
Distributed Coding Schemes for

Continuous Data Collection in

Wireless Sensor Networks

March 2014

Xiucai Ye

Distributed Coding Schemes for

Continuous Data Collection in

Wireless Sensor Networks

Graduate School of Systems and Information

Engineering

University of Tsukuba

March 2014

Xiucai Ye

Abstract

Wireless Sensor Networks (WSNs) have become one of the most interesting research

areas in recent years due to a wide range of potential applications such as environ-

ment monitoring and battlefield surveillance. An important problem that arises in

application of WSNs is how to collect data continuously, especially in extreme envi-

ronments. Consider that data are continuously sensed and collected by the sensor

nodes in the extreme environments. Data collection is only performed from time to

time by a mobile Base Station (mBS). Sensor nodes have to store the continuously

collected data segments over time by themselves, and provide the desired data when

the mBS arrives and performs data collection. Such kind of data collection is known

as continuous data collection. This dissertation addresses the continuous data col-

lection in WSNs with a mobile Base Station (mBS). We propose continuous data

collection schemes based on distributed coding methods, with the goal to achieve a

high success ratio of data collection and reduce the energy consumption.

We consider two scenarios of continuous data collection. The first scenario is latest

data segment collection, which is to collect the m latest data segments, where m is

the number of latest data segments in a time interval t in which n(t) (m ≤ n(t)) data

segments are generated. m is a fixed number. No matter how many data segments

are generated in a time interval, the required data are the m latest data segments.

The second scenario is all data segment collection, which is to collect all the n(t)

data segments generated in a time interval t. n(t) is a variable, the value depends on

when the mBS performs data collection. n(t) increases as t increases. We propose

two Distributed Separate Coding schemes for the two scenarios, respectively.

For the first scenario of continuous data collection, we propose the Distributed

Separate Coding scheme for m Latest Data segment Collection (DSC-mLDC) in

wireless sensor networks with a mobile Base Station (mBS). By separately encoding

a certain number of data segments in a combined segment, and doing decoding-

free data replacement in the buffers of each sensor node, the proposed DSC-mLDC

i

ii

scheme is shown as an efficient method for continuously collecting data segments

with a high success ratio. The proposed DSC-mLDC scheme has the salient feature:

with a minimum buffer size 2 in each sensor node, by querying any m − 1 sensor

nodes, the mBS can reconstruct the m latest data segments with high probability.

The necessary storage space in each sensor node can be adjusted by changing the

number of sensor nodes queried by the mBS. Furthermore, the transmission cost for

data submission to the mBS can be reduced with a few additional storage space in

each sensor node. The comprehensive performance evaluation has been conducted

through computer simulation. It is shown that the proposed DSC-mLDC scheme

outperforms the existing schemes significantly.

For the second scenario of continuous data collection, we propose the Distributed

Separate Coding scheme for All Data segment Collection (DSC-ADC) in wireless

sensor networks with a mobile Base Station (mBS). By separately encoding a certain

number of data segments in a combined segment, and storing the combined segments

in the corresponding buffers of each sensor node, the proposed DSC-ADC scheme pro-

vides an efficient storage method to collect all data segments. By randomly querying

a small subset of sensor nodes, the mBS can reconstruct all the original data segments

with high probability in both the right arrival case and the late arrival case. The

number of sensor nodes that should be queried by the mBS can be reduced with a few

additional storage space in each sensor node. The performance evaluation has been

conducted through computer simulations. It further demonstrates the feasibility and

superiority of the proposed DSC-ADC scheme.

Acknowledgements

This dissertation would not have been possible without the help, support and

patience of my supervisor, Prof. Jie Li. I would like to express my deepest gratitude

to Prof. Li, who gave me the chance to be a member of the Operating System

and Distributed Processing (OSDP) lab at University of Tsukuba. His outstanding

supervision and guidance play a critical role in my research or even in my life. There

is no doubt in my mind that my own research and writing style is greatly influenced

by how Prof. Li conducts his research. I hope that I can continue to live up to his

high standards.

It is my great honor to thank Prof. Jiro Tanaka, Prof. Hiroyuki Kitagawa,

Prof. Kazuki Katagishi, and Prof. Shigetomo Kimura for being my dissertation

committee members and providing valuable advices and comments on evaluating

this dissertation in its final form. I would like to thank the Department of Computer

Science, the Graduate School of Systems and Information Engineering at University

of Tsukuba, for their continuous supports on my study in Japan.

I express the gratitude to my supervisor during my MS program study, Prof. Li

Xu for his supervision, guidance, and valuable help, without which it would have

been difficult for me to have an opportunity to pursue the PhD degree in Japan.

I would like to thank all the members in the OSDP lab for their kind help: Dr.

Ghada Ahmed Abdel Monaim Khoriba, Dr. Yongsheng Liu, Dr. Biao Han Dr.

Xiaoyan Wang, Huang Lu, Shuai Fu, Li Qiang, Kei Ebana, Yujie Hu, Zichen Jin,

Zhengxu Li, Cheng Sun, Ke Tang, Serigne Mbacke Ndiaye, Yuehong Liu, Jiahan

Chen, Lei Chen, Dan Zhang, Yulin Shi, Qichao Li, Dr. Wei Li, Dr. Xiaofei Xing,

Dr. Yu Gu, Liwen Xu, Atsushi Nagashima, Zhongping Dong, Ou Wang, Yajun Tian

and Naoto Ishitsuka. It has been my great honor to work with them. Also, it is

my pleasure to thank Prof. Hisao Kameda (University of Tsukuba), Prof. Mohsen

Guizani (Qatar University, Qatar), Prof. Jiannong Cao (Hong Kong Polytechnic

University), Prof. Lasheng Yu (Central South University, China), Prof. Jianping

iii

iv

Pan (University of Victoria, Canada), and Prof. Wenzhong Guo (Fuzhou University,

China).

I am deeply grateful to all my family, especially my parents, my husband, and my

beloved daughter. They continually support me without any reservation. I am also

grateful for all my friends in Japan.

My apologies if I have inadvertently omitted anyone to whom an acknowledgment

is due.

Contents

Abstract i

Acknowledgements iii

List of Figures viii

List of Tables x

1 Introduction 1

1.1 Wireless Sensor Networks (WSNs) . 2

1.2 Sensor Data Collection . 5

1.2.1 Taxonomy . 5

1.2.2 Data delivery approaches . 7

1.3 Continuous Data Collection in WSNs 8

1.4 Coding for Data Storage . 10

1.4.1 Erasure coding . 12

1.4.2 Network coding . 12

1.4.3 Fountain coding . 13

1.5 Related Work . 14

1.6 Dissertation Objectives and Motivations 20

1.7 Our Contributions . 21

1.7.1 Distributed Separate Coding for m Latest Data segment Col-
lection (DSC-mLDC) . 21

1.7.2 Distributed Separate Coding for All Data segment Collection
(DSC-ADC) . 22

1.8 Dissertation Organization . 23

2 System Description and Problem Formulation 24

2.1 System Model and Notations . 24

2.2 Two Methods to Generate the Coefficients in Random Linear Coding 29

v

Contents vi

2.2.1 Benefit for Data Storage in Random Linear Coding 30

2.2.2 Probability of Linear Independency for Coefficient Vectors . . 31

3 Distributed Separate Coding for m Latest Data Segment Collection 34

3.1 An overview of DSC-mLDC . 35

3.2 DSC-mLDC for the case that each sensor node has two buffers 36

3.2.1 Data encoding and replacement 36

3.2.2 Data decoding . 42

3.3 DSC-mLDC for the case that each sensor node has more than 2 buffers 46

3.3.1 Data encoding and replacement 46

3.3.2 Data Decoding . 50

3.4 Performance analysis and comparison 54

3.4.1 Computation, transmission and storage overheads in DSC-mLDC 54

3.4.2 Performance comparison . 55

3.5 Performance evaluation . 60

3.5.1 Performance Metrics . 60

3.5.2 Simulation results . 61

3.5.2.1 Comparison on success ratio of data collection 61

3.5.2.2 Comparison on energy consumption for data trans-
mission to the mBS 64

3.6 Discussion . 67

3.7 Summary . 68

4 Distributed Separate Coding for All Data Segment Collection 70

4.1 An overview of DSC-ADC . 71

4.2 DSC-ADC for the right arrival case 73

4.2.1 Data encoding . 73

4.2.2 Data decoding . 75

4.3 DSC-ADC for the late arrival case . 78

4.3.1 Data encoding . 79

4.3.2 Data decoding . 82

4.4 Performance analysis and discussion 86

4.4.1 Computation, transmission and storage overheads in DSC-ADC 86

4.4.2 Discussion . 87

4.5 Performance Evaluation . 88

4.5.1 Performance Metrics . 88

4.5.2 Simulation results . 89

4.5.2.1 Success ratio of data collection 89

4.5.2.2 Energy consumption for data transmission to the mBS 90

Contents vii

4.5.2.3 Data transmission time to the mBS during data col-
lection . 91

4.6 Summary . 93

5 Conclusions and Future Work 95

5.1 Distributed Separate Coding for m Latest Data segment Collection
(DSC-mLDC) . 96

5.2 Distributed Separate Coding for All Data segment Collection (DSC-
ADC) . 97

5.3 Future Work . 98

Bibliography 100

List of Publications 115

List of Figures

1.1 Architecture of a wireless sensor network. 2

1.2 Components of a sensor node. 3

1.3 Major stages of using wireless sensor networks for data collection. . . 6

1.4 Two methods for redundant data storage in four sensor nodes (Node
1 through Node 4). 10

2.1 One data segment is generated in a fixed time slot. cj is generated in
the jth time slot. 24

2.2 Data collection by a mBS. 25

2.3 Continuous data collection. t is the data sensing time interval. Data
collection by the mBS is performed between time t2 and t3 and between
time t4 and t5. 26

2.4 Data generation in a time interval t. 26

2.5 The combined segment fu
i is stored in the buffer bu of sensor node i. 28

2.6 Probability of linear independence vs. the number of coefficient vectors
in the Suli and Mayers method. 33

3.1 The m latest original data segments are generated in the m latest time
slots (i.e., the time slots in the circle). 35

3.2 m − 1 original data segments are separately encoded in a combined
segment. 36

3.3 Data replacement to store the two latest combined segments. 37

3.4 Data distribution in sensor node i with m = 4. x is the number of
original data segments encoded in a combined segment. (a) B = 2,
x = m− 1 = 3, (b) B = 2, x = m− 2 = 2, (c) B = 1, x = m = 4. . . 40

3.5 B combined segments are stored in the B buffers of sensor node i. . 46

3.6 Data replacement to store the B latest combined segments. 47

3.7 Data distribution in 4 sensor nodes (S1 through S4) with B = 2, m = 3.
(a) DEC, (b) PNC, (c) DSC-mLDC. 56

3.8 Success ratio of data collection vs. the number of latest original data
segments. 62

viii

List of Figures ix

3.9 Success ratio of data collection vs. buffer size B in each sensor node. 63

3.10 Energy consumption for data transmission vs. buffer size B in each
sensor node. 64

3.11 Energy consumption for data transmission vs. the number of latest
original data segments. 66

4.1 All the n(t) data segments generated in a time interval t. 71

4.2 The combined segment fk
i is stored in buffer bk. 72

4.3 Two cases in all data segment collection. t0 = minimum{t}. 72

4.4 x original data segments are separately encoded in a combined segment
and stored in the corresponding buffer. 73

4.5 Success ratio of data collection vs. buffer size B in each sensor node. 91

4.6 Energy consumption for data transmission vs. total number of data
segments. 92

4.7 Energy consumption for data transmission vs. total number of data
segments. 93

List of Tables

2.1 List of Notations. 29

3.1 Comparisons of DSC-mLDC with PNC When Each Sensor Node Has
Minimum Buffer Size . 58

3.2 Comparisons of DSC-mLDC with PNC When Achieving High Success
Ratio of Data Collection . 59

3.3 System Parameters and Settings for m Latest Data Segment Collection 61

4.1 System Parameters and Settings for All Data Segment Collection . . 89

x

Chapter 1

Introduction

Wireless Sensor Networks (WSNs) have become one of the most interesting research

areas in recent years due to a wide range of potential applications such as environment

monitoring and battlefield surveillance. An important problem that arises in applica-

tion of WSNs is how to collect data continuously, especially in extreme environments.

Due to limited energy and hostile environment, sensor nodes are vulnerable. Thus,

redundant data storage are required to improve the reliability of the sensor nodes.

Coding is a powerful method to achieve efficient management of redundant data stor-

age. We consider to redundantly store the data in the sensor nodes by using coding

method, to improve the probability of successfully collecting the required data and

reduce the energy consumption in the sensor nodes.

This chapter is organized as follows. An overview of the wireless sensor networks

and sensor data collection are presented in Section 1.1 and Section 1.2, respectively.

The problem description of continuous data collection and its existing challenges in

WSNs are presented in Section 1.3. We introduce coding for data storage in Section

1.4. The related work are presented in Section 1.5. The dissertation objectives and

motivations are presented in Section 1.6. Section 1.7 summarizes the contributions

of the dissertation. Section 1.8 illustrates the organization of the dissertation.

1

Chapter 1. Introduction 2

1.1 Wireless Sensor Networks (WSNs)

Recent advances in micro-electro-mechanical systems (MEMS) technology, wireless

communications, and digital electronics have led to the emergence of Wireless Sensor

Networks (WSNs). WSNs are composed of a large number of sensor nodes to monitor

physical or environmental conditions, and are connected to the outside world via more

powerful nodes called base stations (also called as sink nodes). The base station

collects the data from the sensor nodes and sends the collected data to the users

through an Internet connection, as shown in Fig 1.1. Note that a base station can be

a fixed or mobile one. Recent advances of embedded hardware and robot have made

mobile base station possible in WSNs [1–3].

Sensor node Base station

Sensing area
User

Internet
(Sink node)

Figure 1.1: Architecture of a wireless sensor network.

The sensor nodes consist of sensing, data processing, and communicating capabil-

ities. A sensor node is mainly equipped with four components [4]: a sensing unit, a

transceiver unit, a processing unit, and a power unit, as shown in Fig 1.2. It may also

has additional components which are application dependent, such as a location unit,

a mobilizer unit, and a power generator unit. The sensing unit generates the sensed

data based on the observed phenomenon. The sensed data are converted to digital

signals, and then fed into the processing unit. The processing unit is generally asso-

ciated with a small storage unit to manage the procedures. The procedures make the

sensor node collaborate with the other sensor nodes to carry out the assigned tasks.

Chapter 1. Introduction 3

The transceiver unit connects the sensor node to the other sensor nodes, e.g., sending

and receiving data. The power unit is one of the most important components of a

sensor node, which may be supported by a power scavenging unit such as solar cells.

Power unit

Sensing

unit

Processing

unit

Transceiver

unit

Location

unit

Mobilizer

unit

Power

generator

unit

Figure 1.2: Components of a sensor node.

WSNs may consist of many different types of sensors to monitor a wide variety

of ambient conditions, such as temperature, humidity, vehicular movement, lightning

condition, pressure, soil makeup and noise levels [5–7]. Sensor nodes can be used for

continuous sensing, event detection, location sensing, and local control of actuators

[8]. The concept of micro-sensing and wireless connection of these nodes promise

many new application areas. The rapid deployment, self-organization, micro-sensing

and wireless connection characteristics of sensor networks make them a wide range of

applications, including environment monitoring, medical care, battlefield surveillance,

industrial diagnostics, smart spaces and biological detection [9–12].

WSNs represent a significant improvement over traditional networks. The deploy-

ment of WSNs require wireless ad hoc networking techniques, which do not rely on

any pre-deployed network infrastructure. The position of sensor nodes usually are

not engineered or pre-determined. The sensor nodes can be deployed randomly in

inaccessible terrains or disaster relief operations [4]. The main difference between the

WSNs and the traditional networks is that sensor nodes are resource constrained.

Chapter 1. Introduction 4

A sensor node has low CPU power, small bandwidth, limited battery and limited

memory storage [4, 13]. For example, TelosB sensor nodes have a 16-bit 8 MHz

microcontroller with 10 KB Random Access Memory (RAM), 48 KB program flash

memory, and 1024 KB measurement serial flash [14]. The total storage energy in a

smart dust sensor node is on the order of 1 J [15]. As a result, a sensor node can

store only a small amount of data collected from its surroundings and carry out a

limited number of computations. In addition, the sensor nodes with limited resources

are prone to failures. Thus, sensor nodes are less reliable both in survivability and

data transmission. To overcome these shortcomings, a single sensor node is usually

expected to cooperate with other sensor nodes. The sensor nodes are redundantly

and densely deployed, they may not have global identification (ID) because of the

large amount of overhead and large number of sensor nodes.

The design of WSNs are influenced by many factors, which include power con-

servation; scalability; sensor network topology; hardware constraints; transmission

media; production costs; operating environment and so on [4]. Since it is difficult

and cost ineffective to recharge the sensor batteries, power conservation is the main

focus of the current sensor network design. Data transmission is the main energy

consumption in WSNs. The energy consumption of data transmission is affected by

the payload and the transmission distance [16, 17]. Some of the measuring methods

for energy consumption of data transmission have been introduced in [18, 19].

Based on the unique features and capabilities of WSNs, a large number of research

activities have been undertaken in WSNs [20]. In this thesis, we are interested in the

problems of continuous data collection in WSNs, with the objective to improve the

success ratio of data collection and reduce the energy consumption in the sensor

nodes.

Chapter 1. Introduction 5

1.2 Sensor Data Collection

One of the most important applications in WSNs is data collection, where the sensed

data are collected at all or some from the sensor nodes and forwarded to a base sta-

tion for further processing [21, 22]. A wide range of deployments for data collection

in WSNs have been witnessed in real-world in the past few years, including envi-

ronmental research [23, 24], wildlife habitat monitoring [25], water monitoring [26],

volcano monitoring [27, 28], wildland fire forecast/detection [29] and civil engineering

[30, 31], to name but a few.

Although many research efforts have been done on WSNs, sensor data collection

in WSNs with special features are different from other applications in WSNs. The

processing of data collection is much more complex than that in other applications

of WSNs, such as target tracking [32]. In target tracking, the sensed data are lo-

cally processed and stored at some nodes and may be queried later by some other

nodes [33]. The major traffic in sensor data collection is the sensed data from each

sensor node to the base station, which may cause high unbalanced and inefficient

energy consumption in the whole network. For example, the sensor nodes close to

the base station are depleted quickly due to traffic relays, which will cause network

disconnected from the base station.

1.2.1 Taxonomy

The data collection in WSNs can be divided into three major stages: the deployment

stage, the control message dissemination stage and the data delivery stage [22], as

shown in Fig 1.3. Each of the three stages has its own issues and focuses. The de-

ployment stage addresses the issues of how to deploy the WSNs in the sensing field.

The deployment of WSNs can be further classified into the area-coverage deploy-

ment and the location-coverage deployment based on the application requirement.

Chapter 1. Introduction 6

Sensor

Data collection

Deployment

Control message

dissemination

Data delivery

Main QoS requirement

(Reliability, latency,

throughput, energy

consumption)

Area-coverage

Location-coverage

Flooding-based

Gossiping-based

Figure 1.3: Major stages of using wireless sensor networks for data collection.

The area-coverage deployment requires each location within the sensing field must

be covered by some sensor nodes and the location-coverage deployment requires the

sensor nodes must be attached to some locations specified by the applications. The

control message dissemination stage addresses the issues of how to disseminate the

control messages (e.g., network management or collection command messages) from

the base station to the sensor nodes. The challenges in this stage is how to dissem-

inate messages to the sensor nodes with small transmission costs and low latencies.

Flooding and gossiping are the two wildly used dissemination methods in WSNs.

Many works have enhanced the two basic dissemination methods to improved the

network performance efficiency [34–36]. The data delivery stage is the main task of

data collection in WSNs. The sensed data are gathered at different sensor nodes and

delivered to the base station based on the control message in stage 2. Different QoS

requirements (e.g., reliability, throughput, latency and energy consumption) from the

applications will lead to different approach designs.

Note that the issues we address in this thesis belong to the data delivery stage.

We will show some data delivery approaches based on different QoS requirements in

WSNs.

Chapter 1. Introduction 7

1.2.2 Data delivery approaches

In the data delivery stage, different approaches based on different QoS requirements

in WSNs have been proposed to deliver sensed data from sensor nodes to the base

station.

A data delivery approach to improve the network reliability were proposed in [37]

by using both hop-by-hop and end-to-end recoveries. Specifically, each sensor node

keeps a missing list to record the sequence number of the missing packet. The sensor

node that previously relayed the missing packet will then schedule a retransmission.

If a sensor node finds some missing packets of other sensor node sharing the same

sources with those packets in its own packet cache, it adds these packets into its own

missing list. Thus, the missing packet information will trace back hop-by-hop until

reaching the source nodes. The source nodes will re-send the packets and finish the

circle of end-to-end recoveries.

Lu et al. [38] proposed an energy efficient and low latency scheme to reduce en-

ergy consumption and latency in sensor data collection. The energy efficient and low

latency scheme is designed to solve the interruption problem and allow continuous

packet forwarding by giving the sleep schedule of a node. The duty cycles adaptively

are adjusted according to the traffic load in the network. Furthermore, a data predic-

tion mechanism was proposed to alleviate problems pertaining to channel contention

and collisions. Another scheme which also targets on minimizing latency and reduc-

ing energy consumption was proposed in [39], in which time slot is defined to be the

duration for successfully transmitting a maximum transmission unit. Paradis et al.

[40] proposed a scheme called TIGRA to reduce the latency by batching small sensed

data from different sensor nodes into packets.

There are also a series of prior work focused on energy efficiency in sensor data

collection, such as the ultra-low power data delivery scheme [41] and the Time Syn-

chronized Mesh Protocol (TSMP) [42]. The related work of data delivery schemes to

improve the throughput of the network can be found in [43, 44].

Chapter 1. Introduction 8

In this thesis, we consider to improve the success ratio of data collection, so as to

improve the reliability and reduce the energy consumption and latency.

1.3 Continuous Data Collection in WSNs

An important problem that arises in sensor data collection is how to collect data

continuously, especially in extreme environments [45–47]. In some extreme environ-

ments such as Greenland or Alaska, it is difficult to travel and dangerous to work for

humans [48, 49]. Instrumenting the environments with WSNs can enable long-term

data collection, which could minimize the exposure of humans while allowing dense,

targeted data collection to commence [48, 50].

Consider that data are continuously sensed and collected by the sensor nodes

in the extreme environments. The communication between the sensor nodes and a

mobile Base Station (mBS) is scarce. Data collection is only performed from time to

time by a mBS. Sensor nodes have to store the continuously collected data segments

over time by themselves, and provide the desired data when the mBS arrives and

performs data collection. Such kind of data collection is known as continuous data

collection in WSNs with a mBS [51]. One of the typical examples is the habitat

monitoring system in Great Duck Island [52], in which data collection is performed

from time to time since seabird colonies are sensitive to human interaction. An

efficient data retrieval is usually desired during the data collection. Applications

of monitoring systems in chemical plants also have the similar properties, in which

technicians occasionally approach the sensing area to collect data and each data

collection should be performed quickly for safety purposed [51].

The main challenge in continuous data collection is how to achieve high reliability

of data collection. The reasons that continuous data collection in WSNs may have

low reliability can be listed as follows.

Chapter 1. Introduction 9

• Vulnerability of sensor nodes : In the extreme environments, sensor nodes

may fail suddenly due to limited energy and hostile environment. As a result,

the sensed data in the failed sensor nodes will be lost.

• Limited storage space in sensor nodes : In the extreme environments, data

collection is only performed from time to time by a mBS. Sensor nodes have to

store the continuously collected data segments over time by themselves. The

sensed data may exceed the storage space of the sensor nodes. The overflowed

data in the sensor nodes will be lost.

• Low success ratio of data collection : The mobile Base Station (mBS) can

not collect the desired data with high probability due to the data loss based on

the above two reasons.

To achieve high reliability of continuous data collection, it is desirable to redun-

dantly store data in sensor nodes. Many data collection schemes as we mentioned in

the above section are not suitable for continuous data collection. In these schemes,

the interested data are only stored in some source sensor nodes without coding. The

base station sends out a query to ask for the data from the sensor nodes of interest.

The desired data are then routed from the source sensor nodes to the base station

[53]. Since the source sensor nodes may be scattered randomly in a sensor network,

these schemes may also introduce a long delay due to data searching from the source

sensor nodes [54–56].

To improve data collection reliability, a random data collection scheme is proposed

(e.g., the data collection schemes in [51, 57, 58]), in which data are redundantly stored

in the sensor nodes. In this scheme, the mBS queries a small subset of sensor nodes

uniformly at random from the sensor network to retrieve data. The mBS can retrieve

the sensed data from any subset of sensor nodes, even after some sensor nodes have

failed. The introduction of data redundancy is to ensure that the whole network is

acting as a robust distributed storage database [59]. However, the redundance of

Chapter 1. Introduction 10

data storage with straightforward method may introduce large replication of data in

a sensor network.

1.4 Coding for Data Storage

Node 1 Node 2 Node 3 Node 4

a ab b

Node 2 Node 3 Node 4

a+bb a+2b

(a) Redundant data storage by replication

(b) Redundant data storage by coding

Node 1

a

Figure 1.4: Two methods for redundant data storage in four sensor nodes (Node
1 through Node 4).

Coding is a powerful method for data storage, which can achieve efficient manage-

ment of redundant data storage [60]. We first take an example to show the advantage

of coding method for redundant data storage. Consider that a and b are the data

segments stored in node 1 and node 2, respectively. If node 1 fails, the data a is

lost. Fig 1.4 (a) shows the replication method for redundant data storage. a and b

are replicated in node 3 and node 4, respectively. By replication, if node 1 fails, a

is still preserved in node 3. However, if node 3 also fails, a is lost. Then, we show

the coding method for redundant data storage. As shown in Fig 1.4 (b), a and b are

both encoded in node 3 and node 4. If node 1 and node 3 fail, a can be preserved by

decoding the data in node 3 and node 4. Thus, coding is more reliable than replica-

tion. Note that by coding, a and b can be decoded from any two nodes out of the

four nodes.

Chapter 1. Introduction 11

When using coding for distributed storage in WSNs, the data should be dissem-

inated from a sensor node to other sensor nodes for encoding. As the example in

Fig 1.4 (b), the data a and b should be disseminated from node 1 and node 2 to node

3 and node 4, respectively. After data dissemination, each sensor node performs data

encoding on the received data. The base station randomly queries a small subset

of sensor nodes to collect data and performs data decoding on the collected data.

Many existing work have addressed the problem of coding for distributed storage

in WSNs. Among these work, many schemes considered that a small part of sensor

nodes function as the source nodes to sense data, and the other sensor nodes function

as the storage node to do encoding and storage [57–59, 61]. Vukobratovic et al. [62]

proposed a coding based packet centric scheme, in which each sensor node senses

data and functions as both the source node and storage node. The source nodes dis-

seminate the sensed data to the storage nodes for encoding. Also, some related work

only focus on the data encoding and decoding processes without addressing the data

dissemination process. For example, in [51] the authors considered that the data for

encoding in each sensor node are the same based on the existing data dissemination

methods.

This dissertation focuses on the data encoding process in the sensor nodes and

the decoding process in the mBS. We do not address the data dissemination process.

Similar to that considered in [51], we consider that the data for encoding in each

sensor node are the same based on the existing data dissemination methods.

For data coding, many coding methods have been proposed for data storage. We

give a brief survey of erasure coding, network coding and Fountain coding, which are

wildly used in WSNs.

Chapter 1. Introduction 12

1.4.1 Erasure coding

Erasure coding is a linear combinations of original data segments into encoded data

segments of the same size. Erasure coding can achieve much higher reliability com-

pared to replication schemes for the same number of storage nodes. The Reed-

Solomon coding is a well-known erasure coding scheme, which is widely employed

in a computer network with distributed storage systems and redundant disk arrays

[63, 64].

Most of the erasure coding schemes proposed in the existing work are linear codes

over finite fields, such as random linear coding. In random linear coding, a related

coefficient for each data segment is randomly generated from a finite filed. The

encoded data segment is the combination of the original data segments multiplied

with their related coefficients [65].

The original data segments in erasure codes can be decoded from any subset

of the encoded data segments whose size is equal to the number of original data

segments. The original data segments can be decoded by using Gaussian elimination

in O(k3), where k is the number of original data segments combined in an encoded

data segment. By using the sparsity of the linear equations, faster decoding of erasure

codes can be achieved. For example, using the Wiedemann algorithm [66], the erasure

codes can be decoded in O(k2log(k)) time on average.

1.4.2 Network coding

Network Coding is an emerging technique that has several interesting applications

in practical networking systems. By network coding, nodes can combine several in-

put packets into one or several output packets instead of simply forwarding data [67].

Network coding was first introduced for improving the performance of multicast rout-

ing, that significantly improve the throughput of network [68]. It was also introduced

to wireless applications [69, 70], where the shared nature of the wireless medium in

Chapter 1. Introduction 13

wireless network proposes a natural opportunity for network coding. Network coding

can also be employed as a solution to increase robustness and reliability of data trans-

mission [71, 72], protecting against link or node failures in wireless communication

networks.

Recently, the idea of network coding is extent for the applications of data stor-

age and distribution [73], where the code is created over the connecting of data and

storage nodes. The further theoretically study about network coding for data distri-

bution and the practical system for random file distribution are presented in [65] and

[74]. Using network coding for ubiquitous data collection was introduced in [75–77]

for wireless sensor networks.

1.4.3 Fountain coding

Fountain coding is to generate linear codes over F2 with low encoding and decoding

complexities [78–80]. Fountain codes are rateless in the sense that the encoding

process can generate unlimited number of encoded packets. The encoded packet is

generated by the exclusive-or (XOR) of a subset of source packets. The encoding

process can be performed online. The original data segments can be decoded from

any subset of the encoded data segments whose size is equal to or only slightly greater

than the number of original data segments.

Luby transform codes (LT codes) [81] are the first realization of Fountain codes,

which make Fountain codes work in practice. In LT codes, each encoded data seg-

ment is created by first selecting a degree d from a carefully designed degree distribu-

tion (called the robust soliton [81]), and then taking the bitwise XOR of d randomly

selected data segments. The decoding process is performed by using the Belief Propa-

gation algorithm [82], which is more computationally efficient than the general matrix

inversion process (i.e., Gaussian Elimination).

Chapter 1. Introduction 14

However, since the number of data segments to do encoding in each sensor node

should follow some probability distribution (e.g., the robust soliton distribution in

LT codes), the implement of Fountain codes in WSNs is more difficult than that of

random linear codes.

1.5 Related Work

Many data storage schemes using coding methods in a centralized way are proposed.

A typical coding scheme is the erasure coding [83]. Weatherspoon et al. [84] com-

pared replication with erasure coding in the bandwidth-reliability tradeoff space. The

analysis showed that erasure coding reduced bandwidth use by an order of magnitude

compared with replication. Bhagwan et al. [85] obtained a similar conclusion by sim-

ulations in the Total Recall storage system. Rabin et al. [86] proposed a canonical

coding scheme which was based on the optimal block erasure Reed-Solomon codes

[87]. Byers et al. [88] optimized large transfers by using codes based on the efficient

estimation, summarization, and approximate reconciliation of the sets of data be-

tween pairs of collaborating nodes. Considine et al. [89] proposed a heuristic scheme

which can be used to construct low complexity erasure codes. These schemes not

only emphasize the recovery of data, but are also centrally encoded. However, the

centralized coding method cannot be employed directly in a sensor network, in which

a sensor node is not able to store all the data segments and perform complicated

encoding operations alone.

A promising solution for redundant data storage in sensor networks is the decen-

tralized coding, which distributes the encoding operations from a sensor node to mul-

tiple sensor nodes. Such decentralized coding schemes include decentralized imple-

mentations of erasure coding [58, 59], growth coding [90], network coding [51, 67, 91],

and Fountain coding [61, 92, 93].

Chapter 1. Introduction 15

Dimakis et al. [58] proposed an interesting coding scheme called Decentralized

Erasure Coding (DEC), which may be applied for WSNs. In the DEC scheme, all the

data segments recorded by a sensor node are encoded in a combined segment. The

base station collects the data by randomly querying some sensor nodes. However,

in DEC, the data encoded in a sensor node depend on the data routing form the

selected sensor nodes, which increases the complexity of distributed encoding.

The usefulness of random linear coding for data storage was investigated in [65],

where the authors showed that a simple distribution scheme using random linear

coding and based only on local information can perform almost as well as the case

where there was complete coordination among nodes. Similar considerations also has

applied to distributed storage in sensor networks.

Lin et al. [94] studied how to differentiate data persistence by using priority

random linear codes. They considered to maintain measurement data in different

priorities. By using priority random linear codes, critical data has a higher opportu-

nity to survive nodes than data of less importance. A salient feature of the priority

random linear codes is that they have the ability to partially recover more impor-

tant subsets of the original data with higher priorities, when they are not feasible to

recover all of them due to node dynamics.

Kamra et al. [90] proposed a class of growth codes to increase the amount of

data that can be recovered at the base station. In growth codes, the number of data

encoded in an encoded data in each sensor node changes as the sensor node decodes

more data from other sensors. Sensor nodes exchanged data with their neighbors

and encoded received data with the existing local information, such that, the stored

information was coded over more and more information units over time. That is, The

number of encoded data in an encoded data starts with one, and the number grows

(increases) as the encoded data being transmitted through the network to the base

station. The growth codes can increase the amount of data that can be recovered at

any storage node at any time period whenever some sensor nodes fail.

Chapter 1. Introduction 16

Munaretto et al. [91] proposed modifications to Growth Codes, which are able to

achieve good performance over a wider range of static and dynamic scenarios. They

investigated changes of how many and which data the transmitted information is

coded over and how the decoding is performed.

Network coding and its distributed implementations utilized random linear codes,

which allowed coding operations besides replication and forwarding on the interme-

diate nodes and achieve the maximal multicast capacity of a network [94]. Katti et.

al. [69] proposed that nodes guess what data other nodes already have and exploit

local coding opportunities to reduce the consumed bandwidth. Chunked Codes [95]

reduced the complexity of random linear codes by partitioning message to chunks

and utilizing pre-coding.

Jiang et al. [96] studied a joint data storage and transmission problem by using

network coding, in which the data was transmitted to the sensor nodes whenever the

data was updated. The joint storage and transmission problem can be transformed

into a pure flow problem and is solvable in polynomial time using linear programming.

Although coding is usually necessary for obtaining the optimal solution with the

minimum cost, the authors proved that data splitting instead of coding is sufficient

for achieving optimality, since adjacent nodes can have asymmetric links in networks

of generalized tree structures. Thus, there exists an optimal solution for the joint data

transmission and data storage problem, if there was no constraint on the numbers of

bits that can be stored in the sensor nodes.

Similar to [96], Hou et al. [77] proposed a reliable data dissemination protocol

called AdapCode which used adaptive network coding to reduce broadcast traffic in

the process of code updates. The data in each node are coded by linear combination

and decoded by Gaussian elimination. The core idea in AdapCode was to adaptively

change the coding scheme according to the link quality. Widmer et al. [75] proposed

a communication algorithm based on network coding, which significantly reduced

the overhead of probabilistic routing algorithms, making it a suitable building block

Chapter 1. Introduction 17

for a delay-tolerant network architecture. Nodes do not simply forward data they

overhear and sent out data that are encoded over the amount of data they received.

This algorithm achieves the reliability and robustness of flooding at a small fraction

of the overhead.

Gkantsidis et al. [97] proposed a new scheme for content distribution of large

files based on network coding. They studied the performance of network coding in

heterogeneous networks with dynamic node arrival and departure patterns, clustered

topologies, and when incentive mechanisms to discourage free-riding are in place.

Simulations in varied scenarios are presented to show that network coding improves

the robustness of the network and is able to smoothly handle extreme situations when

the server and nodes departure the network.

Yang et al. [76] investigated the energy efficiency of distributed data storage in

WSNs, and proposed a Compressed Network Coding based Distributed data Storage

(CNCDS) scheme by exploiting the correlation of sensor readings, which was based

on compressed sensing and network coding theories. The CNCDS scheme achieved

high energy efficiency by reducing the total number of transmissions and receptions

during the data dissemination process. Theoretical analysis proved that the proposed

scheme guaranteed good compressed sensing recovery performance.

Fountain codes are employed for data storage in WSNs due to the efficiency in

data encoding and decoding. Dimakis et al. [78] are the first to address the problem

of constructing fountain codes for distributed storage in sensor networks. The authors

proposed a randomized algorithm to construct fountain codes over grid network by

using geographic routing. However, geographic routing requires sensor nodes to know

their location, which is energy-inefficient and not suitable for resource constrained

sensor nodes.

In [57, 61, 62, 98], the authors proposed distributed coding schemes based on

fountain codes, in which the concept of random walks are used for data dissemina-

tion for the design of fountain codes. Random walks are routing approach which

Chapter 1. Introduction 18

require only local information and low overhead [99–101]. In [98], several copies of

each sensed data are let to randomly walk across the network during data dissemi-

nation. A variant of the Metropolis algorithm [102, 103] is employed to specify the

transition probabilities in the random walks, so as to provide a stationary distribution

design of the desired code degree distribution (i.e., the desire number of data to be

encoded in each sensor node) in WSNs. However, the applied Metropolis algorithm

requires global information about the WSN available in all sensor nodes to specify

the transition probabilities. The scheme in [57] is similar, since multiple copies of

sensed data are let to randomly walk around the WSNs. After being disseminated at

least the number of hops equal to the cover time of the random walk on graph [104],

each sensed data can be recorded by all the sensor nodes in WSNs. Each sensor node

makes decisions and performs encoding immediately after each reception of sensed

data.

Different from [57, 98] in which collecting sufficient number of sensed data to

perform encoding is the task of sensor nodes, in [62] this task is assigned to encoded

data. While randomly moving through the network, the encoded data collect and

encode into their content required number of sensed data. The encoded data complete

their paths in randomly selected sensor nodes. Thus, any degree distribution of

encoded data (i.e., any desired number of data to be encoded in each encoded data)

can be exactly obtained.

Cao et al. [61] considered the partial data recovery form one or some target source

nodes, and proposed a distributed storage coding schemes based on fountain codes

to ensure the flexible recovery of data measured by any given subset of source nodes

of interest in wireless sensor networks. For this purpose, each sensor node encodes all

the data received from the same source node into one encoded data segment so as to

create a distributed Fountain code for all source nodes. Also, the proposed scheme

in [61] takes advantage of broadcast nature of wireless transmission to improves the

efficiency of traditional random walk for data disseminate.

Chapter 1. Introduction 19

For all of the above referenced schemes, the number of collected data is fixed and

usually not large. The above referenced schemes cannot collect data in which the

number is a variable. On the other hand, the above referenced schemes are lack of

support removing obsolete (old) data, i.e., they cannot support the continuous data

collection in which the number of data segments is larger and not predetermined.

Removing obsolete (old) data is another important issue for storing data in a

sensor network, since each sensor node has limit storage space. If sensor nodes get

unattended from the mBS for a long time (e.g., the bad weather prohibits the mBS

from performing data collection for a long time), the total data may exceed the total

storage space of the entire sensor network. In many practical applications, new data

has higher value than old ones. Thus, a sensor node should be able to remove the

old data in order to accommodate newly collected ones [51]. In the above referenced

schemes, removing the old data includes decoding and re-encoding operations, which

are time and resource consuming.

Wang et al. [51] proposed an interesting decentralized coding scheme called Par-

tial Network Coding (PNC) for continuous data collection in a WSN with a mBS.

PNC supports removing the obsolete data. Each combined segment encodes only

the part of latest original data segments by removing the older data segments. The

number of data segments encoded in a combined segment varies from 1 to m. By

randomly querying a small subset of sensor nodes, the mBS can collect the m latest

original data segments from the sensor network, where m is the number of latest

original data segments in a time interval t in which n(t) (m ≤ n(t)) data segments

are generated. However, not all the m latest original data segments are encoded in

each combined segment. That is, the m latest original data segments cannot be al-

ways decoded completely when the mBS randomly queries some sensor nodes. Thus,

PNC does not have high success ratio of collecting the m latest data segments. The

success ratio of data collection in PNC can be improved by extending the storage

space in each sensor node and extending the number of sensor nodes queried by the

mBS. Note that the storage space of each sensor node depends on the number of

Chapter 1. Introduction 20

latest original data segments. If the number of latest original data segments is large,

the overhead for enhancement may be too big for a sensor node.

In this dissertation, we first consider m latest data segment collection and propose

a novel distributed coding scheme with data replacement to collect the m latest

data segments in the sensor networks. We also consider all data segment collection

and proposed an efficient distributed coding scheme to collect all the data segments

generated in a time interval. The total number of collect data is a variable. To the

best of our knowledge, there is no existing study on distributed coding schemes to

collect data with variable number. Since random linear coding is easy and suitable

to deploy in wireless sensor networks, the proposed schemes in this dissertation are

based on random linear coding. We will consider other coding methods for distributed

storage in WSNs in the future work.

1.6 Dissertation Objectives and Motivations

The dissertation objective is to redundantly store the data in the sensor nodes by

using coding method. The data can be preserved after some sensor nodes have failed.

And, a large number of data can be stored in a small storage space of the sensor nodes

after encoding. The mobile Base Station (mBS) can collect the desired data with

high probability by decoding the encoded data from any subset of sensor nodes, even

after some sensor nodes have failed.

There are two motivations in the dissertation.

• Motivation 1: In some harsh environment, removing obsolete (old) data is

an important issue. The data is temporarily stored in each sensor node. If

sensor nodes get unattended from the mBS for a long time, the total data may

exceed the total storage space of the entire sensor network. The sensor nodes

have to remove the old data to accommodate newly collected ones, sine new

Chapter 1. Introduction 21

data has higher value than old ones, e.g., the pollution monitoring [105–107].

In this dissertation, we first consider the scenario of continuous data collection

to collect the m latest data segments from the sensor network, where m is

the number of latest original data segments in a time interval t in which n(t)

(m ≤ n(t)) data segments are generated.

• Motivation 2: The sensor nodes may need to collect the data as many as

possible and provide them to the mBS. In such kind of application, the overall

trend of the data is important, e.g., the temperature monitoring [108]. After

data collection by the mBS, the end users can try various physical models and

test various hypotheses over a large amount data segments. Thus, we consider

the second scenario of continuous data collection to collect all the data segments

generated in a data sensing time interval t.

1.7 Our Contributions

In this dissertation, we consider two scenarios of continuous data collection. (1) m

Latest data segment collection. (2) All data segment collection. We propose two

Distributed Separate Coding schemes for the two scenarios, respectively.

1.7.1 Distributed Separate Coding for m Latest Data seg-

ment Collection (DSC-mLDC)

In Chapter 3, we propose Distributed Separate Coding for m Latest Data segment

Collection (DSC-mLDC). We consider to collect the m latest data segments, where

m is the number of latest data segments in a time interval t in which n(t) (m ≤ n(t))

data segments are generated. The proposed DSC-mLDC scheme is shown as an

efficient method for continuously collecting data segments with a high success ratio.

Compare to the related work (i.e., PNC in [51]), DSC-mLDC is flexible and efficient.

Chapter 1. Introduction 22

In DSC-mLDC, the necessary storage space in each sensor node does not depend on

the number of required data. It can be adjusted by changing the number of sensor

nodes queried by the mBS. And, the transmission cost for data submission to the

mBS can be reduced with a few additional storage space in each sensor node. We

compare DSC-mLDC with PNC. The discussion about the number of buffers and

the number of data segments submitted from each node makes the scheme proposed

much more convincing. The discussion and simulation both show that DSC-mLDC

improves the performance in many situations.

1.7.2 Distributed Separate Coding for All Data segment Col-

lection (DSC-ADC)

In Chapter 4, we propose Distributed Separate Coding for All Data segment Collec-

tion (DSC-ADC). We consider to collect all the n(t) data segments generated in a

time interval t. The proposed DSC-ADC scheme provides an efficient storage method

to collect all data segments continuously. By randomly querying a small subset of

sensor nodes, the mBS can reconstruct all the original data segments with high prob-

ability in both the right arrival case and the late arrival case. DSC-ADC is more

energy efficient compared to the related work (i.e., DEC in [58]). We prove that the

success ratio of DSC-ADC based data collection is close to 100% by using a large

enough finite field size for the coefficients. The number of sensor nodes that should

be queried by the mBS can be reduced with a few additional storage space in each

sensor node. The performance evaluation has been conducted through computer

simulations. It further demonstrates the feasibility and superiority of the proposed

DSC-ADC scheme.

Chapter 1. Introduction 23

1.8 Dissertation Organization

This dissertation is organized as follows. This Chapter covers the background and

overview of our research. The system model and problem formulation are presented

in Chapter 2. In Chapter 3,we propose Distributed Separate Coding for m Latest

Data segment Collection (DSC-mLDC) in wireless sensor network with a mobil base

station. In Chapter 4, we propose Distributed Separate Coding for All Data segment

Collection (DSC-ADC) in wireless sensor network with a mobil base station. Finally

we conclude this dissertation and point out the future work in Chapter 5.

Chapter 2

System Description and Problem

Formulation

In this chapter, we give the system description and problem formulation that are

used in Chapter 3 and Chapter 4.

This chapter is organized as follows. The system model and notations are pre-

sented in Section 2.1. We introduce two methods to generate the coefficients in

random linear coding in Section 2.2.

2.1 System Model and Notations

2nd time slot

T

1st time slot

1
c

2c

Figure 2.1: One data segment is generated in a fixed time slot. cj is generated
in the jth time slot.

24

Chapter 2. System Description and Problem Formulation 25

Consider that there are N sensor nodes in a wireless sensor network, where a set

of sensor nodes sense information. Each sensor node has B buffers, b1, b2,..., bB (i.e.,

the buffer size of each sensor node is B). Each buffer can store only one data segment.

Consider to collect the data of samples (e.g., the temperatures measured in the be-

ginning of some fixed time slots) by using a WSN, where the samples are generated

continuously. A sample is represented by one data segment cj, and generated in a

fixed time slot, as shown in Fig 2.1. cj is generated over the jth time slot. cq is newer

than cp if q > p.

Figure 2.2: Data collection by a mBS.

Without loss of generality, we consider that there is one mBS (mobile Base Sta-

tion) which performs data collection from time to time. For example, a helicopter

acts as the mBS, as illustrated in Fig 2.2. During the data collection, the mBS will

query a small subset of sensor nodes uniformly at random from the sensor network

to collect data.

Consider that the total number of data segments is n(t), where t is the data

sensing time interval. Note that t is a variable, which value depends on when the

mBS performs data collection. n(t) is a nondecreasing function of t. As an example

shown in Fig 2.3, data sensing starts at time t1, the mBS starts to perform data

collection at time t2. The time interval t between t1 and t2 is the data sensing

time interval. The data encoding and storage for the sensed data segments are also

done in this time interval in each sensor node. The data collection by the mBS is

Chapter 2. System Description and Problem Formulation 26

Figure 2.3: Continuous data collection. t is the data sensing time interval. Data
collection by the mBS is performed between time t2 and t3 and between time t4

and t5.

performed between t2 and t3. If the mBS cannot start to perform data collection

until a long time period due to some special reasons (e.g., the bad weather), the data

sensing time interval t will be longer. Thus, the total number of data segments n(t)

generated during this time interval will be larger.

1c 2c

1st time slot 2nd time slot

() 1n t m
c

− + ()n t
c

The m latest time slots

L L

Figure 2.4: Data generation in a time interval t.

In this dissertation, we consider two scenarios of continuous data collection. (1)

Latest data segment collection. (2) All data segment collection.

In latest data segment collection, we consider to collect the m (m ≤ n(t)) latest

original data segments, where m is the number of latest data segments to be collected.

Note that, in a time interval t, no matter how many data segments are generated, the

required data segments are the m latest original data segments which are generated

in the m latest time slots (i.e., the data segments from cn(t)−m+1 to cn(t)), as shown

in Fig 2.4.

Chapter 2. System Description and Problem Formulation 27

In all data segment collection, we consider to collect all the data segments gen-

erated in a data sensing time interval t. The total number of data segments to be

collected is n(t) (i.e., the data segments from c1 to cn(t)), as shown in Fig 2.4.

We show the differences between the two scenarios of continuous data collection.

In latest data segment collection, the number of collected data m is a fixed number.

The value m is set before data collection. Thus, the mBS and the sensor nodes know

the value m before data collection. In all data segment collection, the number of

collected data n(t) is a variable. The value n(t) depends on when the mBS performs

data collection. Thus, the mBS and the sensor nodes do not know the value n(t)

before data collection. m may equal to n(t) on the condition that the mBS performs

data collection when the total number n(t) equals to m. However, the value m can

not be set to be n(t), since the value n(t) is a variable which can not be known to

the mBS and the sensor nodes before data collection.

For data coding, we define a linear function as follows.

fu
i =

k∑
j=1

βijcj, (2.1)

where fu
i is referred to as a combined segment, which encodes k data segments

c1,..., ck (1 ≤ k ≤ n(t)) in buffer bu of sensor node i, as shown in Fig 4.2. ~βu
i =

(βi1, βi2, · · · , βik) is a coefficient vector of fu
i . Each item βij is generated from a finite

field Fq, where q is the finite field size. βij is the coefficient of cj in ~βu
i . We will show

how to generate the coefficient vector ~βu
i in Section 2.2 in this chapter. Note that

the size (in bits) of a combined segment fu
i equals to the size (in bits) of an original

data segment cj. Sensor node i stores the combined segment fu
i and the associated

coefficient vector
−→
βu

i in buffer bu, instead of storing the k original data segments c1,...,

ck.

Chapter 2. System Description and Problem Formulation 28

1

i
f

2

i
f

1B

i
f

− B

i
f

1b 2b 1B
b

− B
b

L

Figure 2.5: The combined segment fu
i is stored in the buffer bu of sensor node i.

Since sensor nodes sense the similar environment and collect the data, we assume

that the data segments for encoding in each sensor node are the same in a time

slot. To achieve this condition, the sensor nodes may also communicate with each

other to disseminate data segments. Many methods have been proposed for data

dissemination for wireless sensor networks (e.g., the data dissemination methods in

[57, 98, 109]). This dissertation focuses on the data encoding process in each sensor

node and the data decoding process in the mBS. We do not address the data dissem-

ination process. For the sake of convenience, we assume that each data segment is

recorded by all the sensor nodes by using some existing data dissemination method.

The case that each data segment is not recorded by all the sensor nodes also has been

discussed in Chapter 3 and Chapter 4.

To successfully decode the required original data segments, the mBS should access

enough number of sensor nodes for the data collection. The mBS first accesses a

small subset (i.e., the minimum number) of sensor nodes uniformly at random from

the sensor network. Each accessed sensor node uploads the stored combined segments

to the mBS. If the mBS cannot decode the required original data segments from the

collected combined segments, it will access additional sensor nodes one by one until

the required original data segments are decoded. The additional sensor nodes are

accessed uniformly at random from the sensor network (excluding the sensor nodes

which have accessed in the same time of data collection). The sensor network will

consume more energy if the mBS repeats data collection, since more sensor nodes

need to upload data to the mBS. Thus, the success ratio of data collection is a major

evaluation criterion in the study [51]. We define the success ratio of data collection

as follows.

Chapter 2. System Description and Problem Formulation 29

Definition 2.1 (Success ratio of data collection). The success ratio of data collection

is the probability that the mBS successfully collects all the m latest original data

segments.

For the sake of convenience, a list of the notations is given in Table 2.1.

Table 2.1: List of Notations.
Notation Definition

N Number of sensor nodes

B Buffer size of each sensor node

bi Buffer with index i

m Number of latest original data segments

t Data sensing time interval

n(t) Number of data segments generated in time interval t

cj Original data segment with sequence number j

fu
i Combined segment stored in buffer bu of sensor node i

~βu
i Coefficient vector of fu

i

βij Coefficient of cj in ~βu
i

C(fu
i) Number of data segments encoded in fu

i

q Size of finite field for coefficients

2.2 Two Methods to Generate the Coefficients in

Random Linear Coding

We show two methods to generate the coefficient vector ~βu
i = (βi1, βi2, · · · , βik) in

equation (2.1). One is the general method, in which each βij is randomly generated

from a finite field Fq, where q is the finite field size. Sensor node i should generate k

coefficients βi1, βi2, · · · , βik for a coefficient vector.

The other method is proposed in [110]. We call it Suli and Mayers method. With

Suli and Mayers method, the coding function in equation (2.1) can be changed as

Chapter 2. System Description and Problem Formulation 30

fu
i =

k∑
j=1

βj−1
i cj. (2.2)

~βu
i = (1, βi, β

2
i , · · · , βk−1

i) is the coefficient vector of the combined segment fu
i ,

which is stored in buffer bu of sensor node i. Sensor node i only needs to generate one

coefficient βi for the k encoded original segments, instead of generating k coefficients

βi1, βi2, · · · , βik.

2.2.1 Benefit for Data Storage in Random Linear Coding

In the general method, each sensor node generates k coefficients for a coefficient vector.

Storing the coefficient vector ~βu
i = (βi1, βi2, · · · , βik) will take an additional storage

space of k log2(q) bits. Assume that the size of a combined segment fu
i is w bits

(equals to the size of an original data segment). With coding in equation (2.1), each

sensor node stores the combined segment fu
i and the associated coefficient vector

−→
βu

i

with w + k log2(q) bits. Without coding, each sensor node should store k original

data segments c1,..., ck with kw bits. Thus, in the general method, the percentage of

storage overhead reduction Psr

Psr = (1− w + k log2(q)

kw
)%. (2.3)

As shown in equation (2.3), Psr depends on the size of data segment w and

the number of original data segments encoded in a combined segment k. The storage

overhead can be reduced a lot if the size of data segment is large. That is, the storage

overhead of the coefficient vector is very small compared to large size of combined

segment fu
i . Take an example similar to that considered in [65], the size of a combined

segment fu
i is 20 KB, and the size of finite field for coefficients is q = 28. If fu

i encodes

10 original data segments, the storage overhead for the coefficient vector
−→
βu

i is 80 bits

or 10 bytes. Thus, the additional storage space required for the coefficient vector is

Chapter 2. System Description and Problem Formulation 31

less than 0.05 %, which is a negligible overhead compared to the combined segment.

Note that increase the number of original data segments encoded in a combined

segment k also can reduce the storage overhead. However, if the number of original

data segments encoded in a combined segment increases, the storage overhead for

the coefficient vectors also increases.

In the Suli and Mayers method, each sensor node i only needs to generate one

coefficient βi for the k encoded original segments, instead of generating k coefficients.

Therefore, each senor node only needs to store a coefficient for a combined segment, no

matter the combined segment encodes how many original data segments. Consider

that a combined segment with size w bits encodes k original data segments. By

using the method in [110], in the Suli and Mayers method, the percentage of storage

overhead reduction Psr is

Psr = (1− w + log2(q)

kw
)%. (2.4)

In equation (2.4), Psr increases as the size of data segment w and the number

of original data segments encoded in a combined segment k increase. The storage

overhead for the coefficient vectors remains the same if the value of k increases. Thus,

Suli and Mayers method is more suitable when the size of combined segment fu
i is

no so large or the encoded number k is large.

2.2.2 Probability of Linear Independency for Coefficient Vec-

tors

The original data segments c1,..., ck in equation (2.1) can be decoded by solving a

set of linear equations of k combined segments fu
1 ,..., fu

k , as shown in equation (2.5).

Chapter 2. System Description and Problem Formulation 32




fu
1

fu
2
...

fu
k




=




−→
βu

1−→
βu

2
...
−→
βu

k




(c1 c2 . . . ck), (2.5)

where the k combined segments fu
1 ,..., fu

k and k coefficient vectors
−→
βu

1 ,...,
−→
βu

k are

collected from buffers bu of k distinct sensor nodes. The necessary condition for

decoding is that the k coefficient vectors
−→
βu

1 ,...,
−→
βu

k must be linearly independent.

In the general method, the probability of linear independency for k coefficient

vectors is over 99.6% when the size of finite field for coefficients q = 28, and this

probability is almost independent of k [51]. The probability of linear independency

for coefficient vectors increases as the finite field size q increases.

In the Suli and Mayers method, the probability of linear independence for k coef-

ficient vectors can be calculated as

p =
∏k−1

i=0

q − i

q
, (2.6)

where q is the size of finite field Fq. Note that k also equals to the number of original

data segments encoded in a combined segment. A way to improve the probability of

linear independence for the coefficient vectors is using larger size q for the finite field.

As shown in Fig 2.6, the probability of linear independence is remarkably improved

from q = 28 to q = 216. The probability of linear independence is very close to 100%

when q = 216. Note that the increase of finite field size q costs only logarithmic

additional bits. For example, the probability of linear independence can be improved

remarkably, while the additional storage for a coefficient is only 8 bits (from q = 28

to q = 216).

Note that the Suli and Mayers method requires q = 216 to guarantee that the

probability of linear independence for k coefficient vectors is close to 100%. In the

Chapter 2. System Description and Problem Formulation 33

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Coefficient Vectors

P
ro

ba
bi

lit
y

of
 L

in
ea

r
In

de
pe

nd
en

ce

q=28

q=210

q=212

q=214

q=216

Figure 2.6: Probability of linear independence vs. the number of coefficient
vectors in the Suli and Mayers method.

general method where each coefficient is generated randomly from finite field Fq, the

probability of linear independence for k coefficient vectors is close to 100% when

q = 28 [51]. Although the Suli and Mayers method requires larger q, it can reduce

the storage overhead of the coefficients. And, from q = 28 to q = 216, the additional

storage for a coefficient is only 8 bits. Due to the additional 8 bits for a coefficient,

the computation overhead for data encoding in the Suli and Mayers method is a little

larger than that in the general method.

Chapter 3

Distributed Separate Coding for m

Latest Data Segment Collection

In this chapter, we focus on the continuous data collection issue in WSNs with a

mBS. We consider the first scenario of continuous data collection (i.e., m Latest data

segment collection), and present a novel data collection scheme called Distributed

Separate Coding for m Latest Data segment Collection (DSC-mLDC). DSC-mLDC

is decentralized and based on the mBS’s randomly accessing. By separately encoding

a certain number of data segments in a combined segment, and doing decoding-free

data replacement in the buffers of each sensor node, DSC-mLDC provides an efficient

storage method for continuously collecting data segments with a high success ratio.

This chapter is organized as follows. In Section 3.1, we give an overview of the

proposed DSC-mLDC scheme. In Section 3.2, we present DSC-mLDC for the case

that each sensor node has two buffers (i.e., buffer size B = 2). In Section 3.3, we

present DSC-mLDC for the case that each sensor node has more than 2 buffers (i.e.,

buffer size B > 2). Performance analysis and comparison are presented in Section

3.4. In Section 3.5, we evaluate the performance of the proposed scheme through

simulations. In Section 3.6, we present the discussion. Section 3.7 concludes this

chapter.

34

Chapter 3. Distributed separate coding for m latest data segment collection 35

3.1 An overview of DSC-mLDC

1c 2c

1st time slot 2nd time slot

() 1n t m
c

− + ()n t
c

The m latest time slot s

L L

Figure 3.1: The m latest original data segments are generated in the m latest
time slots (i.e., the time slots in the circle).

In the proposed DSC-mLDC scheme, we consider to collect the m latest data

segments, where m is the number of latest data segments in a time interval t in

which n(t) (m ≤ n(t)) data segments are generated, as shown in Fig 3.1. In DSC-

mLDC, the data segments are separately encoded in a combined segment in each

sensor node. If all the buffers are stored with combined segments, the sensor nodes

will do decoding-free data replacement to store the new combined segments. DSC-

mLDC includes three processes: the data encoding process, the data replacement

process and the data decoding process. The data encoding and replacement processes

are performed in each sensor node, while the data decoding process is performed in

the mBS.

In this scenario of continuous data collection (i.e., Latest data segment collection),

we consider two cases: (1) each sensor node has two buffers (i.e., buffer size B = 2);

(2) each sensor node has more than 2 buffers (i.e., buffer size B > 2).

Note that PNC [51] also addresses the continuous data collection in WSNs. We

compare the proposed DSC-mLDC scheme with PNC, since it is the existing scheme

that has an efficient solution for continuous data collection in WSNs. To the best of

our knowledge, PNC is the only one scheme which can support data replacement for

continuously collecting data segments. The comprehensive performance evaluation

has been conducted through computer simulation. It is shown that the proposed

DSC-mLDC scheme is the most recommendable one.

Chapter 3. Distributed separate coding for m latest data segment collection 36

3.2 DSC-mLDC for the case that each sensor node

has two buffers

Consider that each sensor node has two buffers, denoted by b1 and b2. Let Fi =

{f 1
i , f 2

i } be a set of combined segments stored in sensor node i, where f 1
i is stored in

buffer b1 and f 2
i is stored in buffer b2. The associated coefficient vectors

−→
β1

i and
−→
β2

i

are also stored in buffers b1 and b2, respectively.

3.2.1 Data encoding and replacement

In DSC-mLDC, each sensor node separately encodes m − 1 original data segments

in a combined segment. We will show later that m − 1 is the minimum number of

original data segments encoded in a combined segment, which can ensure that the

two combined segments stored in each sensor node encode all the m latest original

data segments. Let fi(r) be a combined segment which encodes the rth recorded

m− 1 original data segments in sensor node i. As an example shown in Fig 3.2, the

first recorded m− 1 original data segments c1, c2,..., cm−1 are encoded in fi(1). The

second recorded m − 1 original data segments cm, cm+1,..., c2(m−1) are encoded in

fi(2). And the third recorded m− 1 original data segments c2m−1, c2m,..., c3(m−1) are

encoded in fi(3). Generally, we have

fi(r) =

r(m−1)∑

j=(r−1)(m−1)+1

βijcj, r = 1, 2, . . . (3.1)

1c 2c 1m
c

− 1m
c

+m
c 2(1)m

c
− 2 1m
c

− 2mc 3(1)m
c

−L L L L

Encoded in Encoded in Encoded in (1)
i
f (2)

i
f (3)

i
f

Figure 3.2: m − 1 original data segments are separately encoded in a combined
segment.

Chapter 3. Distributed separate coding for m latest data segment collection 37

When a new combined segment fi(r) is formed, fi(r) and its associated coefficient

vector are stored in a corresponding buffer of sensor node i. If fi(r) is stored in buffer

b1 of sensor node i, we have f 1
i = fi(r). And if fi(r) is stored in buffer b2 of sensor

node i, we have f 2
i = fi(r). A new combined segment encodes the latest original data

segments. Note that the mBS wants to collect the m latest original data segments.

If there has been a combined segment stored in the corresponding buffer, the new

combined segment including the associated coefficient vector will replace the old

ones. Let fi(l) be the latest combined segment formed before the mBS performs data

collection. By the data replacement, each sensor node stores the two latest combined

segments fi(l − 1) and fi(l), which encode at least m latest original data segments.

We may further drop the subscript i of fi(r) if the sensor node which stores the

combined segment is clear in its context.

(1)f (2)f (3)f (4)f L (1)f l − ()f l

1b 1b2b 2b

(replace) (replace)

The two latest

combined segments

1b 2b

(replace) (replace)

Figure 3.3: Data replacement to store the two latest combined segments.

An example is shown in Fig 3.3. At first f(1) and f(2) are formed, and are stored

in buffers b1 and b2 of sensor node i, respectively. That is, f 1
i = f(1) and f 2

i = f(2).

Note that each sensor node has two buffers. When f(3) is formed, f(3) replaces f(1)

to be stored in buffer b1 of sensor node i, i.e., f 1
i = f(3). The data replacement is

performed by each sensor node until the mBS performs data collection. With the

data replacement, the two latest combined segments f(l − 1) and f(l) are stored

in the two buffers of sensor node i when the mBS performs data collection. The

replacement of the combined segments are performed with the replacement of the

associated coefficient vectors (e.g., if f(3) replaces f(1), the associated coefficient

vector of f(3) also replaces the associated coefficient vector of f(1)). Relation (3.2)

Chapter 3. Distributed separate coding for m latest data segment collection 38

shows how to store the combined segment f(r) (including the associated coefficient

vector) in the corresponding buffer of sensor node i.

{
f 1

i = f(r), r is odd,

f 2
i = f(r), r is even.

(3.2)

We give a formal description of data encoding and replacement algorithm of SNC-

mLDC when each sensor node has two buffers. Every time an original data segment cj

is encoded with a combined data segment. The data encoding algorithm (Algorithm

1) is locally executed at each sensor node. In Algorithm 1, dj/me is the upper integer

bound of j/m (e.g., d1/3e = 1 and d4/3e = 2). The encoding process is with the

data replacement to encode only the amount of latest original data segments in the

combined data segments.

Note that f(l) is the latest combined segment formed before the mBS performs

data collection. The number of original data segments encoded in f(l) depends on

the total number of original data segments n(t). If n(t) = l(m − 1), the number of

original data segments encoded in f(l) is m − 1. And if n(t) = (l − 1)(m − 1) + 1,

the number of original data segments encoded in f(l) is 1. Note that n(t) cannot be

larger than l(m− 1) or less than (l − 1)(m− 1) + 1, otherwise f(l) is not the latest

combined segment. For example, if n(t) = l(m− 1) + 1, the extra one original data

segment is encoded in a newer combined segment f(l+1). Then, f(l+1) is the latest

combined segment. If n(t) = (l− 1)(m− 1), the last m− 1 original data segment are

encoded in f(l− 1). f(l− 1) is the latest combined segment. Thus, f(l) is the latest

combined segment on condition that

(l − 1)(m− 1) + 1 ≤ n(t) ≤ l(m− 1). (3.3)

From equation (3.3), the number of original data segments encoded in the latest

combined segment f(l) is with an upper bound m − 1 and a lower bound 1. The

Chapter 3. Distributed separate coding for m latest data segment collection 39

Algorithm 1: Data encoding when each sensor node has two buffers

Input: Original data segment cj, number of latest data segments m.
Output: A set of combined segments Fi = {f 1

i , f 2
i }.

for j = 1 to n(t) do1

Let r = dj/(m− 1)e ;2

Randomly generate βij from Fq ;3

if r is odd then4

if C(f 1
i) < m− 1 then5

f 1
i = f 1

i + βijcj;6

end7

else8

f 1
i = βijcj9

end10

end11

else12

if C(f 2
i) < m− 1 then13

f 2
i = f 2

i + βijcj;14

end15

else16

f 2
i = βijcj17

end18

end19

end20

number of original data segments encoded in f(l − 1) is m − 1. Therefore, in each

sensor node, the number of original data segments encoded in the two latest combined

segments f(l − 1) and f(l) is with an upper bound 2m − 2 and a lower bound m.

Then we obtain the following lemma.

Lemma 3.1. In DSC-mLDC, the set of original data segments which are encoded in

the two latest combined segments f(l − 1) and f(l) in each sensor node, includes all

the m latest original data segments.

Proof. The latest original data segments are encoded in the two latest combined

segments f(l − 1) and f(l). The number of latest original data segments encoded in

Chapter 3. Distributed separate coding for m latest data segment collection 40

f(l − 1) and f(l) is at least m. Thus, the two latest combined segments encode all

the m latest original data segments.

We give an example to show that the two latest combined segments in each sensor

node encode all the m latest original data segments. Let x denote the number of

original data segments encoded in a combined segment. The original data segments

are c1, c2, · · · , c11. In this example, let m = 4, i.e., the mBS wants to collect the

4 latest original data segments c8, c9, c10, and c11. For the sake of convenience, we

define

[c1, ..., ck] =
∑k

j=1
βijcj (3.4)

to denote the combined data segments by omitting the coefficients βi1,..., βik. Each

combined segment encodes 3 (x = m − 1 = 3) original data segments. Each sensor

node has two buffers to store the two latest combined segments f(l − 1) and f(l),

where f 1
i = f(l− 1) and f 2

i = f(l). As shown in Fig 3.4 (a), the two latest combined

segments encode all the 4 latest original data segments c8, c9, c10, and c11.

{ }
1 2

7 8 9 10 11[, ,], [,]
i i
f c c c f c c= =

a ,

b ,

c ,

{ }
1 2

9 10 11[,], []
i i
f c c f c= =

{ }
1

9 10 11[, ,]
i
f c c c=

2B = 1 3x m= − =

2B = 2 2x m= − =

1B = 4x m= =

Figure 3.4: Data distribution in sensor node i with m = 4. x is the number of
original data segments encoded in a combined segment. (a) B = 2, x = m− 1 = 3,

(b) B = 2, x = m− 2 = 2, (c) B = 1, x = m = 4.

We prove that m−1 is the minimum number of original data segments encoded in

a combined segment when each sensor node has two buffers in the following lemma.

Chapter 3. Distributed separate coding for m latest data segment collection 41

Lemma 3.2. For each sensor node with two buffers in DSC-mLDC, m − 1 is the

minimum number of original data segments encoded in a combined segment.

Proof. Each sensor node separately encodes m− 1 original data segments in a com-

bined segment. From Lemma 3.1, the two latest combined segments f(l − 1) and

f(l) encode all the m latest original data segments. Here, we prove that if less than

m− 1 original data segments are encoded in a combined segments, f(l− 1) and f(l)

cannot always encode all the m latest original data segments. Consider that m − 2

original data segments are encoded in a combined segment. The mBS performs data

collection when f(l − 1) encodes m − 2 original data segment and f(l) encodes one

original data segment. In this case, f(l− 1) and f(l) encode only m− 1 original data

segments. In the above example, the mBS wants to collect the 4 latest original data

segments c8, c9, c10, and c11. If each combined segment encodes 2 (x = m − 2 = 2)

original data segments, by data replacement, the two latest combined segments en-

code only 3 latest original data segments when the mBS performs data collection, as

shown in Fig 3.4 (b).

Furthermore, we prove that the minimum buffer size for a sensor node in DSC-

mLDC is two in the following lemma.

Lemma 3.3. In DSC-mLDC, the minimum buffer size for a sensor node to store the

combined segments which encode all the m latest original data segments is two.

Proof. In DSC-mLDC, each sensor node with two buffers can store the two latest

combined segments f(l − 1) and f(l), which encode the m latest original data seg-

ments. Here we prove that each sensor node with one buffer cannot do it. Consider

that each sensor node has only one buffer. By the data replacement, each sensor

node stores only the latest combined segment f(l). No matter how many original

data segments are encoded in a combined segment, when f(l) replaces f(l − 1), the

number of original data segments encoded in f(l) has a lower bound 1. If the mBS

performs data collection when f(l) encodes less than m original data segments, f(l)

Chapter 3. Distributed separate coding for m latest data segment collection 42

cannot encode all the m latest original data segments. In the above example, the

mBS wants to collect the 4 latest original data segments c8, c9, c10, and c11. If each

sensor node has one buffer, it can store only one combined segment. Consider that

the combined segment can encode at most 4 (x = m = 4) original data segments.

However, by data replacement, the combined segment encodes only 3 latest original

data segments when the mBS performs data collection, as shown in Fig 3.4 (c).

3.2.2 Data decoding

The mBS first collects the data by querying any m− 1 sensor nodes. Then the mBS

performs the data decoding based on the collected data.

Note that there are two combined segments stored in each sensor node. A sensor

node queried by the mBS will upload the two combined segments and the associated

coefficient vectors to the mBS. In DSC-mLDC, with the data replacement, each

sensor node stores the two latest combined segments f(l− 1) and f(l). The replaced

combined segments are f(1), ..., f(l − 2). In each replaced combined segment, the

number of encoded original data segments is m−1. Thus, the total number of original

data segments encoded in the l − 2 replaced combined segments is (l − 2)(m − 1).

The set of original data segments encoded in the l − 2 replaced combined segments

is {c1, c2, ..., c(l−2)(m−1)}. And the set of original data segments encoded in the two

combined segments f(l−1) and f(l) is {c(l−2)(m−1)+1, c(l−2)(m−1)+2, ..., cn(t)}. We have

f(l − 1) =

(l−1)(m−1)∑

j=(l−2)(m−1)+1

βijcj, (3.5)

and

f(l) =

n(t)∑

j=(l−1)(m−1)+1

βijcj. (3.6)

Chapter 3. Distributed separate coding for m latest data segment collection 43

Note that the number of original data segments encoded in f(l − 1) is m − 1.

The number of original data segments encoded in f(l) is n(t)− (l− 1)(m− 1), where

n(t) − (l − 1)(m − 1) ≤ m − 1. In the data encoding process, we have shown that

the number of original data segments encoded in f(l − 1) and f(l) is with an upper

bound 2m− 2 and a lower bound m. The following relation holds.

m ≤ n(t)− (l − 2)(m− 1) ≤ 2m− 2. (3.7)

Then,

n(t)

m− 1
≤ l ≤ n(t) + m− 2

m− 1
. (3.8)

Without loss of generality, we consider that f 1
i = f(l− 1) and f 2

i = f(l). That is,

f(l − 1) is stored in buffer 1 of sensor node i and f(l) is stored in buffer 2 of sensor

node i.

For convenience, let

f1 = (f 1
1 , f 1

2 , . . . , f 1
N)

T
, (3.9)

where f 1
i is the combined segment stored in buffer b1 of sensor node i, i = 1, ..., N .

f1 includes the combined segments stored in buffer b1 of N sensor nodes. Let

βββ1 =




~β1
1

~β1
2
...

~β1
N




=




β1.k(m−1)+1 β1.k(m−1)+2 . . . β1.(k+1)(m−1)

β2.k(m−1)+1 β2.k(m−1)+2 . . . β2.(k+1)(m−1)

...
...

. . .
...

βN.k(m−1)+1 βN.k(m−1)+2 . . . βN.(k+1)(m−1)




, (3.10)

and

Chapter 3. Distributed separate coding for m latest data segment collection 44

c1 = (ck(m−1)+1, ck(m−1)+2, . . . , c(k+1)(m−1))
T , (3.11)

where ~β1
i is the associated coefficient vector of f 1

i , and c1 is the set of original data

segments encoded in each f 1
i , i = 1, ..., N .

From equation (3.5), we have

f1 = βββ1c1. (3.12)

Similarly, let

f2 = (f 2
1 , f 2

2 , . . . , f 2
N)

T
, (3.13)

where f 2
i is the combined segment stored in buffer b2 of sensor node i, i = 1, ..., N .

f2 includes the combined segments stored in buffer b2 of N sensor nodes. Let

βββ2 =




~β2
1

~β2
2
...

~β2
N




=




β1.(k+1)(m−1)+1 β1.(k+1)(m−1)+2 . . . β1.n(t)

β2.(k+1)(m−1)+1 β2.(k+1)(m−1)+2 . . . β2.n(t)

...
...

. . .
...

βN.(k+1)(m−1)+1 βN.(k+1)(m−1)+2 . . . βN.n(t)




, (3.14)

and

c2 = (c(k+1)(m−1)+1, ..., cn(t))
T , (3.15)

where ~β2
i is the associated coefficient vector of f 2

i , and c2 is the set of original data

segments encoded in each f 2
i , i = 1, ..., N .

From equation (3.6), we have

Chapter 3. Distributed separate coding for m latest data segment collection 45

f2 = βββ2c2. (3.16)

We show that the mBS can decode the m latest original data segments by querying

any m− 1 sensor nodes with high probability. The sensor nodes queried by the mBS

will upload the two combined segments and the two associated coefficient vectors. The

mBS querying m − 1 sensor nodes will gain access to 2(m − 1) combined segments.

To decode the original data segments, it must invert a (m− 1)× (m− 1) submatrix

βββ′1 of βββ1 and invert a (n(t) − (l − 1)(m − 1)) × (n(t) − (l − 1)(m − 1)) submatrix

βββ′2 of βββ2. Therefore, the key property required for successfully decoding is that any

selection of βββ′1 and βββ′2 form full rank matrixes with high probability. A necessary

condition is that the coefficient vectors in βββ′1 and the coefficient vectors in βββ′2 must

be linearly independent. This is generally true for a large enough field size q [65].

The probability of linear independency is over 99.6% for q = 28, and it increases as

q increases [51]. Thus, for q = 28, any selection of (m − 1) × (m − 1) submatrix βββ′1
and (n(t)− (l− 1)(m− 1))× (n(t)− (l− 1)(m− 1)) submatrix βββ′2 can form full rank

matrixes with high probability.

The original data segments can be decoded using Gaussian Elimination [111],

which corresponds to solve a system of linear equations with m − 1 variables and a

system of linear equations with (n(t)−(l−1)m) variables in Fq. Then, we can obtain

the following theorem.

Theorem 3.4. In DSC-mLDC, for the case that each sensor node has two buffers

and the mBS randomly queries m−1 sensor nodes, the success ratio of data collection

is very close to 100% by using a large enough finite field size q for coefficients.

Proof. Whenever the mBS performs data collection, the set of original data segments

encoded in the two latest combined segments in each sensor node includes all the m

latest original data segments, as shown in Lemma 3.1. In the decoding process, by

querying any m−1 sensor nodes, the mBS collects 2(m−1) latest combined segments

Chapter 3. Distributed separate coding for m latest data segment collection 46

and the corresponding coefficient vectors. The key property required for successful de-

coding is that the coefficient vectors are linearly independent. Therefore, the success

ratio of data collection in DSC-mLDC mainly depends on the probability of linear

independence for the coefficient vectors. The probability of linear independency for

the coefficient vectors is over 99.6% for q = 28, and it increases as q increases [51].

Thus, the success ratio of data collection is over 99.6% for q = 28, and it increases as

q increases.

3.3 DSC-mLDC for the case that each sensor node

has more than 2 buffers

1

i
f

2

i
f

1B

i
f

− B

i
f

1b 2b 1B
b

− B
b

L

Figure 3.5: B combined segments are stored in the B buffers of sensor node i.

We now present DSC-mLDC for the case that each sensor node has B (B > 2)

buffers. The B buffers are denoted by b1, b2, ..., bB. Let Fi = {f 1
i , f 2

i , ..., fB
i } be a set

of the combined segments stored in sensor node i, where fu
i is stored in buffer bu,

u = 1, ..., B, as shown in Fig 4.2. The associated coefficient vector
−→
βu

i is also stored

in buffer bu of sensor node i.

3.3.1 Data encoding and replacement

Similar to DSC-mLDC for the case that each sensor node has two buffers, each sensor

node separately encodes a certain number of original data segments in a combined

segment. Consider that the certain number of original data segments encoded in a

combined segment is x (x < m). We show later that how to set this value x to ensure

Chapter 3. Distributed separate coding for m latest data segment collection 47

that the set of original data segments encoded in the B combined segments includes

all the m latest original data segments. Similarly, let f(r) be a combined segment

which encodes the rth recorded x original data segments in sensor node i. Generally,

we have

f(r) =
rx∑

j=(r−1)x+1

βijcj. (3.17)

When a new combined segment f(r) is formed, f(r) and its associated coefficient

are stored in the corresponding buffer of sensor node i. If f(r) is stored in buffer bu of

sensor node i, we have fu
i = f(r), u = 1, 2, ..., B. A new combined segment encodes

the latest original data segments. If there has been a combined segment stored in the

corresponding buffer, the new combined segment including the associated coefficient

vector will replace the old ones.

(1)f ()f B (1)f B + L (1)f l − ()f l

1b B
b 1b

(replace)

The B latest combined segments

1vb − v
b

(replace) (replace)

L (2)f B + (1)f l B− + L

2b

(replace)

1vb +

(replace)

Figure 3.6: Data replacement to store the B latest combined segments.

In DSC-mLDC for the case that each sensor node has B buffers, the data replace-

ment is performed after a sensor node has stored B combined segments f(1), f(2),

..., f(B). As an example shown in Fig 3.6, at first f(1), f(2), ..., f(B) are stored in

buffer b1, b1, ..., bB of sensor node i, respectively. That is, fu
i = f(u), u = 1, 2, ..., B.

When f(B + 1) is formed, f(B + 1) replaces f(1) to be stored in buffer b1, i.e.,

f 1
i = f(B + 1). And when f(B + 2) is formed, f(B + 2) replaces f(2) to be stored

in buffer b2, i.e., f 2
i = f(B + 2). With the data replacement, each sensor node stores

the B latest combined segments f(l−B + 1), f(l−B + 2),..., f(l). In this example,

f(l) is stored in buffer v of sensor node i, v ∈ {1, ..., B}. The replacement of the

Chapter 3. Distributed separate coding for m latest data segment collection 48

combined segments are performed with the replacement of the associated coefficient

vectors. Relation (3.18) shows how to store the combined segment f(r) (including

the associated coefficient vector) in the corresponding buffer of sensor node i.

{
fu

i = f(r), r mod B = u,

fB
i = f(r), r mod B = 0.

(3.18)

Note that f(l) is the latest combined segment formed before the mBS performs

data collection. The number of original data segments encoded in f(l) depends on

the total number of original data segments n(t). If n(t) = lx, the number of original

data segments encoded in f(l) is x. And if n(t) = (l−1)x+1, the number of original

data segments encoded in f(l) is 1. Similar to that we showed in DSC-mLDC for the

case that each sensor node has two buffers, n(t) cannot be larger than lx or less than

(l − 1)x + 1, otherwise f(l) is not the latest combined segment. That is, when each

sensor node has B buffers, f(l) is the latest combined segment on condition that

(l − 1)x + 1 ≤ n(t) ≤ lx. (3.19)

From equation (3.19), the number of original data segments encoded in the latest

combined segment f(l) is with an upper bound x and a lower bound 1. The number

of original data segments encoded in each of the other B − 1 combined segments is

x. Therefore, in each sensor node, the number of original data segments encoded

in the B latest combined segments is with an upper bound Bx and a lower bound

(B − 1)x + 1.

We give a formal description of data encoding and replacement algorithm of DSC-

mLDC when each sensor node has more than two buffers. Every time an original data

segment cj is encoded with a combined data segment. The data encoding algorithm

(Algorithm 2) is locally executed at each sensor node.

Chapter 3. Distributed separate coding for m latest data segment collection 49

Algorithm 2: Data encoding when each sensor node has more than two buffers

Input: Original data segment cj, number of latest data segments m, buffer size B,
value of x.

Output: A set of combined segments Fi = {f 1
i , f 2

i , ..., fB
i }.

for j = 1 to n(t) do1

for u = 1 to B do2

Let r = dj/xe ;3

Randomly generate βij from Fq ;4

if r mod B = u then5

if C(fu
i) < x then6

fu
i = fu

i + βijcj;7

end8

else9

fu
i = βijcj10

end11

end12

else13

if C(fB
i) < x then14

fB
i = fB

i + βijcj;15

end16

else17

fB
i = βijcj18

end19

end20

end21

end22

We show how to set the value x to ensure that the set of original data segments

encoded in the B combined segments includes all the m latest original data segments.

C(fu
i) is the number of original data segments encoded in the combined segment

fu
i . The number of original data segments encoded in the B combined segments

f 1
i , f 2

i , ..., fB
i equals to

∑B
j=1 C(f j

i). Note that this number satisfies

(B − 1)x + 1 ≤
B∑

j=1

C(f j
i) ≤ Bx. (3.20)

Chapter 3. Distributed separate coding for m latest data segment collection 50

To ensure that the set of original data segments encoded in the B combined

segments includes all the m latest original data segments,
∑B

j=1 C(f j
i) should satisfy

B∑
j=1

C(f j
i) ≥ m. (3.21)

From equation (3.20), we can obtain the sufficient condition of equation (3.21) as

(B − 1)x + 1 ≥ m. (3.22)

Then,

x ≥ m− 1

B − 1
. (3.23)

From equation (3.23), we obtain the minimum value of x as

x =

{
m−1
B−1

, m > 1,

1, m = 1.
(3.24)

We will show that the minimum value x in equation (3.24) is also the optimal

value in the decoding process.

3.3.2 Data Decoding

The mBS first collects the data and then performs the data decoding. Note that there

are B combined segments stored in each sensor node. A sensor node queried by the

mBS will upload all the B combined segments and the associated coefficient vectors

to the mBS. In DSC-mLDC, with the data replacement, each sensor node stores the

B latest combined segments f(l−B+1), f(l−B+2), ..., f(l). The replaced combined

Chapter 3. Distributed separate coding for m latest data segment collection 51

segments are f(1), ..., f(l − B). In each replaced combined segment, the number of

encoded original data segments is x. Thus, the total number of original data segments

encoded in the l−B replaced combined segments is (l−B)x. The set of original data

segments encoded in the (l − B)x replaced combined segments is {c1, c2, ..., c(l−B)x}.
And the set of original data segments encoded in the B latest combined segments

f(l −B + 1), f(l −B + 2),..., f(l) is {c(l−B)x+1, c(l−2)(m−1)+2, ..., cn(t)}. We have

f(r) =





rx∑
j=(r−1)x+1

βijcj, r = l −B + 1, l −B + 2, ..., l − 1,

n(t)∑
j=(l−1)x+1

βijcj, r = l.

(3.25)

Note that the number of original data segments encoded in each of the B − 1

combined segments f(l − B + 1), ..., f(l − 1) is x. The number of original data

segments encoded in f(l) is n(t)− (l−1)x, where n(t)− (l−1)x ≤ x. In the encoding

process, we have shown that the number of the original data segments encoded in

the B latest combined segments is with an upper bound Bx and a lower bound

(B − 1)x + 1. The following relation holds.

(B − 1)x + 1 ≤ n(t)− (l −B)x ≤ Bx. (3.26)

Then,

n(t)

x
≤ l ≤ n(t)− x− 1

x
. (3.27)

Without loss of generality, we consider that f v
i = f(l), where v ∈ {1, ..., B}. That

is, f(l) is stored in buffer v of sensor node i. From the data replacement process in

DSC-mLDC, f v+1
i = f(l−B +1) and f v−1

i = f(l−1). That is, f(l−B +1) is stored

in buffer bv+1 of sensor node i and f(l − 1) is stored in buffer bv−1 of sensor node i

Chapter 3. Distributed separate coding for m latest data segment collection 52

(as shown in Fig 3.6). The B latest combined segments f(l −B + 1), f(l −B + 2),

..., f(l) are stored in the corresponding buffers of sensor node i, as shown in equation

(3.28).

fu
i =





f(l − v + u), u = 1, 2, ..., v − 1,

f(l), u = v,

f(l −B − v + u), u = v + 1, v + 2, ..., B.

(3.28)

For convenience, let

fu = (fu
1 , fu

2 , . . . , fu
N)T , u = 1, ..., B, (3.29)

where fu
i is the combined segment stored in buffer bu of sensor node i, i = 1, ..., N .

fu includes the combined segments stored in buffer bu of N sensor nodes. Let

βββu =




~βu
1
...

~βu
N


 =








β1.(l−v+u−1)x+1 . . . β1.(l−v+u)x

...
. . .

...

βN.(l−v+u−1)x+1 . . . βN.(l−v+u)x


 , u = 1, 2, ..., v − 1,




β1.(l−1)x+1 . . . β1.n(t)

...
. . .

...

βN.(l−1)x+1 . . . βN.n(t)


 , u = v,




β1.(l−B−v+u−1)x+1 . . . β1.(l−B−v+u)x

...
. . .

...

βN.(l−B−v+u−1)x+1 . . . βN.(l−B−v+u)x


 , u = v + 1, v + 2, ..., B,

(3.30)

and

Chapter 3. Distributed separate coding for m latest data segment collection 53

cu =





(c(l−v+u−1)x+1, ..., c(l−v+u)x)
T , u = 1, 2, ..., v − 1,

(c(l−1)x+1, ..., cn(t))
T , u = v,

(c(l−B−v+u−1)x+1, ..., c(l−B−v+u)x)
T , u = v + 1, v + 2, ..., B.

(3.31)

where ~βu
i is the associated coefficient vector of fu

i , and cu is the set of original data

segments encoded in fu
i , u = 1, ..., B, i = 1, ..., N .

From equations (3.25) and (3.28), we have

fu = βββucu, u = 1, ..., B. (3.32)

We show that the mBS can decode the m latest original data segments by querying

any x sensor nodes with high probability. Similar to DSC-mLDC for the case that

each sensor node has two buffers, to decode the original data segments, the mBS

must invert x × x submatrixs βββ′u of βββu (u = 1, ..., v − 1, v + 1, ..., B) and invert a

(n(t)− (h + B − 1)x)× (n(t)− (h + B − 1)x) submatrix βββ′v of βββv. The key property

required for successfully decoding is that the coefficient vectors in any of the inverted

submatrix must be linearly independent. This is generally true for a large enough

field size q [65].

The original data segments can be decoded using Gaussian Elimination [111],

which corresponds to solve B − 1 systems of linear equations with x variables and a

system of linear equations with (n(t) − (h + B − 1)x) variables in Fq. Since the set

of original data segments encoded in the B latest combined segments includes all the

m latest original data segments, we can obtain the following Theorem.

Theorem 3.5. In DSC-mLDC, for the case that each sensor node has more than

two buffers and the mBS randomly queries x sensor nodes, the success ratio of data

collection is very close to 100% by using a large enough finite field size q for coeffi-

cients.

Chapter 3. Distributed separate coding for m latest data segment collection 54

Note that the value x equals to the number of sensor nodes that should be queried

by the mBS during data collection. The minimum value of x is the optimal value

of x, since the sensor network will consume less energy if less sensor nodes need to

upload data to the mBS. Thus, equation (3.24) is the optimal value of x. From

equation (3.24), the number of sensor nodes that should be queried by the mBS can

be reduced with a few additional storage space in each sensor node. We will show

latter that this can also result in reducing the transmission cost for data submission

to the mBS.

3.4 Performance analysis and comparison

3.4.1 Computation, transmission and storage overheads in

DSC-mLDC

Since the sensor nodes are power constrained entities, the applied scheme must be

light-weighted. The proposed DSC-mLDC scheme is with low computation, storage

and communication overheads.

In the encoding process of DSC-mLDC, each sensor node separately encodes a

certain number of original data segments in a combined segment. The computation

complexity for data encoding in each sensor node is a linear function, which depends

on the number of encoded original data segments. The computation complexity

for data encoding in DSC-mLDC is similar to that in PNC [51]. The computation

overhead for data coding in DSC-mLDC lies mainly in the decoding process. This is

performed in the powerful mBS. In the decoding process, the mBS solves B systems of

linear equations. The order of coefficient matrix for each system of linear equations is

at most x (< m). The original data segments encoded in the B combined segments in

a sensor node (i.e., the variables in the B systems of linear equations) can be decoded

Chapter 3. Distributed separate coding for m latest data segment collection 55

in O(x3) by using the Gaussian Elimination [111]. The computation complexity for

data decoding in DSC-mLDC is also similar to that in PNC [51].

In DSC-mLDC, a sensor node uploads B combined segments and the associated

coefficient vectors to the mBS when it is queried by the mBS. The mBS queries x

sensor nodes during data collection. From equation (3.24), the total number of com-

bined segments uploaded from the queried sensor nodes is B(m−1)
B−1

(B ≥ 2), which

decreases as the buffer size B increases. Thus, the transmission overhead for trans-

mitting combined segments to the mBS can be reduced with a few additional storage

space in each sensor node. Besides the combined segments, the coefficient vectors are

also uploaded from the queried sensor nodes. The overhead of uploading the coef-

ficient vectors is much lower than the overhead of uploading large size of combined

combined segments. We will further show the benefits of the proposed DSC-mLDC

scheme which overcomes the overhead in the simulations.

In DSC-mLDC, each sensor node stores B (B ≥ 2) combined segments and the B

associated coefficient vectors. The storage overhead depends on the size of combined

segments, the size of finite field for coefficients q, and how many original data segments

are encoded in a combined segment. The storage overhead can be reduced a lot by

coding, since each sensor node stores the combined segments and the associated

coefficient vectors instead of storing the original data segments. We have shown the

storage overhead for a combined segment with the associated coefficient vector, and

the percentage of storage overhead reduction be coding in Section 2.2.1.

3.4.2 Performance comparison

Note that DEC [58] and PNC [51] also can be applied for data collection in WSNs.

To show the superiority of the proposed DSC-mLDC scheme, we give an example

to show the differences among DEC, PNC and the proposed DSC-mLDC scheme.

Consider that there are 4 sensor nodes S1, S2, S3 and S4. Each sensor node has two

buffers. The original data segments are c1, c2, · · · , c10. In this example, let m = 3,

Chapter 3. Distributed separate coding for m latest data segment collection 56

1 2

1 1 1 2 10 1 1 2 10

1 2

2 2 1 2 10 2 1 2 10

1 2

3 3 1 2 10 3 1 2 10

1 2

4 4 1 2 10 4 1 2 10

: [, ,...,], [, ,...,]

: [, ,...,], [, ,...,]

: [, ,...,], [, ,...,]

: [, ,...,], [, ,...,]

S f c c c f c c c

S f c c c f c c c

S f c c c f c c c

S f c c c f c c c

= =

= =

= =

= =

1 2

1 1 10 1 9 10

1 2

2 2 9 10 2 10

1 2

3 3 8 9 10 3 9 10

1 2

4 4 9 10 4 10

: [], [,]

: [,], []

: [, ,], [,]

: [,], []

S f c f c c

S f c c f c

S f c c c f c c

S f c c f c

= =

= =

= =

= =

1 2

1 1 7 8 1 9 10

1 2

2 2 7 8 2 9 10

1 2

3 3 7 8 3 9 10

1 2

4 4 7 8 4 9 10

: [,], [,]

: [,], [,]

: [,], [,]

: [,], [,]

S f c c f c c

S f c c f c c

S f c c f c c

S f c c f c c

= =

= =

= =

= =

a DEC

b PNC

c DSC-mLDC

Figure 3.7: Data distribution in 4 sensor nodes (S1 through S4) with B = 2,
m = 3. (a) DEC, (b) PNC, (c) DSC-mLDC.

i.e., the mBS wants to collect the 3 latest original data segments c8, c9, and c10. The

associated coefficients are omitted for ease of exposition, as equation (3.4).

In DEC, each sensor node encodes all the recorded data segments in a combined

segment without replacement, as shown in Fig 3.7 (a). It is clear that DEC is not

suitable for continuous data collection, since too much data segments encoded in

each combined segment will be undecodable in the decoding process. In PNC, each

combined segment encodes only the part of latest original data segments by removing

the older data segments. The number of data segments encoded in a combined

segment varies from 1 to m. The sensor nodes queried by the mBS will upload a

combined segment which encodes the maximum number of original data segments.

Consider the example in Fig 3.7 (b). If the mBS queries S1, S2 and S4, the combined

segments f 2
1 , f 1

2 and f 1
4 are uploaded to the mBS. The mBS cannot decode c8, since

Chapter 3. Distributed separate coding for m latest data segment collection 57

none of the three uploaded combined segments encode c8. Thus, PNC does not

always decode the m latest original data segments completely if the mBS randomly

queries some sensor nodes. The proposed DSC-mLDC scheme encodes all the m

latest original data segments in the two combined data segments in each sensor node,

as shown in Fig 3.7 (c). And, the mBS can decode all the m latest data segments if

the mBS queries any m− 1 sensor nodes in DSC-mLDC.

We further analyze the performance of DSC-mLDC by comparing it with PNC

[51], since PNC also can support data replacement for continuous data collection.

We compare the two schemes in the following scenarios. (1) The minimum buffer

size of each sensor node. (2) The minimum number of sensor nodes queried by the

mBS. (3) The number of upload combined data segments. (4) Success ratio of data

collection.

We fist compare the two schemes when each sensor node has minimum buffer size.

In PNC, the minimum buffer size of each sensor node is 1. In the data collection

process of PNC, the mBS randomly queries m sensor nodes. Each of the queried

sensor nodes uploads one combined segment. In PNC, the total number of combined

segments which are uploaded from the m queried sensor nodes is m. However, PNC

suffers from low success ratio of data collection. In PNC, when the mBS randomly

queries m sensor nodes, the success ratio of collecting the m latest original data

segments is less than 20% [51].

In DSC-mLDC, the minimum buffer size of each sensor node is 2. In the data

collection process of DSC-mLDC, the mBS randomly queries m − 1 sensor nodes.

Each of the queried sensor nodes uploads two combined segment. In DSC-mLDC,

the total number of combined segments which are uploaded from the m− 1 queried

sensor nodes is 2(m − 1). Although this number seems to be larger than that in

PNC, to successfully collect the m latest original data segments, this number could

be much less than that in PNC. Because the success ratio of data collection in DSC-

mLDC is much higher than that in PNC. For example, to successfully collect the

Chapter 3. Distributed separate coding for m latest data segment collection 58

m latest original data segments, the mBS queries m − 1 sensor nodes once in DSC-

mLDC, while the mBS queries m sensor nodes five times in PNC. The total number

of uploaded combined segments is 2(m− 1) in DSC-mLDC and 5m in PNC.

For the sake of convenience, a summary of the comparisons when each sensor

node has minimum buffer size are given in Table 3.1.

Table 3.1: Comparisons of DSC-mLDC with PNC When Each Sensor Node Has
Minimum Buffer Size

Comparison PNC DSC-mLDC

Minimum buffer size of each sensor node 1 2

Minimum number of queried sensor nodes m m− 1

Number of uploaded combined segments from a sensor node 1 2

Total number of upload combined segments m 2(m− 1)

Success ratio of data collection Low High

We then compare DSC-mLDC with PNC when both of the two schemes achieve

high success ratio of data collection.

In PNC, the success ratio of data collection can be improved by extending the

buffer size of each sensor node to
√

m + 1. The number of queried sensor nodes also

should be extended to m +
√

m. In the data collection process of PNC, the mBS

randomly queries m+
√

m sensor nodes. Each of the queried sensor nodes uploads one

combined segment which encodes the maximum number of original data segments.

In PNC, the total number of uploaded combined segments is m +
√

m.

In DSC-mLDC, the number of queried sensor nodes can be reduced to m−1
B−1

by

extending the buffer size of each sensor node to B, while maintaining a high success

ratio of data collection which is very close to 100%. In the data collection process

of DSC-mLDC, the mBS randomly queries m−1
B−1

sensor nodes. Each of the queried

sensor nodes uploads B combined segments. In DSC-mLDC, the total number of

uploaded combined segments is B(m−1)
B−1

. Notice that this value decreases as the value

of B increases. When B =
√

m + 1, B(m−1)
B−1

< m +
√

m. That is, with the same

Chapter 3. Distributed separate coding for m latest data segment collection 59

buffer size in each sensor node, the total number of uploaded combined segments in

DSC-mLDC is less than that in PNC. On the other hand, in DSC-mLDC the total

combined segments are submitted from fewer sensor nodes, which can reduce the

cost for establishing connections between the mBS and sensor nodes. For example,

in DSC-mLDC twenty combined segments can be uploaded from four sensor nodes

(each sensor node has five buffers and uploads five combined segments). While, in

PNC twenty combined segments should be uploaded from twenty sensor nodes (each

sensor node has m +
√

m buffers but uploads only one combined segment).

For the sake of convenience, a summary of the comparisons when both of the two

schemes achieve high success ratio are given in Table 3.2.

Table 3.2: Comparisons of DSC-mLDC with PNC When Achieving High Success
Ratio of Data Collection

Comparison PNC DSC-mLDC

Minimum buffer size of each sensor node
√

m + 1 2

Minimum number of queried sensor nodes m +
√

m m−1
B−1

, (B ≥ 2)

Number of uploaded combined segments from a sensor node 1 B

Total number of upload combined segments m +
√

m B(m−1)
B−1

, (B ≥ 2)

Note that to achieve high success ratio of data collection, in PNC the buffer size

of each sensor node is
√

m+1 , which depends on the number of latest original data

segments m. This is inflexible, since the number of latest original data segments

may be varied in different times of data collection (e.g., the mBS collects the 10

latest original data segments in the first time but collects the 15 latest original data

segments in the second time). However, the buffer size of each sensor node cannot

be changed after being deployed. In DSC-mLDC, the buffer size of each sensor node

is independent of the number of latest original data segments m. The buffer size of

each sensor node can be adjusted by changing the number of sensor nodes queried by

the mBS. DSC-mLDC achieves high success ratio of data collection with a minimum

buffer size two in each sensor node.

Chapter 3. Distributed separate coding for m latest data segment collection 60

3.5 Performance evaluation

We evaluate the performance of the proposed DSC-mLDC scheme by comparing it

with PNC [51] in simulations. We compare DSC-mLDC with PNC on success ratio

of data collection and energy consumption for data transmission.

3.5.1 Performance Metrics

We deploy 1000 sensor nodes uniformly at random into a field of 300m × 300m. The

distance between the sensor nodes and the mBS is much longer than the distance

between the sensor nodes, as suggested in Lindsey and Raghavendra [112]. Without

necessarily entering deep into the sensor field, the mBS can perform data collection.

The time slot to generate an original data segment is one hour. The size of an original

data segment is 1 KB.

To reduce the storage overhead and the transmission overhead of the coefficients,

we use Suli and Mayers method [110] to generate coefficients. Each sensor node only

needs to store a coefficient for a combined segment. When the mBS performs data

collection, besides the combined segments, each of the queried sensor nodes only

needs to upload a coefficient for a combined segment. The mBS wants to collect

the m latest original data segments. It will perform data collection after a sensing

time interval, in which the number of total generated data is randomly chosen from

[m, 4m]. Since the value m can affect the performance of the applied schemes, in the

simulation, we change the value m from 10 to 100. Unless otherwise specified, the

size of finite field for coefficients is q = 216. The solution of linear equations is using

the Gaussian Elimination [111].

Table 3.3 demonstrates part of the important parameters and settings in the

simulations.

Chapter 3. Distributed separate coding for m latest data segment collection 61

Table 3.3: System Parameters and Settings for m Latest Data Segment Collection
System Parameters Settings

Simulator Matlab

Length × Width 300 m ×300 m

Number of sensor nodes 1000

Transmit range between sensor nodes 20 m

Transmit range between sensor nodes and mBS 150 m ∼ 250 m

Size of a data segment 1KB

Energy consumption for sending a data segment 20 nAH

Size of finite field for coefficients q 216

Simulation times 1000

Confidence interval 95%

3.5.2 Simulation results

3.5.2.1 Comparison on success ratio of data collection

During data collection, the mBS first queries a small subset (i.e., the minimum num-

ber) of sensor nodes uniformly at random from the sensor network to collect data.

Unless otherwise specified, in DSC-mLDC, the minimum number of queried sensor

nodes is x, where x = dm−1
B−1

e, as we have shown in equation (3.4). If the m latest

original data segments cannot be decoded successfully, the mBS will query additional

sensor nodes one by one until the m latest original data segments are decoded. The

additional sensor nodes are queried uniformly at random from the sensor network

(excluding the sensor nodes which have queried in the same time of data collection).

The sensor network will consume more energy for sending data to the mBS if the mBS

repeats data collection. Thus, a high success ratio of data collection is important.

We first compare DSC-mLDC with PNC on success ratio of data collection by

varying the number of latest original data segments m. In PNC, the sensor nodes

queried by the mBS will upload a combined segment which encodes the maximum

number of original data segments. Fig 3.8 shows the success ratio of data collection

as a function of the number of latest original data segments m. In this simulation,

Chapter 3. Distributed separate coding for m latest data segment collection 62

10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Latest Data Segments

S
uc

ce
ss

 R
at

io
 o

f D
at

a
C

ol
le

ct
io

n

DSC−mLDC, q=216

DSC−mLDC, q=214

PNC, q=216

PNC, q=214

Figure 3.8: Success ratio of data collection vs. the number of latest original data
segments.

the buffer size is set to B = 2. The size of finite field for coefficients is set to q = 28

and q = 216, respectively. It is clear that DSC-mLDC performs better than PNC no

matter the finite field size q = 28 or q = 216. The success ratio of data collection in

DSC-mLDC is close to 100% for a large size of finite field when q = 216. This fact is

also stated in the proof of Theorem 3.4. The success ratios of data collection in PNC

is lower than that in DSC-mLDC, since the set of original data segments encoded in

the collected combined segments not always includes all the m latest original data

segments. The success ratio of data collection in DSC-mLDC mainly depends on the

probability of linear independence for the coefficient vectors. The success ratio of

data collection in PNC not only depends on the probability of linear independence

for the coefficient vectors, but also depends on the probability that the set of original

Chapter 3. Distributed separate coding for m latest data segment collection 63

data segments encoded in the collected combined segments includes all the m latest

original data segments.

2 3 4 5 6 7 8 9 10
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Buffer Size of Each Sensor node

S
uc

ce
ss

 R
at

io
 o

f D
at

a
C

ol
le

ct
io

n

DSC−mLDC, m=30
DSC−mLDC, m=60
PNC, m=30
PNC, m=60

Figure 3.9: Success ratio of data collection vs. buffer size B in each sensor node.

Since the buffer size B of each sensor node can affect the performance of the

applied scheme, we then compare DSC-mLDC with PNC on success ratio of data

collection by varying the buffer size B of each sensor node. As shown in Fig 3.9, the

success ratio of data collection in DSC-mLDC maintains high no matter the buffer

size of each sensor node is small or big, which is close to 100%. The success ratio

of data collection in PNC is not so high when each sensor node has smaller buffer

size. The success ratio of data collection in both DSC-mLDC and PNC increase

as the buffer size B increases. That is because in DSC-mLDC the number of data

segments encoded in a combined segment decreases as the buffer size B increases.

The probability of linear independence for the coefficient vectors increases as the

Chapter 3. Distributed separate coding for m latest data segment collection 64

number of data segments encoded in a combined segment decreases, as shown in

Fig 2.6. In PNC, each sensor node can store more combined segments as the buffer

size B increases. Thus, the probability that a combined segment encodes all the m

latest original data segments in each senor node are improved.

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

3000

3500

4000

Buffer Size of Each Sensor Node

E
ne

rg
y

C
on

su
m

pt
io

n
fo

r
D

at
a

T
ra

ns
m

is
si

on
 (

nA
H

)

DSC−mLDC, m=30
DSC−mLDC, m=60
PNC, m=30
PNC, m=60

Figure 3.10: Energy consumption for data transmission vs. buffer size B in each
sensor node.

3.5.2.2 Comparison on energy consumption for data transmission to the

mBS

The success ratio of data collection in both DSC-mLDC and PNC can be improved

with larger buffer size in each sensor node. We the compare DSC-mLDC with PNC on

energy consumption for data transmission by varying the buffer size B of each sensor

node. Since the energy consumption for data encoding and decoding in these two

Chapter 3. Distributed separate coding for m latest data segment collection 65

schemes are almost the same, for the sake of convenience we compare the two schemes

on energy consumption for data transmission during data collection by the mBS. We

use the energy model by Mainwaring et al [52]. Note that the same energy model is

used in PNC too. The energy consumption for transmitting one combined segment

(including the associated coefficient) is 20 nAH (10.9 Ampere hours). As suggested in

[113], establishing a connection between a sensor node and the mBS consumes energy

too. Consider that the energy consumption for establishing a connection between a

sensor node and the mBS is 20 nAH.

In DSC-mLDC, a queried sensor node will upload B combined segments to the

mBS. Thus, the energy consumption for a queried sensor node in DSC-mLDC is

(20 + 20B) nAH. In PNC, a queried sensor node will upload only one combined

segment to the mBS. The energy consumption for a queried sensor node in PNC is

40 nAH. The mBS first queries the minimum number of sensor nodes to collect data.

In DSC-mLDC, the minimum number of queried sensor nodes is dm−1
B−1

e. While in

PNC, the minimum number of queried sensor nodes is m. If the m latest original

data segments cannot be decoded successfully, the mBS will query additional sensor

nodes one by one until the m latest original data segments are decoded.

As shown in Fig 3.10, the energy consumption in DSC-mLDC is less than that

in PNC no matter the number of latest original data segments m = 30 or m = 60.

That is because the success ratio of data collection in DSC-mLDC is higher than that

in PNC when each sensor node has smaller buffer size. When each sensor node has

larger buffer size, the total number of uploaded combined segments in DSC-mLDC

is less than that in PNC. We also notice that the energy consumption in DSC-

mLDC decreases significantly as the buffer size B increases, since in DSC-mLDC

the total number of uploaded combined segments and the number of queried sensor

nodes decrease as the buffer size B increases. In PNC, the energy consumption only

decreases significantly when buffer size increases from B = 2 to B = 3, since the

success ratio of data collection improved a lot from B = 2 to B = 3. In PNC the

total number of combined segments uploaded to the mBS remains the same when

Chapter 3. Distributed separate coding for m latest data segment collection 66

the buffer size B increases. Thus, the range for the reduction of energy consumption

in PNC is very small when the buffer size B continuous to increase.

10 20 30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Number of Latest Data Segments

E
ne

rg
y

C
on

su
m

pt
io

n
fo

r
D

at
a

T
ra

ns
m

is
si

on
 (

nA
H

)

DSC−mLDC
PNC

Figure 3.11: Energy consumption for data transmission vs. the number of latest
original data segments.

The success ratio of data collection in PNC can be improved to be close to 100%

by extending the buffer size of each sensor node to
√

m + 1. We then compare DSC-

mLDC with PNC on energy consumption for data transmission when both the two

schemes have large enough buffer size to achieve high success ratio of data collection

(i.e., the success ratio of data collection is close to 100%). Fig 3.11 shows the energy

consumption for data transmission as a function of the number of latest original

data segments m. In the simulation, the buffer size of each sensor node is set to

B =
√

m + 1, which is large enough for PNC to achieve high success ratio of data

collection. In PNC, during data collection the mBS queries m +
√

m sensor nodes to

Chapter 3. Distributed separate coding for m latest data segment collection 67

collect data. The sensor nodes queried by the mBS will upload a combined segment

which encodes the maximum number of original data segments. As shown in Fig 3.11,

the energy consumption for data transmission in DSC-mLDC is much less than that

in PNC. That is because, the total number of uploaded combined segments and the

number of queried sensor nodes in PNC are
√

m + m, which are more than that in

DSC-mLDC with the same buffer size in each sensor node.

3.6 Discussion

In the proposed DSC-mLDC scheme, to focus on the data encoding and replacement

processes in each sensor node and the data decoding process in the mBS, we assume

that each original data segment is recorded by all the sensor nodes by using some

existing data dissemination method. Actually, if each original data segment is not

recorded by all the sensor nodes, the mBS still can decode the original data segments

with high probability.

As mentioned in [58], if each original data segment is recorded by a certain number

of sensor nodes, the original data segments can be successfully decoded with high

probability. We have showed that in DSC-mLDC, for the x original data segments

encoded in a combined segment, the key property for successfully decoding is that the

coefficient vectors in any of the inverted x×x submatrix βββ′u of βββu (as shown in equation

(3.30)) must be linearly independent (i.e., det(βββ′u) 6= 0). According to the result in

[58] (see Theorem 1 in [58]), in DSC-mLDC, if each original data segment is recorded

by at least d = 5N
x

ln x sensor nodes, the original data segments can be successfully

decoded with high probability. Specifically, we have Pr[det(βββ′u) = 0] ≤ x
q

+ o(1).

Note that if each original data segment is recorded by less sensor nodes, the data

dissemination overhead is lower.

Another way to reduce the data dissemination overhead in sensor network is using

cluster structure with distributed clustering heads [114, 115]. The sensed data in each

Chapter 3. Distributed separate coding for m latest data segment collection 68

cluster are disseminated to its cluster head. The cluster heads may communicate

with each other to exchange data. The cluster heads encode the received original

data segments in some combined segments with different coefficient vectors, and

send them to their cluster members. In such a way, the data dissemination overhead

can be reduced significantly, science the sensed data are not directly disseminated

to the whole network. Similar to that considered in [116], to balance the load on

cluster heads, the cluster heads can be selected periodically according to a hybrid of

the node residual energy and a secondary parameter, such as node proximity to its

neighbors or node degree.

Note that in the real application, due to the latency caused by the data dissemi-

nation, some data segments may have not been recorded by some sensor nodes when

the mBS performs data collection. For this reason, the combined segments stored

in the same buffers of different sensor nodes may encode different original data seg-

ments. In this dissertation, we focus on the data encoding and replacement methods

by neglecting the latency for data dissemination in the proposed DSC-mLDC scheme.

In the future, we will consider how to deal with the problem of latency.

3.7 Summary

In this chapter, we consider the first scenario of continuous data collection (i.e., Lat-

est data segment collection), and present a novel data collection scheme called Dis-

tributed Separate Coding for Latest Data segment Collection (DSC-mLDC). DSC-

mLDC is not only shown as an efficient storage method to collect the m latest data

segments continuously, but also achieves a high success ratio of data collection. We

present the data encoding process, data replacement precess and data decoding pro-

cess in DSC-mLDC. We show that in DSC-mLDC, the number of sensor nodes that

should be queried by the mBS can be reduced with a few additional storage space in

each sensor node, which result in reducing the energy consumption for data transmis-

sion to the mBS. We also show that the success ratio of data collection in DSC-mLDC

Chapter 3. Distributed separate coding for m latest data segment collection 69

is very close to 100% by using larger enough finite field for coefficients in both the-

oretical analysis and simulations. Furthermore, we evaluate the performance of the

proposed DSC-mLDC scheme by comparing it with the existing PNC scheme. It is

shown that DSC-mLDC outperforms the existing scheme significantly.

Chapter 4

Distributed Separate Coding for

All Data Segment Collection

In this chapter, we focus on the issue of collecting all data continuously in wireless

sensor networks with a mobile Base Station (mBS). To the best of our knowledge, in

most of the related work the number of collected data segments is a fixed value. We

consider to collect all the n(t) data segments generated in a time interval t, where

n(t) is a nondecreasing function of time interval t. We present a novel data collection

scheme called Distributed Separate Coding for All Data segment Collection (DSC-

ADC). DSC-ADC is decentralized and based on the mBS’s randomly accessing. By

separately encoding a certain number of data segments in a combined segment, and

storing the combined segments in the corresponding buffers of each sensor node, the

DSC-ADC scheme provides an efficient storage method to collect all data segments

with a high success ratio.

Before introducing the proposed DSC-ADC scheme for all data segment collection,

we show the differences between m latest data segment collection in Chapter 3 and

all data segment collection in this Chapter. In m latest data segment collection, the

collected data is the part of latest data and the number equals to m. m is a fixed

number. The value of m is known to each sensor node before the mBS performs data

70

Chapter 4. Distributed separate coding for all data segment collection 71

collection. The number of data segments encoded in a combined segment x is set

according to the value of m. In all data segment collection, the number of collected

data n(t) is a variable. The value of n(t) increases as the time interval t increases.

The value of n(t) is unknown until the mBS performs data collection. Thus, the data

encoding method in all data segment collection is different from that in m lathe data

segment collection, since the data cannot be encoded according to the value of n(t).

The value of n(t) depends on the time when the mBS performs data collection. n(t)

may equal to m. But, that is only when the mBS performs data collection at the

time that the total number of data segments generated in a time interval equals to

m. However, the time when the mBS performs data collection cannot be controlled.

In the extreme environment, many external factors will affect the arrival of the mBS

(e.g., the bad weather).

This chapter is organized as follows. In Section 4.1, we give an overview of the

proposed DSC-ADC scheme. In Section 4.2, we present DSC-ADC for the right ar-

rival case. In Section 4.3, we present DSC-ADC for the late arrival case. Performance

analysis and discussion are presented in Section 4.4. In Section 4.5, we evaluate the

performance of the proposed scheme through simulations. Section 4.6 concludes this

chapter.

4.1 An overview of DSC-ADC

1c 2c

1st time slot 2nd time slot

()n t
c

L

Figure 4.1: All the n(t) data segments generated in a time interval t.

In the proposed DSC-ADC scheme, we consider to collect all the n(t) data seg-

ments generated in a time interval t, as shown in Fig 4.1. In DSC-ADC, each sensor

Chapter 4. Distributed separate coding for all data segment collection 72

node separately encodes a certain number of original data segments in a combined

segment and stores it in the corresponding buffer. Let Fi = {f 1
i , f 2

i , ..., fB
i } be a set of

combined segments stored in sensor node i, where fk
i is stored in buffer bk, as shown

in Fig 4.2. The associated coefficient vector for fk
i is also stored in buffer bk. C(fk

i)

is the number of data segments encoded in fk
i .

1

i
f

2

i
f

1B

i
f

− B

i
f

1b 2b 1B
b

− B
b

L

Figure 4.2: The combined segment fk
i is stored in buffer bk.

t0

t

(a) Right arrival case

(b) Late arrival case

Figure 4.3: Two cases in all data segment collection. t0 = minimum{t}.

We consider the following two cases: (1) right arrival case that the mBS arrives

on time, (2) late arrival case that the mBS arrives late. In general condition, the

mBS performs data collection in a regular time interval t0, where t0 = minimum{t},
as shown in Fig 4.3 (a). This case is called right arrival case. The total number of

original data segments generated in time interval t0 is n(t0). If the mBS arrives when

the time interval t ≥ t0, we call this case late arrival case, as shown in Fig 4.3 (b).

Note that n(t0) ≤ n(t).

The encoding and decoding processes in the two cases are with some differences.

The encoding and decoding processes in the right arrival case is easier, as the total

number of original data segments generated in time interval t0 is a fixed value n(t0).

While in late arrival case, the total number of original data segments may increase as

Chapter 4. Distributed separate coding for all data segment collection 73

the time interval t (≥ t0) increases. A challenge issue is how to let the fixed buffers

in each sensor node to store all the data segments whether the mBS arrives on time

or late. We first present the encoding and decoding processes for right arrival case.

The enhancement to late arrival case will be presented later.

4.2 DSC-ADC for the right arrival case

4.2.1 Data encoding

Each sensor node will separately encode a certain number of original data segments

in each combined segment, and store the B combined segments and the associated

coefficient vectors in its B buffers. Assume that the certain number of data segments

encoded in a combined segment is x (x < n(t0)). For example, when the first x

original data segments c1, c2,..., cx are recorded, they are encoded in f 1
i and stored in

buffer b1 by sensor node i. When the second x original data segments cx+1, cx+2,...,

c2x are recorded, they are encoded in f 2
i and stored in buffer b2 by sensor node i.

Fig 4.4 shows the data encoding process in sensor node i.

1c 2c x
c 2x

c
+1xc + 2xc 2 1xc + 2 2x

c
+ 3xcL L L L

Encoded in Encoded in Encoded in
1

i
f

2

i
f

3

i
f

1b 2b 3b

Figure 4.4: x original data segments are separately encoded in a combined seg-
ment and stored in the corresponding buffer.

We present the encoding equation of each combined segment fk
i , k = 1, ..., B. Let

r be a positive integer. If the sequence number of cj satisfies (k − 1)x + 1 ≤ j ≤ kx,

cj will be encoded in fk
i as the following equation.

Chapter 4. Distributed separate coding for all data segment collection 74

fk
i =

kx∑

j=(k−1)x+1

βijcj, (4.1)

where k = 1, ..., B. The coefficients βij are selected uniformly and independently

from a finite field Fq.

Since the total number of data segments n(t0) may not be an integer multiple of

x, the number of data segments encoded in the last combined segment fB
i may be

less than x. Thus, equation (4.1) can be divided into two parts as follows.

fk
i =





kx∑
j=(k−1)x+1

βijcj, k = 1, ..., B − 1,

n(t0)∑
j=(B−1)x+1

βijcj, k = B.

(4.2)

For example, when n(t0) = 16, B = 3 and x = 6, the original data segments c1,

c2,..., c6 are first encoded in f 1
i . The original data segments c7, c8,..., c12 are then

encoded in f 2
i . The last 4 original data segments c13, c14, c15, c16 are encoded in f 3

i .

The encoding process is performed by each sensor node. An original data segment

cj is encoded with one of the B combined segments in sensor node i. The data

encoding algorithm (Algorithm 3) is locally executed at each sensor node.

We show how to set the value x, which is the maximum number of data segments

encoded in a combined segment. Since the maximum number of data segments en-

coded in a combined segment is x, the total number of data segments encoded in the

B combined segments is at most Bx. To guarantee that each sensor can encode all

the n(t0) data segments, Bx should satisfy

Bx ≥ n(t0). (4.3)

Chapter 4. Distributed separate coding for all data segment collection 75

Algorithm 3: Data encoding in the right arrival case

Input: Original data segment cj, total number n(t0), buffer size B.
Output: A set of combined segments Fi = {f 1

i , f 2
i , ..., fB

i }.
for j = 1 to n(t0) do1

for k = 1 to B do2

if (k − 1)x + 1 ≤ j ≤ kx then3

Randomly generate βij from Fq ;4

fk
i = fk

i + βijcj;5

end6

end7

end8

Then,

B ≥ n(t0)/x. (4.4)

Since B is an integer, from equation (4.4), we can obtain the minimum buffer size

of each sensor node as

B = dn(t0)/xe. (4.5)

Thus, we have the following Lemma.

Lemma 4.1. In the right arrival case, each sensor node with buffer size B =

dn(t0)/xe is enough to store the combined segments which encode all the original

data segments.

4.2.2 Data decoding

When the mBS performs data collection, there are B combined segments stored in

each sensor node. Each of the B − 1 combined segments f 1
i , f 2

i ,..., fB−1
i encodes

Chapter 4. Distributed separate coding for all data segment collection 76

x data segments, while fB
i encodes n(t0) − (B − 1)x (≤ x) data segments, as the

encoding functions shown in equation (4.2).

We show that the mBS can reconstruct all the original data segments by querying

any x sensor nodes with high probability. For the sake of convenience, assume that

the x sensor nodes queried by the mBS are sensor node 1, sensor node 2,..., sensor

node x. The mBS querying these x sensor nodes will collect x sets of combined

segments F1, F2, ..., Fx, where Fi = {f 1
i , f 2

i , ..., fB
i } is the set of combined segments

collected from sensor node i, i = 1, ..., x. The mBS also collects the related coefficient

vectors of the combined segments. Let fk = {fk
1 , fk

2 , ..., fk
x} denote the set of combined

segments collected from buffer k of the x sensor nodes, k = 1, ..., B. Decoding of fk

is to decode the original data segments from the combined segment which is stored

in buffer k in a sensor node. The decoding process includes B stages, decoding f1,

f2,..., fB.

In f1, f2,...,fB−1, each of the combined segments encodes x original data segments.

In the system of linear equations for fk where k = 1, ..., B−1, the set of original data

segments {c(k−1)x+1, c(k−1)x+2, ..., c(k−1)x+x} is the solution. {c(k−1)x+1, c(k−1)x+2, ..., c(k−1)x+x}
is the set of original data segments encoded in the combined segment which is stored

in buffer k of each sensor node.

We first show the process of decoding the set of x original data segments {c1, c2, ..., cx}
from f1.

From equation (4.2), we know that

f1 = A1c1, (4.6)

where c1 = (c1, c2, ..., cx)
T , and the expansion of equation (4.6) is as follows.

Chapter 4. Distributed separate coding for all data segment collection 77




f 1
1

f 1
2
...

f 1
x




=




β11 β12 . . . β1x

β21 β22 . . . β2x

...
...

. . .
...

βx1 βx2 . . . βxx







c1

c2

...

cx




. (4.7)

The key property required for successfully decoding f1 is that the coefficient matrix

A1 forms a full rank matrix with high probability. A necessary condition is that the

coefficient vectors in A1 must be linearly independent. This is generally true for a

large enough field size q [65]. The probability of linear independency is over 99.6% for

q = 28 [51]. The original data segments can be decoded using Gaussian Elimination

[111].

The decoding processes of f2,...,fB−1 are similar to the decoding process of f1. The

key property required for successfully decoding the set of x original data segments

from each fk (k=1,...,B-1) is that the coefficient vectors in each coefficient matrix

must be linearly independent. The coefficient vectors for the combined segments in

fk (k = 1, ..., B − 1) which form a x× x coefficient matrix Ak are as follows.

Ak =




β1.(k−1)x+1 β2.(k−1)x+1 . . . βx.(k−1)x+1

β1.(k−1)x+2 β2.(k−1)x+2 . . . βx.(k−1)x+2

...
...

. . .
...

β1.kx β2.kx . . . βx.kx




, k = 1, ..., B − 1. (4.8)

In fB, each of the combined segments encodes n(t0) − (B − 1)x original data

segments. In the system of linear equations for fB, the set of original data segments

{c(B−1)x+1, c(B−1)x+2,

..., cn(t0)} is the solution. We then show the process of decoding the set of n(t0) −
(B − 1)x original data segments cB from fB.

From equation (4.2), we know that

Chapter 4. Distributed separate coding for all data segment collection 78

fB = ABcB, (4.9)

where cB = (c(B−1)x+1, c(B−1)x+2, ..., cn(t0))
T , and the expansion of equation (4.9) is as

follows.




fB
1

fB
2
...

fB
x




=




β1.(B−1)x+1 β1.(B−1)x+2 . . . β1.n(t0)

β2.(B−1)x+1 β2.(B−1)x+2 . . . β2.n(t0)

...
...

. . .
...

βx.(B−1)x+1 βx.(B−1)x+2 . . . βx.n(t0)







c(B−1)x+1

c(B−1)x+2

...

cn(t0)




. (4.10)

The key property required for successful decoding of fB is that the coefficient

vectors in AB must be linearly independent. This is generally true for a large enough

field size q [65]. The original data segments can be decoded using Gaussian Elim-

ination [111]. After decoding all the linear equations, the mBS can obtain all the

original data segments c =
⋃B

k=1 ck.

We have shown that the mBS can decode all the original data segments by query-

ing any x sensor nodes. From equation (4.5), we know that B is inversely proportional

to x. The number of sensor nodes that should be queried by the mBS can be reduced

with a few additional storage space in each sensor node. On the other hand, the mBS

can query more sensor nodes to make the buffer size be available in a sensor node.

4.3 DSC-ADC for the late arrival case

We have shown that the combined segments stored in each sensor node with buffer size

B = dn(t0)/xe can encode all original data segments. But there is still one problem.

If the mBS arrives late, the sensor nodes do not know in which time and how long the

mBS will delay, they just separately encode x data segments in a combined segment

Chapter 4. Distributed separate coding for all data segment collection 79

and store it in the corresponding buffer. If the total number of original data segments

n(t) ≤ Bx, by continuing to encode the original data segments in the last combined

segment fB
i , the buffers are till enough. But if n(t) > Bx, the data segments will

exceed the total storage space of the sensor nodes if they still combine x original

data segments in a combined fashion. Then we will give a formal description of the

encoding and storage process in the late arrival case.

4.3.1 Data encoding

The encoding and storage process when n(t) ≤ Bx are the same as right arrival

case. When n(t) > Bx, the original data segments will be encoded one by one in the

existing combined segments. Let r be a positive integer. If the sequence number of

cj satisfies j = r ·Bx + k, cj will be encoded in fk
i , as the following equation.

fk
i = fk

i
′ + βijcj, (4.11)

where fk
i
′ is the former combined segment stored in buffer k before cj is encoded.

We then give an example to show how to encode the original data segments.

Assume that the buffer size in each sensor node is B = 3, the maximum number of

data segments encoded in a combined segment is x = 3, the total number of data

segments generated in time interval t0 is n(t0) = 8. For the sake of convenience, here

we define

[c1, ..., cl] =
∑l

j=1
βijcj (4.12)

to denote the combined segments, omiting the coefficients βi1, ..., βil.

Equations (4.13), (4.14), (4.15) and (4.16) show the data distribution in sensor

node i. The data encoding and storage in the right arrival case is shown in equation

(4.13). In the late arrival case, when the total number of data segments is not larger

Chapter 4. Distributed separate coding for all data segment collection 80

than Bx, the data segments are encoded in the last combined segment fB
i . As shown

in equation (4.14), c9 is encoded in f 3
i . When the total number of data segments

is larger than Bx, the data segments will be encoded one by one in the existing

combined segments. As shown in equation (4.15), c10 is encoded in f 1
i , c11 is encoded

in f 2
i . As shown in equation (4.16), c12 is encoded in f 3

i , c13 is encoded in f 1
i .

{f 1
i = [c1, c2, c3], f 2

i = [c4, c5, c6], f 3
i = [c7, c8]}. (4.13)

{f 1
i = [c1, c2, c3], f 2

i = [c4, c5, c6], f 3
i = [c7, c8, c9]}. (4.14)

{f 1
i = [c1, c2, c3, c10], f 2

i = [c4, c5, c6, c11], f 3
i = [c7, c8, c9]}. (4.15)

{f 1
i = [c1, c2, c3, c10, c13], f 2

i = [c4, c5, c6, c11], f 3
i = [c7, c8, c9, c12]}. (4.16)

The encoding process is performed by each sensor node. An original data segment

cj is encoded with one of the B combined segments in sensor node i. The data

encoding algorithm (Algorithm 4) is locally executed at each sensor node.

Note that if n(t) ≤ Bx, each of the B − 1 combined segments f 1
i , f 2

i ,..., fB−1
i

encodes x data segments. Thus, C(fk
i) = x, k = 1, ..., B − 1. The last combined

data segment fB
i encodes at most x data segments. Thus, C(fB

i) ≤ x. If n(t) > Bx,

each of the B combined segments may encode more than x data segments. From the

encoding process, we know that C(fp
i) ≥ C(f q

i) if p < q. Thus, we have

C(f 1
i) = maximum{C(fk

i)}. (4.17)

Chapter 4. Distributed separate coding for all data segment collection 81

Algorithm 4: Data encoding in the late arrival case

Input: Original data segment cj, total number n(t), buffer size B, integer r.
Output: A set of combined segments Fi = {f 1

i , f 2
i , ..., fB

i }.
for j = 1 to n(t) do1

for k = 1 to B do2

if j ≤ B then3

if (k − 1)x + 1 ≤ j ≤ kx then4

Randomly generate βij from Fq ;5

fk
i = fk

i + βijcj;6

end7

end8

else9

if j = r ·Bx + k then10

Randomly generate βij from Fq ;11

fk
i = fk

i + βijcj;12

end13

end14

end15

end16

The data segments encoded in f 1
i include two parts. One part of the data segments

are encoded before the mBS delays. The number of these data segments equals to

x. Another part of the data segments are encoded after the mBS delays. We denote

the number of data segments in this part as v, where v = d(n(t) − Bx)/Be. Thus,

the number of data segments encoded in f 1
i equals to

C(f 1
i) = x + v. (4.18)

From equations (4.17) and (4.18), we can obtain

maximum{C(fk
i)} = x + v. (4.19)

Chapter 4. Distributed separate coding for all data segment collection 82

When the mBS decodes the linear equations for the combined segments, the

number of sensor nodes it queries (equals to the number of equations) should be not

less than maximum{C(fk
i)} (equals to the number of variables). Thus, we have the

following Lemma.

Lemma 4.2. In the late arrival case, with n(t) > Bx, the number of sensor nodes

that the mBS needs to query is at least x + v, where v = d(n(t)−Bx)/Be.

Note that the value of x+ v should not be bigger than the total number of sensor

nodes N. That is

x + v ≤ N. (4.20)

Since v = d(n(t)−BW0)/Be and W0 = x, from equation (4.20), we can obtain

n(t) ≤ BN. (4.21)

That is, the maximum number of data segments that the sensor nodes can collect

equals to BN .

From equation (4.21), the maximum number of collected data segments can be

adjusted by adjusting the buffer size B of each sensor node. In the practical applica-

tions, it needs to make a trade off between the cost of the sensor nodes and the data

sensing time interval.

4.3.2 Data decoding

Assume that the last original data segment cn(t) is encoded in fu
i , where u = (n(t)−

Bx) mod B. From the encoding process, we have

Chapter 4. Distributed separate coding for all data segment collection 83

C(f 1
i) = C(f 2

i) = ... = C(fu
i), (4.22)

and

C(fu+1
i) = ... = C(fB

i) = C(f 1
i)− 1. (4.23)

From equations (4.22), (4.23) and (4.18), we can obtain the number of original

data segments encoded in each of the B combined data segments as

C(fk
i) =

{
x + v, 1 ≤ k ≤ u,

x + v − 1, u < k ≤ B,
(4.24)

where v = d(n(t)−Bx)/Be, u = (n(t)−Bx) mod B.

When n(t) ≤ Bx, the mBS can reconstruct all the original data segments by

querying any x sensor nodes with high probability. The decoding process is the same

as the right arrival case.

We show the decoding process when n(t) > BW0, in which the mBS can recon-

struct all the original data segments by querying any x + v sensor nodes with high

probability. For the sake of convenience, assume that the x + v sensor nodes queried

by the mBS are sensor node 1, sensor node 2,..., sensor node x+v. The mBS querying

these x + v sensor nodes will collect x + v sets of combined segments F1, F2, ..., Fx+v,

where Fi = {f 1
i , f 2

i , ..., fB
i } is the set of combined segments collected from sensor

node i, i = 1, ..., x + v. The mBS also collects the related coefficient vectors of the

combined segments. Let fk = {fk
1 , fk

2 , ..., fk
x+v} denote the set of combined segments

collected from buffer k of the x + v sensor nodes, k = 1, ..., B. Decoding of fk is

to decode the original data segments from the combined segment which is stored in

buffer k in a sensor node. The decoding process includes B stages, decoding f1, f2,...,

fB.

Chapter 4. Distributed separate coding for all data segment collection 84

From equation (4.24), we know that in f1, f2,...,fu, each of the combined seg-

ments encodes x + v original data segments, and in fu+1, fu+2,...,fB, each of the

combined segments encodes x + v− 1 original data segments. In the system of linear

equations for fk where k = 1, ..., u, the solution is the set of original data segments

{c(k−1)x+1, c(k−1)x+2, ..., c(k−1)x+x,

cBx+k, cBx+B+k, ..., cBx+(v−1)B+k}, which is the set of original data segments encoded

in the combined segment in buffer k of each sensor node. In the system of linear equa-

tions for fk where k = u + 1, ..., B, the solution is the set of original data segments

{c(k−1)x+1, c(k−1)x+2, ..., c(k−1)x+x, cBx+k, cBx+B+k, ..., cBx+(v−2)B+k}, which is the set of

original data segments encoded in the combined segment in buffer k of each sensor

node.

We show the process of decoding the solution from fk, k = 1, ...B. From equations

(4.2), (4.11) and (4.19), we know that

fk = Akck, (4.25)

where

ck =

{
(c(k−1)x+1, c(k−1)x+2, ..., c(k−1)x+x, cBx+k, cBx+B+k, ..., cBx+(v−1)B+k)

T , 1 ≤ k ≤ u,

(c(k−1)x+1, c(k−1)x+2..., c(k−1)x+x, cBx+k, cBx+B+k, ..., cBx+(v−2)B+k)
T , u < k ≤ B,

(4.26)

and

Chapter 4. Distributed separate coding for all data segment collection 85

Ak =








β1.(k−1)x+1 β2.(k−1)x+1 . . . β(x+v).(k−1)x+1

β1.(k−1)x+2 β2.(k−1)x+2 . . . β(x+v).(k−1)x+2

...
...

. . .
...

β1.(k−1)x+x β2.(k−1)x+x . . . β(x+v).(k−1)x+x

β1.Bx+k β2k.Bx+k . . . β(x+v).Bx+k

β1.Bx+B+k β2.Bx+B+k . . . β(x+v).Bx+B+k

...
...

. . .
...

β1.Bx+(v−1)B+k β2.Bx+(v−1)B+k . . . β(x+v).Bx+(v−1)B+k




, 1 ≤ k ≤ u,




β1.(k−1)x+1 β2.(k−1)x+1 . . . β(x+v).(k−1)x+1

β1.(k−1)x+2 β2.(k−1)x+2 . . . β(x+v).(k−1)x+2

...
...

. . .
...

β1.(k−1)x+x β2.(k−1)x+x . . . β(x+v).(k−1)x+x

β1.Bx+k β2k.Bx+k . . . β(x+v).Bx+k

β1.Bx+B+k β2.Bx+B+k . . . β(x+v).Bx+B+k

...
...

. . .
...

β1.Bx+(v−2)B+k β2.Bx+(v−2)B+k . . . β(x+v).Bx+(v−2)B+k




, u < k ≤ B.

(4.27)

The key property required for successful decoding of fk is that the coefficient

vectors in Ak must be linearly independent,k = 1, ..., B. This is generally true for

a large enough field size q [65]. The original data segments can be decoded using

Gaussian Elimination [111]. After decoding all the linear equations, the mBS can

obtain all the original data segments c =
⋃B

k=1 ck.

Theorem 4.3. The success ratio of data collection by DSC-ADC with buffer size

B = dn(t0)/xe in each sensor node is close to 100% by using a large enough finite

field size q for coefficients.

Proof. When the mBS arrives on time, from Lemma 4.1, each sensor node with buffer

size B = dn(t0)/xe is enough to encode all original data segments. When the BS

Chapter 4. Distributed separate coding for all data segment collection 86

delays, each sensor node continues to encode the original data segments in the existing

combined segments. Thus, each sensor node can encode all the original data segments

in the combined segments. To guarantee the decodable of the linear equations for the

collected combined segments, the mBS queries x sensor nodes when n(t) ≤ Bx, and

queries x + v sensor nodes when n(t) > Bx. The probability of decoding the original

data segments from the combined segments are close to 100% for a large enough field

size q. ¤

Note that the value of x affects the energy consumption of the sensor nodes, since

the number of sensor nodes queried by the mBS depends on the value of x. We will

give a further discussion about it in the simulations.

4.4 Performance analysis and discussion

4.4.1 Computation, transmission and storage overheads in

DSC-ADC

Similar to the DSC-mLDC scheme that are presented in Chapter 3, DSC-ADC is

with low computation, transmission and storage overheads.

In DSC-ADC, each sensor node separately encodes a certain number of original

data segments in a combined segment. The computation complexity for data encoding

in each sensor node is linear, which depends on the number of encoded original data

segments. The computation overhead for data coding in DSC-ADC lies mainly in the

decoding process. This is performed in the powerful mBS. In the decoding process,

the mBS solves B systems of linear equations. The original data segments encoded

in the B combined segments in a sensor node (i.e., the variables in the B systems of

linear equations) can be decoded in O(k3) by using the Gaussian Elimination [111],

where k is the order of coefficient matrix for a system of linear equations,and the

order of coefficient matrix for each system of linear equations is not larger than k.

Chapter 4. Distributed separate coding for all data segment collection 87

In DSC-ADC, a sensor node uploads B combined segments and the associated

coefficient vectors to the mBS when it is queried by the mBS. In right arrival case, the

mBS queries x sensor nodes during data collection. The total number of combined

segments uploaded from the queried sensor nodes is Bx. In late arrival case, the

mBS queries x + v sensor nodes during data collection, where v = d(n(t)−Bx)/Be.
The total number of combined segments uploaded from the queried sensor nodes is

B(x + v). From equation (4.5), the number of sensor nodes queried by the mBS can

be reduced with a few additional storage space in each sensor node. Since establish-

ing a connection between a sensor node and the mBS also consumes energy [113], the

transmission overhead for transmitting combined segments to the mBS can be re-

duced with a few additional storage space in each sensor node. Besides the combined

segments, the coefficient vectors are also uploaded from the queried sensor nodes.

The overhead of uploading the coefficient vectors is much lower than the overhead of

uploading large size of combined combined segments.

In DSC-ADC, each sensor node stores B combined segments and the B associated

coefficient vectors. The storage overhead depends on the size of combined segments,

the size of finite field for coefficients q, and how many original data segments are

encoded in a combined segment. The storage overhead can be reduced a lot by

coding, since each sensor node stores the combined segments and the associated

coefficient vectors instead of storing the original data segments. The storage overhead

for a combined segment with the associated coefficient vector, and the percentage of

storage overhead reduction be coding have been shown in Section 2.2.1.

4.4.2 Discussion

Similar to the DSC-mLDC scheme in Chapter 3, in DSC-ADC, to focus on the data

encoding in each sensor node and the data decoding process in the mBS, we assume

that each original data segment is recorded by all the sensor nodes by using some

existing data dissemination method. Actually, if each original data segment is not

Chapter 4. Distributed separate coding for all data segment collection 88

recorded by all the sensor nodes, the mBS still can decode the original data segments

with high probability.

In DSC-ADC, if each original data segment is recorded by at least d = 5N
x

ln x

sensor nodes (x is the number of original data segments encoded in a combined seg-

ment), the original data segments can be successfully decoded with high probability.

Specifically, we have Pr[det(βββ′u) = 0] ≤ x
q

+ o(1). Note that if each original data

segment is recorded by less sensor nodes, the data dissemination overhead is lower.

Similar to the DSC-mLDC scheme in Chapter 3, we neglect the latency for data

dissemination in the proposed DSC-ADC scheme and consider it as the future work.

4.5 Performance Evaluation

In this section, we evaluate the performance of the proposed DSC-ADC scheme by

simulations. Since in DEC [58] the number of collected data segments is fixed and

limited, and in PNC [51] the sensor nodes can collect only part of the data segments,

we do not compare with the two schemes in the simulations. In the simulations,

we evaluate the performance of DSC-ADC on: (1) Success ratio of data collection;

(2) energy consumption for data transmission to the mBS; and (3) time for data

transmission to the mBS.

4.5.1 Performance Metrics

We deploy 1000 sensor nodes randomly into a field of 200m × 200m. The distance

between the sensor nodes and the mBS is much longer than the distance between the

sensor nodes, as suggested in Lindsey and Raghavendra [112]. Without necessarily

entering deep into the sensor field, the mBS can perform data collection. The size

of a data segment is 9 KB. The storage capacity of a buffer is 10 KB. For a sensor

node with B buffers, the storage capacity is 10B KB. We use the general method to

Chapter 4. Distributed separate coding for all data segment collection 89

generate the coefficient vectors. For a coefficient vector, the number of coefficients

should be generated equals to the number of data segments encoded in the associated

combined segment. Each coefficients is randomly generated from a finite field Fq.

Unless otherwise specified, the size of finite field for coefficients is q = 28, which can

be efficiently implemented in a 8-bit or more advanced microprocessor [75]. Note that

the size of coefficient is much smaller than the size of data segment. A buffer can

store a combined segment and the associated coefficient vector. In DSC-ADC, one

packet includes a combined data segment and the associated coefficient vector. The

solution of linear equations in network coding are using the Gaussian Elimination

[111].

Table 4.1 demonstrates part of the important parameters and settings in the

simulations.

Table 4.1: System Parameters and Settings for All Data Segment Collection
System Parameters Settings

Simulator Matlab

Length × Width 200 m ×200 m

Number of sensor nodes 600

Transmit range between sensor nodes 20 m

Transmit range between sensor nodes and mBS 150 m ∼ 250 m

Size of a data segment 9KB

Energy consumption for sending a data segment 40 nAH

Size of finite field for coefficients q 28

Simulation times 1000

Confidence interval 95%

4.5.2 Simulation results

4.5.2.1 Success ratio of data collection

We first evaluate the success ratio of data collection in DSC-ADC by varying the

buffer size B in each sensor node. In this simulation, the total number of original

Chapter 4. Distributed separate coding for all data segment collection 90

data segments in the right arrival case is n(t0) = 400. The total number of original

data segments in late arrival case is n(t), where n(t) ∈ (400, 600]. In each data

collection, the mBS arriving on time or late is set randomly. During data collection,

the mBS first queries a small subset (i.e., the minimum number) of sensor nodes

uniformly at random from the sensor network to collect data. If the data segments

cannot be decoded successfully, the mBS will query additional sensor nodes one by

one until all the data segments are decoded. The additional sensor nodes are queried

uniformly at random from the sensor network (excluding the sensor nodes which have

queried in the same time of data collection).

Fig 4.5 shows the success ratio of data collection as a function of the buffer size

B in each sensor node. The success ratio of data collection is higher for large finite

field size q for coefficients. The success ratio of data collection is close to 100% when

q = 28. This fact is also stated in the proof of Theorem 4.3.

4.5.2.2 Energy consumption for data transmission to the mBS

We evaluate the energy consumption for data transmission to the mBS by varying

the total number of data segments. We use the energy model by Mainwaring et

al [52]. The energy consumption for transmitting one combined segment (including

the associated coefficient) is 40 nAH (21.8 Ampere hour). As suggested in [113],

establishing a connection between a sensor node and the mBS consumes energy too.

Consider that the energy consumption for establishing a connection between a sensor

node and the mBS is 20 nAH. A sensor node will upload B packets when it is queried

by the mBS. Thus, the energy consumption for a queried sensor node is (20 + 40B)

nAH. The mBS first queries the minimum number of sensor nodes to collect data.

If the data segments cannot be decoded successfully, the mBS will query additional

sensor nodes one by one until all the data segments are decoded completely.

As shown in Fig 4.7, the energy consumption decreases as the buffer size B in-

creases. The energy consumption is large when B = 1. Note that in DEC [58] the

Chapter 4. Distributed separate coding for all data segment collection 91

1 2 3 4 5 6 7 8 9 10
0.8

0.85

0.9

0.95

1

Buffer Size B

S
uc

ce
ss

 R
at

io
 o

f D
at

a
C

ol
le

ct
io

n

q=28

q=26

Figure 4.5: Success ratio of data collection vs. buffer size B in each sensor node.

buffer size B equals to 1. The DEC scheme is similar to the proposed DSC-ADC

scheme when each sensor has one buffer. Thus, the energy consumption in DEC is

large. The proposed DSC-ADC scheme can reduce the energy consumption with a

few additional storage space in each sensor node. The energy consumption can be

reduced a lot with 1 more buffer in each sensor node (B = 2). The reduction range

is smaller between bigger buffer sizes.

4.5.2.3 Data transmission time to the mBS during data collection

Since a fast data retrieval is usually desired in continuous data collection, we evaluate

the time for data transmission to the mBS during data collection by varying the total

number of data segments. The time cost for transmitting one packet is 2 second.

Chapter 4. Distributed separate coding for all data segment collection 92

100 150 200 250 300 350 400 450 500 550
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

4

Number of Collected Data Segments

E
ne

rg
y

C
on

su
m

pt
io

n
fo

r
D

at
a

T
ra

ns
m

is
si

on
 (

nA
h)

B=1
B=2
B=4
B=6
B=8

Figure 4.6: Energy consumption for data transmission vs. total number of data
segments.

The time cost for establishing a connection between the mBS and a sensor node is 4

second. For simplicity, we neglect other affecting factors which is much less than the

transmission time. The time cost for a queried sensor node to finish data transmission

is (4 + 2B) s.

As shown in Fig 4.7, the data transmission time decreases as the buffer size B

increases. The mBS spends more time for data collection when B = 1. This is similar

to the DEC scheme, in which each sensor node has one buffer. The proposed DSC-

ADC scheme can reduce the data transmission time with a few additional storage

space in each sensor node. The data transmission time can be reduced a lot with 1

more buffer in each sensor node (B = 2). The reduction range is smaller between

Chapter 4. Distributed separate coding for all data segment collection 93

100 150 200 250 300 350 400 450 500 550
0

500

1000

1500

2000

2500

3000

3500

Total Number of Data Segments

D
at

a
T

ra
ns

m
is

si
on

 T
im

e
(s

)

B=1
B=2
B=4
B=6
B=8

Figure 4.7: Energy consumption for data transmission vs. total number of data
segments.

bigger buffer sizes. Not surprisingly, DSC-ADC performs better with bigger B. How-

ever, too big buffer size may not be available at a sensor node, and the prices of

sensor node with bigger buffer size are higher. Thus, in the practical applications, it

needs to make a trade off in the affecting factors.

4.6 Summary

In this chapter, we consider the second scenario of continuous data collection (i.e.,

All data segment collection), and present a novel data collection scheme called Dis-

tributed Separate Coding for All Data segment Collection (DSC-ADC). DSC-ADC

Chapter 4. Distributed separate coding for all data segment collection 94

not only provides an efficient storage method for continuously collecting data seg-

ments, but also achieves a high success ratio of data collection. We present the data

encoding process and data decoding process in DSC-ADC. We show that in DSC-

ADC, the number of sensor nodes that should be queried by the mBS can be reduced

with a few additional storage space in each sensor node, which result in reducing the

energy consumption for data transmission to the mBS. We also show that the success

ratio of data collection in DSC-ADC is very close to 100% in either the right arrival

case or late arrival case by using larger enough finite field for coefficients in both theo-

retical analysis and simulations. Furthermore, The performance evaluation has been

conducted through computer simulations. It further demonstrates the feasibility and

superiority of the proposed DSC-ADC scheme.

Chapter 5

Conclusions and Future Work

Wireless Sensor Networks (WSNs) open up a new opportunity for us to observe and

interact with the extreme environments [117], in which the data are difficult, expen-

sive, or even impossible to collect by humans. Consider the continuous data collection

in the extreme environments, in which the that data are continuously sensed and col-

lected by the sensor nodes. Data collection is only performed from time to time by

a mobile Base Station (mBS). Sensor nodes have to store the continuously collected

data segments over time by themselves, and provide the desired data when the mBS

arrives and performs data collection. This dissertation addresses the continuous data

collection in WSNs with a mobile Base Station (mBS). We consider two scenarios of

continuous data collection. (1) Latest data segment collection. (2) All data segment

collection. We propose two Distributed Separate Coding based schemes for the two

scenarios, respectively. The two proposed schemes are Distributed Separate Coding

for m Latest Data segment Collection (DSC-mLDC) and Distributed Separate Cod-

ing for All Data segment Collection (DSC-ADC). Overall system performance (e.g.,

success ratio of data collection, energy consumption, storage overhead) are improved

by applying our proposed schemes for continuous data collection in WSNs.

This chapter is organized as follows. The proposed Distributed Separate Coding

for m Latest Data segment Collection (DSC-mLDC) is concluded in Section 5.1. The

95

Chapter 6. Conclusions and Future Work 96

proposed Distributed Separate Coding for All Data segment Collection (DSC-ADC)

is concluded in Section 5.2. We present the future work in Section 5.3.

5.1 Distributed Separate Coding for m Latest Data

segment Collection (DSC-mLDC)

In Chapter 3, we focus on the first scenario of continuous data collection, i.e., latest

data segment collection. We consider to collect the m latest data segments, where

where m is the number of latest data segments in a time interval t in which n(t)

(m ≤ n(t)) data segments are generated. We propose a novel data collection scheme

called Distributed Separate Coding for m Latest Data segment Collection (DSC-

mLDC). DSC-mLDC is decentralized and based on the mBS’s randomly accessing.

By separately encoding a certain number of data segments in a combined segment,

and doing decoding-free data replacement in the buffers of each sensor node, DSC-

mLDC provides an efficient storage method for continuously collecting data segments

with a high success ratio. We present the data encoding process, data replacement

precess and data decoding process in DSC-mLDC.

The main advantages of the proposed DSC-mLDC scheme are summarized as

follows.

• In DSC-mLDC, with a minimum buffer size 2 in each sensor node, by querying

any m − 1 sensor nodes, the mBS can reconstruct the m latest data segments

with high probability.

• The success ratio of data collection in DSC-mLDC is very close to 100% by

using a large enough finite field size for the coefficients.

• In DSC-mLDC, the necessary storage space in each sensor node does not depend

on the number of required data. It can be adjusted by changing the number of

sensor nodes queried by the mBS.

Chapter 6. Conclusions and Future Work 97

• In DSC-mLDC, the transmission cost for data submission to the mBS can be

reduced with a few additional storage space in each sensor node.

• Compare to the related work (i.e., PNC in [51]), DSC-mLDC is flexible and

efficient in improving the network performance in terms of increasing the success

ratio of data collection, reducing the energy consumption and storage overhead.

The discussion about the number of buffers and the number of data segments

submitted from each node makes the proposed scheme much more convincing. The

comprehensive performance evaluation has been conducted through computer simu-

lation. It is shown that the proposed DSC-mLDC scheme outperforms the existing

scheme significantly.

5.2 Distributed Separate Coding for All Data seg-

ment Collection (DSC-ADC)

In Chapter 4, we focus on the second scenario of continuous data collection, i.e., all

data segment collection. We consider to collect all the n(t) data segments generated

in a time interval t. We propose a novel data collection scheme called Distributed

Separate Coding for All Data segment Collection (DSC-ADC). DSC-ADC is decen-

tralized and based on the mBS’s randomly accessing. We consider the following two

cases: (1) right arrival case that the mBS arrives on time, (2) late arrival case that

the mBS arrives late.

By separately encoding a certain number of data segments in a combined seg-

ment, and storing the combined segments in the corresponding buffers of each sensor

node, the DSC-ADC scheme provides an efficient storage method to collect all data

segments with a high success ratio. We present the data encoding process and data

decoding process in DSC-ADC. By randomly querying a small subset of sensor nodes,

the mBS can reconstruct all the original data segments with high probability in both

Chapter 6. Conclusions and Future Work 98

the right arrival case and the late arrival case. DSC-ADC is more energy efficient

compared to the related work (i.e., DEC in [58]). We prove that the success ratio of

DSC-ADC based data collection is close to 100% by using a large enough finite field

size for the coefficients. The number of sensor nodes that should be queried by the

mBS can be reduced with a few additional storage space in each sensor node. The

performance evaluation has been conducted through computer simulations. It further

demonstrates the feasibility and superiority of the proposed DSC-ADC scheme.

5.3 Future Work

Distributed storage systems introduce redundancy to increase reliability in WSNs.

Numerous challenges and opportunities are emerged in distributed storage systems

for WSNs. We consider the following issues for our future efforts, w.

• Diverse coding methods for distribute storage in WSNs : The propose

schemes in this dissertation are based on random linear coding, since random

linear coding is easy and suitable to deploy in wireless sensor networks. In the

future work, we will consider other coding methods, such as fountain coding.

Fountain coding is a promising solution to reduce the decoding complexity.

However, the implement of Fountain codes in WSNs is more difficult than that

of random linear coding.

• Efficient data dissemination method for distributed storage in WSNs:

In this dissertation, to focus on the data encoding process in each sensor node

and the data decoding process in the mBS, in our proposed schemes, we as-

sume that each original data segment is recorded by the sensor nodes by using

some existing data dissemination method. In the future work, we will consider

efficient data dissemination methods for distributed storage in WSNs to reduce

the energy consumption in the data dissemination process.

Chapter 6. Conclusions and Future Work 99

• Repair problem for distributed storage in WSNs : When using coding

for distributed storage in WSNs, the repair problem arises when the network

wants to maintain the same level of reliability. If a sensor node storing en-

coded data segments fails, in order to maintain the same level of reliability,

the encoded data segments should be created at a new sensor node [118]. The

consideration of the repair network traffic gives rise to new design challenges.

In the future work, we will consider efficient methods to minimize the com-

munication required to generated encoded data segments from the alive sensor

nodes, so as to maintain the same level of reliability after some sensor node

fails.

• Security in Distributed Storage for WSNs : The issues of security and pri-

vacy are important for distributed storage. When using coding for distributed

storage in WSNs, errors can be propagated in several mixed packets and thus

error-control mechanism is required [119]. A related issue is that of privacy of

the data by information leakage to eavesdroppers during data collection. As

the future work, we will consider the security problem in data collection for

WSNs, which is to ensure that the original data segments can only be decoded

by the specified mBS. Kher-01

Bibliography

[1] M. D. Francesco, S. K. Das, and G. Anastasi, “Data collection in wireless

sensor networks with mobile elements: A survey,” ACM Transactions on Sensor

Networks, vol. 8, no. 7, pp. 7–31, 2011.

[2] D. Wang, J. Liu, and Q. Zhang, “On mobile sensor assisted field coverage,”

ACM Transactions on Sensor Networks, vol. 9, no. 3, 2013.

[3] E. C. Ngai, M. B. Srivastava, and J. Liu, “Context-aware sensor data dissem-

ination for mobile users in remote areas,” in Proceedings of IEEE INFOCOM

2012 mini-conference. IEEE, 2012.

[4] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor

networks: A survey,” Comm. ACM, vol. 38, no. 4, pp. 393–422, 2002.

[5] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century chal-

lenges: Scalable coordination in sensor networks,” in Proceedings of ACM MO-

BICOM99. ACM, 1999.

[6] L. Ruiz-Garcia, L. Lunadei, P. Barreiro, and I. Robla, “A review of wireless

sensor technologies and applications in agriculture and food industry: State of

the art and current trends,” Sensors, vol. 9, pp. 4728 – 4750, 2009.

[7] I. F. Akyildiz, D. Pompili, and T. Melodia, “Underwater acoustic sensor net-

works: research challenges,” Ad Hoc Networks, vol. 3, pp. 257 – 279, 2005.

100

Bibliography 101

[8] G. Zhou, J. Lu, C.-Y. Wan, M. D. Yarvis, and J. A. Stankovic, Body Sensor

Networks. Cambridge, MA: MIT Press, 2008.

[9] D. Culler, D. Estrin, and M. Srivastava, “Overview of sensor networks,” IEEE

Comput., vol. 37, no. 8 (Special Issue on Sensor Networks), pp. 41–49, 2004.

[10] P. Bahl, R. Chancre, and J. Dungeon, “SSCH: Slotted seeded channel hopping

for capacity improvement in IEEE 802.11 ad-hoc wireless networks,” in Proceed-

ing of the 10th International Conference on Mobile Computing and Networking

(MobiCom’04). New York, NY: ACM, 2004, pp. 112–117.

[11] F. Wang, J. Liu, and L. Sun, “Ambient data collection with wireless sensor

networks,” EURASIP Journal on Wireless Communications and Networking,

vol. 2010, no. 10, 2010.

[12] A. Natarajan, M. Motani, B. de Silva, K. Yap, and K. C. Chua, “Investigat-

ing network architectures for body sensor networks,” in Network Architectures,

G. Whitcomb and P. Neece, Eds. Dayton, OH: Keleuven Press, 2007, pp.

322–328.

[13] S. Misra, S. C. Misra, and I. Woungang, Guide to Wireless Sensor Networks.

Springer, 2009.

[14] J. Polastre, R. Szewczyk, and D. Culler, “Telos: enabling ultra-low power wire-

less reasearch,” in Proceedings of IEEE International Conference on Informa-

tion Processing in Sensor Networks (IPSN). IEEE, 2005.

[15] B. Warneke, B. Atwood, and K. Pister, “Smart dust mote forerunners,” in

Proceedings of IEEE International Conference on Micro Electro Mechanical

Systems (MEMS). IEEE, 2001.

[16] Y. Gu and T. He, “Data forwarding in extremely low duty-cycle sensor networks

with unreliable communication links,” in Proceedings of the 5th international

conference on Embedded networked sensor systems. ACM, 2007.

Bibliography 102

[17] S. Olariu and I. Stojmenovic, “Design guidelines for maximizing lifetime and

avoiding energy holes in sensor networks with uniform distribution and uniform

reporting,” in Proceedings of IEEE INFOCOM. IEEE, 2006.

[18] J. Wieselthier, G. Nguyen, and A. Ephremides, “On the construction of energy-

efficient broadcast and multicast trees in wireless networks,” in Proceedings of

IEEE INFOCOM 2000. IEEE, 2000.

[19] I. Beichl and F. Sullivan, “The metropolis algorithm,” Computing in Science

and Engineering, vol. 2, pp. 65 – 69, 2000.

[20] V. Katiyar, N. Chand, and N. Chauhan, “Recent advances and future trends

in wireless sensor networks,” International Journal of Applied Engineering Re-

search, vol. 1, pp. 330 – 342, 2010.

[21] S. Rothery, W. Hu, and P. Corke, “An empirical study of data collection proto-

cols for wireless sensor networks,” in Proceedings of the workshop on Real-world

wireless sensor networks (REALWSN 08). ACM, 2008.

[22] Y. Wang, S. Jain, M. Martonosi, and K. Fall, “Erasure-coding based rout-

ing for opportunistic networks,” in Proceedings of ACM SIGCOMM workshop

(WTDN05). IEEE, 2005.

[23] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu,

W. Kang, J. Stankovic, D. Young, and J. Porter, “Luster: wireless sensor

network for environmental research,” in Proceedings of the 5th international

conference on Embedded networked sensor systems. ACM, 2007.

[24] G. Barrenetxea, F. Ingelrest, G. Schaefer, and M. Vetterli, “Sensorscope: Out-

of-the-box environmental monitoring,” in Proceedings of International Confer-

ence on Information Processing in Sensor Networks (IPSN). ACM/IEEE,

2008.

Bibliography 103

[25] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,

T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A macroscope in the

redwoods,” in Proceedings of the 3rd international conference on Embedded

networked sensor systems. ACM, 2005.

[26] Y. Kim, T. Schmid, Z. M. Charbiwala, J. Friedman, and M. B. Srivastava,

“Nawms: Nonintrusive autonomous water monitoring system,” in Proceedings

of the 6th ACM conference on Embedded network sensor systems. ACM, 2008.

[27] G. WernerAllen, K. Lorincz, J. Johnson, J. Lees, and M. Welsh, “Fidelity and

yield in a volcano monitoring sensor network,” in Proceedings of the 7th sympo-

sium on Operating systems design and implementation. USENIX Association

Berkeley, 2006.

[28] W. Z. Song, R. Huang, M. Xu, A. Ma, B. Shirazi, and R. LaHusen, “Air-

dropped sensor network for real-time high-fidelity volcano monitoring,” in Pro-

ceedings of the 7th international conference on Mobile systems, applications,

and services. ACM, 2009.

[29] C. Hartung, R. Han, C. Seielstad, , and S. Holbrook, “Firewxnet: A multi-

tiered portable wireless system for monitoring weather conditions in wildland

fire environments,” in Proceedings of the 4th international conference on Mobile

systems, applications and services. ACM, 2006.

[30] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon,

“Health monitoring of civil infrastructures using wireless sensor networks,” in

Proceedings of International Conference on Information Processing in Sensor

Networks (IPSN). ACM/IEEE, 2007.

Bibliography 104

[31] M. Ceriotti, L. Mottola, G. P. Picco, A. L. Murphy, S. Guna, M. Corra,

M. Pozzi, D. Zonta, , and P. Zanon, “Monitoring heritage buildings with wire-

less sensor networks: The torre aquila deployment,” in Proceedings of Inter-

national Conference on Information Processing in Sensor Networks (IPSN).

ACM/IEEE, 2009.

[32] C. Gui and P. Mohapatra, “Power conservation and quality of surveillance in

target tracking sensor networks,” in Proceedings of the 10th annual interna-

tional conference on Mobile computing and networking (MobiCom). ACM,

2004.

[33] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable

and robust communication paradigm for sensor networks,” in Proceedings of

the 6th annual international conference on Mobile computing and networking.

ACM, 2000.

[34] R. Farivar, M. Fazeli, and S. Miremadi, “Directed flooding: a fault-tolerant

routing protocol for wireless sensor networks,” in Proceedings of Systems Com-

munications. IEEE, 2005.

[35] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate

information,” in Proceedings of 44th Annual IEEE Symposium on Foundations

of Computer Science. IEEE, 2003.

[36] W. Yen, C. Chen, and C. Yang, “Single gossiping with directional flooding

routing protocol in wireless sensor networks,” in Proceedings of 3rd IEEE Con-

ference on Industrial Electronics and Applications. IEEE, 2008.

[37] N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govin-

dan, and D. Estrin, “A wireless sensor network for structural monitoring,” in

Proceedings of the 2nd international conference on Embedded networked sensor

systems. ACM, 2004.

Bibliography 105

[38] G. Lu, B. Krishnamachari, and C. S. Raghavendra, “An adaptive energy-

efficient and low-latency mac for data gathering in wireless sensor networks,”

in Proceedings of Parallel and Distributed Processing Symposium. IEEE, 2004.

[39] W. Z. Song, F. Yuan, and R. LaHusen, “Time-optimum packet scheduling

for many-to-one routing in wireless sensor networks,” in Proceedings of IEEE

MASS. IEEE, 2006.

[40] L. Paradis and Q. Han, “Tigra: Timely sensor data collection using distributed

graph coloring,” in Proceedings of Sixth Annual IEEE International Conference

on Pervasive Computing and Communications (PerCom). IEEE, 2008.

[41] N. Burri, P. von Rickenbach, and R. Wattenhofer, “Dozer: Ultra-low power

data gathering in sensor networks,” in Proceedings of International Conference

on Information Processing in Sensor Networks (IPSN). ACM/IEEE, 2007.

[42] K. S. J. Pister and L. Doherty, “Tsmp: Time synchronized mesh protocol,”

in Proceedings of the IASTED International Symposium on Distributed Sensor

Networks (DSN08), 2008.

[43] G. S. Ahn, E. Miluzzo, A. T. Campbell, S. G. Hong, and F. Cuomo, “Funneling-

mac: A localized, sink-oriented mac for boosting fidelity in sensor networks,”

in Proceedings of ACM SenSys. ACM, 2006.

[44] C. T. Ee and R. Bajcsy, “Congestion control and fairness for many-to-one

routing in sensor networks,” in Proceedings of ACM SenSys. ACM, 2004.

[45] J. Beutel, S. Gruber, A. Hasler, R. Lim, A. Meier, C. Plessl, I. Talzi, L. Thiele,

C. Tschudin, M. Woehrle, and M. Yuecel, “Context-aware sensor data dissem-

ination for mobile users in remote areas,” in Proceedings of the 2009 Interna-

tional Conference on Information Processing in Sensor Networks (IPSN 09),

2009.

Bibliography 106

[46] J. Beutel, B. Buchli, F. Ferrari, M. Keller, L. Thiele, and M. Zimmerling,

“X-sense: Sensing in extreme environments,” in Proceedings of of Design, Au-

tomation and Test in Europe, 2011.

[47] K. Martinez, P. Padhy, A. Elsaify, G. Zou, A. Riddoch, J. K. Hart, and H. L. R.

Ong, “Deploying a sensor network in an extreme environment,” in Proceedings

of the IEEE International Conference on Sensor Networks, Ubiquitous, and

Trustworthy Computing (SUTC 06). IEEE, 2006.

[48] S. Williams, M. Hurst, and A. M. Howard, “Development of a mobile arctic sen-

sor node for earth-science data collection applications,” in American Institute

of Aeronautics and Astronautics, Infotech@Aerospace,(Atlanta, GA), 2010.

[49] “Sonoma redwoods data,” 2005, http://www.cs.berkeley.edu/ get/sonoma.

[50] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao, “Habitat

monitoring: Application driver for wireless communications technology,” in

Proceeding of SIGCOMM LA ’01 Workshop on Data communication in Latin

America and the Caribbean. San Jose, Costa Rica: ACM, 2001, pp. 20–41.

[51] D. Wang, Q. Zhang, and J. Liu, “Partial network coding: Concept, perfor-

mance, and application for continuous data collection in sensor networks,” ACM

Transactions on Sensor Networks, vol. 4, no. 3, pp. 1–22, 2008.

[52] A. Mainwaring, J. Polaster, R. Szewczyk, D. Culler, and J. Anderson, “Wireless

sensor networks for habitat monitoring,” in Proceeding of the 1st ACM interna-

tional workshop on Wireless sensor networks and applications. Atlanta, GA:

ACM, 2002, pp. 88–97.

[53] C. Intanagonwiwat, R. Govindan, D. Estrin, J. Heidemann, and F. Silva, “Di-

rected diffusion for wireless sensor networking,” IEEE/ACM Transactions on

Networking, vol. 11, pp. 2 – 16, 2003.

Bibliography 107

[54] B. Krishnamachari, D. Estrin, and S. Wicker, “The impact of data aggregation

in wireless sensor networks,” in Proceedings of the 22nd International Confer-

ence on Distributed Computing Systems. Washington, DC, USA: IEEE, 2002,

pp. 575–578.

[55] D. Wang, Y. Long, and F. Ergun, “A layered architecture for delay senstitive

sensor networks,” in Proceedings of IEEE SECON 05. IEEE, 2005.

[56] R. Rajagopalan and P. K. Varshney, “Data-aggregation techniques in sensor

networks: A survey,” IEEE Communication Surveys and Tutorials, vol. 8, pp.

48 – 63, 2006.

[57] Z. Kong, S. Aly, and E. Soljanin, “Decentralized coding algorithms for dis-

tributed storage in wireless sensor networks,” IEEE Journal on Selected Areas

in Communications, vol. 28, pp. 261 – 267, 2010.

[58] A. G. Dimakis, V. Prabhakaran, and K. Ramchandran, “Decentralized erasure

codes for distributed networked storage,” IEEE Trans. Info. Theory, vol. 52,

no. 6, pp. 2809–2816, 2006.

[59] A. Dimakis, V. Prabhakarna, and K. Ramchandran, “Ubiquitous access to

distributed data in large-scale sensor networks through decentralized erasure

codes,” in Proceeding of of the International Conference on Information Pro-

cessing in Sensor Networks (IPSN05). ACM, 2005, pp. 111–117.

[60] S. Lin and D. Costello, Error Control Coding: Fundamentals and Applications.

Prentice Hall, Upper Saddle River, NJ, 2004.

[61] N. Cao, Q. Wang, K. Ren, and W. Lou, “Distributed storage coding for flexible

and efficient data dissemination and retrieval in wireless sensor networks,” in

Proceedings of IEEE ICC 2010. IEEE, 2010.

Bibliography 108

[62] D. Vukobratovic, C. Stefanovic, V. Crnojevic, F. Chiti, and R. Fantacci, “Rate-

less packet approach for data gathering in wireless sensor networks,” IEEE

Journal on Selected Areas in Communications, vol. 28, pp. 1169 – 1179, 2010.

[63] J. Kubiatowicz, D. Bindel, Y. Chen, P. Eaton, D. Geels, R. Gummadi, S. Rhea,

H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: An archi-

tecture for global-scale persistent storage,” in Proceedings of IACM ASPLOS

2012. ACM, 2000.

[64] W. A. Burkhard and J. Menon, “Disk array storage system reliability,” in

Proceedings of the 23rd Intenrational Symposium on Fault-Tolerant Computing.

IEEE, 1993.

[65] S. Acedanski, S. Deb, M. Medard, and R. Koetter, “How good is random linear

coding based distributed networked storage,” in Proceedings of First Workshop

Network Coding, Theory, and Applications (NetCod05), Riva del Garda, Italy,

2005.

[66] D. H. Wiedemann, “Solving sparse linear equations over finite fields,” IEEE

Transaction on Information Theory, 1986.

[67] C. Fragouli, J. Y. LeBoudec, and J. Widmer, “Network coding: an instant

primer,” SIGCOMM Comput. Commun. Rev., vol. 36, no. 1, pp. 63–68, 2006.

[68] R. Ahlswede, N. Cai, S. LI, and R. Yeung, “Network information flow,” IEEE

Trans. on Information Theory, vol. 46, no. 4, pp. 1204–1216, 2000.

[69] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “Xors in

the air: practical wireless network coding,” in Proceedings of ACM SIGCOMM,

2006, pp. 243–254.

[70] Y. E. Sagduyu and A. Ephremides, “Network coding in wireless queueing net-

works: Tandem network case,” in IEEE International Symposium on Informa-

tion Theory. Seattle, WA: IEEE, 2006, pp. 192–196.

Bibliography 109

[71] A. E. Kamal, “1+n network protection for mesh networks: Network coding-

based protection using p-cycles,” IEEE/ACM TRANSACTIONS ON NET-

WORKING, vol. 18, no. 1, pp. 67–80, 2010.

[72] S. Aly and A. Kamal, “Network coding-based protection strategy against node

failures,” in Proceedings of the IEEE International Conference on Communi-

cations, 2009, pp. 1–5.

[73] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,

“Network coding for distributed storage systems,” IEEE Trans. Info. Theory,

vol. 56, no. 9, pp. 4539–4551, 2010.

[74] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content dis-

tribution,” in Proceedings of INFOCOM’2005. IEEE, 2005, pp. 2235–2245.

[75] J. Widmer and J. Andboudec, “Network coding for efficient communication in

extreme networks,” in Proceedings of the 2005 ACM SIGCOMM workshop on

Delay-tolerant networking. Philadelphia, PA: ACM, 2005, pp. 284–291.

[76] X. Yang, X. Tao, E. Dutkiewicz, X. Huang, Y. Guo, and Q. Cui, “Energy-

efficient distributed data storage for wireless sensor networks based on com-

pressed sensing and network coding,” IEEE Transactions on Wireless Commu-

nications, vol. 12, pp. 5087 – 5909, 2013.

[77] I. H. Hou, Y. E. Tsai, T. F. Abdelzaher, and I. Gupta, “Adapcode: Adaptive

network coding for code updates in wireless sensor networks,” in Proceedings of

the 27th IEEE International Conference on Computer Communications. IEEE,

2008.

[78] A. Dimakis, V. Prabhakarna, and K. Ramchandran, “Distributed fountain

codes for networked storage,” in Proceeding of IEEE International Conference

on Acoustics, Speech, and Signal Processing (ICASSP), 2006.

Bibliography 110

[79] A. Shokrollahi, “Raptor codes,” IEEE Transaction on Information Theory,

2006.

[80] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, “A digital fountain

approach to reliable distribution of bulk data,” in Proceedings of SIGCOMM,

1998.

[81] M. Luby, “Lt codes,” in Proceedings of the 43rd IEEE Symposium on Founda-

tions of Computer Science (FOCS 2002), 2002.

[82] M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman, “Effi-

cient erasure correcting codes,” IEEE Trans. Info. Theory, vol. 47, pp. 569 –

584, 2001.

[83] R. Blahut, Theory and Practice of Error Control Codes. Addison-Wesley, 1985.

[84] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication: a

quantitiative comparison,” in Proceedings of IPTPS 02, 2002.

[85] R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total recall:

System support for automated availability management,” in Proceedings of the

Symposium on Networked Systems Design and Implementation (NSDI), 2004.

[86] M. O. Rabin, “Efficient dispersal of information for security, load balancing

and fault tolerance,” Journal of the ACM, vol. 36, p. 335C348, 1989.

[87] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applica-

tions. Prentice Hall, 1983.

[88] J. Byers, J. Considine, M. Mitzenmacher, and S. Rost, “Informed content de-

livery across adaptive overlay networks,” in Proceedings of SIGCOMM, 2002.

[89] J. Considine, “Generating good degree distributions for sparse parity check

codes using oracles,” in Technical Report, BUCS-TR 2001-019, Boston Uni-

versity, 2001.

Bibliography 111

[90] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein, “Growth codes: Max-

imizing sensor network data persistence,” in Proceedings of ACM Sigcom 06,

2006.

[91] D. Munaretto, J. Widmer, M. Rossi, and M. Zorzi, “Network coding strategies

for data persistence in static and mobile sensor networks,” in Proceedings of

International Workshop on Wireless Networks: Communication, Cooperation

and Competition, 2007.

[92] A. Oka and L. Lampe, “Data extraction from wireless sensor networks using

distributed fountain codes,” IEEE Transactions on Communications, vol. 57,

pp. 2607 – 2609, 2009.

[93] M. Rossi, G. Zanca, L. Stabellini, and R. Crepaldi, “Synapse: A network re-

programming protocol for wireless sensor networks using fountain codes,” in

Proceedings of 5th Annual IEEE Communications Society Conference on Sen-

sor, Mesh and Ad Hoc Communications and Networks. IEEE, 2008.

[94] Y. Lin, B. Li, and B. Liang, “Differentiated data persistence with priority

random linear codes,” in Proceedings of 27th International Conference on Dis-

tributed Computing Systems (ICDCS 07), 2007.

[95] P. Maymounkov, N. Harvey, and D. Lun, “Methods for efficient network cod-

ing,” in Proceedings of 44th Ann. Allerton Conf. Comm.Control and Comput-

ing, 2006.

[96] A. Jiang, “Network coding for joint storage and transmission with minimum

cost,” in Proceedings of IEEE International Symposium on Information Theory,

2006.

[97] C. Gkantsidis and P. Rodriguez, “Network coding for large scale content dis-

tribution,” in Proceedings of INFOCOM 05, 2005.

Bibliography 112

[98] Y. Lin, B. Liang, and B. Li, “Data persistence in large-scale sensor networks

with decentralized fountain codes,” in Proceedings of IEEE INFOCOM 2007.

IEEE, 2007.

[99] H. Tian, H. Shen, and T. Matsuzawa, “Randomwalk routing for wireless sensor

networks,” in Proceedings of the Sixth International Conference on Parallel and

Distributed Computing Applications and Technologies. IEEE, 2007.

[100] R. Beraldi, R. Baldoni, and R. Prakash, “A biased random walk routing proto-

col for wireless sensor networks: The lukewarm potato protocol,” IEEE Trans-

actions on Mobile Computing, vol. 9, pp. 1649 – 1661, 2010.

[101] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Mixing times for random

walks on geometric random graphs,” in Proceedings of SIAM Workshop on

Analytic Algorithmics and Combinatorics (ANALCO), 2005.

[102] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equa-

tions of state calculations by fast computing machines,” Journal of Chemical

Physics, vol. 21, pp. 1087 – 1092, 1953.

[103] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing markov chain on a graph,”

SIAM Review, vol. 46, pp. 667 – 689, 2004.

[104] C. Avin and G. Ercal, “On the cover time of random geometric graphs,” in Pro-

ceedings of 32nd International Colloquium of Automata, Languages and Pro-

gramming, ICALP05, 2005.

[105] L. Filipponi, S. Santini, and A. Vitaletti, “Data collection in wireless sensor

networks for noise pollution monitoring,” in Proceedings of the 4th IEEE in-

ternational conference on Distributed Computing in Sensor Systems. IEEE,

2008.

Bibliography 113

[106] P. V. Raju, R. V. R. S. Aravind, and B. S. Kumar, “Pollution monitoring

system using wireless sensor network in visakhapatnam,” International Journal

of Engineering Trends and Technology (IJETT), vol. 4, pp. 591 – 595, 2013.

[107] K. K. Khedol, R. Perseedoss, and A. Mungur, “A wireless sensor network air

pollution monitoring system,” International Journal of Wireless and Mobile

Networks (IJWMN), vol. 2, pp. 31 – 45, 2010.

[108] A. Traille, M. M. Tentzeris, S. Bouaziz, P. Pons, and H. Aubert, “A novel wire-

less passive temperature sensor utilizing microfluidic principles in millimeter-

wave frequencies,” in Proceedings of IEEE Sensors. IEEE, 2011.

[109] C. Lin, P. Chou, and C. Chou, “Hcdd: hierarchical cluster-based data dissemi-

nation in wireless sensor networks with mobile sink,” in Proceedings of IWCMC

’06, 2006.

[110] E. Suli and D. Mayers, An Introduction to Numerical Analysis. Cambridge

University Press, 2003.

[111] J. Gentle, Numerical Linear Algebra for Applications in Statistics. Springer,

1998.

[112] S. Lindsey and C. Raghavendra, “Pegasis: Power-efficient gathering in sensor

information systems,” in IEEE In Aerospace Conference Proceedings. IEEE,

2002, pp. 1125–1130.

[113] A. Rahmati and L. Zhong, “Context-for-wireless: context-sensitive energy-

efficient wireless data transfer,” in Proceedings of MobiSys 2007, 2007.

[114] X. Ye, J. Li, L. Xu, and M. Guizani, “A novel data collection scheme with

cluster-based separate network coding for wsns,” in Proceedings of Computing,

Communications, and Applications Conference (ComComAp 2012). IEEE,

2012.

Bibliography 114

[115] R. Liu, K. Wang, R. Jan, Y. Hu, and T. Ku, “An efficient cluster-based data

dissemination scheme in wireless sensor networks,” in Proceedings of IEEE Ve-

hicular Technology Conference (VTC Spring). IEEE, 2011.

[116] O. Younis and S. Fahmy, “Heed: A hybrid, energy-efficient, distributed clus-

tering approach for ad hoc sensor networks,” IEEE Transactions on Mobile

Computing, vol. 3, no. 4, pp. 366–379, 2004.

[117] J. Elson and D. Estrin, “Sensor networks : a bridge to the physical world,”

Wireless Sensor Networks, pp. 3 – 20, 2004.

[118] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network

codes for distributed storage,” in Proceedings of the IEEE. IEEE, 2011.

[119] V. Kher and Y. Kim, “Securing distributed storage: Challenges, techniques,

and systems,” in Proceedings of the Workshop on Storage Security and Surviv-

ability (StorageSS), 2005.

List of Publications

1. Xiucai Ye and Jie Li, “Distributed Separate Coding: Concept, Method, and

Performance for Continuous Data Collection in Wireless Sensor Networks with

a Mobile Base Station”, ACM Transactions on Sensor Networks (ACM TOSN),

2014, accepted.

2. Jie Li , Xiucai Ye, Li Xu, and Huaibei Liu, “Collecting all data continuously

in wireless sensor networks with a mobile base station,” International Journal

of Computational Science and Engineering (IJCSE), 2013, accepted.

3. Xiucai Ye, Jie Li, Li Xu, “Group Data Collection in Wireless Sensor Networks

with a Mobile Base Station,” Proceedings of the 2013 IEEE Wireless Commu-

nication and Networking Conference (IEEE WCNC), pp. 1151-1156, April 7 -

10, 2013, Shanghai, China.

4. Jie Li, Xiucai Ye, and Li Xu, “A Novel Data Collection Scheme for WSNs,”

Proceedings of 2012 IEEE 75th Vehicular Technology Conference (IEEE VTC

2012 Spring), pp. 1-5, Yokohama, Japan, May 6-9, 2012.

5. Xiucai Ye, Jie Li, Li Xu, and Mohsen Guizani, “A Novel Data Collection

Scheme with Cluster-based Separate Network Coding for WSNs,” Proceedings

of Computing, Communications, and Applications Conference (ComComAp

2012), pp. 18-23, HKUST, Hong Kong, China, January 11-13, 2012.

115

List of Publications 116

6. Jie Li, Xiucai Ye, and Yusheng Ji“A Novel Network Coding Scheme for

Data Collection in WSNs with a Mobile BS,” Proceedings of the 7th Interna-

tional Workshop on Databases in Networked Information Systems (DNIS 2011),

Springer Lecture Notes in Computer Science (LNCS), No. 7108, pp. 296-311,

Aizu-Wakamatsu, Japan, December 12-14, 2011.

