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Abstract 

Seeing is crucial to recognize the world and live in it. However, how our brain achieves 

the recognition has not been clarified. Construction of the neural representation of 

shape is a fundamental step towards shape perception and object recognition. 

Physiological studies have suggested that the representation of shape is established 

through the ventral visual pathway. Neurons in an early stage (the primary visual cortex 

(V1)) represent local, simple features such as orientation. Recent physiological studies 

have reported that neurons in V4, intermediate stage of the ventral stream, generate the 

representation of curvature as the subsequent representation of orientation. 

 Although the selectivites of neurons in the ventral stream have been reported 

by physiological studies, what neural mechanisms establish the selectivities has not 

been clarified. This thesis aims to provide computational understanding on how the 

visual cortices establish the neural representations of shape. Specifically, I investigated 

the neural mechanisms that generate the curvature representation in V4 and Medial 

Axis representation in V1. To clarify the neural mechanisms, I developed three distinct 

computational models, and carried out the simulations.  

 First, I developed a computational model that utilizes sparse coding, in order to 

investigate the coding scheme of V4. Computational studies have reported that sparse 
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coding generates the orientation selectivity in V1, so that the sparseness seems to be a 

key to clarify the coding scheme in V4. In the present study, I investigated whether V4 

shares the same coding principle as in V1, because sparse coding has been widely 

reported in the nervous system including vision, audition, olfaction, and others. I applied 

component analysis with sparseness constraint to the activities of model V2 neurons in 

response to natural images, so as to obtain the basis functions corresponding to the 

receptive fields of V4 neurons. In order to investigate the dependence of computed 

basis functions on sparseness, I generated multiple sets of basis functions whose 

sparseness was systematically differed. Quantitative measurement of curvature 

selectivity of the basis functions showed that the bases with appropriate sparseness 

reproduced the characteristics of V4 neurons, suggesting the crucial role of sparseness 

on the construction of the curvature selectivity. 

 Second, I investigated the role of surface representation on the construction of 

the curvature selectivity. In the component analysis model, the receptive fields of model 

V2 neurons were the combinations of two Gabor filters: the two Gabor filters faced 

toward each other or aligned in a straight line with the same phase. Such configurations 

may yield the representation of surface, so that the surface representation appears to 

be essential for the generation of the curvature selectivity. To test the role of surface 

representation, I developed a biologically plausible model that integrates local 

orientations detected by V1. In the biological model, the activities were determined 

based on the preference for orientations and its positions of V1 neurons. I carried out 

the simulations with all possible combinations of the preference, so that some model 

neurons may generate the representation of surface, and others may not. Simulation 

results showed that the integration of the local orientations with surface representation 
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yields the curvature selectivity, suggesting the important role of surface representation. 

 Two distinct computational models highlight the crucial roles of sparseness and 

surface representation on the construction of the curvature selectivity. It is expected that 

the sparseness of both models should be matched, if sparseness and surface 

representation are essential for the construction of the selectivity. I measured lifetime 

sparseness of each model cell and that of each basis function. The distributions of 

lifetime sparseness of the biological model and the component analysis model were 

matched. These results suggest that sparseness and surface representation play 

essential role in the integration of responses in V1 and V2, in order to establish the 

curvature representation in V4. 

 Recent physiological studies have reported that V1 generates the 

representation of shape together with spatial information. Lee et al. have demonstrated 

that V1 neurons respond to Medial Axis (MA) of an object which is the set of equidistant 

points from nearby contours. I investigated the neural mechanism for the construction of 

MA representation. In this research, I took into account onset synchronization 

(synchronization caused by stimulus onset) of Border Ownership selective neurons that 

tell the direction of figure with respect to their receptive fields. The signals from BO 

selective neurons begin to propagate from contours simultaneously. Such signals will 

meet at the equidistant point from nearby contours within a short time period, yielding 

the representation of MA. To test the hypothesis, I developed a biologically detailed 

model consisting of model BO selective neurons and V1 neurons, and carried out the 

simulations with various stimuli including the shapes obtained from natural images. 

Simulation results showed that the veridical representation of MA is constructed from 

the synchronized signals from BO selective neurons. These results indicate that the 
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onset synchronization of BO selective neurons is crucial for the emergence of MA 

representation. 

 In this thesis, I developed two distinct computational models for the 

construction of the curvature selectivity, which utilize component analysis with 

sparseness constraint and spatial pooling, respectively. Both of models reproduced the 

characteristics of V4 neurons, and the distributions of lifetime sparseness were matched. 

These results suggest that the spatial pooling and sparseness plays important roles in 

the establishment of the representation of curvature. I also developed the biologically 

detailed computational model in order to investigate the neural mechanism of MA 

representation. The model provides the insight into the mechanism of integration of 

signals from BO selective neurons. Specifically, onset synchronization of BO selective 

neurons is crucial for the establishment of cortical representation of shape by means of 

MA. 
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Chapter 1. General Introduction 

We recognize the world instantaneously and correctly mostly through our vision. 

Although we can recognize the world effortlessly, no computational algorithm can do 

that like humans. How does our brain recognize the world? What is a crucial step to do 

that? Construction of shape representation is an essential step toward shape perception 

and object recognition. Recent physiological studies have revealed that the 

representation of shape is constructed through the ventral visual stream in accordance 

with its hierarchical structure. For instance, the neurons in primary visual cortex (V1) 

represent orientation, and those in V4, subsequent region of V1, generate curvature 

representation. However, what neural mechanisms establish the selectivity has not 

been clarified. This thesis aims to provide computational understanding on how the 

visual cortices establish the neural representations of shape. Specifically, I investigated 

the neural mechanisms that generate the curvature representation in V4 and Medial 

Axis representation in V1. This section describes a brief summary of recent advances in 

the physiological research of cortical processing of shape, and gives the overview of the 

thesis. 
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1.1  Shape representation in the ventral stream 

The construction of shape representation starts from light hitting the retina. How does 

our brain establish the neural representation that is useful for recognizing external 

world? Recent physiological studies have suggested that the cortices are organized in 

hierarchical manner [1], and that such organization plays important role. Specifically, the 

representation of shape is constructed through the ventral stream. The primary visual 

cortex (V1), the first area of the stream, generates the representation of orientation [2]. 

Successive regions generate the representation of complicated features. The neurons 

in V2 are selective to angles [3] and Border Ownership (BO) [4], and those in V4 are 

tuned to curvature and surfaces [5-8]. Inferotemporal (IT) cortex, the end of the ventral 

stream, encodes three dimensional shape of an object [9]. These facts indicate that the 

features are integrated in accordance with the hierarchy, in order to construct the useful 

representation for recognizing object. Brief reviews of selectivities observed in the 

ventral stream are given in following three sections. 

 

1.2  Physiology of Medial Axis representation 

Orientation selectivity is one of the import characteristics in V1. However, it is not 

sufficient for explaining the responses of V1 neurons. Lee et al. have been reported that 

V1 neurons respond to Medial Axis (MA) that is the set of symmetric points from nearby 

local contours [10]. In the experiment, they presented the stimuli defined by two 

orthogonal textures, forming an object and a background. As expected by orientation 

selectivity, V1 neurons responded to the texture of object when the orientation of texture 

corresponds to cells’ preference. In addition, the neurons showed strong activities to the 
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center of the object, suggesting that V1 neurons represent not only orientations but also 

the MA of object. 

 

1.3  Physiology of Border Ownership selectivity 

Border Ownership (BO) selectivity is crucial to distinct the characteristics of V2/V4 

neurons and those of V1 neurons [4]. BO indicates which side of the border owns the 

border. Zhou et al. have examined the responses to the stimuli whose local orientation 

and contrast projected to the classical receptive field (cRF) of cell was identical but BO 

directions were differed [4]. Around 20% of V1 neurons showed the selectivity to BO, 

and 60% of V2/V4 neurons showed the selectivity. This result suggests the crucial role 

of V2/V4 neurons in the BO representation. BO is essentially a local cue (e.g. [11]) that 

indicates the direction of figure (DOF) with respect to the cRF of the cell. In this thesis, I 

refer BO as the direction of figure at local point (the specific position), and DOF as the 

global direction of figure. 

 

1.4  Physiology of Angle & Curvature selectivity 

Neurons in V2 that is the successive region of V1 generate the representation of 

complicated features such as angle [3] in addition to BO. Ito and Komatsu have 

presented the stimuli composed of two lines to V2 neurons. The V2 neurons showed 

strong responses to a specific angle. Ito and Goda have proposed a computational 

model, and showed that the responses to angle could be explained by the summation of 

the response to each line component [12]. These results indicate that V2 neurons 

integrate the activities of V1 neurons that respond to orientations. 
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 Neurons in V4 are selective to curvature that is close to the concept of angle 

[5-8]. Carlson et al. have examined the selectivity of V4 neurons by using genetic 

algorithm [8]. First, they generated stimuli randomly. Some of the stimuli drove V4 

neurons, however, others did not. The next generation of stimuli was constructed by 

modifying the previous stimuli based on the activities of the V4 neuron. By repeating this 

procedure, they were able to reveal that what features in the stimuli effectively drive the 

neuron. The results suggested that V4 neurons respond vigorously to the specific 

curvature and its direction. In addition, Carlson et al. have also revealed the population 

characteristics of V4 neurons. They measured population activity of V4 neurons by 

computing the linear summation of the activities of each neuron. Population activity was 

biased toward acute curvature, suggesting that V4 neurons are tend to represent acute 

curvature. 

 

1.5  Thesis overview 

Recent advances in physiological studies have indicated the selectivity of neurons in the 

visual cortices. However, how are these selectivities constructed? What is the coding 

principle used in the cortices? Such questions have not been clarified. The present work 

aims to describe what coding scheme and neural mechanism involved in the cortical 

network. 

 Chapter 2 describes coding scheme used in V4. Specifically, I investigate 

whether sparse coding is crucial for the construction of the curvature selectivity. 

Simulation results suggest that sparse coding with input of natural images establishes 

the curvature selectivity. Chapter 3 examines neural mechanism for the construction of 

the curvature selectivity. I developed a biological plausible model and carried out the 



5 

 

simulations. The analysis of the model cells suggests that the representation of surface 

together with the integration of local orientations is essential for the establishment of the 

curvature selectivity. Chapter 4 presents the neural mechanism that generates the 

representation of MA. Simulation results suggest that the synchronized signals from BO 

selective neurons play crucial role in the construction of MA representation. Chapter 5 

describes the summary of the thesis, and the significances of the present work. 

Subsequently, I discuss the directions for future work. 
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Chapter 2. Sparse coding in V4 

Physiological studies have reported that V4 neurons are selective to curvature and its 

direction. What does coding scheme account for the construction of the selectivity? 

Sparse coding seems to be the key to clarify this issue, because it has been reported to 

generate orientation selectivity in V1. The present section investigates whether sparse 

coding generates the selectivity in V4.  

 

2.1  Introduction 

Olshausen and Field have suggested computationally that sparseness plays crucial role 

in the construction of orientation selectivity in V1 [13]. They have assumed that images 

can be represented by a linear superposition of basis functions and their coefficients: 

 𝐼𝑖 = ∑ 𝑐𝑖𝑗𝐵𝑗

𝑗

, (2-1) 

where, 𝐼𝑖  represents 𝑖 th image, 𝐵𝑗  represents 𝑗 th basis function, 𝑐𝑖𝑗  represents 

coefficient of 𝑗th basis function to 𝑖th image. The bases and their coefficient were 

obtained by component analysis with sparseness constraint on the coefficients in terms 

of maximization of sparseness. Maximization of the sparseness means that relatively a 

small amount of absolute coefficients become large value and others do not. 

Considering each basis function as single neuron, their coefficients represent the 
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activities of each neuron to the images. Sparseness maximization corresponds to 

reduction of the number of active neurons. The computed basis functions showed the 

localized structures like Gabor functions that are similar to the receptive field structures 

of V1 neurons [14], suggesting that sparse coding generates the orientation selectivity 

of V1. 

 

2.2  The proposed hypothesis 

In the present study, I propose that sparseness plays a crucial role in the construction of 

the curvature selectivity in V4. It is plausible to consider that V4 shares the same coding 

scheme as V1, because physiological studies have reported that sparse coding is 

observed in many visual areas including V4, in addition, not limited in visual cortex 

[15-20]. To test the proposal, I developed a computational model, and carried out the 

simulations with the input of natural images. I generated the basis functions whose 

sparseness altered systematically, and compared their selectivity to the physiology. 

 

2.3  The Model 

Fig. 2-1 illustrates the computational flow of the proposed model. Although the essence 

of computation is identical to the model proposed by Olshausen and Field [13], some 

modifications have been made. First, stimuli obtained from natural images were 

binarized so as to focus on the information of shapes (details are described in section 

2.4.1). Second, component analysis with sparse constraint was applied to the activities 

of model V2 neurons in response to natural images. Since V4 neurons receive 

ascending input from V2 [1], the correspondence between the hierarchy of the model 
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and that of the cortex enables me to consider the obtained basis functions as the 

receptive fields of V4 neurons. To compute the basis functions with sparse coefficients, I 

solved the optimization problem that minimizes the following cost: 

 cost = [𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟] +  𝜆[𝑑𝑒𝑛𝑠𝑒𝑛𝑒𝑠𝑠], (2-2) 

where, the first term in the right hand side of the equation indicates the error of 

reconstruction from the basis functions and their coefficients. Reconstruction error is 

defined as the sum of squared error between the input signals and the reconstructed 

signals: 

 

[𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟] = ∑ [𝐴𝑖(𝑥, 𝑦) − ∑ 𝑐𝑖𝑗𝐵𝑗(𝑥, 𝑦)

𝑗

]

2

 ,

𝑥,𝑦,𝑖

 (2-3) 

where, (𝑥, 𝑦)  is coordinate, 𝐵𝑗  represents 𝑗 th basis function, 𝑐𝑖𝑗  represents 

coefficient of 𝑗th basis function to 𝑖th input. 𝐴𝑖 indicates the activities of model V2 

neurons. The receptive fields (RFs) of model V2 neurons were comprised of the 

combination of two Gabor filters, mimicking angle selectivity reported physiologically [3, 

12, 21]. 

 The second term of the right hand side of eq. 2-2 evaluates sparseness of 

coefficients:  

 𝜆[𝑑𝑒𝑛𝑠𝑒𝑛𝑒𝑠𝑠] = 𝜆 ∑ 𝑆(𝑐𝑖𝑗 𝜎⁄ ),

𝑖,𝑗

 (2-4) 

where, 𝑆 is a non-linear function which poses cost in proportional to absolute values of 

coefficients. Such non-linearity can be realized by lots of functions, I used 𝑆(𝑥) =

log(1 + 𝑥2) as similar to the previous study [13]. 𝜆 and 𝜎 in eq. 2-4 indicate positive 

constants which are the weight of sparseness term in the cost function and the scaling 

factor of coefficients, respectively. The values of 𝜆 and 𝜎 are described in section 

2.4.2. 
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2.4  Methods 

 Stimuli 2.4.1

Input images for the model were part of natural images obtained from the Amsterdam 

Library of Object Images [22]. The natural images were binarized to focus solely on the 

information of shapes, not on other cues such as color and texture. Then, patches (33×

33 pixel) were cut out along with the contours of the objects in order to ensure that the 

contours pass along the center of the patches. 80 thousands of patches were made by 

this procedure. 

 

 Parameters 2.4.2

In the present study, it is necessary to obtain the basis functions whose sparseness is 

altered systematically, so as to investigate the contribution of sparseness on the 

construction of the curvature selectivity. 𝜆 and 𝜎 in eq. 2-4 were changed by the factor 

Fig. 2-1. Schematic illustration of processing flow of the model. Component 

analysis with sparseness constraint is applied to the activities of model V2 

neurons responding to patches obtained from natural images. The receptive 

fields of model V2 neurons are composed of the combination of two Gabor filters. 

I consider the learned bases as the receptive fields of V4 neurons. 
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of 10, because these parameters determine sparseness of a code. 

 λ =  {2.2 × 10𝑥|𝑥 = −2, −1,0,1,2}, (2-5) 

 σ =  {0.316 × 10𝑥 |𝑥 = −2, −1,0,1,2}. (2-6) 

𝜆 = 2.2 and 𝜎 = 0.316 were used in the previous report [13]. All possible combinations 

of these parameters were used in the simulations. 

 

 Population sparseness 2.4.3

Sparseness of a code is measured quantitatively as population sparseness [8]. Given 

that the coefficients (C = {𝑐𝑖,𝑗}), I defined population sparseness (𝑆𝑃(𝐶)) as follow: 

 𝑆𝑃(𝐶) =
1 − 𝑎

1 −
1
𝑛

, (2-7) 

 𝑎 = 〈
〈|𝑐𝑖,𝑗|〉𝑗

2

〈𝑐𝑖,𝑗
2 〉𝑗

〉𝑖 . (2-8) 

𝑛 is the number of basis functions (𝑛 = 64 in the present study). Notation 〈∙〉𝑖 indicates 

average across 𝑖. Population sparseness ranges from 0 to 1. For instance, 𝑆𝑃(𝐶) = 1 

means that each input signal is represented solely by one basis function (i.e. the code is 

sparse). 

 

 Computation of curvature selectivity 2.4.4

To quantify the curvature selectivity of computed basis function, I took the convolution of 

stimuli defined by curvature and its direction (Fig. 2-2) with the basis function: 

 𝑅𝑖 = 𝐼𝑖 ∗ 𝐵. (2-9) 

𝐼𝑖 is the 𝑖th stimulus, B is the basis function. Notation * represents convolution. 𝑅𝑖 was 

passed through half-wave rectification and sigmoidal function. 

 To make the comparison between the model and the physiology, I computed 

Spike Weighted Matrix (SWM) in the same way as the physiological study [8]. A stimulus 
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included distinct curvatures and their directions along its contour. The activity was 

mapped to a matrix defined by the domain of curvature and its direction. The activity of a 

basis to a stimulus (𝑅𝑖) was stored into the bins of the matrix corresponding to the 

curvatures and directions along the stimulus contour. The procedure was repeated for 

all stimuli. The activities of each bin were divided by the sample number of the bin in 

order to compute an average. The averages were normalized so that the value of each 

bin ranges between 0 and 1. 

  

Fig. 2-2. Test stimuli defined by curvature and its direction. Each of them has 

different curvature and direction. 
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2.5  Results 

To investigate whether sparseness is crucial for the construction of the curvature 

selectivity, I carried out the simulations so as to obtain basis functions that have distinct 

sparseness. I compared the selectivity of each basis functions and their population 

activity with those of the physiology. 

 

 Selectivity of single basis functions 2.5.1

Fig. 2-3 shows the examples of computed basis functions with distinct sparseness. No 

structure is apparent when sparseness is low (Fig. 2-3a; 𝑆𝑃 = 0.38). In contrast, there 

are localized structures somewhat represent the specific shapes in the basis functions 

whose sparseness is high (Fig. 2-3b, c; b: 𝑆𝑃 = 0.81，c: 𝑆𝑃 = 0.87). To investigate the 

contribution of sparseness on the construction of the curvature selectivity, I measured 

curvature selectivity of these basis functions (Fig. 2-4a-c; a: 𝑆𝑃 = 0.38，b: 𝑆𝑃 = 0.81，

c: 𝑆𝑃 = 0.87). The basis functions did not reproduce the selectivity with low sparseness 

(Fig. 2-4a). In contrast, the basis functions whose sparseness is high (Fig. 2-4b, c) 

Fig. 2-3. Examples of computed basis functions. (a) 𝑺𝑷 = 𝟎.𝟑𝟖，(b) 𝑺𝑷 = 𝟎.𝟖𝟏，

(c) 𝑺𝑷 = 𝟎.𝟖𝟕．No localized structure is apparent when sparseness is low (a)．

Localized structures are observed when sparseness is high(b, c). These 

structures seem to represent the specific shapes. 
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showed curvature selectivity consistent with physiological studies (Fig. 2-4d; [8]). These 

results suggest that the curvature selectivity of the single basis functions is constructed 

when sparseness is high. 

 

 

   

  

Fig. 2-4. Activities of single basis functions and their population. The activities 

indicated by color (reddish means high activity) are plotted as the function of 

curvature and its direction. (a, e) 𝑺𝑷 = 𝟎.𝟑𝟖, (b, f) 𝑺𝑷 = 𝟎. 𝟖𝟏, (c, g) 𝑺𝑷 = 𝟎.𝟖𝟕. (a-c) 

Curvature selectivity of example single basis functions (the right bottom basis 

function in Fig. 2-3 a, b, and c, respectively). (d) The activity of real V4 neuron 

(adopted with permission from [8]). The single basis functions showed curvature 

selectivity when sparseness is high (b, c). (e-g) Population activities of the basis 

functions. (h)Population activity of actual V4 neurons (adopted with permission 

from [8]). The population activity showed the bias toward acute curvature when 

sparseness is appropriate (f). 
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 Acute curvature bias in population activity 2.5.2

In the previous section, I showed that high sparseness constructs the curvature 

selectivity in single basis function. Here, I addressed whether sparseness is crucial 

factor for the generation of population characteristics. Carlson et al. have measured 

population activity by computing the linear summation of the activities of single V4 

neurons, and reported that population activity shows bias toward acute curvature (Fig. 

2-4h; [8]). In this section, I investigated whether the population activities of the basis 

functions reproduce the bias. 

 Population activities of the basis functions are shown in Fig. 2-4e-g (e: 

𝑆𝑃 = 0.38，f: 𝑆𝑃 = 0.81，g: 𝑆𝑃 = 0.87). Population activities did not show the bias toward 

acute curvature when sparseness is low and high (Fig. 2-4e, g). There is a certain bias 

in the population activity toward acute curvature when sparseness is appropriate (Fig. 

2-4f). These results indicate the crucial role of sparseness in the construction of 

characteristics of V4 neurons. 

 

2.6  Discussion 

 Summary 2.6.1

I proposed that sparseness is crucial for the construction of the curvature selectivity in 

V4. To test the proposal, I developed the computational model that utilizes sparse 

coding, and carried out the simulations. The basis functions were computed from the 

activities of model V2 neurons in response to natural images. Simulation results of the 

single basis functions showed that the curvature selectivity is observed with high 

sparseness. 

 To investigate whether the population characteristics of the basis functions 
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reproduce those of the physiology, I measured population activity of the bases in the 

same way as the physiology. Population activity of the bases whose sparseness is 

appropriate showed the bias toward acute curvature consistent with the physiology. 

These results suggest that sparseness plays important role for the establishment of the 

characteristics in V4. In other words, the construction of the selectivity of V4 neurons is 

the consequence of the sparse coding. 

 

 Constraint on spatial structure 2.6.2

The implicit constrain in addition to the sparseness is the spatial structure of natural 

images. When the spatial structure of activities in model V2 neurons was randomized 

(i.e. the structure of the natural images was destroyed), the learned basis functions did 

not reproduce the curvature selectivity. This fact suggests that the curvature selectivity 

is a consequence of the sparse coding of the signals passed through the ventral stream. 

It would be interesting to clarify that what statistical constraint on natural images is 

necessary to reproduce the curvature selectivity. 

 

 Mathematical analysis of cost function
1
 2.6.3

It is assumed that the distribution of reconstruction error is a Gauss function, when the 

reconstruction error is defined by the sum of squared error [23]. For the sake of 

simplicity, let me consider a probabilistic model to obtain optimal coefficients (𝐶) given 

that the specific basis functions (𝐵) and input signals (𝐴). Optimal coefficients are 

estimated by likelihood which maximizes 𝑃(𝐴 − 𝐶𝐵, 𝐶) =  𝑃(𝐴|𝐶)𝑃(𝐶) . One can 

                                                

 

1 I would like to thank Dr. Hideitsu Hino for useful comments and suggestions described 

in the section. 
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assume that likelihood (𝑃(𝐴|𝐶)) is defined by the Gaussian distribution as below: 

 𝑃(𝐴|𝐶) ∝  𝑒𝑥𝑝 (−
(𝐴 − 𝐶𝐵)2

2𝜎2
). (2-10) 

𝜎 is the standard deviation of the Gaussian. Here, the distribution of coefficients is also 

assumed to be a Gauss function, 𝑃(𝐶) can be described:  

 
𝑃(𝐶) ∝ 𝑒𝑥𝑝 (−

𝜆

2
‖𝐶‖2), (2-11) 

where, 𝜆  is constant. Log likelihood can be computed as below. Note that the 

maximizing the log likelihood is equivalent to the minimizing negative log likelihood. 

 −𝑙𝑜𝑔(𝑃(𝐴|𝐶)𝑃(𝐶)) = −𝑙𝑜𝑔(𝑃(𝐴|𝐶)) − 𝑙𝑜𝑔(𝑃(𝐶))   (2-12) 

                        ∝ (𝐴 − 𝐶𝐵)2 + 𝜆‖𝐶‖2   (2-13) 

Eq. 2-13 is composed of (1) the sum of squared error and (2) regularization term that 

corresponds to the cost function used in this study. This fact indicates that minimizing 

the cost function (eqs. 2-2, 2-3, and 2-4) is equivalent to minimizing the negative 

likelihood with the assumption that the reconstruction error is a Gaussian distribution.  

 One important suggestion from the above discussion is that the form of cost 

function assumes the specific probability distribution (e.g. the sum of square assumes a 

Gaussian distribution). Therefore, the definition of cost function could affect the form of 

learned basis functions. In fact, the basis functions whose sparseness is appropriate did 

not yield the curvature selectivity, when reconstruction error was defined as 𝑙1-norm 

instead of the square error (𝑙2-norm): 

 

[𝑅𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟] = ∑ |𝐴𝑖(𝑥, 𝑦) − ∑ 𝑐𝑖𝑗𝐵𝑗(𝑥, 𝑦)

𝑗

| .

𝑥,𝑦,𝑖

 (2-14) 

This preliminary result implies that the assumption of probability distribution in cost 

function, in addition to sparseness, is important for the generation of the curvature 
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selectivity. Further analysis will give insights in the essence of coding scheme. 
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Chapter 3. Surface constraint on the 

generation of curvature selectivity 

In the previous chapter, I showed that sparse coding applied to the activities of V2 

neurons generates the curvature selectivity. In the component analysis model, the 

receptive fields of model V2 neurons were the combinations of two Gabor filters: the two 

Gabor filters faced toward each other or aligned in a straight line with the same phase. 

Such configurations may yield the representation of surface, so that the surface 

representation appears to be essential for the generation of the curvature selectivity. 

Here, I investigate computationally the role of surface representation on the 

construction of the selectivity with a biologically plausible model. 

 

3.1  Introduction 

In the present section, I discuss the neural mechanism of the curvature selectivity by 

using a biologically plausible model that mimics cortical hierarchy in the ventral stream. 

The receptive fields (RFs) of neurons at the same eccentricity increase in accordance 

with the hierarchy (i.e. neurons in higher cortical region at the eccentricity have large 

RF; [24-26]). I hypothesize that V4 pools the particular combination of V1 activities with 

their large RF, yielding the selectivity to the curvature. Such pooling has been reported 
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theoretically to produce a number of selectivities [27-31]. For instance, orientation 

selectivity in V1 can be constructed from the spatial integration of the activities of LGN 

cells [27]. 

 

3.2  The proposed hypothesis 

I propose that the integration of local orientations (the activities of V1 neurons) based on 

the representation of surface plays crucial role in the construction of the curvature 

selectivity. As stated in the General Introduction, the RFs of V1 neurons can be 

described by Gabor functions. Given that the pooling of V1 activities, some combination 

may yield the representation of surface, and others may not, depending on the 

combination of the phase of Gabors. For example, the positive values of the Gabors 

faced toward each other (Fig. 3-1), or aligned in a straight line with the same phase may 

generate the representation of surface. The representation of surface seems to play an 

important role in the construction of curvature selectivity because the shape of an object 

is determined by the contrast between the object and background. If the phase of 

Gabors is matched (i.e. surface representation may emerges), a V4 neuron pools strong 

activities of V1 neurons driven by a stimulus, yielding the strong activity of the V4 

neuron. 
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Fig. 3-1. Schematic Illustration of surface representation generated from a 

combination of Gabor filters. (left) An example stimulus. (right) A combination of 

two Gabor filters. Orange and blue indicate positive and negative values, 

respectively. Their phase is matched (positive values faced toward each other), 

yielding the representation of surface. It is expected that the curvature selectivity 

is constructed from the integration of orientatons when their phase is mached. 
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3.3  The model 

Fig. 3-2 illustrates the computational flow of the proposed model (details are described 

in Appendix A). The model takes two distinct computations. First stage corresponds to 

the computation of V1 neurons. The bank of 16 oriented Gabor filters detected local 

orientations. Detected orientations were passed through half-wave rectification and 

divisive normalization. All computations have been reported physiologically in V1 [32]. 

 Second stage integrates the activities of the model V1 neurons in order to 

compute the activity of model V4 neuron. The model combines the two distinct types of 

model V1 neurons at the specific positions. I defied the activity of model V4 neuron as 

below: 

 𝑅𝑉4
(𝜃1,𝜃2,𝜑1,𝜑2)

= 𝑅𝑉1
(𝜃1,𝜑1)

+ 𝑅𝑉1
(𝜃2,𝜑2)

, (3-1) 

where, 𝑅𝑉1
(𝜃𝑖 ,𝜑𝑖)

 is the activity of model V1 neuron, 𝜃𝑖 and 𝜑𝑖 represent the preference 

of model V4 neuron for orientation and its position, respectively. The activity of model 

V4 neuron was passed through sigmoidal function in order to realize the nonlinear 

characteristics of actual neurons. 

Fig. 3-2. Schematic illustration of the computational flow of the biological model. 

The model extracts local orientations with 16 oriented Gabor filters. The detected 

orientations are passed through half-wave rectification and divisive normalization. 

The model pools the activities of model V1 neurons so as to obatin the activitiy of 

model V4 neuron. 
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3.4  Methods 

 Stimuli 3.4.1

Stimuli used for the simulations were defined by curvature and its direction as show in 

Fig. 2-2. The measurement of the curvature selectivity is described in section 2.4.4. 

 

 Parameters 3.4.2

The activities of model neurons were determined by the two parameters: orientations 

(𝜃) and their positions (𝜑). Both parameters were chosen from 16 orientations and 16 

angular positions, respectively. I carried out the simulations with all possible 

combinations of those parameters, yielding 34,816 distinct model V4 neurons. 

 

 Phase analysis 3.4.3

I analyzed the phase of Gabor filters that are integrated by model V4 neurons in order to 

classify the model cells into two categories: In-phase model cell (with surface 

representation) and Out-phase model cell (without surface representation). I defined 

that surface representation emerges when the phase of two Gabor filters satisfy one of 

the following condition: 

(i) parallel and the difference of orientations is180°, 

(ii) mirror symmetry, 

(iii) two Gabors located at the same position with similar orientations. 

Fig. 3-3 illustrates the schematic presentation of above criteria. 

 

 Lifetime Sparseness 3.4.4

To compare sparseness of the biological model and that of the component analysis 

model, I quantified lifetime sparseness (𝑆𝐿) of each model cell and each basis function 
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in the similar way as the physiology [15, 33]. 

 𝑆𝐿(𝑅) =
1 − 𝑎

1 −
1
𝑛

 , (3-2) 

 𝑎 =
1

𝑛
(

(∑ 𝑟𝑖𝑖 )2

∑ 𝑟𝑖
2

𝑖
), (3-3) 

where, 𝑟𝑖  is response to the 𝑖 th stimulus, 𝑅  is the set of responses(R =  {𝑟𝑖}), 𝑛 

represents the number of the stimuli. The index ranges from 0 to 1, measuring the 

sharpness of the curvature selectivity. This index becomes one when model cell 

responds to only one stimulus. Although population sparseness and lifetime sparseness 

are intrinsically different measurements of sparseness, I used lifetime sparseness to 

compare sparseness of the biological model and that of the component analysis model. 

The reason is that the measurement of population sparseness of the biological model is 

not straightforward because population sparseness measures how much cells are used 

to represent images. 

Fig. 3-3. Schematic illustration of the criteria used in phase analysis. Orange and 

blue indicate positive and negative value of a Gabor function, respectively. 
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3.5  Results 

I proposed that the representation of surface generated by the phase of Gabor filters 

plays a crucial role in the construction of the curvature selectivity. First, I tested validity 

of the model in terms of reproducibility of the physiological results. Second, I 

investigated the role of surface representation on the construction of the selectivity. At 

the end, I compared lifetime sparseness of the model cells and that of the basis 

functions. 

 

 Selectivity of single model neurons 3.5.1

The activities of example model neurons are shown in Fig. 3-4a-c. The model neurons 

reproduced the curvature selectivity. For instance, the model neuron shown in Fig. 3-4a 

was selective to acute curvature pointing to the left. Each model cell showed distinct 

tuning for curvature and direction (Fig. 3-4a-c), reproducing the curvature selectivity 

reported by physiological studies (Fig. 2-4d; [8]). These results suggest that the model 

can reproduce the curvature selectivity at single cell level. 

 

 Population response of model neurons 3.5.2

I computed population activity of the model V4 cells in order to investigate whether the 

model reproduces the acute curvature bias. Fig. 3-4d shows population activity of the 

model V4 neurons. There is the bias toward acute curvature in the activity consistent 

with the physiological report (cf. Fig. 2-4h; [8]). This result and the results in single 

model cells suggest that the model is capable of reproduce the characteristics of the 

actual V4 neurons, indicating the validity of the model. 
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Fig. 3-4. Simulation results of the biological model. Conventions are the same as 

Fig. 2-4. (a-c) Activities of three example model neurons. Each of the cells 

reproduces distinct tuning for curvature and direction. (d) Population activity of 

the model cells. It shows the bias toward acute curvature consistent with the 

physiology. 
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 Surface constraint on the pooling of V1 activities 3.5.3

In the two previous sections, I showed that the validity of the proposed model by 

comparing the characteristics of the model cells and those of the V4 neurons. Here, I 

discuss the plausibility of the proposal. I classified model cells into two distinct classes: 

the phase of Gabor filters is matched to yield surface representation (In-phase), or not 

matched (Out-phase). I investigated whether the representation of surface plays crucial 

role in the construction of the curvature selectivity, by comparing the selectivity of 

In-phase model cells and that of Out-phase model cells. 

 Fig. 3-5a shows scatter plots between the maximum activity of each model V4 

cell and the difference of angular position of two Gabors (Difference of φ) for In-phase 

and Out-phase model cells (Fig. 3-5a left: In-phase，right: Out-phase). There is the 

tendency that Out-phase model cells do not show the strong activity for the stimuli 

defined by curvature and direction, suggesting that the Out-phase model cells are not 

selective to curvature. However, some Out-phase cells show strong activities with their 

phase of difference is around 22.5°. Given that the proposal, it is expected that the 

Out-phase model cells do not show the curvature selectivity. To clarify the proposal, 

further analysis was conducted to the model cells whose phase of difference is 22.5°. 

Fig. 3-5b shows scatter plots between maximum activities and difference of orientations 

(Fig. 3-5b left: In-phase, right: Out-phase). The plot suggests that the Out-phase cells 

show strong activities when they pool similar orientations (Difference of θ is around 0 

and 337.5°). The selectivity of such cell is shown in Fig. 3-6. The cell showed selectivity 

for both of positive and negative curvature inconsistent with the physiology. This cell 

pools the same local orientations at similar positions, so that the cell operates like a 

line-detector. In fact the cell responds to the local orientations indicated by the grey 
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circle in the inset of Fig. 3-6. To summarize the simulation results: (1) In-phase model 

cells tend to show the strong response to curvature-defined stimuli, but Out-phase cells 

do not. (2) Out-phase cells that show strong response, respond to the local line, not to 

the curvature. These results suggest that the representation of surface is important for 

the construction of the curvature selectivity. 

Fig. 3-5. Contribution of surface representation on the generation of the curvature 

selectivity. (left column) In-phase model cells (right column)Out-phase model 

cells. (a) Scatter plots between the maximum response of each model cell and the 

difference of angular positions of Gabor filters. Although the Out-phase model 

cells tend to show week response to curvature defined stimuli, they respond 

strongly when the difference of φ is around 22.5. (b) Scatter plots between the 

maximum responses of each model cell and the difference of orientations of 

Gabor filters. Only the model cells whose difference of φ is 22.5 are plotted. The 

Out-phase model cell shows strong response when they pool the similar 

orientations at the similar positions. 
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Fig. 3-6. Comparison between selectivity of an example In-phase model cell (left) 

and an example Out-phase model cell (right). Although In-phase model cell 

reproduced the curvature selectivity consistent with the physiology, Out-phase 

model cell did not. It pools the similar orientations at similar positions, so that the 

cell detects the specific orientation denoted by gray circle in the inset. 
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 Distribution of lifetime sparseness 3.5.4

Two distinct computational models highlight the crucial roles of sparseness and surface 

representation on the construction of the curvature selectivity. It is expected that the 

sparseness of both models should be matched, if sparseness and surface 

representation are essential for the construction of the selectivity. To test this 

expectation, I compared lifetime sparseness of the model V4 cells to that of the basis 

functions. Fig. 3-7 shows the histogram of lifetime sparseness of the model V4 neurons 

which showed the curvature selectivity (Fig. 3-7 left) and that of the basis functions (Fig. 

3-7 right; the basis functions are shown in Fig. 2-3b). The distributions are matched in 

terms of their mean and standard deviation (SD; 0.48 ± 0.07 for the model cells, 0.48 ± 

0.08 for the basis functions; mean ± SD). The means were not significantly differed 

(t-test, p > 0.60). This result suggests that the activities of the biological model are 

sparse same as the component analysis model. 

Fig. 3-7. Distributions of lifetime sparseness of the model neurons (left) and that of 

the basis functions (right). Both distributions are identical (0.48 ± 0.07 for the 

model cells, 0.48 ± 0.08 for the basis functions; mean ± SD). The means are not 

significantly differed (t-test, p > 0.60). 
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3.6  Discussion 

 Summary 3.6.1

I proposed that the integration of local orientations based on surface representation 

yields the curvature selectivity in V4. To test this proposal, I developed the biological 

plausible model and carried out a series of simulations. The activities of single model 

cells and their population were compared to those of physiology, in order to investigate 

the validity of the model. The model reproduced the characteristics of actual V4 neurons, 

suggesting the plausibility of the model.  

 To investigate the role of surface representation on the generation of the 

curvature selectivity, I classified the model cells into two categories: the phase of their 

Gabors generates the representation of surface, or does not. The curvature selectivity is 

reproduced when the representation of surface is established, suggesting the crucial 

role of surface representation.  

 Because appropriate sparseness was required for the construction of the 

selectivity, it is expected that the activities of the model V4 neurons with the selectivity 

should be sparse. To examine this idea, I compared lifetime sparseness of the model V4 

cells and that of the basis functions. The distributions were identical in terms of their 

mean and standard deviation. This fact supports the proposal that the integration of 

local orientations based on the representation of surface is crucial for the construction of 

the curvature selectivity. 

 

 Comparison to other computational model 3.6.2

Some theoretical studies have proposed that spatial pooling could reproduce the 

curvature selectivity in V4 [30, 31]. However, their models were designed to reproduce 



31 

 

the physiological data. For example, Cadieu have proposed the model that obtains the 

optimal combination of subunits (correspond to activities of V1 neurons) fitted to the 

physiological data [31]. Although the model provided the curvature selectivity and 

position invariance reported by physiological studies, it did not clarify the essential 

constraint involved in the cortical network. An important advance from the present study 

is that the model gives insight into the fundamental neural mechanism. Specifically, the 

model elucidates the crucial role of surface representation on the establishment of the 

curvature selectivity. 
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Chapter 4. Shape representation in 

early visual cortex 

In the two precedent chapters, I focused on the coding scheme and the neural 

mechanism that generate the representation of curvature of contour. Here, I focus on 

the representation of shape obtained from the information of local contours. Recent 

physiological studies have reported that V1 generates the representation of shape 

together with spatial information by means of Medial Axis (MA). This section 

investigates the neural mechanism that generates MA representation in V1. 

 

4.1  Introduction 

The theory of MA has been developed in the purpose of efficient encoding of object 

shapes [34, 35]. In the theory of MA representation, the shape of an object is 

represented by the set of local symmetric axes and distances between the all points of 

the axes and the contours. Although the idea of MA is developed theoretically, recent 

physiological and psychophysical studies have reported the cortical representation of 

MA [10, 36-38]. Lee et al. have studied whether the activities of V1 neurons are 

modulated depending on context ([10]; see also section 1.2 ). They controlled the 

relative position of stimuli and the RF of V1 neuron so that the RF is located on either 
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contours or figure, or background. As expected by orientation selectivity, V1 neurons 

responded to the contour of which orientation corresponds to cells’ preference. In 

addition, the neurons showed strong activities to the center of the object, suggesting 

that V1 neurons encode the MA of object not limited to contours. 

 V1 neurons seem to integrate the signals from BO selective neurons in V2 so 

as to generate the representation of MA, because (1) the size of the stimuli (4degree) 

exceeds the size of V1 neurons’ RF (up to 1 degree at the eccentricity of 4 degree; [24]), 

(2) lateral connection is too slow to explain the short latency of V1 neurons that respond 

to MA (around 80-90ms; [10]), and (3) the modulation depends on the context that the 

RF of the V1 cell is onto whether figure or background. To investigate the neural 

mechanism of the construction of MA, I developed a biologically detailed model 

including V1 neurons and BO selective neurons that are mutually connected. 

 

4.2  The proposed hypothesis 

I propose that onset synchronization of BO selective neurons plays crucial role in the 

construction of MA representation. In this thesis, I referred onset synchronization as the 

synchronization caused by the stimulus onset. BO selective neurons signals from 

contours begin to propagate simultaneously, and will meet at the equidistant points from 

nearby contours, yielding the representation of MA. In the present model, the 

propagation of signals is limited to the DOF. If such directional propagation exists, the 

model provides the veridical representation of MA even in the presence of multiple 

objects. Although onset synchronization of V1 cells along contours is not sufficient for 

the veridical determination of MA, the synchronization among BO selective cells and the 

bias in signal propagation are capable of determining correct MA. 
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 Dong et al. have reported that BO selective neurons show significant 

correlation [39]. Although the neural mechanism of the synchronization among BO 

selective neurons has not been clarified, physiological studies have reported that the 

spatiotemporal structures of stimulus strongly affect the synchronization of V1 cells [40, 

41]. I consider that the onset synchronized activities of V1 neurons propagate to V2, 

yielding the synchronization in V2. 

 

4.3  The model 

Fig. 4-1a is the schematic illustration of model connectivity. The model is composed of 

two distinct layers, which correspond to V1 and V2. Each layer is comprised of model 

neurons described in section 4.3.1 without overlap of their RFs. The layers were 

mutually connected by feedforward and feedback connections. In addition to the 

inter-cortical connections, V1 layer has lateral connections. The characteristics of those 

cortical connections were determined based on the physiological evidences: the lateral 

connection is short (<0.5 mm) and slow (0.1 mm/ms)[42], and the feedforward/feedback 

connections are long (10–15 mm) and fast (3 mm/ms)[43, 44]. 

 The computational flow of the model is described in Fig. 4-1b. The model has 

four distinct functional stages of computation: (i) contrast detection, (ii) determination of 

the DOF, (iii) integration of DOF signals, and (iv) competition by a winner-take-all. Below 

describes descriptions of the model cells and each functional stag. The model is 

implemented on the NEURON simulator [45]. 
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 Single model cell 4.3.1

Each model cell is approximated by a sphere whose diameter is 23μm. It is needed to 

compute precise spatiotemporal responses of the model neurons in order to investigate 

the manner of integration of signals from BO selective neurons. I solved the 

Hodgkin-Huxley equation in order to obtain the time course of membrane potential [46]. 

 𝐶𝑚
𝑑𝑣

𝑑𝑡
=  𝑔𝑁𝑎(𝑉 − 𝐸𝑁𝑎) + 𝑔𝐾(𝑉 − 𝐸𝐾) + 𝑔𝑙(𝑉 − 𝐸𝑙) + 𝐼, (4-1) 

where 𝐶𝑚  represents the membrane capacitance. 𝑔𝑥  and 𝐸𝑥  are the conductance 

and equilibrium potential, respectively. The subscripts 𝑥  indicate the type of ion 

channel: 𝑁𝑎, 𝐾, and 𝑙 represent sodium, potassium, and other ions, respectively. 𝐼 is 

Fig. 4-1. Schematic illustrations of the proposed model. (a) Connectivity of the 

model. The model is composed of two distinct layers corresponding to V1 and V2. 

Each layer is mutually connected in terms of feedforward/feedback connection. In 

addition to inter-cortical connections, V1 neurons have lateral connection. (b) 

Computational flow of the model. Four distinct functional stages exist: (i) contrast 

detection, (ii) determination of DOF, (iii) integration of DOF signals, and (iv) 

competition by Winner-take-all manner. 
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the input current. The values of these parameters are summarized in Table 1 [47, 48]. 

The RF size of a model cells is 0.75°×0.75 °. 

 

Table 1. Parameters for each model cell. 

Parameter Value 

𝑪𝒎 1 (F/cm
2
) 

𝑬𝑵𝒂 50 (mV) 

𝑬𝑲 –77 (mV) 

𝑬𝒍 –54.3 (mV) 

𝒈𝑵𝒂 0.04 (S/cm
2
) 

𝒈𝑲 0.012 (S/cm
2
) 

𝒈𝒍 0.0001 (S/cm
2
) 
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  Contrast detection 4.3.2

In this stage, luminance contrast is detected by four oriented Gabor filters by computing 

convolution of input stimulus with Gabor masks. Detected contrasts were passed 

through half-wave rectification and divisive normalization [32]. 

 

  DOF determination 4.3.3

The activities of a model BO selective neuron were determined based on the luminance 

contrast surrounding its classical RF (cRF; details are described in Appendix B; [49]). 

The response of a cell is modulated by the contrast surrounding the cRF [50]. This 

phenomenon is called surround modulation. I assumed that a BO selective neuron has 

asymmetric facilitative/suppressive regions with respect to the cRF. The stimuli 

projected onto the surroundings of cRF modulate the activities of the model BO 

selective neuron in facilitative/suppressive manner depending on the configuration of 

surrounding regions. It has been reported that such model reproduces the 

characteristics of BO selective neurons [49]. 

 

  Integration of DOF signal 4.3.4

The signals from BO selective neurons and V1 neurons responding to contours are 

integrated by following formula:  

 𝑂𝜎
3(𝑥2, 𝑦2, 𝑡) = 𝑐 ∑ [𝐹𝜎(t, D(𝑥2 , 𝑦2, 𝑥, 𝑦, 𝑉2)) + 𝐻(𝑡, 𝐷(𝑥2, 𝑦2, 𝑥, 𝑦, 𝑉1))]𝑥,𝑦 , (4-2) 

where, (𝑥2, 𝑦2) represents the spatial location of V1 cell, 𝑡  is the time, 𝑐  is the 

constant for gain control. 𝐹𝜎 and 𝐻 represent the feedback signals from BO selective 

cells and the signals from V1 neurons, respectively. 𝐹𝜎 and 𝐻 are formulized as: 
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 𝐹𝜎(𝑡, 𝐷(𝑥2, 𝑦2, 𝑥, 𝑦, 𝑉2)) =  𝑤𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘
𝜎 𝐸(𝑥, 𝑦, 𝑡 − 𝐷(𝑥2, 𝑦2, 𝑥, 𝑦, 𝑉2)), (4-3) 

 H(𝑡, 𝐷(𝑥2 , 𝑦2, 𝑥, 𝑦, 𝑉1)) =  𝑤𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝐸(𝑥, 𝑦, 𝑡 − 𝐷(𝑥2, 𝑦2, 𝑥, 𝑦, 𝑉1)). (4-4) 

𝑤𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘
𝜎  and 𝑤𝑙𝑎𝑡𝑒𝑟𝑎𝑙 is the weight of feedback and lateral connections, respectively 

(values are summarized in Table 2). Those weights are defined by the Gaussians 

whose standard deviations are 0.7, 2.1, and 3.5° for feedback, and 2.1° for lateral 

connection. These values are based on physiological evidence that the ranges of lateral 

connections are short relative to those of feedback connections [42, 43]. 𝐷 represents 

the delay of synaptic connection depending on a cortical distance. Given that the 

conduction velocity of each connection, 𝐷 can be formulized by Euclidian distance as 

below: 

 D(𝑥2, 𝑦2, 𝑥, 𝑦, 𝐿) = √(𝑥2 − 𝑥)2 + (𝑦2 − 𝑦)2 + 𝑑𝑉1,𝐿
2 𝑣𝐿⁄ . (4-5) 

Notation 𝐿 indicates the origin of connection (V1 or V2). 𝑑𝑉1,𝐿 represents the distance 

between V1 layer and 𝐿 layer. 𝐿 is 0mm if 𝐿 is V1, and is 30mm if 𝐿 is V2. 𝑣𝐿 is 

conduction velocity (0.1mm/ms for V1, 3mm/ms for V2; [42-44]). 

 

Table 2. Weights for feedback and lateral connections. Superscripts of w 

represent the spatial extent (SD) of integration fields. 

 

  

Connection Value 

𝒘𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌
𝟎.𝟕  0.6 ∗ 𝑤𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

2.1  

𝒘𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌
𝟐.𝟏  0.008 or 0.0085 

𝒘𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌
𝟑.𝟓  1.5 ∗ 𝑤𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘

2.1  

𝒘𝒍𝒂𝒕𝒆𝒓𝒂𝒍 0.3 ∗ 𝑤𝑓𝑒𝑒𝑑𝑏𝑎𝑐𝑘
2.1  



39 

 

  Competition by Winner-take-all 4.3.5

This stage determines the outputs at each spatial location by Winner-take-all manner, 

because three distinct integration fields yield three different activities of V1 neurons at 

each spatial position. Winner-take-all is the method that defines the strongest response 

at the position as output [51]. 

 O(𝑥, 𝑦) = 𝑚𝑎𝑥(𝑆0.7(𝑥, 𝑦), 𝑆2.1(𝑥, 𝑦), 𝑆3.5(𝑥, 𝑦)), (4-6) 

where, 𝑆𝜎(𝑥, 𝑦) is the number of spikes counted from 𝑂𝜎
3(𝑥, 𝑦, 𝑡). Subscript 𝜎 is the 

SD of integration field. In the present thesis, I counted a rise in membrane potential that 

exceed the threshold (20mv). 

 

4.4  Evaluation of Reconstruction 

To evaluate the accuracy of encoding by the model, I reconstructed a shape from the 

output (details are described in Appendix B), and calculated the reconstruction error. In 

briefly, I obtained the SD of integration field of V1 cells that showed the strongest 

response at a location. Subsequently, I placed a Gaussian with the same SD at the 

location. This procedure was repeated for all locations. The shape is reconstructed by 

the superposition of Gaussians. The reconstruction error (𝐸𝑟𝑟𝑜𝑟) was measured as the 

sum of squared difference between the original image (𝐼) and the reconstructed image 

(𝑅). 

 𝐸𝑟𝑟𝑜𝑟 =  
∑ [𝐼(𝑥, 𝑦) − 𝑅(𝑥, 𝑦)]2

𝑥,𝑦

∑ [𝐼(𝑥, 𝑦) + 𝑅(𝑥, 𝑦)]2
𝑥,𝑦

 , (4-7) 

where (𝑥, 𝑦) represents the position. The error ranges from 0 to 1. 
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4.5  Results 

I proposed that the onset synchronization of BO selective neurons is crucial for the 

construction of MA representation. To test this proposal, I carried out the simulations 

with various stimuli including natural images. First, I obtained the distribution of activities 

and latency of V1 neurons by using a single square, in order to test whether the model 

reproduce the physiological results. 

 One of the crucial questions is that the model could yield the veridical 

representation of MA for arbitrary shapes. The question is addressed by computing 

correlation coefficient between the representation of the model and MA obtained from a 

mathematical method. Another important question is whether the representation 

obtained from the model encodes an original shape. To investigate the accuracy of the 

representation, I reconstructed shape from the model output, and measured the 

reconstruction error.  

 The model assumed that the signals from BO selective neurons are 

propagated limited to DOF. To test the effect of the directionality in signal propagation, I 

carried out the simulations with the stimuli that contain multiple objects including 

occlusion. 

 Given that the hypothesis, the degree of synchronization of BO selective 

neurons appears to be essential factor for the construction of MA representation. I 

confirmed this idea by decreasing the degree of synchronization among BO selective 

neurons. If the degree of synchronization is crucial for the construction of MA 

representation, it is expected that human perception of DOF could be biased by the 

synchronization. Psychophysical experiment was also performed to investigate this 

expectation. 
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 Distribution of activities 4.5.1

First, I carried out the simulations with a single square in order to make the comparison 

between the results from the model and those from the physiological studies. Fig. 4-2 

shows the simulation result of a single square. The model V1 cells showed strong 

activity to the center of the square (Fig. 4-2a left; Distance from center = 0). The 

distribution is matched to that from physiological study (Fig. 4-2a right; [10]). The two 

dimensional distribution of the model activities are shown in Fig. 4-2b. Color indicates 

the response of the cell at the position. The model V1 cells whose RF is located on 

equidistant points from nearby contours tended to show strong response. 
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Fig. 4-2. Simulation result for a single square. (a) The activities of the model V1 

neurons whose receptive fields located onto the horizontal midline of the square 

(left: the model, right: the physiology [10])．Horizontal axis represents distance 

from the center. 0 and±2 indicate the center of the square and its contours, 

respectively. (b) The two dimensional distribution of the model responses. The 

activities were plotted as color (reddish indicates strong response). It should be 

noted that the responses to the contours are not shown. (c) MA representation 

obtained from a mathematical method. The correlation coefficient between the 

model output (b) and the MA from mathematics (c) was 0.91. (d) The 

reconstructed shape from the model output (b). Reconstruction error was 

around 0.03. 
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 Latency of the model cells 4.5.2

I made quantitative comparison of temporal characteristics between the model V1 

neurons and the physiology [52]. Fig. 4-3 shows onset latency of the model (Fig. 4-3 

black) and the physiology (Fig. 4-3 grey; [52]). Edge and Axis represent latency of the 

model V1 cells that respond to the contours and the center of the square, respectively. 

Although the absolute latency of the model and the physiology is differed (65.3 ms vs. 

74 ms for the edge; 86.1 ms vs. 96 ms for the axis), their relative difference between 

Edge and Axis is similar (Fig. 4-3 diff.; 20.8 ms vs. 22 ms), suggesting that the model 

reflects the essence of processing flow in the cortical network. 

 

  

Fig. 4-3. The latency of the model (black) and the physiology (grey; adapted from 

[52]). Edge and Axis represent latency of V1 cells whose RF is located along the 

contours and the center of the square, respectively. Diff. is the relative difference 

of latency between Edge and Axis. 
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 MA representation for arbitrary shapes 4.5.3

One of the crucial questions is that the model could yield the veridical representation of 

MA for arbitrary shapes. To investigate the question, I compared the output of the model 

and MA computed from a mathematical method by measuring correlation coefficient. 

The MA of the square obtained from mathematics is shown in Fig. 4-2c (using the 2-D 

Medial Axis Computation package of MATLAB). The correlation coefficient between the 

output of the model (Fig. 4-2b) and the MA obtained from the mathematical method (Fig. 

4-2c) was 0.91, suggesting that the model generates the MA representation of the 

square.  

 If the model constructs the MA representation of the squares, it is of great 

interest to investigate whether the original shape is reconstructed from the 

representation. I obtained a shape from the MA representation of the model (see Fig. 

4-2c), and evaluated quantitatively by measuring the reconstruction error. The 

reconstructed shape is shown in Fig. 4-2d. The error of reconstruction was around 3% 

of the maximum, indicating that the representation of the model in fact encodes the 

original shape. 

 The simulation results for the square showed that the model produce the 

veridical representation of MA. I also investigated whether the model yields MA 

representation for arbitrary shapes. I performed the simulations with the shapes 

obtained from natural images. The simulation results for three examples (an L-shaped 

tree, a stone, and a bear) are show in Fig. 4-4. Fig. 4-4a-e show the results for the 

L-shaped tree. The correlation coefficient between the model output and MA from 

mathematical method was 0.65, and the reconstruction error was 0.17. Accuracy of the 

representations was the same in other two shapes (the correlation coefficient and the 
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reconstruction error for the stone were 0.76 and 0.14, for the bear were 0.78 and 0.15, 

respectively). All simulation results are summarized in Table 3. The mean of correlation 

coefficient and reconstruction error were 0.74 and 0.16, respectively, suggesting that 

Fig. 4-4. Simulation results for an L-shaped tree branch (a-e), a rounded stone (f-j), 

and a bear (k-o). The conventions used for the model outputs, the MA from the 

math, and the reconstructed images are the same as those described in Fig. 

4-2c-e. (a, f, k) Natural images of the L-shaped tree branch, the rounded stone, and 

the bear. The image of the bear is obtained from the Berkeley Segmentation 

Dataset [53]. (b, g, l) The binary stimuli. (c, h, m) Model outputs. (d, i, n) The MA 

computed from the mathematical method. (e, j, o) The reconstructed shapess 

from c, h, and m, respectively. (a-e) The correlation coefficient between (c) and (d) 

was 0.65. The reconstruction error was 0.17. (f-j) The correlation coefficient 

between (h) and (i) was 0.76 and the reconstruction error was 0.14. (k-o) The 

correlation coefficient between (m) and (n) was 0.78, and the reconstruction error 

was 0.15. 
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the model yields the correct MA representation of arbitrary shapes. 

 

Table 3. The correlation with mathematical method and the reconstruction 

error. 

Shape 

Correlation 

coefficient 

Error of 

reconstruction 

Square 0.91 0.028 

L-shaped 

tree branch 
0.65 0.17 

Rounded stone 0.76 0.14 

Bear 0.78 0.15 

Two separated 

squares 
0.89 0.028 

Overlapping square 

(occluding) 
0.75 0.082 

Overlapped square 

(occluded) 
0.69 0.038 

Rectangle 0.67 0.14 

Triangle 0.60 0.32 

U-shaped object 0.73 0.46 

Mean 0.74 0.16 
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 Directionality of signal propagation 4.5.4

In the model, the propagation of signals from BO selective neurons is limited to the 

direction of figure. To investigate the contribution of such directionality on the 

emergence of MA representation, I carried out the simulations with separated two 

squares (Fig. 4-5a, b) and overlapping two squares (Fig. 4-5c, d). If the propagation is 

limited to the direction of figure, no spurious MA emerges the outside of objects. The 

simulation results confirm this expectation. The model produced no response to the 

background even if it was surrounded by multiple contours. These results suggest that 

the directionality in the propagation of BO signals is capable of yielding the correct MA 

of objects. 

 

  

Fig. 4-5. Contribution of the directionality in signal propagation. (a, c) Input stimuli 

(a: two separated squares, c: overlapping squares)．(b, d) The output of the model 

for (a) and (c), respectively. Conventions are the same as Fig. 4-2c. No spurious 

MA outside of the objects emerges. 
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 Effect of the degree of synchronization 4.5.5

In the previous sections, I investigated the validity of the proposal that the MA 

representation of shape is constructed by the onset synchonization of BO selective 

neurons. If the synchronization of BO selective neurons is crucial, the formation of MA 

representation could be affected by the decrease of the degree of the synchronization. 

The simulations were carried out by using ambiguous figures in which two objects 

(regions) share the border (Fig. 4-6a). Three stimuli were the part of natural images that 

were taken from the Berkeley Segmentation Dataset (BSD; [53]). Onset of the two 

figures was diffrentiated in order to manipulate the degree of synchronization. The onset 

of a particular portion (90% or 60%) of the border was equated to surrounding contours 

of either side of the border (e.g., on the left), and the rest to those of the opposite side 

(on the right). Fig. 4-6 shows the simulation result for an example stimulus with 90% 

synchronization condition. BO selective neurons responded to the border were 

synchronized to those responded to either side (left or right) as shown in Fig. 4-6b. 

When most of the BO selective neurons synchronized to the left, the responses were 

biased toward the left side of the border (Fig. 4-6c left). The bias was flipped when the 

BO selective neurons were synchronized to the alternative side (Fig. 4-6c right). In order 

to evaluate the bias, I summed the activities of V1 neurons within the left and the right 

objects for the left- and right-synchronized conditions (Fig. 4-7a). Fig. 4-7a shows the 

bias toward the synchronized side. This tendency can be seen in all stimuli and both of 

the degree of synchronization (60% and 90%; Fig. 4-7b). Although the bias was 

observed in 60% synchronization condition, it was smaller than in 90% condition (Fig. 

4-7b right). These results suggest that the formation of shape representation is biased 

toward the highly synchronized side. In addition, the bias depends on the degree of 
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synchronization, supporting the hypothesis. 

 

  

Fig. 4-6. Simulation results for ambiguous figures. (a) An example stimulus used 

for the simulation. The stimuli were the part of natural images taken from the BSD 

[53] and filled with black and grey. (b) Schematic illustrations of synchronization 

condition. A portion (90% or 60%) of BO selective cells responded to the border 

between the ambiguous figures were synchronized with those responded to the 

surrounding contours of an either side of the border (the left or right; highly 

synchronized side is denoted by red lines), and the rest (10% or 40%) of 

BO-selective cells were synchronized with those responded to the opposite side  

of the border (denoted by blue dotted lines). (c) Output of the model when BO 

selective cells were synchronized (90%) with the left (left panel) and right (right 

panel) sides of the stimulus are shown. 
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Fig. 4-7. Quantitative analysis of the bias. (a) The summed activities of model cells 

within the left (black) and right (white) regions shown in Fig. 4-6c are plotted 

separetely in accordance with the direction of synchronization (small icons at the 

bottom of the plot indicate highly synchronized side). The bias toward the direction 

of highly synchronized side was observed. (b) The simulation results for the three 

stimuli. The shape of stimuli are shown at the top of the panel. The degrees of 

synchronization were 9:1 and 6:4 for the left and right panels, respectively. The bias 

was observed in all stimuli used in the simulations. However, the bias is smaller in 

6:4 condition. 
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4.6  Psychophysical experiment 

The simulation results showed that synchronous presentation of a stimulus can facilitate 

the activity of V1 cells that respond to the MA of an object. If the synchronization 

facilitates the formation of shape representation, there is the possibility that a highly 

synchronized side tends to be perceived as figure. This phenomenon can be interpreted 

as the common fate, one of the Gestalt factors that are the law of grouping [54-56]. I 

performed a psychophysical experiment in order to investigate whether asynchronous 

presentation of contour elements affects the determination of DOF of an ambiguous 

figure. The shapes of ambiguous figures used for the psychophysical experiment were 

the patches of natural images as similar to the simulations. However, the contour of the 

stimuli consisted of blinking dots. In the experiment, the degree of synchronization is 

determined by the number of dots that shares the blinking cycle. 

 

 Experimental procedure 4.6.1

The experimental procedure is shown in Fig. 4-8. Stimuli were presented on a liquid 

crystal display (Mitsubishi Diamondcrysta RDT 197S; response time 5 ms; refresh rate 

70 Hz). A red fixation point (0.2 × 0.2°) was shown at the center of the display with a 

random mask for 1500 ms. The position of fixation point was adjusted to the eye level of 

individual participants. After the presentation of the fixation point, a test stimulus (6.3 × 

6.3°) was projected on a gray background (81.85 cd/m2) for 860 ms. Test stimuli 

(illustrated in Fig. 4-9) was made of blinking dots whose luminance alternated between 

gray and either black or white (315.8 and 0.316 cd/m2, respectively). The dots were 

placed on the border of two regions (border dots), the surrounding contours of the 

border that shape square (outline dots), and elsewhere (noise dots). The outline dots 
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formed a 4 × 4° square. The size of the dots was 0.03 × 0.03°. The spaces between 

dots were 0.03°.The border and outline dots were aligned in two lines (Fig. 4-9b). Only 

half of the border and outline dots were displayed at every moment, in order to avoid the 

perception of a solid contour (Fig. 4-9b). The frequency of the blinking was 7 Hz, but 

phases were differentiated. The degree of synchronization was defined by the number 

of dots that blinked with the same phase. For instance, in 90% synchronization 

condition, nine out of 10 dots blinked with the same phase. Outline dots placed on either 

the left or right of the border were more synchronized (60% or 90%) with the border dots, 

and the alternative outline dots were less synchronized (40% or 10%) with the border 

dots. The phase of each dot was randomly chosen at each presentation. The noise dots 

were scattered randomly but not overlapped with the border and outline dots. The 

Fig. 4-8. Schematic illustration of the experimental paradigm. A red fixation dot is 

presented at the center of the display with a random mask for 1500ms. 

Subsequently, the test stimulus is presented for 860ms. Subjects are asked to 

answer the direction of figure at the fixation point by two alternative forced 

choice. Untill subjects answered, the red fixation dot is presented. 
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luminance of the noise dots was altered every 43 ms with the probability of 50%. A half 

of the dots were set as white and the other half were set as black, so that the mean 

luminance is identical at every moment. The presentation order of the stimuli and the 

conditions were randomly chosen. The task of participants was to answer the direction 

of the figure at the fixation point using two alternative forced choice task (left or right). 

The correct answer was not given to the participants. Five participants performed the 

experiment. All of them were naïve to this experiment and had normal or 

corrected-to-normal vision. 

 

 Results 4.6.2

I performed the experiments using following conditions which is corresponding to the 

simulations: the ratio of synchronization was 6:4 and 9:1, the direction of highly 

synchronized side was left or right. Fig. 4-10 shows the perceived DOF for each 

Fig. 4-9. Configurations of a test stimulus. (a) A natural image obtained from the 

BSD (top left; [53]). The object contour detected from the original image (bottom 

left). Small patches cut out along the contour (right; positions are denoted in the 

bottom left image). (b) An example of a test stimulus. Border and outline dots 

were aligned in two lines. Note that noise dots are not shown here. 
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condition. The participants tended to perceive the region as figure in the direction of the 

highly synchronized side compared with the opposite direction (pairwise t-test, P < 0.01 

for both synchronization conditions). This perceptual bias increased slightly when the 

ratio of synchronization increased from 6:4 to 9:1. A three-way ANOVA with factors of 

synchronization, direction of highly synchronized side, and participants showed 

significance for the three main factors (P < 0.01) without interaction. This result 

indicates that the perception of figure depends on the degree of synchronization. 

Although the magnitude of the bias is smaller than that obtained from the simulations, 

the bias showed same tendency. This result supports the hypothesis that the onset 

synchronization of BO-selective cells is crucial for the construction of MA 

representation. 
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Fig. 4-10. The perception of DOF in human observers. The results obtained for 9:1 

and 6:4 synchronization ratios are plotted on on the left and right of the panel, 

respectively. The icons placed at the bottom of the graphs represent the highly 

synchronized side of the stimuli with the same convention used in Fig. 4-6. Black 

and white bars represent the ratio of the perceived DOF in left and right, 

respectively. In both the synchronization conditions, the participant tended to 

perceive as a figure in the highly synchronized side (P < 0.01; pairwise t-test). A 

three-way ANOVA with factors of synchronization, direction of highly 

synchronized side, and participants showed significance for the three main 

factors (P < 0.01) without interaction. 
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4.7  Discussion 

 Summary 4.7.1

Here, I investigated computationally that the onset synchronization of BO selective 

neurons is crucial for the construction of MA representation. Synchronized signals from 

BO selective neurons generate strong responses at the equidistant points from nearby 

contours. To clarify the validity of the model, I compared the spatiotemporal 

characteristics of model V1 neurons and those of actual V1 neurons. The distribution of 

model activities matched with that of V1 neurons. The latency of the model V1 neurons 

was identical to that of the physiology, suggesting that the model captures the essence 

of processing in the cortical network. 

 It would be interesting to investigate whether the model yields the veridical 

representation of MA. I measured correlation coefficient between the representation 

from the model and MA computed by the mathematical method. The mean of correlation 

coefficient is 0.74, indicating that the model establishes the MA representations of 

arbitrary shapes. Another crucial question is whether the shape is reconstructed from 

the MA representation of the model. To address the question, I obtained shape from the 

MA, and compared it with original shape by measuring reconstruction error. The mean 

error of reconstruction is 16% of its maximum, indicating that the model yields the 

representation of shapes. 

 I investigated the contribution of directionality in the signal propagation on the 

construction of MA representation. Given that the directional propagation of signals from 

BO selective neurons, it is expected that no spurious MA outside of figure regions 

emerges. I carried out the simulations with two separated squares and overlapping 

squares. Both of the simulation results showed that the MA is established within the 
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objects, suggesting the crucial role of the directional propagation of signals from BO 

selective neurons. 

 If the synchronization of BO selective neurons is important for the formation of 

MA representation, the degree of synchronization of BO selective neurons seems to be 

the essential factor for the generation of shape representation. In order to investigate 

this idea, I carried out the simulations with ambiguous figures in which the degree of 

synchronization was manipulated. The degree of synchronization was controlled by 

differentiating the onset timing of two figures. The simulation results showed that the 

model responses are biased toward highly synchronized side depending on the degree 

of synchronization, suggesting the important role of onset synchronization among BO 

selective neurons. If synchronization affects the formation of shape representation, it is 

expected that human perception of DOF shows the bias toward highly synchronized 

side. To test this expectation, I performed psychophysical experiments in which the 

degree of synchronization of contours is controlled in the same way as the simulation. 

The perception of DOF was biased toward highly synchronized side consistent with the 

simulation results. These results support the proposal that the onset synchronization of 

BO selective neurons is crucial for the construction of representation of shape in terms 

of MA. 

 

 Comparison between another computational model 4.7.2

It has been reported that MA responses can be established solely by lateral connections 

within V1 [57]. However, it failed to reproduce the short latency of V1 cells to MA 

response. Physiological study has reported that the latency of V1 cells responded to the 

MA is around 80–90 ms after stimulus onset [10]. The lateral connection is not sufficient 
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to establish the response of which latency is 80–90 ms, because the conduction velocity 

of the lateral connection is slow (0.1 mm/ms). The conduction delay through lateral 

connections between the contour and the center of a square is 60-80 ms, given that the 

cortical distance between the contour and the center of the square is approximately 6–8 

mm. The distance is estimated from following physiological evidences and experimental 

setting: (1) the eccentricity of the recording site is 3-4° [10] and (2) the cortical 

magnification factor at the eccentricity is 4.16 mm/° [58], and (3) the size between the 

center of the square and the contour is 2° [10]. Since conduction velocity of inter-cortical 

(feedforward/feedback) connections are 10 times faster than that of lateral connections 

(3 mm/ms), the latency of V1 cells responding to MA (80-90 ms) can be established by 

inter-cortical connections as shown in Fig. 4-3. 

 

 Source of synchronization 4.7.3

An alternative source for the generation of the synchronization among BO selective 

neurons is feedback signals from higher cortical areas such as V4. Synchronization by 

feedback signals may provide the similar results. An advantage of the present study is 

that the model reproduces the physiological results without the feedback from higher 

cortical regions such as V4. Physiological studies have reported that the timing of 

stimulation could affect the degree of synchronization of V1 neurons [40, 41]. For 

instance, Zhou et al. have reported that the synchronization of V1 cells decreases as 

the function of destruction of contour continuity [41]. Taking into account the cortical 

hierarchy, the synchronized activities of V1 neurons are propagated to V2 neurons. This 

fact supports the proposal that stimulus onset causes the synchronization among BO 

selective cells in V2. 
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Chapter 5. General Discussion 

In the present study, I investigated the neural mechanisms and coding scheme in 

different cortical layers with three computational models. Each model reflects the 

different aspects of cortical processing. This chapter provides the summary of 

simulation results of each model, the contributions of the present study, and the 

discussion aimed for future studies. 

 

5.1  Summary of the thesis 

 Sparse coding in V4 5.1.1

I investigated the coding scheme that accounts for the emergence of curvature 

selectivity in V4. I applied component analysis with sparseness constraint to the 

activities of model V2 neurons in response to natural images, so as to obtain basis 

functions corresponding to the receptive fields of V4 neurons. I investigated 

dependence of sparseness on the construction of the curvature selectivity. The obtained 

basis functions with appropriate sparseness had localized structures, and reproduced 

the characteristics of V4 neurons. These results suggest that sparseness is crucial for 

the construction of the curvature selectivity. In other words, the curvature selectivity 

emerges as the consequence of sparse coding together with the input of natural 
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images. 

 

 Surface representation for the curvature selectivity 5.1.2

To clarify the neural mechanism that generates the curvature selectivity, I developed the 

biologically plausible model which integrates the local orientations detected by V1. I 

carried out the simulations, and investigated what constraint in the integration is 

necessary for the generation of the selectivity. Simulation results suggest that the 

integration of the local orientations based on surface representation yields the curvature 

selectivity.  

 It is expected that the activities of model V4 neurons that showed the curvature 

selectivity are sparse similar to the basis functions. I measured lifetime sparseness of 

the model V4 neurons and that of the basis functions. The distributions of lifetime 

sparseness were identical, suggesting that sparseness and surface representation play 

crucial role in the integration of responses in V1 and V2, so as to establish the curvature 

representation in V4. 

 

 Mechanism of Medial Axis representation 5.1.3

I investigated the integration manner of signals from BO selective neurons for the 

construction of MA representation. I took into account for the onset synchronization 

(synchronization caused by stimulus onset) of BO selective neurons. I developed the 

biologically detailed computational model, and carried out the simulations with stimuli 

including natural objects. The model reproduced the characteristics of the V1 neurons in 

terms of the distribution of activities and their latency. In addition, simulation results 

showed that the model produces the fairly correct MA representation of arbitrary 
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shapes. 

 The degree of synchronization seems to be a crucial factor for the formation of 

MA representation. To confirm this idea, I performed simulations and a psychophysical 

experiment in which the contours of stimuli were presented somewhat asynchronous 

manner. Each of the results showed that the degree of synchronization causes the bias 

in the formation of representation and the human perception of DOF. These results 

support the proposed hypothesis that the onset synchronization of BO selective 

neurons is crucial for the establishment of MA representation. 

 

5.2  Contributions of the thesis 

 Spatial pooling and sparseness in cortical network 5.2.1

I developed two distinct computational models for the construction of the curvature 

selectivity, which utilize sparse coding and spatial pooling, respectively. Both of the 

models reproduced the characteristics of V4 neurons, and showed comparable 

sparseness. These results suggest that the spatial pooling and sparseness play 

important roles in the cortical processing, so as to establish the representation of 

curvature. 

 Spatial pooling and sparseness have been reported theoretically to be the key 

to produce shape representation [59, 60]. For example, Lee et al. have proposed the 

model that is composed of multiple layers [60]. The unit in each layer pools the activities 

within a small region in the descendent layer (i.e. spatial pooling). They assumed that 

the representation is regularized in order to generate sparse representation. They 

learned the optimal representation in each layer that is useful to represent objects. For 

instance, each unit in the third layer represented a face when face images are fed into 
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the model. Although the model produces the representation of shape, they did not make 

the comparison to the physiology. The significance of the thesis is that sparseness and 

spatial pooling are crucial for the establishment of the selectivity reported by 

physiological studies in addition to the construction of the basis functions that produce 

shape representation. 

 Cadieu et al. have reported that spatial pooling could yield the curvature 

selectivity (see also section 3.6.2; [31]). Their study was data-oriented, in which the 

optimal pooling is determined so as to reproduce the physiological data. It is natural to 

expect that such model reproduce the curvature selectivity. In my biological V4 model, 

parameters were not chosen for reproducing specific physiological results such as the 

selectivity for curvature. Given that all combinations, some model cells showed the 

selectivity, and others did not. It enabled me to investigate that what constraint in the 

pooling is essential for the construction of the selectivity. The advance in the present 

study is that the model gives insight into the fundamental neural mechanism involved in 

cortical networks. Specifically, the model elucidates the crucial role of surface 

representation on the establishment of the curvature selectivity. 

 

 A simple mechanism for the integration of BO 5.2.2

The psychophysical experiment showed the bias in the perception of DOF toward a 

highly synchronized side. This result can be explained as binding of contour 

components by common fate that is known as one of the Gestalt factors [54-56]. The 

participants tended to perceive the region as figure when surrounded contour blinked 

more coherently than the opposite side. Although the underlying neural mechanism of 

common fate has not been revealed, this study may provide insight into the mechanism 



63 

 

that the synchronized feedback signals from higher cortical regions may be useful for 

assessing coherency of the contours. 

 

5.3  Directions for future work 

 Hierarchical representation 5.3.1

In the present component analysis model, the RFs of model V2 neurons were defined 

by the combination of two Gabor filters. What will happen if the RFs of model V2 

neurons are learned from natural images? It would be great interest to reveal whether 

the RFs of V2 neurons show the angle selectivity [3, 12, 21]. If the learned basis 

functions of V2 with appropriate sparseness reproduce the angle selectivity, it suggests 

that sparse coding is the coding scheme shared in the ventral stream, not limited in the 

specific cortical areas. 

 

 Constraints on sparse coding 5.3.2

In the component analysis model, the input is binarized and includes one object within 

an image, so as to focus solely on shape information. In natural vision, however, the 

stimuli usually contain rich information in terms of containing color, texture, shading, and 

multiple objects. Although I restricted myself to use binarized images in the present 

study, further investigation is needed to clarify that what basis functions (RFs) are 

learned under the natural viewing. 

 As described in section 2.6.3, a learning algorithm of sparse code is other 

crucial factor for the construction of the curvature selectivity. One important direction of 

future work is to clarify the form of cost function (i.e. the assumption of a probability 

distribution). The preliminary result showed that the basis functions are not leaned when 
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error of reconstruction is defined by 𝑙1 -norm. It implies that the assumption of 

probability distribution in the cost function may be the important factor for the generation 

of the curvature selectivity. 

 

 Reads out MA representation 5.3.3

It is still covered that what cortical regions receive MA responses in V1 and establish the 

neural representation of shape from them. The model of V1-V2 networks including BO 

selective neurons constructed the MA responses in V1. The MA responses seem to 

send to higher cortical regions beyond V3 in accordance with the cortical hierarchy [61, 

62]. Physiological study has reported that IT neurons encode the shape of an object by 

the configuration of several MA components together with their surfaces [62]. It is 

suggested that V1 establishes the local MA representations, and higher cortical region 

integrates them in order to establish the cortical representation of objects. 
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Appendix A. Mathematical 

description of the biological model 

The activity of a single model V4 cell is computed by the spatial summation of V1 cells’ 

activity. The model computes the linear summation of the activities of specific V1 cells 

(𝑂𝜃𝑖

𝑉1). I defined the response of single model V4 neuron as: 

 𝑇𝑉4 = ∑ (𝐺𝜑𝑖
∗ 𝑂𝜃𝑖

𝑉1) (𝑥, 𝑦)

𝑛

𝑖=1

, (A-1) 

 𝜃𝑖  ϵ {0°, 22.5°, ⋯ ,337.5°} , (A-2) 

 𝜑𝑖  ϵ {0°, 22.5°, ⋯ ,337.5°} , (A-3) 

where 𝐺 represents a Gaussian defined by angular position (𝜑𝑖). The center of 𝐺 is 

positioned at approximately 1 degree away from the center of stimulus with angular 

position 𝜑𝑖. Standard deviation (𝜎) of 𝐺 is 10pixels, approximately 0.5 degree in visual 

angle. 𝜃𝑖 and 𝜑𝑖 are orientation and angular position, respectively. Those are defined 

by one out from 16 orientations (eq. A-2) and positions (eq. A-3). 𝑛 represents the 

number of types of integrated V1 neurons. In the present study, I set 𝑛 as two. The 

response passed through a sigmoidal function to realize nonlinearity. I defined the 

output of the model (𝑂𝑉4) as: 

 𝑂𝑉4 = 𝑠𝑖𝑔(𝑇𝑉4), (A-4) 
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 𝑠𝑖𝑔(𝑥) = 𝑎
(1 + 𝑒−(𝑥−𝑠)𝑔)⁄ , (A-5) 

where 𝑠, 𝑔 and 𝑎 are constants that determine origin, slope and asymptote of the 

sigmoidal function, respectively. I set these constants empirically as s = 0.5, g = 10, and 

a = 1 so as to realize the compressive nonlinearity and limit the output within a range 

(from 0 to 1).  
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Appendix B.  Mathematical 

description of the MA model 

B.1 DOF determination 

I adapted Sakai & Nishimura’s proposal to model BO selective neurons [49]. In their 

proposal, a model BO selective neuron has asymmetric facilitative/suppressive regions 

with respect to its cRF. The activities of model BO neurons were modulated depending 

on whether stimulus projected onto the facilitative or suppressive regions. I determined 

the activities of model BO selective neurons at time 𝑡 as below: 

 𝑂2(𝑥1, 𝑦1, 𝑡) = 𝑖𝑛𝑝𝑢𝑡(𝑥1, 𝑦1) + 𝑐 ∑{𝐸(𝑥, 𝑦, 𝑡 − 𝑑) + 𝐼(𝑥, 𝑦, 𝑡 − 𝑑)}

𝑥,𝑦

. (B-1) 

(𝑥, 𝑦) and (𝑥1, 𝑦1) indicate positions. The first and second terms on the right hand side 

of the equation are the current for the cRF and its surrounds, respectively. 𝑐 represents 

the static weight. 𝑑 is the synaptic delay that increase as the function of the Euclidean 

distance between (𝑥, 𝑦)  and (𝑥1, 𝑦1) . 𝐸  and 𝐼  are Excitatory and Inhibitory Post 

Synaptic Potential (EPSP and IPSP), respectively. I computed EPSP and IPSP by 

following formulas: 

 𝐸(𝑥, 𝑦, 𝑡 − 𝑑) = 𝑤(𝑣 − 𝑒){𝑒𝑥𝑝(−(𝑡 − 𝑑) 𝜏𝑑𝑒𝑐𝑎𝑦
𝑒𝑥𝑐⁄ ) − 𝑒𝑥𝑝(−(𝑡 − 𝑑) 𝜏𝑟𝑖𝑠𝑒

𝑒𝑥𝑐⁄ )}, (B-2) 

 𝐼(𝑥, 𝑦, 𝑡 − 𝑑) = 𝑤(𝑣 − 𝑒){𝑒𝑥𝑝(−(𝑡 − 𝑑) 𝜏𝑑𝑒𝑐𝑎𝑦
𝑖𝑛ℎ⁄ ) − 𝑒𝑥𝑝(−(𝑡 − 𝑑) 𝜏𝑟𝑖𝑠𝑒

𝑖𝑛ℎ⁄ )}. (B-3) 

𝑤 indicates the weight of the connection determined by a Gaussian function, 𝑣 and 𝑒 
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are the membrane potential and reversal potential, respectively. 𝜏𝑟𝑖𝑠𝑒
𝑒𝑥𝑐  (𝜏𝑟𝑖𝑠𝑒

𝑖𝑛ℎ ) and 𝜏𝑑𝑒𝑐𝑎𝑦
𝑒𝑥𝑐  

(𝜏𝑑𝑒𝑐𝑎𝑦
𝑖𝑛ℎ ) denote the time constant for the rise and decay of EPSP (IPSP), respectively. 

The values of time constants are described in Table 4 [47, 48]. 

 

Table 4. Time constants of EPSP and IPSP. 

Parameter Value (ms) 

𝝉𝒓𝒊𝒔𝒆
𝒆𝒙𝒄  0.09 

𝝉𝒅𝒆𝒄𝒂𝒚
𝒆𝒙𝒄  1.5 

𝝉𝒓𝒊𝒔𝒆
𝒊𝒏𝒉  0.1 

𝝉𝒅𝒆𝒄𝒂𝒚
𝒊𝒏𝒉  50 
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B.2 Algorithm for reconstruction 

Below describes an algorithm for shape reconstruction. The reconstruction was 

accomplished by the following procedures. I obtained the V1 cells that responded to the 

MA of a shape: 

 𝑀(𝑥, 𝑦) =  {
1 (𝑖𝑓 𝑡 ≥  𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)

0 (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)                  
, (B-4) 

where 𝑡 indicates the latency of a V1 cell. 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  denotes the threshold latency of 

V1 cells responded to the MA. 𝑡𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  is set to 77 ms. Next, I sought the cell that 

showed the strongest response at each spatial location (𝑥, 𝑦). The number of spikes 

and SD of the integration field were obtained as follows: 

 𝑁(𝑥, 𝑦) =  max𝜎(𝑆0.7(𝑥, 𝑦), 𝑆2.1(𝑥, 𝑦), 𝑆3.5(𝑥, 𝑦)), (B-5) 

 
𝜎(𝑥, 𝑦) = {

argmax𝜎(𝑆0.7(𝑥, 𝑦), 𝑆2.1(𝑥, 𝑦), 𝑆3.5(𝑥, 𝑦))     (𝑖𝑓 𝑀(𝑥, 𝑦) = 1)

0                                                                             (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)       
. (B-6) 

𝜎 is the size of the integration field of V1 cells at (𝑥, 𝑦). Then, I superimposed the 

Gaussians defined by position of the center (𝑥1, 𝑦1) and SD (𝜎(𝑥1, 𝑦1)) with weight (𝑤𝜎; 

Table 5): 

 𝑇(𝑥, 𝑦) =  ∑ 𝑁(𝑥1, 𝑦1) × 𝑔𝑥1,𝑦1
(𝑥, 𝑦)𝑥1,𝑦1

, (B-7) 

 
𝑔𝑥1,𝑦1

(𝑥, 𝑦) =  
𝑤𝜎(𝑥1,𝑦1)

2𝜋𝜎(𝑥1, 𝑦1)
𝑒𝑥𝑝 (−

(𝑥 − 𝑥1)2 + (𝑦 − 𝑦1)2

𝜎(𝑥1, 𝑦1)2
) . (B-8) 

Finally, I passed 𝑇 through the sigmoidal function so as to realize a non-linearity in the 

reconstruction. The reconstructed image (𝑅) is computed as follows: 

 𝑅(𝑥, 𝑦) =
1

1 + 𝑒𝑥𝑝(−(𝑇(𝑥, 𝑦) − 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)𝑠𝑙𝑜𝑝𝑒)
. (B-9) 

The 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  and 𝑠𝑙𝑜𝑝𝑒 are the origin and steepness of the sigmoidal function, 

respectively. I set 𝑠𝑙𝑜𝑝𝑒 = 300  and 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.3 × 𝑀𝐴𝑋  ( 𝑀𝐴𝑋  represents the 
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maximum value of the 𝑅), except for the rounded stone ( 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.4 × 𝑀𝐴𝑋), and  

the L-shaped tree branch and U-shaped object ( 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.5 × 𝑀𝐴𝑋). 

 

Table 5. Weights for reconstruction. Subscripts of w indicate the spatial 

extent (SD) of integration fields. 

SD Weight 

𝒘𝟎.𝟕 0.6 

𝒘𝟐.𝟏 1.0 

𝒘𝟑.𝟓 1.5 
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