陽性像が認められた(図21c insert)。 ZO-1陽性像が認められた浸潤性乳管癌症例は、エストロゲン受容体、プロゲステロン受容 体が陽性であり、HER2は陰性であることが確かめられており、synaptophysin, chromogranin-A,およびCD56/NCAMのいずれにおいても陽性像は得られず、乳腺発生の神 経内分泌腫瘍である可能性は否定的であった(表8)。

腺腔を形成する癌と肺神経内分泌腫瘍との比較を行うと、ZO-1(median および mean, 0% 対 0% および 0.23% 対 18%, p < 0.0001)およびN -cadherin(median and mean, 0% 対 0% および 0% 対 33% p < 0.0001)のいずれにおいても陽性割合に有意差が認められた。

3.2. 肺神経内分泌癌の新規マーカーとしてのnestin

LCNECは51例中、10例(19.6%)が陽性となり、腫瘍細胞の胞体に陽性像が認められた(図 22)。一方、SCLCは25例中、陽性例は得られず(0%)、LCNECにおける陽性症例割合との比 較で有意差が認められた(*p* = 0.013)。肺以外の諸臓器における神経内分泌癌におけるnestin の陽性割合を検討したところ、消化管発生は15例中2例(13.3%)、子宮発生は10例中3例 (30%)、泌尿器発生は7例中1例(14.3%)に陽性像が認められた。一方、膵発生は25例、頭頚 部発生は4例、胆道発生は3例、卵巣発生は3例、および乳腺発生は3例について検討した が、これらはいずれも陽性例は認められなかった(表9)。

4. 考察

肺神経内分泌腫瘍におけるロゼット構造と腺癌における腺腔構造の鑑別可能性の検討か ら、N-cadherinは全例が陰性となるほか、ZO-1でも1例に陽性像が認められたのみであった ことから、病理診断においてロゼット構造と腺癌における腺腔構造は、ZO-1と N-cadherinの陽性像の有無によって鑑別診断の補助が可能と考えられる。肺神経内分泌腫 瘍には、LCNECやSCLCといった高悪性度腫瘍が含まれており、特にSCLCはNSCLCとそ の治療方針が異なるため、LCNECと腺癌またはSCLCと腺癌が形態学的に鑑別困難となる 場合に有用である。

また、病理診断では神経内分泌マーカーとして、神経内分泌形態(ロゼット構造、類器官 構造、柵状構造、および索状構造)と神経内分泌形質(免疫組織化学によるsynaptophysin, chromogranin-A, CD56/NCAM)の二つが挙げられる。これらは外科病理診断において広く用 いられているものの、両者の病態生理ないし生物学的な関連についてはほとんど知られて いない。本検討では、ZO-1とN-cadherinがロゼット構造に特徴的な局在を示し、その局在 が神経ロゼットと類似していることを示してきたが、両者が腺癌における腺腔では陽性像 が認められないことは、鑑別診断のための補助診断技術としてのみならず、ロゼット構造 の形態形成ないし維持という観点から、病態生理の理解が進む可能性もある。外科病理診 断においては、腫瘍の分類はHE所見に基づいて純粋形態学的に定義されるものの、 LCNECのみ確定診断のために免疫組織化学による検討が必須である[2]。すると、組織形態

として神経内分泌形態を呈する一方、神経内分泌形質を有さない腫瘍が時に経験され、現 在は大細胞癌に分類されている。神経内分泌形質を有さないものの神経内分泌形態を有す る腫瘍は、大細胞神経内分泌癌と同様、予後不良であるという報告もなされており[89]、 ZO-1ないし*N*-cadherinを神経内分泌形態を支持するマーカーとして捉えて高悪性度腫瘍で あるLCNECやSCLCにおける患者予後の比較を行うことで、現在は大細胞癌に分類されて いる、神経内分泌形態を有するものの神経内分泌形質を有さない腫瘍の疾患概念を整理で

きる可能性もある。即ち、ZO-1とN-cadherinによる、疾患概念の再構築が可能となるかも しれない。

肺神経内分泌腫瘍の新規マーカーとしてのnestinの検討のため、二群の割合を比較するた めに必要なサンプル数の算定では、αエラーを10%、検出力を80%とすれば、両群合わせて 50-60例の症例が必要との試算が得られた。十分な症例数により検討を行った結果、nestin はSCLCでは陽性割合が0%であるのに対し、LCNECでは陽性例が19.6%にみられ、統計学 的にも有意差が得られた(*p* = 0.013)。典型的には、SCLCは胞体が極めて少なく裸核状を呈 し核クロマチンが繊細であるのに対して、LCNECは胞体を認めるほか核クロマチンが粗造 であるといった形態の差があるが、nestinの発現の有無をもって神経内分泌腫瘍における神 経上皮への分化傾向の差が見いだすことができれば、LCNECとSCLCの病態生理の差異を 反映できる可能性がある。他方、神経ロゼットに関与する因子としてnestinをとらえると、 LCNECではロゼット構造を含む多くの腫瘍細胞に陽性像が認められており、ロゼット構造 に特異的な陽性像を示してはいなかった。これは、LCNECにおけるロゼット構造は、神経 ロゼットに形態およびZO-1と*N*-cadherinの局在が類似しているとはいえ、少なからぬ細胞 極性の乱れがみられているためであると考えられる。

なお、本検討結果は、近年NSCLCから派生したLCNECがSCLCと同様の治療方針が必要 であるとの主張を否定するものではなく、LCNECを含む神経内分泌腫瘍の腫瘍発生を考え る上でSCLCとの対比から新たな知見を与えうるものと考えられる。

5. 本章の検討における限界と展望

肺腺癌において腺腔形成を主体とする症例は稀少で、十分な症例が得られなかったた め、その他の臓器に発生した腺癌との比較を行った。腺癌の発生母地は肺だけでも気管支 腺由来やterminal respiratory unit由来が想定されている[90]一方、神経内分泌腫瘍の発生母地 については統一された見解が得られていないため、これらを比較する妥当性については議 論の余地がある。ただし、肺は転移性腫瘍の多い臓器の一つであり、転移性腺癌は境界明 瞭な腫瘤を形成し、lepidic growth patternを伴わないことなどから、肺神経内分泌腫瘍との 鑑別が困難となることが特に多い。従って、本検討はより外科病理診断における技術的有 用性が強調されるものと考えられる。

Nestinを、肺神経内分泌腫瘍の新規マーカーとして病理診断に応用するためには、nestin 陽性症例とnestin陰性症例における臨床病理学的な差異を検討する必要があり、今後のさら なる検討が強く求められる。

図18 肺腺癌における免疫組織化学による検討結果

肺腺癌の組織所見を示す。 HE染色(a)で認められた管腔構造では、N-cadherin(b)およびZO-1(c)に陽性像はみられな かった。 Scale Bar = 100 μm

図19 胃管状腺癌における免疫組織化学による検討結果

胃管状癌の組織所見を示す。 HE染色(a)で認められた管腔構造では、N-cadherin(b)およびZO-1(c)に陽性像はみられな かった。 Scale Bar = 200 μm

図20 膵管状腺癌における免疫組織化学による検討結果

膵管状癌の組織所見を示す。 HE染色(a)で認められた管腔構造では、N-cadherin(b)およびZO-1(c)に陽性像はみられな かった。 Scale Bar = 100 μm

図21 浸潤性乳管癌における免疫組織化学による検討結果

浸潤性乳管癌の組織所見を示す。

HE染色(a)で認められた管腔構造では、N-cadherin(b)およびZO-1(c)に陽性像はみられな かった。ただし、浸潤巣の一部で、ZO-1陽性像が認められた(c:insert)。 Scale Bar = 200 μm

図22 LCNECにおけるnestinの免疫組織化学による検討結果

肺大細胞神経内分泌癌(LCNEC)の組織所見を示す。 腫瘍の一部にnestin陽性領域が認められた(a)。同領域では腫瘍細胞の胞体に陽性像が認められ(b)、特にロゼット構造でも陽性像がみられた(c:矢頭)。 ただし、ロゼット構造における特異性・選択性は明らかではなく、陽性領域内の腫瘍 細胞はびまん性に陽性像を呈していた(c)。

表7 第3章で用いた抗体名、クローン名、免疫動物種、販売元、抗原賦活化方法、および希釈倍率

抗体名	クローン名、免疫動物種	販売元	抗原賦活化方法	希釈倍率
anti ZO-1	- ^a , rabbit polyclonal	Zymed Laboratories ^b	proteinase K 室温5分	1:50
anti N-cadherin	6G11, mouse monoclonal	Dako	TE緩衝液 105℃ 15分	1:50
anti synaptophysin	27G12, mouse monoclonal	Nichirei Bioscience ^c	TE緩衝液 105℃ 15分	希釈済み抗体
anti chromogranin-A	A0430, rabbit polyclonal	Dako	クエン酸緩衝液 120℃ 10分	1:500
anti CD56/NCAM	1B6, mouse monoclonal	Nichirei Bioscience	クエン酸緩衝液 120℃ 10分	希釈済み抗体
anti Nestin	10C2, mouse monoclonal	Abcam	TE緩衝液 105℃ 15分	1:5000

a epitope; residues 463-1109 of ZO-1 b Zymed Laboratories, San Francisco, USA c Nichirei Bioscience, Tokyo, Japan

表8 腺管構造を呈する癌における免疫組織化学による検討結果

	陽性症例数(割合)						
	Total	Syn.	Ch-A.	CD56.	N-cadherin	ZO-1	
肺	3	1(33%)	0(0%)	0(0%)	0(0%)	0(0%)	
胃	10	2(20%)	0(0%)	0(0%)	0(0%)	0(0%)	
結腸	10	1(10%)	0(0%)	0(0%)	0(0%)	0(0%)	
膵/胆道	10	0(0%)	0(0%)	0(0%)	0(0%)	0(0%)	
乳腺	10	1(10%)	1*(10%)	1*(10%)	0(0%)	1 [†] (10%)	

Syn : synaptophysin, Ch-A : chromogranin-A, CD56 : CD56/NCAM

* 両者の陽性像は同一症例でみられた。当該症例はエストロゲン受容体およびプロゲステロン受容体が陽性であり、腫瘍の乳管内成分も伴うことから、神経内分泌形質のみを有する浸潤性乳管癌と診断された。

†ZO-1陽性像が認められた浸潤性乳管癌症例は、エストロゲン受容体、プロゲステロン受容体が陽性であり、HER2は陰性であることが確か められており、synaptophysin, chromogranin-A,およびCD56/NCAMのいずれにおいても陽性像は得られず、乳腺発生の神経内分泌腫瘍である 可能性は否定的であった。

	陽性症例数(割合)					
	Total	Nestin				
Lung	76	10 (13.2%)				
LCNEC	51	10 (19.6%)*				
SCLC	25	0 (0%)*				
Pancreas	25	0 (0%)				
Gastrointestine	15	2 (13.3%)				
Uterus	10	3 (30.0%)				
Urinary tract	7	1 (14.3%)				
Head and neck	4	0 (0%)				
Bile duct	3	0 (0%)				
Ovary	3	0 (0%)				
Breast	3	0 (0%)				
	146	16 (11.0%)				

表9 神経内分泌癌におけるnestinの免疫組織化学による検討結果

* p = 0.013 (Mann-Whitney U-test)

総括

本研究のまとめを図23に示す。第1章では、神経ロゼットと肺神経内分泌腫瘍のロゼット 構造とは、形態的に類似するほか、免疫組織化学による検討でZO-1と*N*-cadherinの局在も 類似していることを示した。

ただし、神経ロゼットの参照としては腫瘍としての未熟奇形腫でみられた神経ロゼット を用いており、第2章ではより真の神経ロゼットに近い、iPS細胞から形成された神経ロゼ ットを対象として、FFPE材料を用いたLC-MS/MS解析とAPEXによる解析により、タンパ クの半定量解析を行った。技術的な制約はあるものの最大限の網羅性と結果の適切な確認 により、nestinが神経ロゼットの形態に関与する因子として同定された。

さらに、第3章では、第1章と第2章の結果を利用した外科病理診断への応用可能性につい て議論した。肺神経内分泌腫瘍におけるロゼット構造と腺癌における腺腔構造の鑑別の可 能性があるほか、新たな神経内分泌腫瘍の免疫組織化学マーカーとしてnestinの有用性を検 討した。

本研究は、種々の特異性を有する神経内分泌腫瘍について、病態生理の解明により診断 法・治療法・予防法の改善・新規開発を目指している。神経内分泌腫瘍の病態生理の解明 のために、その特徴的な形態であるロゼット構造について、神経ロゼットとの類似性とい う観点から、神経ロゼットの形態形成ないし形態維持に関与する因子を解明しようとし た。ただし、本研究はいずれも記述的研究に止まり、神経ロゼットにおけるそれぞれの因 子の因果関係や相互関係については示されておらず、今後の大きな検討課題である。

神経ロゼットも神経内分泌腫瘍におけるロゼット構造も、自己組織化により、かかる特徴的な形態を形成するものと考えられる。形態形成機構ないし維持機構の解明は発生学の 主要な課題の一つでもある。形態によって定義され、その臨床病理学的検討が進められて きたcarcinogenesisを、embryogenesisの知見を参照としてアプローチすることは、今後の医

学研究において有用と考えられる。さらに、かかるアプローチにより、新たな病態生理や 病理細胞動態の理解に役立て、新規診断的マーカーの探索や治療法の開発の手がかりとし たい。

図23 本研究のまとめ

謝辞

本研究を遂行するにあたり、直接ご指導、ご鞭撻、ご助言をいただきました筑波大学 大学院人間総合科学研究科生命システム医学専攻教授 野口雅之先生、筑波大学大学院人 間総合科学研究科生命システム医学専攻准教授 森下由紀雄先生に深謝いたします。

また、筑波大学大学院人間総合科学研究科生命システム医学専攻准教授 南優子先生に 感謝いたします。

本研究において一貫して免疫組織化学について技術面でのご指導を賜りました古屋周一 郎氏(筑波大学附属病院病理部)に感謝いたします。

第2章におけるiPS細胞の樹立と未熟奇形腫の作製では、理化学研究所神戸研究所 発 生・再生科学総合研究センターの西川伸一先生と小林健一郎先生に試料の提供をいただき ましたことに深謝の意を表します。同じく、第2章で質量分析解析システムを利用させてい ただいた、独立行政法人物質材料研究機構 中核機能部門 ナノテクノロジー融合ステーシ ョンの箕輪貴司博士に感謝いたします。

最後に、診断病理研究室の先生方、スタッフの皆様、大学院生の皆様には公私にわた り、ご支援とご協力をいただいたことに感謝の意を表します。

参考文献

[1] 独立行政法人国立がん研究センターがん対策情報センターがん情報サービス. http://ganjoho.jp/professional/statistics/digest/digest01.html

[2] Travis WD BE M-HH, Harris CC editor. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. World Health Organization Classification of Tumours 10. 2004.

[3] Nicholson SA, Beasley MB, Brambilla E, Hasleton PS, Colby TV, Sheppard MN, et al. Small cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens. Am J Surg Pathol. 2002;26(9):1184-97.

[4] Kloppel G. Tumour biology and histopathology of neuroendocrine tumours. Best Pract Res Clin Endocrinol Metab. 2007;21(1):15-31.

[5] Travis WD, Linnoila RI, Tsokos MG, Hitchcock CL, Cutler GB, Jr., Nieman L, et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma. An ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol. 1991;15(6):529-53.

[6] Colby TV KM TW, editors. Tumors of the lower respiratory tract. Armed Forces Institute of Pathology. 1995:248-57.

[7] Arrigoni MG, Woolner LB, Bernatz PE. Atypical carcinoid tumors of the lung. J Thorac Cardiovasc Surg. 1972;64(3):413-21.

[8] Carretta A, Ceresoli GL, Arrigoni G, Canneto B, Reni M, Cigala C, et al. Diagnostic and therapeutic management of neuroendocrine lung tumors: a clinical study of 44 cases. Lung Cancer. 2000;29(3):217-25.

[9] Garcia-Yuste M, Matilla JM, Alvarez-Gago T, Duque JL, Heras F, Cerezal LJ, et al. Prognostic factors in neuroendocrine lung tumors: a Spanish Multicenter Study. Spanish Multicenter Study of Neuroendocrine Tumors of the Lung of the Spanish Society of Pneumonology and Thoracic Surgery (EMETNE-SEPAR). Ann Thorac Surg. 2000;70(1):258-63.

[10] Gould VE, Linnoila RI, Memoli VA, Warren WH. Neuroendocrine cells and neuroendocrine neoplasms of the lung. Pathol Annu. 1983;18 Pt 1:287-330.

[11] Jiang SX, Kameya T, Shoji M, Dobashi Y, Shinada J, Yoshimura H. Large cell neuroendocrine carcinoma of the lung: a histologic and immunohistochemical study of 22 cases. Am J Surg Pathol. 1998;22(5):526-37.

[12] Naranjo Gomez JM, Gomez Roman JJ. Behaviour and survival of high-grade neuroendocrine carcinomas of the lung. Respir Med. 2010;104(12):1929-36.

[13] Peng WX, Sano T, Oyama T, Kawashima O, Nakajima T. Large cell neuroendocrine carcinoma of the lung: a comparison with large cell carcinoma with neuroendocrine morphology and small cell carcinoma. Lung Cancer. 2005;47(2):225-33.

[14] Takei H, Asamura H, Maeshima A, Suzuki K, Kondo H, Niki T, et al. Large cell neuroendocrine carcinoma of the lung: a clinicopathologic study of eighty-seven cases. J Thorac Cardiovasc Surg. 2002;124(2):285-92.

[15] Warren WH, Faber LP, Gould VE. Neuroendocrine neoplasms of the lung. A clinicopathologic update. J Thorac Cardiovasc Surg. 1989;98(3):321-32.

[16] Warren WH, Gould VE, Faber LP, Kittle CF, Memoli VA. Neuroendocrine neoplasms of the bronchopulmonary tract. A classification of the spectrum of carcinoid to small cell carcinoma and intervening variants. J Thorac Cardiovasc Surg. 1985;89(6):819-25.

[17] Asamura H, Kameya T, Matsuno Y, Noguchi M, Tada H, Ishikawa Y, et al.

Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol. 2006 1;24(1):70-6.

[18] 高悪性度肺原発神経内分泌癌 (大細胞神経内分泌癌+小細胞癌) に対するシス プラチン+塩酸イリノテカンを用いた術後補助化学療法のpilot study.

https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type =summary&recptno=R000001606&language=J

[19] 肺原発大細胞神経内分泌癌Large cell neuroendocrine carcinoma (LCNEC) に対する シスプラチン+イリノテカン併用療法の第 相試験.

https://upload.umin.ac.jp/cgi-open-bin/ctr/ctr.cgi?function=brows&action=brows&type =summary&recptno=R000005709&language=J

[20] Wippold FJ, 2nd, Perry A. Neuropathology for the neuroradiologist: rosettes and pseudorosettes. AJNR Am J Neuroradiol. 2006;27(3):488-92.

[21] Koch P, Opitz T, Steinbeck JA, Ladewig J, Brustle O. A rosette-type, self-renewing human ES cell-derived neural stem cell with potential for in vitro instruction and synaptic integration. Proc Natl Acad Sci U S A. 2009;106(9):3225-30.

[22] Elkabetz Y, Panagiotakos G, Al Shamy G, Socci ND, Tabar V, Studer L. Human ES cellderived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev. 2008;22(2):152-65.

[23] Aaku-Saraste E, Hellwig A, Huttner WB. Loss of occludin and functional tight junctions, but not ZO-1, during neural tube closure--remodeling of the neuroepithelium prior to neurogenesis. Dev Biol. 1996;180(2):664-79.

[24] Nishimura T, Takeichi M. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development. 2008;135(8):1493-502.

[25] Stevenson BR, Siliciano JD, Mooseker MS, Goodenough DA. Identification of ZO-1: a high molecular weight polypeptide associated with the tight junction (zonula occludens) in a variety of epithelia. J Cell Biol. 1986;103(3):755-66.

[26] Itoh M, Nagafuchi A, Yonemura S, Kitani-Yasuda T, Tsukita S, Tsukita S. The 220-kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol. 1993;121(3):491-502.

[27] Tsukita S, Yamazaki Y, Katsuno T, Tamura A, Tsukita S. Tight junction-based epithelial microenvironment and cell proliferation. Oncogene. 2008;27(55):6930-8.

[28] Katsuno T, Umeda K, Matsui T, Hata M, Tamura A, Itoh M, et al. Deficiency of zonula occludens-1 causes embryonic lethal phenotype associated with defected yolk sac angiogenesis and apoptosis of embryonic cells. Mol Biol Cell. 2008;19(6):2465-75.

[29] Hatta K, Takeichi M. Expression of N-cadherin adhesion molecules associated with early morphogenetic events in chick development. Nature. 1986;320(6061):447-9.

[30] Hatta K, Takagi S, Fujisawa H, Takeichi M. Spatial and temporal expression pattern of N-cadherin cell adhesion molecules correlated with morphogenetic processes of chicken embryos. Dev Biol. 1987;120(1):215-27.

[31] Shinoura N, Paradies NE, Warnick RE, Chen H, Larson JJ, Tew JJ, et al. Expression of N-cadherin and alpha-catenin in astrocytomas and glioblastomas. Br J Cancer. 1995;72(3):627-33.

[32] Liu ZJ, Xiao M, Balint K, Smalley KS, Brafford P, Qiu R, et al. Notch1 signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer

Res. 2006;66(8):4182-90.

[33] Shimono R, Matsubara S, Takamatsu H, Fukushige T, Ozawa M. The expression of cadherins in human neuroblastoma cell lines and clinical tumors. Anticancer Res. 2000;20(2A):917-23.

[34] Reyes-Mugica M, Meyerhardt JA, Rzasa J, Rimm DL, Johnson KR, Wheelock MJ, et al. Truncated DCC reduces N-cadherin/catenin expression and calcium-dependent cell adhesion in neuroblastoma cells. Lab Invest. 2001;81(2):201-10.

[35] Utsuki S, Oka H, Sato Y, Tsutiya B, Kondo K, Tanizaki Y, et al. E, N-cadherins and betacatenin expression in medulloblastoma and atypical teratoid/rhabdoid tumor. Neurol Med Chir (Tokyo). 2004;44(8):402-6; discussion 7.

[36] Masuya D, Liu D, Ishikawa S, Yamamoto Y, Huang CL, Yokomise H. Large cell carcinoma with neuroendocrine morphology of the lung. Jpn J Thorac Cardiovasc Surg. 2006;54(1):31-4.

[37] Zacharias J, Nicholson AG, Ladas GP, Goldstraw P. Large cell neuroendocrine carcinoma and large cell carcinomas with neuroendocrine morphology of the lung: prognosis after complete resection and systematic nodal dissection. Ann Thorac Surg. 2003;75(2):348-52.

[38] Pappin DJ, Hojrup P, Bleasby AJ. Rapid identification of proteins by peptide-mass fingerprinting. Curr Biol. 1993;3(6):327-32.

[39] Addis MF, Tanca A, Pagnozzi D, Crobu S, Fanciulli G, Cossu-Rocca P, et al. Generation of high-quality protein extracts from formalin-fixed, paraffin-embedded tissues. Proteomics. 2009;9(15):3815-23.

[40] Azimzadeh O, Barjaktarovic Z, Aubele M, Calzada-Wack J, Sarioglu H, Atkinson MJ, et al. Formalin-fixed paraffin-embedded (FFPE) proteome analysis using gel-free and gel-based proteomics. Journal of proteome research. 2010;9(9):4710-20.

[41] Balgley BM, Guo T, Zhao K, Fang X, Tavassoli FA, Lee CS. Evaluation of archival time on shotgun proteomics of formalin-fixed and paraffin-embedded tissues. Journal of proteome research. 2009;8(2):917-25.

[42] Bateman NW, Sun M, Bhargava R, Hood BL, Darfler MM, Kovatich AJ, et al. Differential proteomic analysis of late-stage and recurrent breast cancer from formalin-fixed paraffin-embedded tissues. Journal of proteome research. 2010;10(3):1323-32.

[43] Fowler CB, O'Leary TJ, Mason JT. Protein mass spectrometry applications on FFPE tissue sections. Methods in molecular biology 2011;724:281-95.

[44] Geoui T, Urlaub H, Plessmann U, Porschewski P. Extraction of proteins from formalinfixed, paraffin-embedded tissue using the Qproteome extraction technique and preparation of tryptic peptides for liquid chromatography/mass spectrometry analysis. Current protocols in molecular biology. 2010;Chapter 10:Unit 10 27 1-12.

[45] Guo T, Wang W, Rudnick PA, Song T, Li J, Zhuang Z, et al. Proteome analysis of microdissected formalin-fixed and paraffin-embedded tissue specimens. J Histochem Cytochem. 2007;55(7):763-72.

[46] Hewitt SM, Takikita M, Abedi-Ardekani B, Kris Y, Bexfield K, Braunschweig T, et al. Validation of proteomic-based discovery with tissue microarrays. Proteomics Clin Appl. 2008;2(10-11):1460-6.

[47] Hood BL, Conrads TP, Veenstra TD. Mass spectrometric analysis of formalin-fixed paraffin-embedded tissue: unlocking the proteome within. Proteomics. 2006;6(14):4106-14.

[48] Negishi A, Masuda M, Ono M, Honda K, Shitashige M, Satow R, et al. Quantitative proteomics using formalin-fixed paraffin-embedded tissues of oral squamous cell carcinoma. Cancer

Sci. 2009;100(9):1605-11.

[49] Nishimura T, Nomura M, Tojo H, Hamasaki H, Fukuda T, Fujii K, et al. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (2) MRM assay for stage-related proteins upon non-metastatic lung adenocarcinoma. Journal of proteomics. 2010;73(6):1100-10.

[50] Kawamura T, Nomura M, Tojo H, Fujii K, Hamasaki H, Mikami S, et al. Proteomic analysis of laser-microdissected paraffin-embedded tissues: (1) Stage-related protein candidates upon non-metastatic lung adenocarcinoma. Journal of proteomics. 2010;73(6):1089-99.

[51] Hood BL, Darfler MM, Guiel TG, Furusato B, Lucas DA, Ringeisen BR, et al. Proteomic analysis of formalin-fixed prostate cancer tissue. Mol Cell Proteomics. 2005;4(11):1741-53.

[52] Nazarian J, Santi M, Hathout Y, Macdonald TJ. Protein profiling of formalin fixed paraffin embedded tissue: Identification of potential biomarkers for pediatric brainstem glioma. Proteomics Clin Appl. 2008;2(6):915-24.

[53] Scitchitano MS, Dalmas DA, Boyce RW, Thomas HC, Frazier KS. Protein extraction of formalin-fixed, paraffin-embedded tissue enables robust proteomic profiles by mass spectrometry. J Histochem Cytochem. 2009;57(9):849-60.

[54] Ono A, Kumai T, Koizumi H, Nishikawa H, Kobayashi S, Tadokoro M. Overexpression of heat shock protein 27 in squamous cell carcinoma of the uterine cervix: a proteomic analysis using archival formalin-fixed, paraffin-embedded tissues. Hum Pathol. 2009;40(1):41-9.

[55] Stauber J, MacAleese L, Franck J, Claude E, Snel M, Kaletas BK, et al. On-tissue protein identification and imaging by MALDI-ion mobility mass spectrometry. Journal of the American Society for Mass Spectrometry. 2010;21(3):338-47.

[56] Nirmalan NJ, Harnden P, Selby PJ, Banks RE. Mining the archival formalin-fixed paraffin-embedded tissue proteome: opportunities and challenges. Molecular bioSystems. 2008;4(7):712-20.

[57] Huang SK, Darfler MM, Nicholl MB, You J, Bemis KG, Tegeler TJ, et al. LC/MS-based quantitative proteomic analysis of paraffin-embedded archival melanomas reveals potential proteomic biomarkers associated with metastasis. PloS one. 2009;4(2):e4430.

[58] Tian Y, Zhang H. Isolation of proteins by heat-induced extraction from formalin-fixed, paraffin-embedded tissue and preparation of tryptic peptides for mass spectrometric analysis. Current protocols in molecular biology. 2010;Chapter 10:Unit 10 26 1-7.

[59] Nirmalan NJ, Hughes C, Peng J, McKenna T, Langridge J, Cairns DA, et al. Initial development and validation of a novel extraction method for quantitative mining of the formalin-fixed, paraffin-embedded tissue proteome for biomarker investigations. Journal of proteome research. 2011;10(2):896-906.

[60] Matsuda KM, Chung JY, Hewitt SM. Histo-proteomic profiling of formalin-fixed, paraffin-embedded tissue. Expert review of proteomics. 2010;7(2):227-37.

[61] Sprung RW, Jr., Brock JW, Tanksley JP, Li M, Washington MK, Slebos RJ, et al. Equivalence of protein inventories obtained from formalin-fixed paraffin-embedded and frozen tissue in multidimensional liquid chromatography-tandem mass spectrometry shotgun proteomic analysis. Mol Cell Proteomics. 2009;8(8):1988-98.

[62] Tanca A, Pagnozzi D, Falchi G, Tonelli R, Rocca S, Roggio T, et al. Application of 2-D DIGE to formalin-fixed, paraffin-embedded tissues. Proteomics. 2011;11(5):1005-11.

[63] Xu H, Yang L, Wang W, Shi SR, Liu C, Liu Y, et al. Antigen retrieval for proteomic characterization of formalin-fixed and paraffin-embedded tissues. Journal of proteome research. 2008;7(3):1098-108.

[64] Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, et al. Stable

isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1(5):376-86.

[65] Unwin RD, Pierce A, Watson RB, Sternberg DW, Whetton AD. Quantitative proteomic analysis using isobaric protein tags enables rapid comparison of changes in transcript and protein levels in transformed cells. Mol Cell Proteomics. 2005;4(7):924-35.

[66] Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-76.

[67] Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgenefree human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;85(8):348-62.

[68] Futcher B, Latter GI, Monardo P, McLaughlin CS, Garrels JI. A sampling of the yeast proteome. Mol Cell Biol. 1999;19(11):7357-68.

[69] Mallick P, Schirle M, Chen SS, Flory MR, Lee H, Martin D, et al. Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol. 2007;25(1):125-31.

[70] Keller A, Eng J, Zhang N, Li XJ, Aebersold R. A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol. 2005;1:2005.0017.

[71] Braisted JC, Kuntumalla S, Vogel C, Marcotte EM, Rodrigues AR, Wang R, et al. The APEX Quantitative Proteomics Tool: generating protein quantitation estimates from LC-MS/MS proteomics results. BMC Bioinformatics. 2008;9:529.

[72] Vogel C, Marcotte EM. Calculating absolute and relative protein abundance from mass spectrometry-based protein expression data. Nat Protoc. 2008;3(9):1444-51.

[73] Fu X, Gharib SA, Green PS, Aitken ML, Frazer DA, Park DR, et al. Spectral index for assessment of differential protein expression in shotgun proteomics. Journal of proteome research. 2008;7(3):845-54.

[74] Ono M, Shitashige M, Honda K, Isobe T, Kuwabara H, Matsuzuki H, et al. Label-free quantitative proteomics using large peptide data sets generated by nanoflow liquid chromatography and mass spectrometry. Mol Cell Proteomics. 2006;5(7):1338-47.

[75] Ishihama Y, Oda Y, Tabata T, Sato T, Nagasu T, Rappsilber J, et al. Exponentially modified protein abundance index (emPAI) for estimation of absolute protein amount in proteomics by the number of sequenced peptides per protein. Mol Cell Proteomics. 2005;4(9):1265-72.

[76] Old WM, Meyer-Arendt K, Aveline-Wolf L, Pierce KG, Mendoza A, Sevinsky JR, et al. Comparison of label-free methods for quantifying human proteins by shotgun proteomics. Mol Cell Proteomics. 2005;4(10):1487-502.

[77] Paoletti AC, Parmely TJ, Tomomori-Sato C, Sato S, Zhu D, Conaway RC, et al. Quantitative proteomic analysis of distinct mammalian Mediator complexes using normalized spectral abundance factors. Proc Natl Acad Sci U S A. 2006;103(50):18928-33.

[78] Powell DW, Weaver CM, Jennings JL, McAfee KJ, He Y, Weil PA, et al. Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol Cell Biol. 2004;24(16):7249-59.

[79] Lu P, Vogel C, Wang R, Yao X, Marcotte EM. Absolute protein expression profiling estimates the relative contributions of transcriptional and translational regulation. Nat Biotechnol. 2007;25(1):117-24.

[80] Park D, Xiang AP, Mao FF, Zhang L, Di CG, Liu XM, et al. Nestin is required for the proper self-renewal of neural stem cells. Stem Cells. 2010;28(12):2162-71.

[81] Tao YS, Edwards RA, Tubb B, Wang S, Bryan J, McCrea PD. beta-Catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol. 1996;134(5):1271-81.

[82] Boulton SJ, Jackson SP. Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing. Embo J. 1998;17(6):1819-28.

[83] Chin MH, Mason MJ, Xie W, Volinia S, Singer M, Peterson C, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009;5(1):111-23.

[84] Ghosh Z, Wilson KD, Wu Y, Hu S, Quertermous T, Wu JC. Persistent donor cell gene expression among human induced pluripotent stem cells contributes to differences with human embryonic stem cells. PloS one. 2010;5(2):e8975.

[85] Marchetto MC, Yeo GW, Kainohana O, Marsala M, Gage FH, Muotri AR. Transcriptional signature and memory retention of human-induced pluripotent stem cells. PloS one. 2009;4(9):e7076.
 [86] Janikova M, Skarda J, Dziechciarkova M, Radova L, Chmelova J, Krejci V, et al.

Identification of CD133+/nestin+ putative cancer stem cells in non-small cell lung cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(4):321-6.

[87] Ryuge S, Sato Y, Wang GQ, Matsumoto T, Jiang SX, Katono K, et al. Prognostic significance of nestin expression in resected non-small cell lung cancer. Chest. 2011;139(4):862-9.
[88] Chen Z, Wang T, Luo H, Lai Y, Yang X, Li F, et al. Expression of nestin in lymph node metastasis and lymphangiogenesis in non-small cell lung cancer patients. Hum Pathol.

2010;41(5):737-44.

[89] Iyoda A, Hiroshima K, Toyozaki T, Haga Y, Fujisawa T, Ohwada H. Clinical characterization of pulmonary large cell neuroendocrine carcinoma and large cell carcinoma with neuroendocrine morphology. Cancer. 2001;91(11):1992-2000.

[90] Yatabe Y, Mitsudomi T, Takahashi T. TTF-1 expression in pulmonary adenocarcinomas. Am J Surg Pathol. 2002;26(6):767-73. 参考論文については学術雑誌掲載論文から構成されていますが、著作権者(出版 社、学会等)の許諾を得ていないため、筑波大学では電子化・公開しておりませ ん。

論文は、電子ジャーナルとして出版社から公開されています。契約している場合は全文を読むことができます。詳しくは下記のリンク先をご覧ください。

- 論文 1) <u>doi:10.1007/s00428-011-1120-z</u>
- 論文 2) <u>doi10.1097/JT0.0b013e3181ad8631</u>
- 論文 3) <u>doi:10.1111/j.1440-1827.2009.02417.x</u>
- 論文 4) <u>doi:10.1002/cncr.24948</u>
- 論文 5) <u>doi:10.1007/s10014-010-0274-8</u>
- 論文 6) <u>doi:10.2176/nmc.51.315</u>
- 論文 7) <u>doi:10.2176/nmc.51.319</u>
- 論文 8) <u>doi:10.2340/00015555-1295</u>