1 Identification of inorganic and organic species of phosphorus and its

2 bio-availability in nitrifying aerobic granular sludge

- 3 Wenli Huang^a, Wei Cai^a, He Huang^a, Zhongfang Lei^{a,*}, Zhenya Zhang^{a,*}, Joo Hwa Tay^b, Duu-Jong
- 4 Lee^c
- ^a Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai,
- 6 Tsukuba, Ibaraki 305-8572, Japan
- 7 ^b Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500
- 8 University Drive NW, Calgary, Canada
- 9 ^c Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan

10 **GRAPHICAL ABSTRACT**

^{*} Corresponding author.

Tel/fax.: +81 29 853 6703. E-mail address: lei.zhongfang.gu@u.tsukuba.ac.jp (Z. Lei)

Tel./fax: +81 29 853 4712. E-mail address: zhang.zhenya.fu@u.tsukuba.ac.jp (Z. Zhang)

13 Abstract

14	Phosphorus (P) recovery from sewage sludge is necessary for a sustainable
15	development of the environment and thus the society due to gradual depletion of
16	non-renewable P resources. Aerobic granular sludge is a promising biotechnology for
17	wastewater treatment, which could achieve P-rich granules during simultaneous
18	nitrification and denitrification processes. This study aims to disclose the changes in
19	inorganic and organic P species and their correlation with P mobility and
20	bio-availability in aerobic granules. Two identical square reactors were used to
21	cultivate aerobic granules, which were operated for 120 days with influent ammonia
22	nitrogen (NH ₄ -N) of 100 mg/L before day 60 and then increased to 200 mg/L during
23	the subsequent 60 days (chemical oxygen demand (COD) was kept constant at 600
24	mg/L). The aerobic granules exhibited excellent COD removal and nitrification
25	efficiency. Results showed that inorganic P (IP) was about 61.4 - 67.7% of total P (TP)
26	and non-apatite inorganic P (NAIP) occupied 61.9 - 70.2% of IP in the granules. The
27	enrichment amount of NAIP and apatite P (AP) in the granules had strongly positive
28	relationship with the contents of metal ions, i.e. Fe and Ca, respectively accumulated
29	in the granules. X-ray diffraction (XRD) analysis and solution index calculation
30	demonstrated that hydroxyapatite (Ca ₅ (PO ₄) ₃ (OH)) and iron phosphate (Fe ₇ (PO ₄) ₆)
31	were the major P minerals in the granules. Organic P (OP) content maintained around
32	7.5 mg per gram of biomass in the aerobic granules during the 120 days' operation.
33	Monoester phosphate (21.8 % of TP in extract), diester phosphate (1.8%) and
34	pyrophosphate (0.1%) were identified as OP species by Phosphorus-31 nuclear

44 45	1. Introduction
44	
43	resonance (³¹ P NMR)
42	Aerobic granules; Nitrification; P fractionation; Phosphorus-31 nuclear magnetic
41	Keywords:
40	
39	P removal and recovery techniques through biological wastewater treatment.
38	characteristics of P species in aerobic granules, which could be helpful for developing
37	nitrifying aerobic granules. The present results provide a new insight into the
36	the granules, implying high potentially mobile and bio-available P was stored in the

beings, especially for the growth of plants. P deficiency will greatly affect and restrict 47 crop yields worldwide. However, phosphate rock, a non-renewable resource and raw 48 material used for P fertilizers, is reported to be depleted in 50-100 years (Cordell et al., 49 2009). Thus P resource protection and P recovery is prerequisite for a sustainable 50 agriculture and society on a global scale. On the other hand, sewage sludge generated 51 from wastewater treatment is regarded as a potential phosphorus reservoir due to its 52 high production amount and high P content (Xu et al., 2012). Land application of 53 sewage sludge as P fertilizer has become one of the main sludge disposal practices 54 (Singh and Agrawal, 2008; Xie et al., 2011a). 55 Aerobic granular sludge is a promising biotechnology for nitrogen and 56

57	phosphorus removal from wastewater. The aerobic granules possess advantages like
58	excellent settleability, high biomass and ability to withstand high loading rate
59	compared to conventional activated sludge processes (Qin et al., 2004; Yilmaz et al.,
60	2008; Adav et al., 2008a). Previous studies indicate that P-rich aerobic granules could
61	be achieved during simultaneous nitrification and denitrification processes (Lin et al.,
62	2012; Li et al., 2014), implying that aerobic granular sludge can be more
63	prospectively used for P fertilizer after being properly treated.
64	As well known that not all the forms of P exhibit similar mobility and
65	bio-availability in the sludge, detailed information about P fraction is necessary for
66	both activated sludge and aerobic granules, especially when land application of sludge
67	is taken into consideration. Moreover, identification of P species in aerobic granular
68	sludge is helpful to understand the characteristics and function of P in aerobic
69	granules and thus the mechanisms of P removal through this new biotechnology. For
70	this purpose, some researchers declared that sewage sludge contained higher
71	mobilizable forms of P, i.e. non-apatite inorganic P than sediment (Medeiros et al.,
72	2005; Xie et al., 2011a and 2011b), which is much meaningful for land application of
73	sewage sludge. To date, as for aerobic granules, lab-scale experiments have been
74	conducted on the mineral forms of P, demonstrating that the major inorganic P species
75	in aerobic granules were greatly dependent on influent characteristics and operation
76	conditions (Angela et al., 2011; Lin et al., 2012; Li et al., 2014). More specifically, in
77	enhanced biological phosphorus removal (EBPR) process, biologically induced
78	precipitation of phosphorus as hydroxyapatite was discovered in the core of granules

79	(Angela et al., 2011). On the other hand, Ca-Mg phosphate and whitlockite
80	$(Ca_3(PO_4)_2)$ were found to be the major minerals in aerobic granular sludge used for
81	simultaneous phosphorus accumulation by chemical precipitation and biological
82	nitrogen removal via nitrite (Li et al., 2014). In addition, previous works show that
83	orthophophosphate, pyrophosphate and polyphosphate are the main inorganic species
84	of phosphorus in the EPS of activated sludge and aerobic granular sludge, accounting
85	for 5-10.5% of total P in the EBPR systems (Zhang et al., 2013a, 2013b). However,
86	the organic P species in aerobic granules, the potential available P resource closely
87	related with the activity of phosphate accumulating organisms (PAOs) (Uhlman et al.,
88	1990), is poorly understood most probably attributable to its complex nature and the
89	limitation of analytical methods.
90	Recent research indicates that phosphorus-31 nuclear magnetic resonance
91	spectroscopy (³¹ P NMR) can be used for analyzing inorganic and organic P species
92	(orthophosphate monoesters, orthophosphate diester and phosphonates) in sediments,
93	soil and activated sludge since it is able to distinguish multiple P compounds among
94	complex substances (Uhlmann et al., 1990; Ahlgren et al., 2011; Li et al., 2013).
95	Therefore it is speculated that this technology could provide more insight into the P
96	species in aerobic granules, especially the organic P fraction.
97	This study aims to reveal the fractionation and distribution of P in aerobic
98	granules and to evaluate the mobility and bio-availability of P in aerobic granules. In
99	addition, organic and inorganic P species in the granules were also determined and
100	characterized by ³¹ P NMR and X-ray diffraction (XRD), respectively. It is expected

101	that this work would not only be useful for P utilization and recovery from aerobic
102	granules but also provide insight into the characteristics of P in aerobic granules,
103	which will help to develop applicable technologies for P removal and recovery from
104	wastewater.

2. Materials and methods

2.1. Experimental set-up and operation

108	Aerobic granules were cultivated in two identical sequencing batch reactors (SBRs)
109	made of acrylic plastic with height of 60 cm and square cross section of 6 cm \times 6 cm.
110	Their effective working volume was 1.4 L. Aeration was provided by an air pump
111	(AK-30, KOSHIN, Japan) through air bubble diffusers at the bottom of each reactor
112	with an air flow rate of 2.0 cm/s and the dissolved oxygen (DO) maintained at 7-9
113	mg/L during aeration. Synthetic wastewater was used in this study, and its
114	composition was as follows: chemical oxygen demand (COD) 600 mg/L (50% of
115	which was contributed by glucose and sodium acetate, respectively); 10 mg PO_4 -P/L
116	(KH ₂ PO ₄); 100 mg NH ₄ -N/L (NH ₄ Cl) during the first 60 days' operation and then
117	increased to 200 mg NH ₄ -N/L till the end of experiment; 10 mg Ca ²⁺ /L (CaCl ₂); 5 mg
118	Mg^{2+}/L (MgSO ₄ •7H ₂ O); 5 mg Fe ²⁺ /L (FeSO ₄ •7H ₂ O); and 1ml/L of trace element
119	solution. The trace element solution contained (in mg/L) H_3BO_3 (50), $ZnCl_2$ (50),
120	CuCl ₂ (30), MnSO ₄ •H ₂ O (50), (NH ₄) ₆ Mo ₇ O ₂₄ •4H ₂ O (50), AlCl ₃ (50), CoCl ₂ •6H ₂ O
121	(50), and NiCl ₂ (50) (Adav et al., 2008b). The pH in the reactors was adjusted with

sodium bicarbonate to be within 7.5-8.0.

123	Each reactor was inoculated with 0.5 L of seed sludge sampled from a
124	sedimentation tank of the Shimodate Sewage Treatment Plant, Ibaraki Prefecture,
125	Japan. The initial mixed liquor suspended solids (MLSS) concentration was 4.6 g/L
126	with sludge volume index (SVI) of 81.4 ml/g and MLVSS/MLSS of 0.8 in the two
127	reactors. After aerobic granules appeared, the mixed liquor was withdrawn daily from
128	the reactors in order to keep their solids retention time (SRT) around 40 days. The
129	reactors were operated sequentially in a 4-h cycle at room temperature ($25\pm2^{\circ}$ C): 2
130	min of influent filling, 28 min of non-aeration period, 186-206 min of aeration, 2-20
131	min of settling, and 4 min of effluent discharge. The settling time was gradually
132	decreased from 20 min to 2 min due to the increase in settleability of the sludge. The
133	volumetric exchange ratio was kept at 54%, resulting in a hydraulic retention time of
134	7.4 h.
135	2.2. Chemical and physical analysis
136	Mixed liquor (volatile) suspended solids (ML(V)SS), sludge volume index (SVI),
137	COD, ammonia nitrogen (NH ₄ -N), nitrite nitrogen (NO ₂ -N), nitrate nitrogen (NO ₃ -N),
138	and phosphorus (PO ₄ -P) were measured in accordance with standard methods
139	(APHA,1998). DO concentration in the bulk liquid was measured with a DO meter
140	(HQ40d, HACH, USA). pH was determined by using a pH meter (Mettler Toledo
141	FE20, Switzerland).
142	Metal ions in sludge particles were quantified after the sludge samples being
143	digested and filtered through 0.22 μ m cellulose nitrate membrane filters (Nalgene).

144 0.1 g of dried sludge was digested in a mixture of 3 ml hydrochloric acid (37%,

145	Wako), 1 ml nitric acid (70%, Wako), and 1 ml perchloric acid (60%, Wako) on an
146	electric heating plate for 10 min. The concentration of each metal was measured by
147	inductively coupled plasma mass spectrometry (ICP-MS, ELAN DRC-e, Perkin
148	Elmer, USA). Granular surface elemental analysis was also performed by using an
149	energy dispersive X-ray - spectroscopy (EDX) equipped with a JSM 7000F field
150	emission scanning electron microscope (FE-SEM) operated at an acceleration voltage
151	of 20 kV.
152	The mean granular size was measured by a stereo microscope (STZ-40TBa,
153	SHIMADZU, Japan) with a program Motic Images Plus 2.3S (Version 2.3.0).
154	Morphology characteristics of the granules were observed using a scanning electron
155	microscope (SEM, JSM6330F, Japan). XRD analysis was performed using a
156	Multiflex diffractometer (Rigaku, Japan) with a cobalt tube scattering from 5 to 75° in
157	2θ . The samples used for XRD analysis were previously dried and calcined in an oven
158	at 500°C for 2 h in order to remove the organic fraction.
159	Average values were taken for all the determinations and used for results and
160	discussion.
161	2.3. Phosphorus fractionation in granular sludge
162	In this study, the Standards, Measurements and Testing (SMT) Programme extraction

- 163 protocol was applied to analyze phosphorus fractions in the aerobic granules, which
- has been widely used in soil, sediment and sewage sludge samples (Ruban et al., 1999;
- 165 Medeiros et al., 2005). After sequential extraction based on the SMT method,
- 166 phosphorus in sludge can be fractionated into the following 5 categories: (1)

167	concentrated HCl-extractable P, namely total P (TP), (2) organic P (OP), (3) inorganic
168	P (IP), (4) non-apatite inorganic P (NAIP, the P fraction associated with oxides and
169	hydroxides of Al, Fe and Mn), and (5) apatite P (AP, the P fraction associated with
170	Ca). In order to avoid the transformation of P species in granules during preparation,
171	the samples taken from the reactors were frozen immediately at -80°C, lyophilized
172	and stored at -20 $^\circ\!\mathrm{C}$ until analysis. The phosphorus concentration in the supernatant
173	collected after extraction was determined with molybdenum blue method.
174	2.4. ³¹ P NMR analysis
175	Granular sludge taken from each reactor was also frozen immediately at -80° C,
176	lyophilized, and ground to fine powders. Then P was extracted from 2 g of the
177	prepared sludge powder with 40 ml of a solution consisting of 0.25 M NaOH and 0.05
178	M Na ₂ EDTA(Turner et al., 2003). The mixture was shaken for 6 h at 100 rpm and
179	ambient temperature and then centrifuged at $6000 \times g$ for 20 min at 4°C. 2 ml of the
180	resultant supernatant was taken for TP, IP and OP analysis. The remaining extracts
181	were freeze-dried again and stored at -20° C till ³¹ P NMR analysis.
182	500 mg of freeze-dried extract was re-dissolved in 0.8 ml of 1M NaOH and 0.2
183	ml D ₂ O and then transferred to a 5 mm NMR tube. The 31 P NMR spectrum was
184	obtained by using a Bruker Avance-600MHz NMR Spectrometer at 242.94 MHz for
185	31 P. 90°C of pulse width, 25°C of regulated temperature, and acquisition time of 0.67
186	s (with relaxation delay of 2s) were applied in the experiments. Chemical shifts of
187	signals were determined relatively to an external standard of 85% H_3PO_4 via signal
188	lock. The peaks were assigned to P species according to the reports in literature with

peak areas calculated by integration (Ahlgren et al., 2005; Turner et al., 2003; Turner,
2004; Zhang et al., 2013).

191

192 **3. Results and discussion**

193 **3.1. Formation and characterization of aerobic granules**

The SBRs were operated for 120 days. Granules appeared in the two reactors on day 194 13 after startup and then grew gradually along with the operation. From day 90 on, the 195 granular size averagely stabilized at 0.76-0.78 mm, although the initial diameter of 196 197 seed sludge was about 0.17 mm (Table 1). This observation is in agreement with the finding by Verawaty et al. (2013) who reported that granules in the reactor 198 equilibrated towards a common critical size of around 0.6-0.8 mm. MLSS and SVI₃₀ 199 200 were determined to be 12-13 g/L and 22 ml/g after 60 days' cultivation. It is worth noting that the MLVSS/MLSS ratio of granules progressively decreased from 86% to 201 73% at the end of experiment, probably due to the accumulation of mineral substances, 202 203 which will be further demonstrated in the following sections. As shown in Fig. 1a, the yellowish mature granules had irregular shapes, possibly contributed by the square 204 structure of SBRs in this study. SEM observation on day 110 clearly shows the 205 compact and dense structure of the granules, and most of the bacteria are distributed 206 207 in the outer layer (Figs. 1b and 1d) with little bacteria in the core of the granules (Figs. 1b and 1c), which is in agreement with the results from Adav et al. (2008b). 208 209 Furthermore, EDX results shown in Fig. S1 indicate that the intensities of metal ions and P are decreasing along with the granular radius, signaling the metal ions and P are 210

211 mainly accumulated in the core of granules. This observation suggests the existence

of some relationship between the accumulated metal ions and phosphorus.

213

3.2. Overall pollutants removal performance

In order to evaluate COD, ammonia and phosphate removal rates, typical batch 215 experiments were carried out on days 55 and 115, namely the influent NH₄-N 216 concentration was 100 mg/L and 200 mg/L, respectively (Fig. 2). It was found that 217 COD removal efficiency was about 80% during non-aeration stage, then increased to 218 219 around 92% after aeration for 30 min and kept this COD removal rate in both cycle tests (data not shown). Figs. 2a and 2b show that a small amount of NH₄-N was 220 removed during the non-aeration period, probably attributable to heterotrophic 221 222 assimilation and adsorption by the granules (Bassin et al., 2011). In the subsequent aeration stage, NH₄-N was observed to first convert to NO₂-N and then rapidly to 223 NO₃-N by nitrifying bacteria. Both NH₄-N and NO₂-N were not detectable (99.9% of 224 nitrification) after influent feeding for about 2 h and 3 h under influent NH₄-N 225 conditions of 100 mg/L and 200 mg/L, respectively (Figs. 2a and 2b). The results 226 indicate that the granules possess excellent nitrification capacity, about 9 mg 227 NH₄-N/g-VSS h with the influent COD of 600 mg/L and NH₄-N of 200 mg/L. 228

As shown in Fig. 2a, on the other hand, phosphorus was observed to release remarkably during the non-aeration period while P uptake was detected during aeration period under 100 mg/L of influent NH₄-N concentration, suggesting the presence and activity of polyphosphate accumulating organisms (PAOs). This

233	phenomenon, however, didn't occur when the influent NH ₄ -N concentration increased
234	to 200 mg/L (Fig. 2b), signaling the activity of PAOs might be inhibited by free
235	ammonia (FA). Zheng et al. (2013) claimed that 8.88 mg-N/L of FA initialed the
236	inhibition on PAOs and its toxic threshold concentration for P metabolism would be
237	17.76 mg-N/L. In this study, the pH of bulk liquor ranged between 7.5 and 8.0, thus
238	FA was maintained at relatively high levels (3.6 - 11.1 mg-N/L). In addition, only
239	about 1 mg-P/L of P removal (10% of influent P) was achieved through microbial
240	assimilation during the two cycle tests, which was mostly associated with a long SRT
241	(40 days) applied in this study. The above results suggest that the aerobic granules
242	cultivated in this study possess high nitrification capability while low P removal
243	efficiency.

245 **3.3. P fractionation in aerobic granules by SMT protocol**

Table 2 lists the analytical results of P fractions in seed sludge and aerobic granules.

247 Seen from Table 2, it is clearly that the content of each P fraction in seed sludge is

248 much higher than that in aerobic granules. This observation may be resulted from the

249 different influent composition and operation strategy between the seed sludge

sampled from the wastewater treatment plant and the aerobic granules cultivated in

this study. Table 2 also shows that the OP content maintained at around 7.5

mg/g-MLSS in aerobic granules during the whole process, suggesting that OP is

relatively stable in quantity under the designed operation conditions, which may play

an important role in the P recovery from aerobic granules. Although the OP content of

255	seed sludge (15.6 mg/g) is much higher than that of granules (Table 2), the percentage
256	of OP to TP for both sludges is quite similar (42.3% in the seed sludge and 39.3-43.3%
257	in the granules sampled between day 30 and day 60, Fig. 3a). Specifically, it is worth
258	mentioning that the OP content and percentage in this study are higher than the
259	findings of previous studies (1.4-5.8 mg/g and 9.9-22.3%)(Xie et al., 2011b; Medeiros
260	et al., 2005), which might be brought about by the different drying and storage
261	methods used for sludge preparation in these works.
262	On the other hand, IP is the major P fraction in the seed sludge (57.5% of TP)
263	and aerobic granules (61.4%-67.7% of TP), in which NAIP amounts to 65.1% and
264	61.9-70.2% of IP, respectively (Fig.3a). In addition, NAIP is about 37.4% and
265	38.0-47.5% of TP in the seed sludge and aerobic granules. Compared with OP and
266	NAIP, AP content is relatively lower and much stable, about 20.9% and 18.1-20.1% of
267	TP respectively in the seed sludge and aerobic granules, respectively.
268	When the changes in biomass concentration in the reactors are taken into
269	consideration, P mass stored in the sludge could be used for the assessment of P
270	accumulation capability of the microorganisms (PAOs). Obviously from Fig. 3b it can
271	be discerned that before granular maturation (day 30), little accumulation was
272	detected in all the P fractions, although the biomass concentration doubled in the
273	reactors (Table 1), possibly due to the absence of PAOs and the operation strategy
274	used in this study. Under the same operation conditions including the same influent
275	COD (600 mg/L) and NH ₄ -N (100 mg/L) concentrations, however, P amount stored in
276	the biomass increased remarkably on day 60 by 80%, 53% and 70% with respect to

277	TP, OP and IP, respectively, although P removal from wastewater was low (Fig.2).
278	Nevertheless, this increase trend seemed to retard to some extent when the influent
279	NH ₄ -N concentration was increased to 200 mg/L, especially for OP. This observation
280	partly coincides with the cycle tests (Fig. 2). Along with the operation from day 60 to
281	day 120, although P mass in inorganic forms (NAIP and AP) continuously increased,
282	the organic P mass showed much less increment (Fig. 3b), partially signaling the
283	activity of PAOs was inhibited. In addition, seen from Fig. 3b the accumulation rates
284	of P species during days 30-60 were about 2 times those of P species during days
285	90-120, also suggesting PAOs in the granules might be inhibited during the later
286	period (under 200 mg/L of influent NH ₄ -N conditions).
287	Interestingly, the increase of IP, NAIP and AP in the sludge was found to have
288	close relationship with the amount of metal ions accumulated in the granules,
289	especially Ca and Fe in this work (Table 3). The linear correlation coefficient (R^2) was
290	0.995 between accumulated Fe and NAIP, which was about 0.971 between
291	accumulated Ca and AP content in the sludge. According to the SMT protocol, NAIP
292	is mainly associated with Al, Fe and Mn, while AP is directly related with Ca (Ruban
293	et al., 1999; Pardo et al., 2003). Due to very less amount of Mn and Al in the sludge, it
294	can be inferred that mineral phosphorus was mainly associated with Fe and Ca in
295	NAIP and AP fractions, respectively in this study. In addition, the accumulation of Fe
296	in granules has a positive effect on the bio-available P because both NAIP and OP are
297	regarded as potentially releasable and bio-available P (Ruban et al., 1999; Xie et al.,
298	2011a). As AP is considered to be non-bioavailable P, Ca accumulation or

299	precipitation will bring about an increase in quantity of AP and then a decrease in the
300	proportion of bio-available P in the granules. Furthermore, Ca precipitation is
301	supposed to have a negative effect on the accumulation of polyphosphate and OP in
302	the sludge, leading to the decreases in bioavailability of phosphorus, PAO activity and
303	MLVSS/MLSS ratios of granules (Barat et al., 2008; Ren et al., 2008). Restated, in
304	this study the IP accumulated in biomass was mainly contributed by the increase in
305	NAIP content (Fig. 3b), implying an increased bio-availability of P in the nitrifying
306	granules during the granulation process.
307	In this study, the proportion of NAIP+OP was about 80% for both seed sludge and
308	aerobic granular sludge (Fig. 3a). Similar results were reported by Xie et al. (2011b)
309	who found that NAIP+OP was greater than 85% and 75% of TP in activated sludge
310	samples fed with domestic and industrial wastewaters, respectively. Moreover, a
311	positive correlation ($R^2 = 0.995$) was observed between TP and NAIP+OP in aerobic
312	granules during the whole operation. Therefore, it could be concluded that high
313	potentially mobile and bio-available phosphorus were stored in the nitrifying aerobic
314	granules.

316 **3.4. Species of inorganic P in aerobic granules by XRD**

317 XRD, an efficient tool for distinguishing crystalline minerals from those of

amorphous structure, was used to identify the species of P minerals in the granule

- samples. As illustrated in Fig. 4, a number of distinct peaks in the diffractogram
- reflect the presence of crystalline forms. By comparison with portable document
- format standard card (2004) using Jade 6.0, most of the stronger peaks coincide with

those of hydroxyapatite (Ca₅(PO₄)₃(OH)) pattern and iron phosphate(Fe₇(PO₄)₆)
pattern.

324	Different P minerals have been reported in aerobic granules, such as
325	hydroxyapatite (Ca ₅ (PO4) ₃ (OH)), whitlockite (Ca ₃ (PO ₄) ₂ , Ca ₁₈ Mg ₂ H ₂ (PO ₄) ₁₄) and
326	struvite (NH ₄ Mg PO ₄ •6H ₂ O) in previous studies (Angela et al., 2011; Li et al., 2014;
327	Lin et al., 2012). The result from this study agrees with Angela et al (2011) who
328	reported that hydroxyapatite was a major phosphate mineral in aerobic granules. In
329	the calcium phosphate family, hydroxyapatite is considered as the most stable and
330	insoluble one. Moreover, the dense structure of granules encourages the accumulation
331	of P minerals in the core of granules and represses the solubilization of the crystals.
332	However, no whitlockite $(Ca_3(PO_4)_2)$ or struvite $(NH_4Mg PO_4 \bullet 6H_2O)$ was detected in
333	the granules. As pH and influent composition play an important role on phosphate
334	precipitation due to their influence on the saturation index (SI) of different minerals
335	(Montastruc et al., 2003; Barat et al., 2011; Juang et al., 2010), in this study SI was
336	calculated using the Visual MINTEQ ver. 3.1 database (PHREEQC software) (Table
337	4). The results show that SI of struvite was negative under the designed conditions in
338	this study, indicating magnesium concentration might be too low to initiate struvite
339	precipitation. The SI of whitlockite ($Ca_3(PO_4)_2$) was close to zero, implying
340	whitlockite was poorly or very temporarily formed. On the contrary, high level of SI
341	(between 4.78 and 7.66) was obtained for hydroxyapatite, i.e. the most stable phase
342	among the calcium phosphates signaling its oversaturation state in the tested
343	conditions. Besides the naturally chemical precipitation of hydroxyapatite, biological

especially PAOs induced hydroxyapatite precipitation and accumulation should also 344 be considered (Angela et al., 2011). As mentioned above, the accumulation rate of AP 345 during days 30-60 was much higher than that during days 90-120. To some extent, the 346 increased AP content might be partially contributed by PAOs induced hydroxyapatite 347 precipitation, due to that hydroxyapatite is the major component of AP. 348 In addition, high level of SI for vivianite (Fe₃(PO₄)₂•8H₂O) was also obtained 349 (Table 4). According to the portable document format standard card, the observed 350 XRD peaks do not agree with those of vivianite ($Fe_3(PO_4)_2 \cdot 8H_2O$) pattern. However, 351 352 two major peaks (20.5 and 29.7) of the granular sample could be assigned to another iron phosphate, $(Fe_7(PO_4)_6 \text{ pattern})$. Under the high DO levels (7-9 mg/L) applied in 353 the reactors in this study, part of Fe^{2+} could be inevitably and easily oxidized to Fe^{3+} 354 355 and then formed the stable crystal of iron phosphate $(Fe_7(PO_4)_6)$. Moreover, FePO₄ crystal can be gradually transformed into iron phosphate ($Fe_7(PO_4)_6$) by redox 356 reactions (Gadgil et al., 1994; Wang et al., 2013) created in the granules. Therefore, it 357 can be confirmed that hydroxyapatite (HAP) and iron phosphate ($Fe_7(PO_4)_6$) are the 358 major inorganic P in the nitrifying aerobic granules in this study. Still, whether other 359 intermediates present or not remain unknown due to the limitation of XRD for 360 361 micro-amount minerals.

362

363 3.5. Identification of P species in granules by ³¹P NMR analysis

All NMR-spectra show peaks in the areas for orthophosphate (Ortho-P, 5–7 ppm),

365 orthophosphate monoesters (Monoester-P, 3–5 ppm), orthophosphate diester

366	(Diester-P, 2 to -3 ppm), pyrophosphate (Pyro-P, -4 to -6 ppm), polyphosphate
367	(Poly-P, -18 to -21 ppm), and phosphonates (22-24 ppm) (Fig. 5). Monoester-P,
368	Diester-P and phosphonates belong to OP, while Ortho-P, Pyro-P and Poly-P are IP.
369	Although it's difficult to make an exact integration of the peak areas in NMR, the
370	quantification of these compounds with NMR is a suitable method to estimate the
371	relative proportions of P groups (Ahlgren et al., 2005; Zhang et al., 2013). Table 5
372	shows the contents of these P fractions extracted by NaOH+ Na_2EDTA method and
373	their relative proportions (%TP) identified by ³¹ P NMR. The average TP content in the
374	NaOH+ Na ₂ EDTA extracts was 17.3 mg-P/g SS with an average extraction rate of
375	approximately 77.6% of TP, which is similar with the result (about 73%) obtained by
376	Turner et al.(2004).
377	Orthophosphate is the dominant P species in the granule extracts, accounting for
378	74.3% of TP. Ortho-P mainly exists in phosphate form like Fe- and Ca-bound
379	inorganic P and is also the main nutrient for living organisms. It is deduced that
380	accumulation of Fe and Ca could increase the concentration of orthophosphate in the
281	
301	granules. Although a low level of 1.9% (of TP) was detected in the granule extracts,
382	granules. Although a low level of 1.9% (of TP) was detected in the granule extracts, Pyro-P content in the granules is much higher than those (0.2-0.8%) of lake sediment
382 383	granules. Although a low level of 1.9% (of TP) was detected in the granule extracts, Pyro-P content in the granules is much higher than those (0.2-0.8%) of lake sediment samples (Zhang et al., 2013). Besides, the presence of Pyro-P signals high microbial
382 383 384	granules. Although a low level of 1.9% (of TP) was detected in the granule extracts, Pyro-P content in the granules is much higher than those (0.2-0.8%) of lake sediment samples (Zhang et al., 2013). Besides, the presence of Pyro-P signals high microbial activity involved in the biological P cycling in samples (Condron et al., 1985; Ahlgren
 381 382 383 384 385 	granules. Although a low level of 1.9% (of TP) was detected in the granule extracts, Pyro-P content in the granules is much higher than those (0.2-0.8%) of lake sediment samples (Zhang et al., 2013). Besides, the presence of Pyro-P signals high microbial activity involved in the biological P cycling in samples (Condron et al., 1985; Ahlgren et al., 2005). On the other hand, only a very small amount of Poly-P was extracted,
 381 382 383 384 385 386 	granules. Although a low level of 1.9% (of TP) was detected in the granule extracts, Pyro-P content in the granules is much higher than those (0.2-0.8%) of lake sediment samples (Zhang et al., 2013). Besides, the presence of Pyro-P signals high microbial activity involved in the biological P cycling in samples (Condron et al., 1985; Ahlgren et al., 2005). On the other hand, only a very small amount of Poly-P was extracted, comprising approximately 0.1% of the extractable TP from granules, which is much

388	phosphate-accumulating bacteria (Uhlmann, et al., 1990). The less amount of Poly-P
389	in the granules sampled on day 120 was probably brought about by the inhibition of
390	FA on the activity of PAOs. Extracellular polymeric substances (EPS) was noticed to
391	play an important role on P species in EBPR sludge (Zhang et al., 2013a, 2013b), in
392	which Poly-P was the major P species followed by Ortho-P and Pyro-P. In this study,
393	Poly-P was much lower, about 0.1% of the extractable TP, compared to other IP
394	species like Ortho-P and Pyro-P determined. Thus much less contribution of Poly-P
395	was associated with the change in P bioavailability of the nitrifying granules, possibly
396	due to the inhibition of FA to PAOs, which needs further investigation. Furthermore,
397	EPS, consisting of polysaccharides, proteins, glycoproteins, nucleic acids,
398	phospholipids, and humic acids (Adav et al., 2008b; McSwain et al., 2005), can form
399	a matrix for microbial cells and influence the distribution of poly-P and OP species in
400	the granules.
401	On the other hand, Monoester-P is the major form of OP extracted with NaOH-
402	Na_2EDTA from the aerobic granules, accounting for about 21.8% of TP. This is in
403	agreement with the previous results from soil and sediment samples. Monoester-P can
404	be directly correlated with microbial, for instance, the glycerol-6-phoshate
405	(nucleotides) found in cell membrane belongs to Monoester-P (Ahlgren et al., 2011).
406	In addition, George et al. (2006) reported that the rhizosphere of plant could utilize
407	Monoester-P from oxisols after phosphatase hydrolysis. Moreover, algae can
408	assimilate more than 40% of P from Monoester-P in a temperate mesotrophic lake
100	(Hernandez et al. 1997) Although only 1.8% of extracted TP in granules. Diester-P

410	plays a crucial role in the aerobic granules due to its close relation to
411	deoxyribonucleic acid (DNA-P), lipid (lipids-P) and teichoic acid (Teichoic-P). Thus
412	the quantity of Diester-P can be used to indicate the activity and concentration of
413	microorganisms in aerobic granules. As Whitton et al. (1991) pointed out that
414	Diester-P could be easily absorbed and utilized by plants and blue green algae under
415	certain conditions, the OP fractions including Monoester-P and Diester-P are believed
416	to play an important role in the potential mobility and bio-availability of P resource
417	from aerobic granular sludge.
418	
419	4. Conclusion
420	This study presents the preliminary results of P species and its bio-availability in
421	nitrifying aerobic granular sludge. The following major conclusions could be arrived
422	at:
423	(1) IP is the primary P fraction in the granules, in which NAIP amounts to
424	62-70%. A positive strong correlation (R^2 =0.971-0.995) has been found between the
425	content of IP (NAIP and AP) and that of metal ions (especially Fe and Ca) in the
426	granules. OP content was very stable in quantity during the operation. About 80% of
427	TP in aerobic granular sludge possessed high potential mobility and bio-availability.
428	(2) XRD analysis and SI calculation reveal that hydroxyapatite ($Ca_5(PO_4)_3(OH)$)
429	and iron phosphate($Fe_7(PO_4)_6$) patterns are the main IP species in the nitrifying
430	aerobic granules.

431 (3) Three organic P compounds (Monoester-P, Diester-P, phosphonates) and three

432	inorganic P compounds (Ortho-P, Pyro-P and Poly-P) have been identified by using
433	³¹ P NMR, respectively. Monoester-P was the dominant P in OP, and less amount of
434	Poly-P was detected in the granules, probably attributable to the inhibition of FA on
435	the activity of PAOs.
436	In this study P removal rate was low due to the inhibition of relatively high FA
437	levels, which could be alleviated with enhanced P removal by adjusting operation
438	strategy (data not shown). The results from current work imply that aerobic granules
439	could be further potentially developed as P resource materials with high amount of
440	bioavailable P.
441	
442	References
443	Adav, S.S., Lee, DJ., Show, KY., Tay, JH., 2008a. Aerobic granular sludge:
444	recent advances. Biotechnology Advances 26 (5), 411-423.
445	Adav, S.S., Lee, DJ., Tay, JH., 2008b. Extracellular polymeric substances and
446	structural stability of aerobic granule. Water Research 42 (6-7), 1644-1650.
447	Ahlgren, J., Reitzel, K., Brabandere, H.D., Gogoll, A., Rydin, E., 2011. Release of
448	organic P forms from lake sediments. Water Research 45 (2), 565-572.
449	Ahlgren, J., Tranvik, L., Gogoll, A., Waldeback, M., Markides, K., Rydin, E., 2005.
450	Sediment depth attenuation of biogenic phosphorus compounds measured by ³¹ P
451	NMR. Environmental Science & Technology 39 (3), 867-872.
452	Angela, M., Beatrice, B., Mathieu, S., 2011. Biologically induced phosphorus
453	precipitation in aerobic granular sludge process. Water Research 45 (12), 3776

454 -3786.

- 455 APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th
- 456 ed. American Public Health Association/American Water Work
- 457 Association/Water Environment Federation, Washington D.C., USA.
- 458 Barat, R., Montoy, T., Borr ás, L., Ferrer, J., Seco, A., 2008. Interactions between
- 459 calcium precipitation and the polyphosphate-accumulating bacteria metabolism.
 460 Water Research 42 (13), 3415-3424.
- 461 Barat, R., Montoya, T., Seco, A., Ferrer, J., 2011. Modelling biological and chemically
- induced precipitation of calcium phosphate in enhanced biological phosphorus
 removal systems. Water Research 45 (12), 3744-3752.
- 464 Bassin, J.P., Pronk, M., Kraan, R., Kleerebezem, R., and van Loosdrecht, M.C.M.,
- 2011. Ammonium adsorption in aerobic granular sludge, activated sludge and
 anammox granules. Water Research 45 (16), 5257-5265.
- 467 Cordell, D., Drangert, J.-O., White, S., 2009. The story of phosphorus: Global food
- security and food for thought. Global Environmental Change 19 (2), 292-305.
- 469 Condron, L.M., Goh, K.M., Newman, R.H., 1985. Nature and distribution of soil
- 470 phosphorus as revealed by a sequential extraction method followed by 31P
- 471 nuclear magnetic resonance analysis. Journal of Soil Science 36 (2), 199-207
- 472 Gadgil, M., Kulshreshtha, S., 1994. Study of FeSO₄ catalyst. Journal of Solid State
- 473 Chemistry 111, 357-364.
- 474 George, T.S., Turner, B.L., Gregory, P.J., Menun, C.B.J., Richardson, A.E., 2006.
- 475 Depletionoforganic phosphorus from Oxisols in relation to phosphatase activities

476	in the rhizosphere. European Journal of Soil Science 57 (1), 47-57.
477	Hernandez, I., Christmas, M., Yelloly, J.M., et al., 1997. Factors affecting surface
478	alkaline phosphatase activity in the brown alga focus spiralis at a North Sea inter
479	tidal site (Tyne sands, Scotland). Journal of Phycology 33 (4), 569-575.
480	Juang YC., Adav, S. S., Lee, DJ., Tay, JH., 2010. Stable aerobic granules for
481	continuous-flow reactors: Precipitating calcium and iron salts in granular
482	interiors. Bioresource Technology 101 (21), 8051-8057.
483	Li, M., Zhang, J., Wang G., Yang H., Whelan, M.J., White, S. M., 2013. Organic
484	phosphorus fractionation in wetland soil profiles by chemical extraction and
485	phosphorus-31 nuclear magnetic resonance spectroscopy. Applied Geochemistry
486	33, 213-221.
487	Li, Y., Zou J., Zhang, L., Sun J., 2014. Aerobic granular sludge for simultaneous
488	accumulation of mineral phosphorus and removal of nitrogen via nitrite in
489	wastewater. Bioresource Technology 154, 178-184.
490	Lin, Y.M., Bassin, J.P, Van Loosdrecht, M.C.M., 2012. The contribution of
491	exopolysaccharides induced struvites accumulation to ammonium adsorption in
492	aerobic granular sludge. Water Research 46 (4), 986-992.
493	McSwain, B.S., Irvine, R.L., Hausner, M., Wilderer, P.A., 2005. Composition and
494	distribution of extracellular polymeric substances in aerobic flocs and granular
495	sludge. Applied and Environmental Microbiology 71 (2), 1051-1057.
496	Medeiros, J.J.G., Cid, B.P., Gomez, E.F., 2005. Analytical phosphorus fractionation
497	in sewage sludge and sediment samples. Analytical and Bioanalytical Chemistry

498 381 (4), 873-878.

499	Montastruc, L., Azzaro-P.C., Biscans, B., Cabassud, M., Domenech, S., 2003. A
500	thermochemical approach for calcium phosphate precipitation modeling in a
501	pellet reactor. Chemical Engineering Journal 94 (1), 41-50.
502	Pardo, P., Lopez-S, F.F., Rauret, G., 2003. Relationships between phosphorus
503	fractionation and major components in sediments using the SMT harmonised
504	extraction procedure. Analytical and Bioanalytical Chemistry 376 (2), 248-254.
505	Qin, L., Tay, JH., Liu, Y., 2004. Selection pressure is a driving force of aerobic
506	granulation in sequencing batch reactors. Process Biochemistry 39 (5), 579-584.
507	Ren,TT., Liu,L., Sheng, GP., Liu, XW., Yu, HQ., Zhang, MC., Zhu, JR.,
508	2008. Calcium spatial distribution in aerobic granules and its effects on granule
509	structure, strength and bioactivity. Water Research 42 (13), 3343-3352.
510	Ruban, V., Lopez-Sanchez, J.F., Pardo, P., Rauret, G., Muntau, H., Quevauviller, P.,
511	1998. Selection and evaluation of sequential extraction procedures for the
512	determination of phosphorus forms in lake sediment. Journal of Environmental
513	Monitoring 1, 51-56.
514	Singh, R.P., Agrawal, M., 2008. Potential benefits and risks of land application of
515	sewage sludge. Waste Manage 28 (2), 347-358.
516	Turner, B.L., Mahieu, N., Condron, L.M., 2003. Phosphorus-31 nuclear magnetic
517	resonance spectral assignments of phosphorus compounds in soil NaOH-EDTA
518	extracts. Soil Science Society of America Journal 67, 497-510.
519	Turner, B.L., 2004. Optimizing phosphorus characterization in animal manures by

- 520 solution phosphorus- 31 nuclear magnetic resonance spectroscopy. Journal of
- 521 Environmental Quality 33(2), 757-766.
- 522 Uhlmann, D., Roske, I., Hupfer, M., Ohms, G., 1990. A simple method to distinguish
- 523 between polyphosphate and other phosphate fractions of activated sludge. Water
- 524 Research 24(11), 1355-1360.
- 525 Verawaty, M., Tait, S., Pijuan, M., Yuan, Z., Bond, P. L., 2013. Breakage and growth
- towards a stable aerobic granule size during the treatment of wastewater. WaterResearch 47 (14), 5338-5349.
- 528 Wang, R., Lin, R., Ding, Y., Liu, J., Wang, J., Zhang, T., 2013. Structure and phase
- analysis of one-pot hydrothermally synthesized FePO₄-SBA-15 as an extremely
- stable catalyst for harsh oxy-bromination of methane. Applied Catalysis A:
 General 453 (26), 235-243.
- 532 Whitton, B.A., Grainger, S.L.J., Hawley, G.R., et al., 1991. Cell bound and extra
- cellular phosphatase activities of cyanobacterial isolates. Microbial Ecology 21(1), 85-98.
- 535 Xie, C., Tang, J., Zhao, J., Wu, D., Xu, X., 2011a. Comparison of phosphorus
- fractions and alkaline phosphatase activity in sludge, soils, and sediments.
- Journal of Soils and Sediments 11 (8), 1432-1439.
- Xie, C., Zhao, J., Tang, J., Xu, J., Lin, X., Xu X., 2011b. The phosphorus fractions
- and alkaline phosphatase activities in sludge. Bioresource Technology 102 (3),
 2455-2461.
- 541 Xu H., Zhang, H., Shao, L., He P., 2012. Fraction distributions of phosphorus in

542	sewage sludge and sludge ash. Waste Biomass Valorization 3 (3), 355-361.
543	Yilmaz, G., Lemaire, R., Keller, J., Yuan, Z.G., 2008. Simultaneous nitrification,
544	denitrification, and phosphorus removal from nutrient-rich industrial wastewater
545	using granular sludge. Biotechnology and Bioengineering 100 (3), 529-541.
546	Zhang, HL., Fang W., Wang, YP., Sheng, GP., Zeng, R.J., Li, WW., Yu, HQ.,
547	2013a. Phosphorus removal in an enhanced biological phosphorus removal
548	process: roles of extracellular polymeric substances. Environmental Science &
549	Technology 47(20), 11482-11489.
550	Zhang, HL., Fang W., Wang, YP., Sheng, GP., Xia, CW., Zeng, R.J., Yu, HQ.,
551	2013b. Species of phosphorus in the extracellular polymeric substances of EBPR
552	sludge. Bioresource Technology 142, 714-718
553	Zhang, L., Wang, S., Jiao, L., Ni, Z., Xia, H., Liao, J., Zhu, C., 2013. Characteristics
554	of phosphorus species identified by ³¹ P NMR in different trophic lake sediments
555	from the Eastern Plain, China. Ecological Engineering 60, 336-343.
556	Zheng, X., Sun, P., Lou J., Cai, J., Song, Y., Yu, S., Lu, X., 2013. Inhibition of free
557	ammonia to the granule-based enhanced biological phosphorus removal system
558	and the recoverability. Bioresource Technology 148, 343-351.

559 Tables

Operation	MLS	MLVSS/	S	Average
duration (day)	S	MLSS	SS VI ₃₀ diam	
	(g/L)	(%)	(m	(mm)
			l/g)	
0	3.6	80	81	0.17
30	7.8	86	28	0.38
60	11.5	82	25	0.62
90	12.8	77	22	0.76
120	13.1	73	22	0.78

Operation	TP	OP	IP	NA	А	NAI	
duration (day)				IP	Р	P+AP	
Seed sludge	36.9	15.6	21.2	13.	7.	21.5	
	±0.9	±0.5	±0.7	8±0.5	7±0.3	±0.8	
30	17.1	7.4	10.5	6.5	3.	9.6±	
	±0.4	±0.5	±0.3	±0.4	1±0.2	0.7	
60	19.6	7.7	12.1	8.0	3.	11.7	
	±0.7	±0.3	±0.6	±0.6	7±0.2	±0.7	
90	20.4	7.3	13.5	9.2	4.	13.3	
	±0.6	±0.6	±0.5	±0.4	1±04.	±0.5	
120	22.3	7.6	15.1	10.	4.	15.0	
	±0.6	±0.4	±0.2	6±0.5	4±0.3	±0.6	
The data are expressed as mean value \pm standard deviation. MLSS, mixed liquor							
1 1 1 1		1 1		• • •			

suspended solids; TP, total phosphorus; OP, organic phosphorus; IP, inorganic phosphorus; NAIP, non-apatite inorganic phosphorus; AP, apatite phosphorus.

	Operation	N	K	C	Μ	F	Μ	А
	duration (day)	а		а	g	e	n	1
	30	3	1	4	2	6	0	0
		.71	.46	.60	.67	.02	.21	.15
	60	4	2	6	3	8	0	0
		.05	.06	.77	.74	.07	.26	.18
	90	4	2	8	3	1	0	0
		.27	.33	.49	.51	0.46	.31	.25
1	120	5	3	1	3	1	0	0
		.50	.07	0.79	.96	2.48	.45	.25

Species	100 mg NH ₄ -N /L		200 mg NH ₄ -N	
			/L	
	pH 7.5	pH 8.0	pН	pН
			7.5	8.0
$Ca_3(PO_4)_2$ (beta)	-0.63	0.47	-1.08	-0.01
Calcite(CaCO ₃)	-0.42	0.08	-0.25	0.25
Dolomite (CaMg(CO ₃) ₂)	-0.76	0.24	-0.41	0.59
Hydroxyapatite(Ca ₅ (PO ₄) ₃ (OH))	5.53	7.66	4.78	6.89
Struvite(MgNH ₄ PO ₄ •6H ₂ O)	-1.81	-1.26	-1.69	-1.15
Vivianite (Fe ₃ (PO ₄) ₂ •8H ₂ O)	6.26	7.35	6.24	7.33

	TP		IP			OP		
	-	Ort	Pyr	Pol	Monoe	Die	Phosph	
	(mg/	ho-P	o-P	y-P	ster-P	ster-P	onate	
	g-SS)	(%)	(%)	(%)	(%)	(%)	(%)	
	17.3	74.	1.9	0.1	21.8	1.8	0.1	
		3						
SS, suspended solids; Ortho-P, orthophosphate; Monoester-P, orthophosphate								

SS, suspended solids; Ortho-P, orthophosphate; Monoester-P, orthophosphate monoesters; Diester-P, orthophosphate diester; Pyro-P, pyrophosphate; Poly-P, polyphosphate.

- Fig. 1 Images of the granular sludge on day 110 (Influent $NH_4-N=200 \text{ mg/L}$).
- Digital image of granules (a), and SEM observation of granules from cross section (b),
- core (c) and edge (d) on day 110, respectively.

Fig. 2 – Variation of NH₄-N, NO₂-N, NO₃-N and PO₄-P in the bulk liquor during cycle tests under 100 mg/L (a) and 200 mg/L (b) of influent NH₄-N concentration, respectively.

Fig. 3 – Average proportions of phosphorus fractions (%TP) in sludge (a) and changes
in P mass stored in biomass in the reactors (b) during 120 days' operation. TP, total
phosphorus; OP, organic phosphorus; IP, inorganic phosphorus; NAIP, non-apatite
inorganic phosphorus; AP, apatite phosphorus. P stored in biomass is estimated
according to P fraction content and biomass (MLSS) concentration in the reactors.

Fig. 4 – XRD diffractogarm of granular sludge compared to standard hydroxyapatite
and iron phosphate patterns

602 granules sampled on day 120