
A study on efficient eigenvalue

computation using a contour

integral based solver

Graduate School of Systems and Information Engineering

University of Tsukuba

March 2014

Yasunori FUTAMURA

Abstract

Matrix eigenvalue problems with large sparse matrices arise in a variety of
scientific computations. The solutions of eigenvalue problems tend to be the
most time-consuming part of the computations. In this study we consider to
solve generalized eigenvalue problems with large sparse matrices.

Numerical methods for solving generalized eigenvalue problems are roughly
categorized into two groups: methods based on unitary transformation and
projection methods. A method based on unitary transformation solves an
eigenproblem by transforming matrices to a simple form with an unitary
transformation. Then an iterative procedure such as the QZ iteration is effi-
ciently utilized to obtain eigenvalues. However, to store the data representing
the transformations, the methods require an amount of memory proportional
to the square of the matrix size. Thus, it is difficult to use a method based
on unitary transformations for large sparse matrices.

In such case, one consider a projection method such as the Arnold method
and the Jacobi-Davidson method. A projection method is a method which
extracts approximate eigenvalues from a low dimensional subspace and is
basically designed so that it accesses the matrices only in the form of matrix-
vector multiplications to utilize the sparsity. However, the algorithms of
such conventional projection methods mainly consist of iterative procedures.
Since the iterative procedures demand frequent global synchronizations, it
is difficult to perform highly scalable parallel computation. In such a sit-
uation, contour integral based methods are received attentions since their
inherent hierarchical parallelism is suitable for modern highly parallel super-
computers.

The goal of the study of this thesis is to develop efficient methods and
techniques for utilizing a contour integral based method. This study consists
of three main topics: the development of techniques improving the perfor-
mance the contour integration method itself and analyses of the techniques,
the derivation of a stochastic estimator of eigenvalue distribution which can
be used to set the parameters efficiently for the contour integral based eigen-
solver, and development of methods for solving linear systems with special

i

forms that arise in the contour integral based eigensolver.
A number of numerical experiments are performed to show how presented

methods and techniques works for problems arising in practical applications.

ii

Acknowledgements

First and foremost I would like to express the deepest appreciation to my
advisor Professor Tetsuya Sakurai. He has devoted a great deal of his time
and effort to me from the undergraduate research to the Ph.D study. His
guidance helped me in all the time of research and writing of this thesis. I
would not have been completed my Ph.D study without his support.

Besides my advisor, I would like to express my sincere gratitude to the
rest of my thesis committee: Professor Kazuhiro Yabana, Professor Mitsuhisa
Sato, Professor Daisuke Takahashi, and Associate Professor Shinichi
Yamagiwa, for their encouragement, insightful comments, and hard ques-
tions.

I am deeply grateful to current and past member of my laboratory. I have
had the support and encouragement of Assistant Professor Hiroto Tadano,
Assistant Professor Akira Imakura, and Dr. Lei Du of University of Tsukuba.
Discussions with them were quite exciting and invaluable for me.

I would like to offer my special thanks to Lecturer Jun-Ichi Iwata of
the University of Tokyo and Dr. Shinnosuke Furuya of ARGO GRAPHICS
Inc. They gave me insight comments and suggestions from a standpoint of
computational material physics.

I owe my appreciation to the financial support from the Japan Society
for the Promotion of Science Research Fellowship for Young Scientists.

Last, but not least, I would like to thank my parents and grandparents for
giving birth to me at the first place and supporting me spiritually throughout
my life.

iii

Contents

1 Introduction 1
1.1 Background . 1
1.2 Aim of this thesis . 2
1.3 Organization of this thesis . 3
1.4 Basic notations . 4

2 Numerical methods for Eigenvalue Problems 5
2.1 Methods based on unitary transformations 5

2.1.1 Methods for standard eigenvalue problems 5
2.1.2 Methods for generalized eigenvalue problems 8

2.2 Projection methods . 9
2.2.1 Methods for standard eigenvalue problems 9
2.2.2 Methods for generalized eigenvalue problems 13

3 Efficient parameter estimation and implementation of a con-
tour integaral-based eigensolver 15
3.1 Introduction . 15
3.2 A contour integral based eigensolver 17

3.2.1 Eigensubspace obtained by contour integrals 17
3.2.2 Approximation by a numerical quadrature 20

3.3 Filtering for a subspace . 22
3.4 Efficient parameter estimation and implementation 24

3.4.1 Selection of subspace size 24
3.4.2 Iterative refinement of a subspace 25
3.4.3 Linear solvers for a complex shift 26

3.5 Numerical experiments . 26
3.6 Concluding remark . 31

4 Parallel stochastic estimation method of eigenvalue distribu-
tion 32
4.1 Introduction . 32

iv

4.2 A stochastic estimator of eigenvalue distribution 33
4.2.1 A stochastic estimator of eigenvalue count 33
4.2.2 Solution for linear systems 35
4.2.3 Method for estimating eigenvalue distribution 35

4.3 Implementation . 36
4.4 Numerical experiments . 38

4.4.1 Example 1 . 38
4.4.2 Example 2 . 38
4.4.3 Example 3 . 39

4.5 Concluding remarks . 42

5 Block conjugate gradient type methods for the approxima-
tion of bilinear form CHA−1B 43
5.1 Introduction . 43
5.2 Block Conjugate Gradient type methods 44

5.2.1 Block Krylov subspace methods 45
5.2.2 Block Conjugate Gradient type methods for CHA−1B . 47

5.3 Block Conjugate Gradient type methods with residual matrix
orthogonalization . 49

5.4 Numerical experiments . 51
5.5 Concluding remarks . 57

6 A conjugate gradient type method for linear system with
multiple shifts and multiple right hand sides 62
6.1 Introduction . 62
6.2 Derivation of the shifted block CG-rQ method 63
6.3 Efficient implementation with recurrence unrolling 66
6.4 Numerical experiments . 69

6.4.1 Example 1 . 69
6.4.2 Example 2 . 72

6.5 Concluding remarks . 78

7 Conclusion 79

v

List of Figures

3.1 Singular values in r-th iterative refinement. 28

4.1 Eigenvalue distribution of a 510-atom system of silicon. 41

5.1 1138 bus. 55
5.2 Si10H16. 56
5.3 Si34H36. 57
5.4 Crashbasis. 58
5.5 Pde2961. 59
5.6 Tols1090. 60
5.7 Young1c. 61

6.1 Details of elapsed time for linsol time. 71
6.2 Details of elapsed time for Shift. 72
6.3 Estimated and exact eigenvalue distribution of a matrix of

2744-atom system of silicon. (1) 74
6.4 Estimated and exact eigenvalue distribution of a matrix of

2744-atom system of silicon. (2) 75
6.5 Estimated and exact eigenvalue distribution of a matrix of

2744-atom system of silicon. (3) 76
6.6 Estimated and exact eigenvalue distribution of a matrix of

2744-atom system of silicon. (4) 77

vi

List of Tables

3.1 Results of Example 1. 28
3.2 Results in Example 2. 29
3.3 Results in Example 3. 30
3.4 Results in Example 4. 30
3.5 Results in Example 5. 31

4.1 Matrix properties. 37
4.2 Results for Example 1. 39
4.3 Results for Example 2. 39

5.1 Test matrices (matrix size: n; number of nonzero matrix ele-
ments: nnz) . 53

5.2 Computational time [sec.] of block CG, block CG-based, block
CGrQ and block CGrQ-based per iteration 57

5.3 Computational time [sec.] of block BiCG, block BiCG-based,
block BiCGrQ and block BiCGrQ-based per iteration 59

6.1 #iter and linsol time are iteration count and elapsed time for
SBCGrQ method, respectively. #eig is the number of eigen-
values derived in contour pass with relative residuals less than
1e−2. SS time is elapsed time for the SS method. Speed up is
the speed-up ratio of average elapsed time for one RHS com-
paring to L = 1, i.e. (128.2× L) / linsol time. 70

vii

List of Algorithms

2.1 QR iteration. 6
2.2 QR iteration with a shift. 7
2.3 Rayleigh-Ritz procedure. (for orthogonal projection) 10
2.4 Arnoldi process. 11
2.5 Lanczos process. 13
4.1 Stochastic estimation method for eigenvalue distribution. . . . 36
5.1 Block bi-conjugate gradient (Block BiCG) [34] 46
5.2 Block BiCG-based . 48
5.3 Block CG-based . 49
5.4 Block BiCGrQ . 50
5.5 Block BiCGrQ-based . 50
5.6 Block CGrQ-based . 51
6.1 Pseudo code of the block CG-rQ method. On×L is the n × L

dimensional zero matrix. IL is the L dimensional unit matrix.
qr(C) indicates the QR decomposition of matrix C. 67

6.2 Pseudo code of the SBCGrQ method. On×L is the n × L
dimensional zero matrix. IL is the L dimensional unit matrix.
qr(C) indicates the QR decomposition of matrix C. 67

6.3 Naive implementation. T ∈ Cn×L is a temporary variable. . . . 68
6.4 Implementation with recurrence unrolling. T2 ∈ Cn×2L is a

temporary variable. 69

viii

Chapter 1

Introduction

1.1 Background

Matrix eigenvalue problems arise in a variety of scientific or engineering com-
putations. The solutions of eigenvalue problems tend to be the most time-
consuming part of the computations. Eigenvalue problems arising in scientific
computations have different mathematical characteristics. For instance, the
symmetry of the matrix, the sparsity of the matrix, the number of required
eigenvalues, and their locations. Due to this variation, a number of numerical
methods that have different features have been proposed.

Projection type methods are known as methods designed to find some
selected eigenvalues and corresponding eigenvectors of large sparse matrices.
The development of efficient algorithms of the projection type methods is
important for scientific computations that require solutions of eigenvalue
problems of large sparse matrices.

On the other hand, modern highly parallel super-computers that have a
large number of nodes are now commonly used for extra large scale scientific
computations. The number of cores in a node is increasing since installations
of many core coprocessors become common. This trend leads to an increase in
super-computers that have hierarchical structure. However, the algorithms of
conventional projection type eigensolvers such as the Arnoldi method mainly
consist of iterative procedures that demand frequent global synchronizations.
Thus it is difficult to perform highly scalable parallel computation on hier-
archical parallel computational environments with such methods.

In such a situation, contour integral based methods are receiving atten-
tions. A contour integral based method is a method that compute eigenvalues
located in a specified contour path and corresponding eigenvectors, and they
are categorized into projection type methods. The contour integration is

1

discretized by numerical integration, and the complexity of a solution for
an eigenvalue problem is transformed to that of solutions for independent
systems of linear equation (linear systems) with respect to each quadrature
point. Since not only the solutions of the linear systems but also the each
solution of linear system can be done in parallel, the methods allow us to
naturally implement a hierarchal parallel code. The contour integral based
methods are relatively new compared to conventional methods. A number
of possibilities for specializations, generalizations and further analysis still
remains.

1.2 Aim of this thesis

The goal of this thesis is to develop efficient techniques and implementation
of a contour integral based method, specifically, the Sakurai-Sugiura (SS)
method [39]. In this thesis we consider the generalized eigenvalue problem

Au = λBu, (1.1)

where A and B are square matrices with complex values, λ is a scalar, u is
a non-zero vector and A − λB is a regular matrix pencil. The generalized
eigenvalue problem is a problem to find non-trivial pairs of λ and u. λ is
called eigenvalue, u is called eigenvector and a pair of them is called eigenpair.
In some part of this thesis, the standard eigenvalue problem, the special case
of (1.1) when B is the identity matrix, are also considered.

The SS method consists of numerical integration for discretization of a
contour integration. The effect of numerical integration with general inte-
gration points and weights for the accuracy of the solutions have not been
studied, whereas an analysis for a trapezoidal rule on a circle contour path
have been done [38]. Thus we clarify the effect of the general numerical inte-
gration. In addition to this, we develop techniques to obtain better accuracy
by considering the numerical integration as an operation of a filter for the
input subspace.

In the SS method, there are several parameters such as the block size and
the moment size. The setting of parameters affects the accuracy of the solu-
tions and the computational complexity of the method. The parameters can
be efficiently set by using a knowledge of the distribution of the eigenvalues.
The development of a method for computing an estimation of the eigenvalue
distribution is also aimed.

As mentioned earlier, solutions of linear systems with respect to integra-
tion points are required in the SS method. This leads to demand for decision
about the algorithm for solving the linear systems. Unfortunately, the fastest

2

and the most efficient method depends on the non-zero pattern and the values
of given coefficient matrix, and it cannot be preliminarily known in general.
In this thesis, we also intend to develop an efficient algorithms for the linear
systems arise in the SS method by focusing on special forms of them.

1.3 Organization of this thesis

In this section, we describe the organization of this thesis.

In Chapter 2, we overview numerical methods for solving standard and
generalized eigenvalue problem. The position of the contour integral based
method in the set of methods is described.

In Chapter 3, some numerical properties of the SS method are presented
by regarding the numerical contour integration as a filter for a subspace.
The effect of the numerical contour integration is analyzed under a certain
condition of the quadrature points and the weights. This condition is more
general than the condition that the trapezoidal rule is used on a circle contour
path. In addition, effect of iterative application of the SS method is clarified
with the notion of the subspace filtering.

In Chapter 4, we propose a stochastic estimation method of eigenvalue
counting within a given closed curve. The method is feasible for large sparse
matrices or matrices that are only referenced in the form of matrix-vector
multiplication. A stochastic estimation method for the eigenvalue distribu-
tion is defined by separating the given domain to several sub-domains and
estimating the eigenvalue count in each sub-domain. The proposed method
can be used for a preprocess of the SS method to set efficient parameters.
Some numerical experiments are shown to see the performance of the pro-
posed method.

In Chapter 5, we show the derivations of several block Krylov type meth-
ods for the approximation of CHA−1B, where A is a square matrix, B and
C are tall-skinny rectangular matrices. This problem is arises in the special
case of the SS method and also the method described in Chapter 4. Several
numerical examples are shown to compare the derived methods with other
existing block Krylov type methods.

In Chapter 6, we propose a CG type method for linear systems with
multiple shifts and multiple right hand sides and efficient implementation
techniques of the proposed method. The proposed method can be used for
linear systems that arise in the SS method when the SS method applied to
Hermitian standard eigenproblems. We compare the proposed method with
a conventional method by several numerical experiments.

3

1.4 Basic notations

Throughout this thesis we use following notations:

• We denote a vector as bold lower case character

• We denote the set of real number as R

• We denote the set of n dimensional real vectors as Rn

• We denote the set of n×m real matrices as Rn×m

• We denote the set of complex number as C

• We denote the set of n dimensional complex vectors as Cn

• We denote the set of n×m dimensional complex matrices as Cn×m

• We denote the transpose of a matrix A as AT

• We denote the conjugate transpose of a matrix A as AH

• We denote the Frobenius norm of a matrix A as ||A||F

• We denote the n dimensional identity matrix as In, or we simply denote
I if there is no confusion

• We denote the n×m zero matrix as On×m

• We denote the zero vector as 0

• We denote 2-norm of a vector a as ||a||2.

• We denote the subspace spanned by the column vectors of a matrix V
as Span{V }

• We use Fortran or MATLAB notations A(i : j, k : m) to denote the
submatrix of A represents rows i through j and columns k through m.

4

Chapter 2

Numerical methods for
Eigenvalue Problems

In this chapter we describe overview of the numerical methods for eigenvalue
problems. Numerical methods for eigenvalue problems are roughly catego-
rized into two broad types :

• Method based on unitary transformations,

• Projection method.

In Section 2.1, we introduce methods based on unitary transformations.
Projection methods are described in Section 2.2.

2.1 Methods based on unitary transforma-

tions

We first describe the methods for solving standard eigenvalue problem. Then
we introduce the methods for generalized eigenvalue problems afterward.

2.1.1 Methods for standard eigenvalue problems

Let A ∈ Cn×n be and P ∈ Cn×n be a non-singular matrix. The matrix

C = PAP−1

has same eigenvalues of A. This transformation A→ C is called the similarity
transformation.

The QR method is known as the most common practical algorithm for
computing eigenpairs of standard eigenproblems when one needs to compute

5

all eigenpair of non-symmetric dense matrix. In the QR method, one first
computes a decomposition STSH = A so called a Schur decomposition, where
S is an unitary matrix and T is an upper triangular matrix whose diagonal
elements are the eigenvalues of A. Then eigenvectors of A are computed by
solving triangular systems with respect to T .

In the QR method, one iteratively computes the QR decomposition of a
matrix to obtain a schur form T . This iteration is called the QR iteration.
Algorithm 2.1 shows the pseudocode of the QR iteration. It is known that Ai

Algorithm 2.1 QR iteration.
1: Let A0 = A
2: for i=0,1,. . . do
3: Compute QR decomposition: QiRi = Ai

4: Compute Ai+1 = RiQi

5: end for

converges to a Schur form T , if all eigenvalues of A are distinct in absolute
values. More specifically, the diagonal elements of limi→∞ Ai (the eigenvalues
of A) line up in descending order. Note that, in a QR iteration,

Ai+1 = Q−1
i AiQi = QH

i AiQi (2.1)

holds. Thus the QR iteration can be considered an iteration of an unitary
similarity transformation. The total computational cost of this naive QR
iteration is too expensive since the cost of single QR iteration is O(n3).

In practice, one first reduces the matrix A to an upper Hessenberg form
by the Householder transformation. This Hessenberg reduction is also an
unitary similarity transformation. Thus it preserves the eigenvalues. Since
the transformation (2.1) preserves the Hessenberg structure of Ai, the QR de-
composition can be cheaply done by the Givens rotation. The computational
cost for single QR iteration become O(n2) by using the Givens rotation. It
is faster than full matrix QR iteration by an order of magnitude.

In order to improve the rate of the convergence, one may introduce a
shift for the QR iteration. Algorithm 2.2 illustrates the algorithm of the QR
iteration with a shift. The shift is a scalar σi which can be changed from
iteration to iteration. A transformation Ai → Ai+1 is also an unitary simi-
larity transformation even if a shift is introduced. In practice, for complex
problems, the element of lower right corner of Ai is usually taken for σi. A
local quadratic convergence is obtained by this shift. Additionally, a trans-
formation Ai → Ai+1 also preserves the Hessenberg form. The Householder
transformation can be applied at the first step to reduce the computational
cost.

6

Algorithm 2.2 QR iteration with a shift.
1: Let A0 = A
2: for i=0,1,. . . do
3: Compute QR decomposition: QiRi = Ai − σiI
4: Compute Ai+1 = RiQi + σiI
5: end for

Hermitian case

For a Hermitian matrix A = AH, several practical methods have been pro-
posed. In what follows, we briefly introduce methods for Hermitian problems.

The tridiagonal QR method is one of widely used algorithm. In the QR
method, the Hessenberg reduction at the first step leads to a tridiagonal
form if A is Hermitian since the Householder transformation is an unitary
transformation. The tridiagonal form allow us to perform a QR iteration
with O(n) operations.

The divide-and-conquer method is a method solves a (tridiagonal) Her-
mitian eigenproblem by recursively dividing the original problem to smaller
problems. This method also requires the tridiagonal reduction of the original
matrix A. This method is known as the fastest algorithm if one needs to com-
pute all eigenvalues and eigenvectors of a tridiagonal Hermitian matrix sized
more than 25 [8]. When the divided matrix become sufficiently small, the
QR method is applied. At the conquer phase, one needs to solve a rational
equation. This problem is usually solved by a Newton’s method.

The bisection method is prefered for computing only k eigenvalues lo-
cated in some interval or indexed with some index range. Suppose that A
is decomposed as A = LDLH, where D is a diagonal matrix and L is a
lower triangular matrix (LDLH decomposition). Let π(A), ζ(A), and µ(A)
be eigenvalue count of positive numbers, zeros, and negative numbers, re-
spectively. According to the Sylvester’s low of inertia, it is said that

π(A− σI) = π(D), ζ(A− σI) = ζ(D), and µ(A− σI) = µ(D),

where σ is a real scalar. Thus one can obtain the eigenvalue counts less than
σ, equal to σ, and more than σ by counting elements of D. Once an index
of eigenvalue is given, One can compute the eigenvalue which has the index
with arbitral precision by the bisection search. As a preprocess, one reduces
A to a triangular form by Householder transformations. This allows one to
perform the LDLH decomposition with O(n) operations.

The Jacobi’s method is a classical method for Hermitian eigenproblems.
In contrast to the above methods, this method does not require the tridiago-
nal form. In the Jacobi’s method one performs the Givens rotation iteratively

7

to let the matrix converge to the diagonal matrix whose entries are the eigen-
values of A. Although the Jacobi’s method is often slower then the above
methods, this method and its variants have received attention in recent years
since they are expected to provide high scalability on highly parallel compu-
tational environments due to their inherent parallelism.

2.1.2 Methods for generalized eigenvalue problems

Now we consider a generalized eigenvalue problem (1.1). Supposing that
A,B ∈ Cn×n, there exist unitary matrices U, V such that UHAV = R and
UHBV = S, where R, S are upper triangular matrices. This pair of decom-
positions is called the generalized Schur decomposition or the QZ decompo-
sition [15]. If A − λB is regular matrix pencil, finite eigenvalues of (1.1) is
λi = ri,i/si,i (si,i 6= 0). Here, ri,i and si,i are the i-th diagonal elements of R
and S, respectively.

There is an analogue of the QR method for the generalized eigenproblem,
which is called as the QZ method [30]. In the QZ method, one first transforms
A to the upper Hessenberg form HA and transform B to the upper triangular
form TB by using the Householder transformation and the Givens rotations.

It is worth mentioning here that when the (k + 1, k) element of HA is 0,
the matrix pencil HA−λTB of the generalized eigenproblem can be split into
to two smaller pencils

HA(1 : k, 1 : k)− λTB(1 : k, 1 : k)

and
HA(k + 1 : n, k + 1 : n)− λTB(k + 1 : n, k + 1 : n).

Additionally, if the (k, k) element of TB is zero, one can zero the (n − 1, n)
element of HA and the (n, n) element of TB with Givens rotations. Since zero
diagonal elements of TB can be cut out from the problem in this way, we can
assume that TB is non-singular without loss of generality.

Once the pair of A and B is transformed to upper-Hessenberg-triangular
form, the generalized Schur decomposition is computed by the QZ iteration.
The QZ iteration is equivalent to the QR iteration which is applied to HAT−1

B .
For more details see [15, 30].

Hermitian definite case

If matrix A and B Hermitian and αA + βB is positive definite with some
scalars α and β, the matrix pencil A−λB is called Hermitian definite pencil.
In this case, a generalized eigenvalue problem (1.1) is reduced to

Au = θ(αA + βB)u. (2.2)

8

The new right hand side matrix B̃ ≡ αA + βB can be decomposed as B̃ =
LLH with lower triangular matrix L (the Cholesky decomposition). Using L,
(2.2) can be reduced to a standard eigenvalue problem

Ãũ− θũ, (2.3)

where Ã ≡ L−1AL−H and ũ ≡ LHu. Since Ã is Hermitian, (2.3) can be
solved by the algorithms for Hermitian standard eigenproblems described in
the previous subsection. Once (2.3) is solved, an eigenvalue λ of the original
problem can be computed as

λ =
βθ

1− αθ
.

For more details about methods based on unitary transformations, consult
[8, 15, 48].

2.2 Projection methods

In this section we discuss about projection methods.

2.2.1 Methods for standard eigenvalue problems

In this subsection we describe projection methods for solving standard eigen-
problems. Methods for generalized eigenproblems are described in the next
subsection.

Projection method is known as a type of method finds an approximate
eigenvector ũ from a m dimensional subspaceM i.e.

ũ ∈M (2.4)

and imposes a condition to the residual with k-th dimensional subspace L
such that

Aũ− λũ ⊥ L. (2.5)

Usually, m� n. The subspacesM and L are produced by some procedure.
Suppose that V,W ∈ Cn×m are given such that M = Span{V } and L =
Span{W}. (2.4) and (2.5) can be written as

ũ = V y

and
WH(Au− λu) = 0.

9

Therefore, one can obtain an approximate eigenpairs by computing a small
m dimensional generalized eigenvalue problem:

WHAV y = θWHV y. (2.6)

The small generalized eigenproblem (2.6) is usually solved by a method based
on unitary transformations. In some cases the condition

V HW = Im (2.7)

maintained. The reduced problem become a standard eigenvalue

WHAV y = θy

in such cases. Note that, to accomplish (2.7), for any basis V and W of M
and L, respectively, det(V HW) 6= 0 must hold.

If M = L in a projection method, the method is called orthogonal pro-
jection method. Otherwise, it is called oblique projection method. The con-
dition imposed in orthogonal projection method is called the Ritz-Galerkin
condition. And the condition for the oblique projection method is called the
Petrov-Galerkin condition.

The procedure to obtain eigenpairs in projection methods is known as
the Rayleigh-Ritz procedure. The algorithm of the procedure for orthogonal
projection method is shown in Algorithm 2.3

Algorithm 2.3 Rayleigh-Ritz procedure. (for orthogonal projection)

1: Compute orthogonal basis v1, v2, . . . , vk, let V ≡ [v1,v2, . . . , vk]
2: Compute Ã = V HAV
3: Solve eigenvalue problem Ãy = θy
4: Compute ũ = V y
5: Let (θ, ũ) be an approximate eigenpairs

The most common choice ofM is the Krylov subspace

Km(A; v) ≡ Span{v, Av, A2v, . . . , Am−1v},

where v is an arbitrary non-zero vector. Using the Krylov subspace we
can proceed the computation with only matrix-vector multiplications. To
compute orthogonal basis, the Arnoldi procedure is used. Algorithm 2.4
shows the Arnoldi process. By using the Arnoldi process, we can obtain the
orthogonal basis of the Krylov subspace Km(A; ṽ1), where ṽ1 is the starting

10

Algorithm 2.4 Arnoldi process.

1: Choose the initial vector ṽ1

2: v1 =
ṽ1

||ṽ1||2
3: for k = 1, 2, . . . , m do
4: hi,k = vH

i Avk, (i = 1, 2, . . . , k)

5: ṽk+1 = Avk −
k∑

i=1

hi,kvi

6: hk+1,k = ||ṽk+1||2
7: vk+1 =

ṽk+1

hk+1,k

8: end for

vector. Let here Vm ≡ [v1,v2, . . . , vm]. In addition, the Arnoldi process gives
us the equation

AVm = VmHm + hm+1vm+1e
T
m

with a Hessenberg matrix

Hm =

h1,1 h1,2 · · · h1,m−1 h1,m

h2,1 h2,2 · · · h2,m−1 h2,m

0
.

... h2,m
...

.
...

0 · · · 0 hm,m−1 hm,m

 .

Due to the orthonormality of {vi}i=1,2,...,m+1, we have

Hm = V H
m AVm.

Thus one can obtain approximate eigenpairs by solving a small eigenproblem

Hmy = θy.

Since Hm is already a Hessenberg matrix, the QR method can be cheaply
utilized. It is known that the eigenvalues located in the outermost part of
the spectrum tend to be well approximated in the Arnoldi method.

Since the computational complexity and the memory requirement for the
Arnoldi process is O(nm2) and O(nm), respectively, one needs to terminate
the process at some m. Then one restarts the process with new ṽ1 which
includes an information from the previous cycle (e.g. ṽ1 set to be an approx-
imate eigenvector of the largest eigenvalue). In order to effectively use the
information in the previous cycles of the Arnoldi process, more sophisticated

11

(implicitly) restarting techniques such as the implicitly restarted Arnoldi
method [43], and the Krylov-Schur method [44] have been proposed.

If the interested eigenvalues are located inside the spectrum and are clus-
tered, the spectrum transformation is used for transform the location of eigen-
values of interest to the exterior position. A major instance of the spectrum
transformation is the shift-and-invert spectrum transformation. In the shift-
and-invert transformation, the original eigenvalue problem is transformed to

(A− σI)−1u = τu, (2.8)

where

τ ≡ 1

λ− σ

and σ is a scalar such that det(A − σI) 6= 0. The eigenvalue which is the
closest to σ become the largest eigenvalue in the absolute value in (2.8).
Thus the Arnoldi method applied to (2.8) easily obtain eigenvalues that are
close to σ. Unfortunately, if the shift-and-invert transformation is used, one
needs to solve the linear system whose coefficient matrix is (A − σI). This
often increase the computational complexity of an iteration by an order of
magnitude.

There is the type of projection method which is based on a contour inte-
gration

Sk ≡
1

2πi

∫
Γ

zk(zI − A)−1Y dz, k = 0, 1, . . . , M − 1

which seeks eigenvalues inside of closed curve Γ and corresponding eigen-
vectors. Here Y ∈ Cn×s is a basis which contains wanted eigenvectors as
its components. The column vectors of matrix [S0, S1, . . . , SM−1] is used as
basis for the Rayleigh-Ritz procedure. In practice, one approximates Sk by
a numerical quadrature. The contour integral based eigensolver is a main
topic of this thesis. More detailed discussions are shown in Chapter 3.

When interior eigenvalues are required and also one wants to avoid solu-
tions of linear systems for a spectrum transformation, an alternative choice
is to use the Jacobi-Davidson method. A Jacobi-Davidson method consists
of two main factors: the construction of orthogonal basis and the solutions of
linear systems so called the correction equation. The correction equation is
roughly solved with an iterative method. Thus computational effort for one
iteration of the Jacobi-Davidson method tend to be smaller than that of the
Arnoldi method with the spectral transformation which demands accurate
solutions of linear systems.

12

Hermitian case

When A is a Hermitian matrix, the Hessenberg matrix Hm of the Arnoldi
process becomes a Hermitian tridiagonal matrix since Hm = V H

m AVm. Thus
the Arnoldi process is simplified by this property. This simplified process is
called the Lanczos process. Moreover, hk+1,k is real since it is defined by a
norm and hk,k is also real since A is Hermitian. Therefore Hm must be a real
symmetric tridiagonal matrix. Algorithm 2.5 shows the Lanczos process. In
Algorithm 2.5, we set αk ≡ hk,k, βk ≡ hk−1,k.

Algorithm 2.5 Lanczos process.

1: Choose the initial vector ṽ1

2: v0 = 0, β1 = 0,v1 =
ṽ1

||ṽ1||2
3: for k = 1, 2, . . . , m do
4: v̂k+1 = Avk − βjvk−1

5: αk = v̂H
k+1vk

6: ṽk+1 = v̂k+1 − αkvk

7: βk+1 = ||ṽk+1||2
8: vk+1 =

ṽk+1

βk+1

9: end for

Unfortunately, in practice, global orthogonality of {vk}m+1
k=1 of the Lanc-

zos process is usually lost. Thus reorthogonalization is performed to improve
numerical stability of the Lanczos process. Several strategies for reorthogo-
nalization have been proposed.

2.2.2 Methods for generalized eigenvalue problems

In this subsection, we describe several approaches for solving generalized
eigenproblem (1.1) by projection methods.

If B is non-singular, one reduce the original problem to a standard eigen-
value problem

B−1Au = λu.

by the inverse of B. Then one can apply projection methods in the previ-
ous subsection such as the Arnoldi method to obtain approximate solutions
for (λ,u). In this approach, B−1A is not computed explicitly, instead, one
calculates matrix-vector multiplication y = B−1Ax as follows:

1. Compute z = Ax,

13

2. Solve linear system By = z for y.

If B is singular, one may consider spectral transformation to generalized
eigenvalue problems. The analogue of the shift-and-invert transformation
(2.8) for generalized eigenproblems

(A− σB)−1Bu = τu

is a commonly used spectral transformation. Here,

τ ≡ 1

λ− σ
.

Using this transformation, one can apply the Arnoldi method to (A−σB)−1B.
In this case, one needs to solve a linear system whose coefficient matrix is
(A − σB) at each iteration of the Arnoldi method. Another possibility is
to use the Jacobi-Davidson algorithm. This algorithm only requires rough
solution of linear systems related to (A− θB) with some scalar θ.

A method based on contour integration is also applicable for general-
ized eigenvalue problem. For generalized eigenvalue problem, basis for the
Rayleigh-Ritz procedure is given by

Sk ≡
1

2πi

∫
Γ

zk(zB − A)−1BY dz, k = 0, 1, . . . , M − 1 .

Hermitian definite case

As seen in Section 2.1.2, the original generalized eigenvalue problem is re-
duced to a standard eigenproblem

L−1AL−H(LHu) = λ(LHu).

with cholesky factorization of B = LLH if B is Hermitian and positive defi-
nite. Simular to the above case, in stead of forming L−HALH explicitly, one
can use compute y = L−HALHx as follows:

1. Solve linear system LHw = x for w,

2. Compute z = Aw,

3. Solve linear system Ly = z for y.

In addition, as seen in Section 2.1.2, L−HALH is also Hermitian if A is Her-
mitian. Thus one can use the Lanczos method for this problem.

In this thesis, further details about the projection methods described in
this subsection are not discussed and other existing projection methods are
not treated. For a broader and more detailed view of projection method, see
[3, 8, 36].

14

Chapter 3

Efficient parameter estimation
and implementation of a
contour integaral-based
eigensolver

3.1 Introduction

A contour integral based eigensolver was proposed by Sakurai and Sugiura
in 2003 [39]. This method is called the Sakurai-Sugiura (SS) method. In
the original SS method in [39], a contour integral with a source vector v are
used to generate a subspace spanned by a set of eigenvectors with respect to
the eigenvalues in a target domain. A large-scale eigenvalue problem is re-
duced to a small eigenvalue problem with Hankel matrices constructed from
complex moments. In [38], an interpretation for filtering of spectrum is used
to discuss numerical properties of a contour integral approximated by nu-
merical quadrature. An influence of approximation by numerical quadrature
is considered as a contamination of eigencomponents, and the choice of an
appropriate subspace size provides accurate eigenpairs in a target domain.

A variant of the SS method that improves numerical accuracy by using
the Rayleigh-Ritz procedure is presented in [37]. Ikegami, et al. [24, 23]
presented a block version of the SS method that uses multiple source vec-
tors instead of the single source vector for the contour integrals. The block
SS method improves numerical stability when the target domain contains
many eigenvalues. Moreover, this method can treat multiple eigenvalues. In
[1, 2], the SS method is extended to nonlinear eigenvalue problems. As re-
lated works of eigensolvers using contour integrals, Polizzi [35] proposed an

15

iterative refinement of a contour integral method for symmetric or Hermi-
tian positive definite eigenvalue problems. Beyn [5] proposed a method for
nonlinear eigenvalue problems using contour integrals with a singular value
decomposition of a matrix with a Hankel type structure. Yokota, et al. [54]
proposed a Rayleigh-Ritz type method using contour integrals for nonlin-
ear eigenvalue problems. In this method, a subspace that includes target
eigenvectors are generated by contour integrals, and a large-scale nonlinear
eigenvalue problem is projected to a small nonlinear eigenvalue problem, and
the projected problem is solved by Hankel type nonlinear eigensolver using
contour integrals.

The SS method computes a set of eigenvalues by computing the solutions
to systems of linear equations

(zjB − A)Yj = BV, j = 1, . . . , N, (3.1)

where V is a matrix with L column vectors and zj is a shift point on the
complex plane. The method computes the desired eigenvalues inside of a
border defined by the set of shifts {zj}. The first step of the SS method is
the construction of a subspace that includes the eigenvectors corresponding
to the eigenvalues located inside the given domain. In this step, solutions of
linear systems at several shift points are used. The second step is to solve the
projected problem in the subspace and to extract the approximate eigenvalues
and the corresponding eigenvectors for the original problem. Since the size
of the projected subspace is assumed to be small compared with the original
matrix size, the computational costs of the first step is dominant.

Krylov subspace methods for multiple right-hand sides are efficient for
solving the linear systems (3.1). In [31, 49], methods to improve numerical
stability and convergence for block Krylov subspace methods are presented.
In the case of standard eigenvalue problems, the linear systems (3.1) are
shifted linear systems, and a shift invariance of the Krylov subspace reduces
computational costs to obtain solutions of linear systems at several shift
points [33]. The application of the SS method with the shifted CG method for
shell model calculations is reported in [29]. Yamazaki, et al. [53] implemented
a nonlinear version of the SS method, and evaluated parallel performances
of the method.

Each of the linear systems is independent with respect to the other shifts,
so each can be solved without any consideration of the nodes assigned to
different shifts in distributed computing. Therefore, the method provides
coarse-grained parallelism of computation. By employing a parallel linear
solver for each shift point, the total number of nodes is the product of the
number of nodes assigned for each linear system and the number of shift
points.

16

The SS method has several parameters, and the choice of these parame-
ters is crucial for achieving high accuracy and good parallel performance. In
this chapter, we show some numerical properties of the method. The con-
tour integral for a matrix inverse is regarded as a filter for an eigensubspace.
When the contour integral is approximated by numerical quadrature, the
quadrature error causes contamination of the eigencomponents correspond-
ing to the eigenvalues located outside of the contour path. Based on these
properties, we propose efficient parameter estimation techniques for the SS
method.

In Chapter 4, a method for stochastic estimation of number of eigenvalues
in a given domain is proposed. This estimation can be used for predicting
appropriate parameters. Maeda, et al. [27] extended this eigenvalue count
method to nonlinear eigenvalue problems.

The rest of this chapter is organized as follows. In Section 3.2, we briefly
introduce the SS method. In Section 3.3, the properties of numerical quadra-
ture applied for a matrix inverse are discussed. In Section 3.4, efficient pa-
rameter estimation methods are presented. Some numerical experiments are
shown in Section 3.5. The last section concludes the chapter.

3.2 A contour integral based eigensolver

In this section, we briefly introduce the SS method. For matrices A,B ∈
Cn×n, let λ1, . . . , λn be eigenvalues of the matrix pencil A − λB, and let
x1, . . . , xn be corresponding eigenvectors. Let Γ be a positively oriented
closed Jordan curve in the complex plane, and let G be a domain for which
the border is given by Γ. We will find the eigenvalues inside Γ and the
corresponding eigenvectors by using contour integrals.

3.2.1 Eigensubspace obtained by contour integrals

Suppose that m eigenvalues λ1, . . . , λm are located inside Γ, and other eigen-
values are located outside Γ. Define a sequence of matrices F0, F1, . . . as

Fk =
1

2πi

∫
Γ

zk(zB − A)−1B dz, k = 0, 1, (3.2)

For a matrix V ∈ Rn×L with a positive integer L, let

Sk = FkV =
1

2πi

∫
Γ

zk(zB − A)−1B dz V, k = 0, . . . , M − 1, (3.3)

17

where M is chosen such that LM ≥ m, and set

F = [F0, F1, . . . , FM−1]

and
S = [S0, S1, . . . , SM−1].

According to [39], the column vectors of S are given by linear combina-
tions of the eigenvectors with respect to the eigenvalues located inside Γ, and
thus

span(S) = span(x1, . . . , xm),

if the column space of V includes x1, . . . , xm. V is called a source matrix
for the contour integral. In practice, the elements of V are set by a random
number generator. The eigenvectors x1, . . . , xm are obtained from S when
the maximum multiplicity of the eigenvalues in Γ is less than or equal to L.

Using the Rayleigh-Ritz procedure with S, we can extract the eigenpairs.
Let the singular value decomposition of S be

S = UΣWH,

where Σ = diag(σ1, . . . , σLM), U ∈ Cn×LM and W ∈ CLM×LM . Since the rank
of S is m, σm 6= 0 and σm+1 = · · · = σLM = 0. Setting Um = U(:, 1 : m), we
calculate the projected matrices as

Am = UH
mAUm, Bm = UH

mBUm. (3.4)

Let ω1, . . . , ωm be the eigenvalues of the matrix pencil Am − λBm, and let
r1, . . . , rm be the corresponding eigenvectors. Then the eigenvalues inside Γ
of the matrix pencil A− λB are given by

λi = ωi, i = 1, . . . ,m,

and the corresponding eigenvectors are given by

xj = Umrj, j = 1, . . . , m. (3.5)

When the matrices are large, storage of S and computation of the singular
value decomposition restrict the application size of the method. The use of
Hankel matrices reduces the memory requirement and computational costs.
LetMk ∈ CL×L be

Mk =
1

2πi

∫
Γ

zkV T(zB − A)−1BV dz. (3.6)

18

Let the Hankel matrices HLM , H<
LM ∈ CLM×LM be

HLM =

M0 M1 · · · MM−1

M1 M2 · · · MM
...

...
...

MM−1 MM · · · M2M−2

and

H<
LM =

M1 M2 · · · MM

M2 M3 · · · MM+1
...

...
...

MM MM+1 · · · M2M−1

 .

Let the singular value decomposition of H̃m be

H̃m = ŨΣ̃W̃H, (3.7)

where H̃m = HLM(1 : m, 1 : m) and H̃<
m = H<

LM(1 : m, 1 : m). Let ω̃1, . . . , ω̃m

and q̃1, . . . , q̃m be the eigenvalues and the corresponding eigenvectors such
that

(Σ̃−1ŨHH̃<
mW̃)q̃i = ω̃iq̃i, i = 1, . . . , m.

Then the eigenvalues of the matrix pencil A− λB in Γ are given by

λi = ω̃i.

The eigenvectors are given by

xi = S(:, 1 : m)W̃qi, i = 1, . . . , m.

In this computation, the singular value decomposition of S is not required.
A disadvantage using the Hankel matrices with the moment matrices Mk

is numerical instability comparing with the Rayleigh-Ritz procedure in the
case of numerical computation with large m.

In the case of the nonlinear eigenvalue problem T (λ)x = 0 with a matrix
valued function T (λ), the integrand V T(zB − A)−1BV in (3.6) is replaced
by V TT (z)−1V [1, 2]. Note that the derived eigenvalue problem with Hankel
matrices are linear even if the original problem is nonlinear. In [5], the
integrand in the contour integral (3.6) is replaced by T (z)−1V instead of
V TT (z)−1V .

19

3.2.2 Approximation by a numerical quadrature

The contour integral in (3.2) is approximated by an N -point numerical
quadrature. Suppose that a Jordan curve Γ is represented by scaling and
shifting from a Jordan curve Γ0 with a scaling factor ρ and a shift γ. With-
out any loss of generality, we assume that Γ0 encloses the origin. Let ζ(θ) be
a point on Γ0 with a parameter θ, 0 ≤ θ ≤ 2π, and let z on Γ be given by

z(θ) = γ + ρζ(θ).

Then the contour integral of a function f(z) is given by

1

2πi

∫
Γ

f(z)dz =
1

2π

∫ 2π

0

f(z)(−iρζ ′(θ))dθ =
1

2π

∫ 2π

0

ρf(z)w(θ)dθ, (3.8)

where w(θ) = −iζ ′(θ). The integral (3.8) is approximated by the N -point
quadrature rule

1

2πi

∫
Γ

f(z)dz ≈
N∑

j=1

ρwjf(zj), (3.9)

where wj = w(θj)∆j/(2π), ζj = ζ(θj) and zj = γ + ρζj with appropriate θj

and ∆j, j = 1, . . . , N .
Since

1

2πi

∫
Γ0

ζkdζ =

{
1, k = −1
0, otherwise

for integer k, the quadrature points ζ1, . . . , ζN on Γ0 and the corresponding
weights w1, . . . , wN are set to satisfy

N∑
j=1

wjζ
k
j =

{
ν 6= 0, k = −1
0, k = 0, . . . , N − 2

, (3.10)

where ν is a nonzero constant.
In particular, when Γ is a circle with center γ and radius ρ, and the

quadrature points are set as

zj = γ + ρ(cos θj + i sin θj), j = 1, . . . , N,

where θj = (2π/N)× (j − 1/2), j = 1, . . . , N , then Γ0 is the unit circle and
the quadrature weights are given by

wj = cos θj + i sin θj, j = 1, . . . , N.

20

In the case that all the eigenvalues are located on the real axis, it might be
better to put the quadrature points closer to the real axis as follows:

zj = γ + ρ(cos θj + iα sin θj), j = 1, . . . , N (3.11)

with a vertical scaling factor 0 < α < 1. The corresponding quadrature
weights are given by

wj = α cos θj + i sin θj, j = 1, . . . , N. (3.12)

In [33], quadrature points are set on straight lines to reuse solutions of linear
systems. The Gauss-Legendre quadrature rule on a circle is used for the
numerical quadrature in [35].

Using the quadrature rule (3.9), Fk and Sk are approximated by

Fk ≈ F̂k =
N∑

j=1

ρwjζ
k
j (zjB − A)−1B (3.13)

and

Ŝk = F̂kV =
N∑

j=1

ρwjζ
k
j (zjB − A)−1BV. (3.14)

Matrices F and S are approximated by F̂ = [F̂0, . . . , F̂M−1] and Ŝ = [Ŝ0, . . . , ŜM−1].
The Rayleigh-Ritz procedure for Ŝ gives the approximate eigenvalues λ̂i

and the eigenvectors x̂i. Let the singular value decomposition of Ŝ be

Ŝ = ÛΣ̂ŴH,

where Σ̂ = diag(σ̂1, . . . , σ̂LM). Let K be the number of singular values of Ŝ
that satisfy σ̂i ≥ δ, 1 ≤ i ≤ K with small δ > 0. We calculate the projected
matrices as

Â = Û(:, 1 : K)H(A− γB)Û(:, 1 : K), B̂ = Û(:, 1 : K)HBÛ(:, 1 : K).
(3.15)

Let ω̂1, . . . , ω̂K be the eigenvalues of the matrix pencil Â − λB̂, and let
r̂1, . . . , r̂K be the corresponding eigenvectors. Then the approximate eigen-
values inside Γ are given by

λ̂i = γ + ω̂i, i = 1, . . . , K,

and the corresponding eigenvectors are given by

x̂j = Û(:, 1 : K)r̂j, j = 1, . . . , K. (3.16)

21

3.3 Filtering for a subspace

In this section, we discuss the properties of the subspace obtained by the
numerical quadrature (3.14) from the view-point of a filter for a subspace.

Here, for simplicity, we consider the case that all the eigenvalues inside Γ
are simple, and the inverse of the matrix zB − A is expanded as

(zB − A)−1 =
n∑

i=1

xiy
H
i

z − λi

, (3.17)

where xi and yi are the right and left eigenvectors corresponding to the
eigenvalue λi. This expansion can be generalized to the case of multiple
eigenvalues and nonlinear problems ([2, 5, 39]).

Let Pi = xiy
H
i B, 1 ≤ i ≤ n. With the expansion (3.17), from the residue

theorem, we have

Fk =
1

2πi

∫
Γ

zk(zB − A)−1Bdz

=
n∑

i=1

(
1

2πi

∫
Γ

zkPi

z − λi

dz

)
=

m∑
i=1

λk
i Pi,

and

Sk = FkV =
m∑

i=1

λk
i PiV.

Define a function Fk(λ) as

Fk(λ) =
1

2πi

∫
Γ

zk

z − λ
dz.

Then

Fk(λi) =

{
λk

i λi ∈ G
0, otherwise

,

and Sk is represented as

Sk =
n∑

i=1

Fk(λi)PiV.

This equation shows that a projected component associated with Pi in V is
filtered with the factor Fk(λi). Therefore the function Fk(λ) is regarded to
give the factor of filtering with respect to λ.

22

For the case that the contour integral is approximated by the numerical
quadrature, we define the corresponding filter function by

F̂k(λ) =
N∑

j=1

ρwjζ
k
j

zj − λ
.

The following result is obtained.

Theorem 3.1. Let λ be a complex number that is located outside Γ. Then
the following holds:

F̂k(λ) = −νN−1η
−N+k

(
1 + η−1

∞∑
p=0

νN+p

νN−1

η−p

)
, (3.18)

where η = (λ− γ)/ρ and νp =
∑N

j=1 wjζ
p
j .

Proof. Since |η| = |(λ− γ)/ρ| > |ζj| for 1 ≤ j ≤ N , we have

N∑
j=1

ρwjζ
k
j

zj − λ
=

N∑
j=1

wjζ
k
j

(zj − γ)/ρ− (λ− γ)/ρ
=

N∑
j=1

wjζ
k
j

ζj − η

=
N∑

j=1

(
−1

η

)
wjζ

k
j

1− ζj/η

= −
∞∑

p=0

(
η−p−1

N∑
j=1

wjζ
p+k
j

)
.

Since the quadrature weights w1, . . . , wN satisfy

N∑
j=1

wjζ
k
j = 0, k = 0, . . . , N − 2,

we have

F̂k(λ) =
N∑

j=1

ρwjζ
k
j

zj − λ
= −

∞∑
p=N−1−k

(
η−p−1

N∑
j=1

wjζ
p+k
j

)

= −

(
νN−1η

−N+k +
∞∑

p=0

νN+pη
−N+k−1−p

)
.

Thus we have (3.18). �

23

If |(λ− γ)/ρ| is sufficiently large then the filter F̂k(λ) is approximated by

F̂k(λ) =
N∑

j=1

ρwjζ
k
j

zj − λ
≈ −νN−1

(
λ− γ

ρ

)−N+k

. (3.19)

This implies that the eigencomponents corresponding to the eigenvalues lo-
cated outside Γ in each column vector of Ŝk = F̂kV are reduced in proportion
to the (−N + k)-th power of magnitude of the scaled distance |(λ− γ)/ρ|.

Suppose that the integer m′ is taken as∣∣∣∣∣νN−1

(
λi − γ

ρ

)−N+M−1
∣∣∣∣∣ ≤ δ, m′ < i ≤ n (3.20)

with small δ > 0. Then, from (3.18), we have

Ŝk = F̂kV =
n∑

i=1

F̂k(λi)PiV =
m′∑
i=1

F̂k(λi)PiV + O(δ).

3.4 Efficient parameter estimation and im-

plementation

3.4.1 Selection of subspace size

The SS method has some parameters, and the choice of these parameters
affects the accuracy and performance of the method. The number of quadra-
ture points N determines the number of systems of linear equations to solve,
and consequently N specifies the number of computing nodes to use in paral-
lel computing. Therefore we assume that N is fixed in advance. In practice,
N is chosen as N = 16 or 32 depending on the number of computing nodes
or memory requirements, and it is not necessary to take a large N to reduce
the quadrature error as was observed in the previous section.

The parameter M specifies the upper bound of the degree of moments.
Increasing M gives a larger subspace size LM . However, the decay factor of
the filter depends on −N +k with 0 ≤ k ≤M − 1, and a large M diminishes
the performance of the filter. Considering a performance of the filer and
computational costs, we set M = N/4.

The number of column vectors LM of Ŝ should be taken such that the
minimum singular value of Ŝ becomes sufficiently small. Since M depends
on N , we shall extend the number of column vectors of Ŝ by increasing

24

the number of source vectors L. Since m′ is larger than or equal to m, an
approximation for m can be used as a lower bound of m′. To predict m, we
can use the stochastic estimation method described in Chapter 4.

Using a stochastic estimation m̃ of m, we set the approximation of m′

as κm̃ with a parameter κ ≥ 1, and consequently we set L = dm′/Me ≈
dκm̃/Me, where dxe returns the smallest integer not less than x. When the
subspace size LM is not sufficiently large, the minimum singular value σmin of
Ŝ is not small. In this case, we increment L until σmin satisfies the condition
σmin ≤ δ× σ1 with small δ > 0. The computation of the singular values of Ŝ
is rather expensive, so we may use the Hankel matrix Ĥ instead of Ŝ.

3.4.2 Iterative refinement of a subspace

After setting appropriate L, we apply the Rayleigh-Ritz procedure with Ŝ.
The increase of L causes an increase in the size of the projected subspace. It
causes an increase in the cost for computing the singular value decomposition
of Ŝ and the solution of the projected eigenvalue problem with matrices Â
and B̂. To avoid increasing the size of the projected space, we restrict the
size of L, and apply the recurrence refinement described below.

Setting Ŝ
(0)
0 = Ŝ0, and recurrently applying F̂0, we have

Ŝ
(r−1)
0 = F̂0Ŝ

(r−2)
0 = · · · = (F̂0)

r−1Ŝ
(0)
0 . (3.21)

Using Ŝ
(r−1)
0 , the output matrix with r refinements is given by

Ŝ
(r)
k = F̂kŜ

(r−1)
0 , k = 0, . . . , M − 1, (3.22)

and Ŝ(r) = [Ŝ
(r)
0 , . . . , Ŝ

(r)
M−1]. The corresponding filter is given by (Fk(λ))r

and is approximated by

(F̂k(λ))r ≈ (−νN−1)
r

(
λ− γ

ρ

)−r(N−k)

.

Therefore the recurrence application of the filter process makes the decay
factor of the filter smaller. The refinement is terminated if the smallest
singular value of Ŝ(r) becomes sufficiently small with a threshold δ > 0.

In the case that some residuals of the obtained approximate eigenpairs
are not small enough for a given tolerance, we can brush up the resulting
approximate eigenpairs by setting the source matrix of the SS method as

V = [x̂1, . . . , x̂m̂]C,

25

where C ∈ Rm̂×L for which the elements are given by random numbers, and
x̂1, . . . , x̂m̂ are the selected eigenvectors that are regarded as the approxi-
mate eigenvectors with respect to the eigenvalues inside Γ. This refinement
technique using approximate eigenvectors for the source matrix V is used in
[35].

3.4.3 Linear solvers for a complex shift

When A and B are real symmetric, the shifted matrix C = zB − A with a
complex shift z is complex symmetric. Therefore, a linear solver for complex
symmetric systems is used to solve the system

(zB − A)Y = BV. (3.23)

For a direct solver, the modified Cholesky factorization saves computational
costs for factorization. For an iterative solver, Krylov subspace methods for
complex symmetric systems, such as the COCG method, can be used.

When Γ is symmetric with respect to the real axis, the quadrature points
are set as zN−j+1 = zj, j = 1, . . . , N/2. Then, for real matrices A and B, the
solutions at zN−j+1 are obtained by

YN−j+1 = (zN−j+1B − A)−1BV = Y j

without any computations on zN−j+1.
When A and B are Hermitian, we use the property

(zjB − A)H = zjB
H − AH = zjB − A.

If the LU factorization at zj is calculated as zjB − A = LU then we have

YN−j+1 = (zjB − A)−1V = (UHLH)−1V.

Therefore the LU factorization at zj can be used for the calculation at zN−j+1.
Note that if the Hankel type method shown in Section 3.2.1 is used and

only eigenvalues are required (eigenvectors are not required), the solution of
the linear system (3.23) is demanded in the form of V HY rather than Y . The
efficient method for directly computing V HY is described in Chapter 5.

3.5 Numerical experiments

In this section we show some numerical examples. The computations are
performed in MATLAB 8.0.0. in double precision arithmetic. Random num-
bers are generated by the function rand, and the projected small eigenvalue

26

problems are solved by eig. The systems of linear equations are solved by lu.
The factorized matrices are held during the computation, and only triangular
solves are applied in the recurrence refinements.

In the following examples, the quadrature points are set by (3.11) and the
corresponding weights are set by (3.12) with α = 0.1. The relative residual
for the eigenpair (λ̂i, x̂i) is calculated by

resi =
‖Ax̂i − λ̂Bx̂i‖2

‖Ax̂i‖2 + |λ̂i|‖Bx̂i‖2
.

We removed the eigenvalues with resi ≥ 10−2 inside Γ as spurious eigenvalues.

Example 1. The matrices A and B are taken from BCSSTK11 and
BCSSTM11 of the BCS Structural Engineering Matrices in Matrix Market
[28]. A and B are real symmetric and B is positive definite. The matrix
dimension is n = 1, 473 with 34, 241 nonzero entries. The parameters are set
as N = 16 and L = 16. The domain is set as γ = 103 and ρ = 5 × 102. In
this example, L is fixed, and the iterative refinement is not applied.

The results are shown in Table 5.3. The number of singular values that
are greater than δ = 10−12 is K = 18. Therefore 18 eigenvalues are obtained
from the projected problem, of which 7 eigenvalues are located inside Γ. The
residuals of the eigenvalues located inside Γ are small, however the residuals
of the eigenvalues located outside Γ are related to the scaled distance |ηi| =
|(λi − γ)/ρ|.
Example 2. In this example, we apply the iterative refinement defined by
(3.21) and (3.22). The matrices A and B are the same as in Example 1. The
parameters are set as N = 16, L = 16, and the domain is set as γ = 2× 105

and ρ = 2× 104.

In Figure 1, The singular values of Ŝ(r) at r-th refinement are shown.
We can see that the ratio of the minimum singular value and the maximum
singular value increases by the iterative refinement. After two refinements,
the minimum singular value becomes small enough. Table 2 shows the resid-
uals of the calculated eigenvalues located inside Γ. In the table, the notation
mean(resi) is given by the geometric mean of the residuals defined by

mean(resi) =

(
m̂∏

i=1

resi

)1/m̂

,

where m̂ is the number of calculated eigenvalues located inside Γ.

Example 3. In this example, we use the stochastic estimation of the
number of eigenvalues in Γ to set the initial L, and the iterative refinement

27

Table 3.1: Results of Example 1.

i λ̂i resi |ηi|
1 2345.08723030540 3.0× 10−01 3.3
2 2398.81729572773 3.3× 10−01 3.2
3 2628.94468521146 4.9× 10−02 2.7
4 2723.54384863656 1.4× 10−02 2.6
5 3383.97540832681 3.8× 10−08 1.2
6 3501.25383608303 9.0× 10−11 –
7 3561.62085364923 2.7× 10−11 –
8 3629.33212408543 4.0× 10−11 –
9 3796.50112783802 4.8× 10−11 –
10 4022.39762561787 3.1× 10−11 –
11 4100.71462746484 1.5× 10−11 –
12 4175.86741050601 3.4× 10−11 –
13 4770.43635520514 5.1× 10−06 1.5
14 5071.04303115872 1.6× 10−04 2.1
15 5185.64239506030 3.5× 10−03 2.4
16 5325.06302301902 1.6× 10−02 2.7
17 5608.24863853754 1.0× 10−01 3.2
18 5874.78406307974 6.6× 10−01 3.8

r = 0

r = 1

r = 2

lo
g
1
0
(σ

i
/
σ
1
)

i

Figure 3.1: Singular values in r-th iterative refinement.

28

Table 3.2: Results in Example 2.

]refinement min(resi) mean(resi) max(resi)

0 1.8× 10−07 9.1× 10−06 1.7× 10−04

1 3.8× 10−12 1.1× 10−10 1.1× 10−09

2 1.9× 10−14 7.2× 10−13 1.2× 10−11

of Ŝ is also used. The matrices A and B are the same as in Example 1. The
parameters are set as N = 16 and δ = 10−12. The domain is set as γ = 2×105

and ρ = 2× 104. The number of sample vectors for the stochastic estimation
of the number of eigenvalues in Γ is set as L0 = 16. The initial guess of the
number of column vectors of V is given by L = d2m̃/Me, i.e. κ = 2.

In Table 3.3, we show the residuals of the eigenvalues located inside Γ.
The number of eigenvalues in Γ is m = 30 and the estimated number of
eigenvalues is m̃ = 32.7. The number of iterative refinement is 2.

Example 4. The matrices A and B are taken from BCSSTK13 and
BCSSTM13. A and B are real symmetric and B is positive semi-definite. The
matrix dimension is n = 2, 003 with 83, 883 nonzero entries. The parameters
are the same as in Example 3. The domain is set as γ = 106 and ρ = 4×105.

In Table 3.4, we show the residuals of the eigenvalues located inside Γ.
The number of eigenvalues in Γ is m = 73 and the estimated number of
eigenvalues is m̃ = 77.7. The number of column vectors of V is L = 55 and
the number of iterative refinement is 2. The maximum, mean and minimum
residuals are 2.1 × 10−10, 8.6 × 10−12 and 2.7 × 10−13, respectively. We can
obtain the eigenpairs in the given domain with the same initial parameters.

Example 5. The matrices A and B are derived from molecular orbital cal-
culations for a model DNA [51]. A and B are real symmetric and B is positive
definite. The matrix dimension is n = 1, 980 with 728, 080 nonzero entries.
The parameters are the same as in Example 3 and 4. The domains are given
by the intervals [−0.20,−0.15], [−0.25,−0.15], [−0.30,−0.15], [−0.35,−0.15],
[−0.40,−0.15], [−0.45,−0.15] and [−0.50,−0.15].

In Table 3.5, we show the number of eigenvalues in the given interval
(]ev), the estimated number of eigenvalues (Est.]ev), the number of column
vectors of V (L), the number of iterative refinement (]refinement) and the
maximum residuals of eigenvalues in the interval (max(resi)). In the results,
the maximum residuals are sufficiently small by estimating appropriate L
and the number of iterative refinement for each domain.

29

Table 3.3: Results in Example 3.

i λ̂i resi i λ̂i resi

1 181301.355856 3.0× 10−12 16 206423.180896 2.2× 10−12

2 181353.297523 8.2× 10−13 17 207887.176182 4.5× 10−12

3 185810.063953 3.1× 10−12 18 209720.799807 1.2× 10−12

4 185856.309721 2.2× 10−12 19 211359.608331 1.6× 10−12

5 189076.069885 1.3× 10−12 20 211525.005509 1.2× 10−12

6 190580.274469 1.7× 10−12 21 211778.728062 1.0× 10−12

7 191916.768828 4.6× 10−12 22 211798.736010 1.4× 10−12

8 192249.997887 6.2× 10−12 23 214623.208612 1.7× 10−12

9 192450.352262 8.8× 10−12 24 215071.649241 1.2× 10−12

10 195110.875562 8.9× 10−13 25 216638.323804 1.1× 10−12

11 195362.147280 1.6× 10−12 26 216782.856683 5.0× 10−13

12 195522.864186 2.1× 10−12 27 216875.914785 4.9× 10−13

13 196453.465229 9.5× 10−13 28 217120.082795 1.4× 10−12

14 196779.318796 1.1× 10−12 29 217475.120411 1.3× 10−13

15 203358.448118 5.6× 10−13 30 217803.381541 5.8× 10−13

Table 3.4: Results in Example 4.

i λ̂i resi i λ̂i resi

1 602514.527692 1.2× 10−12 38 964884.799128 2.7× 10−11

2 605178.148251 2.1× 10−11 39 971058.404128 3.0× 10−11

3 616657.672408 5.2× 10−12 40 973436.179279 9.5× 10−12

4 623758.141144 2.2× 10−11 41 981630.285398 3.0× 10−11

5 641859.031825 1.3× 10−12 42 985027.771304 6.4× 10−11

...
...

...
...

...
...

33 924036.280859 7.0× 10−11 70 1332026.80482 7.5× 10−12

34 927854.750782 4.3× 10−12 71 1348423.99041 4.7× 10−13

35 941218.254886 9.8× 10−12 72 1372139.51897 8.4× 10−12

36 942132.221466 1.5× 10−12 73 1379152.51378 1.1× 10−12

37 960716.560772 1.0× 10−11

30

Table 3.5: Results in Example 5.

Interval]ev Est.]ev L]refinement max(resi)

[−0.20,−0.15] 22 23.9 16 1 2.8× 10−13

[−0.25,−0.15] 78 80.0 40 2 2.1× 10−12

[−0.35,−0.15] 198 196.3 99 2 8.5× 10−12

[−0.40,−0.15] 262 270.1 136 2 1.7× 10−12

[−0.45,−0.15] 333 327.9 164 2 9.0× 10−12

[−0.50,−0.15] 406 410.5 206 2 9.4× 10−12

3.6 Concluding remark

In this chapter, we have considered an eigensolver for computing the eigen-
values in a given domain and the corresponding eigenvectors of large-scale
matrix pencils. The Sakurai-Sugiura (SS) method is an eigensolver based on
complex moments given by the contour integrals of the matrix inverses with
several shift points.

Some numerical properties of the method have been presented from the
view-point of a filter for a subspace. According to the results, efficient pa-
rameter estimation techniques have been shown. The contour integral for a
matrix inverse is regarded as a filter for an eigensubspace. When the contour
integral is approximated by a numerical quadrature, the quadrature error
causes contamination of the eigencomponents corresponding to the eigenval-
ues located outside of the contour path. We have demonstrated the efficiency
of our method with numerical experiments.

In the numerical experiments, we have used a sparse direct solver. The
use of iterative linear solvers for multiple right-hand sides such as block
Krylov subspace solvers are useful because our eigensolver requires very small
number of iterative refinement.

We acknowledge here that a part of the study in this chapter is published
as [60] in the list of publications.

31

Chapter 4

Parallel stochastic estimation
method of eigenvalue
distribution

4.1 Introduction

As described in Section 3.4.1 in Chapter 3, an estimation of eigenvalue count
is needed for selection of subspace for the SS method. This information is also
valuable for other eigensolvers such as the Arnoldi method with the shift-and-
invert spectral transformation (SI-Arnoldi) and the Jacobi-Davidson method
(JD). In addition, if one employs multiple contour paths for the SS method
or multiple shifts for SI-Arnoldi/JD, a (rough) distribution of a eigenvalues
is demanded for efficient setting of contour paths or shifts.

To compute eigenvalue distribution, some methods have been proposed,
including the method using Sylvester’s law of inertia and the algebraic sub-
structure method [41]. Both methods require a matrix factorization, such as
the LDLT factorization. However, it is not feasible to apply these method
to large sparse matrices or matrices that are only referenced in the form of
matrix-vector multiplications. In this chapter, we propose a stochastic esti-
mation method of the eigenvalue distribution that is based on a stochastic
estimator of the matrix trace. We evaluate the performance of the proposed
method by applying it to matrices from practical applications.

This chapter is organized as follows. In Section 4.2, a stochastic estimator
of an eigenvalue distribution and its parallelization are described. We show
a simple implementation of our method in Section 4.3. In Section 4.4, we
investigate the performance of our method through numerical experiments
with four matrices from Matrix Market [28] and a matrix derived from a

32

real-space density functional calculation. This is followed by the concluding
remarks in Section 4.5.

4.2 A stochastic estimator of eigenvalue dis-

tribution

4.2.1 A stochastic estimator of eigenvalue count

Let A, B ∈ Cn×n, z ∈ C be such that (zB − A) is a regular matrix pencil.
It is known that matrices A,B can be decomposed A = URV H, B = UTV H,
where R, T are upper triangular matrices whose diagonal elements are rjj, tjj,
respectively, and U, V are unitary matrices. Since

(zB − A)−1B = V (zT −R)−1TV H,

and the matrix trace is similarity-invariant,

tr((zB − A)−1B) = tr((zT −R)−1T)

=
n∑

j=1

tjj
ztjj − rjj

=
n′∑

j=1

1

z − λj

,

(4.1)

where

tjj

{
6= 0 (1 ≤ j ≤ n′)

= 0 (n′ + 1 ≤ j ≤ n)
,

and λj = rjj/tjj (j = 1, 2, . . . , n′) are finite eigenvalues of the matrix pencil
(A, B).

When the contour integration

µ =
1

2πi

∮
Γ

tr((zB − A)−1B)dz

=
1

2πi

∮
Γ

n′∑
j=1

1

z − λj

dz

(4.2)

is performed, the eigenvalue count µ in a positively oriented Jordan curve Γ
is derived by the residue theorem. To discretize (4.2), an N -point quadrature

33

rule is applied and we approximate µ by

µ ≈ µ̂ =
N−1∑
k=0

wk tr((zkB − A)−1B), (4.3)

where zj and wj are a quadrature point and a weight, respectively. In the case
of the trapezoidal rule on a circle with a center γ and a radius ρ, quadrature
points and weights are defined by

zk = γ + ρe
2πi
N

(k+1/2) k = 0, 1, . . . , N − 1,

and

wk =
zk − γ

N
k = 0, 1, . . . , N − 1,

respectively, where i is the imaginary unit. According to [38], when the
contour path is a circle, (4.3) is written as

µ̂ =
n′∑

j=1

1

1 +
(

γ−λj

ρ

)N
, (4.4)

where |γ−λ1

ρ
| ≤ |γ−λ2

ρ
| ≤ · · · ≤ |γ−λn′

ρ
|. Let m′ be an integer such that

ρ/(1 + (
γ−λj

ρ
)N) = O(ε) for any j with m′ < j ≤ n′ for sufficiently small

ε > 0. Then (4.4) can be expressed as

µ̂ =
m′∑
j=1

1

1 +
(

γ−λj

ρ

)N
+ O(ε). (4.5)

Thus, the eigenvalues that exist nearby and outside of Γ are attributed to
quadrature error.

According to [4, 22], an unbiased estimation of the matrix trace is given
by

tr((zkB − A)−1B) ≈ 1

s

s∑
j=1

vj
T(zkB − A)−1Bvj, (4.6)

where s is the number of sample vectors and vj are vectors whose entries
take 1 or −1 with equal probability. Using (4.6), one can estimate µ̂ as

µ̂ ≈ µ̃

=
1

s

N−1∑
k=0

wk

s∑
j=1

(vj
T(zkB − A)−1Bvj).

(4.7)

34

4.2.2 Solution for linear systems

The most time consuming part of the estimation of the trace of (zkB−A)−1B
is the solution of s independent linear systems

(zkB − A)xk
j = Bvj

{
j = 1, 2, . . . , s

k = 0, 1, . . . , N − 1
. (4.8)

The subscript of xk
j refers the sample vector vj and the superscript refers the

quadrature point zk. If the matrices A and B are large sparse matrices or they
are only referenced in the form of matrix-vector multiplications, an iterative
method is a reasonable choice to solve these linear systems. Additionally,
if B is the identity matrix I, the linear systems (4.8) are written as (zkI −
A)xk

j = vj. In this case, the shifted Krylov subspace method [26, 13] can be
applied to solve simultaneously the linear systems (zkI − A)xk

j = vj for the
scalar parameters zk. By using the shifted Krylov subspace method, the total
number of matrix-vector multiplications in each iteration is reduced to 1/N
that of solving N systems separately by the normal Krylov subspace method.
When A is a real symmetric matrix, (zkI −A) is a complex symmetric (but
not Hermitian) matrix. The shifted conjugate orthogonal conjugate gradient
(COCG) method [50, 52] is a reasonable choice to solve linear systems of
complex symmetric matrices.

Note that in our method, the solution of the linear system (3.23) is needed
in the form of vH

j xk
j rather than xk

j (j = 1, 2, . . . , s). The efficient method
for directly computing vH

j xk
j is described in Chapter 5.

4.2.3 Method for estimating eigenvalue distribution

A stochastic estimation method of the eigenvalue distribution is defined by
the estimator of the eigenvalue count straightforwardly. Let Γ be a given
Jordan curve, D the domain closed by Γ, and Γ`(` = 1, 2, . . . , nc) a Jordan
curve which closes sub-domain D` such that D = D1 + D2 + · · ·+ Dnc . It is
easy to see that the estimations of the eigenvalue count in Γ` can be executed
independently. Below this independence, there is another independence: that
of the solutions of the linear systems (4.8). Furthermore, the linear solver
can be parallelized, if it is possible. Thus, our method is efficient on modern
massively parallel computing environments.

35

4.3 Implementation

In this section, we describe a simple implementation of our method in which
A is a Hermitian matrix and B is a non-singular Hermitian matrix. The
algorithm of the implementation is shown in Algorithm 4.1. For simplicity, we
assume the Jordan curves are circles. This algorithm estimates the eigenvalue
distribution in the interval [α, β] on the real axis. nc circles are placed so
that each circle occupies an equally separated sub-interval. ρ is the radius of
all circles and γ` is the center of the `th circle. µ̃` is the estimated eigenvalue
count in the `th circle. The same number of quadrature points N is set for
each circle.

Algorithm 4.1 Stochastic estimation method for eigenvalue distribution.

1: Input : A,B, α, β, nc, N, s
2: Output : µ̃1, µ̃2, . . . , µ̃nc

3: Set vj whose elements take 1 or -1 with equal probability, for j =
1, 2, . . . , s

4: ρ = (β − α)/2nc

5: for ` = 1, 2, . . . , nc do
6: γ` = α + (2`− 1)ρ

7: z`k = γ` + ρe
2πi
N

(k+1/2)

8: Solve (z`kB − A)x`k
j = Bvj , for j = 1, 2, . . . , s, k = 0, 1, . . . , N − 1

9: µ̃` =
ρ

sN

N−1∑
k=0

e
2πi
N

(k+1/2)

s∑
j=1

vj
Tx`k

j

10: end for

36

T
ab

le
4.

1:
M

at
ri

x
p
ro

p
er

ti
es

.

M
at

ri
x

p
en

ci
l

S
iz

e
n
n
z(

A
)

n
n
z(

B
)

T
y
p
e(

A
)

T
y
p
e(

B
)

C
en

te
r

R
ad

iu
s

#
ei

g
in

Γ

L
U

N
D

14
7

12
98

12
94

In
d
efi

n
it

e
In

d
efi

n
it

e
1.

0
×

10
4

1.
0
×

10
4

40
B
C
S
S
T

07
42

0
41

40
38

36
P
os

it
iv

e
d
efi

n
it

e
P
os

it
iv

e
se

m
i-
d
efi

n
it

e
0.

23
0.

17
39

8
P
L
A
T

19
19

19
19

17
15

9
—

In
d
efi

n
it

e
—

2.
0
×

10
7

2.
5
×

10
7

40
B
C
S
S
T

13
20

03
42

94
3

11
97

3
P
os

it
iv

e
d
efi

n
it

e
P
os

it
iv

e
se

m
i-
d
efi

n
it

e
3.

0
×

10
3

2.
0
×

10
3

11

37

4.4 Numerical experiments

In this section, we perform numerical experiments to evaluate the efficiency
of our method by using the algorithm shown in Algorithm 4.1. Examples 1
and 2 are carried out using Matlab 7.4, and Example 3 is carried out using
PGI Fortran 90. All operations are done in double precision arithmetic.

4.4.1 Example 1

In Example 1, we investigate how the eigenvalue count changes for an increase
in the number of quadrature points N . We evaluate the effect of numerical
integrations (4.3) on the eigenvalue count without trace estimations. The
exact value of the matrix trace is calculated using the relation described
in (4.1). The eigenvalues λj are obtained by Matlab function eig. The
test problems were taken from Matrix Market; their properties are shown in
Table 4.1. All eigenvalue problems are that of real symmetric matrices. We
set nc = 1 for the algorithm. Columns nnz(A) and nnz(B) show the number
of non-zero entries of matrices A and B, respectively. Columns Type(A) and
Type(B) show the properties of A and B. Columns Center and Radius show
the center and radius of the circles, respectively. The column #eig in Γ shows
the number of eigenvalues in Γ. The number of eigenvalues is calculated by
using the results of eig. The number of quadrature points N is set to be 4,
8, 16, 32, and 64. The results of this example are shown in Table 4.2. All
results converge to the exact values.

4.4.2 Example 2

In Example 2, we investigate how the eigenvalue count changes for an increase
in the number of sample vectors s. The test matrices used are the same as
those in Example 1, s is set to from 10 to 1000, nc is set to 1, and the
linear systems are solved using the Matlab function mldivide. The number
of quadrature points is set to N = 16. The elements of the sample vectors
are given by the Matlab function rand, and their random seed is set by
rand(’twister’, 5489). The results of this example are shown in Table
3.We consider the exact eigenvalue count µ̂ to be that shown for the N = 16
case in Table 4.2. Increasing s does not much effect the efficiency or accuracy
of the eigenvalue count, even though it increases the computational cost.
The trace estimation is slow in converging to the exact value because the
convergence rate is O(

√
s). Similar results on trace estimations are shown in

[4].

38

Table 4.2: Results for Example 1.

N
eigenvalue count

LUND BCSST07 PLAT1919 BCSST13

4 38.024 318.03 55.559 10.917
8 38.268 364.80 42.350 10.926

16 38.880 392.98 40.606 10.988
32 39.373 397.89 39.945 11.000
64 39.749 398.00 39.540 11.000

exact 40.000 398.00 40.000 11.000

Table 4.3: Results for Example 2.

#vectors
eigenvalue count

LUND BCSST07 PLAT1919 BCSST13

10 44.344 391.08 40.759 12.866
20 43.394 392.58 40.371 11.747
30 43.195 391.92 40.926 10.765
40 39.547 393.83 39.874 10.590
50 40.039 393.09 41.018 10.313

100 37.716 392.27 40.632 11.293
200 39.805 393.45 40.341 11.460
500 41.147 392.76 40.542 11.104

1000 39.874 392.53 40.731 11.229
exact 38.880 392.98 40.606 10.988

4.4.3 Example 3

In Example 3, the test matrix is derived from real-space density functional
calculations [25]. It is a standard eigenvalue problem Ax = λx, where A
is a real symmetric matrix and is only referenced in the form of matrix-
vector multiplications. Thus, applying conventional approaches mentioned
in Section 4.1 is not feasible in this case. In this problem, the MB smallest
eigenvalues are desired, where MB is the total number of orbitals. The test
matrix is derived from the density functional calculation of a 510-atom system
of silicon. The matrix size is n = 175, 616, and the smallest 1,020 eigenpairs
are desired. The linear systems are solved by the shifted COCG method
using stopping criterion 10−4. One hundred circles are placed in the interval

39

[−0.230, 0.243]. The number of quadrature points of each circle is N = 8, and
the number of sample vectors is s = 20. The results are shown in Figure 4.1.
The horizontal axis indicates the index of the circles, and the vertical axis
indicates the eigenvalue count for the circle’s sub-domain. The exact values
are calculated by the conjugate gradient method for eigenvalue problems [25].
Although s is significantly smaller than the matrix size n, our method roughly
estimates the eigenvalue count. We obtained a rough eigenvalue distribution
that can be used in setting parameters for an accurate eigensolver using only
a few quadrature points and sample vectors.

The computational cost of the conjugate gradient method for eigenvalue
problems is O(MB

3) (see [25]). We confirmed that the number of iteration of
the shifted COCG method is proportional to n in preliminary experiments.
The cost of the matrix-vector multiplication is O(n) due to the sparsity of the
matrix. Therefore, when s is set much less than n and the scalar recurrences
are introduced to the shifted COCG method, the computational cost of our
method is O(n2). Since n, the number of grid points, is set to be proportional
to MB, for example n ≈ 200MB, the cost of our method is O(MB

2) with a
large coefficient. When the number of atoms in the target system is large,
our method can be employed as a preprocessing of accurate eigensolvers, due
to the lower order of computational cost and the high parallel performance.

40

0
10

20
30

40
50

60
70

80
90

10
0

0102030405060

In
d
e
x

o
f

th
e

c
ir

c
le

Eigenvaluecount

E
st

im
at

io
n

E
xa

ct F
ig

u
re

4.
1:

E
ig

en
va

lu
e

d
is

tr
ib

u
ti

on
of

a
51

0-
at

om
sy

st
em

of
si

li
co

n
.

41

4.5 Concluding remarks

In this chapter, we have proposed a stochastic estimation method of eigen-
value counting within a given closed curve. Our method is feasible for large
sparse matrices or matrices that are only referenced in the form of matrix-
vector multiplication. The stochastic estimation method for the eigenvalue
distribution is defined by separating the given domain to several sub-domains
and estimating the eigenvalue count in each sub-domain. Furthermore, be-
cause the computation of our method has independence, it is easy to execute
on massively parallel computing environments. An acceleration technique
has been introduced to standard eigenvalue problems by using the shifted
Krylov subspace method. We have shown using numerical examples that
our method roughly estimates the eigenvalue distribution using only a few
quadrature points and sample vectors. The parameters of eigensolvers can
be effectively set by using a given knowledge of the eigenvalue distribution,
and this distribution need not to be accurate, but does need to be computed
at low cost. Our method is effective in such situations.

We acknowledge here that a part of the study in this chapter is published
as [57] in the list of publications.

42

Chapter 5

Block conjugate gradient type
methods for the approximation
of bilinear form CHA−1B

5.1 Introduction

In the SS method and the stochastic estimation method for eigenvalue count,
one need to solve linear systems

(zB − A)xi = wi (5.1)

where A,B ∈ Cn×n, z ∈ C such that det(zB − A)) 6= 0, vi, xi ∈ Cn and
wi ≡ Bvi(i = 1, 2, . . . m). (5.1) can be represented as

(zB − A)X = W

with X ≡ [x1,x2, . . . , xm] and W ≡ [w1,w2, . . . , wm]. In some case of
the SS method and also in the stochastic estimation method for eigenvalue
count, the solutions is demanded in the form of V HX rather than X, where
V ≡ [v1,v2, . . . , vm] (see Section 3.4.3 and Section 4.2.2). Thus, in such case,
what we actually need to do is to compute

V H(zB − A)−1W. (5.2)

In this chapter, we consider to compute an approximation of

CHA−1B, (5.3)

where C ∈ Cn×m, here we redefine A ∈ Cn×n as the coefficient matrix and
B ∈ Cn×m as the matrix whose columns are right hand side vectors.

43

The need to approximate the block bilinear form (5.3) arises not only in
the above examples but also in a rich variety of fields in science and engi-
neering such as computational fluid dynamics, inverse problems; see [4, 17]
and the references therein. In the specific case that m = 1, efficient methods
based on the conjugate gradient (CG) method and the BiCG method for
approximating the scalar cHA−1b (b, c ∈ Cn) have been discussed in [45, 46]
and in [47], respectively. Both methods do not need explicitly compute and
store the approximate solution xk of Ax = b. Despite the fact that the kth
step approximation of cHA−1b using methods in [45, 46, 47] is mathematically
identical with the corresponding cHxk, where xk is obtained by CG or BiCG,
numerical results have illustrated that those methods in [45, 46, 47] can be
more stable and accurate. For the estimation of general form uTf(A)v, where
f(·) is a smooth function, algorithms based on the look-ahead Lanczos and
the Arnoldi process were developed in [18]. Motivated by those methods
in [45, 46, 47], we propose block conjugate gradient type methods for (5.3).
Since m > 1, we know that one class of iterative methods for solving linear
systems with multiple right-hand sides is the block Krylov subspace meth-
ods, which include block (Bi)CG [34], block GMRES [42], block QMR [14],
block BiCGSTAB [11] and block IDR(s) [9], etc. Therefore it is natural to
generalize the results in [45, 46, 47] to the block Krylov subspace methods.
In this chapter, we develop numerical methods based on block CG and block
BiCG for the approximation of (5.3). As the block CG method is usually
used for solving linear systems whose coefficient matrix is Hermitian and
positive-definite (HPD), when matrix A is HPD, we will limit the considered
problem (5.3) to the particular case that matrix C is identical to matrix
B. We mention here that both bilinear and block bilinear forms have been
discussed in [16] based on the use of quadrature rules.

This chapter is organized as follows. In Section 5.2, we describe the block
Krylov subspace methods and recall the block BiCG and block CG methods,
then we propose methods based on block BiCG and block CG for (5.3). In
Section 5.3, we present a variant of the block BiCG method by orthogonal-
izing the residual matrices and give alternative ways to approximate (5.3).
In Section 5.4, we report some numerical results to compare our proposed
methods with block solvers. Finally, some concluding remarks are made in
Section 5.5.

5.2 Block Conjugate Gradient type methods

In this section, we firstly review some fundamental knowledge of block Krylov
subspace methods. Then we present two methods for the approximation of

44

CHA−1B. The first method derived from the block BiCG method is suitable
for general problem. The second method based on the block CG method is
a specific case of the first method and will be applied to BHA−1B with an
Hermitian matrix A.

5.2.1 Block Krylov subspace methods

In this subsection, some fundamental knowledge of block Krylov subspace
methods is recalled. For more details, please refer to [19, 20].

Definition 5.1. Let U ∈ Cn×m, the subspace Kk(A,U) generated by A and
increasing powers of A applied to U

Kk(A,U) ≡

{
k−1∑
i=0

AiUγi; γi ∈ Cm×m

}
(5.4)

is called the kth-order block Krylov subspace.

When m = 1, the matrix U is reduced to a vector, subspace (5.4) be-
comes a standard Krylov subspace. For solving linear systems with multi-
ple right-hand sides AX = B, when initial guess X0 and the correspond-
ing matrix residual R0 ≡ B − AX0 are given, all block Krylov subspace
methods compute approximate solutions in the framework of Xk = X0 + Zk

where Zk ∈ Kk(A, R0). From the definition of (5.4), there are γj
,s ∈ Cm×m

(j = 0, . . . , k − 1) that satisfy

Zk =
k−1∑
j=0

AjR0γj. (5.5)

If we expand equation (5.5), each column of Zk can be represented as

z
(i)
k =

m∑
l=1

k−1∑
j=0

γj(l, i)A
jr

(l)
0 ∈ Bk(A,R0), i = 1, . . . , m,

where
Bk(A,R0) ≡ Kk(A, r

(1)
0) + · · ·+Kk(A, r

(m)
0). (5.6)

The corresponding approximate solutions x
(i)
k can be written as x

(i)
k = x

(i)
0 +

z
(i)
k . Compared with traditional Krylov subspace methods, where x

(i)
k −

x
(i)
0 ∈ Kk(A, r

(i)
0), we see that block Krylov subspace methods could search

approximate solutions in a bigger search space than the traditional Krylov

45

subspace methods at the same iteration step. This implies that block Krylov
subspace methods may find an approximation within less iterations.

Similar to the Krylov subspace, the grade of the block Krylov subspace
has been defined in [19, 40]. We recall it as follows:

Definition 5.2. [19, 40]The positive integer v ≡ v(A,U) defined by

v(A,U) ≡ min{k|dim Bk(A,U) = dim Bk+1(A,U)}
= min{k|Bk(A,U) = Bk+1(A,U)}

is called block grade of U with respect to A.

The following corollary shows the relationship between the block grade of
block Krylov subspace and the exact solution of linear systems with multiple
right-hand sides.

Corollary 5.1. [19] Let X∗ be the exact solution of AX = B, for any initial
block guess X0 and with its corresponding block residual R0, it always holds

X∗ ∈ X0 +Kv(A,R0)(A,R0).

Algorithm 5.1 Block bi-conjugate gradient (Block BiCG) [34]

1: Given X0, compute R0 = B − AX0, let P0 = R0

and P̃0 = R̃0, where R̃0 can be an arbitrary n×m matrix;
2: for k = 0, 1, . . . , do
3: αk = (P̃H

k APk)
−1(R̃H

k Rk); α̃k = (PH
k AHP̃k)

−1(RH
k R̃k);

4: Xk+1 = Xk + Pkαk;
5: Rk+1 = Rk − APkαk; R̃k+1 = R̃k − AHP̃kα̃k;
6: βk = (R̃H

k Rk)
−1(R̃H

k+1Rk+1); β̃k = (RH
k R̃k)

−1(RH
k+1R̃k+1);

7: Pk+1 = Rk+1 + Pkβk; P̃k+1 = R̃k+1 + P̃kβ̃k;
8: end for

Here we recall the block BiCG algorithm in Algorithm 5.1, which is an
extension of the BiCG [12] method for solving linear systems with multiple
right-hand sides. Some orthogonality properties of the block BiCG algorithm
hold as follows:

RH
k P̃j = 0, j = 0, 1, . . . , k − 1, (5.7)

R̃H
k Pj = 0, j = 0, 1, . . . , k − 1. (5.8)

When matrix A is Hermitian, i.e., AH = A, we can compute the approx-
imate solution of AX = B more effectively using a specific implementation
of the block BiCG method, the so-called block CG method, with properly
choosing R̃0 = R0 in Algorithm 5.1.

46

5.2.2 Block Conjugate Gradient type methods for CHA−1B

In this subsection, we will describe two methods for approximating CHA−1B
based on the block CG and block BiCG methods, which are generalized the
corresponding methods in [45, 46, 47]. Since the method based on block CG
could also be regarded as a special implementation of the block BiCG-based
method that applied to BHA−1B with Hermitian matrix A, here we first
discuss the derivation process of the block BiCG-based method.

If we set X0 = 0 and R̃0 = C in the initial step of Algorithm 5.1, the
following relationship always holds

CHA−1B − R̃H
k+1A

−1Rk+1 =
k∑

i=0

(R̃H
i A−1Ri − R̃H

i+1A
−1Ri+1),

or equivalently

CHA−1B =
k∑

i=0

(R̃H
i A−1Ri − R̃H

i+1A
−1Ri+1) + R̃H

k+1A
−1Rk+1. (5.9)

Similar to the process in [47], the key step for deriving our method uses
the following relation from Algorithm 5.1,

R̃H
k A−1Rk − R̃H

k+1A
−1Rk+1

= (R̃k+1 + AHP̃kα̃k)
HA−1(Rk+1 + APkαk)− R̃H

k+1A
−1Rk+1

= R̃H
k+1Pkαk + (P̃kα̃k)

HRk+1 + (P̃kα̃k)
HAPkαk. (5.10)

From the orthogonality properties (5.7) and (5.8), it is obvious that the
first two terms of (5.10) vanish. As

α̃k = (PH
k AHP̃k)

−1(RH
k R̃k),

the third term of (5.10) can be represented as

(P̃kα̃k)
HAPkαk = α̃H

k (P̃H
k APk)αk = R̃H

k Rkαk.

Or substituting
αk = (P̃H

k APk)
−1(R̃H

k Rk)

into the third term of (5.10), we have an equivalent result that

(P̃kα̃k)
HAPkαk = α̃H

k R̃H
k Rk.

Finally we obtain that

R̃H
k A−1Rk − R̃H

k+1A
−1Rk+1 = R̃H

k Rkαk

47

(or α̃H
k R̃H

k Rk).
Now we can rewrite (5.9) as follows:

CHA−1B =
k∑

i=0

R̃H
i Riαi + R̃H

k+1A
−1Rk+1,

which motivates us to approximate CHA−1B using

ηk+1 ≡
k∑

i=0

R̃H
i Riαi

= ηk + R̃H
k Rkαk, (5.11)

instead of computing CHXk+1. Note that the computational cost for ηk+1 is
very less because R̃H

k Rk has been computed in the block BiCG algorithm. In
exact arithmetic, it is easy to prove that ηk+1 is equal to CHXk+1, but we
will see that their computational results could be quite different. Here we
give a summary and describe this block BiCG-based method in Algorithm
5.2.

Algorithm 5.2 Block BiCG-based

1: Let R0 = B, P0 = R0, R̃0 = C and P̃0 = R̃0; η0 = 0;
2: for k = 0, 1, . . . , do
3: αk = (P̃H

k APk)
−1(R̃H

k Rk); α̃k = (PH
k AHP̃k)

−1(RH
k R̃k);

4: ηk+1 = ηk + R̃H
k Rkαk;

5: Rk+1 = Rk − APkαk; R̃k+1 = R̃k − AHP̃kα̃k;
6: βk = (R̃H

k Rk)
−1(R̃H

k+1Rk+1); β̃k = (RH
k R̃k)

−1(RH
k+1R̃k+1);

7: Pk+1 = Rk+1 + Pkβk; P̃k+1 = R̃k+1 + P̃kβ̃k;
8: end for

For the case that matrix A is Hermitian and matrix C is identical to
B, BHA−1B can be approximated more effectively based on the block CG
method. Analogous to the derivation process of (5.9), we can obtain

BHA−1B =
k∑

i=0

RH
i Riαi + RH

k+1A
−1Rk+1,

and approximate BHA−1B by

ηk+1 ≡
k∑

i=0

RH
i Riαi = ηk + RH

k Rkαk. (5.12)

We present this block CG-based method in Algorithm 5.3.

48

Algorithm 5.3 Block CG-based
1: Let R0 = B, P0 = R0; η0 = 0;
2: for k = 0, 1, . . . , do
3: αk = (PH

k APk)
−1(RH

k Rk);
4: ηk+1 = ηk + RH

k Rkαk;
5: Rk+1 = Rk − APkαk;
6: βk = (RH

k Rk)
−1(RH

k+1Rk+1);
7: Pk+1 = Rk+1 + Pkβk;
8: end for

5.3 Block Conjugate Gradient type methods

with residual matrix orthogonalization

In this section, we propose new ways of approximating block bilinear form
based on other variants of the block conjugate gradient methods. Numerous
variants of the block CG method have been implemented and analyzed by
Dubrulle in [10], where it was shown that the implementation of the block CG
method by orthogonalization of the residual matrix Rk (called block CGrQ
method) has shown better computational performance. Motivated by this,
we give an implementation of the block BiCG method by orthogonalization
of the residual matrix Rk and matrix R̃k. Then their corresponding methods
for approximating the block bilinear form are presented.

We now discuss how to apply the strategy of residual matrix orthogonal-
ization to the block BiCG method. Although this extension is very natural,
to the best of our knowledge, there is no literature to discuss the correspond-
ing variant of the block BiCG method. To give this variant, both the residual
matrix Rk and matrix R̃k are decomposed using the thin QR decomposition,
which are denoted by Rk = QkCk and R̃k = Q̃kC̃k, respectively. We also de-
fine Vk = PkC

−1
k , Ṽk = P̃kC̃

−1
k , Sk = CkC

−1
k−1 and S̃k = C̃kC̃

−1
k−1. Substituting

them into Algorithm 5.1 to replace those related matrices, meanwhile matrix
αk and α̃k can be represented as

αk = C−1
k (Ṽ H

k AVk)
−1Q̃H

k QkCk

and

α̃k = C̃−1
k (V H

k AHṼk)
−1QH

k Q̃kC̃k,

respectively. Then reformulating the block BiCG algorithm, we can obtain
a new variant. We name this new variant as block BiCGrQ and describe it
in Algorithm 5.4.

49

Algorithm 5.4 Block BiCGrQ

1: Given X0, R̃0, compute [Q0, C0] = qr(B − AX0), [Q̃0, C̃0] = qr(R̃0); let
V0 = Q0, Ṽ0 = Q̃0;

2: for k = 0, 1, . . . , do
3: Tk = (Ṽ H

k AVk)
−1(Q̃H

k Qk); T̃k = (V H
k AHṼk)

−1(QH
k Q̃k);

4: Xk+1 = Xk + VkTkCk;
5: [Qk+1, Sk+1] = qr(Qk − AVkTk); [Q̃k+1, S̃k+1] = qr(Q̃k − AH ṼkT̃k);
6: Wk = (Q̃H

k Qk)
−1S̃H

k+1(Q̃
H
k+1Qk+1); W̃k = (QH

k Q̃k)
−1SH

k+1(Q
H
k+1Q̃k+1);

7: Vk+1 = Qk+1 + VkWk; Ṽk+1 = Q̃k+1 + ṼkW̃k;
8: Ck+1 = Sk+1Ck; C̃k+1 = S̃k+1C̃k;
9: end for

An equivalent expression of equation (5.11) to approximate CHA−1B can
be rewritten from Algorithm 5.4 as

ηk+1 =
k∑

i=0

C̃H
i Q̃H

i QiTiCi = ηk + C̃H
k Q̃H

k QkTkCk.

Now, we can give an implementation for approximating block bilinear
form CHA−1B based on the block BiCGrQ method in Algorithm 5.5.

Algorithm 5.5 Block BiCGrQ-based

1: Compute [Q0, C0] = qr(B), [Q̃0, C̃0] = qr(C); let V0 = Q0, Ṽ0 = Q̃0,
η0 = 0;

2: for k = 0, 1, . . . , do
3: Tk = (Ṽ H

k AVk)
−1(Q̃H

k Qk); T̃k = (V H
k AHṼk)

−1(QH
k Q̃k);

4: ηk+1 = ηk + C̃H
k Q̃H

k QkTkCk;
5: [Qk+1, Sk+1] = qr(Qk − AVkTk); [Q̃k+1, S̃k+1] = qr(Q̃k − AHṼkT̃k);
6: Wk = (Q̃H

k Qk)
−1S̃H

k+1(Q̃
H
k+1Qk+1); W̃k = (QH

k Q̃k)
−1SH

k+1(Q
H
k+1Q̃k+1);

7: Vk+1 = Qk+1 + VkWk; Ṽk+1 = Q̃k+1 + ṼkW̃k;
8: Ck+1 = Sk+1Ck; C̃k+1 = S̃k+1C̃k;
9: end for

Similarly, if the orthogonalization strategy is also applied to the block CG-
based method, we can obtain a block CGrQ-based method. In more detail,
if we compute the QR decomposition of residual matrix Rk = QkCk and
define Vk = PkC

−1
k and Sk = CkC

−1
k−1, the equation (5.12) for approximating

BHA−1B can be rewritten as

50

ηk+1 =
k∑

i=0

CH
i (V H

k AVk)
−1Ci = ηk + CH

k (V H
k AVk)

−1Ck.

Meanwhile, a variant of the block CG-based method corresponding to
Algorithm 5.3 can be proposed. We present it in Algorithm 5.6.

Algorithm 5.6 Block CGrQ-based

1: Let [Q0, C0] = qr(B), V0 = Q0, η0 = 0;
2: for k = 0, 1, . . . , do
3: Tk = V H

k AVk;
4: ηk+1 = ηk + VkT

−1
k Ck;

5: [Qk+1, Sk+1] = qr(Qk − AVkT
−1
k);

6: Vk+1 = Qk+1 + VkS
H
k+1;

7: Ck+1 = Sk+1Ck;
8: end for

Throughout the above discussion, we know our proposed block conjugate
gradient type methods are easily implemented and only slight modifications
of the corresponding block algorithms for linear systems with multiple right-
hand sides are needed. Take the block BiCGrQ-based algorithm (Algorithm
5.5) for example, there is a main difference between Algorithms 5.4 and 5.5
in the step four, where the update of approximate solution of linear sys-
tems is replaced by that of the block bilinear form. Furthermore, from the
computational point of view, our methods take less computational cost and
memory usage than the corresponding block methods for solving linear sys-
tems since the approximate solution Xk does not need to be computed. More
precisely, the memory usage for Xk is mn, and computational complexity for
the update of Xk is O(m2n) per iteration; while the memory usage and com-
putational complexity for ηk are m2 and O(m3), respectively. Meanwhile,
we see that the QR decomposition should be calculated during each itera-
tion when using block methods with residual matrix orthogonalization. Even
though it indicates more computational operations, numerical results in the
next section will show that all these efforts have not been wasted.

5.4 Numerical experiments

In this section, we give some numerical examples to compare the performance
of our proposed methods with their corresponding block methods (block CG,

51

block CGrQ, block BiCG and block BiCGrQ). The experiments have been
performed with MATLAB R2012b on a Mac OS X Lion 10.7.5 with an Intel
Core i5 processor and 4GB memory. Seven test matrices obtained from
the University of Florida Sparse Matrix Collection [7] are used. A detailed
description of all test matrices is provided in Table 5.1.

52

T
ab

le
5.

1:
T
es

t
m

at
ri

ce
s

(m
at

ri
x

si
ze

:
n
;
n
u
m

b
er

of
n
on

ze
ro

m
at

ri
x

el
em

en
ts

:
n
n
z)

M
at

ri
x

A
n

n
n
z

ty
p
e

st
ru

ct
u
re

ap
p
li
ca

ti
on

fi
el

d

11
38

b
u
s

11
38

40
54

re
al

sy
m

m
et

ri
c

p
ow

er
sy

st
em

n
et

w
or

k
s

S
i1

0H
16

17
07

7
87

59
23

re
al

sy
m

m
et

ri
c

d
en

si
ty

fu
n
ct

io
n
al

th
eo

ry
ca

lc
u
la

ti
on

S
i3

4H
36

97
56

9
51

56
37

9
re

al
sy

m
m

et
ri

c
d
en

si
ty

fu
n
ct

io
n
al

th
eo

ry
ca

lc
u
la

ti
on

C
ra

sh
b
as

is
16

00
00

17
50

41
6

re
al

u
n
sy

m
m

et
ri

c
m

ix
ed

co
m

p
le

m
en

ta
ri

ty
op

ti
m

iz
at

io
n

P
d
e2

96
1

29
61

14
58

5
re

al
u
n
sy

m
m

et
ri

c
m

o
d
el

P
D

E
p
ro

b
le

m
T
ol

s1
09

0
10

90
35

46
re

al
u
n
sy

m
m

et
ri

c
co

m
p
u
ta

ti
on

al
fl
u
id

d
y
n
am

ic
s

Y
ou

n
g1

c
84

1
40

89
co

m
p
le

x
n
on

-H
er

m
it

ia
n

ae
ro

re
se

ar
ch

53

As our objective is to compare the performance of different methods, we
assume that the exact solution of CHA−1B for each test problem, denoted
by η∗, is known in advance. Two rectangular matrices C and X∗ are initial-
ized by calling the MATLAB’s build-in function rand, and we let B be the
product of AX∗. Thus η∗ = CHX∗, note we compute η∗ = BHX∗ when A is
symmetric. The column number m of rectangular matrices is 6 and initial
guess X0 = 0 (if necessary). We stop all algorithms after a certain number
of iterations. In practice, a feasible stopping criterion of relative residual can
be used.

We present the corresponding results of each test matrix in Figures 5.1–
5.7, respectively. In these figures the horizontal axis is labelled the iteration
number, the vertical axis is labelled the relative error norm that is represented
by

log10

‖η∗ − ηk‖F
‖η∗‖F

for block (Bi)CG-based and block (Bi)CGrQ-based, and

log10

‖η∗ − CHXk‖F
‖η∗‖F

for block (Bi)CG and block (Bi)CGrQ.
We first discuss the results of three symmetric problems in Figures 5.1–

5.3. Some observations of the four block CG type methods are made as
follows:

• At the first few iterations, all methods show almost same behavior.
Approximations computed by block methods with residual matrix or-
thogonalization perform significantly better. For all test problems,
both block CGrQ and block CGrQ-based achieve a high accuracy of
approximations as the number of iterations increases. While both
block CG and block CG-based provide worse approximations except
for ‘1138 bus’.

• Block CG-based and block CGrQ-based perform better than block CG
and block CGrQ, respectively. Before stagnant approximations appear,
the accuracy of approximations obtained by block CG-based and block
CGrQ-based is higher than that of block CG and block CGrQ at the
same iteration step, respectively. When the same accuracy is required,
it means block CG-based and block CGrQ-based would take less iter-
ations than block CG and block CGrQ. Take ‘1138 bus’ for example,
the relative errors of block CG-based, block CGrQ-based, block CG
and block CGrQ after 600 iterations are about 10−9, 10−12, 10−6 and

54

0 200 400 600 800 1000
−16

−14

−12

−10

−8

−6

−4

−2

0

Number of iterations

R
el

at
iv

e
er

ro
r

no
rm

block CG
block CG−based
block CGrQ
block CGrQ−based

Figure 5.1: 1138 bus.

10−7, respectively. For a required accuracy of 10−10, block CG needs
the most iterations (about 900), and block CGrQ-based needs the least
iterations (about 560).

In Figures 5.4–5.7, we present the numerical results of block BiCG, block
BiCGrQ, block BiCG-based and block BiCGrQ-based for the four remaining
unsymmetric test problems. These block BiCG type methods show similar
behavior like the block CG type methods, but also show some differences.
We summarize the observations as follows.

• Approximations computed by block methods with residual matrix or-
thogonalization perform significantly better. Both block BiCGrQ and
block BiCGrQ-based can improve the accuracy of approximations as
the number of iterations increases.

• Both block BiCG and block BiCG-based cannot improve the accu-
racy of approximations for ‘Pde2961’ and ‘Tols1090’. Figure 5.7 shows
that the computed approximation via block BiCG yields almost the
same accuracy, less than 10−8, as BiCGrQ-based. But in terms of the
number of iterations block BiCG requires about 180 iterations, twice

55

0 100 200 300 400 500
−16

−14

−12

−10

−8

−6

−4

−2

0

2

Number of iterations

R
el

at
iv

e
er

ro
r

no
rm

block CG
block CG−based
block CGrQ
block CGrQ−based

Figure 5.2: Si10H16.

more than block BiCGrQ-based (about 80 iterations). Block BiCGrQ
gets the highest accuracy of approximation. All figures show block
BiCGrQ-based converges toward η∗ fastest before stagnation occurs.
Take the matrix ‘Crashbasis’ for example, for a required accuracy of
10−8, block BiCGrQ-based takes about 210 iterations but block BiC-
GrQ needs more than 500 iterations.

From all seven figures, it seems that the accuracy of approximations ob-
tained by block CGrQ-based is a little worse than that of block CGrQ. Block
BiCGrQ-based and block BiCGrQ show similar feature. It will be our future
work to investigate the reasons of stagnation of block (Bi)CGrQ-based and to
improve their accuracy. In order to give a more comprehensive evaluation of
each method, we also present the computational time per iteration in Tables
5.2 and 5.3. We can see the difference of computational time of each method
for solving the test problems.

56

0 200 400 600 800 1000 1200 1400 1600
−16

−14

−12

−10

−8

−6

−4

−2

0

Number of iterations

R
el

at
iv

e
er

ro
r

no
rm

block CG
block CG−based
block CGrQ
block CGrQ−based

Figure 5.3: Si34H36.

5.5 Concluding remarks

In this chapter, we have discussed computing the approximation of the block
bilinear form CHA−1B. We first have reviewed some fundamental knowledge
of block Krylov subspace methods for solving linear systems with multi-
ple right-hand sides, and then we have proposed the block BiCG-based and
block CG-based methods for the approximation of CHA−1B. Taking numeri-
cal stability into account and motivated by the block CGrQ method, we also
have developed a variant of the block BiCG method, named block BiCGrQ,

Table 5.2: Computational time [sec.] of block CG, block CG-based, block
CGrQ and block CGrQ-based per iteration

Matrix A block CG block CG-based block CGrQ block CGrQ-based

1138 bus 3.263e-4 3.113e-4 4.938e-4 4.076e-4
Si10H16 9.238e-3 9.052e-3 1.255e-2 1.133e-2
Si34H36 7.391e-2 6.035e-2 8.455e-2 7.808e-2

57

0 100 200 300 400 500 600 700 800
−10

−8

−6

−4

−2

0

2

4

Number of iterations

R
el

at
iv

e
er

ro
r

no
rm

block BiCG
block BiCG−based
block BiCGrQ
block BiCGrQ−based

Figure 5.4: Crashbasis.

for solving linear systems with multiple right-hand sides. Then, the block
CGrQ-based and block BiCGrQ-based methods have been presented. Sev-
eral examples have been given to compare our proposed methods with other
existing block methods. Although all the methods for computing the block
bilinear form are mathematically equivalent, our methods take less computa-
tional cost and memory usage. Numerical results have shown our methods,
especially the block CGrQ-based and block BiCGrQ-based methods, can ef-
fectively compute the approximation of the block bilinear form. It is known
that preconditioning is key to the efficiency of iterative methods. Although
we do not discuss preconditioning here, all methods discussed previously can
be easily combined with efficient preconditioners.

We acknowledge here that a part of the study in this chapter is published
as [55] in the list of publications.

58

0 50 100 150 200
−10

−5

0

5

Number of iterations

R
el

at
iv

e
er

ro
r

no
rm

block BiCG
block BiCG−based
block BiCGrQ
block BiCGrQ−based

Figure 5.5: Pde2961.

Table 5.3: Computational time [sec.] of block BiCG, block BiCG-based,
block BiCGrQ and block BiCGrQ-based per iteration

Matrix A block BiCG block BiCG-based block BiCGrQ block BiCGrQ-based

Crashbasis 9.325e-2 8.895e-2 1.628e-1 1.478e-1
Pde2961 1.092e-3 1.089e-3 2.074e-3 1.916e-3
Tols1090 5.946e-4 5.802e-4 9.542e-4 9.522e-4
Young1c 1.105e-3 9.869e-4 1.755e-3 1.679e-3

59

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6

Number of iterations

R
el

at
iv

e
er

ro
r

no
rm

block BiCG
block BiCG−based
block BiCGrQ
block BiCGrQ−based

Figure 5.6: Tols1090.

60

0 50 100 150 200
−12

−10

−8

−6

−4

−2

0

2

Number of iterations

R
el

at
iv

e
er

ro
r

no
rm

block BiCG
block BiCG−based
block BiCGrQ
block BiCGrQ−based

Figure 5.7: Young1c.

61

Chapter 6

A conjugate gradient type
method for linear system with
multiple shifts and multiple
right hand sides

6.1 Introduction

The standard eigenvalue problem

Au = λu

is a specific case of the generalized eigenvalue problem (1.1) and arises variety
of numerical computations in science and engineering.

In the SS method, if it is applied to a standard eigenvalue problem, so-
lutions of linear systems with multiple shifts and multiple right hand sides
(RHSs)

(A + σjI)Xj = B, j = 0, 1, . . . , N − 1. (6.1)

are required, where σj ∈ C, A ∈ Cn×n and Xj, B ∈ Cn×L. We refer to
AX = B as the seed system. In the study of this chapter, we consider the
case that A is Hermitian i.e. A = AH. [33] and [29] solve them by conjugate
gradient (CG) type methods in case of L = 1. They compare the SS method
with a widely used method, the Lanczos method, and found that the methods
are comparable. When seed system is Hermitian, the linear systems with
multiple shifts can be solved by the shifted CG method [26] even if σj are
complex numbers [33]. Using the shift invariance of the Krylov subspace,
the update of solution vectors for shifted systems can be performed without
time-consuming matrix-vector products, i.e. matrix-vector products are only

62

required for the seed system. In the study of this chapter, we deal with
multiple RHSs in addition to multiple shifts to reduce the iteration count by
exploiting this additional degree of freedom. A GMRES algorithm for both
multiple shifts and multiple RHSs was proposed by [6]. Since we consider
the case that the seed system is Hermitian, we choose the CG method as
the base method. Thus, we propose the CG method for multiple shifts and
multiple RHSs. We refer to the approach shown in [33] as the conventional
approach.

This chapter is organized as follows. Section 6.2 describes derivation of an
algorithm of a CG type method for multiple shifts and multiple RHSs. We
describe implementation techniques to reduce time-consuming data copies
for the algorithm in Section 6.3. We show the performance evaluation of our
algorithm on the K computer in Section 6.4. Conclusion are presented in
Section 6.5.

6.2 Derivation of the shifted block CG-rQ method

We derive the CG method for multiple shifts and multiple RHSs by extending
the block CG method [34] for shifted systems. The block CG method solves
systems with multiple RHSs by using the block Krylov subspace [20]. In
the block CG method, the search space is extended by L basis per iteration.
The block CG method often requires fewer iteration count than the CG
method. Several techniques and variants to stabilize the block CG method
are presented in [34, 32, 10]. [10] showed that a variant BCGrQ (we refer this
as the block CG-rQ method) is the best variant in terms of execution time
by numerical experiments. Therefore we choose the block CG-rQ method as
the base method of extension for shifted systems. Algorithm 6.1 shows the
block CG-rQ method.

By using subspace Bk of (5.6) in Chapter 5, the residual vector at the k-
th iteration of the block CG-rQ which applied for the seed system AX = B
corresponds the i-th right hand side can be represented as

r
(i)
k ∈ Bk+1(A,R0) ∩ B⊥

k (A,R0) ≡M,

where R0 ≡ B − AX0. Similarly, the residual vector at the k-th iteration of
the block BiCG of Algorithm 5.1 which applied for the (A + σI)Xσ = B

rσ
k ∈ Bk+1(A + σI, Rσ

0) ∩ B⊥
k ((A + σI)H, Rσ

0)

= Bk+1(A + σI, Rσ
0) ∩ B⊥

k (A + σI, Rσ
0),

where Rσ
0 ≡ B − (A + σI)Xσ

0 . If

Rσ
0 = R0ξ

σ
0 (6.2)

63

with ξσ
0 ∈ Cn×n, rσ

k ∈M holds due to the shift invariance of Bk. It is known
that if is vector subspaces L1 L2 are given,

dim(L1) + dim(L2) = dim(L1 + L2) + dim(L1 ∩ L2)

holds. Thus

dim(M) = dim(Bk+1 ∩ B⊥
k)

= dim(Bk+1) + dim(B⊥
k) + dim(Bk+1 + B⊥

k)

= L (6.3)

since dim(Bk+1) = (k + 1)L , dim(B⊥
k) = n − kL and dim(Bk+1 + B⊥

k) = n.
Here Bk(A,R0) is denoted as Bk for simplicity. Consequently, by (6.3),

Rσ
k = Rkξ̃

σ
k (6.4)

holds, where ξ̃σ
k ∈ Cn×n. Once we obtain Rσ

k by (6.4), we can update the
solution Xσ

k without a matrix vector multiplication of A + σI. Note that
since Rk = Qk∆k,

Rσ
k = Qkξ

σ
k , (6.5)

where ξσ
k ≡ ∆kξ̃

σ
k .

In following discussion, we show how to compute ξσ
k cheaply. By using

the 7-th line and the 9-th line of Algorithm 6.1, we have

Qk+1 = Qkρ
−1
k+1 − AQkαkρ

−1
k+1 − APk−1ρ

H
k−1αkρ

−1
k+1 (6.6)

and
APk−1 = (Qk−1 −Qkρk)α

−1
k−1. (6.7)

Then by (6.6) and (6.7), we have

Qk+1 = Qkρ
−1
k+1 − ARkαkρ

−1
k+1 − (Rk−1 −Rk)α

−1
k−1ρ

H
k αkρ

−1
k+1

= −AQkαkρ
−1
k+1 + Qk

(
IL + α−1

k−1ρ
H
k αk

)
ρ−1

k+1

−Qk−1α
−1
k−1ρ

H
k αkρ

−1
k+1. (6.8)

On the other hand, similarly,

Rσ
k = −ARσ

kασ
k + Rσ

k

{
IL − σασ

k +
(
ασ

k−1

)−1
βσ

k−1α
σ
k

}
−Rσ

k−1

(
ασ

k−1

)−1
βσ

k−1α
σ
k (6.9)

holds, where Rσ
k , ασ

k and βσ
k are Rk, αk and βk of block BiCG (see Algo-

rithm 5.1) which applied for (A + σI), respectively. Since (6.5), we have

−AQkαkρ
−1
k+1ξ

σ
k+1 + Qk

(
IL + ρkα

−1
k−1ρ

H
k αk

)
ρ−1

k+1ξ
σ
k+1 −Qk−1α

−1
k−1ρ

H
k αkρ

−1
k+1ξ

σ
k+1

= −AQkξ
σ
k ασ

k + Qkξ
σ
k

{
IL − σασ

k +
(
ασ

k−1

)−1
βσ

k−1α
σ
k

}
−Qk−1ξ

σ
k−1

(
ασ

k−1

)−1
βσ

k−1α
σ
k .

64

Thus

ξσ
k ασ

k = αkρ
−1
k+1ξ

σ
k+1,

ξσ
k

{
IL − σασ

k +
(
ασ

k−1

)−1
βσ

k−1α
σ
k

}
=
(
IL + ρkα

−1
k−1ρ

H
k αk

)
ρ−1

k+1ξ
σ
k+1

and

ξσ
k−1

(
ασ

k−1

)−1
βσ

k−1α
σ
k = α−1

k−1ρ
H
k αkρ

−1
k+1ξ

σ
k+1

hold. By using these relations, we have

ασ
k =

(
ξσ
k

)−1
αkρ

−1
k+1ξ

σ
k+1,

βσ
k =

(
ξσ
k

)−1
αkρ

−1
k+1ξ

σ
k+1

(
ξσ
k

)−1
α−1

k ρH
k+1ξ

σ
k+1

and

ξσ
k+1 = ρk+1

[
IL + σαk +

{
ρk − ξσ

k

(
ξσ
k−1

)−1}
α−1

k−1ρ
H
k αk

]−1
ξσ
k .

Therefore one can compute ξk+1 by using small L × L matrices ξk, ξk−1,
αk, αk−1, ρk+1 and ρk. And note that this is done without time-consuming
matrix-vector multiplication of (A + σI). Let Xσ

k and P̂ σ
k be Xk and Pk of

block BiCG which applied for (A + σI). Here we have

Xσ
k+1 = Xσ

k + P̂ σ
k

(
ξσ
k

)−1
αkρ

−1
k+1ξ

σ
k+1

and

P̂ σ
k+1 = Qk+1ξ

σ
k+1 + P̂ σ

k

(
ξσ
k

)−1
αkρ

−1
k+1ξ

σ
k+1

(
ξσ
k

)−1
α−1

k ρH
k+1ξ

σ
k+1.

To reduce the computational cost, we introduce

P σ
k ≡ P̂ σ

k

(
ξσ
k

)−1
.

By using this, we have

Xσ
k+1 = Xσ

k + P σ
k αkρ

−1
k+1ξ

σ
k+1

and

P σ
k+1 = Qk+1 + P σ

k αkρ
−1
k+1ξ

σ
k+1

(
ξσ
k

)−1
α−1

k ρH
k+1.

Consequently, we have obtained an algorithm for computing the solutions of
(A + σjI)Xj = B(j = 0, 1, . . . , N − 1) along the way of solving AX = B,
based on block CG-rQ. We refer to this algorithm as the shifted block CG-rQ
(SBCGrQ) method. The pseudo code of SBCGrQ is shown in Algorithm 6.2.
Note that we need to introduce zero initial solutions so that (6.2) is auto-
matically satisfied.

65

In some case of the SS method and also in the stochastic estimation
method for eigenvalue count (see Section 3.4.3 and Section 4.2.2), the solu-
tions are required in the bilinear form BHXσ

j rather than Xσ
j . In such cases,

one can use recurrences
η

σj

k+1 = η
σj

k + τ
σj

k α
σj

k (6.10)

and
τ

σj

k+1 = τ
σj

k β
σj

k (6.11)

instead of lines 14-15. Here ηk = BHX
σj

k and τk = BHP
σj

k . To derive (6.11),
we have used the orthogonality of residual matrices i.e. BHQk = RH

0 Qk =
OL×L (k=0,1,. . .), where OL×L is L × L zero matrix. By using (6.10) and
(6.11), the computational cost is drastically reduced when the number of
shifts N is large. We refer to this variant of SBCGrQ for bilinear form as
SBCGrQ-based.

If a preconditioner is applied, preconditioned coefficient matrices of shifted
linear systems are no longer shifted matrices in general. Thus applicable pre-
conditioners are limited (e.g. the incomplete LU preconditioner can not be
applied) for block Krylov subspace methods that use the shift invariance.
For this reason we omit considering preconditioners in this study.

To implement the SBCGrQ method for distributed parallel computers,
we introduce the row-wise distribution. We implement our distributed par-
allel code with Message Passing Interface (MPI). In row-wise distribution,
matrix-matrix product with a Hermitian transpose matrix in the third line
and the QR decomposition in the 7th line are performed with MPI Allreduce
to sum local results. The parallel implementation for the matrix-vector prod-
ucts APk depends on the application. The calculations in lines 8,11-13 are
replicated. Other lines can be executed without MPI communications.

6.3 Efficient implementation with recurrence

unrolling

In the SS method, a number of shifted systems should be solved. In such a
case, computational cost for lines 11-15 becomes dominant. Especially lines
14,15 are the most time-consuming part of the algorithm. In addition, the
computational cost of lines 14,15 increases O(L2) with increasing L. We
reduce execution time for this computation by following techniques. Algo-
rithm 6.3 shows an naive implementation of the 9th line. Note that we reuse
the memory area of the variables with subscript k for corresponding variables
with subscript k + 1. We use simplified notations of the two BLAS subrou-
tines ZGEMM and ZCOPY. Here, ZGEMM(A,B,C) operates C ← AB + C

66

Algorithm 6.1 Pseudo code of the block CG-rQ method. On×L is the n×L
dimensional zero matrix. IL is the L dimensional unit matrix. qr(C) indicates
the QR decomposition of matrix C.
1: R0 = B − AX0

2: Q0∆0 = qr(R0)
3: P0 = Q0

4: for k = 0, 1, . . . until solutions converge do

5: αk =
(
Pk

HAPk

)−1

6: Xk+1 = Xk + Pkαk∆k

7: Qk+1ρk+1 = qr(Qk − APkαk)
8: ∆k+1 = ρk+1∆k

9: Pk+1 = Qk+1 + Pkρ
H
k+1

10: end for

Algorithm 6.2 Pseudo code of the SBCGrQ method. On×L is the n × L
dimensional zero matrix. IL is the L dimensional unit matrix. qr(C) indicates
the QR decomposition of matrix C.

1: X
σj

0 = On×L, ξ
σj

−1 = α−1 = IL,
2: Q0ρ0 = qr(B)
3: ξ

σj

0 = ∆0 = ρ0, P
σj

0 = P0 = Q0

4: for k = 0, 1, . . . until solutions converge do

5: αk =
(
Pk

HAPk

)−1

6: Xk+1 = Xk + Pkαk∆k

7: Qk+1ρk+1 = qr(Qk − APkαk)
8: ∆k+1 = ρk+1∆k

9: Pk+1 = Qk+1 + Pkρ
H
k+1

10: for j = 0, 1, . . . , N − 1 do

11: ξ
σj

k+1 = ρk+1

[
IL + σjαk +

{
ρk − ξ

σj

k

(
ξ

σj

k−1

)−1
}(

αk−1

)−1
ρH

k αk

]−1

ξ
σj

k

12: α
σj

k = αk

(
ρk+1

)−1
ξ

σj

k+1

13: β
σj

k = αk

(
ρk+1

)−1
ξ

σj

k+1

(
ξ

σj

k

)−1(
αk

)−1
ρH

k+1

14: X
σj

k+1 = X
σj

k + P
σj

k α
σj

k

15: P
σj

k+1 = Qk+1 + P
σj

k β
σj

k

16: end for
17: end for

67

and ZCOPY(A,B) operates B ← A. To exploit the efficiency of the cache

Algorithm 6.3 Naive implementation. T ∈ Cn×L is a temporary variable.

ZGEMM(P
σj

k , α
σj

k , X
σj

k+1)
ZCOPY(Qk+1, T)
ZGEMM(P

σj

k , β
σj

k , T)
ZCOPY(T , P

σj

k+1)

blocking of ZGEMM, we operate the products P
σj

k α
σj

k and P
σj

k β
σj

k in block
as P

σj

k [α
σj

k , β
σj

k]. The drawback of this approach is that additional 2 ZCOPY
calls for Xσj are required. We reduce the total number of ZCOPY calls by
unrolling the recurrences for Xk+1 and Pk+1. The recurrences can be unrolled
as

X
σj

k+1 = X
σj

k−u +
u−1∑
h=0

Qk−hγ
σj

h + Pk−uγ
σj
u

and

P
σj

k+1 = Qk+1 +
u−1∑
h=0

Qk−hδ
σj

h + P
σj

k−uδ
σj
u .

Here, {
γ

σj

0 = α
σj

k

γ
σj

h = α
σj

k−h + β
σj

k−hγ
σj

h−1

,

{
δ

σj

0 = β
σj

k

δ
σj

h = β
σj

k−hδ
σj

h−1

and

θ
σj

h = [γ
σj

h , δ
σj

h].

Algorithm 6.4 shows the implementation which uses these relations. By this
implementation, the total number of ZCOPY calls is reduced from 2K to
4K/u when u > 2 since ZCOPY is only called every u iterations. Here K
is the number of iterations which is required to satisfy the stopping crite-
rion. Simular to the implementation in Algorithm 6.3, we reuse the memory
area of the variables with subscript k − u for corresponding variables with
subscript k + 1. The problem is that the implementation shown in Algo-
rithm 6.4 requires an additional memory requirement, mainly that of Qk−h

(h = 0, 1, . . . , u−1). Note that this memory requirement is comparable with
that of X

σj

k and P
σj

k (j = 0, 1, . . . , N − 1) when u ≈ N .

68

Algorithm 6.4 Implementation with recurrence unrolling. T2 ∈ Cn×2L is a
temporary variable.

if mod(k + 1,u + 1)= 0 then
ZCOPY(X

σj

k−u, T2(:,1:L))
ZCOPY(Qk+1, T2(:,L + 1:2L))
for h = 0, 1, . . . , u− 1 do

ZGEMM(Qk−h, θh, T2)
end for
ZGEMM(P

σj

k−u, θu, T2)
ZCOPY(T2(:,1:L), X

σj

k+1)
ZCOPY(T2(:,L + 1:2L), P

σj

k+1)
end if

6.4 Numerical experiments

In this section we show the performance of the SBCGrQ method and the
SBCG-based method in two examples. In the experiments, all examples are
performed on the K computer. The K computer is a distributed memory
supercomputer system which has more than 80,000 compute nodes. It is
installed in the RIKEN Advanced Institute for Computational Science as
a Japanese national project. A SPARC64TM VIIIfx CPU which has eight
cores is equipped for a compute node. The clock frequency and the peak
performance of the CPU are 2 GHz and 128 giga-flops, respectively. Our
code is compiled with Fujitsu Fortran Compiler.

6.4.1 Example 1

In this example, we perform numerical experiments to evaluate the efficiency
of the SBCGrQ method and the recurrence unrolling technique described
in the previous section. We utilize the SBCGrQ method in the eigenvalue
solution of the SS method. The test matrix is a matrix derived from a
real-space density functional theory calculation of a silicon nanowire which
consists of 9924 Si atoms [21]. The dimension of the matrix is n = 8, 719, 488.
We describe common parameter setting for all experiments as follows. The
contour pass for the SS method is a circle with a center of 0.05 and a radius
of 0.01. The number of quadrature points is N = 32. The RHS vectors
are generated by random numbers. We executed the experiments with 768
MPI processes and each MPI process had 8 OpenMP threads. Note that the
results of the numerical experiments are obtained by early access to the K
computer.

69

First, we evaluate the execution time of the SS method, the number of
eigenvalues that can be obtained by the SS method, and the iteration count
and the execution time for the SBCGrQ method. The results of experiments
are shown in Table 6.1. The parameter u is set to u = 32. Table 6.1 shows
the elapsed time for the SS method is mostly occupied by the solutions of the
linear systems with the SBCGrQ method in all cases. Large #eig is obtained
by large L. This result is predictable since large subspace is given by large
number of RHSs. The remarkable thing is that although the number of
linear systems to be solved increase L-fold, linsol time does not. This trend
is mainly supported by the behavior that #iter decreases with increasing L
as is the case in the block CG method [32]. We have succeeded to extend this
feature for multiple shifts by developing the SBCGrQ method. Note that the
case L = 1 and the conventional approach described in [33] are equivalent
except that scaling of the vectors are different and the conventional approach
was not implemented with recurrence unrolling. Thus, we can find in the
column Speed-up for the case L = 32 that the SBCGrQ method is more than
five times faster than the case that the shifted CG method is sequentially
applied to each RHS if these is no significant difference in the iteration count
for different RHSs.

Table 6.1: #iter and linsol time are iteration count and elapsed time for
SBCGrQ method, respectively. #eig is the number of eigenvalues derived in
contour pass with relative residuals less than 1e−2. SS time is elapsed time
for the SS method. Speed up is the speed-up ratio of average elapsed time
for one RHS comparing to L = 1, i.e. (128.2× L) / linsol time.

L 1 2 4 8 16 32 64

#iter 10626 10560 9999 8382 6501 4455 4026
#eig 10 21 43 82 159 212 271
SS time [sec] 131.8 197.7 247.0 395.2 442.5 721.1 1714.6
linsol time [sec] 128.2 195.3 246.3 349.3 432.8 698.1 1600.5
Speed-up 1 1.31 2.08 2.93 4.74 5.87 5.12

Next we see the detailed data that support the remarkable results de-
scribed above. Figure 6.1 shows the results of experiments to see the behav-
iors of the dominant parts of the SBCGrQ method with increasing L. Matvec
is the elapsed time of the matrix-vector products with A in the 5th line of Al-
gorithm 6.2. QR is the elapsed time of the QR decomposition for the 7th line
of Algorithm 6.2. Shift is the elapsed time of the calculations for lines 11-15
of Algorithm 6.2. Note that the time data are average data for one RHS of

70

0

2

4

6

8

10

12

1 2 4 8 16 32 64

Matvec

QR

Shift

E
la

p
se

d
 t

im
e

[m
s]

L

Figure 6.1: Details of elapsed time for linsol time.

one iteration. Matvec slightly decreases with increasing L since latency for
communication was reduced by sending or receiving L-fold data at once. QR
increases with increasing L since the computational cost increases O(L2).
The most time-consuming item Shift decreases until L = 16. This result
indicates that the efficiency of cache blocking of ZGEMM hides the growth
of the computational cost. However, Shift increases when L = 32, 64 due to
the high complexity. Figure 6.2 shows the results of experiments to see the
behaviors of the dominant parts of Shift with increasing u of the recurrence
unrolling technique. The number of RHSs is fixed to L = 32. Square is the
elapsed time for calculations that involve L dimensional square matrices in
lines 11-13 of Algorithm 6.2. ZCOPY and ZGEMM are the elapsed time
for ZCOPY and ZGEMM in Algorithm 6.3 or Algorithm 6.4 that implement
the calculations for lines 14-15 of Algorithm 6.2. Note that the time data
indicates average data for one shift of one iteration. The computational cost
for Square other than naive is larger than that of naive due to calculations
for θh. Practically, the elapsed time of all cases rarely different since this ad-
ditional computational cost is negligible. We can find that elapsed time for

71

0

0.5

1

1.5

2

2.5

3

3.5

naive 2 4 8 16 32

Square
ZCOPY
ZGEMM

E
la

p
se

d
 t

im
e

[m
s]

u

Figure 6.2: Details of elapsed time for Shift.

ZGEMM is reduced by the recurrence unrolling technique. This is because
the cache hit ratio is improved by merging two calls of ZGEMM into once.
Moreover the elapsed time for ZCOPY decreases linearly with increasing u,
since ZCOPY is only called every u iterations. We can find in these details
that the efficient use of ZGEMM and the reduction of total call for time-
consuming ZCOPY contribute to the remarkable efficiency of the SBCGrQ
method.

6.4.2 Example 2

In Example 2, we show the performance of SBCGrQ-based by using it for
the stochastic estimation method proposed in Chapter 4. The test matrix A
is derived from the density functional calculation of a 2,744-atom system of
silicon. The matrix size is n = 592, 704, and the smallest 5,488 eigenpairs
are desired. The stopping criterion for the SBCGrQ method with respect
to the relative residual norm of linear system is 1e−4. Five hundred circles
are placed in the interval [−0.25, 0.16] which includes desired eigenvalues.

72

The number of quadrature points of each circle is N = 8, and the number of
sample vectors is s = 20. We executed the experiments with 64 MPI processes
and each MPI process had 8 OpenMP threads. The compile option was
-Kfast,parallel,openmp. The results are shown in Figure 6.3, Figure 6.4,
Figure 6.5, and Figure 6.6. The horizontal axis indicates the index of the
circles, and the vertical axis indicates the eigenvalue count for the circle’s sub-
domain. The exact values are calculated by the conjugate gradient method
for eigenvalue problems [25]. In these figures, we can see that the eigenvalue
counts are roughly estimated. The computation time for the combination of
the stochastic estimation method and SBCGrQ-based is 472 seconds, whereas
it takes 13,200 seconds for the conjugate gradient eigensolver. Thus, in this
case, the combination of the stochastic estimation method and the SBCGrQ
method can be cheaply used as a preprocess for the SS method.

73

−
0.

25
−

0.
24

−
0.

23
−

0.
22

−
0.

21
−

0.
2

−
0.

19
−

0.
18

−
0.

17
−

0.
16

−
0.

15
01020304050607080

E
ig

en
va

lu
e

Eigenvalue count

E
xa

ct

E
st

im
at

io
n

F
ig

u
re

6.
3:

E
st

im
at

ed
an

d
ex

ac
t

ei
ge

n
va

lu
e

d
is

tr
ib

u
ti

on
of

a
m

at
ri

x
of

27
44

-a
to

m
sy

st
em

of
si

li
co

n
.

(1
)

74

−
0.

15
−

0.
14

−
0.

13
−

0.
12

−
0.

11
−

0.
1

−
0.

09
−

0.
08

−
0.

07
−

0.
06

−
0.

05
02040608010
0

12
0

E
ig

en
va

lu
e

Eigenvalue count

E
xa

ct

E
st

im
at

io
n

F
ig

u
re

6.
4:

E
st

im
at

ed
an

d
ex

ac
t

ei
ge

n
va

lu
e

d
is

tr
ib

u
ti

on
of

a
m

at
ri

x
of

27
44

-a
to

m
sy

st
em

of
si

li
co

n
.

(2
)

75

−
0.

04
−

0.
03

−
0.

02
−

0.
01

0
0.

01
0.

02
0.

03
0.

04
0.

05
010203040506070809010
0

E
ig

en
va

lu
e

Eigenvalue count

E
xa

ct

E
st

im
at

io
n

F
ig

u
re

6.
5:

E
st

im
at

ed
an

d
ex

ac
t

ei
ge

n
va

lu
e

d
is

tr
ib

u
ti

on
of

a
m

at
ri

x
of

27
44

-a
to

m
sy

st
em

of
si

li
co

n
.

(3
)

76

0.
05

0.
1

0.
15

02040608010
0

12
0

E
ig

en
va

lu
e

Eigenvalue count

E
xa

ct

E
st

im
at

io
n

F
ig

u
re

6.
6:

E
st

im
at

ed
an

d
ex

ac
t

ei
ge

n
va

lu
e

d
is

tr
ib

u
ti

on
of

a
m

at
ri

x
of

27
44

-a
to

m
sy

st
em

of
si

li
co

n
.

(4
)

77

6.5 Concluding remarks

We have proposed a CG type method for linear systems with multiple shifts
and multiple RHSs and efficient implementation techniques that reduce time-
consuming data copies in the method. The proposed method can be used for
linear systems that arise in the SS method. We have utilized the proposed
method for the electronic-structure calculation of a large system which con-
sists of about 10,000 Si atoms. We have found that the proposed method
solves the linear systems more than five times faster than the conventional ap-
proach and have shown how much our implementation techniques contribute
to efficiency of the proposed method. We have also shown that the combina-
tion of the stochastic estimation method for eigenvalue distribution and the
proposed method is much faster than an accurate solution by a eigensolver
in a numerical experiment with matrix of 2,744-atom system of silicon.

We acknowledge here that a part of the study in this chapter is published
as [56] (in the list of publications) by Springer.

78

Chapter 7

Conclusion

Throughout this thesis, we have described methods and techniques for effi-
ciently computing eigenvalues and eigenvectors of standard and generalized
eigenvalue problems with a contour integral method.

In Chapter 3, some numerical properties of a contour integral method,
namely the Sakurai-Sugiura (SS) method were presented from the view-point
of a filter for a subspace. According to the results, efficient parameter es-
timation techniques were shown. The contour integral for a matrix inverse
is regarded as a filter for an eigensubspace. When the contour integral is
approximated by a numerical quadrature, the quadrature error causes con-
tamination of the eigencomponents corresponding to the eigenvalues located
outside of the contour path. We showed the efficiency of the SS method with
numerical experiments.

In Chapter 4, we proposed a stochastic estimation method of eigenvalue
counting within a given closed curve. The method is feasible for large sparse
matrices or matrices that are only referenced in the form of matrix-vector
multiplication. The stochastic estimation method for the eigenvalue distri-
bution is defined by separating the given domain to several sub-domains and
estimating the eigenvalue count in each sub-domain. Furthermore, since the
computation of the method has independence, it is easy to execute on mas-
sively parallel computing environments. The proposed method can be used
for a preprocess of the SS method to set efficient parameters. In the nu-
merical examples, we found that the stochastic estimation method roughly
estimates the eigenvalue distribution using only a few quadrature points and
sample vectors.

In Chapter 5, we proposed the block BiCG-based and block CG-based
methods for the approximation of a block bilinear form which need to be
computed in a special case of the SS method and the method proposed in
Chapter 4. Taking numerical stability into account and motivated by the

79

block CGrQ method, we also developed a variant of the block BiCG method,
named block BiCGrQ, for solving linear systems with multiple right-hand
sides. Then, the block CGrQ-based and block BiCGrQ-based methods were
presented. Several numerical examples were shown to compare the proposed
methods with other existing block methods. Although all the methods for
computing the block bilinear form are mathematically equivalent, our meth-
ods take less computational cost and memory usage. The numerical results
showed the proposed methods, especially the block CGrQ-based and block
BiCGrQ-based methods, can effectively compute the approximation of the
block bilinear form.

In Chapter 6, we proposed a CG type method for linear systems with
multiple shifts and multiple RHSs and efficient implementation techniques
that reduce time-consuming data copies in the method. We call the pro-
posed method as the shifted block CG-rQ (SBCGrQ) method. The SBCGrQ
method can be used for linear systems that arise in the algorithm of the SS
method if it is used for Hermitian standard eigenvalue problems. We utilized
the SBCGrQ method for the electronic-structure calculation of a large sys-
tem which consists of about 10,000 Si atoms. We found that the proposed
method solves the linear systems more than five times faster than the conven-
tional approach and have shown how much our implementation techniques
contribute to efficiency of the SBCGrQ method. We also proposed a variant
of SBCGrQ method for computing (shifted) block bilinear form which re-
ferred to as SBCGrQ-based. We applied the combination of SBCGrQ-based
and the stochastic estimation method for eigenvalue distribution to a large
matrix derived from electronic structure calculation of a 2,744-atom system
of silicon. We observed that the estimation of the eigenvalue distribution
is much faster than an accurate solution by a eigensolver. The combina-
tion of SBCGrQ-based and the stochastic estimation method for eigenvalue
distribution can be efficiently used for a preprocess of the SS method.

For a future work, we will extend the study in Chapter 5 for linear systems
arising in the solutions of the generalized eigenproblem and the polynomial
eigenproblem. The strategy of parameter setting for the SS method using
the stochastic estimation method is not studied in this thesis, the study for
the strategy of parameter setting is also stated as a future work.

80

Bibliography

[1] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura. A
numerical method for nonlinear eigenvalue problems using contour inte-
grals. JSIAM Letters, 1:52–55, 2009.

[2] J. Asakura, T. Sakurai, H. Tadano, T. Ikegami, and K. Kimura. A nu-
merical method for polynomial eigenvalue problems using contour inte-
gral. Japan Journal of Industrial and Applied Mathematics, 27(1):73–90,
2010.

[3] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. A. van der Vorst. Tem-
plates for the Solutions of Algebraic Eigenvalue Problems: A Practical
Guide. SIAM, Philadelphia, PA, 2000.

[4] Z. Bai, M. Fahey, and G. Golub. Some Large Scale Matrix Computation
Problems. J. Comput. Appl. Math, 74:71–89, 1996.

[5] W.-J. Beyn. An integral method for solving nonlinear eigenvalue prob-
lems. Linear Algebra and its Applications, 436(10):3839–3863, 2012.
Special Issue dedicated to Heinrich Voss’s 65th birthday.

[6] D. Darnell, R. B. Morgan, and W. Wilcox. Deflated GMRES for Systems
with Multiple Shifts and Multiple Right-Hand Sides. Linear Algebra
Appl., 429(10):19, 2007.

[7] T. A. Davis and Y. Hu. The University of Florida Sparse Matrix Col-
lection. ACM Trans. Math. Softw., 38(1):1:1–1:25, 2011.

[8] J. W. Demmel. Applied Numerical Algebra. SIAM, Philadelphia, PA,
1997.

[9] L. Du, T. Sogabe, B. Yu, Y. Yamamoto, and S. L. Zhang. A Block
IDR(s) Method for Nonsymmetric Linear Systems with Multiple Right-
hand Sides. J. Comput. Appl. Math., 235(14):4095–4106, 2011.

81

[10] A. Dubrulle, A. Retooling the method of block conjugate gradients.
Electronic Trans. Numer. Anal., 12:216–233, 2001.

[11] K. S. H. el Guennouni A. Jbilou. A block version of BiCGSTAB for linear
systems with multiple right-hand sides. ETNA. Electronic Transactions
on Numerical Analysis [electronic only], 16, 2003.

[12] R. Fletcher. Conjugate gradient methods for indefinite systems. In
G. Watson, editor, Numerical Analysis, volume 506 of Lecture Notes in
Mathematics, pages 73–89. Springer Berlin Heidelberg, 1976.

[13] R. Freund. Solution of shifted linear systems by quasi-minimal residual
iterations. In L. Reichel, A. Ruttan, R. Varga, and W. de Gruyter,
editors, Numerical Linear Algebra, pages 101–121. Berlin, 1993.

[14] R. W. Freund and M. Malhotra. A block QMR algorithm for non-
Hermitian linear systems with multiple right-hand sides. Linear Algebra
and its Applications, 254(1-3):119–157, 1997.

[15] G. Golub and C. V. Loan. Matrix Computations. Johns Hopkins Uni-
versity Press, Baltimore, MD, 3rd edition, 1996.

[16] G. H. Golub and G. Meurant. Matrices, moments and quadrature, in
Numerical Analysis 1993. In D. F. Griffiths and G. A. Watson, volume
303, pages 105–156. Pitman Research Notes in Mathematics, 1994.

[17] G. H. Golub and G. Meurant. Matrices, Moments and Quadrature with
applications. Princeton University Press, Princeton, NJ, 2010.

[18] H. Guo and R. A. Renaut. Estimation of uTf(A)v for large-scale unsym-
metric matrices. Numerical Linear Algebra with Applications, 11(1):75–
89, 2004.

[19] M. H. Gutknecht. Block Krylov space methods for linear systems with
multiple right-hand sides: An introduction. In Modern Mathematical
Models, Methods and Algorithms for Real World Systems. Anamaya
Publishers, 2006.

[20] M. H. Gutknecht and T. Schmelzer. The block grade of a block Krylov
space. Linear Algebra Appl., 430(1):174–185, 1995.

[21] Y. Hasegawa, J.-I. Iwata, M. Tsuji, D. Takahashi, A. Oshiyama, K. Mi-
nami, T. Boku, F. Shoji, A. Uno, M. Kurokawa, H. Inoue, I. Miyoshi,

82

and M. Yokokawa. First-principles calculations of electron states of a sil-
icon nanowire with 100,000 atoms on the K computer. In Proceedings of
2011 International Conference for High Performance Computing, Net-
working, Storage and Analysis, SC ’11, pages 1:1–1:11, New York, NY,
USA, 2011. ACM.

[22] M. Hutchinson. A stochastic estimator of the trace of the influence
matrix for laplacian smoothing splines. Communications in Statistics -
Simulation and Computation, 19(2):433–450, 1990.

[23] T. Ikegami and T. Sakurai. Contour integral eigensolver for non-
Hermitian systems: a Rayleigh-Ritz-type approach. Taiwanese J. Math.,
14:825–837, 2010.

[24] T. Ikegami, T. Sakurai, and U. Nagashima. A Filter Diagonalization for
Generalized Eigenvalue Problems Based on the Sakurai-Sugiura Projec-
tion Method. J. Comput. Appl. Math., 233(8):1927–1936, 2010.

[25] J.-I. Iwata, D. Takahashi, A. Oshiyama, T. Boku, K. Shiraishi, S. Okada,
and K. Yabana. A massively-parallel electronic-structure calculations
based on real-space density functional theory. J. Comput. Phys.,
229(6):2339–2363, 2010.

[26] B. Jegerlehner. Krylov space solvers for shifted linear systems.
arXiv:hep-lat/9612014v1, 1996.

[27] Y. Maeda, Y. Futamura, and T. Sakurai. Stochastic estimation method
of eigenvalue density for nonlinear eigenvalue problem on the complex
plane. JSIAM Letters, 3:61–64, 2011.

[28] Matrix Market. http://math.nist.gov/MatrixMarket/.

[29] T. Mizusaki, K. Kaneko, M. Honma, and T. Sakurai. Filter diagonal-
ization of shell-model calculations. Phys. Rev. C, 82(2):10, 2010.

[30] C. B. Moler and G. W. Stewart. An Algorithm for Generalized Matrix
Eigenvalue Problems. SIAM J. Num. Anal., 10(2):241–256, 1973.

[31] M. Naito, H. Tadano, and T. Sakurai. A modified Block IDR(s) method
for computing high accuracy solutions. JSIAM Letters, 4:25–28, 2012.

[32] A. A. Nikishin and A. Y. Yeremin. Variable Block CG Algorithms for
Solving Large Sparse Symmetric Positive Definite Linear Systems on
Parallel Computers, I: General Iterative Scheme. SIAM J. Matrix Anal.
Appl., 16:1135–1153, 1995.

83

[33] H. Ohno, Y. Kuramashi, T. Sakurai, and H. Tadano. A quadrature-
based eigensolver with a Krylov subspace method for shifted linear
systems for Hermitian eigenproblems in lattice QCD. JSIAM Letters,
2:115–118, 2010.

[34] D. P. O’Leary. The block conjugate gradient algorithm and related meth-
ods. Linear Algebra Appl., 29:293–322, 1980. Special Volume Dedicated
to Alson S. Householder.

[35] E. Polizzi. Density-matrix-based algorithm for solving eigenvalue prob-
lems. Phys. Rev. B, 79:115112, 2009.

[36] Y. Saad. Numerical Methods for Large Eigenvalue Problems. SIAM,
Philadelphia, PA, 2nd edition, 2011.

[37] T. Sakurai and H. Tadano. CIRR: a Rayleigh-Ritz type method with
contour integral for generalized eigenvalue problems. Hokkaido Math.
J., 36:745–757, 2007.

[38] T. Sakurai, J. Asakura, H. Tadano, and T. Ikegami. Error analysis for
a matrix pencil of Hankel matrices with perturbed complex moments.
JSIAM Letters, 1:76–79, 2009.

[39] T. Sakurai and H. Sugiura. A projection method for generalized eigen-
value problems using numerical integration. J. Comput. Appl. Math.,
159(1):119–128, 2003.

[40] T. Schmelzer. Block Krylov methods for Hermitian linear systems,
2004. Diploma thesis, Department of Mathematics, University of Kaiser-
slautern, Germany.

[41] K. Senzaki, H. Tadano, T. Sakurai, and Z. Bai. A Method for Profil-
ing the Distribution of Eigenvalues Using the AS Method. Taiwanese
Journal of Mathematics, 14(3A):839–853, 2010.

[42] V. Simoncini, V. Simoncini, E. Gallopoulos, and E. Gallopoulos. An
Iterative Method for Nonsymmetric Systems with Multiple Right-Hand
Sides. SIAM J. Sci. Comput, 16:917–933, 1995.

[43] D. C. Sorensen. Implicit Application of Polynomial Filters in a K-step
Arnoldi Method. SIAM J. Matrix Anal. Appl., 13(1):357–385, 1992.

[44] G. W. Stewart. A Krylov–Schur Algorithm for Large Eigenproblems.
SIAM J. Matrix Anal. Appl., 23(3):601–614, 2001.

84

[45] Z. Strakos̆ and P. Tichý. On error estimation in the conjugate gradient
method and why it works in finite precision computations. ETNA. Elec-
tronic Transactions on Numerical Analysis [electronic only], 13:56–80,
2002.

[46] Z. Strakos̆ and P. Tichý. Error Estimation in Preconditioned Conjugate
Gradients. BIT Numerical Mathematics, 45(4):789–817, 2005.

[47] Z. Strakos̆ and P. Tichý. On efficient numerical approximation of the
bilinear form c∗A−1b. SIAM J. Sci. Comput., 33:565–587, 2011.

[48] M. Sugihara and K. Murota. Theoretical Numerical Linear Algebra.
Iwatani Shoten, Tokyo, Japan, 2009. (in Japanese).

[49] H. Tadano, T. Sakurai, and Y. Kuramashi. Block BiCGGR: a new Block
Krylov subspace method for computing high accuracy solutions. JSIAM
Letters, 1:44–47, 2009.

[50] R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang, and T. Fujiwara. Linear
algebraic calculation of the Green’s function for large-scale electronic
structure theory. Phys. Rev. B, 73(16):165108, 2006.

[51] T. Watanabe, Y. Inadomi, H. Umeda, K. Fukuzawa, S. Tanaka,
T. Nakano, and U. Nagashima. Fragment Molecular Orbital (FMO)
and FMO-MO Calculations of DNA: Accuracy Validation of Energy
and Interfragment Interaction Energy. Journal of Computational and
Theoretical Nanoscience, 6(6):1328–1337, 2009.

[52] S. Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang, and T. Fujiwara.
Shifted Conjugate-Orthogonal-Conjugate-Gradient Method and Its Ap-
plication to Double Orbital Extended Hubbard Model(Condensed mat-
ter: electronic structure and electrical, magnetic, and optical proper-
ties). Journal of the Physical Society of Japan, 77(11):114713–1–114713–
8, 2008-11-15.

[53] I. Yamazaki, H. Tadano, T. Sakurai, and T. Ikegami. Performance
comparison of parallel eigensolvers based on a contour integral method
and a Lanczos method. Parallel Computing, 39(6-7):280–290, 2013.

[54] S. Yokota and T. Sakurai. A projection method for nonlinear eigenvalue
problems using contour integrals. JSIAM Letters, 5:41–44, 2013.

85

List of Publications

[55] L. Du, Y. Futamura, and T. Sakurai. Block conjugate gradient type
methods for the approximation of bilinear form CHA−1B. Computers
& Mathematics with Applications, 66(12):2446–2455, 2014.

[56] Y. Futamura, T. Sakurai, S. Furuya, and J.-I. Iwata. Efficient Algo-
rithm for Linear Systems Arising in Solutions of Eigenproblems and Its
Application to Electronic-Structure Calculations. In M. Daydé, O. Mar-
ques, and K. Nakajima, editors, High Performance Computing for Com-
putational Science - VECPAR 2012, volume 7851 of Lecture Notes in
Computer Science, pages 226–235. Springer Berlin Heidelberg, 2013.

[57] Y. Futamura, H. Tadano, and T. Sakurai. Parallel stochastic estimation
method of eigenvalue distribution. JSIAM Letters, 2:127–130, 2010.

[58] Y. Maeda, Y. Futamura, and T. Sakurai. Stochastic estimation method
of eigenvalue density for nonlinear eigenvalue problem on the complex
plane. JSIAM Letters, 3:61–64, 2011.

[59] Y. Nagai, Y. Shinohara, Y. Futamura, Y. Ota, and T. Sakurai. Nu-
merical Construction of a Low-Energy Effective Hamiltonian in a Self-
Consistent Bogoliubov–de Gennes Approach of Superconductivity. Jour-
nal of the Physical Society of Japan, 82(9):094701, 2013.

[60] T. Sakurai, Y. Futamura, and H. Tadano. Efficient Parameter Estima-
tion and Implementations of a Contour Integral-Based Eigensolver. J.
Algo. Comput. Tech., 7(3):249–269, 2013.

[61] K. Yamamoto, Y. Maeda, Y. Futamura, and T. Sakurai. Adaptive Paral-
lel Algorithm for Stochastic Estimation of Nonlinear Eigenvalue Density.
IPSJ Transactions on Advanced Computing Systems, 5(3):22–29, 2012.
(in Japanese).

[62] T. Yano, Y. Futamura, and T. Sakurai. Multi-GPU Scalable Imple-
mentation of a Contour-Integral-Based Eigensolver for Real Symmetric

86

Dense Generalized Eigenvalue Problems. In Proceedings of 8th Interna-
tional Conference on P2P, Parallel, Grid, Cloud and Internet Comput-
ing (3PGCIC), pages 121–127, 2013.

87

