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The thesis presents a report on the auditory BCI. First, I utilized a novel audi-

tory BCI paradigm based on combined sound timbre and horizontal plane spatial

locations as informative cues. The presented concept is based on responses to

eight–directional audio stimuli with various tonal and environmental sound stim-

uli. The approach is based on a monitoring of brain electrical activity by means

of the electroencephalogram (a short name called ”EEG” ). The first achievement

discussed in this thesis is a BCI analysis based on optimization of electrode loca-

tions on the scalp for further classification accuracies improvement. Based on this

analysis results, it allows us decrease the electrodes number from 64 to 10. Next, I

propose a methodology for finding and optimizing brain evoked response latencies

in the P300 range in order later to classify them correctly and to elucidate the sub-

ject’s chosen targets or ignored non-targets. To accomplish the above, I propose

an approach based on an analysis of variance for feature selection. Such results

also unsatisfactory as regards as a successful BCI system application. Third, I

design a new auditory spatial auditory BCI paradigm in which the ERP shape

differences at early latencies are employed to enhance the P300 responses in an

oddball experimental setting. The concept relies on the recent results in auditory

neuroscience showing a possibility to differentiate early anterior contralateral re-

sponses to attended spatial sources. Contemporary stimuli–driven BCI paradigms

benefit mostly from the P300 ERP latencies in so called ”aha-response” settings.

I show the further enhancement of the classification results in spatial auditory

paradigms by incorporating the N200 latencies, which differentiate the brain re-

sponses to lateral, in relation to the subject head, sound locations in the auditory

space. I also found that the early brain responses elucidate which direction, front

or rear loudspeaker source, subject attended. Such results reveal that those spatial

auditory ERPs boost classification results of the BCI application. The BCI exper-

iments with the multi-command BCI prototype support our research hypothesis

with the higher classification results and the improved information-transfer-rates.



Acknowledgements

I would like to thank Prof. Shoji Makino, Prof. Tomasz M. Rutkowski and Prof.

Takeshi Yamada for their many valuable suggestions and constant support during

this research. I also would like to thank Prof. Hiroyuki Kudo, Prof. Ko Sakai and

Prof. Hotaka Takizawa for their many valuable suggestions and comments. Prof.

Shoji Makino, my advisor, for supporting me to various seminars and conferences,

and for many valuable suggestions and comments in this research. My co-advisor,

Prof. Tomasz M. Rutkowski, who contributed a lot to this research, and who

helped me so many times with my experiments.

This research was supported in part by the Strategic Information and Commu-

nications R D Promotion Program no. 121803027 of The Ministry of Internal

Affairs and Communication in Japan, and by KAKENHI, the Japan Society for

the Promotion of Science, grant no. 12010738 and 24700154. I also acknowl-

edge the technical support of YAMAHA Sound and IT Development Division in

Hamamatsu, Japan.

iv



Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iv

List of Figures viii

List of Tables xii

1 Introduction 1

1.1 Objectives and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Organization of the Thesis . . . . . . . . . . . . . . . . . . . 4

1.1.2.1 Chapter 2: Reviews Existing Technology . . . . . . 5

1.1.2.2 Chapter 3: Electrodes Position Optimization . . . 5

1.1.2.3 Chapter 4: P300 Optimization for Spatial auditory
BCI . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.2.4 Chapter 5: Utilization of N200 and P300 for Spa-
tial Auditory BCI Enhancement . . . . . . . . . . . 6

1.1.2.5 Chapter 6: ERP Responses to Front–Back to the
Head Stimuli Distinction Support . . . . . . . . . . 6

2 Reviews of Existing Technology 8

2.1 Recording brain activity . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Invasive brain Recording . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Recording based on Hemodynamic Response . . . . . . . . 9

2.1.3 Recording based on Electromagnetic waves . . . . . . . . . . 12

2.1.4 Summary of Brain Signal Monitoring . . . . . . . . . . . . . 12

2.1.5 Imagery BCI based on EEG . . . . . . . . . . . . . . . . . . 13

2.1.5.1 Imagery BCI Controlled Wheelchair . . . . . . . . 14

2.1.6 Stimuli-driven BCI based on EEG . . . . . . . . . . . . . . . 16

2.1.6.1 Event Related Potential . . . . . . . . . . . . . . . 16

2.1.6.2 P300 Response . . . . . . . . . . . . . . . . . . . . 17

v



Contents vi

2.1.7 Review of stimuli-driven BCI . . . . . . . . . . . . . . . . . 17

2.1.7.1 Visual Keyboard Speller BCI . . . . . . . . . . . . 18

3 Electrodes Position Optimization 20

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1.1 EEG Recording System . . . . . . . . . . . . . . . 22

3.1.1.2 Stimulus . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1.3 Spatial Hearing . . . . . . . . . . . . . . . . . . . . 24

3.1.1.4 EEG Experiment Description . . . . . . . . . . . . 24

3.1.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.2.1 EEG Preprocessing . . . . . . . . . . . . . . . . . . 26

3.1.2.2 Electrodes and ERP Features Selection for Classi-
fication . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 P300 Optimization for Spatial aBCI 36

4.0.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.0.6 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Psychophysical Experiment . . . . . . . . . . . . . . . . . . . . . . 38

4.1.1 The Offline aBCI Experiment Protocol . . . . . . . . . . . . 39

4.1.2 EEG Acquisition . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.3 EEG Response Analysis . . . . . . . . . . . . . . . . . . . . 40

4.1.3.1 EEG Preprocessing . . . . . . . . . . . . . . . . . . 42

4.1.3.2 ERP Feature Extraction Using ANOVA of the ER-
P Latencies . . . . . . . . . . . . . . . . . . . . . . 42

4.1.3.3 The Offline ERP Classification in the aBCI Paradigm 44

4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.1 Analysis of aBCI Results with ITR and Classification Accu-
racies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2.2 The ITR and Classification Accuracy Results from the P300
ERP Range Latencies in the Single Channel Setting of Tar-
get versus Non-target . . . . . . . . . . . . . . . . . . . . . . 47

4.2.3 The ITR Results from the P300 ERP Range Latencies from
the Averaged Eight Trials in the Setting of Target versus
Non–target . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . 48

5 Utilization of N200 and P300 for Spatial aBCI Enhancement 55

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.1 The Offine saBCI Experimental Protocol . . . . . . . . . . . 58

5.2.1.1 The Analysis of ERP Responses in Offine BCI Paradig-
m . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



Contents vii

5.2.2 EEG Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.3 The Optimization of the EEG Electrode Locations and ERP
Features Extraction . . . . . . . . . . . . . . . . . . . . . . . 60

5.2.4 The Offline saBCI Classification . . . . . . . . . . . . . . . . 64

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.1 The Classification Results from the Combined N200 and
P300 ERP Latencies in the Classical target vs. non–target
Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 The Classification Results from the new N2apc ERP Feature
in the Ipsilateral vs. Contralateral Settings . . . . . . . . . . 68

5.3.3 Analysis of Information Transfer Rate Improvement Results 69

5.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 ERP Responses to Front–Back to the Head Stimuli Distinction
Support 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 The Offline saBCI Experimental Protocol . . . . . . . . . . . 76

6.3 The Analysis of ERP Responses in Offline BCI Paradigm . . . . . . 77

6.3.1 EEG Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.2 The Optimization of the EEG Electrode Locations and ERP
Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . 78

6.3.3 The Offline saBCI Classification . . . . . . . . . . . . . . . . 81

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4.1 The Classification Results from the P300 ERP Latencies in
the Classical Oddball Paradigm Setting . . . . . . . . . . . . 85

6.4.2 The Classification Results from the N2ac ERP Feature in
the Ipsilateral vs. Contralateral Settings . . . . . . . . . . . 86

6.4.3 The classification Results of the N2fr ERP Feature Extrac-
tion Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4.4 Analysis of Information Transfer Rate Improvement Results 86

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Conclusion of thesis 91

7.1 Summary of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Bibliography 94

Author’s Paper List 100



List of Figures

2.1 fMRI recording equipment (upper figure) and fMIR signals (lower
figure) The figures source: Bergen fMRI Group, Department of Bio-
logical and Medical Psychology, University of Bergen http://fmri.uib.no/ 10

2.2 fNIR recording equipment (The figure source: SING YIP TECH-
NOLOGY (HK) CO., LIMITED) http://www.biopac.com/fnir-optical-
brain-imaging-hemodynamic-response . . . . . . . . . . . . . . . . . 11

2.3 MEG recording equipment Figure source: The National Institute
of Mental Health (NIMH) http://www.nimh.nih.gov/index.shtml . 13

2.4 64 channels EEG data were recorded by Biosemi . . . . . . . . . . 14

2.5 With the RIKEN’s brain controlled wheelchair, the user continu-
ously controls the velocity of the wheelchair by imagining left hand,
right hand or both feet movements (Figure obtained permission) . . 15

2.6 In the P300 speller by Farwell and Donchin, items are presented
on a 6 by 6 matrix. Rows and columns are flashed in a random se-
quence, eliciting a P300 signal 300 ms after the key the user wants to
select has been flashed. The figure source: http://www.bbci.de/competition/ii/ 19

3.1 Spatial auditory BCI paradigm concept with octagonal loudspeaker
arrangement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Spatial auditory BCI open acoustic filed. . . . . . . . . . . . . . . . 23

3.3 User training interface for spatial auditory BCI experiment. . . . . 25

3.4 MAX/MSP path managing the spatial BCI Experiment. . . . . . . 25

3.5 BIOSEMI system with 64 electrodes. . . . . . . . . . . . . . . . . . 27

3.6 Results of ERP P300 response for frontal (upper panel) and rear
(lower panel) speakers confirming the feasibility of the proposed
approach. The zero stands for stimuli onsets. The blue/dashed lines
depict non-target (no P300 response after 300 ms) responses and
red/solid traces visualize attended spatial targets (obvious positive
EEG response deflections after in 300 – 500 ms range). . . . . . . . 28

3.7 ROC analysis results of a good channel candidate (col1: black/up-
per trace) discriminating and a ”chance level” one for not channel
selection (col2: red/lower trace). . . . . . . . . . . . . . . . . . . . . 30

3.8 Results of classical LDA application to binary classification of a
spatial tonal 440 Hz stimuli applied to all electrodes for a single
subject in six crossvalidation trials are visualized in the left column
while the best resulting electrodes are presented in the right column
for each subject. All graphs have the same scaling.. . . . . . . . . . 31

viii



List of Figures ix

3.9 Results of the proposed ROC analysis based channel selection for
all six subjects and two stimuli cases revealing the temporal and
parietal scalp regions as best candidates for spatial stimuli P300
responses identification. . . . . . . . . . . . . . . . . . . . . . . . . 32

3.10 Percentage of correctly classified spatial audio BCI P300 respons-
es with LDA classifiers derived from three experimental sessions
for each subject (blue/solid lines) and based on ten best electrode
results (red/dotted lines). Chance level is 50%. . . . . . . . . . . . . 34

3.11 Comparison of classification responses to frontal (top panel) and
rear/back (bottom panel) loudspeakers stimuli directions for six
subjects and two stimuli conditions. The results confirm only slight
subjects’ preferences to frontal stimuli directions except of subject
#6 who had better results for rear sound directions.. . . . . . . . . 35

4.1 Spatial auditory BCI paradigm concept with eight loudspeakers in
the upper part of the figure. The lower graph visualizes the stimulus
presentation concept in the time domain. Each stimulus is presented
for 30 ms with 170-ms silent breaks, so the ISI is set to 200 ms. . . 39

4.2 Eight electrodes on the scalp location (see the blue shadow) . . . . 41

4.3 Spatial auditory BCI paradigm concept with eight loudspeakers in
the upper part of the figure. The lower graph visualizes the stimulus
presentation concept in the time domain. Each stimulus is presented
for 30 ms with 170-ms silent breaks, so the ISI is set to 200 ms. . . 43

4.4 Grand mean average auditory evoked responses to spatial white
noise stimuli of the ten subjects from the eight electrodes plotted
separately in each row of the panels. The top panel shows the grand
mean averaged response to the targets. The middle panel presents
the grand mean averaged responses to non-targets. The bottom
panel depicts the p values from the ANOVA for the eight electrodes
separately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Grand mean average auditory evoked responses to spatial pink noise
stimuli of the ten subjects from the eight electrodes plotted sepa-
rately in each row of the panels. The top panel shows the grand
mean averaged response to the targets. The middle panel presents
the grand mean averaged responses to non-targets. The bottom
panel depicts the p values from the ANOVA for the eight electrodes
separately . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.1 The novel N2apc paradigm based on spatial sound stimuli. . . . . . 56

5.2 Six electrodes for testing N2ac on the scalp location (see blue shadow) 61

5.3 The grand mean averaged ERP responses of the seven subjects. The
solid lines depict targets and the dashed ones non-targets. The red
color indicates ipsilateral and blue one the contralateral responses.
The differences between targets and non-targets are obvious after
300 ms (the so called ”aha” or P300 response), while the lateral
directions can be identified in N200 latency area. . . . . . . . . . . 62



List of Figures x

5.4 The grand mean averaged ERP for the all seven subjects and all
electrodes calculated together, while plotted separately for target
(solid red line) and non–target (dashed blue line) responses. The
significant differences between the both responses can be found, as
visualized by the color bar with p–values of t–test results (statistical
significance for p < 0.05) in the bottom part in the above panel,
can be found around 200 ms (N200 response latency) and after 300
ms (P300 response latency). . . . . . . . . . . . . . . . . . . . . . . 63

5.5 ERP to pink noise stimuli grand mean averages for all subjects and
the six electrodes plotted separately in each panel. The solid red
lines represent the ipsilateral to target responses and the dashed
blue lines to the contralateral ones. The color bars at the bottom
of each panel show the t-test resulting p−values. . . . . . . . . . . . 65

5.6 ERP to white noise stimuli grand mean averages for all subjects
and the six electrodes plotted separately in each panel. The solid
red lines represent the ipsilateral to target responses and the dashed
blue lines to the contralateral ones. The color bars at the bottom
of each panel show the t-test resulting p− values. . . . . . . . . . . 66

6.1 The novel front and rear to the subject head’s auditory sources
localization paradigm based on spatial sound stimuli is depicted in
the top panel. The bottom panel presents our stimulus presentation
concept illustrated in the time domain. Each stimulus has been
presented in our experiments for 30 ms with 270 ms silent breaks
with the respective inter–stimulus–interval (ISI) of 300 ms. . . . . . 75

6.2 The grand mean averaged ERP responses of the seven subjects.
The upper panel present the grand mean averaged ERP responses to
pink–noise. The lower panel depicts respective results obtained with
white–noise stimulus. The red lines represent targets and the blue
ones non-targets. All results are presented together with standard
error bars. The differences between targets and non-targets are
obvious in the range of 300 ∼ 600 ms (the so called “aha”– or P300
response). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Grand mean averaged ERP responses of the all seven subjects and
the six electrodes are plotted separately in the two top panels. The
first top panel shows target and a second from the top the non–
target averaged responses, respectively. The significant differences
between the both responses can be found, as visualized by color
coding of the p-values obtained from ANOVA–test (statistical sig-
nificance at p < 0.05) in the third from the top panel. The bot-
tom panels presents Kolmogorov–Smirnov test. The EEG electrodes
F5, F6, C3, C4, P5 and P6 were used in the experiments. . . . . . . 82



List of Figures xi

6.4 Grand mean average ERP responses of all seven subjects and the
six electrodes plotted separately in each panel in contralateral (top
panel) vs. ipsilateral (second from the top panel) stimulus direc-
tion presentation settings. The significant differences between the
both responses can be found, as visualized by the color with p-
values of ANOVA–test and KS–test results (statistical significance
for p < 0.05) in the third panel and fourth panel, respectively. EEG
electrodes F5, F6, C3, C4, P5 and P6 were used in the experiment. 83

6.5 Grand mean averaged ERP responses of all subjects and the six
electrodes plotted separately in each panel for the frontal– (top
panel) and the rear–loudspeaker (second from the top panel) ERP
responses. The significant differences between the both responses
can be found, as visualized by the color with p-values of ANOVA–
test and KS–test results (statistical significance at p < 0.05) in the
third and fourth from the top panelz respectively. EEG electrodes
F5, F6, C3, C4, P5 and P6 were used in the experiment. . . . . . . 84



List of Tables

4.1 The spatial sound psychophysical experiment results. The response
time delays and instructed directions accuracies are presented in
the form of mean values with standard deviations (STD) respectively. 50

4.2 The confusion matrix results from the psychophysical experiment
averaged for all the subjects for pink– and white–noise stimulus
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3 The offline aBCI interfacing results based on features drawn from
non–averaged trials in the form of ITR scores obtained as in equa-
tions (4.1) and (4.2). I compare the traditional all ERP and the
proposed “hand–picked” only latencies. . . . . . . . . . . . . . . . . 51

4.4 The classification results for ERP latencies in P300 responses for
target vs. non–target paradigm. The classification results of two
feature sets (allERP responses and P300 responses) are compared.
The classification improvement comparing the conventional all ERP
latency with the proposed P300 response) is summarized in the
right column. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 The offline aBCI interfacing results based on features drawn from
the averaged eight trials in the form of ITR scores obtained as in
equations (4.1) and (4.2). I compare the traditional whole–ERP
and the proposed “hand–picked” only latencies. . . . . . . . . . . . 53

4.6 The classification results for ERP latencies in P300 responses for the
mean of 8 targets vs. average of 8 non–targets paradigm. The classi-
fication results for two feature sets (allERP responses and P300 re-
sponses) are compared. The classification improvement comparing
the conventional all ERP latency with the proposed P300 response)
is summarized in the right column. . . . . . . . . . . . . . . . . . . 54

5.1 The classification results for ERP latencies in N200 and P300 re-
sponses for target vs. non–target paradigm. The three feature set-
s (N200, P300 and N200/P300 latencies combined) classification
results are compared. The classification improvement comparing
the classical P300 latency only with the proposed combination of
N200/P300) is summarized in the right column. . . . . . . . . . . . 71

5.2 The classification results for the proposed method using N2apc re-
sponse to support the saBCI compared with the conventional method. 71

5.3 The ITR for the three ERP interval related classification approaches
using N200 or P300 only, and the combined N200/P300 together. . 72

xii



List of Tables xiii

5.4 The ITR for the proposed method using N2apc response to support
the saBCI classification rates. . . . . . . . . . . . . . . . . . . . . . 72

6.1 The classification results for ERP latencies in P300 responses for
target vs. non–target paradigm. The three sets (whole ERP, P300
latencies optimized by ANOVA mehtod and KS method ) classifi-
cation results are compared. . . . . . . . . . . . . . . . . . . . . . 87

6.2 The classification results for ERP latencies in N200 responses for
ipsilateral vs. contralateral paradigm. The three feature sets (whole
ERP ( 0 ms – 700 ms ), N200 latencies optimized by ANOVA
method and KS method ) classification results are compared. . . . 88

6.3 The classification results for ERP latencies in N200 responses for
targets from frontal loudspeaker vs. targets from rear loudspeaker
paradigm. The three feature sets (whole ERP ( 0 ms – 700 ms
), N200 latencies optimized by ANOVA method and KS method )
classification results are compared. . . . . . . . . . . . . . . . . . . 89

6.4 The ITR of target vs. non-target, for the three ERP sets related
classification approaches using wholeERP , P300 extracted with
ANOVA and KS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.5 The ITR of N2ac, for the three ERP sets related classification ap-
proaches using wholeERP , N200 extracted with ANOVA and KS. 90

6.6 The ITR of targets from front loudspeaker and targets from rear
loudspeaker, for the three ERP sets related classification approaches
using wholeERP , N200 extracted with ANOVA and KS. . . . . . 90



Chapter 1

Introduction

Human need to communicate and interact with the environment, this is a human

basic life needs. Severe motor disabilities can limit one’s ability to communicate,

especially for patients suffering from amyotrophic lateral sclerosis (ALS), severe

cerebral palsy, head trauma, multiple sclerosis, and muscular dystrophies who are

incapable of conveying their intentions (locked-in syndrome) to the external envi-

ronment. Considering that the ALS is the second major neurodegenerative disease

with an incidence of 5/100, 000 per year (twice more important than Parkinson

disease incidence) and that this disease occurs in adulthood. Such patients can

not meet the basic needs. In the past several decades, A novel communication

techniques which called BCI (BCI: brain computer interface) is developed. Such

this novel techniques is designed to establish a communication link between the

human brain and a computer [1]. It is use electric, magnetic or hemodynamic

brain activity to control external devices such as robot, computers, wheelchairs,

etc. A BCI does not depend on muscle or peripheral nervous system activity. In

particular, a BCI could help patients suffering from amyotrophic lateral sclerosis

(ALS) to communicate or to complete various daily tasks, including controlling

a computer or typing messages on a virtual keyboard. BCI researchers attempt

to develop new communication pathways for ALS paints using their brain signals,

also focus on developing potential applications in rehabilitation and multimedia

communication. Most of current BCIs have three major functions [2] :

• measure signals from the human brain;

• methods and algorithms for recognize brain states/ intentions from these

signals;

1



Chapter 1. Introduction 2

• methodology and algorithms for mapping human brain activity to intended

behavior or action.

Several different technologies available to record the brain activity (see chapter 2).

Such as electroencephalography (EEG), magnetoencephalography (MEG), func-

tional magnetic resonance imaging (fMRI), and functional Near-Infrared Imaging

(fNIR). However, MEG and fMRI are expensive and gigantic, and fMRI show

longtime constants in that they do not measure neural activity directly which re-

lying instead on the hemodynamic coupling between neural activity and regional

changes in blood flow. Only fNIR imaging and EEG can be used for a BCI. And

yet, NIR is a relatively new method, it is not as popular as EEG in BCI studies.

As this result, the majority of BCIs utilize EEG signals [1], [2].

Most of BCI studies are based on visual evoked potential (VEP) (described in

chapter 2). VEP use in BCI was introduced by [3] and this study also became

a major focus in BCI research. They describes a BCI that is depended on au-

ditory evoked potential(AEP) (see chapter 2), which may extend the study on

VEP in several important aspects. As I mentioned before, auditory BCI (aBCI)

has become a hot topic of great interest in computational auditory neuroscience.

The aBCI utilize human auditory pathway responses and allows users to operate

external devices more quickly and simply, based on auditory evoked responses to

sound stimuli. In an former research [4], it is describe that 61 people suffering

from mid-stage ALS were included with ALSFRS-R ratings ranging from 18 to 33.

The author found that a larger portion of their population suffered from auditory

(42%) than visual (24%) deficits. Recently, the other study reported that a patient

with ALS through the late stages of the disease, BCI may only be possible with

the auditory pathways [5]. Indeed, Two researches show that the visual BCIs

may not suitable when eye-gaze control is limited [6], [7]. For this reasons, the

novel and interest in auditory BCI has grown in recent years.

Auditory stimulation involves an oddball paradigm where the subject is attend

to stimuli that differ from each other on some property. The subject is required

to focus on one of them. A binary BCI generally using such paradigms which

utilize tones with various of pitch [8] , [9]. In paper [8], authors presented two

sequences of target and non-target tones to the subject. The subject’s ears listened

simultaneously a sequence with a different inter stimulus interval. The subjects

required to pay attention on either one of stimulus with counting the number of
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them. The time samples for left and right non-target tones were taken from the

same four seconds of EEG signal, averaged and subsequently concatenated. For

the different inter stimulus interval, Event-related potential (ERP) (see chapter 2)

in response to the left channel would average out on right channel. Such feature

was used for later binary classification (target vs. non-target). Even through the

classification rate have a big different between of them, the results showed that it

is possible for BCI using auditory ERP as a feature.

Several researches show that auditory ERP based on spatial sound stimuli can

improve BCI performance [10], [11]. In offline BCI studies, additional spatial

information to an auditory stimulus was helpful to the recognition, reaction times

and also including classification accuracy [12]. Such paradigms could even be used

to extend visual BCIs to improve performance during the late stages ALS [13].

1.1 Objectives and Scope

A common feature between all of BCIs is that, since the recorded brain signals are

very nosiy and a low classification accuracy. In order to solve the low classification

accuracy problem and make it is possible to be used in the online BCI applications.

This is the challenge I address in this thesis.

Application of evoke-BCIs are reported in the literate, mostly of them are visual

BCIs. However, a auditory BCI have three merits comparing with visual BCIs is:

• a less mentally involving sense;

• to operate exteral devices more quickly and simply;

• it is could be used by the late stages ALS patients;

In the thesis, I propose to utilize a concept of a spatial auditory stimuli. This is

a very interesting concept since, in contrary to the contemporary visual modality

BCI, it utilizes audition. During the BCI experiments, the subject intentionally

directs his attention to different locations in surround sound environment. A

sound direction which the subject attends evokes N200, P300 response which is

next used to generate a BCI command. In experiments described in the thesis I

utilize octagonal loudspeakers setup. The setup and obtained results are a step
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forward in comparison to contemporary reports since I am able to classify also

the N200, P300 responses from rear-side-loudspeakers, which was not reported

till now.

1.1.1 Aims of the Thesis

As mentioned above, to be successful. The novel auditory BCI has to achieved the

following purpose: fully octagonal surround sound, high classification accuracy.

• fully octagonal surround sound : The spatial aBCI concept is founded on

a basic feature of the human auditory pathway, which is very sensitive to

the location of changing spatial auditory sources. The auditory pathway also

has a very good temporal resolution, which is an additional feature we would

like to utilize in the spatial aBCI design. This will make it possible to re-

duce inter-stimuli intervals (ISI) of the presented sounds in comparison with

vision-based applications. Contemporary applications have thus far failed to

use rear-to-the-head loudspeakers, as postulated as an optimal setting yet

still not fully realized in Schreuder et al [12].

• Hight classification accuracy : we discuss a novel auditory BCI paradigm with

the support of the ERP component (P300, N200), evoked by the expect-

ed/instructed targets [14]. Our hypothesis is that a significant ERP response

will be found when subjects attend to the target direction and ignore the

non-targets.

A BCI is based on a neuroscience research with support of signal processing and

machine learning algorithms. Our goal in this work is conducting research on

novel algorithms and a design of new BCI experimental paradigms. This requires

the novel algorithms able to improve the classification accuracy, and using spatial

sound stimuli with fully octagonal surround sound could make a multi-command

auditory BCI.

1.1.2 Organization of the Thesis

This thesis is composed of six chapters. A description of each chapter, excluding

the present chapter 1, is given as follows:
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1.1.2.1 Chapter 2: Reviews Existing Technology

In this chapter, several ways of brain recording and BCI system are described.

This chapter provides the reader with a theoretical background and an extensive

BCI technology, It helps to understand the four studies described in Chapter 3,

Chapter 4, Chapter 5 and Chapter 6.

1.1.2.2 Chapter 3: Electrodes Position Optimization

Our proposed method 1

In this chapter, it introduces a novel auditory BCI paradigm based on combined

sound timbre and horizontal plane spatial locations as informative cues. The pre-

sented concept is based on responses to eight–directional audio stimuli with various

tonal and environmental sound stimuli. The approach is based on a monitoring of

brain electrical activity by means of the electroencephalogram (EEG). The previ-

ously developed by the authors spatial auditory stimulus is extended to varying

in timbre sound stimuli which feature helps the subjects to attend to the targets.

The main achievement discussed in chapter 3 is an offline BCI analysis based on

an optimization of electrode locations on the scalp and evoked response latency for

further classification results improvement. The so developed new BCI paradigm is

more user-friendly and it leads to better results comparing to previously utilized

simple tonal or steady-state stimuli.

1.1.2.3 Chapter 4: P300 Optimization for Spatial auditory BCI

Our proposed mehtod 2

In this chapter, we propose a novel method for the extraction of discriminative fea-

tures in electroencephalography (EEG) evoked potential latency. Based on our of-

fline results, we present evidence indicating that a full surround (eight–directions)

sound auditory BCI paradigm has potential for an online application. The au-

ditory spatial BCI concept is based on chapter 3, which employs a loudspeaker

array in an octagonal horizontal plane. The stimuli presented to the subjects vary

in frequency and timbre. To capture brain responses, we utilize an eight-channel

EEG system. I propose a methodology for finding and optimizing evoked response
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latencies in the P300 range in order later to classify them correctly and to eluci-

date the subject’s chosen targets or ignored non-targets. To accomplish the above,

we propose an approach based on an analysis of variance for feature selection. Fi-

nally, we identify the subjects intended commands with a naive Bayesian classifier

for sorting the final responses. The results obtained with ten subjects in offline B-

CI experiments support our research hypothesis by providing higher classification

results and an improved information transfer rate compared with state-of-the-art

solutions.

1.1.2.4 Chapter 5: Utilization of N200 and P300 for Spatial Auditory

BCI Enhancement

Our proposed mehtod 3

Chapter 5 presents our results obtained with a new auditory spatial localization

based BCI paradigm in which the ERP shape differences at early latencies are

employed to enhance the P300 responses in an oddball experimental setting. The

concept relies on the recent results in auditory neuroscience showing a possibility

to differentiate early anterior contralateral responses to attended spatial sources.

Chapter 4 BCI paradigms benefit mostly from the P300 ERP latencies. I show the

further enhancement of the classification results in spatial auditory paradigms by

incorporating the N200 latencies, which differentiate the brain responses to lateral,

in relation to the subject head, sound locations in the auditory space. The results

reveal that those early spatial auditory ERPs boost online classification results of

the BCI application. The online BCI experiments with the multi-command BCI

prototype support our research hypothesis could improve classification accuracies

and information-transfer-rates.

1.1.2.5 Chapter 6: ERP Responses to Front–Back to the Head Stimuli

Distinction Support

Our proposed method 4

Chapter 4 shows a possibility to differentiate early anterior contralateral responses

to attended spatial sources. I also found that the early brain responses elucidate

which direction, front or rear loudspeaker source, subject attended. I show the

further enhancement of the classification results in spatial auditory paradigm, in
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which I incorporate the N200 latencies. The results reveal that those early s-

patial auditory ERPs boost offline classification results of the BCI application.

The offline BCI experiments with the multi-command BCI prototype support

our research hypothesis with the higher classification results and the improved

information–transfer–rates.



Chapter 2

Reviews of Existing Technology

In this chapter I introduce what are the different technologies available to record

(Section 2.1) the brain activity. Then, in Section 2.2 I review two Representative

stimuli-driven-BCI applications.

2.1 Recording brain activity

The first step toward a BCI is recording the activity of the human brain. This

can be done invasively by surgically implanting electrodes in the brain, or non-

invasively. In this section I will review different brain activity recording technolo-

gies which I mentioned in Chapter 1.

2.1.1 Invasive brain Recording

Biologists can measure the potential at different parts of a single neuron in a

culture. Recording neuron activity in a living brain is possible using surgically

implanted micro-electrodes arrays, although it is no longer a single neuron record-

ing but the activity of groups of neurons. Monkeys with brain implants have been

reported to brain-control the displacement of a cursor on a screen or to control

the motion of a robotic arm. Surgical implantation of electrodes is still consider

too dangerous to be carried on humans brain [15]. However, this resolution is

sufficient to show physiological processes at the cellular level. Clinical approaches

sometimes allow invasive recordings to be taken from the human brain, mainly

8
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in patients with epilepsy or with movement disorders, and such recordings can

sample neural activity at spatial scales ranging from single cells to distributed

cell assemblies. Two typical representative of invasive brain recording are single

unit/neuron recordings and electrocorticography.

• single unit/neuron recordings : The use of an electrode to record the electro-

physiological activity is(action potentials) from a single neuron. An electrode

introduced into the brain of a living animal detect electrical activity that is

generated by the neurons adjacent to the electrode tip. If the electrode is a

micro–electrode, with a tip size of 3 to 10 micrometers, the electrode often

isolate the activity of a single neuron.

• ElectroCorticoGraphy (ECoG): ECoG is an invasive procedure Because a

craniotomy (a surgical incision into the skull) is required to implant the

electrode grid. The electrodes are placed directly on the exposed surface of

the brain to record electrical activity from the cerebral cortex.

2.1.2 Recording based on Hemodynamic Response

The typical hemodynamic response method include Functional Magnetic Reso-

nance Imaging (fMRI) and Near-Infrared Imaging.

Functional Magnetic Resonance Imaging (fMRI):

• fMRI is a relatively recent imaging technique that aims to determine the

neuro–biological correlate of behavior by identifying the brain regions that

become ”active” during the performance of specific tasks in vivo [16]. This

recording method is a functional neuro–imaging procedure using magnet-

ic resonance imaging technology that measures brain activity by detecting

associated changes in blood flow. The technique is based upon the dif-

ferent magnetic susceptibilities of the iron in oxygenated and deoxygenated

hemoglobin (see Figure 2.1). Oxygenated blood is diamagnetic and possesses

a small magnetic susceptibility, while deoxygenation of hemoglobin produces

deoxyhemoglobin, which is a significantly more paramagnetic species of iron.

Blood Oxygenation Level Dependent (BOLD) measurements measure local

variation in the relaxation time caused by variations in the local concentra-

tion of deoxygenated blood. It has become the diagnostic method of choice
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for investigating how a normal, diseased or injured brain are working. The

spatial resolution can be sub-millimeter with temporal resolutions on the

order of seconds. The ability to measure solitary neural events is not yet

possible but improvements in sensitivity have been made steadily over the

past decades.

Figure 2.1: fMRI recording equipment (upper figure) and fMIR signals (lower
figure) The figures source: Bergen fMRI Group, Department of Biological and

Medical Psychology, University of Bergen http://fmri.uib.no/

Functional Near-Infrared Imaging (fNIR):

• fNIR is a relatively novel technology based upon the notion that the optical

properties of tissue (including absorption and scattering) change when the

tissue is active (see figure 2.2). Two types of signals can be recorded: fast
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scattering signals, presumably due to neuronal activity and slow absorption

signals, related to changes in the concentration of oxy- and deoxy-hemoglobin

[17]. However, fNIR lacks the spatial resolution of fMRI and cannot accu-

rately measure deep brain activity. The fast fNIR signal is measured as an

event-related optical signal (EROS). The spatial localization of fast and slow

fNIR measurements both correspond to the BOLD fMRI signal. The laten-

cy in the slow (hemodynamic) signal roughly corresponds to that for the

BOLD fMRI response. The major limitation of optical methods (both fast

and slow signals) is their penetration (max: approximately 3 cm from head

to surface), which makes it impossible to measure brain structures such as

the hippocampus or the thalamus, especially if they are surrounded by light-

reflecting white matter. However, the vast majority of the cortical surface

is accessible to the measurements. The technology is relatively simple and

portable, and may serve a sort of portable, very rough equivalent of fMRI,

which may supplement or substitute for some EEG measures.

Figure 2.2: fNIR recording equipment (The figure source: SING YIP TECH-
NOLOGY (HK) CO., LIMITED) http://www.biopac.com/fnir-optical-brain-

imaging-hemodynamic-response
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2.1.3 Recording based on Electromagnetic waves

The currents generated by an individual neuron are too tiny to be recorded non-

invasively, however excitatory neurons in the cortex all have their axon parallel

one to another and grouped in redundant populations called macro-columns which

act as macroscopic sources of electromagnetic waves that can be recorded non-

invasively.

Magnetoencephalography (MEG)

• MEG is an imaging technique used to map brain activity by recording mag-

netic fields produced by electrical currents occurring naturally in the brain,

using very sensitive magneto meters [18], [19]. Because of the low strength

of these signals and the high level of interference in the atmosphere, MEG

has traditionally been performed inside rooms designed to shield against all

electrical signals and magnetic field fluctuations (see Figure 2.3).

Electroencephalography (EEG)

• EEG is the recording of electrical activity along the scalp produced by the fir-

ing of neurons within the human brain [14], [20]. The recording is obtained

by placing electrodes on the scalp with a conductive gel or dry electrodes

without gel. The number of electrodes depends on the application, from a

few to 256, and they can be mounted on a cap for convenience of use. The

electric signal recorded is of the order of few microvolt, hence must be am-

plified and filtered before acquisition by a computer (see Figure 2.4). The

electronic hardware used to amplify, filter and digitize the EEG signal is of

the size and weight of a book; it is easily transportable and relatively af-

fordable. Spatial resolution is on the order of centimeters while the time of

response to a stimulus is on the order of 100 milliseconds.

2.1.4 Summary of Brain Signal Monitoring

The six methods presented above. Only fNIRs imaging and EEG can be used

for a BCI: MEG and fMRI equipments are too expensive and cumbersome, and

invasive methods are not safe enough yet. However, as fNIRs is a relatively new

method, it is not as popular as EEG in BCI studies.
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Figure 2.3: MEG recording equipment Figure source: The National Institute
of Mental Health (NIMH) http://www.nimh.nih.gov/index.shtml

2.1.5 Imagery BCI based on EEG

Imagery BCI is an independent mode paradigm in which only subject brain in-

tentional imagery patterns are classified to generate interfacing commands (imag-

ination/planning of a right or left hand movement, etc.). An electric wheelchair

driven through a brain-computer interface (BCI), developed by RIKEN Brain-

TOYOTA Collaboration Center in Japan. The system is described in the next

section.
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Figure 2.4: 64 channels EEG data were recorded by Biosemi

2.1.5.1 Imagery BCI Controlled Wheelchair

With the brain controlled wheelchair from RIKEN Brain-TOYOTA Collabora-

tion Center (2008) shown on Figure 2.5 the user continuously controls the of the

wheelchair by imagining left hand, right hand or both feet movements.
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Figure 2.5: With the RIKEN’s brain controlled wheelchair, the user continu-
ously controls the velocity of the wheelchair by imagining left hand, right hand

or both feet movements (Figure obtained permission)
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2.1.6 Stimuli-driven BCI based on EEG

A Brain Computer Interface (BCI) is any system which can derive meaningful in-

formation directly from the user’s brain activity in real time. The most important

applications of the technology are mainly meant for the paralyzed people who are

suffering from severe neuromuscular disorders. Most BCIs use information ob-

tained from the user’s EEG, though BCIs based on other brain imaging methods

are possible. This section briefly describes several stimuli-driven BCIs.

2.1.6.1 Event Related Potential

Event-related potentials (ERPs) are very small voltages (micro-volt) evoked in

the human brain in response to specific events or stimuli (such visual, auditory,

tactile, olfactory) [21]. They are brain activity changes that are time locked to

sensory, motor or cognitive events. The study of the brain in this way provides

a noninvasive means of evaluating brain functioning in patients with cognitive

diseases. ERP is a method of neuropsychiatric research which holds great promise

for the future. Two special ERPs are introduced in this section.

Visual Evoked Potential (VEP):

• The EEG potential changes can be observed after visual stimulus. In the past

decades, Adrian and Matthew are found this ERP response. The first nomen-

clature for occipital EEG components in 1961 are developed by Ciganek. Af-

ter the Ciganek, Hirsch and colleagues recorded a VEP components on the

occipital lobe, and they discovered amplitudes recorded along the calcarine

fissure were the largest. An attempt to localize structures in the primary

visual pathway was completed by Szikla and colleagues. Halliday and col-

leagues completed the first clinical investigations using VEP by recording

delayed VEPs in a patient with retrobulbar neuritis in 1972. A wide variety

of extensive research to improve procedures and theories has been conducted

from the 1970s to today.

Auditory Evoked Potential (AEP):

• The EEG potential changes can be observed after auditory stimulus. Au-

ditory evoked potentials (AEPs) are a subpart of event-related potentials
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(ERP)s. ERPs are brain responses that are time-locked to some specific

events or stimuli, such as a sensory stimulus, a mental event (such as recog-

nition of a target stimulus), or the omission of a stimulus. For AEPs, the

event is a sound, speech or music. AEPs (and ERPs) are very small electrical

voltage potentials (micro-volt) originating from the brain recorded from the

scalp in response to an auditory stimulus, such as different tones, speech,

sounds, noise etc.

2.1.6.2 P300 Response

The P300 response is an event related potential (ERP) component elicited in the

process of decision making. It is considered to be an endogenous potential, as its

occurrence links not to the physical attributes of a stimulus, but to a person’s

reaction to it. More specifically, the P300 is thought to reflect processes involved

in stimulus evaluation or categorization. It is usually elicited using the oddball

paradigm, in which low-probability target items are mixed with high-probability

non-target (or ”standard”) items.

When recorded by electroencephalography (EEG), as a positive deflection in volt-

age with a latency (delay between stimulus and response) of roughly 250 to 500

ms. The signal is typically measured most strongly by the electrodes covering the

parietal lobe. The presence, magnitude, topography and timing of this signal are

often used as metrics of cognitive function in decision making processes. While

the neural substrates of this ERP component still remain hazy, the reproducibility

and ubiquity of this signal makes it a common choice for psychological tests in

both the clinic and laboratory.

In 1988, Farwell and Donchin developed the first P300 based BCI to select letters

from a virtual keyboard. Items are presented on a 6 by 6 matrix; rows and columns

are flashed in a random sequence, eliciting a P300 signal at 300 ms after the key

the user wants to select has been flashed.

2.1.7 Review of stimuli-driven BCI

In this section, I introduce two representative stimuli-driven BCIs. I focus on the

status of the P300-BCI first. This system has now been tested with several dozen
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ALS patients and some have been using this approach for communication at a

very extensive level. The detail deception shows in the next section.

2.1.7.1 Visual Keyboard Speller BCI

A P300− based spelling device, originally created by Farwell and Donchin in 1988

and improved by several lab groups since its inception [22], [23], has had consider-

able success in allowing these patients to communicate efficiently with others. The

underlying principle of the P300-based spelling system is the ”oddball paradig-

m”, a term used to describe a specific event related potential (ERP) that follows

presentation of rare stimuli amongst expected or predicted stimuli. This ERP

typically occurs approximately 300 milliseconds after the presentation of an unex-

pected stimulus, thus allowing a stimulus to be discerned from others. Using this

principle, characters are presented to the user of the P300-based spelling device

in a 6x6 matrix on a black screen. The characters are then highlighted in a ran-

dom, flashing sequence by row and by column, respectively (see Figure 2.6). Users

are instructed to focus attention on only one character in the matrix, the ”target

character”. This selective attention to one character is then evident due to the

presence of the ERP 300 milliseconds after the character’s corresponding row and

column were highlighted. It is therefore possible to identify the targeted character;

the character’s location is at the intersection of the row and column numbers with

the P300 ERP results. Noted successful methods of users for P300-based spelling

devices include silently counting the number of times the attended 57 character

was randomly highlighted or silently affirming that it had been highlighted at

the moment the flash occurred. The P300-based spelling device allows the user

communication via character selection and therefore enables him or her to type

without a requirement for voluntary motion. Although P300-based technology is

seen as a reliable method for communication, it has never been applied to enable

the use of an internet browser. However, for individuals already accustomed to

the P300-based spelling system, the transition to the internet could combine the

familiarity of a system they can already operate with the freedom of the world

wide web, opening many opportunities for those who are severely paralyzed.



Chapter 2. Reviews Existing Technology 19

Figure 2.6: In the P300 speller by Farwell and Donchin, items are presented
on a 6 by 6 matrix. Rows and columns are flashed in a random sequence,
eliciting a P300 signal 300 ms after the key the user wants to select has been

flashed. The figure source: http://www.bbci.de/competition/ii/



Chapter 3

Electrodes Position Optimization

In this chapter, I introduce a novel auditory BCI paradigm based on combined

sound timbre and horizontal plane spatial locations as informative cues. The pre-

sented concept is based on responses to eight–directional audio stimuli with various

tonal and environmental sound stimuli. The approach is based on a monitoring of

brain electrical activity by means of the electroencephalogram (EEG). The previ-

ously developed by the authors spatial auditory stimulus is extended to varying

in timbre sound stimuli which feature helps the subjects to attend to the targets.

The main achievement discussed in Chapter 3 is an offline BCI analysis based on

an optimization of electrode locations on the scalp and evoked response latency for

further classification results improvement. The so developed new BCI paradigm is

more user-friendly and it leads to better results comparing to previously utilized

simple tonal or steady-state stimuli.

3.1 Introduction

A concept of a spatial auditory stimulus creates a very interesting possibility to

target ”the less crucial” auditory activity. I propose to utilize spatial audio stimuli

design with a target application in a new BCI paradigms where users consciously

direct their attention to different locations in surround sound environment with

various tonal frequency stimuli [24], as depicted in Figure 3.1. Contemporary

applications limit their scope to frontal surround sound loudspeakers [12], while

our proposal includes also rear loudspeakers sound presentation allowing for eight

commands BCI applications (full octagonal surround sound loudspeakers setup).

20



Chapter 3. Electrodes Position Optimization 21

In the approach first proposed in [25] it was shown that responses in a spatial tonal

stimuli within the 7.1 channels surround sound system (subjects were positioned

in the middle of the loudspeakers systems and requested to direct attention to

single direction loudspeakers) were distinguishable in EEG for targets and non-

targets interfacing commands. The target and non-target direction sequences were

presented randomly. The current proposal extends the design to fully octagonal

loudspeakers setup with stimuli direction sequences presented also randomly.

Within this framework, the subjects are asked to focus their attention to a di-

rection of the tonal or environmental sound. The EEG responses are recorded

with an EEG amplifier. Additionally vertical and horizontal eye-movements are

recorded in order to have a reference signal indicting potential muscle activity

used later in artifacts removal algorithm. In the presented study I decided first to

process only ”artifact-free-data” (eye blinks, facial muscle and head movements,

etc. trials were discarded) in order to validate the proposed spatial auditory stim-

uli paradigm. To reduce computational complexity of the interfacing approach I

propose channel and event-related-potentials (ERP) response samples selection in

order to optimize classification results. This approach allows for EEG channels

selection optimization and ERP regions-of-interest (ROI) for target and nontarget

stimuli optimization by adaptively finding only the components carrying brain ac-

tivities maximizing the contrasts between responses when the subjects attend or

ignore the spatial stimuli. The so obtained brain activity spatial patterns clearly

follow the expectations of stronger activities in parietal and temporal cortical ar-

eas, which are known for spatial stimuli processing [26]. The chapter is organized

as follows. In the next section the experimental paradigm is described together

with EEG recording introduction and EEG preprocessing steps. Next the channel

selection and ERP response period optimization procedures for each subject are

described. Finally classification results and discussion conclude the chapter.

3.1.1 Methods

The experiments to validate the proposed spatial auditory BCI paradigm were

conducted in a Laboratory for Advanced Brain Signal Processing, RIKEN Brain

Science Institute in Wako-shi, Saitama, Japan with agreement of the institute’s

ethical committee guidelines. All experimental procedures and this study targets

were explained to the subjects who agreed to participate voluntarily by signing
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Figure 3.1: Spatial auditory BCI paradigm concept with octagonal loudspeak-
er arrangement.

consent forms. EEG signals were recorded with 64 channels active electrodes EEG

caps with BIOSEMI ActiveTwo system (see section EEG recording system). The

stimuli sounds were played through loudspeakers positioned in octagonal setting

around a head of a subject. All experiments were conducted in a silent and low

reverberation room (see figure 3.2)in order to limit an interference of ”environ-

mental noise” in this preliminary study in order to validate usability of all front-

and rear-head sound usability (in contrast to a study conducted in a noisy envi-

ronment which failed to utilize back loudspeakers for BCI application [12] - only

psychoacoustic experiment for rear-head loudspeakers succeeded there).

A diagram of stimuli and further described in this section steps of EEG processing,

electrodes positions optimization, feature extraction and final classification are

depicted in Figure 3.1.

3.1.1.1 EEG Recording System

As I mentioned above, the BIOSEMI ActiveTwo system was used for our EEG

experiment. The BioSemi ActiveTwo measurement system is designed to measure
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Figure 3.2: Spatial auditory BCI open acoustic filed.

potential differences on the human body surface. The system is successfully used to

record signals originating from the brain (electroencephalography, EEG) and the

muscles (electromyography, EMG) for research purposes. The ActiveTwo system

can be adapted to these different applications by using different versions of the

(active) electrodes. The BioSemi ActiveTwo is designed to digitize the signals from

8 up to 256 active electrodes and other sensors.

3.1.1.2 Stimulus

Two types of auditory stimuli were presented spatially to the subjects in the octag-

onal speaker system through only single speaker at a time. The first stimuli was

composed of a 400 ms long (the longer stimuli comparing to results from [12] was

chosen to create more spatial localization realistic situation) and 440Hz sinusoidal

tone with 10 ms linear raise and decay to avoid ”click-effect”. The low frequency

tone was chosen to evaluate feasibility of an inter-aural-time-delay (ITD) brain

auditory localization principle only [27]. The second stimuli was a sound of a car
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horn recorded on a noisy street and presented also in a form of 400 ms long wave-

forms with 10 ms linear raise and decay periods. This second stimuli represented

a ”broadband” acoustic waveform targeting both brain auditory mechanisms of

inter-aural-level-difference (ILD) and ITD. The sound directions were presented

in random order to avoid habituation effects.

3.1.1.3 Spatial Hearing

Localization of sounds in space is one of the processes that human brain can

do without mental effort [28]. Several studies show the ability of human to

distinguish sounds in space [29], [30], [31]. Two studies showed that when

people focus on a direction, their attentional resources appear to be distributed in a

gradient, with decreasing alterness when moving away from the attended direction

[30], [31]. I propose to utilize a concept of a horizontal two dimensional sounds

spatial sources arrangement of stimuli paradigm in order to evoke P300 response

discriminating subjec’s intentionally attended target and non-target directions. I

test the hypothesis whether the evoked in EEG ERP signals are feasible for a

future multi-command (eight commands in the proposed case) BCI application

similarly as it was developed in visual domain [32]. In order to present the spatial

auditory stimulus, I used the software Max/MSP (see Figure 3.3, 3.4 ). Max is a

visual programming language for music and multimedia developed and maintained

by San Francisco-based software company Cycling ’74.

3.1.1.4 EEG Experiment Description

EEG recording experiment for offline BCI paradigm testing were conducted with

six healthy subjects (five males and one female; age range 20 − 50 years). The

subjects were instructed to sit in a comfortable chair in center of eight octagonally

positioned loudspeakers. The elevation of the loudspeakers was fixed to the sub-

jects’ ear level. Instructions which target direction to attend was given visually on

a display located in front of them. A visual fixation cross was also presented on

that display to avoid unnecessary eye movements.
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Figure 3.3: User training interface for spatial auditory BCI experiment.

Figure 3.4: MAX/MSP path managing the spatial BCI Experiment.
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3.1.2 Analysis

The EEG analysis leading to final eight-directions-spatial auditory classification

for target and non-target locations is composed of three steps as follows:

• a EEG signal preprocessing (filtering and artifact removal);

• an informative electrodes selection and ERP’s ROI optimization for further

classification outcome maximization;

• a final classification of evoked responses within each of ten chosen ”best

channels”;

3.1.2.1 EEG Preprocessing

The recorded raw EEG 64 channel (see figure 3.5) signals with BIOSEMI ActiveT-

wo system have to be first referenced by removing mean values of all channels.

Next a notch filter is applied at 50 Hz center frequency to remove power line noise

interference. Two Butterworth 5th order low-pass and highpass filters are applied

next with cutoff frequencies at 0.5 Hz and 25Hz respectively to remove low fre-

quency and DC-shift interferences. The low–pass filtering removes possible muscle

frequency artifacts. Next the signals are segmented creating event related epochs

starting at 0 ms of the stimulus onset and ending at 500 ms after it (see Figure 3.6

). In a next step eye movement artifacts rejection is carried out. Spatial stimuli

are known to cause uncontrolled eye movements which in the current approach

are removed with a threshold value set at 80µV (signal voltage above EEG ac-

tivity level). The EEG conversion from the original BIOSEMI BDF format and

the above preprocessing steps were conducted within SPM8 package [33]. The

rejected epochs are not processed further since in current approach an emphasis is

put forward on the spatial paradigm validation. An example with artifact cleaned

and averaged epochs separately for frontal and rear loudspeakers is presented in

Figure 3.6. This confirms a feasibility to utilize all frontal and rear channels, since

in averaged ERPs those responses are clearly easy to distinguish in 300 − −500

ms time range.
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Figure 3.5: BIOSEMI system with 64 electrodes.

3.1.2.2 Electrodes and ERP Features Selection for Classification

In order to find ten electrodes from the original 64 channels recordings which for

each subject would discriminate the ERP responses for target and non-target re-

sponses, I propose to test the two measures. The first one is based on a classical

linear-discriminant-analysis (LDA) [34] classification applied to all channels sep-

arately. The best classification results set of ten channels from 64 available in a

training set would be later applied to test sets. The second proposed measure

is based on a receiver operating characteristic (ROC) [35] applied to quantify

the separability of two single-trial response distributions for each sample point of
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Figure 3.6: Results of ERP P300 response for frontal (upper panel) and rear
(lower panel) speakers confirming the feasibility of the proposed approach. The
zero stands for stimuli onsets. The blue/dashed lines depict non-target (no
P300 response after 300 ms) responses and red/solid traces visualize attended
spatial targets (obvious positive EEG response deflections after in 300 – 500 ms

range).
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ERPs (see Figure 3.6 with averaged ERP responses for targets and non-targets

suggesting that ROI there shall be chosen from around 350−500 ms). While LDA

is a standard classification method the ROC related measures are usually used to

evaluate the performance of classifiers, they can also quantify the discriminability

of feature distributions leading to classifiers optimization. The ROC curve de-

rived from perfectly mixed distributions is the diagonal line (a no–discrimination

line as presented approximately in Figure 3.7 for not chosen channel). Analysis

conducted with [36], [37]. The numbers along the major diagonal of ROC graph

represent the correct decisions made, and the numbers off this diagonal represent

the errors of the confusion between the classes. The sensitivity (also called a true

positive rate) of a classifier is calculated as:

sensitivity =
PCC

TP
, (3.1)

and the classifier specificity is as:

specificity =
TN

TP + TN
, (3.2)

where PCC stands for positives correctly classified; TP for total positives; TN for

true negatives; and FP for false positives respectively. The results of ROC analysis

for the chosen and discarded EEG channels are presented in Figure 3.7.

In order to choose channels with EEG ERP features leading to best classification

results I utilized a separability index which is calculated as an area under the

curve (AUC) between the ROC curve and the no-discrimination line (diagonal)

multiplied by two to relate it to the Wilcoxon test of ranks or the Gini coefficient

[35]. I decided to choose ten channels scoring with highest AUC for each subject

and within each experimental paradigm (440 Hz tone and car horn in the current

study). Additionally within each of the chosen channels the best discriminable two

areas were chosen taking only 50 ms regions around AUC maxima derived from 0 –

200 ms and 200 – 500 ms regions. Those two vectors of single-trial ERP subregions

formed features used in subsequent LDA classification within each channel.

Finally the EEG ERP responses were classified into targets and non-targets us-

ing two approaches to validate the proposed electrodes and ROI estimation with

ROC together with classical LDA applied to all electrodes and the P300 response
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Figure 3.7: ROC analysis results of a good channel candidate (col1: black-
/upper trace) discriminating and a ”chance level” one for not channel selection

(col2: red/lower trace).

region. For classical LDA the results are visualized in Figure 3.8, where classifi-

cation outcomes are shown for all electrodes together with the ten best electrode

candidates. For the proposed approach of ROC based channel and ERP ROI se-

lection the best electrode candidates are visualized in Figure 3.9, where the ten

best electrodes are indicated in red for each subject and condition. The detailed

results are discussed in the next section.

3.1.3 Results

The results of the proposed approach to compare target and non-target evoked

potentials have been summarized in Figures 3.10 and 3.11. In Figure 3.10 it has

been shown that the proposed approach to identify the ten best electrodes and

ERP response ROI based on ROC analysis had allowed for a gain of classification

results ranging from an increase of 8% boost at the best for subject #1 and tonal

stimuli of 440 Hz comparing to classical application of LDA analysis to P300

response area for all electrodes and the whole ERP region. In case of a car horn

stimuli, the best classification increase has been obtained also at the level of 5%
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Figure 3.8: Results of classical LDA application to binary classification of a
spatial tonal 440 Hz stimuli applied to all electrodes for a single subject in six
crossvalidation trials are visualized in the left column while the best resulting
electrodes are presented in the right column for each subject. All graphs have

the same scaling..
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Figure 3.9: Results of the proposed ROC analysis based channel selection for
all six subjects and two stimuli cases revealing the temporal and parietal scalp

regions as best candidates for spatial stimuli P300 responses identification.
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for the same subject. Figure 3.11 presents a comparison of target vs. non-target

classification results for frontal and rear loudspeaker sound directions confirming

the hypothesis of a possibility to utilize those direction modalities despite of the

known in psychoacoustics front-back-confusion effect. A variability of the results

for various subjects and conditions calls still for further research in this area which

our group will continue.

3.1.4 Conclusions

In the chapter it has been shown that in contrary to the contemporary results with

the spatial auditory BCI paradigms, which fail to utilize rear-head loudspeakers,

it is possible to achieve good results for a fully surround sound octagonal loud-

speakers setup. The developed by our approach to select the optimal ten channels

and ERP ROI intervals resulted with very good classification results for all eight

sound stimuli directions. This has been achieved for two types of 400 ms long

acoustical stimuli targeting ITD and ILD auditory spatial localization
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Figure 3.10: Percentage of correctly classified spatial audio BCI P300 re-
sponses with LDA classifiers derived from three experimental sessions for each
subject (blue/solid lines) and based on ten best electrode results (red/dotted

lines). Chance level is 50%.
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Figure 3.11: Comparison of classification responses to frontal (top panel) and
rear/back (bottom panel) loudspeakers stimuli directions for six subjects and
two stimuli conditions. The results confirm only slight subjects’ preferences to
frontal stimuli directions except of subject #6 who had better results for rear

sound directions..



Chapter 4

P300 Optimization for Spatial

aBCI

In this chapter, I propose a novel method for the extraction of discriminative

features in electroencephalography (EEG) evoked potential latency. Based on our

offline results, I present evidence indicating that a full surround (eight–directions)

sound auditory BCI paradigm has potential for an online application. The auditory

spatial BCI concept is based on chapter 3, which employs a loudspeaker array in an

octagonal horizontal plane. The stimuli presented to the subjects vary in frequency

and timbre. To capture brain responses, I utilize an eight-channel EEG system. I

propose a methodology for finding and optimizing evoked response latencies in the

P300 range in order later to classify them correctly and to elucidate the subject’s

chosen targets or ignored non-targets. Finally, I identify the subjects’ intended

commands with a naive Bayesian classifier for sorting the final responses. The

results obtained with ten subjects in offline BCI experiments support our research

hypothesis by providing higher classification results and an improved information

transfer rate compared with state–of–the–art solutions.

4.0.5 Introduction

In chapter 3, I discussed EEG electrodes selection, event-related potential (ERP)

features optimization and linear discriminative analysis classification [38]. These

earlier results were unsatisfactory as regards a successful online aBCI system ap-

plication.

36
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In this chapter, I discuss a auditory BCI paradigm based on the full surround sound

horizontal stimuli as an informative cue with the support of the P300 component at

a latency around and after the 300 ms, evoked by the expected/instructed targets

[14]. Our hypothesis is that a significant ERP response will be found when subjects

attend to the target direction and ignore the non-targets. To find the significant

differences, I propose analyzing the response statistically to identify only those

ERP latencies that contribute to the classification enhancement, in contrast to

state-of-the-art approaches [1], in which the whole response is taken as a feature

for subsequent classification.

The hypothesis of our research is that the horizontal full surround sound aB-

CI paradigm could be improved with the careful selection of ERP discriminative

features that allows the use of the rear-to-the-head sound directions. For this pur-

pose, I introduce a statistical response analysis, which ultimately leads to the final

improvement in the information transfer rate (ITR).

The chapter is organized as follows. In the next section, the experimental paradigm

is explained together with the EEG preprocessing steps. Then, I discuss EEG

feature selection using the method of statistical analysis of ERP responses. Finally,

I present classification results obtained with a Gaussian Naive Bayesian Classifier

(GNBC), which leads to an improvement in the ITR scores. The final section

summarizes the chapter.

4.0.6 Method

Within the framework of the proposed novel aBCI paradigm, the subjects were

asked to attend to and count targets while ignoring non-targets, as in the classical

oddball paradigm [1], [8] , [9],[14]. A target direction instruction regarding

which direction should be attended to in each trial was displayed visually on a

computer display located in front of the subject. First, I conducted psychophysical

experiments to check possible preferred directions of the subjects by comparing

response time delays. Next I conducted EEG recording experiments in an offline

BCI setting. The EEG signals were recorded with a g.MOBILab+ EEG amplifier

by g.tec. I used novel dry EEG electrodes g.SAHARA to further improve the

subjects’ comfort, since these do not require conductive gel. The reference and

ground electrodes were attached behind the left and right ears, respectively. To

reduce unnecessary noise and to prevent degradation of the EEG signal quality as
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a result of EMG noise related to muscular movement in the ERP responses, the

subjects were asked to minimize the blinking of their eyes, and facial and body

movements during the experiments.

EEG experiments designed to validate the proposed spatial aBCI paradigm utiliz-

ing the P300 latency were conducted in the Multimedia Lab at the Life Science

Center of TARA, University of Tsukuba, Japan. All the experimental procedures

and study targets were explained to the subjects, who agreed to participate volun-

tarily. The experiments were conducted in agreement with the WMA Declaration

of Helsinki?Ethical Principles for Medical Research Involving Human Subjects. All

the experiments were conducted in a silent and low reverberation room in order

to limit any interference from environmental acoustic noise.

The auditory stimuli were presented through eight loudspeakers in an octagonal

setting, as depicted in the upper part of the Figure 4.1. The eight sound stimuli

directions proved to be optimal from the points of view of aBCI and human subject

spatial auditory performance [12].

Two short white and pink noise stimuli bursts were used as depicted in the lower

part of the Figure 4.1 and described in the following section.

4.1 Psychophysical Experiment

In the psychophysical experiment, only the behavioral responses (button presses

after the instructed and perceived target stimuli) were recorded. Different response

time delays would suggest changing cognitive loads and task difficulties in function

of the various spatial directions. The subjects were requested to press a button

immediately after an instructed target direction was presented. The response

delays in respect of auditory stimuli onsets were recorded and further analyzed

in order to compare them with various spatial directions. The results of the

psychophysical experiment are presented in Tables 4.1 and 4.2. As a result of the

tests conducted, I conclude that all the eight spatial sound stimuli locations had

the same (differences among means statistically non-significant when compared

with pairwise t tests) values for all the tested octagonal stimulus spatial directions

for white and pink noise, which also confirms psychophysical experiments reported

in Schreuder et al. [12].
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Figure 4.1: Spatial auditory BCI paradigm concept with eight loudspeakers
in the upper part of the figure. The lower graph visualizes the stimulus presen-
tation concept in the time domain. Each stimulus is presented for 30 ms with

170-ms silent breaks, so the ISI is set to 200 ms.

4.1.1 The Offline aBCI Experiment Protocol

The experimental hypothesis was that I would be able to distinguish from the ERP

shape (mainly based on the P300 response latencies) which direction the subject

attended to in the spatial auditory paradigm experiment. To test the hypothesis, I

conducted a series of EEG recording experiments in the offline BCI mode (with no

instant feedback or classification results given to the subjects [1]). EEG record-

ing experiments were conducted with the ten healthy subjects (eight males; two

females; age range from 23 to 42 years, mean 25.8, SD 6.34). The subjects were

requested to sit in a comfortable chair in the center of eight octagonally positioned
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loudspeakers, and the dry EEG electrodes were positioned on the scalp. The ele-

vation of the loudspeakers was fixed at the subject’s ear level in order to create a

horizontal spatial plane defined by the eight loudspeakers (see Figure 4.1). The

volume of the sound was set to 72 dB.

The sound stimuli were presented in random order and one at a time from a single

loudspeaker (a single trial consisted of a delivery of a single target and seven non-

targets). I employed two broadband noise stimuli types that allowed us to utilize

the two spatial localization mechanisms of the human auditory pathway, the inter-

nal time delay (ITD) and the internal level difference (ILD) [27]. The white and

pink noise stimuli both had 30 ms lengths with 5 ms linear attack and sustain inter-

vals. For each subject and each stimulus, I performed eight sessions (altogether 64

targets and 448 non-targets were presented). Each subject was requested to focus

on the instructed target direction which was presented on a computer display. The

subject ignored the other nontarget directions. Each subject was also requested

to control her/his eye movements to decrease the unnecessary EMG noise during

the experiments. Before each experiment, the subject was allowed a short practice

session to get familiar with the spatial auditory stimulus conditions.

4.1.2 EEG Acquisition

The EEG signals were recorded by the g.MOBILab+ bio–amplifier with eight dry

g.SAHARA electrodes. The EEG recording system captured the neurophysiological

signals in a frequency range of 0.1–40.0 Hz. The following eight EEG electrode

positions were chosen P3, P4, P5, P6, Cz, CPz, Pz, and POz (see figure 4.2),

as in the 10/10 system [39]. The eight EEG channels were sampled with 256 Hz

frequency and stored using a custom application programmed in MATLAB and

Simulink environments.

4.1.3 EEG Response Analysis

The analysis of EEG ERP responses, leading to the final eight-direction spatial

auditory classification for target and non-target locations, was composed of the

following three steps:
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Figure 4.2: Eight electrodes on the scalp location (see the blue shadow)

• EEG signals preprocessing: band-pass filtering, epoch egmentation, and ar-

tifact rejection;

• Discriminative feature extraction using the analysis of variance (ANOVA)

method;

• The final classification of evoked response using the GNBC.

I describe the above steps in detail in the following sections.
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4.1.3.1 EEG Preprocessing

First, I filtered digitally the signals with the two fifthorder Butterworth high- and

low-pass filters, which were applied with cut-off frequencies at 0.5 and 25 Hz. The

lowpass filtering removed possible muscle-activity-related artifacts. The high-pass

filtering removed the direct current-related drifts of the EEG signals, as well as

slow eye movement artifacts.

Next, the EEG signals were segmented creating the ERP-related epochs. Each

epoch started 100 ms before stimulus onset and it ended after 700 ms. I used

the 100 ms prestimuli onset interval as the baseline (see Figure 4.3). In the next

step, the rejection of eye movement artifacts was carried out. Auditory spatial

stimuli are known to cause uncontrolled eye movements in subjects [40], which

in the current approach were removed with a threshold value set at the 80µV

(signal amplitude level above the usual EEG activity). The rejected epochs were

not further processed, since in the current approach, the emphasis was on the

spatial paradigm validation. In the following sections, feature extraction and ERP

classification results are introduced.

4.1.3.2 ERP Feature Extraction Using ANOVA of the ERP Latencies

The aim here was to optimize the EEG response domain (mainly P300 response),

which would provide a better separability for further classification. In order to do

this, I conducted ANOVA of the two-class single-trial ERP distributions (target

vs. non-target responses) in the spatial auditory experimental setting. The ERP

response distributions passed ”normality tests” and were comparable to more flex-

ible methods such as the area under the curve analysis, yet the proposed ANOVA

yielded the best results in our case. The majority of spatial aBCI applications

aim at the P300 response latency [38], [41], [42], [43]. The example in Figure

4.1 shows the averaged ERP responses to targets and non-targets (note the la-

tencies range 300− 600 ms). Next, the ANOVA method was applied to compare

the differences of response distributions in single trials for each sample point of

the collected ERPs. As a result, I were able to extract discriminative information

leading to later classification optimization. The results of the above analysis are

depicted in Figure 4.4 and 4.5. The bottom panels in the above figures visu-

alize the ANOVA’s p values for eight electrodes separately in each row using a
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Figure 4.3: Spatial auditory BCI paradigm concept with eight loudspeakers
in the upper part of the figure. The lower graph visualizes the stimulus presen-
tation concept in the time domain. Each stimulus is presented for 30 ms with

170-ms silent breaks, so the ISI is set to 200 ms.
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color scheme, as explained in the color bars next to the panels. The p values

are the probabilities of the null hypotheses that the distributions are significantly

different (in life sciences, usually p < 0.05 is considered to be a significant value).

The results in Figure 4.4 and 4.5 clearly show that the postulated P300 latency

area in the range 300 − 600 ms is the best to discriminate attended targets from

ignored non-targets. This finding confirms our hypothesis that the P300 latencies

are also related to spatial cognition in the human brain. Next in this chapter,

the binary classification problem is discussed. I evaluate our hypothesis that the

”handpicked” P300 latency ERP periods are significant features to improve the

binary target vs. non-target classification accuracy. In order to find the most

discriminable features from ERP responses, I used the results from the ANOVA

method described above applied to the all ERP latencies. I ”hand-picked” only

those samples within each subject’s ERPs for which the p values were smaller than

0.05 (as depicted in blue in Figure 4.4 and 4.5) in the range 300− 600 ms.

4.1.3.3 The Offline ERP Classification in the aBCI Paradigm

I performed the classification steps for each subject separately in aBCI offline

mode, which means that all the procedures were conducted after the collection

of data from each experiment, without any online feedback to the subjects. The

classification procedure in our case is a so-called binary task paradigm (target vs.

non-target). In the classifier training and testing step, I selected 64 targets and

a random subset of 64 non-targets (from the 448 available) to have a balanced

number of the members in each class set. The resulting theoretical chance level

was thus 50 %. Based on our previous classification trails reported in Cai et

al. [38], [44], I proposed to use a Bayesian classifier, which yielded similar or

even better results on our experimental data than linear discrimination analysis

methods. The GNBC is particularly suited to highly dimensional features. The

GNBC method produced results comparable to more sophisticated classification

methods [45] for particular cases as reported in this chapter. In our approach, I

utilized a NaN-Toolbox which is a part of a BioSig environment [46]. The classifier

input features were the real micro-volt EEG ERP latency values ”hand-picked” as

discussed in the previous section. The results of the successful application of the

GNBC technique are presented in the next section.
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Figure 4.4: Grand mean average auditory evoked responses to spatial white
noise stimuli of the ten subjects from the eight electrodes plotted separately in
each row of the panels. The top panel shows the grand mean averaged response
to the targets. The middle panel presents the grand mean averaged responses
to non-targets. The bottom panel depicts the p values from the ANOVA for the

eight electrodes separately
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Figure 4.5: Grand mean average auditory evoked responses to spatial pink
noise stimuli of the ten subjects from the eight electrodes plotted separately in
each row of the panels. The top panel shows the grand mean averaged response
to the targets. The middle panel presents the grand mean averaged responses
to non-targets. The bottom panel depicts the p values from the ANOVA for the

eight electrodes separately
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4.2 Results

The proposed approach resulted in the improvement in the aBCI paradigm for

setting of both the combined and averaged electrodes for each subject separately.

Detailed results are presented in the following sections. First, I introduce the

ITR, which is a commonly used measure to compare various paradigms in the

BCI research community [12]. I also present classification accuracy results.

4.2.1 Analysis of aBCI Results with ITR and Classification

Accuracies.

The amount of information carried by each selection in the BCI application is

usually quantified by the ITR, which is calculated based on bits-per-selection R,

defined as [43]:

R = log2N + C · log2C + (1− C) · log2

(
1− C
N − 1

)
, (4.1)

where C is the classification accuracy and N is the number of classes (N = 8 in

this chapter). The final ITR is obtained after a multiplication by a classification

speed V , resulting in a bit–per–minute rate [bit/min] as:

ITR = V ·R (4.2)

The ITR results are summarized in Tables 4.3 and 4.5 and discussed in detail in

the following sections. The GNBC classification accuracies are also summarized

in Tables 4.4 and 4.6.

4.2.2 The ITR and Classification Accuracy Results from

the P300 ERP Range Latencies in the Single Channel

Setting of Target versus Non-target

A summary of the ITR results is presented in Table 4.3 (the corresponding classi-

fication accuracy is summarized in Table 4.4). I compare the ITR values obtained
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for the features drawn from the conventional whole-ERP and the proposed “hand–

picked” features resulting from the ANOVA. The proposed method allows us to

boost the classification results up to +10.43 bit/min (+44% classification accura-

cy). Only a single case shows a decrease using the leave–one–out cross-validation

for the GNBC technique.

4.2.3 The ITR Results from the P300 ERP Range Laten-

cies from the Averaged Eight Trials in the Setting of

Target versus Non–target

The single trial classification results discussed in the previous sections have resulted

mostly in lower than 14 bit/min (below 70% accuracy) in the aBCI offline mode. In

order to improve the results, for each subject and each stimuli, I averaged the eight

target trails (convert 64 targets to 8 targets) and 8 non − target trials (convert

448 non− targets to 56 non− targets). In the classifier training and testing steps,

I selected 8 targets and a random subset of 8 non−targets (from the 56 available),

the same as the single trial classification training and testing set. For each of the

subjects in the case of the pink noise stimulus, the classification resulted in scores

higher than 8 bit/min (80% accuracy). Especially for the subjects numbers 1 and

2, the resulting ITR reached 14.06 bit/min (100% accuracy). The summary of

the results is presented in Tables 4.5 and 4.6 for ITR and classification accuracies

respectively. The comparison presented of the ITR and accuracy values obtained

for the features drawn from the conventional whole-ERP and the proposed “hand–

picked” features, resulting from the ANOVA, supports the improvement of the

proposed method. The method proposed allows us to increase the classification

results (only a single case of a decrease was reported) using the leave–one–out

cross-validation for the GNBC technique. An online aBCI application is planned

as a next stage by the authors.

4.3 Discussion and Conclusions

In this chapter I have presented an approach leading to the improvement of clas-

sification accuracies and ITRs in a novel offline aBCI paradigm. This has been



Chapter 4. P300 Optimization for Spatial aBCI 49

achieved by introducing ERP feature extraction in P300 range latencies to replace

the classical whole evoked response range approaches.

The proposed improvement method allows the extraction of the most separable

ERP features, enabling an increase in the classification accuracy and an improve-

ment ITR of a maximum of +35.30 bit/min (22% accuracy) in the case of features

drawn for single electrode ERP distributions. In the case of the features obtained

from the eight trials averaged ERP responses, the majority of subjects also im-

proved their results with a maximum increase of 10.43 bit/min (44% in accuracy).

These are the very encouraging results, providing the possibility further to improve

the auditory paradigm based BCI.

The main achievement reported in the chapter allows us to improve the spatial

aBCI paradigm in the offline mode, which is a step forward in non-vision based

interfacing strategies. I have also shown that, in comparison with contemporary

applications of spatial auditory BCI paradigms which fail to utilize rear–to–the–

head loudspeakers, it is possible to utilize all spatial horizontal sound directions

thanks to the proposed classification improvement approach based on the “hand–

picked” ERP latencies.
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Table 4.1: The spatial sound psychophysical experiment results. The response time
delays and instructed directions accuracies are presented in the form of mean values with

standard deviations (STD) respectively.

Pink noise stimulus
front- front- rear- rear- front rear left right
left right left right

Delay time [ms] 455 474 447 490 450 464 466 462
STD of time delay [ms] 63 76 42 75 59 76 73 65

Accuracy [%] 100 100 72 72 94 78 94 83
STD of accuracy [%] 0 0 33 25 14 27 14 28

White noise stimulus
front- front- rear- rear- front rear left right
left right left right

Delay time [ms] 439 458 448 478 445 489 450 477
STD of time delay [ms] 63 48 65 52 68 59 56 55

Accuracy [%] 100 94 83 83 94 94 94 89
STD of accuracy [%] 0 0 33 25 14 27 14 28

Table 4.2: The confusion matrix results from the psychophysical experiment
averaged for all the subjects for pink– and white–noise stimulus respectively.

Confusion matrix in psychophysical tests using pink–noise stimulus
front- front- rear- rear- front rear left right

accuracy [%] left right left right
front-left 100 0 0 0 0 0 0 0

front-right 0 100 0 0 0 0 0 0
rear-left 6 6 72 5 0 0 5 0

rear-right 5 0 6 72 0 6 0 6
front 0 0 5 0 78 11 0 6
rear 0 0 5 0 6 78 0 6
left 0 0 6 0 0 0 94 0

right 0 0 0 6 0 11 0 83
Confusion matrix in psychophysical tests using white–noise stimulus

confusion matrix front- front- rear- rear- front rear left right
accuracy [%] left right left right

front-left 100 0 0 0 0 0 0 0
front-right 0 94 0 6 0 0 0 0
rear-left 0 0 83 5 0 0 0 6

rear-right 0 6 0 83 5 0 0 6
front 0 0 0 6 94 0 0 0
rear 0 0 6 0 0 94 0 0
left 0 0 0 6 0 0 94 0

right 0 0 0 6 0 11 0 83
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Table 4.3: The offline aBCI interfacing results based on features drawn
from non–averaged trials in the form of ITR scores obtained as in equa-
tions (4.1) and (4.2). I compare the traditional all ERP and the proposed

“hand–picked” only latencies.

Noise Conventional Proposed
Subject stimulus “all ERP” “hand–picked” Improvement

type [bit/min] [bit/min] [bit/min]

#1
pink 49.39 54.13 +4.74
white 37.90 57.42 +19.52

#2
pink 42.03 49.39 +7.36
white 27.90 44.90 +17

#3
pink 35.26 39.25 +3.99
white 32.72 42.03 +9.31

#4
pink 27.90 40.63 +12.73
white 19.30 29.07 +9.77

#5
pink 47.86 66.19 +18.33
white 47.86 57.42 +9.56

#6
pink 49.39 46.37 −3.02
white 36.57 71.87 +35.30

#7
pink 46.37 54.13 +7.76
white 47.86 57.42 +9.56

#8
pink 49.39 68.05 +18.66
white 42.03 43.45 +1.42

#9
pink 50.94 50.94 0
white 54.13 75.85 +21.72

#10
pink 39.25 37.90 −1.35
white 44.90 49.39 +4.49
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Table 4.4: The classification results for ERP latencies in P300
responses for target vs. non–target paradigm. The classification
results of two feature sets (allERP responses and P300 respons-
es) are compared. The classification improvement comparing the
conventional all ERP latency with the proposed P300 response) is

summarized in the right column.

noise Conventional Proposed
subject stimulus ”allERP” P300 Improvement

type [%] [%] [%]

#1
pink 71 74 +3
white 63 76 +13

#2
pink 66 71 +5
white 55 68 +13

#3
pink 61 64 +3
white 59 66 +7

#4
pink 55 65 +10
white 47 56 +9

#5
pink 70 81 +11
white 70 76 +6

#6
pink 71 69 −2
white 62 84 +22

#7
pink 69 74 +5
white 70 76 +6

#8
pink 71 82 +11
white 66 67 +1

#9
pink 72 72 0
white 74 86 +12

#10
pink 64 63 −1
white 68 71 +3
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Table 4.5: The offline aBCI interfacing results based on features drawn
from the averaged eight trials in the form of ITR scores obtained as in
equations (4.1) and (4.2). I compare the traditional whole–ERP and the

proposed “hand–picked” only latencies.

Noise Conventional Proposed
Subject stimulus “all ERP” “hand–picked” Improvement

type [bit/min] [bit/min] [bit/min]

#1
pink 8.27 14.06 +5.79
white 3.63 6.97 +3.34

#2
pink 6.97 14.06 +7.09
white 4.74 8.27 +3.53

#3
pink 5.80 10.00 +4.20
white 5.80 5.80 0

#4
pink 4.74 10.00 +5.26
white 2.80 4.74 +1.94

#5
pink 5.80 8.27 +2.47
white 10.00 11.74 +1.74

#6
pink 6.97 10.00 +3.03
white 5.80 10.00 +4.20

#7
pink 3.63 14.06 +10.43
white 6.97 8.27 +1.30

#8
pink 6.97 10.00 +3.03
white 4.74 11.74 +7.00

#9
pink 5.8 11.74 +5.94
white 6.97 11.74 +4.77

#10
pink 6.97 10.00 +3.03
white 6.97 11.74 +4.77
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Table 4.6: The classification results for ERP latencies in P300
responses for the mean of 8 targets vs. average of 8 non–targets
paradigm. The classification results for two feature sets (allERP
responses and P300 responses) are compared. The classification
improvement comparing the conventional all ERP latency with the

proposed P300 response) is summarized in the right column.

noise Conventional Proposed
subject stimulus ”allERP” P300 Improvement

type [%] [%] [%]

#1
pink 81 100 +19
white 56 75 +19

#2
pink 75 100 +25
white 63 81 +18

#3
pink 69 88 +19
white 69 69 0

#4
pink 63 88 +25
white 50 63 +13

#5
pink 69 81 +12
white 88 94 +6

#6
pink 75 88 +13
white 69 88 +19

#7
pink 56 100 +44
white 75 81 +6

#8
pink 75 88 +13
white 63 94 +31

#9
pink 69 94 +25
white 75 94 +19

#10
pink 75 88 +13
white 75 94 +19



Chapter 5

Utilization of N200 and P300 for

Spatial aBCI Enhancement

Chapter 5 presents our results obtained with a new auditory spatial localization

based BCI paradigm in which the ERP shape differences at early latencies are

employed to enhance the P300 responses in an oddball experimental setting. The

concept relies on the recent results in auditory neuroscience showing a possibility

to differentiate early anterior contralateral responses to attended spatial sources.

Chapter 4 BCI paradigms benefit mostly from the P300 ERP latencies. I show the

further enhancement of the classification results in spatial auditory paradigms by

incorporating the N200 latencies, which differentiate the brain responses to lateral,

in relation to the subject head, sound locations in the auditory space. The results

reveal that those early spatial auditory ERPs boost online classification results of

the BCI application. The online BCI experiments with the multi–command BCI

prototype support our research hypothesis could improve classification accuracies

and information–transfer–rates.

5.1 Introduction

In chapter 4, I am based on P300 responses to distinguish targets and non-

targets from series of event related potential (ERP) responses [47]. Recently

a new result [48] was published elucidating the ”N200-anterior-contralateral”

(N2ac) component at the early latency (around 200ms) of an auditory ERP. The

N2ac was obtained in an experiment using two 750 ms long sound stimuli which

55
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were presented simultaneously from a different loudspeaker each. Subjects were

requested to attended to the instructed target sound that could occur from any

loudspeaker.

In this chapter, I designed a new saBCI experimental paradigm based on the

auditory spatial localization principle as the informative cues with support of

the N2ac component elicited in the new setup as depicted in Figure 5.1. Our

hypothesis is that the new ERP component shall improve the classification results

and the final information transfer rate (ITR) leading to a better BCI usage comfort.

Figure 5.1: The novel N2apc paradigm based on spatial sound stimuli.

Within the novel saBCI paradigm framework, the subjects are asked, as in usu-

al oddball paradigm, to attend and count the target stimuli from the instructed
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or intended direction, while ignoring the other. The EEG signals are recorded

with g.MOBIlab+ EEG amplifier by g.tec. As I introduced in chapter 4, the dry

g.SAHARA electrodes by the same producer which further improve the interfacing

comfort, since there is no need to apply a conductive gel. In order to decrease the

unnecessary and signal quality degrading muscular movement related electromyo-

graphy (EMG) noise on ERP responses, the subjects are asked to minimize their

eye, facial and body in general movements during the experiments. In our previ-

ous study [38] (the detail are describe in chapter 3), I proposed a channel and

ERPlatency selection in order to improve the classification results. Moreover our

previous study [47] (see chapter 4) ,the P300 response (so called ”aha response”

at the latency around 300 ms elicited to the expected/instructed target stimu-

lus [14]) was the major feature used for the classification of the attended targets

of the oddball paradigm. In this chapter, I introduce the early latencies around

200 ms (N200 response) which precede the P300. They shall improve the final

classification rates of the saBCI application.

The objective of this chapter is to test and confirm our working hypothesis that

the auditory evoked response based on N2ac paradigm should improve the saBCI

application classification rates based on the new lateral to the subject head stimuli

responses analysis.

From now on the chapter is organized as follows. In the next section the ex-

perimental setup and the novel paradigm is described together with EEG signals

pre-processing steps. Next the analysis and optimization procedures of the ERPs

at N200 and P300 response latencies for all experimental subjects are described.

Finally classification and ITR results discussion conclude the chapter together

with future research directions.

5.2 Method

The EEG experiments to validate the proposed spatial auditory BCI paradigm u-

tilizing the N200 and P300 latency responses have been conducted in Multimedia

Laboratory in TARA Life Science Center at the University of Tsukuba, Tsuku-

ba, Japan. All the experimental procedure details and this approach research

targets have been explained to the seven human subjects who agreed voluntarily

to attend. The experimental procedures are designed in accordance with ethical
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committee guidelines of this chapter author affiliated institutions. The EEG sig-

nals are recorded by the g.USBamp EEG amplifier with the six dry g.SAHARA

electrodes. The sampling frequency is set to 256 Hz with a notch filter to reject

the 50Hz power line noise.

The auditory stimuli has been presented through six loudspeakers distributed with

an equal radius of 1 meter around the subject’s head as depicted in Figure 5.1.

Three speakers with equal distances are positioned at each lateral side to the head.

Two short white and pinknoise stimulus bursts are used as described in the follow-

ing section. All the experiments are conducted in a silent and low reverberation

room in order to limit an interference of ”an environmental noise”.

5.2.1 The Offine saBCI Experimental Protocol

The experimental hypothesis is that I shall be able to distinguish from the ER-

P shape which direction (left or right) the subject attends based on the novel

N2ac response analysis method. To test the hypothesis I conduct a series of EEG

recording experiments in the offine BCI mode [1] (no instant feedback or clas-

sification results given to the subject). The experiments are performed with the

seven healthy subjects (six males and one female; age range 21 − −42 with the

mean of 26.4 years old). The experimental procedure has been explained in detail

to each subject and her/his consent has been obtained. The subject is seated in

the center of the experimental studio and the dry EEG electrodes are attached on

the scalp. The subject’s chair position is surrounded by the six loudspeakers. The

elevation of the loudspeakers is fixed to the subject’s ear level. A computer display

with experimental instruction is set in front of the subject. The six loudspeakers

are distributed on a circle with the three loudspeakers (1; 3; 5) positioned on the

left side with 45 degrees angular distance. The remaining three loudspeakers (2; 4;

6) are located on the right side with the same angular distances (see Figure 5.1).

The sound stimulus is presented in random order one at a time from a single loud-

speaker (a single trial consists of a delivery of a single target and five non-targets).

As mention in chapter 4, I use two broadband noise stimulus types in order to

utilize two spatial localization mechanism of the human auditory pathway (the

inter-aural time and level differences - ITD/ILD) [27]. The white and pinknoise

stimuli of 30 ms lengths with 5 ms linear attack and sustain periods has been

chosen. The SOA is set to 300 ms. The single session consists of the six single
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trials (6 targets from each direction accompanied by 30 non-targets). The target

direction in each trial is presented randomly together with five non-targets. For

each subject and each stimuli I perform 15 sessions (all together 90 targets and

450 non-targets are delivered). The target direction instruction is presented visu-

ally on a computer display and auditory from the same loudspeaker which subject

shall latter attend to. Before each experiment the subjects are allowed for a short

practice session to familiarize themselves with spatial auditory conditions.

5.2.1.1 The Analysis of ERP Responses in Offine BCI Paradigm

In many current auditory BCI applications the focus is put on a binary classifica-

tion of brain evoked responses to targets versus non-targets [12], [38], [41], [42].

The majority of the contemporary BCI applications aim at the P300 response

latency without consideration of the remaining ERP ranges [47] (see chapter 4).

Only a single of recently published papers mentions the N200 latency range as

possibly useful to support classification [41], but there is no comparison made

so far with P300 only related results, what I attempt in this chapter. I compare

and discuss the N200 response suitability and I show that it really improves the

classification results.

Basically a concept of adding the early latency N2ac response is based on our

previous [38], [47] research and the recently published by other groups [48]

concept of this ERP range modulation by ipsilateral vs. contralateral stimulus

spatial locations. The ipsilateral N2ac response has higher amplitude comparing to

the contralateral one. This difference confirms a feasibility to utilize the earlyN200

response latency to improve the target vs. nontarget classifications outcomes.

In order to precisely analyze an impact of the early ERP reposes on the saB-

CI paradigm classification I propose to conduct two separate analyses that shall

compare how much the improvement depends only on the N200 response feature

addition, and how much on the new feature composition based on the comparison

of the ipsilateral and contralateral responses as in N2ac design.

5.2.2 EEG Preprocessing

In chapter 3 and 4, I described the EEG preprocessing part. The same processing

as chapter 3 and 4. The EEG signals captured by the g.MOBIlab+ system
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with g.SAHARA dry electrodes are first filtered digitally with the two 5thorder

Butterworth high– and low–pass filters with cutoff frequencies at 0.5 Hz and 25

Hz, respectively. Next the EEG signals are segmented creating the ERP related

epochs. Each epoch starts 100 ms before each stimuli onset and ends 700 ms after

it. I use the 100 ms prestimuli onset interval for a baseline correction procedures.

In the next step the eye movement artifacts rejection is carried out. Auditory

spatial stimuli are known to cause in subjects the uncontrolled eye movements

[40] which in the current approach are removed with a threshold value set at 80µV

(signal amplitude level above the usual EEG activity). The rejected epochs are

not further processed, since in the current approach an emphasis is focused on the

spatial paradigm validation.

5.2.3 The Optimization of the EEG Electrode Locations

and ERP Features Extraction

In the previously reported research on N2ac phenomenon [48] the anterior cluster

of electrodes sites F3, F7, C3, T7, F4, F8, C4, and T8 was used, as in 10/20–

international system [39]. In our experimental setup, I select the F5, F6, C3, C4,

P5, and P6 electrodes (see figure 5.2) in order to have additional responses from

parietal cortices known to generate ERPs related to spatial and P300 respons-

es [14]. Additionally I show that the P5 and P6 sites are also useful to differ-

entiate the responses to lateral stimuli similarly as for left–right only comparison

revealed by N2ac. I call the new finding the N2apc (N200–anterior–posterior–

contralateral) as extension of the former one.

An example in Figure 5.3 shows the averaged and artifact–removed classical N2ac

responses to ipsilateral and contralateral sound stimuli as confirmed by our ex-

periments. The presented N200 area responses are elucidated for ipsilateral and

contralateral targets.

In order to validate statistically the differences between target and non–target re-

sponses I conduct the t–test analysis of the two class ERP means [49] in ipsilateral

vs. contralateral experimental setting. The t–test method is applied to compare

the differences of response distributions in single trials for each sample point of the

collected ERPs. As the result I can extract discriminative information (in N200

and P300 latencies) leading to later classification optimization. The results of the
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Figure 5.2: Six electrodes for testing N2ac on the scalp location (see blue
shadow)

above analysis are depicted in Figure 5.4. A color bar located on a time scale

in the above figure visualizes the t–test’s p value results, which is a probability

of the null hypothesis rejections that the means from the both compared distri-

butions are significantly different (usually p < 0.05 in life sciences is considered

as the significant value). The color bar in the Figure 5.4 clearly shows that the

postulated N2apc differential response for lateral responses is located in the range

from 100 ms to 300 ms, similarly to the previously published N2ac one. This find-

ing confirms our hypothesis, that the early N200–range latencies are related to

spatial localization processes in the human brain and that the parietal electrodes
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Figure 5.3: The grand mean averaged ERP responses of the seven subjects.
The solid lines depict targets and the dashed ones non-targets. The red color
indicates ipsilateral and blue one the contralateral responses. The differences
between targets and non-targets are obvious after 300 ms (the so called ”aha”
or P300 response), while the lateral directions can be identified in N200 latency

area.
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contribute also to the result.

Figure 5.4: The grand mean averaged ERP for the all seven subjects and
all electrodes calculated together, while plotted separately for target (solid red
line) and non–target (dashed blue line) responses. The significant differences
between the both responses can be found, as visualized by the color bar with
p–values of t–test results (statistical significance for p < 0.05) in the bottom
part in the above panel, can be found around 200 ms (N200 response latency)

and after 300 ms (P300 response latency).

In this chapter two types of binary classification problems are discussed. First I

evaluate our first hypothesis that adding the early latency ERP periods as features

improves the binary target vs. non-target classification. Next I also show that

the novel N2apc response further enhances the results using the ipsilateral vs.

contralateral response comparison.
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In order to find the most discriminable features from ERP responses I use the

results of the above described t–tests evaluating statistical significance of them.

I “hand pick” only those samples within each subject’s ERPs for which the p–

values are smaller than 0.05 as depicted by blue shades of the color bar at the

bottom of the Figure 5.4. The significantly different ERP samples of N2apc based

experiments (I relax here the condition to p < 0.10 only) are depicted in Figures 5.5

and 5.6 for pink– and white–noise stimuli respectively. In the next section I show

that the relaxed condition of t–test’s p < 0.10 improves already satisfactory the

saBCI classification results by incorporating the N200 latency responses.

5.2.4 The Offline saBCI Classification

I perform the classification steps for each subject separately in saBCI offline mode,

which means that all procedures are conducted after each experiment of data

collection, without any online feedback to subjects. The classification procedure

is performed in a so called binary task paradigm (I classify target vs. non–target,

or contralateral vs. ipsilateral response pairs each time only).

In each classifier training and testing step I select 90 targets and a random subset

of 90 non-targets (from the 450 available) to have the balanced number of the

members in each class set. The resulting chance level is 50%. For the case of the

contralateral vs. ipsilateral responses classification I select 30 contralateral and 30

ipsilateral events.

Based on our previous classification trials reported in [38] I decide to use a Baysian

classifier, which outperforms the linear discrimination analysis methods. The

naive-Bayses classifier (NBC) is particularly suited for the highly dimensional

features. Despite its simplicity, the NBC approach often outperforms more so-

phisticated classification methods [34]. The NBC application assigns an unknown

sample (ERP features in our case) x = [x1, x2, . . . , xl]
T based on probability max-

imization to the class

ωm = arg max
ωi

l∏
j=1

p(xj|ωi), i = 1, 2, . . . ,M, (5.1)
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Figure 5.5: ERP to pink noise stimuli grand mean averages for all subjects
and the six electrodes plotted separately in each panel. The solid red lines
represent the ipsilateral to target responses and the dashed blue lines to the
contralateral ones. The color bars at the bottom of each panel show the t-test

resulting p−values.
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Figure 5.6: ERP to white noise stimuli grand mean averages for all subjects
and the six electrodes plotted separately in each panel. The solid red lines
represent the ipsilateral to target responses and the dashed blue lines to the
contralateral ones. The color bars at the bottom of each panel show the t-test

resulting p− values.
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with an assumption that the individual features xj, j = 1, 2, . . . , l, shall be statisti-

cally independent. It turns out that the NBC can be very robust also to violations

of the independence assumption [34].

Consider the vector x with features according to the values of the ERP “hand

picked” samples. The respective conditional probabilities shall be P (xi|ω1) = pi

and P (xi|ω2) = qi, in our binary classification case comparing targets vs. non-

targets or ipsilateral vs. contralateral responses. In Bayesian rule, given the value

of x the class membership is decided according to the probabilities likelihood ratio

P (ω1)P (x|ω1)

P (ω2)P (x|ω2)
> (<)1. (5.2)

The adoption of features independence principle allows us to limit a number of

necessary training samples and I can write

P (x|ω1) =
l∏

i=1

pxi
i (1− pi)1−xi (5.3)

P (x|ω2) =
l∏

i=1

qxi
i (1− qi)1−xi (5.4)

Now an application of a logarithm function to the both sides of the equation (5.2)

results with a linear discriminant function as

h(x) =
l∑

i=1

(
xi ln

pi
qi

+ (1− xi) ln
1− pi
1− qi

)
(5.5)

+ ln
P (ω1)

P (ω2)
,

which could be brought to the linear form of

h(x) = wTx + w0, (5.6)

based on the following substitutions

w =

[
ln
p1(1− q1)
q1(1− p1)

, . . . , ln
pl(1− ql)
ql(1− pl)

]T
w0 =

l∑
i=1

ln
1− pi
1− qi

+ ln
P (ω1)

P (ω2)
.
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The results of NBC technique successful application are presented in the next

section.

5.3 Results

As the result of the presented research have obtained the results showing that

for the both experimental settings of saBCI offline paradigm the classical P300

latency could be improved with the pureN200 or the more complexN2apc features

identified with p–values calculated using the classical t–test for significance. I

summarize below the obtained results.

5.3.1 The Classification Results from the Combined N200

and P300 ERP Latencies in the Classical target vs.

non–target Setting

The first summary of classification results is presented in Table 6.1, where clas-

sification accuracies for the features drawn from N200, P300 and the combined

latencies are shown. The majority of the subjects performed already above the

chance level of 50% (except subject MA for the pink noise case) for single feature

latencies of N200 or P300. The proposed combination of the two “hand–picked”

feature sets using the t–test significant ERP samples allowed us to boost the clas-

sification results up to 7% (only a single case of the accuracy decrease has been

reported) using the leave–one–out cross validation [34] for the NBC technique.

5.3.2 The Classification Results from the new N2apc ERP

Feature in the Ipsilateral vs. Contralateral Settings

The results of the proposed approach to compare ipsilateral and contralateral

to target evoked potentials have been summarized in the Table 6.2, based on

the ERP features drawn from results of the t-test analysis as summarized in the

Figures 5.5 and 5.6. The classification accuracy results have been 17% boosted in

the best case, with the same method of the NBC leave–one–out cross validation.
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5.3.3 Analysis of Information Transfer Rate Improvement

Results

The amount of information carried by every selection in the BCI application is

usually quantified by the ITR which is calculated based on bits–per–selection R,

defined as in [43]. The detail description of ITR is presented in chapter 4. The

ITR results are summarized in Tables 5.3 and 5.4. For the both cases of the

N200/P300 combination and the N2apc paradigm, there is a significant increase

of ITR for the majority of subjects.

5.4 Conclusions

In this chapter I presented two approaches leading to improvements of classification

accuracy and ITR in offline saBCI paradigm by introducing the novel ERP feature

extraction in combined N200/P300 latencies and in the new N2apc setting which

compares responses of lateral, to the head, sound sources.

The first improvement analysis resulted in a comparison of classification rates for

the three ERP feature sets of N200 and P300 latencies processed separately, versus

the combined N200/P300. The latter combination resulted in a steady increase in

classification accuracy for the majority of subjects up to 7% at maximum. Addi-

tionally the ITR improvement in this case was reported at maximum of 7bit/min.

This is a very good result giving a possibility to further improve the auditory

paradigm based BCI.

The second improvement step is based on the proposed extension of N2ac concept.

I added a comparison of parietal electrodes responses allowing for the new feature

creation from such ERP comparisons. The new ERP component was namedN2apc

since it combines anterior and posterior contralateral response differences. The

obtained classification and ITR improvement was also very encouraging.

The two main achievements reported in the chapter allowed us to improve the

novel saBCI paradigm in offline mode which is a step forward in the non–vision

based interfacing strategies. The obtained results reveal that not only the cortical

auditory information processing centers related to the cognitive streams could be

utilized to BCI purposes. Also the differences in ERPs at early latencies before



Chapter 5. Utilization N200 and P300 for Spatial aBCI Enhancement 70

300 ms are useful and they guarantee good classification results and ITRs. These

results reveal that the very early spatial auditory ERPs are potentially interesting

for faster BCI applications.
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Table 5.1: The classification results for ERP latencies in N200 and
P300 responses for target vs. non–target paradigm. The three fea-
ture sets (N200, P300 and N200/P300 latencies combined) classifica-
tion results are compared. The classification improvement comparing
the classical P300 latency only with the proposed combination of

N200/P300) is summarized in the right column.

noise N200 P300 N200/P300 N200/P300
subject stimulus only only combined vs. P300

type [%] [%] [%] [%]

#1
pink 63 63 64 1
white 54 59 60 1

#2
pink 52 54 56 2
white 56 69 68 −1

#3
pink 53 57 57 0
white 57 57 58 1

#4
pink 60 69 69 0
white 55 58 65 7

#5
pink 65 65 67 2
white 46 40 44 4

#6
pink 54 59 59 0
white 53 52 53 1

#7
pink 64 61 66 5
white 53 61 63 2

Table 5.2: The classification results for the proposed method us-
ing N2apc response to support the saBCI compared with the con-

ventional method.

noise conventional N2apc the
subject stimulus method paradigm improvement

type [%] [%] [%]

#1
pink 56 61 5
white 51 63 12

#2
pink 52 61 9
white 63 67 4

#3
pink 58 58 0
white 47 54 7

#4
pink 37 54 17
white 49 50 1

#5
pink 49 54 5
white 50 56 6

#6
pink 32 48 16
white 48 50 2

#7
pink 72 68 −4
white 58 69 11
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Table 5.3: The ITR for the three ERP interval related classification ap-
proaches using N200 or P300 only, and the combined N200/P300 together.

noise N200 P300 N200/P300 N200/P300
subject stimulus only only combined vs. P300

type [bit/min] [bit/min] [bit/min] [bit/min]

#1
pink 25.84 25.84 26.88 1.04
white 17.38 21.88 22.84 0.96

#2
pink 15.72 17.38 19.12 1.74
white 19.12 32.40 31.25 −1.15

#3
pink 16.14 20.02 20.02 0.00
white 22.84 20.02 20.94 0.92

#4
pink 22.84 32.40 32.40 0.00
white 18.24 20.94 27.94 7.00

#5
pink 27.94 27.94 30.13 2.19
white 11.19 7.36 9.84 2.48

#6
pink 17.38 21.88 21.88 0.00
white 16.54 15.72 16.54 0.82

#7
pink 26.88 23.82 29.02 5.20
white 16.54 23.82 25.84 2.02

Table 5.4: The ITR for the proposed method using N2apc
response to support the saBCI classification rates.

noise conventional proposed resulting
subject stimulus method N2ac change

type [bit/min] [bit/min] [bit/min]

#1
pink 19.12 23.82 4.70
white 14.92 25.84 10.92

#2
pink 15.72 23.82 8.10
white 25.84 30.13 4.29

#3
pink 20.94 20.94 0.00
white 11.90 17.38 5.48

#4
pink 5.72 17.38 11.66
white 13.37 14.13 0.76

#5
pink 13.37 17.38 4.01
white 14.13 19.12 4.99

#6
pink 3.39 12.62 9.23
white 12.62 14.13 1.51

#7
pink 35.98 31.25 −4.73
white 20.94 32.4 11.46



Chapter 6

ERP Responses to Front–Back to

the Head Stimuli Distinction

Support

Chapter 4 shows a possibility to differentiate early anterior contralateral responses

to attended spatial sources. I also found that the early brain responses elucidate

which direction, front or rear loudspeaker source, subject attended. I show the

further enhancement of the classification results in spatial auditory paradigm, in

which I incorporate the N200 latencies. The results reveal that those early s-

patial auditory ERPs boost offline classification results of the BCI application.

The offline BCI experiments with the multi-command BCI prototype support

our research hypothesis with the higher classification results and the improved

information–transfer–rates.

6.1 Introduction

The majority of the contemporary BCI applications aim at the P300 response

latency without consideration of the remaining the ERP ranges (see chapter 3

and 4 ). In this chapter, I compare and discuss the N200 response suitability and

I show that its utilization improves final classification results.

73
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As a first step I propose to utilize the early ERP latency based modulation related

to the so called “N200–anterior–contralateral” (N2ac) response [48] (see chap-

ter 5). This response is characterized by different shapes in the brain ipsilateral

and contralateral to targets ERPs. Our previous research also confirmed previ-

ously [44] that the N2ac setting improved the BCI classification accuracy. Using

this setting allowed us to classify the targets from left and right side loudspeaker

targets respectively. Psychophysical experiments also confirmed that the subjects

had no discrimination problems related to the auditory front–back–confusion. The

other previous study, conducted by the authors, further confirmed the feasibility

to utilize front and rear loudspeaker directions for the saBCI paradigm [38].

In this chapter, I report on the new finding that the different ERP shape at the

N200 latency support discrimination between attended auditory stimulus targets

originating from frontal and rear loudspeakers respectively. This new finding al-

lows us to identify a auditory stimulus direction to which the subject attended

(front or rear). I call this new finding “N200–front–rear” (N2fr).

I report also on a design of a new saBCI experimental paradigm based on the

auditory spatial localization principle as the informative cue with support of the

both N2ac and N2fr ERP components elicited in the new experimental setup

as depicted in Figure 6.1. Our hypothesis is that the new ERP component shall

improve the classification results and the final information transfer rate (ITR)

leading to a better BCI usage comfort in general.

6.2 Methods

The EEG experiments to validate the proposed spatial auditory BCI paradigm u-

tilizing the N200 and P300 latency responses were conducted in Multimedia Lab-

oratory in Life Science Center of TARA at the University of Tsukuba, Tsukuba,

Japan. All the experimental procedure details and this approach research targets

were explained to the seven human subjects who agreed voluntarily to attend.

The experimental procedures were designed in accordance with ethical committee

guidelines of this chapter author affiliated institutions. The EEG signals were

recorded by the g.USBamp EEG amplifier with the six dry g.SAHARA electrodes.

The sampling frequency was set to 256 Hz with a notch filter to reject the 50Hz

power–line noise set to remove EEG signal band on a range of 48 ∼ 52Hz.
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Figure 6.1: The novel front and rear to the subject head’s auditory sources
localization paradigm based on spatial sound stimuli is depicted in the top panel.
The bottom panel presents our stimulus presentation concept illustrated in the
time domain. Each stimulus has been presented in our experiments for 30 ms
with 270 ms silent breaks with the respective inter–stimulus–interval (ISI) of

300 ms.
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The auditory stimulus was presented through the six loudspeakers distributed with

an equal radius of one meter around the subject’s head as depicted in Figure 6.1.

Three speakers with equal distances were positioned at frontal and rear sides to

the head. Two short white– and pink–noise stimulus bursts were used as described

in the following section. All the experiments were conducted in a silent and low

reverberation room in order to limit environmental noise interferences.

6.2.1 The Offline saBCI Experimental Protocol

The experimental hypothesis was that I shall be able to distinguish from the ERP

shape which direction left, right, front or rear to the head the subject attended

based on the N2ac and N2fr responses.

To test the hypothesis I conducted a series of EEG recording experiments in the

offline BCI mode [1] (no instant feedback or classification results given to the

subject). The experiments were performed with the seven healthy subjects (six

males and one female; age range 21 − 42 with the mean of 26.4 years old). The

experimental procedure was explained in detail to each subject and her/his written

consent was obtained. The subject seated in the center of the experimental studio

and the dry EEG electrodes were attached on the scalp. The subject’s chair

was positioned in the middle of the surrounding six loudspeakers. The elevation

of the loudspeakers was fixed to the subject’s ear level. A computer display with

experimental instruction was set in front of the subject. The six loudspeakers were

distributed on a circle with the three loudspeakers (1, 2, 5) positioned in the front

with 45◦ angular distance. The remaining three loudspeakers (3, 4, 6) were located

in the rear with the same angular distances (see Figure 6.1). The four loudspeakers

(1, 2, 3, 4) were used to test the N2ac effect, and two other loudspeakers (5, 6) were

used to confirm our hypothesis of N2fr response.

The sound stimulus was presented in a random order, one at a time from a single

loudspeaker (a single trial consisted of a delivery of the single target and five

non-targets). I decided to use two broadband noise stimulus types in order to

utilize two spatial localization mechanism of the human auditory pathway (the

inter-aural time and level differences – ITD/ILD) [27]. The white– and pink–noise

stimuli of 30 ms lengths with 5 ms linear attack and sustain periods were chosen.

The inter–stimulus–interval (ISI) was set to 300 ms. The single session consisted of

the six single trials (6 targets from each direction accompanied by 30 non-targets).
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The target direction in each trial was presented randomly together with five non-

targets. For each subject and each stimuli I performed 15 sessions (all together 90

targets and 450 non-targets were delivered). The target direction instruction was

presented visually on a computer display and auditory from the same loudspeaker

which subject shall latter attend to. Before each experiment the subjects were

allowed for a short practice session to familiarize themselves with spatial auditory

conditions.

6.3 The Analysis of ERP Responses in Offline

BCI Paradigm

In many current auditory BCI applications the focus is put on a binary classifi-

cation of brain evoked responses to targets versus non-targets [38, 41–43]. The

majority of the contemporary BCI applications aim at the P300 response latency

without consideration of the remaining ERP ranges. Only a single of recently

published papers mentioned the N200 latency range as possibly useful to support

classification [41], but there is no comparison made so far with P300 only related

results, what I attempt in this chapter.

Basically a concept of adding the early latency N2ac or N2fr responses is based on

our previous [38] research and the recently published by other groups [48] concept

of this ERP range modulation by ipsilateral vs. contralateral stimulus spatial

locations, which results in the different ERP shapes. This difference confirms a

feasibility to utilize the early N200 response latency to improve the target vs.

non–target classification accuracy.

In order to precisely analyze an impact of the early ERP reposes on the saBCI

paradigm classification I propose to conduct three separate analyses that shall

compare results from:

• the P300 only based BCI classification;

• the N2ac response based improvement;

• the further N2fr related classification boosting.
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6.3.1 EEG Preprocessing

The EEG signals captured by the g.MOBIlab+ system with g.SAHARA dry elec-

trodes were first filtered digitally with the two 5th–order Butterworth high– and

low–pass filters with cutoff frequencies of 0.5 Hz and 25 Hz, respectively.

The high–pass filtering removed the very slow baseline drift related artifacts as well

as the slow eye movements related EMG interferences. The low–pass filter limited

the higher frequency EMG artifacts related to subject body muscle movements.

Next the EEG signals were segmented creating the ERP related epochs. Each

epoch started 100 ms before each stimuli onset and ended 700 ms after it. I used

the 100 ms pre–stimuli onset interval for baseline correction procedures.

In the next step the eye movement artifacts rejection was carried out. Auditory

spatial stimuli has been known known to cause in subjects the uncontrolled eye

movements [40] which in the current approach were removed with a threshold value

set at 80µV (signal amplitude level above the usual EEG activity). The rejected

epochs were not further processed, since in the current approach an emphasis was

focused on the spatial paradigm validation. An example in Figure 6.2 shows the

averaged and artifact–removed P300 responses to target and non-target sound

stimuli with standard error bars respectively.

6.3.2 The Optimization of the EEG Electrode Locations

and ERP Feature Extraction

In the previously reported research on N2ac phenomenon [48] the anterior cluster

of electrodes sites F3, F7, C3, T7, F4, F8, C4, and T8 was used, as in 10/20–

international system [39]. In our experimental setup, I select the F5, F6, C3, C4,

P5, and P6 electrodes in order to have additional responses from parietal cortices

known to generate ERPs related to spatial and P300 responses [14]. Additionally

I show that the P5 and P6 sites are also useful to differentiate the responses to

lateral stimuli similarly as for left vs. right only comparison revealed by N2ac.

An example in Figure 6.4 shows the averaged and artifact–removed N2ac responses

to ipsilateral and contralateral sound stimuli as confirmed by our experiments.

The presented N200 area responses are elucidated for ipsilateral and contralateral

targets.
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Figure 6.2: The grand mean averaged ERP responses of the seven subjects.
The upper panel present the grand mean averaged ERP responses to pink–noise.
The lower panel depicts respective results obtained with white–noise stimulus.
The red lines represent targets and the blue ones non-targets. All results are
presented together with standard error bars. The differences between targets
and non-targets are obvious in the range of 300 ∼ 600 ms (the so called “aha”–

or P300 response).
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In order to validate statistically the differences between target and non–target

responses I conduct the analysis of variance test (ANOVA) [49] and Kolmogorov–

Smirnov test (KS) (to compare the two class ERP distribution similarities). I

also used those methods to analyze the two class ERP distributions in ipsilateral

vs. contralateral, as well as the frontal– vs. rear– loudspeaker originating targets

respectively. The ANOVA– and KS–test methods were applied to compare the

differences of response distributions in single trials for each sample point of the

collected ERPs. As the result I could extract discriminative information (in N200

and P300 latencies) leading to later classification optimization. The results of tar-

gets and non-targets analyses are depicted in Figure 6.3. The both bottom panels

in the above figure visualize the ANOVA– and KS–test p−value results, which are

the probability of the null hypothesis rejections that the distributions from the

both compared ERPs are significantly different (usually p < 0.05 in life sciences is

considered as the significant value). The ANOVA–test results panel the Figure 6.3

shows that the P300 related significant responses are located in the range from 300

ms to 500 ms. The ERP analysis results of ipsilateral vs. contralateral responses

is shown in Figure 6.4. The p−values obtained from ANOVA– and KS–tests and

presented in Figure 6.4 depict that the N200 singificant responses are located

in the range from 100 ms to 300ms similarly to the previously published N2ac

phenomenon. This finding confirms our hypothesis that the early N200–range

latencies are related to spatial localization processes in the human brain and that

the parietal electrodes contribute also to the result. The ERP analysis results of

the N2fr experimental setting are depicted in Figure 6.5. The ANOVA– and KS–

tests resulting p−values confirm that the significant N200 response is located in

the range form 100 ms to 200 ms. This difference is a source of the next discussed

in the chapter BCI classification accuracy improvement.

In this chapter three types of binary classification related feature extraction prob-

lems have beed outlined so far:

1. First, I have evaluated ERP features separability in the P300 latency for the

classical target vs. non-target classification purposes.

2. Second, I have shown that the N2ac latency further have contribute to the

ERP features separability in the ipsilateral vs. contralateral stimulus pre-

sentation setting.
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3. Finally, I have postulated and validate the new concept of frontal– vs. rear–

loudspeaker stimulus response differences which I named the N2fr.

I propose to identify the most discriminable features from ERP responses using

the above described ANOVA– and KS–tests evaluating the statistical significance

of the latency differences. Next “a hand picking” procedures could be applied of

only those ERP latencies within each subject ERPs p–values are smaller than a

reasonable threshold of around 0.20 as depicted by blue shades in the third from

the top and bottom panels in Figures 5.4, 6.4 and 6.5.

In a next section I show that the proposed method of utilizing ANOVA– and KS–

tests for p < 0.20 improves the saBCI classification results with utilizing the N200

latency responses.

6.3.3 The Offline saBCI Classification

In order to test the proposed feature extraction method the offline saBCI mode

classification have been performed for each subject separately, meaning that all

procedures have been conducted after each experiment of data collection, without

any online feedback to subjects. The classification procedure has been performed

in a so called binary task paradigm of targets vs. non-targets, contralateral vs.

ipsilateral, or frontal– vs. rear–loudspeaker targets respectively.

In each classifier training and testing step 90 targets and a random subset of

90 non-targets have been selected (from the 450 available) to have the balanced

numbers in the each class set. The resulting chance level was 50%.

For the case of the contralateral vs. ipsilateral responses classification I selected

30 contralateral and 30 ipsilateral events.

To classify the targets from frontal– vs. rear–loudspeakers I selected 15 targets

from each direction respectively.

Based on our previous classification trials reported in [44] I decide to continue to

use a Baysian classifier, which for our case datasets outperforms the linear dis-

crimination analysis methods. Despite its simplicity, the NBC (naive Bayesian

classifier) approach often outperforms more sophisticated classification method-

s [34]. The NBC application assigns an unknown sample (ERP features in our
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Figure 6.3: Grand mean averaged ERP responses of the all seven subjects
and the six electrodes are plotted separately in the two top panels. The first
top panel shows target and a second from the top the non–target averaged
responses, respectively. The significant differences between the both respons-
es can be found, as visualized by color coding of the p-values obtained from
ANOVA–test (statistical significance at p < 0.05) in the third from the top pan-
el. The bottom panels presents Kolmogorov–Smirnov test. The EEG electrodes

F5, F6, C3, C4, P5 and P6 were used in the experiments.



Chapter 6. ERP Responses to Front–Back to the Head Stimuli Distinction
Support 83

Figure 6.4: Grand mean average ERP responses of all seven subjects and the
six electrodes plotted separately in each panel in contralateral (top panel) vs.
ipsilateral (second from the top panel) stimulus direction presentation settings.
The significant differences between the both responses can be found, as visual-
ized by the color with p-values of ANOVA–test and KS–test results (statistical
significance for p < 0.05) in the third panel and fourth panel, respectively. EEG

electrodes F5, F6, C3, C4, P5 and P6 were used in the experiment.
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Figure 6.5: Grand mean averaged ERP responses of all subjects and the six
electrodes plotted separately in each panel for the frontal– (top panel) and the
rear–loudspeaker (second from the top panel) ERP responses. The significant
differences between the both responses can be found, as visualized by the color
with p-values of ANOVA–test and KS–test results (statistical significance at p <
0.05) in the third and fourth from the top panelz respectively. EEG electrodes

F5, F6, C3, C4, P5 and P6 were used in the experiment.



Chapter 6. ERP Responses to Front–Back to the Head Stimuli Distinction
Support 85

case) x = [x1, x2, . . . , xl]
T based on probability maximization to the class

ωm = arg max
ωi

l∏
j=1

p(xj|ωi), i = 1, 2, . . . ,M, (6.1)

with an assumption that the individual features xj, j = 1, 2, . . . , l, shall be statisti-

cally independent. It turns out that the NBC can be very robust also to violations

of the independence assumption [34].

The results of the successful application of the NBC technique are presented in

the next section.

6.4 Results

As the outcome of the presented research I have obtained the results showing that

for the both experimental settings of saBCI offline paradigm the classical P300

latency could be improved with the N2ac and N2fr features identified with the

p−values calculated using the ANOVA or KS–tests for significance. I summarize

below the obtained results.

6.4.1 The Classification Results from the P300 ERP La-

tencies in the Classical Oddball Paradigm Setting

The first summary of classification results is presented in Table 6.1, where classifi-

cation accuracies for the features drawn from P300 are shown. All of the subjects

performed above the chance level of 50% for single feature latencies of P300 based

on ANOVA– and KS–tests p−values. The proposed “hand–picked” feature set i-

dentification using the ANOVA– and KS–tests of significant ERP samples allowed

us to boost the classification results (in both cases with the maximum classifi-

cation boost of 29%) using the leave–one–out cross validation [34] for the NBC

technique.
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6.4.2 The Classification Results from the N2ac ERP Fea-

ture in the Ipsilateral vs. Contralateral Settings

The results of the approach to compare ipsilateral and contralateral to target

evoked potentials have been summarized in the Table 6.2, based on the ERP

features drawn from results of the ANOVA– and KS–tests analysis are summarized

in Figure 6.4. The classification accuracy results have been 22% boosted in the

best case with ANOVA–test based feature extraction. For KS–test based case

the classification accuracy results have been even 28% enhanced in the best. In

the both enhancement cases the same method of the NBC leave–one–out cross

validation classification was applied.

6.4.3 The classification Results of the N2fr ERP Feature

Extraction Method

The classification results of the proposed approach to compare frontal– and rear–

loudspeaker originating target stimuli have been summarized in Table 6.3, based

on the ERP features selection from results of the ANOVA– and KS–tests analysis

as summarized in Figure 6.5. The classification accuracy results have been also in

this case 26% boosted in the best cases.

6.4.4 Analysis of Information Transfer Rate Improvement

Results

The ITR results are summarized in Tables 6.4, 6.5, and 6.6 respectively. For the

all cases of the P300, the N2ac , and the N2fr, there were significant increases

of the ITRs for the majority of subjects.

6.5 Conclusions

In this chapter I presented three approaches leading to improvement of the classi-

fication accuracy and ITR in the offline saBCI paradigm. The improvement was
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Table 6.1: The classification results for ERP latencies
in P300 responses for target vs. non–target paradigm.
The three sets (whole ERP, P300 latencies optimized by
ANOVA mehtod and KS method ) classification results

are compared.

noise conventional ANOVA KS
subject stimulus whole ERP P300 P300

type [%] [%] [%]

#1
pink 61 71 71
white 65 68 67

#2
pink 61 85 78
white 63 72 71

#3
pink 58 62 65
white 55 59 67

#4
pink 49 68 53
white 55 84 79

#5
pink 48 69 82
white 56 83 81

#6
pink 55 70 66
white 57 75 64

#7
pink 54 82 83
white 65 81 72

obtained from introducing the novel ERP feature extraction methods in the P300

latency, the N2ac and the N2fr.

The first improvement was presented in form of classification rates comparison for

the three ERP feature sets of the P300 latencies processed separately with the

ANOVA– and KS–tests, versus the classical whole ERP features. The classifica-

tion accuracy was increased for all the subjects at maximum of 29% boost (ITR

improvement at maximum of 34 bit/min). This is a very good result giving a

possibility to further improve the auditory based BCI paradigm.

The second improvement step was based on the N2ac concept. The obtained

classification and ITR improvement are also very encouraging.

The third improvement step was based on the N2fr responses in the front–back to

the subject head stimulus presentation. The classification and ITR improvement

confirm that our new finding could improve the final classification results.
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Table 6.2: The classification results for ERP latencies in
N200 responses for ipsilateral vs. contralateral paradigm.
The three feature sets (whole ERP ( 0 ms – 700 ms ), N200
latencies optimized by ANOVA method and KS method )

classification results are compared.

noise conventional ANOVA KS
subject stimulus whole ERP N200 N200

type [%] [%] [%]

#1
pink 51 58 57
white 35 51 56

#2
pink 46 57 58
white 38 64 59

#3
pink 51 61 57
white 53 60 65

#4
pink 52 67 59
white 51 67 71

#5
pink 55 60 58
white 38 60 52

#6
pink 41 51 52
white 43 48 57

#7
pink 53 57 65
white 45 65 73

The three main achievements reported in the chapter allowed us to boost accuracy

of the novel saBCI paradigm in offline mode which is a step forward in the non–

vision based interfacing strategies.

The obtained results reveal that not only the cortical auditory information pro-

cessing centers related to the cognitive streams could be utilized for BCI purposes.

Also the differences in ERPs at early latencies before 300 ms are useful and they

guarantee good classification results and resulting ITR scores. These results reveal

that the very early spatial auditory ERPs are potentially interesting for faster BCI

applications.
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Table 6.3: The classification results for ERP latencies in
N200 responses for targets from frontal loudspeaker vs.
targets from rear loudspeaker paradigm. The three fea-
ture sets (whole ERP ( 0 ms – 700 ms ), N200 latencies
optimized by ANOVA method and KS method ) classifi-

cation results are compared.

noise conventional ANOVA KS
subject stimulus whole ERP N200 N200

type [%] [%] [%]

#1
pink 46 52 50
white 51 63 77

#2
pink 40 66 53
white 36 51 56

#3
pink 52 65 58
white 51 55 67

#4
pink 63 73 70
white 53 60 57

#5
pink 43 57 56
white 46 57 51

#6
pink 37 56 58
white 52 62 56

#7
pink 57 68 65
white 44 51 55

Table 6.4: The ITR of target vs. non-target, for the
three ERP sets related classification approaches using

wholeERP , P300 extracted with ANOVA and KS.

noise Whole ANOVA KS
subject stimulus ERP P300 P300

type [bit/min] [bit/min] [bit/min]

#1
pink 3.25 13.13 13.13
white 6.59 9.56 8.51

#2
pink 3.52 39.02 23.98
white 4.93 14.45 13.13

#3
pink 1.85 4.19 6.59
white 0.72 2.35 8.51

#4
pink 0.00 9.56 0.26
white 0.72 36.57 25.85

#5
pink 0.00 10.68 31.99
white 1.04 34.23 29.85

#6
pink 0.72 11.87 7.52
white 1.42 18.87 5.73

#7
pink 0.46 31.99 34.23
white 6.59 29.85 14.45
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Table 6.5: The ITR of N2ac, for the three ERP sets
related classification approaches using wholeERP , N200

extracted with ANOVA and KS.

noise Whole ANOVA KS
subject stimulus ERP N200 N200

type [bit/min] [bit/min] [bit/min]

#1
pink 0.03 1.85 1.42
white 0.00 0.03 1.04

#2
pink 0.00 1.42 1.85
white 0.00 5.73 2.35

#3
pink 0.03 3.52 1.42
white 0.26 2.90 6.59

#4
pink 0.12 8.51 2.35
white 0.03 8.51 13.13

#5
pink 0.72 2.90 1.85
white 0.00 2.90 0.12

#6
pink 0.00 0.03 0.12
white 0.00 0.00 1.42

#7
pink 0.26 1.42 6.59
white 0.00 6.59 15.85

Table 6.6: The ITR of targets from front loudspeaker
and targets from rear loudspeaker, for the three ERP sets
related classification approaches using wholeERP , N200

extracted with ANOVA and KS.

noise Whole ANOVA KS
subject stimulus ERP N200 N200

type [bit/min] [bit/min] [bit/min]

#1
pink 0.00 0.12 0.00
white 0.03 4.93 22.19

#2
pink 0.00 7.52 0.26
white 0.00 0.03 0.72

#3
pink 0.12 6.59 1.85
white 0.03 0.72 8.51

#4
pink 4.93 15.85 11.87
white 0.26 2.90 1.41

#5
pink 0.00 1.42 1.04
white 0.00 1.42 0.03

#6
pink 0.00 1.04 1.85
white 0.12 4.19 1.04

#7
pink 1.42 9.56 6.59
white 0.00 0.03 0.72



Chapter 7

Conclusion of thesis

7.1 Summary of thesis

In this thesis, I designed a novel auditory BCI based on combined sound timbre and

horizontal plane spatial locations as informative cues. I also studied EEG signal

processing and classification techniques in order to improve the BCI performance

and use them in a novel spatial auditory BCI system, with a major objectives of

enhancement of ERP classification results.

In order to achieve the major objective, I have first proposed ”EEG channel selec-

tion” and ERP classification, with fewer channels more quickly and more effectively

improve the BCI performance. Concerning ”EEG channel selection”, I have pro-

posed to use a method name ROC, which is based on quantify the separability of

two single-trial response distributions. Such method is related in a direct and nat-

ural way to cost/benefit analysis of diagnostic decision making. Concerning ERP

classification, I proposed to use LDA method which used in statistics, pattern

recognition and machine learning to find a linear combination of features which

characterizes or separates two or more classes of objects or events. The resulting

combination may be used as a linear classifier or more commonly for dimensional-

ity reduction before later classification (see chapter 3). These algorithm can learn

and extract the discriminant features, such features corresponding to the brain

activity in Regions of Interest (ROI). Our evaluations suggested that the ROI and

”channels selection” can improve the ERP classification accuracy.

91
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Concerning feature extraction, I propose to use a method (ANOVA: analysis of

various) for the extraction of discriminative features in electroencephalography

(EEG) evoked potential latency (P300 response). This method is a collection of

statistical models used to analyze the differences between group means (in our

case are target and non-target) and their associated procedures (such as ”varia-

tion” among and between groups). In ANOVA setting, the observed variance in

a particular variable is partitioned into components attributable to different ERP

responses of variation. In its simplest form, ANOVA provides a statistical test

of whether or not the means of target and non-target are different or not. More

particularly, a naive Bayesian classifier for classifier the subject’s chosen targets

and ignored non-targets. A naive Bayes classifier is a simple probabilistic classifier

based on applying Bayes’ theorem with strong (naive) independence assumptions.

However, GNBC classifier yielded similar or even better results on our experi-

mental data than linear discrimination analysis methods. Our results reveal that

the feature extraction based on ANOVA and ERP classification with GNBC can

obtain a good results in spatial auditory BCI system (see chapter 4).

Chapter 4 BCI paradigms benefit mostly from the P300 ERP latencies. I show

the further enhancement of the classification results in spatial auditory paradigms

by incorporating the N200 latencies, which differentiate the brain responses to

lateral, in relation to the subject head, sound locations in the auditory space. In

order to extract the P300 and N200 responses, I proposed t-test, which can be

used to determine if two sets of data (in our case target vs. non-target ; ”ipsilat-

eral” vs ”contralateral”) are significantly different from each other. The results

reveal that those early spatial auditory ERPs boost online classification results of

the BCI application. The online BCI experiments with the multi–command BCI

prototype support our research hypothesis could improve classification accuracies

and information–transfer–rates.

In chapter 6, I presented three approaches leading to improvement of the classi-

fication accuracy and ITR in the offline saBCI paradigm. The improvement was

obtained from introducing the novel ERP feature extraction methods in the P300

latency, the N2ac and the N2fr. The first improvement was presented in form

of classification rates comparison for the three ERP feature sets of the P300 la-

tencies processed separately with the ANOVA– and KS–tests, versus the classical

whole ERP features. The classification accuracy was increased for all the subjects

at maximum of 29% boost (ITR improvement at maximum of 34 bit/min). This
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is a very good result giving a possibility to further improve the auditory based

BCI paradigm. The second improvement step was based on the N2ac concept.

The obtained classification and ITR improvement are also very encouraging. The

third improvement step was based on the N2fr responses in the front–back to

the subject head stimulus presentation. The classification and ITR improvement

confirm that our new finding could improve the final classification results. The

three main achievements reported in the chapter allowed us to boost accuracy of

the novel saBCI paradigm in offline mode which is a step forward in the non–

vision based interfacing strategies. The obtained results reveal that not only the

cortical auditory information processing centers related to the cognitive streams

could be utilized for BCI purposes. Also the differences in ERPs at early latencies

before 300 ms are useful and they guarantee good classification results and result-

ing ITR scores. These results reveal that the very early spatial auditory ERPs are

potentially interesting for faster BCI applications.

7.2 Discussion

In the chapter it has been shown that in contrary to the contemporary results with

the spatial auditory BCI paradigms, which fail to utilize rear-head loudspeakers, it

is possible to achieve good results for a fully surround sound octagonal loudspeak-

ers setup. I have also shown that various spatial and timber sound sources generate

different ERP latencies (P300, N200, N2fr, N2ac) and amplitude responses to-

gether with naive Bays classifier possible to utilize in novel spatial auditory BCI

paradigms. These are the very encouraging results, providing the possibility fur-

ther to improve the auditory paradigm based BCI. The main achievement reported

in the thesis allows us to improve the spatial aBCI paradigm in the offline mod-

e, which is a step forward in non-vision based interfacing strategies. I have also

shown that, in comparison with contemporary applications of spatial auditory B-

CI paradigms which fail to utilize rear–to–the–head loudspeakers, it is possible to

utilize all spatial horizontal sound directions thanks to the proposed classification

improvement approach based on the “hand–picked” ERP latencies.
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