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Abstract 
 

Spatial data have become more diverse as geographic information systems (GIS) have 

developed, and as a result, so have the spatial supports for these data (e.g., aggregation units, data 

locations, and so on). This has created opportunities where spatial supports of data at hand do not 

compatible with the spatial supports that the users want. Thus, developing methodologies for change 

of spatial support problems (COSPs), such as the problem of how to convert prefectural population 

data into municipal population data is a critical issue in geographical information sciences. 

COSPs consist of two sub-problems: (i) the problem of changing the spatial support itself; 

and (ii) the problem related to (i). If we consider the two major types of spatial data, namely areal data 

(or lattice data) and point data (or geo-referenced data), we can sub-divide the problems in (i) into two 

sub-problems: (i-1) changing the spatial support for areal data (e.g., a gridded population interpolation 

using municipal population data); and (i-2) changing the spatial support for point data (e.g., weather 

data interpolation on gridded points using data from monitoring stations; i.e., changing the support 

from the monitoring station sites to the gridded points). A possible solution to sub-problem (i-1) 

applies the areal interpolation technique, and a solution to sub-problem (i-2) applies the point 

interpolation technique. Therefore, discussing interpolation problems is important from the viewpoint 

of COSPs. 

The sub-problems (i-1) and (i-2) each have their own concomitant problems. The modifiable 

areal unit problem (MAUP) is a problem related to (i-1). The MAUP refers to the problem of bias in 

the model parameters due to aggregation. A typical example of the MAUP is that the correlation 

coefficient between two aggregated variables changes drastically, depending on their aggregation (or 

areal) unit. Therefore, changing the spatial support for areal data (or areal data interpolation) must 

consider both the interpolation accuracy and the influence of the MAUP, especially when the 

interpolated data are used for secondary analyses. On the other hand, the sampling design problem is a 

problem related to (i-2). An example of a sampling design problem is efficient weather station 

allocation. This problem is closely related to changes in the support of point data. Here, point data 

interpolation must consider both the interpolation accuracy and the efficiency of the interpolated site 

allocation. 



Thus, this study focuses on four types of COSPs: areal interpolation and its related problem, 

the MAUP, and point interpolation and its related sampling design problem. 

While these COSPs are currently popular topics in geostatistics, non-geostatistical spatial 

statistical models, such as geographically weighted regression models and spatial filtering models, 

have rarely been applied to these problems. Discussing all relevant spatial models would be extremely 

helpful in constructing sophisticated methodologies to address COSPs. Hence, this study discusses the 

four COSPs by applying a wide variety of spatial statistical models. 

The outline of this study is as follows. Chapter 1 introduces my discussion. In particular, this 

chapter indicates that developing new methodologies for COSPs is important, considering the recent 

diversification of spatial and spatiotemporal data, and that spatial statistical models offer a potentially 

useful set of solutions. Chapter 2 summarizes the basic spatial statistical models, including 

geostatistical models, spatial filter models, and the geographically weighted regression model. The 

subsequent chapters discuss COSPs. Chapters 3 and 4 discuss the areal interpolation problem and the 

MAUP, which are COSPs for areal data. Then, Chapters 5 and 6 discuss the point interpolation 

problem and the sampling design problem, which are COSPs for point data. 

Chapter 3 extends the geographically weighted regression (GWR) model for areal 

interpolation. The GWR model captures spatial heterogeneity by allowing coefficients to vary across 

space. The extended GWR-based model has the following advantages: it captures spatial 

heterogeneity in the same way as the conventional GWR model; it provides the best unbiased linear 

predictor, as do existing geostatistical areal interpolation models; it satisfies the volume preserving 

property (e.g., the sum of the interpolated municipal populations must equal the actual 

prefectural-level population), which is the most basic property that must be satisfied in areal 

interpolation. In addition, I discuss how a non-negative constraint is imposed on the interpolated 

values. 

The effectiveness of the GWR-based method is examined by applying it to a simulation 

study. The simulation results reveal that this method outperforms conventional non-statistical areal 

interpolation methods, including the areal weighting interpolation method and the dasymetric method. 

On the other hand, the results also show that the accuracy of proposed method is unstable compared to 

the conventional methods, and its accuracy possibly be worse than them. 



To examine the effectiveness of the GWR-based method in a practical application, it is also 

applied to an empirical study of interpolating municipal building stocks for various categories 

(wooden/non-wooden, residential/non-residential, completion year) in Japan. The results again show 

the effectiveness of the proposed method from the viewpoint of interpolation accuracy and the ability 

to explain the spatially dependent component. 

In contrast to the standard GWR model, the extended GWR model explicitly considers an 

aggregation mechanism, and offers a solution to the MAUP. In fact, this is an aggregate-level model 

that furnishes unbiased, consistent, efficient, and asymptotically normal estimators of 

non-aggregate-level parameters. Hence, Chapter 4 examines the effectiveness of the method from the 

viewpoint of the MAUP. This chapter first describes a simulation study, and reveals that the model 

effectively copes with the MAUP as long as the spatial scale of the aggregation is not coarser than the 

spatial scale of the underlying spatial heterogeneity. Then, the GWR-based model is applied to a 

criminal analysis. The results confirm that the model provides intuitively reasonable 

non-aggregate-level parameter estimates using aggregated variables. 

Thus, Chapters 3 and 4 discuss the COSPs for areal data. Next, Chapters 5 and 6 discuss the 

COSPs for point data. 

Chapter 5 focuses on the point interpolation problem. This problem has been discussed 

extensively among geostatisticians. However, geostatistical point interpolation methods generally 

have the following drawbacks. First, the methods are not necessarily simple to implement, and spatial 

adjustments are required to extend them (e.g., for non-Gaussian data). Then, they can easily become 

computationally intractable, particularly when interpolating spatiotemporal data.  

The eigenvector spatial filtering (ESF) method, which models spatially dependent 

components using eigenvectors of a proximity matrix, is relatively straightforward to implement and 

extend. Thus, Chapter 5 extends ESF for point interpolation, while considering both simplicity and 

computational efficiency. Note that, ESF has already been extended for interpolating lattice data, 

which are point data with sample sites that are fixed and finite. On the other hand, this study focuses 

on interpolating geo-referenced data, which are another type of point data, with sample sites that are 

distributed in a continuous spatial region. Here, ESF is extended while ensuring consistency with both 

the standard ESF method and standard geostatistics. 



The ESF-based extended method is applied to a land price analysis. The results show that its 

point interpolation accuracy is almost the same as the standard geostatistical method. In addition, the 

results demonstrate the method’s efficiency for multiscale spatial component extraction, estimation in 

the presence of spatial dependence, and variance partitioning analysis. 

The proposed method is then extended to include spatiotemporal modeling. The analysis 

results show that its interpolation accuracy is the same as the standard spatiotemporal geostatistical 

method, while its computation time is substantially less than the geostatistical method. 

Chapter 6 focuses on the sampling design problem, which is another COSP of point data. 

Whereas point interpolations have been well researched, studies on sampling designs are still 

relatively limited and, even for the most standard geostatistical approach, their effectiveness is still 

unclear. In particular, since the geostatistical approach has been applied mainly to natural science data, 

how appropriate it is for social economic data (e.g., land price data) remains unclear. 

Hence, this chapter discusses the land price assessment site reduction problem (a sampling 

design problem) in Japan. Since Japan is planning to gradually reduce the number of land price 

assessment sites, discussing this problem is important. I first extend the standard geostatistical 

approach to consider the properties that must be included in the reduction problem. In particular, I 

discuss how the land price assessment site allocation criteria launched by the government, the uses of 

land prices, and so on, are considered in the geostatistical method. The method is then applied to the 

reduction problem in the Ibaraki prefecture, Japan. The results suggest that the extended geostatistical 

method provides intuitively reasonable reduction results. 

 Finally, the discussions are summarized and concluded in chapter 7. 
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1. Introduction 
 

1.1. Development of GIS and spatial data diversification 

In accordance with the development of Geographic Information Systems (GIS), the 

interdisciplinary use of geographical information, which refers to “information about places on the 

Earth’s surface, knowledge about where something is, knowledge about what is at a given location” 

(Goodchild, 1997), has become widespread. The evolution of GIS can be summarized as follows (see, 

Goodchild, 2010): 

 

Between the 1960s and the late 1980s: 

The term GIS was coined and GIS evolved into a widely adopted software 

application. 

Between the late 1980s and the early 1990s: 

Discussions began about the science of GIS, and Geographic Information Sciences 

(GISc), which is a research field for “the development and use of theories, methods, 

technology, and data for understanding geographic processes, relationships, and 

patterns” (Mark, 2000; Goodchild, 2010), was established. 

After the early 1990s: 

GIS and GISc advanced rapidly in accordance with the development of computer 

technology, and now, GIS is widely adopted, not only for research, but also in 

practical applications. 

 

Based on such backgrounds, developed technologies relating GIS and GISc can be classified 

in four categories (Goodchild, 2009): (i) systems for positioning (e.g., Global Positioning Systems: 

GPS); (ii) systems for data acquisition (e.g., satellite and airborne remote sensing), (iii) systems for 

data dissemination (e.g., National Land Numerical Information download services (NLNI): 

http://nlftp.mlit.go.jp/ksj/; Google Maps: https://maps.google.com/), and (iv) systems for analysis 

(e.g., ArcGIS, provided by ESRI: http://www.esri.com/). Due to the developments of (i) and (ii), 

spatial data (i.e., collections of geographical information) have diversified dramatically, whereas the 
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development of (iii) has increased the opportunities for handling such diversified spatial data. Thus, 

diversified spatial data handling has become increasingly important. 

The diversification of spatial data introduces diversification of their spatial supports (e.g., 

areal units, data locations, and so on). In fact, areal (aggregated) units take various spatial scales. For 

example, in Japan, areal units of social economic data take either prefectural units, municipal units, or 

minor municipal units. Furthermore, areal units change depending on the study field (e.g., many 

natural science data are aggregated into grids, whereas many social economic data are aggregated into 

administrative units). On the other hand, in the case of point (non-aggregated) data, data locations 

differ depending on the data source. For example, in Japan, land price assessment sites and weather 

observation sites are incompatible. 

The diversity of spatial data increases opportunities where the spatial supports of the data at 

hand do not accord with the spatial supports for which the users want. For example, one might wish to 

analyze gridded population data while only municipal population data are available. In another 

example, one might require weather data in each minor municipal unit while the weather data are 

available only at their specific monitoring stations. To cope with such difficulties, discussing 

techniques of changing spatial supports is increasingly important. 

 

 

1.2. The change of support problems 

Spatial interpolation, including point interpolation and areal interpolation, is a useful 

technique for changing spatial supports. Point interpolation, which refers to the point data 

interpolation using point data with different sites, has been discussed thoroughly in geostatistics (e.g., 

Cressie, 1993; Cressie and Wikle, 2011), whose origin is a point interpolation study in mining (see, 

§2.2). On the other hand, areal interpolation, which refers to the areal data interpolation using areal 

data with different spatial scale of aggregation, has been discussed mainly in geography rather than 

geostatistics. This is partly because an approach depending on the nature of aggregation (i.e., areal 

unit) is consistent with geographic common sense (Openshaw and Taylor, 1981), whereas such 

dependency is not necessarily preferred in (geo-)statistical literatures (e.g., Tobler, 1979). In the other 

words, an areal interpolation problem that considers areal units explicitly is a geographical problem 

rather than a (geo-)statistical problem (Gelfand, 2010). 
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On the other hand, as GIS develops, the importance of discussing changing spatial support is 

being increasingly recognized and an increasing number of geostatisical studies have started 

discussing spatial interpolation problems under a framework called the change of support problem 

(COSP: e.g., Gotway and Young, 2002; Cressie and Wikle, 2011). The major sub-problems in COSP 

can be summarized as shown in Table 1-1 (see, Gotway and Young, 2002). 

While the point interpolation problem and areal interpolation problem are the central COSP 

problems (see Table 1-1), the COSPs also include the following related problems: the modifiable areal 

interpolation problem (MAUP: e.g., Openshaw, 1984) and the sampling design problem (e.g., Wang et 

al., 2012). In the MAUP, which is related to the areal interpolation problem, is the problem that the 

change of aggregation units changes the spatial data analysis results. For instance, Openshaw and 

Taylor (1979) showed that the correlation coefficient between two variables changes between -0.97 

and 0.99, depending on the aggregation units. Areal interpolation must be performed considering not 

only interpolation accuracy but also its influences on the MAUP, especially when the interpolated data 

are used for secondary analyses. On the other hand, the sampling design problem discusses, for 

example, efficient weather monitoring sites allocation. This problem is closely related to point 

interpolation; point interpolation must be performed considering not only the interpolation accuracy 

but also efficiency of the interpolated site allocation. In fact, even if the interpolation model is 

accurate, when the allocation of interpolated sites is not good, the resulting interpolated data quality 

might be poor. 

 In summary, change of spatial support must be discussed considering not only interpolation 

problems themselves, but also the MAUP and the sampling design problem. 
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Table 1-1: Example of COSPs 

Data before conversion Data after conversion Related problems 

Areal data 

Point data 

Point interpolation 

 

Sampling design 

Areal data 
Block interpolation  

(including averaging) 

Point data 

Point data 
Areal interpolation 

 

Modifiable areal unit problem 

 (including ecological fallacy) 
Areal data 

1) The figure is constructed while referring to Gotway and Young (2002) 

 

1.3. Problems in COSP studies 

Geostatistics is a sub-field within spatial statistics (see §2.1); a study area of discussing 

statistical spatial data analysis (Haining et al., 2010). Spatial statistical models, including 

geostatistical models, spatial filtering models (e.g., Griffith, 2003), and geographically weighted 

regression model (GWR: e.g., Fotheringham et al., 2002), have been discussed extensively in recent 

years. 

While the COSPs have been discussed extensively in recent geostatistics, the COSPs have 

less focused in the other spatial statistics. This could be due to the fact that geostatistics originated as 

an interpolation (or COSP) study, whereas the other spatial statistics did not (see §2.2). However, as I 

will show later, both of these spatial interpolation approaches (or approaches of changing spatial 

support) are essentially identical. Hence, it is significant to examine effectiveness of non-geostatistical 

spatial statistical models from the perspective of the COSPs. 

Another problem is the lack of interdisciplinary discussions of the COSPs. Although the 

COSPs have been studied both in geography and geostatistics1, their interdisciplinary discussions 

seem insufficient. Such a tendency is particularly prominent in areal interpolation studies (see, chapter 

3). Because advantages and disadvantages of geographical and geostatistical approaches are quite 

different, interdisciplinary discussions would be effective to develop more sophisticated 

methodologies. 

                                                
1 The term COSP itself is used only among geostatisticians. 
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In summary, the COSPs must be discussed from a broader perspective while referring to 

geography, geostatistics, and non-geostatistical spatial statistics (see §2.1). 

 

 

1.4. Outline of this study 

The objective of this study is developing new methodologies for the COSPs mainly focusing 

on spatial statistics, while paying attention to geographical literatures too. 

Fig.1-1 organizes the chapters in this study. In the next chapter, I discuss the spatial 

statistical models, including the geostatistical model, the spatial filtering models, and the GWR model. 

Then, between chapter 3 and 6, I discuss the COSPs while referring to both spatial statistics and 

geography. Concretely, chapter 3 proposes a GWR-based areal interpolation model, and compares its 

efficiency with the other geographical and spatial statistical models. Chapter 4 applies the 

GWR-based model for the MAUP. Chapter 5 proposes a spatial filtering-based point interpolation 

method, and compares it with the standard point interpolation methods, and chapter 6 discusses a 

sampling design problem of land prices using a geostatistical approach. Finally, I summarize my 

whole discussion in chapter 7. 

 

 

Figure 1-1: Outline of this study 

 

 

Chapter 1: Introduction 

Chapter 2: Spatial statistical models 

Chapter 4: Modifiable areal unit problem 

COSP of areal data COSP of point data 

Chapter 7: Discussion  

 

Chapter 5: Point interpolation problem 

Chapter 6: Sampling design problem 

Chapter 3: Areal interpolation problem 
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2. Spatial Statistical Models 
 

2.1. Spatial analysis and spatial statistics 

According to Haining (2003), the term spatial analysis, which refers to an analysis performed 

by applying techniques and models that use explicitly the spatial referencing associated with each data 

value or object that is specified within the system under study, can be traced back to at least the 1950s 

(see Berry and Marble, 1968). Spatial analysis includes several distinct elements; however, the 

statistical analysis of spatial data, which is referred to by statisticians as spatial statistics (Ripley, 

1981; Haining et al., 2010), is an element that has been discussed widely. 

 Spatial statistics is distinct from non-spatial (i.e., standard) statistics in that it considers 

fundamental properties of spatial data: spatial dependence and spatial heterogeneity (e.g., Anselin, 

1988). Spatial dependence is the property that dictates that attribute values located closely in 

geographic space are similar. This property is also known as the first law of geography; “Everything is 

related to everything else, but near things are more related to each other” (Tobler, 1970). The 

consideration of spatial dependence is important, for example, in modeling spatial data accurately (or 

appropriately) (see, e.g., Cressie, 1993) and to test statistical significant appropriately (see, e.g., 

LeSage and Pace, 2009). Thus, spatial dependence modeling is one of the primal topics in spatial 

statistics. The geostatistical model, which is discussed in §2.2 and the spatial filter model, which is 

discussed in §2.3, are models representative of describing spatial dependence (Griffith and Paelinck, 

2011). 

 On the other hand, spatial heterogeneity is a special case of observed or unobserved 

heterogeneity and is a familiar problem, e.g., in standard econometrics (Anselin, 2010). Different 

from spatial dependence, spatial statistical models are not necessarily required to capture spatial 

heterogeneity. In fact, some sort of heterogeneity can be captured by applying a standard linear 

regression model. Spatial statistics is helpful in capturing spatial heterogeneity, with its features vary 

gradually over space. GWR, which is discussed in §2.4, allows such heterogeneity (i.e., spatially 

continuous heterogeneity) to be captured by applying spatially varying parameters. Note that spatial 

dependence and spatially continuous heterogeneity are difficult to separate, and that modeling this 

type of heterogeneity is useful to capture spatial dependence (Fotheringham et al., 2002). 
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 This chapter discusses the primal spatial statistical approaches of addressing spatial 

dependence and spatial heterogeneity. 

 
 

2.2. Geostatistics 

 Geostatistics, which is a sub-field within spatial statistics, originates from a series of studies 

by D.G. Krige, a professor at the University of Witwatersrand, South African (Diggle, 2010). He 

promoted using statistical methods for mineral explorations (Krige, 1951). Motheron (1963) refined 

his work into a theory of stochastic process with covariograms and semivariograms (see §2.2.1). In 

addition, based on this theory, he proposed a best linear unbiased prediction (BLUP) methodology for 

spatial data, which he termed kriging in honor of D.G. Krige. The Motheron methodology has been 

discussed and extended, particularly by applied scientists and mathematicians (Haining et al., 2010), 

and a field of study discussing the methodology is now known as geostatistics. 

Such an evolution of geostatistics is very different from that of other methods of spatial 

statistics, which have been developed mainly in regional sciences and quantitative geography. As a 

result, it has often been mentioned that geostatistics is distinctive (e.g., Haining et al., 2010). 

Seq.2.2 briefly discusses geostatistics. 

 

2.2.1. Basic assumptions 

The geostatistical model describes a stochastic process that is a family or collection of 

random variables. The members of the collection can be identified or indexed by a set of locations s 

∈ D dℜ⊂ , where d takes the value 2 or 3 in most cases (Schabenberger and Gotway, 2005). When 

d is greater than 1, a stochastic process is also called a random field. 

Standard geostatistics models a stochastic process that satisfies stationarity and ergodicity. 

Stationarity is an assumption that the properties of the stochastic process remain unchanged, 

depending on the locations. This lack of change enables us to model the stochastic process using only 

one model. On the other hand, ergodicity is an assumption that the dependency between two samples 

asymptotically goes to zero as the distance between the two samples increases (see, e.g., Arbia, 2006). 

Ergodicity ensures that the true mean and covariance of a stochastic process are the same as their 
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estimates (Arbia, 2006). Since most stationary stochastic processes satisfy ergodicity (the random 

work process is an exception: Gaetan and Guyon, 2010), hereafter, I discuss stationary stochastic 

processes without paying further attention to ergodicity. 

Let Z(si) be a real-valued stochastic process defined on a domain, D. Z(si) is called a strict (or 

strong) stationary process if its (finite dimensional) joint distributions are invariant under spatial shifts 

(Gneiting and Guttorp, 2010); that is, 

 )]([)]([ , jiii hsZFsZF += , (2-1) 

where F[ • ] is the distribution function and hi,j
dℜ∈  is a lag distance that separates sites si and sj. 

Eq.(2-1) implies that all moments of the stochastic process are unchanged throughout the domain D. 

 While strict stationarity is a condition of the distribution, the second-order (or weak) 

stationarity is a weaker stationarity that conditions the first and second moments of Z(si) using 

Eqs.(2-2) and (2-3): 

 0)]([ =isZE , (2-2) 

 )()](),([ ,, jijiii hchsZsZCor =+ , (2-3) 

where c(hi,j) is a distance function called a covariogram (or covariance function). A strict stationary 

process is always a second-order stationary process, but the reverse is not always true. As an 

exception, when Z(si) is a second-order Gaussian process whose expectation and covariance obey 

Eq.(2-2) and Eq.(2-3), respectively, it is also a strict stationary (Gaussian) process.  

Matheron (1973) proposes the other type of stationarity, called intrinsic stationary. This 

imposes stationarity on the increments Z(si) −Z(si + hi,j), using Eqs.(2-4) and (2-5): 

 0)]()([ , =+− jiii hsZsZE , (2-4) 

 )()]()([
2

1
,, jijiii hhsZsZVar γ=+− , (2-5) 

where γ(hi,j) is a distance function called a semivariogram (and 2γ(hi,j) is called a variogram). The 

intrinsic stationary process is an analog of the stationary increment process used frequently in time 

series analyses (Schabenberger and Gotway, 2005). Eq.(2-5) is expanded as 
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 )]}(),([2)]([)]([{
2

1
)]()([

2

1
)( ,,,, jiiijiiijiiiji hsZsZCovhsZVarsZVarhsZsZVarh +−++=+−=γ ,  

 )}(2)]([2{
2

1
, jii hcsZVar −= ,  

 )()0( , jihcc −= . (2-6) 

Eq.(2-6) suggests that a second-order stationary process that includes c(hi,j) corresponds to an intrinsic 

stationary process with γ(hi,j) (Cressie, 1993). In contrast, because c(0) is undefined for some γ(hi,j) 

(e.g., c(0) is undefined for the linear semivariogram model Eq.2-13), the reverse is not necessarily 

true. In short, second-order stationarity includes intrinsic stationarity. 

While the aforementioned stochastic processes are isotropic in the sense that hi,j in c(hi,j) or 

γ(hi,j) does not depend on directions, a stochastic process is anisotropic if hi,j does depend on 

directions. There are at least two types of anisotropies: the geometric anisotropy and the zonal 

anisotropy. Geometric anisotropy applies a linear transformation (or rotation) of the 2D coordinate 

system. More precisely, suppose that h is a vector whose elements are given by hi,j, and B is a matrix 

for the liner transformation, then, the covariogram and semivariogram are defined using the elements 

in Bh. Zonal anisotropy uses a linear combination of an isotropic model, (c(hi,j) or γ(hi,j)), and a model 

depending only on a lag distance in one direction (i.e., c(hi,j) + c(h1), where h1
1ℜ∈ ). For more details 

about anisotropy, see e.g., Zimmerman (1993). 

 

2.2.2. Models for covariogram and semivariogram 

Suppose that y is a response variable vector with elements that obey the second-order 

stationary process (i.e., E[y]=0, E[yy'] = C, where 0 is a vector of zeros, and C is a 

variance-covariance matrix are given by c(hi,j)). Then, the standard geostatistics describes the spatial 

process of y using λ' y, where λ is a vector of weights and y is a vector of variables observed in D. 

To ensure the validity of the spatial process, Z(si) = λ' y, the variance of Z(si), Var[Z(si)], must 

be non-negative (e.g., Armstrong and Diamond, 1984); that is, 

 0][ ≥′yλVar . (2-7) 

Eq.(2-7) can be expanded as 
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 λyyλyλyλyλ ][]))([(][ ′′=′′′=′ EEVar ,  

 0≥′= Cλλ . (2-8) 

The second line of Eq.(2-8) is identical to the positive semi-definite condition for C (or c(hi,j)). Thus, 

to ensure that Var[Z(si)] is non-negative, c(hi,j) must be defined by a positive semi-definite function, or 

equally, γ(hi,j) must be defined by a negative semi-definite function (it is readily derived from Eq.2-6). 

According to Cressie (1993), the positive definiteness of c(hi,j) is the only necessary and sufficient 

condition for a valid spatial process model. 

Various positive definite functions for c(hi,j) have been proposed. The standard functions are 

as follows: 
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       Spherical model 


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       Matérn model 
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where σ2, τ2, and r are parameters called nugget, partial-sill, and range, respectively. σ2 denotes the 

variance of the micro-scale spatial variation and/or measurement error, τ2 denotes the variance of the 

spatially dependent component, and r measures the range of the spatial dependence. Here, r in the 

spherical model Eq.(2-11) is interpreted as the distance at which the spatially dependent component 

vanishes (i.e., c(hi,j)
 = 0). On the other hand, interpretations of r in the other models, in which c(hi,j) 

becomes zero only asymptotically, are not necessarily straightforward. Hence, the effective range, r*, 

denoting the distance at which 95% of the spatially dependent component vanishes, has often been 

applied. It was numerically clarified that r* = 3r when the exponential model Eq.(2-9) is used, and r* =
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3r  when the Gaussian model Eq.(2-10) is used (Zimmerman and Stein, 2010). In the Matérn model 

shown in Eq.(2-12), Γ(v) is the gamma function and Kv( • ) is the modified Bassel function. The 

Matérn model is v – 1 times differentiable. In the other words, v controls the smoothness of this model. 

The exponential model is a particular case of the Matérn model with v = 0.5, and the Gaussian model 

is an extreme case of the Matérn model, with ν → ∞ (Hoeting et al., 2006). 

Because of such generality, use of the Matérn model has been encouraged, for example, by 

Stein (1999). On the other hand, the spherical model, which provides a sparse covariance matrix, is 

computationally more efficient (Gneiting and Guttorp, 2010).1 Note that all of the models assume hi,j 

to be a Euclidean distance, and positive definiteness is not guaranteed when non-Euclidean distance 

measures are applied (Curriero, 2006). In addition, the spherical model is valid only on a Euclidean 

space with a dimension below 3 (Fuentes and Reich, 2010). 

 

Figure 2-1: Image of covariogram: c(hi,j) 

 

 
Figure 2-2: Image of the smoothing parameter: v. 

Note: This diagram illustrates three covariograms, each with the same range, but with different smoothing 

parameters. 

                                                
1 Since the spherical function forces zero values for all c(hi,j) with hi,j > r, C becomes sparse if r is 

small. 

c(hi,j) 

Range 

Nugget 

Partial-sill 

hi,j 

 

c(hi,j) 

hi,j v=0.5 

v =1.0 

v=2.0 
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On the other hand, various negative definite functions have also been proposed for the γ(hi,j). 

The standard functions are as listed below: 
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       Spherical model 
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Eqs.(2-14), (2-15), (2-16), and (2-17) are given by substituting Eqs.(2-9), (2-10), (2-11), and (2-12) 

into Eq.(2-6). These models describe both the second-order stationary process, which is described by 

c(hi,j), and the intrinsic stationary process, which is described by γ(hi,j). In contrast, Eq.(2-13) does not 

have a corresponding c(hi,j), and the linear model, which describes the intrinsic stationary process, 

cannot describe the second-order stationary process. 

 

 

 

Figure 2-3: Image of semivariogram: γ(hi,j) 
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2.2.3. Geostatistical model 

Geostatistics models the response variables, y, as 

 εµy += , (2-18) 

where µ = E[y] is a deterministic non-spatial mean function, and ε is a spatial stochastic process. In 

many cases, µ is given by a linear function and ε is given by the second-order (or strict) Gaussian 

process as 

 εXβy += ,        ),(~ C0ε N , (2-19) 

where X is a matrix of explanatory variables, and β is a vector of parameters. 

 

2.2.4. Estimation 

 While a number of estimation methods have been proposed for geostatistical models, 

including the maximum likelihood method (Mardia and Marshall, 1984), the restricted maximum 

likelihood method (e.g., Stein, 1999), the Bayesian estimation method (e.g., Handcock and Stein, 

1993), and the estimation function-based methods (e.g., Schabenberger and Gotway, 2005), the 

weighted least squares (WLS)-based method (Cressie, 1985) is one of the most standard approaches. 

In what follows, I explain the WLS-based parameter estimation for Eq.(2-19). 

I first consider the case that Xβ is known. In this case, ε is given by ε̂  = y – Xβ. Consider 

fitting γ(h) to { )(ˆ sε – )(ˆ hsε + } 2 (see Eq.2-5), where s and h are vectors whose elements are si and hi,j, 

respectively, and ε(s) is ε with its locations are specified using s. It is known that { )(ˆ sε – )(ˆ hsε + } 2 

has a large variance, and the variance makes the fitting inefficient (Cressie, 1993). To cope with this 

problem, γ(h) is fitted after the elements in { )(ˆ sε – )(ˆ hsε + } 2 are averaged (Schabenberger and 

Gotway, 2005). The averaging is performed in each of the lag-distance zones, which are 

pre-determined based on h. For example, the elements in { )(ˆ sε – )(ˆ hsε + } 2, with h between 0 m and 

10 m, are averaged; the elements in {)(ˆ sε – )(ˆ hsε + } 2, with h between 10 m and 20 m, are averaged; 

and so on. Typically, to stabilize the fitting, the lag-distance zones are decided so as to include at least 

30 location pairs in each lag. In addition, the elements in { )(ˆ sε – )(ˆ hsε + } 2 with h more than half the 

maximum lag-distance (i.e., max[h]) are discarded. 
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Figure 2-4: Image of the empirical semivariogram and semivariogram model 

 

 

There are several averaging equations. For example, Matheron (1963) proposes Eq.(2-20): 

 ∑ +−=
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l N
h 2)}(ˆ)(ˆ{

2

1
)(ˆ hsεsεγ ,  (2-20) 

where l {= 1,... L} is the index of the lag-distance zones, hl is their corresponding distance, and Nl is 

the number of pairs in the l-th zone. Cressie and Hawkins (1980) indicate that Matheron’s estimator, 

which contains a squared term, is not robust for outliers, and propose the following robust averaging 

equation: 
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As a result of replacing Σ{ )(ˆ sε – )(ˆ hsε + } 2 with {Σ| )(ˆ sε – )(ˆ hsε + |1/2} 4, the Cressie and Hawkins’s 

estimator is more robust than Matheron’s estimator (Cressie, 1993). In both estimators, )(ˆ lhγ  is 

called an empirical semivariogram. 

The empirical semivariogram is defined only for L lag-distances: hl (see Fig.2-4). Hence, to 

model semivariograms on arbitrary distances, a semivariogram model (e.g., the exponential model) 

must be fitted to the empirical semivariogram. Cressie (1985) suggests fitting a semivariogram model, 

)( lhγ , using the non-linear WLS that minimizes Eq.(2-22): 

 ∑∑ −
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N 2
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Eq.(2-22) can be minimized using standard non-linear statistics packages.  

In summary, when Xβ in Eq.(2-19) (or µ in Eq.2-18) is known, a semivariogram model can 

be fitted using the following steps: (i) Calculate ε̂  = y – Xβ; (ii) Estimate the empirical 

semivariogram of ε̂  by averaging { )(ˆ sε – )(ˆ hsε + } 2 using either Eq.(2-20) or Eq.(2-21); and (iii) Fit 

a semivariogram model for the empirical semivariogram by minimizing Eq.(2-22). 

 On the other hand, when Xβ (or µ) is unknown, β and θ must be estimated simultaneously. 

This is because β depends on θ, and vice versa. The iterative-reweighted least squares (IRLS) method 

is applicable for the simultaneous estimation. The estimation procedure is described as follows 

(Schabenberger and Gotway, 2005): 

1: Estimate the ordinary least squares (OLS) estimates of β, β̂ . 

2: Calculate ε̂  = y – X β̂ . 

3: Estimate the empirical semivariogram using Eq.(2-20) or Eq.(2-21), and fit a 

semivariogram model using the non-linear WLS estimation. 

4: Construct C, with elements c(h), given by substituting γ(h) estimated in step 3 into 

Eq.(2-6). 

5: Update β̂  using its generalized least squares (GLS) estimator, which is defined as 

 yCXXCXβ
111 )(ˆ −−− ′′= . (2-23) 

6: Iterate steps 2 to 5 until the parameter values converge. 

 

The variance-covariance matrix of the resulting β̂  is given as 

 11 )(]ˆ[ −−′= XCXβVar . (2-24) 

Eq.(2-24) is useful when testing the significance of β̂ . 
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2.2.5. Kriging 

The best linear unbiased prediction that applies a geostatistical model is called kriging. This 

section explains kriging, in line with Schabenberger and Gotway (2005). 

Suppose that y0 is the unobserved response variable at site s0. The basic equation for y(s0), 

based on Eq.(2-19), is 

 000 ε+′= βxy ,     2
0 ][ σε =Var ,     cε =],[ 0εCor , (2-25) 

where x0 is a vector of explanatory variables, ε0 is the disturbance with variance σ2, and c is a vector 

of covariances between ε0 and ε. 

The objective of kriging is to find the best linear unbiased predictor (BLUP), 0ŷ , of y0 that 

satisfies the following conditions: 

Best (minimum variance) ])ˆ[(minarg 2
00

)(ˆ 0

yyE
sy

− , (2-26) 

Linearity yλ ′=0ŷ , (2-27) 

Unbiasedness ]ˆ[][ 00 yEyE = . (2-28) 

0ŷ  is identified by identifying λ that satisfies above conditions. Since E[y0] = x0'  β̂ , the unbiasedness 

suggests that x0'  β̂  = E[ 0ŷ ], whereas the linearity suggests that E[ 0ŷ ] = E[λ'y] =λ' X β̂ . These two 

conditions imply that x0'  β̂  =λ' X β̂ , or equivalently, x0' = λ' X.  

On the other hand, E[(y0– 0ŷ )2] in Eq.(2-26) can be expanded using Eqs.(2-25) and (2-27) as 

 ])[(])ˆ[( 2
0

2
00 yλ ′−=− yEyyE ,  

 ],[][][ 00 yCovVaryVar yλyλ ′−′+= , 

 cλCλλ ′−′+= 22
0σ . (2-29) 

After all, the BLUP can be identified by minimizing Eq.(2-29) on condition that x0' =λ' X. The 

problem is solved by minimizing the Lagrangian, which is defined as 

 )(22 0
2
0 xλXmcλCλλ −′′+′−′+= σL , (2-30) 

where m is a vector of Lagrange multipliers. By differencing Eq.(2-30) with respect to λ and m, the 

following first-order conditions are given: 

 0XmcCλ
λ

=+−=
∂
∂

222L , (2-31) 
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 0xλXm
m

=−′′=
∂
∂

)(2 0L . (2-32) 

By solving Eqs.(2-31) and (2-32), λ is given as  

 0
1111 )( xXCXCXXCcCλ

−−−−− ′+= X , (2-33) 

11111 )( −−−−−− ′′−= CXXCXXCCCX . 

Consequently, )(ˆ 0sy  is given by substituting Eq.(2-33) into Eq.(2-27), as follows: 

 )ˆ(ˆˆ 1
00 βXyCcβx −′+′= −y , (2-34) 

yCXXCXβ
111 )(ˆ −−− ′′= . 

The mean square prediction error (MSPE) of 0ŷ , which is called kriging variance, is also given by 

substituting Eq.(2-33) into Eq.(2-29), as follows: 

 )())((]ˆ[ 1
0

111
0

12
0 XCcxXCXXCcxcCc −−−−− ′−′′′−′+′+=σyMSPE . (2-35) 

Thus, the interpolated value of y0 is given by 0ŷ , and its uncertainty can be measured using 

Eq.(2-35).  

 For more details about geostatistics, see, for example, Cressie (1993), Schabenberger and 

Gotway (2005), Gelfand et al. (2010), and Cressie and Wikle (2011). 
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2.3. Spatial filtering 

 While conventional geostatistics models spatial dependence uses a distance function (i.e., 

c(h) or γ(h)), the spatial filtering approach (e.g., Griffith, 2010) models it with map pattern variables 

(Getis and Griffith, 2002). There are two main spatial filtering approaches: the approach of Getis 

(1990), which defines the map pattern variables by applying the Gi statistics (Getis and Ord, 1992); 

and the approach of Griffith (1996), which is called eigenvector spatial filtering (ESF), which defines 

the variables based on the Moran coefficient (MC: Moran, 1950). One of the biggest advantages of 

these spatial filtering approaches is simplicity (Griffith, 2003; Getis, 2010). Their basic models are 

identical to the standard linear regression model, and accordingly, their implementations, estimations, 

and extensions are straightforward. In addition, the effectiveness of the spatial filtering approaches 

has been recognized in various purposes including parameter estimations in the presence of spatial 

dependence (e.g., Tiefersdorf and Griffith, 2007; Thayn and Simanis, 2013), and exploratory spatial 

data analysis (ESDA), such as spatial pattern analysis and spatial interpolation (e.g., Griffith, 2003; 

Legendre and Legendre, 2012). 

 This section explains the Gi statistics-based spatial filtering approach and the MC-based 

approach. 

 Note that the term "spatial filtering" is also known as a technique that separates an image into 

signals (or a de-noised image) and noise, in the study field of image analysis (e.g., Russ, 2006). For 

example, the moving average filter separates an image into a de-noised image, which is defined by the 

moving average of adjacent pixel values, and noise. Similar interpretation is possible for the spatial 

statistical spatial filtering techniques too: they decompose underlying process in spatial data into pure 

(or de-noised) spatial dependent component and noise that could not be explained by the spatial 

dependent component. Thus, spatial filtering in spatial statistics and spatial filtering in image analysis 

are compatible. 

 

2.3.1. Gi statistics-based spatial filtering 

The Gi statistics is a local indicator of spatial association (LISA: Anselin, 1995) that detects 

local spatial clusters, and is defined as 
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where w(hi,j) represents the spatial connectivity between si and sj, and yi is a response variable. Here, 

w(hi,j) can be defined, for example, by applying a distance-decay function or a function that takes 1 if 

hi,j is less than a threshold, and 0 otherwise (see, e.g., Getis, 2010). By design, yi must be positive. The 

value of Gi is large if higher values are clustered nearby to si, and small (close to zero) if lower values 

are clustered nearby to si. That is, a high Gi suggests that si is a hot spot, and a low Gi suggests that si 

is a cool spot. 

The significance of hot or cool spots is tested using the expectation and variance of Gi, which 

are given under the randomized hypothesis, as 
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For more details about Gi statistics, see Getis and Ord (1992) and Ord and Getis (1995). 

 The Gi statistics-based spatial filtering approach filters the spatially dependent component in 

yi using Gi
 /E[Gi]. Here, Gi

 /E[Gi] describes the deviation of the spatial pattern of yi from the 

hypothesized spatially randomized distribution (Gi
 /E[Gi] is greater than 1 if the response variables 

nearby si are larger than expected, and Gi
 /E[Gi] is smaller than 1 if the values are smaller than 

expected). In other words, Gi
 /E[Gi] captures the spatial patterns of yi. Accordingly, by dividing yi by 

Gi
 /E[Gi], the spatial patterns in yi are filtered out, and the spatially random (or independent) 

component in yi, y
 NS

i, is given as 

 i
i

iNS
i y

GE

G
y

1

][

−









=

.
 (2-39) 

In addition, the spatially non-random (or dependent) component in yi, y
S
j, is given by yi −y NS

i. 

The Gi statistics-based spatial filtering approach is useful for spatial dependence modeling. 

For example, Getis (2010) estimates the linear regression model, which is defined as 
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 iiii xxy εββα +++= 22,11, ,   ),0(~ 2σε Ni , (2-40) 

by applying the following procedure: (i) Spatial dependences in yi, xi,1, and xi,2 are tested using the 

Moran coefficient (see §2.3.1.1); (ii) Variables with significant spatial dependence (MC) are 

decomposed into spatially dependent and independent components by applying the Gi statistics-based 

spatial filtering technique. In this case, when spatial dependences in yi and xi,1 are significant, the 

model is modified as follows: 

 ii
NSNS

i
SS

i
SS

ii xxxyy εββββα +++++= 22,11,11, ,   ),0(~ 2σε Ni ; (2-41) 

(iii) The parameters in the modified model are estimated using OLS. Getis and Griffith (2002) and 

Getis (2010) demonstrate that this simple procedure effectively removes spatial dependence in 

residuals and improves model accuracy. 

 

2.3.2. MC-based spatial filtering 

2.3.2.1. MC-based eigenfunctions 

The Moran coefficient (MC), which is defined by the following equation, is a spatial 

dependence diagnostic statistics: 

 
Mzz

MWMzz
W11 ′

′
′

= N
MC

,
 (2-42) 

where 1 is a vector of ones, z is a vector of diagnosed variables, W is a binary and symmetric 

connectivity matrix with diagonals of 0, and M  is a projection matrix. Two types of the projection 

matrix M  have been applied, namely I–11'/N and I–X(X ' X)-1X' (e.g., Anselin and Rey, 1991). Here, 

I–11'/N is used if z contains raw data, and I–X(X ' X)-1X' is used if z is a residual vector of a linear 

regression model. The expectation and variance of MC given under the randomized hypothesis is as 

follows (see Tiefelsdorf and Griffith, 2007): 
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where K is the number of variables in X. In this case, MC > E[MC], MC = E[MC], MC < E[MC] 

imply positive spatial dependence, no spatial dependence, and no spatial dependence, respectively. 
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The significance of MC can be tested using Eqs.(2-43) and (2-44). 

Consider the eigen-decomposition of MWM  (i.e., MWM  
→EfullΛfullEfull', where Λfull is the 

diagonal matrix of the eigenvalues λ1,...λl,...λN and Efull =
 { e1,...el,...eN} is a matrix of the eigenvectors). 

When M = I–11'/N, only one eigenvalue in Λfull indicates 0, and the eigenvectors in Efull are mutually 

orthogonal (el'el = 1 and el'el = 0) and orthogonal to 1 (1'el = el' 1
 = 0). On the other hand, when M  = 

I–X(X ' X)-1X', K (rank of X) eigenvectors indicate 0, and the eigenvectors in Efull are mutually 

orthogonal and orthogonal to X (X'el = el' X
 = 0) (Griffith, 2003). 

In both cases, el' 1
 = 0 is satisfied, provided that X includes a constant. This means that the 

orthogonality also implies no correlation among {e1,...el,...eN}. More precisely, using el' 1
 = 0, the 

numerator of the correlation coefficient between el and em results in the equation representing 

orthogonality: (el –
 1el' 1)' (em –

 1em' 1) → el'
 em. Thus, the eigenvectors are both orthogonal and 

uncorrelated. 

Calculate MC of el as 
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 (2-45) 

Here, we use the orthogonality among e1,...el,...eN (i.e., el'el = 1 and el'el = 0) and the property that Mel 

= el
1. Eq.(2-45) suggests that the MCs of e1,...el,...eN are proportional to their corresponding 

eigenvalues, λ1,...λl,...λN. 

                                                
1 When M = I–11'/N, Mel = (I–11'/N)el = el –(11' el)/N = el. Here, 1' el =0 is used for the expansion. 

On the other hand, when M  = I–X(X ' X)-1X', Mel = (I–X(X ' X)-1X')el = el –X(X ' X)-1X'el = el. Here,  

X' el =0 is used for the expansion. Thus, Mel = el. 
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 Consequently, the eigenvectors provide distinct (i.e., orthogonal and uncorrelated) map 

pattern descriptions of latent spatial dependence, with each level being indexed by an MC that is 

proportional to its corresponding eigenvalue (Griffith, 2003). Specifically, e1 is the set of numerical 

values with the largest positive MC (maximum positive spatial dependence) achievable by any set of 

real numbers for the spatial arrangement defined by C. Then, e2 is the set of values with the largest 

positive MC uncorrelated with, and orthogonal to, e1, and eN is the set of numerical values with the 

largest negative MC (maximum negative spatial dependence) achievable that is uncorrelated with, and 

orthogonal to, e1,... el,... eN-1 (see Fig.2-5). 

 

 

 

 

Figure 2-5: Images of the eigenvectors 

Here, the 1st, 5th, 10th, and 50th eigenvectors of MWM  (M = I–11'/N) defined on a 10 by 10 gridded 

space are plotted. 

 

 

 

 

 

1st eigenvector                          5th eigenvector 

10th eigenvector                         50th eigenvector 
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Suppose that Eγ = e1γ1 +... elγl + ... eLγL, where E is a matrix composed of L-eigenvectors in 

Efull (L < N ), where l is the index of the L-eigenvectors, and γl is the weight for the l-th eigenvector, 

then, the MC of Eγ is given, using Eq.(2-45), as 
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 (2-46) 

where λ1,... λl,..., λL are the eigenvalues corresponding to the L eigenvectors. Eq.(2-46) shows that the 

MC of Eγ is given by the weighted average of the MCs of the eigenvectors. In other words, not only 

the eigenvectors themselves, but also their linear combination, Eγ, describes the map pattern 

description of latent spatial dependence explained by MC. 

Note that decompositions of MC, such as Eq.(2-46), have often been discussed. For instance, 

the local MC (or local Moran’s I statistics), defined by Eq.(2-47), is a local indicator of spatial 

association (LISA: Anselin, 1995), and can be considered as a decomposition of the (global) MC. 

 ∑∑
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 (2-47) 

The local MC is used to test whether local spatial dependence is present around the i-th sample. The 

local MC is expressed using matrix notation as follows (Tiefelsdorf, 1998): 
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 (2-48) 

where W i is W with all elements replaced with zeros, except for the i-th row and column, and si is the 

scaling parameter for the i-th sample. The global MC is given by the local MCs as 
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Thus, similar to Eq.(2-46), the local MC is a decomposition of the global MC. 

 

2.3.2.2. Eigenvector spatial filtering 

The MC-based spatial filtering approach, called eigenvector spatial filtering (ESF), captures 

spatial dependence using Eγ. The basic linear model of ESF is 

 εEγXβy ++= ,
     

),(~ 2I0ε σN . (2-50) 

Since Eq.(2-50) is identical to the standard linear regression model, β and γ can be estimated using the 

OLS estimation. Provided that M  = I–11'/N, the estimates of β and γ are as follows: 
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and their variances are given as 
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On the other hand, if M  = I–X(X ' X)-1X', which imposes X'ei = ei'X
 = 0, their estimators and variances 

yield 
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Eq.(2-52) suggests that, if M  = I–11'/N, the correlation between X and E inflates the variances of β̂  

and γ̂ . Hence, M  = I–X(X ' X)-1X', which imposes no correlation between X and E, seems helpful, 
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for example, when identifying a model accurately (without aggravating the instability of β̂  and γ̂ ). 

On the other hand, considering the spatially dependent component correlated with X is useful in 

reducing the omitted variable bias, which is the bias due to factors that cannot be considered in the 

model (see LeSage and Pace, 2009). Thus, the assumption of M  = I–11'/N seems helpful when testing 

the significance of β̂  (and γ̂ ), considering the omitted variable bias problem. 

ESF is implemented as follows: (i) Efull and Λfull are extracted from MWM ; (ii) The 

eigenvectors responding to small eigenvalues, that is, small MCs (see Eq.2-45) are removed; and, (iii) 

Significant eigenvectors are chosen by applying an OLS-based stepwise variable selection procedure 

for Eq.(2-50). Step (ii) is conducted by removing the eigenvectors with eigenvalues that are small or 

of the wrong nature. For example, the criterion MC[el]/MC[e1]
 > 0.25 has been used to analyze 

positive spatially dependent components (Griffith, 2003), while MC[el]/MC[e1]
 < –0.25 has also been 

applied when analyzing negative spatial dependent components (e.g., Griffith, 2006). Step (iii) is done 

by maximizing the model accuracy (e.g., adjusted R2 maximization) or minimizing residual spatial 

dependence (measure: MC). In each step of the stepwise selection procedure, the eigenvector that 

maximizes the accuracy or minimizes the residual spatial dependence is introduced into the model. In 

the latter case, a stopping rule is needed. Tiefelsdorf and Griffith (2007) set this rule using |MC[ε]| < 

0.01 (i.e., the procedure is conducted until |MC| of ε is less than 0.01).  

As in the Gi statistics-based approach, the ESF is also simple (Griffith, 2003). The basic ESF 

model is identical to the standard linear model, and is therefore easy to implement and extend, for 

example, by combining it with standard non-spatial models (e.g., Poisson and logistic regression: see, 

e.g., Griffith, 2002; 2004a). Another advantage of the ESF is its effectiveness in capturing spatial 

dependence. Tiefelsdorf and Griffith (2007) show that the ESF effectively removes spatial 

dependence from residuals, and Griffith (2006) demonstrates its effectiveness in analyzing negative 

spatial dependent components hidden by dominant positive spatial dependence. Thayn and Simanis 

(2013) show that the ESF reduces spatial misspecification errors, increases the strength of a model fit, 

frequently increases the normality of the model residuals, and can increase the homoscedasticity of 

model residuals. Hughes and Haran (2013) demonstrate the usefulness of an ESF-based generalized 

linear mixed model for a spatial dependence analysis that considers spatial confounding. Spatial 

confounding occurs when variance inflation, caused by collinearity, is introduced between spatial 
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processes in the explanatory variables and the spatial process in the response variables (see e.g., 

Paciorek, 2010). 

Applications of ESF are increasing because of its practicality, expandability, and other 

appealing factors. For instance, Chun (2008) and Griffith (2009) use ESF for spatial interaction 

analyses (see also, Tiefelsdorf, 2003). Pecci and Pontarollo (2010), Patuelli et al. (2011), and 

Cuaresma and Feldkircher (2013) employ it for economic analyses. Griffith and Peres-Neto (2006) 

and Jacob et al. (2008) use it for ecological analyses, and Moniruzzaman and Paez (2012) use it for 

urban design analyses. Thus, ESF has become a popular way to address spatial dependence (Pace et 

al., 2011). 

 

 

 

2.4. Geographically weighted regression (GWR) 

While the geostatistical model and the spatial filtering models capture spatially dependence, 

GWR captures spatial heterogeneity by using spatially varying parameters. The basic model is given 

as 

 εXβy += i ,    ),(~ 2I0ε σN , (2-55) 

where βi is a vector of parameters that depend on location si. GWR estimates βi by imposing the 

constraint that the βis in each site are strongly related to nearby observations. In particular, the 

estimates for site si are given by Eq.(2-56). Here, a WLS estimator with larger weights is assigned for 

nearby samples, and smaller weights are assigned for more distant samples: 

 yWXXWXβ iii ′′= −1)( , (2-56) 

where W i is a diagonal matrix in which the j-th element describes the weight of the j-th sample for βi. 

The weight is modeled by a distance-decay function, k(hi,j). The standard weighting functions are as 

follows: 
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        Tri-cube model 
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where r is a bandwidth parameter. Small r means the existence of small-scale spatial heterogeneity, 

and as r increases, the estimates of βi asymptotically converge on the standard OLS estimates 

(Fotheringham et al., 2002). 

The value of r is estimated by cross-validation or by minimizing the corrected Akaike 

information criterion (AICc). The cross-validation minimizes the cross-validation score, which is 

defined as 

 ∑ −−
i

ii yy 2]ˆ[ , (2-60) 

where iy−ˆ  is given as 

 iiiy −− ′= βxˆ . (2-61) 

Here, xi is a vector of explanatory variables at si, and β-i is defined as 

 iiiiiii −−−
−
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1)( , (2-62) 

where X-i, y-i, and W-i are X, y, and W i, respectively, but without their i-th elements. On the other 

hand, the AICc minimization of the GWR model is defined as 
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where H is a matrix in which the i-th row, hi, is defined as 

 iiii WXXWXxh ′′′= −1)( , (2-64) 

and 2σ̂  is  
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By minimizing either Eq.(2-60) or Eq.(2-63), we can identify the optimal r. In both cases, r is 

estimated numerically. 

 For more details about GWR, see e.g., Fotheringham et al. (2002) and Wheeler and Paez 

(2010). 
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3. Areal Interpolation Problem: A GWR-based 

Approach 
 

 Chapter 3 and 4 discuss change of support problems for areal data. Specifically, chapter 3 

discusses the areal interpolation problem, and the discussion is arranged for the MAUP in chapter 4. 

This chapter establishes a GWR-based areal interpolation method by combining GWR with a 

standard geostatistical areal interpolation approach. The effectiveness of the constructed method is 

examined by applying a simulation study. After that, unknown municipal-level road stock data, which 

possibly form an important index in achieving a stock-type society, are interpolated by applying this 

method for the known prefectural-level road stock data. The advantages and disadvantages of the 

methods of statistical areal interpolation, including the proposed method, are discussed in this 

empirical study, and an additional GWR-based approach is presented based on this discussion. 

 

 

 

 

Figure 3-1: Image of areal interpolation 

 

 
           Population (10 thou.) 

        

 

100 
 

 
50 

 
25 

 
0 



37 

3.1. Introduction 

3.1.1. Review of areal interpolation studies 

Areal interpolation (aggregation unit conversion) has been discussed extensively among 

geographers (e.g., Wright, 1936; Tobler, 1979; Goodchild and Lam, 1980). Primal geographical areal 

interpolation methods are as follows (see also, Fig. 3-2): the areal weighting interpolation method 

(Wright, 1936) that interpolates data by a proportional allotment using areal weights; the 

point-in-polygon method (e.g., Sadahiro, 2000) that aggregates areal data that are replaced with point 

data; the dasymetric method (Wright, 1936; Fisher and Langford, 1995) that applies proportional 

allotment whose allotment weights are determined using supplementary data (e.g., population 

distribution only for residential area); the pycnophylactic method (Tobler, 1979), which models data 

using a spatially smooth function first, and aggregates the smoothed data after that; and the 

regression-based methods (Flowerdew and Green, 1989, 1992, 1994), which are based on the 

Expectation Maximization (EM) algorithm. Images of these methods are summarized in Fig.3-2. 

Among these methods, the dasymetric method, the pycnophilactic method, and the regression-based 

methods have been developed significantly. 

The dasymetric method has been discussed in quantitative geography, particularly, after its 

efficiency was recognized in some comparative studies in the 1990s (e.g., Fisher and Langford, 1995, 

1996; Mrozinski and Cromley, 1999). Extensions of the dasymetric method has been discussed 

extensively (e.g., Xie, 1995; Eicher and Brewer, 2001; Mennis and Hultgren, 2006; Reibel and 

Agrawal, 2007; Kim and Yao, 2010; Zhang and Qui, 2011; Schroeder and Riper, 2013; Langford, 

2013), and some of them reveal that areal interpolation accuracy heavily depends on the 

supplementary data quality. Thus, the dasymetric method has been discussed with the focus on how 

supplementary data are considered. 
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Figure 3-2: Images of the primal areal interpolation methods 
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The pycnophilactic method, which conducts spatially smooth interpolation, has been 

discussed mainly focusing on its theoretical aspects rather than use of supplementary data (e.g., 

Brillinger, 1990, 1994; Muller et al., 1997). In somewhat deferent context, Kyriakidis (2004) proposes 

a geostatistical method, which is called area-to-point (ATP) kriging. While ATP kriging also provides 

spatially smooth interpolation result, it is superior to the pycnophilactic method in that, as with 

conventional kriging, it minimizes MSPE. Some extensions of ATP kriging and the other 

kriging-based methods have been discussed in geostatistics (e.g., Kyriakidis, 2004; Yoo and 

Kyriakidis, 2006; Gooverts, 2006; Gotway and Young, 2007; Yoo, et al., 2010; Murakami and 

Tsutsumi, 2012). As an interesting finding, Yoo et al. (2010) shows that the pycnophilactic method 

and the ATP kriging solve similar problems, and, as a result, their interpolation results possibly be 

very similar. 

Finally, the regression-based method has been extended for hierarchical Bayesian modeling 

(e.g., Mugglin and Carlin, 1998; Mugglin et al., 1999, 2000). The hierarchical modeling-based 

approach is quite flexible. For example, Sahu et al. (2010) consider both spatial dependence and 

spatial heterogeneity, and, also, they consider multiple supplementary data. Thus, the hierarchical 

Bayesian areal interpolation is a recent hot topic in geostatistics (e.g., Gelfand, 2010; Sahu et al., 2010; 

Cressie and Wikle, 2011; Berrocal et al., 2012). 

 

3.1.2. Fundamentals of areal interpolation 

This section discusses the fundamentals of areal interpolation. Here, I assume that 

unobserved variables in non-aggregate level units are interpolated using observed variables given in 

each aggregate level unit. 

Areal interpolation is defined as a spatial interpolation that considers an aggregation 

mechanism, which is defined as 

 volumevolumevolume yNy = . (3-1) 

Here, yvolume is a vector of the unknown count/volume (extensive) variables given in the non-aggregate 

level units, volumey  is a vector of the known count variables given in the aggregate level units, and 

Nvolume is an aggregation matrix. Eq.(3-1) implies that the aggregations of the unknown variables in 
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yvolume must be equal to the known variables in volumey  (for example, the aggregations of municipal 

populations must be equal to actual prefectural populations). This property is called the volume 

preserving property (or the pycnophilactic property/the mass balance property), and is one of the most 

basic properties that must be considered in areal interpolation (Lam, 1983). 

 Eq.(3-1) can be expanded to describe the aggregation mechanism of density (intensive) 

variables, as follows: 

 Nyy = , (3-2) 

volumeyMy 1−= ,      volumeyMy 1−= ,     MNMN volume1−= , 

where M  is a diagonal matrix, the elements of which are weights for the non-aggregate level units, 

and M , which has the same elements, but for the aggregate level units. Eq.(3-2) means that the 

aggregated values of y (the non-aggregate level density variables) must be equal to y  (the aggregate 

level density variables). For example, when the elements in y are population densities, the elements in 

M  must be the areas of each unit. Because Eq.(3-1) and Eq.(3-2) are identical, the volume preserving 

property is satisfied if either equation is satisfied. As I will discuss later, the dasymetric method uses 

Eq.(3-1) for the volume preserving property, while many of the geostatistical studies use Eq.(3-2). 

 The interpolation equation of the dasymetric method (and the areal weighting interpolation 

method) is given by multiplying the generalized inverse matrix (e.g., Menke, 1989) of Nvolume, which 

minimizes the norm of yvolume, from the left side of Eq.(3-1), as follows: 

 volumevolumevolumevolumevolume yNNNy 1)(ˆ −′′= , (3-3) 

where the generalized inverse matrix, Nvolume' (Nvolume' Nvolume)-1, becomes a matrix describing a 

proportional distribution ratio. Eq.(3-3) shows that the dasymetric method provides a minimum-length 

solution to Eq.(3-1) (Kyriakidis and Yoo, 2005). It also implies that extensions of the dasymetric 

method are based on the minimum-length solution. 

A problem of the minimum-length solution is that it cannot consider spatial dependence.1 A 

possible extension that can do so is to model y in Eq.(3.2) using a geostatistical model, as 

 εXβy +=       ),(~ C0ε N . (3-4) 

Substituting Eq.(3-4) into Eq.(3-2) yields the following equation: 

                                                
1 The dasymetric method captures (spatial) heterogeneity by applying supplemental data. 
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where 0  (=N0) is a vector of zeros. The conditional expectation of y is given based on Eq.(3-5) as 

 )()(ˆ 1 NXβyNNCNCXβy −′′+= − . (3-6) 

Thus, y can be interpolated using Eq.(3-6). As with the standard geostatistics, this equation minimizes 

the MSPE. In addition, ŷ , as given by Eq.(3-6), satisfies the volume preserving property. This is 

easily confirmed by substituting ŷ  into Eq.(3-2):  

 ))()(( 1 NXβyNNCNCXβNy −′′+= −  

 )()( 1 NXβyNNCNNCNXβ −′′+= −   

 )( NXβyNXβ −+= ,  

 y= . (3-7) 

Many geostatistical areal interpolation methods, including the ATP kriging and some hierarchical 

Bayesian models, use Eq.(3-6) as their basic interpolation equation. 

 Thus, this study considers developing an areal interpolation method that is 

consistent with the aforementioned fundamentals. 

 

 

3.2. GWR-based areal interpolation 

3.2.1. Background 

While geostatistics is a sub-field in spatial statistics, non-geostatistical spatial statistical 

models, including the GWR and the spatial filter models, have rarely been applied for areal 

interpolation. Exceptionally, Lo (2008) and Lin et al. (2011) applied GWR for areal interpolation. 

However, their methods do not minimize MSPE. In the other words, their methods are insistent with 

the discussions in geostatistics (see §3.1.2). 

This section develops a GWR-based areal interpolation method that explicitly minimizes 

MSPE. 
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3.2.2. Model 

Following geostatistical approach, which applies a standard geostatistical model for the 

non-aggregate level model, this study applies the standard GWR model Eq.(2-55) for the 

non-aggregate level model. Namely, I assume Eq.(3-8) as the non-aggregate level model: 

 εµy += ,    ),(~ 2M0ε σN , (3-8) 

 kkβxµ ′= , (3-9) 

where xk is a vector of the explanatory variables in the k-th non-aggregate level unit, βk is a parameter 

vector for the k-th unit, and x  denotes a vector whose elements are given by x. In order to consider 

the weights (e.g., areas) of each unit, variances of ε are weighted by M . By substituting Eq.(3-8) into 

Eq.(3-2), my full-model is derived as 
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BLUP of y, which minimizes MSPE, is given, as same as the geostatistical models, as 

 )()(ˆ 1 NµyNNMNMµy −′′+= − . (3-11) 

While geostatistics controls spatial dependence by parameterizing its variance-covariance matrix C 

using a distance function, the GWR-based model controls spatial heterogeneity by the non-aggregate 

level spatially varying coefficient βk in µ. Note that, as Fotheringham et al. (2002) pointed out, GWR 

effectively captures spatial dependence, and, accordingly, the proposed GWR-based method would 

capture spatial dependence too. 

 The proposed model Eq.(3-10) can be summarized as GWRNyy = , where yGWR is y that is 

given by Eq.(3-8), and the predictor Eq.(3-11) is a MSPE-based solution of GWRNyy = . On the other 

hand, the dasymetric method provides the minimum-length solution of Nyy =  (or Eq.3-1). 

Accordingly, the proposed model can be considered as an extension of the dasymetric method that 

considers spatial heterogeneity and minimizes MSPE. 

The predictor ŷ  satisfies the volume preserving property. It is proved as 
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 ))()(( 1 NµyNNMNMµNy −′′+= −  

 )()( 1 NµyNNMNNMNµ −′′+= −   

 )( NMyNM −+=   

 y= . (3-12) 

 

 

3.2.3. Estimation 

Parameters in our model Eqs.(3-10) must be estimated on condition that y is unknown and 

y  is known. Some geostatistical studies prove consistency of aggregate level model-based parameter 

estimation (e.g., Nagle et al., 2011). Hence, this study also considers estimating parameters using the 

aggregate level model in Eq.(3-10), i.e., 

 NεNµy += ,     ),(~ NNM0Nε ′N , (3-13) 

The GLM estimator of βk is given as  

 kkkkk yNMNXXNMNXβ
111 )())((ˆ −−− ′′= . (3-14) 

NXWX 2/1−= kk ,      yNWy 2/1−= kk ,      NNWW ′= kk . 

kβ̂  is identical to the estimator of the standard GWR. Chapter 4 discusses properties of the estimator 

from the viewpoint of MAUP. 

The proposed method is implemented as follows: (i) The optimal bandwidth parameter in 

Wk is estimated via a cross-validation based on Eq.(3-13); (ii) kβ̂  is estimated by substituting the 

calibrated bandwidth into Eq.(3-14); (iii) ŷ  is predicted by substituting the estimated kβ̂  into 

Eq.(3-11). 

Following ATP kriging (see §3.1), I refer to the proposed method ATP GWR. 
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3.2.4. Non-negative constraint 

One of the drawbacks of ATP GWR is that it allows negative interpolated values whereas 

negative interpolated values are physically impossible in most cases (Yoo et al., 2010). For example, 

interpolated population must be non-negative. Thus, this section considers introducing a non-negative 

constraint in our model. 

The proposed method minimizes MSPE of y, which is modeled by Eq.(3-8), on condition 

that Eq.(3-2). The minimization problem is written as 

 )()(minarg 1
µyMµy

y
−′− − , (3-15) 

s.t.  yNy = . (3-16) 

Hence, by solving the problem of minimizing Eq.(3-15) on condition that Eq.(3-16) and Eq.(3-17), a 

non-negative constraint can be introduced. 

 0y >  (3-17) 

Let expand Eq.(3-15), and rewrite the minimization problem as 

 µMµyMµyMy
y

111 2minarg −−− ′+′−′ , (3-18) 

 s.t.  yNy = ,    0y > .  

Eq.(3-18) is identical to the basic form of the quadratic programming problem (e.g., Nocedal and 

Wright, 2006), which is given as 

 .
2

1
minarg const+′−′ ycQyy
y

, (3-19) 

aAy ≤ ,      bBy = . 

where Q, A, and B are known matrixes, and a, b, and c are known vectors. In our setting, Q = 

(1/2)M -1, A is an identity matrix, B = N, a is a vector of –1s, b = y , c = 2M -1
µ, and const. =µ' M

-1
µ 

(compare Eq.3-18 and Eq.3-19). After all, the non-negative is introduced by replacing the 

interpolation applying Eq.(3-11) with the interpolation by solving the quadratic programing problem. 
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3.3. A simulation study 

3.3.1. Outline 

This section compares accuracies of areal interpolation methods by employing the Monte 

Carlo simulation proposed by Fisher and Langford (1995). This simulation evaluates interpolation 

accuracies to non-aggregate level units repeatedly by varying aggregate level units P times. This study 

applies the minor municipal districts in Ibaraki prefecture for the non-aggregate level units, and the 

data interpolated are the employee numbers in 2006 (sample size = 4,800: Fig.3-3). 

The aggregated level units are generated by iterating the following procedure P times: (i) N 

minor municipal districts are randomly chosen; (ii) Each of the N units are expanded by merging them 

with their adjacent minor municipal districts; (iii) If a minor municipal district is included in more 

than one expanded units, one of the expanded unit including the minor municipal district is selected 

randomly and the minor municipal district is merged with it; (iv) Steps (ii) and (iii) are repeated until 

all minor municipal districts are included in any of the expanded units. Following Cockings et al. 

(1997), we set N to 50, and P to 300. Namely, areal interpolations from the synthetic 50 units to the 

4,800 minor municipal districts are iterated 300 times. 

 

 

 

 

Figure 3-3: The employee numbers in the minor municipal units 

 



46 

This simulation examines whether or not the proposed GWR-based method (ATP GWR) 

outperforms the standard areal interpolation methods: the areal weighting interpolation method (AW) 

and the dasymetric method (DA). 

The proportional distribution ratios (i.e., the elements in Nvolume or N) used in DA and ATP 

GWR are given by the building land areas in the minor municipal units. In the other words, DA and 

ATP GWR distribute the employee numbers only for building lands. Besides, ATP GWR considers the 

following explanatory variables: ratio of urban area; total length of roads per unit area (km/km2); 

averages of the railway distances (km) from the nearest station to the Tokyo and Mito stations that are 

weighted by their numbers of annual passengers (people). Note that the Mito station is the central 

station in Ibaraki prefecture. The tri-cube function Eq.(2-59) is used in ATP GWR to model spatial 

heterogeneity, and the bandwidth parameter r is estimated via the cross-validation. 

Calculations in this study were performed using R 2.11.1 (provided by CRAN), and 

visualization was done using ArcGIS 10.1 (provided by ESRI). 

 

 

Table 3-1: Response Variables and Explanatory Variables  

Variables Description Source 

Employee  

Numbers 

Numbers of employees in each municipal unit or minor 

municipal district 

Ministry of Internal 

Affairs and 

Communications 

Statistics Bureau 

Building land 

Building land areas that are calculated by aggregating 

the indicator variables by 100m × 100m grids, 

indicating 1 if the grid is a building land, and 0, 

otherwise 
NLNI 

Urban_ratio Ratio of urban area 

Road_density Length of roads per unit area 

TM_dist 

Averages of the railway distances from the nearest 

station to the Tokyo and Mito stations that is weighted 

by their numbers of annual passengers 

NLNI;  

East Japan Railway 

Company 

NLNI: National Land Numerical Information download service 
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Figure 3-4: Spatial distribution of the building land areas 

 

3.3.2. Result 

The root mean square error (RMSE: Eq.3-20) and the mean absolute error (MAE: Eq.3-21), 

which are applicable even if some elements in y are zeros, are used for accuracy evaluations. 
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where yk is the actual employee number in k-th minor municipal district and kŷ  is the interpolated 

employee numbers in that district. 

The RMSEs and MAEs of AW, DA, and ATP GWR are summarized in Tables 3-2 and 3-3. 

The result indicates that the RMSEs and MAEs of the proposed method are better than those of AW 

and DA on average. However, these differences between ATP GWR and DA are not so large. Hence, I 

test their difference using the Tukey’s test (Tukey, 1977), a test for multiple comparison. Table 3-4 

summarizes the test results. The table shows that the accuracies of DA and ATP GWR are 

significantly different at the 1% level. 

On the other hand, the maximums and the standard deviations of the RMSEs and MAEs of 

GWR are greater than those of DA. Thus, the performance of GWR is unstable. To overcome this 
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problem, applying Bayesian estimation, which is a sort of shrinkage estimation, might be helpful. 

Subsequently, MAE for each unit, which is defined as 

 ∑
=

−=
300

1

)( |ˆ|
300

1

iter

iter
kkk yyMAE , (3-22) 

where iter is the index of the iteration numbers, are plotted in Fig. 3-5. This figure shows that the 

accuracy of AW is worse, and that the accuracy of ATP GWR is superior to DA, particularly in the 

middle and southeastern areas. 

 

Table 3-2: Summary statistics of RMSE 

Statistics AW DA ATP GWR 
Mean 769 555 549 
Median 767 555 545 
Standard deviation 27.0 13.2 19.8 
Maximum 883 618 629 
Minimum 702 512 512 

 

 

 

Table 3-3: Summary statistics of MAE 

Statistics AW DA ATP GWR 
Mean 370 264 257 
Median 370 264 255 
Standard deviation 8.28 2.92 6.43 
Maximum 401 272 287 
Minimum 346 255 249 

 

 

 

Table 3-4: Test result of the differences among the methods using Tukey’s test 

 RMSE MAE 
Pair t-value Significance t-value Significance 

AW  –  DA 139 ***  238 ***  
AW  –  ATP GWR 143 ***  224 ***  
DA  –  ATP GWR 3.69 ***  14.5 ***  

*, **  and ***  represent significant levels (10%, 5%, and 1%, respectively) 

 

 

 



49 

 

    

AW 

 

 

    

DA                        ATP GWR 

 

Figure 3-5: MAE of each method 
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Finally, interpolation results of the three methods are plotted in Fig. 3-7. Here, for easy 

understanding, the employee numbers are interpolated using the municipal level employee numbers 

(Sample size: 48; Fig.3-6). The results suggest that the interpolation results of DA and ATP GWR, 

which consider supplementary data, are much more similar to the true distribution (Fig. 3-3) than the 

result of AW. This result agrees with geographical studies that emphasize the importance of 

considering supplementary data (e.g., Fisher and Langford ,1995; 1996). The result of DW appears to 

be smoothed overly, whereas the result of ATP GWR is less smooth, which is more similar to the true 

distribution. The over-smoothness of DA would be due to its strong assumption that the employees 

are distributed evenly in building lands. Thus, effectiveness of GWR is verified from the viewpoint of 

avoiding such an over-smoothed result. 

 

 

 

 

Figure 3-6: Municipal level employee numbers 
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Figure 3-7: Interpolation results 
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3.4. An empirical study 

3.4.1. Backgrounds 

Building stock (total floor area) data have often been used as “basic units” in economic 

analysis. For instance, the Flood Control Project Economic Assessment Manual issued by the 

Ministry of Land Infrastructure, Transport, and Tourism (MLIT) estimates flood damage costs to 

buildings using building stock data (flood damage cost = total floor area × appraised value of 

buildings per unit area), and energy consumption is estimated using building stock data in many cases 

(e.g., Yamagata et al., 2013). In addition, building stock data would be required to achieve a 

stock-type society. 

Given this background, the importance of building stock data has been recognized, and, 

since 2010, Building Stock Statistics have been provided by the MLIT each year. These statistics 

estimate the stock amounts using the Housing and Land Survey, Corporations Survey on Buildings, 

Statistics Survey on Construction, and so on. They provide building stock amounts in each category 

(residence/non-residence, wooden/non-wooden, completion period). However, the data are only 

available at the prefecture level, whereas more spatially detailed (e.g., municipal level) stock data are 

required for, for example, compact city planning and climate change adaptation planning. Accordingly, 

this study considers constructing municipal level building stock data. 

A bottom-up approach that estimates stocks by compiling micro level data, such as GIS data 

of buildings, would be an effective way to construct accurate municipal building stock data. However, 

performing such an approach for all municipalities in Japan would be prohibitively costly. On the 

other hand, a top-down approach that interpolates the municipal building stocks using the prefectural 

data would be a far more efficient way to construct the data. 

Thus, this section considers applying areal interpolation techniques, including ATP GWR, to 

municipal-level building stock estimation. 
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3.4.2. Review of municipal level building stock estimation 

The Property Tax Ledger (issued by the Fixed Property Tax Division, Local Tax Bureau) and 

the Basic Survey of City Planning (issued by each municipality) are the prime sources of municipal 

level stock data (Sakata and Yoshikawa, 2001). 

The Property Tax Ledger is based on site surveys by municipalities, and is updated every 

year. Since the objective of this ledger is taxation, it is quite accurate, and therefore, using the data is 

the best way to accurately construct the municipal level stock data (Sakata and Yoshikawa, 2001). 

However, completing the municipal data for multiple years using the Property Tax Ledger would 

seem to be difficult. 

 The Basic Survey of City Planning comprises GIS data, and is constructed every five years 

based on the Fundamental Land Classification Survey. The data are based on aerial surveys and site 

surveys. As investigated by Miyagi (2009) and Tsutsumi et al. (2012), Chiba and Kanagawa are the 

only prefectures in the Tokyo metropolitan area that provide GIS data. In other words, this data is not 

yet available for all prefectures. 

 With regard to residential building stocks, municipal level building stock data are assessed 

by the Housing and Land Survey, which is a basis for the Building Stock Statistics. However, this 

survey does not provide non-residential building stocks. To the best of the author’s knowledge, no 

attempt has yet been made to provide detailed non-residential stock data across Japan. 

 This section applies areal interpolation methods to the prefecture level data of the 

Building Stock Statistics, and estimates the municipal level residential and non-residential stock 

amounts. §3.4.3 compares the effectiveness of the areal interpolation methods from the viewpoint of 

the building stock estimation, and §3.4.4 performs the building stock estimation based on the results 

of the comparison. 
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3.4.3. Comparative analysis of the building stock estimation 

3.4.3.1. Data and models 

In this section, the ATP GWR model is used to estimate the municipal residential stocks that 

were completed by 2005 (sample size: 1,803) using the prefectural stock data (Building Stock 

Statistics). Then, the accuracy of the estimates is measured by comparing the results to the actual data. 

This section also compares broader several methods: the areal weighting interpolation method (AW), 

the dasymetric method (DA), the geostatistical method, with predictive equation given by Eq.(3-6) 

(GS2: see Gotway and Young, 2007), and the ATP GWR model. In addition, I apply the geostatistical 

method implemented in ArcGIS 10.2 (GS1). GS1 is the standard form of ATP kriging, and has the 

following predictive equation: 

 ))((ˆ N1yNNCNC1y αα −′′+= , (3-23) 

where α is a parameter. GS1 is a geostatistical model that does not consider explanatory variables. 

Among the methods compared, AW and GS1 are easily implemented using ArcGIS, and DA is also a 

simple proportional distribution. Thus, AW, DA, and GS1 are practical. 

DA, GS2, and ATP GWR have the advantage that the distribution ratios (the elements of N) 

can be arranged using supplementary data, which I do in this study using the building land area in 

each municipality (owing to a limitation of ArcGIS, GS1 does not have this advantage). In addition, 

the number of railway stations and the densities of buildings are used as explanatory variables in GS2 

and ATP GWR. Furthermore, to avoid negative building stock estimates, I introduce non-negative 

constraints into these methods. Note that AW and DA estimates are always non-negative. On the other 

hand, owing to a limitation of ArcGIS, non-negative constraints cannot be introduced into GS1. GS1 

and GS2 use the exponential covariogram model Eq.(2-9) to capture spatial dependence, and ATP 

GWR uses the Gaussian kernel model Eq.(2-57) to capture spatial heterogeneity. Finally, each of the 

methods is summarized in Table 3-5. 
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Table 3-5: Summary of the areal interpolation methods 

Method Distribution ratio Explanatory variables 
Spatial  

dependence 

Spatial 

heterogeneity 

AW Area 

NA 

  

DA Building land area   

GS1 Area ×  

GS2 
Building land area 

Numbers of railway 
stations per unit area  
Road densities 

×  

ATP GWR  × 

1) Data source: National Land Numerical Information download services 

 

 

Municipal level residential stock data are required for accuracy verification, and are 

provided by the Housing and Land Survey (see §3.4.2). However, the data differ to the Building Stock 

Statistics, which I use for estimation in that they do not consider shared spaces in apartments, which 

account for about 20% of total residential stock. Accordingly, this study evaluates the accuracy of the 

estimates using the Property Tax Ledger data (2005) in 241 municipalities in the Tokyo metropolitan 

area, which are corrected by Miyagi (2009) and Tsutsumi et al. (2012). However, these data have 

some limitations. The first is the region. In this regard, I consider that the target region includes both 

urban areas (e.g., central Tokyo area) and non-urban areas (e.g., Tama area), and we can grasp some 

sort of tendency using the data in this region. Secondly, Building Stock Statistics includes data on 

residences for public servants, which the Property Tax Ledger does not. This may introduce discord 

Figure 3-8: Prefectural residential stock densities (2005) 
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between these data in some municipalities. However, I consider this influence to be sufficiently small, 

because the Building Stock Statistics data and the prefectural level aggregations of the Property Tax 

Ledger are quite similar (see Fig. 3-9). Their error ratios are 7.1% at maximum. 

 

 

 
Figure 3-9: Comparison of the Building Stock Statistics data and Property Tax Ledger data 

 

 

 

3.4.3.2. Parameter estimation result 

Table 3-6 summarizes the parameter estimation results of GS2 and ATP GWR. As shown in 

this table, in both models, the numbers of railway stations are significant at the 1% level, while the 

road densities are not significant. The lack of significance of the road densities might be because the 

effect of the road densities is already explained by the building land areas, which I use as distribution 

ratios. 

 The range parameter of GS2 is relatively small. This indicates that the building stock data 

have local scale spatial dependence. On the other hand, the bandwidth parameter of ATP GWR is 

quite large, which implies an absence of spatial heterogeneity (i.e., βi are constant across 

municipalities). ATP GWR considers heterogeneity by weighting each municipality based on spatial 

adjacency, which describes spatial heterogeneity, and building land area, which describes non-spatial 

heterogeneity (see Eq.3-14). Hence, the result implies that heterogeneity across municipalities is well 

captured by building land area only. 
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Table 3-6: Parameter estimates of GS2 and GWR 

 GS2 GWR 
 

Estimates Std.err. Signif. 
Estimates Std.err. 

Signif. 
 Max Min Max Min 

Const 15.5 9.99×10-1 ***  15.6 15.4 1.00 9.67×10-1 ***  
Num. of railway 
stations 

36.7 6.27 ***  36.7 36.5 5.00 4.99 ***  

Road density 1.90×10-2 2.17×10-1  2.34×10-2 6.40×10-3 2.07×10-1 2.04×10-1  
range (km) 31.3  
bandwidth (km)  2867  

1) *** denote 1% significant levels 

 

 

 

3.4.3.3. Accuracy comparison result 

 The accuracy of each model is assessed using the following six measures: 
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RMSE and MAE are sensitive to errors at municipalities that have large amounts of stock. RMSE_den 

and MSE_den are sensitive to errors at municipalities with large stock densities. RMSPE and MAPE 

are standardizations of RMSE and MAE, respectively. Large values of RMSPE and MAPE indicate 

that the errors are large compared to the amounts of stock (or to stock densities). 

 Here, two cases are assumed for GS2 and ATP GWR: the case with explanatory variables 
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and the case without explanatory variables (constants only). Table 3-7 summarizes the results of the 

accuracy comparison. The table suggests that AW and GS1, which do not consider supplementary data 

as distribution ratios (elements of N) or explanatory variables, are inefficient. This confirms the 

importance of considering supplementary data in areal interpolation. 

The two spatial statistical methods, GS2 and ATP GWR, outperform DA, the efficiency of which has 

been demonstrated. In addition, GS2 is more accurate than ATP GWR. This could be because the 

stock data have spatial dependence, but no spatial heterogeneity (see §3.4.3.2). However, the accuracy 

of GS2 with explanatory variables is worse than GS2 without explanatory variables. This result is 

intuitively inconsistent. ATP GWR does not have such strange results, and so may be better than GS2 

at capturing the influence of the explanatory variables. 

 

 

 

 

 

Table 3-7: Accuracy comparison result (gray: better than DA; bold: best) 

 

AW DA GS1 

Without explanatory 

variables 

With explanatory 

variables 

GS2 GWR GS2 GWR 

RMSE 7.97×106 2.62×106 6.85×106 1.93×106 4.52×106 2.19×106 2.76×106 

RMSE_den. 1.44×105 8.50×104 1.68×105 7.58×104 1.08×105 1.24×105 1.22×105 

RMSPE 1.47 8.35×10-1 7.43 5.39×10-1 6.57×10-1 6.27×10-1 6.22×10-1 

MAE 4.26×106 1.70×106 3.71×106 1.26×106 1.93×106 1.18×106 1.27×106 

MAE_den. 9.07×104 5.12×104 9.53×104 4.34×104 5.47×104 4.49×104 4.51×104 

MAPE 3.29 5.74×10-1 1.92 3.75×10-1 4.59×10-1 3.56×10-1 3.60×10-1 
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 Fig.3-10 compares the stock amounts estimated by DA, GS2 (without explanatory variables 

whose accuracy is best), and ATP GWR (with explanatory variables) with the true stock amounts. The 

figure shows that GS2 and ATP GWR are more accurate than DA in many of the municipalities. 

Specifically, GS2 outperforms DA in 63.9% (171/241) of municipalities, whereas ATP GWR 

outperforms DA in 71.0% (171/241) of municipalities. 

 Fig.3-11 plots the interpolation results of DA, GS2, and ATP GWR. This figure suggests that 

each of the results is visually quite similar to the true values. In addition, it seems that GS2 and ATP 

GWR capture the stock values of the central Tokyo area better than DA. 

R2: 0.931 

Estimated values 

True values 

120 

80 

40 

00 

km2 

0       40       80      120 
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 Then, the error ratios of DA, GS2, and ATP GWR are plotted in Fig.3-12. This figure 

suggests that DA overestimates the stocks in non-urban areas. Such a tendency is not seen in the 

results of GS2 and ATP GWR. Note that, because of the volume preserving property, the 

overestimation in non-urban areas implies an underestimation in urban areas. 

Local residual spatial dependence is tested using the local MC (see §2.3.2). Fig.3-13 summarizes the 

tests results. The white dots in the figure represent municipalities whose residual spatial dependence is 

significantly positive (i.e., municipalities whose residual values are similar to their surrounding 

municipalities), and black dots represent municipalities with significant negative dependence (i.e., 

municipalities whose residual values are dissimilar to their surrounding municipalities). This figure 

demonstrates that the spatial dependence component, which could not be captured by DA, is captured 

well by GS and ATP GWR. However, the residuals of GS and ATP GWR still show significant 

positive spatial dependence in the central Tokyo area. As a result, their global MCs (see §2.3.2) are 

positively significant at the 1% level. Thus, future studies need to extend statistical areal interpolation 

methods to capture spatial dependence more adequately. 

True                          DA 

GS2                           ATP GWR 
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Figure 3-11: True residential stock densities (Property Tax Ledger) and estimated stock 

densities of DA, GS2, and ATP GWR (with explanatory variables) 
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DA                            GS2 

Figure 3-12: Error ratios of DA, GS2, and ATP GWR (with explanatory variables) 
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Figure 3-13: Significance of residual local MC for DA, GS2, and ATP GWR (with 

explanatory variables) 
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3.4.4. Municipal building stock estimation results 

Building stocks in each type (residence/non-residence, wooden/non-wooden, completion 

years) are estimated using ATP GWR with explanatory variables, and using GS2 without explanatory 

variables, which was the most accurate. The estimation results in 1991, 2000, and 2007 are shown in 

Fig.3-14 (wooden residential stocks), Fig.3-15 (non-wooden residential stocks), Fig.3-16 (wooden 

non-residential stocks), and Fig.3-17 (non-wooden non-residential stocks).  

The results of the two methods are visually similar, and roughly speaking, the estimation 

results are intuitively reasonable. The results all successfully describe concentrations of stocks in 

urban areas. The concentration is particularly prominent in the non-wooden stocks. 

On the other hand, these results include some strange points. For example, the non-wooden 

residential stocks estimated by GS2 indicate extremely small values in the North Kanto area. In 

addition, the stock amount estimates in some municipalities indicate 0. Accordingly, the spatial 

statistical methods must be developed further to remove such odd results. 

 

3.4.5. Discussion 

This section compares the effectiveness of the areal interpolation methods by applying them 

to building stock estimation. As a result, the accuracy of the spatial statistical methods, including GS2 

and ATP GWR, is confirmed. I also verify the importance of considering supplementary data as 

distribution ratios and explanatory variables. This discussion is significant when needing to estimate 

the building stocks required in a compact city policy and climate change adaptation policy effectively. 
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GS2 (1993)                          ATP GWR (1993) 

GS2 (2000)                          ATP GWR (2000) 
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GS2 (2007)                          ATP GWR (2007) 

Figure 3-14: Estimated wooden residential building stock densities 
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GS2 (1993)                          ATP GWR (1993) 

 

GS2 (2000)                          ATP GWR (2000) 
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GS2 (2007)                          ATP GWR (2007) 

Figure 3-15: Estimated non-wooden residential building stock densities 
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GS2 (1993)                          ATP GWR (1993) 

 

 

GS2 (2000)                          ATP GWR (2000) 
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GS2 (2007)                          ATP GWR (2007) 

Figure 3-16: Estimated wooden non-residential building stock densities  
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GS2 (1993)                          ATP GWR (1993) 

 
 

GS2 (2000)                          ATP GWR (2000) 
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GS2 (2007)                          ATP GWR (2007) 

Figure 3-17: Estimated non-wooden non-residential building stock densities  
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3.5. Summary  

This chapter constructs GWR-based areal interpolation methods, and then, we confirmed their 

effectiveness by comparing them with standard areal interpolation methods. This method is consistent 

with geographical studies in that they can be considered as an extension of the dasymetric method 

whose accuracy has been shown (see §3.2.2). Besides, this method is consistent with geostatistics in 

that they give their interpolation equations using conditional expectations (or minimize MSPE). To 

the best of my knowledge, the proposed method is the only GWR-based areal interpolation method 

that explicitly minimizes MSPE. 

I also found that statistical areal interpolation methods possibly be inaccurate if assumptions 

in these methods (e.g., assumption of the Gaussian distributed disturbance) are inconsistent with data 

distributions. This finding is consistent with the studies that pointed out inefficiency of statistical areal 

interpolation methods (e.g., Cromley et al., 2012). On the other hand, I also showed that statistical 

methods are accurate if the method applied is selected judiciously. It would be an important finding 

for further discussions of statistical areal interpolations. Especially, clarifying effectiveness and 

limitations of the statistical methods would be very important. 

 Areal interpolation (or changes in the support of areal data) must be discussed while paying 

attention to the MAUP, particularly when the interpolated areal data are used for secondary analyses 

(see §1.2). Accordingly, the next chapter considers how to apply the GWR-based model to the MAUP. 
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4. Modifiable Areal Unit Problem: A GWR-based 

Approach 
 

4.1. Introduction 

Areal interpolation models have often been used to cope with the problem of bias in parameter 

estimates due to aggregations (see, e.g., Wong, 2009; Gelfand, 2010), which is known as the 

modifiable areal unit problem (MAUP; Openshaw and Taylor, 1979). While a number of efficient 

areal interpolation methods have been proposed (e.g., Fisher and Langford, 1995; Xie, 1995; Eicher 

and Brewer, 2001; Mennis and Hultgren, 2006; Reibel and Agrawal, 2007; Kim and Yao, 2010; Zhang 

and Qui, 2011), there are, as yet, no theoretically sufficient solutions for MAUPs (Siffel et al., 2006; 

Butkiewicz and Ross, 2010). 

There are two factors that affect the seriousness of the MAUP (Wong, 2009). The first is the 

underlying spatial pattern of the data. The MAUP becomes serious if the data are positively spatially 

dependent, while its influence is small if the data are negatively dependent (e.g., Reynolds, 1998). The 

second is the aggregation process. Since large variability can be canceled out, the MAUP also 

becomes serious when the aggregation units are large.  

According to Swift et al. (2008), in geography, at least five approaches have been proposed to 

address the MAUP. The first is by applying GWR. Since GWR captures spatial patterns of data, which 

is a source of MAUPs, GWR is believed to be robust in dealing with the MAUP. However, GWR does 

not consider aggregation mechanisms, and so is not a solution to MAUPs (Fotheringham et al., 2002; 

Wong, 2009). The second approach is to apply non-aggregated data (e.g., Tagashida and Okabe, 2002). 

The third approach estimates aggregate-level parameters by considering non-aggregate-level 

structures in a variance-covariance matrix (e.g., Tranmer and Steel, 1998). The fourth approach 

optimizes the zoning system by minimizing intra-zone variances and maximizing the variances 

between zones (Openshaw, 1984). Finally, the fifth approach applies a sensitivity analysis (e.g., Odoi 

et al., 2003; Swift et al., 2008). 

In geostatistics, the MAUP is considered a sub-problem of the change of support problem 

(COSP) (see §1.2). Whereas the majority of COSP studies focus on interpolation problems, some 

discuss the MAUP and its related problems (e.g., Gotway and Young, 2002; Gelfand, 2010; Nagle et 
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al., 2011). However, geographical MAUP studies and geostatistical COSP studies have been 

discussed almost independently (see also, Haining et al., 2010). Combining the discussions of the 

MAUP from geography and geostatistics would be an important step in advancing discussions on the 

MAUP. As mentioned previously, GWR is believed to be robust to the MAUP in the geography field. 

Therefore, extending GWR based on geostatistical studies of COSP would be significant. Fortunately, 

I have developed a GWR-based areal interpolation model (ATP GWR), and this model is constructed 

in a geostatistical manner. Hence, this chapter applies the ATP GWR for MAUP. 

 

 

4.2. MAUP and the GWR-based model 

The ATP GWR model (Eq.3-10), which is constructed in §3.2.1, is given as 
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 kkβxµ ′= , 

where its aggregate level model, which is used for parameter estimation, is 

 NεNµy +=          ( )NNM0Nε ′N~ . (4-2) 

Based on Eq.(4-2), the estimates of βk is 

 yWNNWXXWNNWXβ
2/112/112/112/1 )())((ˆ

kkkkk
−−− ′′′′= , (4-3) 

where X  = NX (Eq.4-3 equals to Eq.3-14). Eq.(4-3) is a generalized least squares (GLS) estimator 

with its weighting matrix is 2/1
kW (NN')-1 2/1

kW . kW = NWk
 N' is a diagonal matrix whose i-th 

diagonal represents spatial connectivity between k-th non-aggregate level unit and i-th aggregate level 

unit (the average connectivity between the k-th non-aggregate level unit and each non-aggregate level 

unit in the i-th aggregate level unit). As illustrated in Fig.4-1, the i-th diagonal considers the shapes of 

the i-th unit. NN', which is another matrix in 2/1
kW (NN')-1 2/1

kW , is also a diagonal matrix whose i-th 

diagonal is large when the i-th spatial unit is small. In short, kW  considers the shape of spatial units 

and NN' considers the size of spatial units. Since kW  and NN' are diagonal matrixes, 2/1
kW  and 

(NN')-1 are computed efficiently.  
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Figure 4-1: Image of spatial connectivity 
 

 

 

Our aggregate-level model Eq.(4-2) is identical to standard GWR. Therefore, the variance–

covariance matrix of kβ̂  is given as (see Fotheringham et al., 2002) 

 kkkCov VVβ ′= 2ˆ]ˆ[ σ , (4-4) 

2/112/112/112/1 )())(( kkkkk WNNWXXWNNWXV −−− ′′′′=  

where 2σ̂  denotes the estimates of σ
 2. By substituting Eq.(4-3) into Eq.(4-2), the fitted values of y  

are given by ŷ =NL y , where L  is a matrix whose i-th row is x'kVk, and xk is a vector of explanatory 

variables observed at sk. Using this property, 2σ̂  is given as (see Cressie, 1998) 
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where kkβxµ ˆˆ ′= . Significance of βk can be tested using diagonal elements of Eq.(4-4). 

This method estimates non-aggregate-level parameters βk irrespective of the aggregation units 

of data at hand. Besides, the estimators of βk, which are identical to the standard GLM estimators, are 

unbiased, consistent, efficient, and asymptotically normal. In other words, unlike the standard GWR, 

which does not consider aggregation mechanisms, ATP GWR can be considered a solution to MAUP 

(see, also, §4.1). 
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4.3. A simulation study 

4.3.1. Outline 

This section examines the effectiveness of ATP GWR for MAUP by applying a simulation 

study. There are at least two simulation approaches for GWR. The first utilizes the eigenvectors of a 

double-centered proximity matrix (see Wheeler and Tiefelsdorf, 2005; Paez et al., 2011). For example, 

Paez et al. (2011) apply the first, third, and fourth eigenvectors of a proximity matrix for their first, 

second, and third spatially varying parameters, respectively. This approach enables controlling 

collinearity among spatially varying parameters, which is a critical factor that determines the 

effectiveness of GWR (Wheeler and Tiefelsdorf, 2005).  

The second approach models spatially varying parameters by using spatial processes (e.g., 

Finley, 2011). For instance, the spatial process whose covariance is modeled, based on the Gaussian 

covariance function Eq. (2-10), as 
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This function is consistent with the Gaussian kernel function Eq. (2-57), which is commonly used in 

GWR. Unlike the eigenvector-based approach, this approach enables us to control the spatial scales of 

spatially varying parameter distributions by tuning r. 

Spatial scale is an essential factor determines the seriousness of MAUP. Besides, the 

influence of collinearity has already been discussed well in Wheeler and Tiefelsdorf (2005) and Paez 

et al. (2011). Hence, we conduct a simulation study of the latter type, focusing on MAUP and spatial 

scales and paying attention to the collinearity among spatially varying parameters. 

In our simulation, we first generate non-aggregate-level response variables and explanatory 

variables on 50 × 50 sites. The explanatory variables include one intercept and two variables, xk, 1 and 

xk, 2, generated independently from N (0, 1), respectively. The response variables are generated using 

Eq. (4-7): 

 kkkk kxkxky εββα +++= )()()( 22,11,       ),0(~ 2σε Nk , (4-7) 

where α(k), β1(k), and β2(k) are spatially varying parameters. They are generated using Gaussian 

processes whose means are zeros and covariance functions are Eq. (4-6), where the τ2 values for both 
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α(k) and β2(k) are 2.0 and that for β1(k) is 0.5. Note that the zero means of the parameter does not 

imply insignificance of them, and they possibly be significant at some sites in the assumed space. The 

zero means are also assumed in Paez et al. (2011). The intercept and xk,2 corresponding to τ 
2 = 2.0 

explain yk effectively, whereas xk,1 does not. Our simulations are performed by altering σ2 = {1.0, 4.0}, 

r = {5, 10, 20}. 

Under the above settings, we first generate the true distributions of α(k), β1(k), and β2(k) for 

each of the six (= 2 × 3) cases (the true distributions when σ2 = 1.0 and r = 5 or 20 are shown in Fig. 

4-2). Then, in each of the six cases, the following steps are iterated 100 times: (i) the 

non-aggregate-level variables xk,1, xk,2, and yk are generated; (ii) xk,1, xk,2, and yk are aggregated into M 

aggregation units, which are generated by Voronoi tessellation; (iii) the non-aggregate-level 

parameters in ATP GWR are estimated by using the aggregated variables; and (iv) the accuracies of 

the non-aggregate-level parameter estimates are measured by comparing them with their true values. 

If our (aggregate-level) model effectively recovers the non-aggregate-level parameters irrespective of 

the M aggregation units, we can say that the method is robust for MAUP. Considering the suggestion 

of Paez et al. (2011) that data applied for GWR should not be small, we assume M = 400. 

Regular lattices (e.g., 50 × 50 grids) are usually not assumed much in GWR simulation 

studies. One of the reasons is that regular lattices do not appear to be representative of real-world 

geographical topologies (Farber et al., 2009). However, since the objective of COSP studies is to 

mitigate the influences of spatial supports (shape, size, etc.), most COSP simulation studies discuss 

the modeling of continuous spatial process, which is free from such spatial supports, and the 

continuous space is approximated by using a discrete spatial process on regular points (e.g., 

Kyriakidis and Yoo, 2005; Nagle et al., 2011). Thus, our assumption of 50 × 50 sites is consistent with 

the standard assumption in COSP studies. 

 

4.3.2. Result 

The estimates of α(k), β1(k), and β2(k) given in each of the first attempts with σ
 2 = 1.0 and r 

= {5, 20} are plotted in Fig.4-2. The results show the tendency of the accuracies of α(k) and β2(k), 

which explain yk well, to be good and of the accuracy of β1(k) to be poor. Also, the estimates obtained 

when r = 20 are more accurate than the estimates obtained when r = 5. 
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Figure 4-2: Plots of estimated α(k) β1(k), and β2(k), and their true values (right) when σ
 2 = 1.0 
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We measure the accuracies of the parameter estimates by using the root mean square error 

(RMSE) and R-squared (R2). Since 2,500 (50 × 50) parameters are estimated in each attempt, the 

RMSEs and R2s given in each attempt are averaged and plotted as shown in Fig.4-3. In this figure, the 

average RMSEs and R2s obtained by the non-aggregate-level standard GWR (GWR_NAg) are also 

plotted for comparison. Note that since ATP GWR is an aggregate-level model, the results must be 

worse than the GWR_Nag results. This figure shows that the RMSEs and R2s in our method change 

significantly depending on r, and that the change is particularly large when r is small. This result 

indicates that our method can be inefficient when the spatial process of spatially varying coefficient is 

too local. The RMSEs and R2s also change depending on the explanation capabilities of the 

explanatory variables. Specifically, the average R2s of α(k) and β2(k), which explain yk well, are 

between 0.4 and 1.0, whereas those of β1(k) are between 0.1 and 0.6. This result suggests that the 

parameter estimates of our model should be discussed only when they are significant. In contrast, the 

impact of σ2 is relatively small. In summary, ATP GWR effectively recovers the non-aggregate-level 

parameter (i.e., robust for MAUP), when the explanatory variables are significant and their spatial 

variations are not too local compared to their aggregation scales. 

To examine collinearity among the estimated parameters, the correlations among the 

estimated parameters when σ
2 = 1.0 and r = {5, 20} are summarized in Fig.4-4. This figure suggests 

that any serious spurious correlation, which could occur even when the explanatory variables are 

uncorrelated, is not aroused in our simulation. 

We then compare the bandwidth parameter estimates between two aggregate-level models: 

ATP GWR and the aggregate-level standard GWR (GWR_Ag: the GWR that models the 

aggregate-level variables; the geometric centers of each aggregation unit are used to calculate spatial 

connectivity). The average RMSEs of their bandwidth parameters are evaluated and plotted in Fig.4-5. 

Here, the estimates of GWR_NAg are regarded as their true values. As shown in this figure, the 

estimates of ATP GWR are more accurate than those of GWR_Ag in all cases. In each of the six cases, 

at least 91% of attempts indicate efficiency of ATP GWR over GWR_Ag. However, the estimates of 

ATP GWR are still upwardly biased, and this bias is particularly prominent when r is small (see 

Fig.4-6). We need to discuss the reduction of this bias in a future study. 
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Figure 4-3: RMSEs and R2s of the estimates of α(k), β1(k), and β2(k) 

Note: Here, the averages of the RMSEs and R2s are plotted (black line: ATP GWR; gray line: GWR_NAg). 

The bold lines represent averages, and the gaps between the bold lines and the thin lines near them 

represent the standard deviations of the RMSEs or R2s. 
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Figure 4-4: Correlation coefficients among spatially varying parameters (σ
2 = 1.0) 
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Figure 4-5: RMSEs of the bandwidth parameter estimates 

Note: Black line: ATP GWR; Dark gray line: GWR_Ag. The true bandwidth parameter values are given 

by the estimates of GWR_Nag. 
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4.4. An empirical study 

4.4.1. Outline 

In this section, we apply ATP GWR and GWR_Ag for the 2005 municipal-level crime data 

(sample size: 249; source: Criminal statistics, 2007) of the Tokyo metropolitan area, as shown in 

Fig.4-7. Our response variables are the number of crimes per km2 (Fig.4-7), which we refer to as 

crime density. Since utilizing many explanatory variables in GWR could introduce serious 

multicollinearity (Wheeler and Tiefelsdorf, 2005), we apply only two explanatory variables: the 

constant and the population densities (thousand people par 1km2; source: Population census, 2005), 

which are shown in Fig.4-8. In this analysis, GWR_Ag estimates the parameters in 249 municipal 

unit-level variables and ATP GWR estimates the parameters in (the geometric centers of) 10,247 

minor municipal districts from the 249 samples. 

We use R, a free statistical software provided by The Comprehensive R Archive Network 

(http://cran.r-project.org/), for computation, and ArcGIS, provided by ESRI Inc. 

(http://www.esri.com/), for mapping. 

 

Figure 4-6: Averages of the bandwidth parameter estimates 

Note: Black line: APGWR; Dark gray line: GWR_Ag; Light gray line: GWR_NAg. 
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Figure 4-7: Crime densities in the municipal units 

Value
(Num.of crimes /km2)

240 - 
160 - 240
120 - 160
  80 - 120
  40 -   80
  24 -   40
  12 -   24
    8 -   12
    4 -     8
    0 -     4

Tokyo 

Figure 4-8: Population densities in the municipal units 

Value
(thou./km2)

20.0 - 
17.5 - 20.0
15.0 - 17.5
12.5 - 15.0
10.0 - 12.4
  7.5 - 10.0
  5.0 -   7.5
  2.5 -   5.0
  1.0 -   2.5
  0.0 -   1.0
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4.4.2. Result 

The bandwidth parameter estimates of ATP GWR and GWR_Ag are 4.89 km and 5.01 km, 

respectively. These results suggest that crime densities have local spatial variation. Fig.4-9 shows the 

spatial plots of the local trend parameter estimates, which we refer to as βConst(k) and βPopulation(k), and 

Fig.4-10 summarizes their significance levels. The result of ATP GWR is consistent with that of 

GWR_Ag. Besides, the estimates of ATP GWR, which are spatially smooth, seem to appear more 

natural. Since many GWR studies have discussed the spatial plots of their own parameter estimates, 

providing a seemingly natural result would be important. 

 

 

 

βConst (k): ATP GWR βConst (k): GWR_Ag 

βPopulation (k): ATP GWR βPopulation (k): GWR_Ag 

Figure 4-9: Local trend parameter estimates 

Value

  50 - 
  50 -   50
  20 -   50
  10 -   20
    0 -   10
-10 -     0
-20 -  -10
-30 -  -20
-50 -  -30
      -  -50

Value

3.6 - 
3.2 - 3.6
2.8 - 3.2
2.4 - 2.8
2.0 - 2.4
1.6 - 2.0
1.2 - 1.6
0.8 - 1.2
0.4 - 0.8
      - 0.4
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In each model, the estimates of βConst(k)s are significantly high in the central Tokyo area. 

This result seems to indicate heterogeneity of this area. This result is intuitively consistent. On the 

other hand, the estimates of βPopulation(k)s are significantly positive in the suburban areas of Tokyo, 

whose distance from the Tokyo station is between 10 km and 40 km, with significance particularly 

prominent in the northern area of Tokyo. Roughly, the significant area agrees with the commutable 

area of Tokyo with many populations (see Fig.4-8). Accordingly, our result could indicate the danger 

of having heavily populated areas in the commutable areas. 

In summary, ATP GWR, which effectively mitigates MAUP, is useful for both simulation 

data and actual data. 

 

 

βConst(k): ATP GWR 

 

βConst(k): GWR_Ag 

 

βPopulation(k): ATP GWR βPopulation(k): GWR_Ag 

Figure 4-10: Significance of the local trend parameter estimates 
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4.5. Summary 

This study discussed the effectiveness of ATP GWR by focusing on MAUP. While several 

studies have often indicated that MAUP is yet to be resolved (e.g., Butkiewicz and Ross, 2010), ATP 

GWR, whose non-aggregate-level parameter estimates are unbiased, consistent, efficient, and 

asymptotically normal, can be considered a method to resolve MAUP. We confirmed the effectiveness 

of the method for MAUP in a simulation and an empirical study. Since the original GWR model, 

which does not consider aggregation mechanism, is not a solution to MAUP, my discussion of 

extending GWR for a solution to MAUP is significant. 

However, our method still has some problems. First, our simulation study indicates the 

ineffectiveness of the method when spatially varying parameters have local spatial patterns. Some 

studies (e.g., Fisher and Langford, 1995) have shown that non-aggregate-level spatial patterns are in 

aggregate-level variables and can be effectively captured when detailed auxiliary data (e.g., 

high-resolution land use data) are considered in aggregation mechanisms. The aggregation mechanism 

in our model can easily be extended by modifying N. Hence, it is important that we consider the 

detailed auxiliary data in N to make our method more effective. Another problem is multicollinearity. 

As with the standard GWR, ATP GWR too seems to suffer from multicolliearity in many cases, 

particularly when the number of explanatory variables is large. To tackle this problem, applying a 

penalized form of GWR such as geographically weighted ridge regression (Wheeler, 2007) or 

geographically weighted lasso regression (Wheeler, 2009) model might be useful. 

We have discussed MAUP while referring to COSP studies in geostatistics. Since the 

primary objective of COSP studies is to change spatial supports such as point interpolation and areal 

interpolation, MAUP has not been discussed in COSP literature sufficiently. Discussing MAUP in 

terms of COSP studies would be an important step toward developing more sophisticated solutions for 

MAUP. 

 In short, chapter 3 and 4 discussed two main COSPs for areal data: the areal interpolation 

problem and the MAUP, and showed that the proposed ATP GWR deals with these two problems 

effectively. 
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5. Point Interpolation Problem: An Eigenvector 

Spatial Filtering-based Approach 
 

 While the previous chapters discussed the COSPs for areal data, Chapters 5 and 6 discuss 

the COSPs for point data. Chapter 5 discusses the point interpolation problem, which has been 

discussed actively in the field of geostatistics. However, geostatistical methods have a number of 

drawbacks. First, they are not necessarily straightforward to implement and extend. Second, the 

methods can easily become computationally intractable, particularly when spatiotemporal data are 

interpolated. 

Thus, I extend the ESF, which is simple and possible to model spatiotemporal data 

computationally efficiently, for the point interpolation problem. The effectiveness of the extended 

method is examined by applying it to land price interpolations. Note that the usability of the extended 

method is not restricted within the point interpolation problem. Hence, the extended method is also 

applied for several other purposes, including parameter estimation in the presence of spatial 

dependence, spatial component extraction, and fast computation. 

 Two types of point data are appeared in this section: continuous spatial (or geo-referenced/ 

point-referenced/geostatistical) data, i.e., the data distributed on dℜ , and discrete spatial (or lattice) 

data; the data distributed on a discrete space. 

 

 

5.1. Introduction 

5.1.1. Review of point interpolation studies 

Kriging (see §2.2.5) is a standard point interpolation method. There are variations in kriging. 

For instance, simple kriging (kriging with a known mean), ordinary kriging (kriging with an unknown 

and constant mean), university kriging (kriging with coordinates as explanatory variables), and 

regression kriging (kriging with explanatory variables) are prime linear geostatistical models. Then, 

log-normal kriging (kriging with log-transformed response variables), trans-Gaussian kriging (kriging 

with Box-Cox transformed response variables), and disjunctive kriging (kriging with non-linear 
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transformed response variables) are prime non-linear geostatistical models (see, e.g., Cressie, 1993). 

These methods have the following features: (i) they minimize the MSPE; and (ii) they interpolate 

continuous spatial data. Feature (i) ensures that the point interpolation is accurate. On the other hand, 

since a complete observation of continuous spatial data is generally not possible, the interpolation of 

continuous spatial data is important. Thus, the feature (ii) increases the importance of kriging studies 

(see also, Longley et al., 2010). 

Point interpolation problems have also been discussed in non-geostatistical spatial statistics. 

For instance, Martin (1983), Bennett et al. (1983), and LeSage and Pace (2004) discuss interpolation 

based on the SLM (see LeSage and Pace, 2009) and SEM models, Griffith and Paelinck (2011) 

discuss ESF-based interpolation, and Leung et al. (2000) and Harris et al. (2010; 2011) propose 

GWR-based interpolation techniques. The SLM/SEM-based and ESF-based approaches interpolate 

discrete spatial data by considering spatial dependence, and the GWR-based approach interpolates 

continuous spatial data by considering spatial heterogeneity. 

 

5.1.2. Fundamentals of point interpolation 

While the basic assumptions of the aforementioned point interpolation methods differ, their 

basic models (except for non-linear geostatistical models) are essentially identical. Their basic models 

are formulated as 
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where the subscript “0” indicates missing sites; µ denotes a deterministic trend component; and Σ, Σ0, 

and Σ00 are the matrix of covariance among observation sites, between observation sites and missing 

sites, and among missing sites, respectively. The predictors of each approach are defined by the 

conditional expectation of y0, 0ŷ , which is given based on Eq.(5-1) as 

 )ˆ(ˆˆ 1
000 µyΣΣµy −′+= − . (5-2) 

Eq.(5-2), which is identical to the kriging predictor given in Eq.(2-34), minimizes the MSE. In the 

other words, the kriging and non-geostatistical interpolation methods are essentially identical. 

On the other hand, their implementation procedures are different between the methods for 
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continuous spatial data, including kriging and the geographically weighted regression (GWR) 

approach, and the methods for discrete spatial data, including approaches based on the spatial lag 

model (SLM), the spatial error model (SEM), and the eigenvector spatial filtering (ESF). The 

continuous spatial data methods estimate parameters using observed data only (i.e., y = µ + ε in 

Eq.5-1 is used for parameter estimation), and perform an interpolation by substituting the estimated 

parameters into Eq.(5-2). The discrete spatial data methods use the EM-algorithm-based iterative 

calculation procedure, which is summarized as follows: (i) the initial values are set for the unobserved 

data, y0; (ii) the parameters are estimated using both observed and unobserved data (i.e., Eq.5-1 is 

used for parameter estimation); (iii) the unobserved data are updated by substituting the estimated 

parameters into Eq.(5-2); and (iv) iterate steps (ii) and (iii) until the unobserved data converge. 

Furthermore, the continuous spatial data methods model a continuous stochastic process, while the 

discrete spatial data methods model the spatial equilibrium that forms among observed and 

unobserved data (see Fig.5-1). 

 Although continuous spatial data interpolation is particularly important, as discussed 

previously, the SLM/SEM and ESF cannot be defined on a continuous space, owing to the algebraic 

limitations. More precisely, the ESF requires an eigen-decomposition of a matrix that describes the 

connectivity among all given sites. Since eigen-decomposition is tractable only for a finite 

dimensional matrix, the number of sites must be finite. Thus, the ESF is essentially a method in a 

discrete space. Similarly, since the SLM and SEM require an inversion of a proximity matrix, which 

is tractable only if the dimension of the proximity matrix is finite, they are also models in a discrete 

space. Consequently, they cannot interpolate a continuous spatial process. 

 Overcoming such a limitation is significant not only for point interpolation problems. It is 

also important to be able to apply the ESF or SLM/SEM to other problems, which have been 

discussed by modeling continuous spatial process, including the sampling design problem (e.g., Wang 

et al., 2012), gradient analysis (e.g., Banerjee, 2010), and block prediction (e.g., Cressie, 1993).  

This chapter considers extending the ESF to continuous spatial data modeling. The extended 

model is then applied to spatial and spatiotemporal interpolation, as well as other purposes. 
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Figure 5-1: Images of the point interpolation approaches 

Note: Black circles denote observed sites and white circles denote unobserved sites 

 

 

 

5.2. ESF on continuous space 

 This section extends ESF for modeling continuous spatial data. In §5.2.1, we briefly discuss 

the eigenfunction-based specification of the standard geostatistical model, which has actively been 

applied for continuous spatial data modeling. In §5.2.2, an eigenvector-based model (Eq.5-6), which 

describes continuous spatial phenomena, is constructed based on the geostatistical model. Then, we 

show that the model is a valid geostatistical model, and that it can be considered as a MC-based ESF 

model.  

The continuous space model requires an eigen-decomposition of an infinite dimensional 

kernel matrix, which is computationally intractable. Hence, §5.2.3 and 5.2.4 discuss how this 

eigen-decomposition is performed. §5.2.3 shows that the infinite dimensional matrix can be divided 

into blocks (Eq. 5-21), given certain assumptions (Eqs.5-13, 5-14), and then §5.2.4 shows that the 

eigenfunctions of the infinite dimensional matrix can be approximated using an approximation 

technique called the Nyström extension (e.g., Drineas and Mahoney, 2005). 

Based on discussions in §5.2.3 and 5.2.4, §5.2.5 modifies our model (Eq.5-6) to a tractable 

form (Eq.5-24). Subsequently, implementation of the model is discussed, focusing on accurate model 

identification problems and residual spatial dependence reduction problems. Finally, §5.2.6 compares 

the constructed method with the other eigenfunction-based spatial methods. 

 

Kriging and GWR SLM/SEM and ESF  

Estimation and interpolation Estimation 

Interpolation 
Equilibrium 

A realization of a 
continuous process 
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5.2.1. Geostatistics and eigenfunctions 

The standard geostatistical model Eq.(2-18) can be expended, by decomposing ε into spatially 

dependent component and spatially independent component, as(e.g., Gneiting and Guttorp, 2010): 

 iiii uy ++= ηµ , (5-3) 

where si (i
 = 1,... n) is a site in D, and µi is an element in µ. ηi +ui is an element in ε where ηi is a 

spatially dependent component, and ui ~
 N(0, σ2). The term ηi is modeled using a covariogram. For 

instance, ηi can be modeled using the exponential model Eq.(2-9) as 

 )/exp(),cov( ,
2 rh jiji −= τηη   

 ),(2
ji sskτ= . (5-4) 

As shown in the second line of Eq.(5-4), covariance functions are defined by the product of the 

variance parameter (partial-sill) τ2 and a kernel function k(si,sj). Employing the eigen-decomposition 

for k(si,sj), ηi in Eq.(5-3) can be expanded as follows (e.g., Pintore and Holmes, 2004): 

 ∑
∞

=

=
1

,
l

lili e γη , (5-5) 

where el,i is the l-th eigenfunction of k(si, sj). If σ
2 > 0, then geostatistical models are valid if and only 

if k(si, sj) is a positive semidefinite function (Cressie, 1993). 

 

5.2.2. The eigenfunction-based model 

Suppose that the region D is filled by an infinite number of points, including N observation 

sites. Eq.(5-3) may be rewritten using matrix notation as 

 ++++ ++= εγEβXy ,    ),(~ 2 +++ I0ε σN , (5-6) 

where y+, X+, ε+, 0+, and I + respectively are y, X, ε, 0, and I  with dimensions of infinity, and +E  is a 

matrix of eigenfunctions extracted from a kernel matrix. X+
β, E+

γ, and ε+ in Eq.(5-6) correspond to µi, 

ηi (which is defined using Eq.5-5), and εi in Eq.(5-3), respectively. Following ESF, I use M +K +M + for 

the n+ × n+ kernel matrix, where K + is an infinite dimensional standard kernel matrix, and M + is I +– 

1+1+'/n+ or I +– X+(X+' X
+)-1X+'.  

Just like for the geostatistical model Eq.(5-3), M +K+M + must be a positive semidefinite 
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matrix. In other words, |M +K +M +| = |M +|2|K +| must be non-negative. We can satisfy this condition by 

defining the elements in K+ using a positive semidefinite function. Following Eq.(5-4), we apply an 

(positive definite) exponential function k(si, sj) = exp(–hi,j/r), and following some studies of 

distance-based spatial filtering (e.g., Griffith and Peres-Neto, 2006; Dray et al, 2006; Griffith, 2010), r 

in the function is the longest distance in the minimum spanning tree covering the N observation sites 

distributed in D. 

By design, the diagonals of K+ are not zero (k(si, si) = exp(–0/r) ≠ 0), and as a result, 

M +K +M + does not explain spatially dependent components, but rather a mixture of spatially 

dependent components and self-dependent components. This point is inconsistent with standard ESF, 

which models spatially dependent components only. However, the unneeded self-dependent 

components in M +K +M + can be detached as 

 +++++++ += MMKMMKM 0 , (5-7) 

where K 0
+ is K + with its diagonals replaced with zeros. M +K 0

+M + explains the spatially dependent 

components, and M + ( = M+I +M +) explains the self-dependent components.  

Thus, the eigenfunctions of M +K 0
+M +, rather than of M +K +M +, should be used in a spatial 

dependence analysis. Fortunately, eigenfunctions of these matrixes are identical (Griffith, 2003). 

Furthermore, the diagonal matrix of eigenvalues of M +K +M +, Λ+, and the same matrix of M +K 0
+M +, 

Λ0
+, have the following relationship: 
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where +
KE  is the subset composed of K eigenfunctions whose eigenvalues are zeros, +

−KfullE  is the 

subset composed of the other eigenfunctions (i.e., E+
full = [E+

full–K, E+
K]), +

−KfullI  is an identity matrix, 

0+ and 0K are matrixes of zeros. Because M + induces K zero eigenvalues that are the same for matrixes 
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M +K +M + and M +K 0
+M +, Eq.(5-8) suggests that the n−K remaining eigenvalues of M +K 0

+M + are their 

counterparts for M +K+M + minus 1. 

After all, if only the eigenvalues of M +K +M+ are replaced with the eigenvalues of M +K 0
+M + 

using Eq.(5-8), Eq.(5-6) can be considered as a model that describes pure spatial dependence (without 

self-dependence). Precisely, E+
γ in Eq.(5-6) furnishes distinct map pattern descriptions of latent 

spatial dependence that is explained by MC+, which is defined for D as1 
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where iz~  is the i-th element of Mz. By construction, mean of iz
~  is 0. Because nz

i i∑ 2~  

represents the variance of iz~ , Eq.(5-9) can be expanded as 
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where σz
2 = nz

i i∑ 2~ . Under the assumption of infill asymptotics, which fills D by an infinite number 

of missing sites, Eq.(5-10) may be further expanded as 
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We assume a finite number of missing sites (i.e., n→∞), whereas the number of observation sites N is 

unchanged. Hence, r in k(si, sj) = exp(–hi,j/r), which is determined based on the N observation sites, 

also is unchanged.  

 When Cov[ ji zz ~,~ ] = E[ ji zz~~ ] = 0, the expectation of MC+ yields 
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On the other hand, MC+ is large when the co-variations ji zz~~  are large and/or the co-variations are 

positively related to k(si, sj) (i.e., the co-variations are explained by k(si, sj)). 

 In summary, this section defines our model Eq.(5-6), which is based on a geostatistical 

model, and shows that it captures spatial dependence described by MC+, MC defined in a continuous 

study region. 

 

5.2.3. The double centered kernel matrix in continuous space 

 Our model Eq.(5-6) requires an eigen-decomposition of M +K +M + (or M +K 0
+M +), which is 

computationally intractable. To achieve it, in this subsection, I expand M +K +M + to a tractable form. 

After some assumptions are imposed in §5.2.3.1, we approximate M +K +M + using a finite number of 

observations (§5.2.3.2). The result is used in §5.2.4 for the eigen-decomposition approximation. 

 

5.2.3.1. Assumptions 

Because of the existence of the projection matrix M +, expressing similarities among arbitrary 

sites in D using M +K+M + directly is difficult. Hence, the following assumptions are imposed: 
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where pi is a probably density function, and sI (I: 1,...N) and sJ (J: 1,...N ) are observation sites. 

Combining Eqs.(5-13) and (5-14) yields 
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Eqs.(5-13), (5-14), and (5-15) assume that the average similarities among arbitrary sites are 

approximated by the average similarities among observation sites.  

 

5.2.3.2. The double centered kernel matrix 

§5.2.3.2 discusses expansion of M +K+M + to a tractable matrix. First, the (i, j)-th element of 
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M +K +M + given by k*(si, sj) is approximated using our assumptions defined in §5.2.3.1. Then, the 

tractable version of M +K +M + (Eq.5-21) is derived using the approximated k*(si, sj) (Eq.5-17). The 

result is used in §5.2.4 to calculate eigenfunctions. 

Suppose M += I + – 1+1+'/n+, the (i, j)-th element of M +K+M +, is expressed under infill asymptotics as 

−−= ∫ jjjijiji dspssksskssk ),(),(),(*  

 ∫ ∫∫ + jijijiiiji dsdsppsskdspssk ),(),(  (5-16) 

Eq.(5-16) is written using matrix notation as K + – (1+1+'/n+)K + – K +(1+1+'/n+) + (1+1+'/n+)K +(1+1+'/n+). 

Eq.(5-16) is approximated using the assumptions Eqs.(5-13), (5-14), and (5-15) as 
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Based on Eq.(5-17), the similarity between observation sites sI and sJ is 
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whereas the similarity between an arbitrary site si and an observation site sJ is 
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On the one hand, the N × N matrix whose (I, J)-th element is given by Eq.(5-18) equals MKM , the 

kernel matrix regarding the observation sites. On the other hand, a 1×N vector with its J-th element 

given by Eq.(5-19) results in k*, a vector representing similarities between an arbitrary site si and each 

observation site: 

 2* /// NNNiii 1K11K111kkk ′′+′−′−=   

 )/(/)/( NNNi 11IK111Ik ′−′−′−=   

 )/)(/( NNi 11IK1k ′−′−= , (5-20) 

where k i is a 1×N vector whose J-th element is k(si, sJ). In short, Eqs.(5-13), (5-14), and (5-15) and 

M += I +–1+1+'/n+ imply that M +K +M + is 
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where mi=
 k i –1'K/N, and “–” in Eq.(5-21) represents unspecified sub-matrixes. 

When M +=I +–X+(X+' X+)-1X+', by performing a similar analysis, M +K +M + is given by 

Eq.(5-21) with M= I–X(X' X)-1X' and mi = k i –
 xi(X' X)-1X' K , where xi is a 1×K vector of K 

explanatory variables observed at an arbitrary site si. Eq.(5-21) implies that MKM  is a part of 

M +K +M +, according to our assumptions. 

 

5.2.4. Eigenfunction extraction using the Nyström extension 

Eq.(5-21) is helpful to approximate its eigenfunctions. Let 






 ′
CB

BA
 be a (A+B) × (A+B) 

matrix for which A, B, and C are matrixes whose sizes are A×A, B×A, and B×B. Suppose that the first 

A-columns in the A+B columns are randomly selected. Then, the eigenfunctions of 






 ′
CB

BA
 are 

approximated by the Nyström extension as 
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,
 (5-22) 

where A = EAΛAEA'. The dimension of Eq.(5-22) is not (A+B) × (A+B) but rather (A+B) × A. The 

Nyström extension performs a low-rank approximation (see, e.g., Cressie and Wikle, 2011). 

In our case, the eigenfunctions of M +K +M +, E+
full, are approximated, under the assumption 

that N observation sites are randomly sampled in D, as 
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where ei,full =k i
*Efull Λ

-1 and MKM  =EfullΛEfull'. Eq.(3-27) suggests that the eigenfunctions at any site 

in D are approximated by ei, full. 
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5.2.5. Implementation of the method 

Based on discussions in §5.2.3 and 5.2.4, we first expand our basic model Eq.(5-6) to a 

tractable form (Eq.5-24). Then, its basic parameter estimation procedure is explained. Details of the 

procedure are discussed with a focus on accurate model identification (§5.2.5.2) and residual spatial 

dependence reduction (§5.2.5.3). 

 

5.2.5.1. Estimation steps 

Eq.(5-6) may be rewritten using Eq.(5-23) as 
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 (5-24) 

where {y', yi, − ' } ' = y+, {X', xi', − ' } ' = X+, {E', ei', − ' } ' = E+, and {ε', εi, − ' } ' = ε+ (see Eq.5-6), 

E+ is a subset of L eigenfunctions in E+
full, y, X, E, and ε are matrixes/vectors defined on N 

observation sites, and yi, xi, ei, and εi are variables defined on an unobserved site. Eq.(5-24) contains 

the following sub-model regarding observation sites: 

 εEγXβy ++= ,       ),(~ 2I0ε σN . (5-25) 

Estimation of parameters in Eq.(5-25) may be done using the sub-model. The estimation 

procedure is as follows: (i) Extract Efull from MKM ; (ii) Select eigenfunctions in Efull whose 

eigenvalues are greater than some threshold value, and construct E; and, (iii) Apply an OLS-based 

stepwise selection procedure for the sub-model. Following studies of ESF (e.g., Tiefelsdorf and 

Griffith, 2007), we recommend the forward selection stepwise method. 

The purpose of estimation is identifying Eq.(5-25), which has eigenfunctions of M+K 0
+M +. 

Hence, the eigenfunction selection step (ii) must be performed using eigenvalues λ
+

l_0 of M +K 0
+M +. 

λ
+

l_0 cannot be evaluated directly. However, the following relationship holds between λ+
l_0 and the 

eigenvalues λl_0 of MK 0M  (see Fig.5-2): 
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where α = Nn
n

/lim
∞→

, which is introduced because of the Nyström extension (see Williams and Seeger, 
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2001). Eq.(5-26) suggests that λ
+

l_0 is proportional to λl_0. Hence, λ+
l_0 can be evaluated using λl_0. 

 Because α > 1 and λl_0+1 > 0 (λl_0+1 equal the eigenvalues of MKM , which are positive 

semidefinite: see Eq.5-8), Eq.(5-26) also means that λ+
l_0 corresponding to λl_0 is always positive, 

unless λl_0 = 0. After all, eigenfunctions corresponding to any λl_0 describe positive spatial dependence 

in D (see Fig. 5-2). This result is consistent with an indication in Griffith (2006) that negative spatial 

dependent is not of interest. 

We now discuss details of steps (ii) and (iii) assuming two purposes for applying our method: 

accurate model identification (Case 1); and, residual spatial dependence reduction (Case 2). The 

model given in Case 1 might be useful for an exploratory spatial data analysis (ESDA) such as spatial 

interpolation and spatial pattern analysis. Case 2 is helpful when avoiding bias in parameter estimates 

and/or their standard errors due to spatial dependence (e.g., LeSage and Pace, 2009). 

§5.2.5.2 and §5.2.5.3 discuss Case 1 and 2, respectively. 
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Figure 5-2: Relationship among eigenvalues 
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5.2.5.2. Estimation for accurate model identification 

Considering eigenfunctions with not only large eigenvalues but also small eigenvalues is 

important for accurate model identification (Aubry et al., 1993; Cressie and Wikle, 2011). Hence, 

with regard to Case 1, this study removes no eigenfunctions in step (ii).  

In contrast, in the subsequent step (iii), a large number of eigenfunctions must be considered 

in the forward stepwise procedure. We apply the AICc Eq.(5-27), which is robust in such a situation 

(Burnham and Anderson, 2002), for the objective function of our stepwise variable selection: 
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The AICc-minimization-based forward stepwise regression technique can become 

computationally intensive. To cope with this problem, the AICc-minimization is replaced with an 

efficient algorithm. Suppose M= I–X (X' X)-1X'; then the following equation holds: 
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 (5-28) 

where E is a subset of eigenvectors that is selected in earlier steps, and e0 is a candidate eigenvector to 

be entered into E, If Eq.(5-28) holds, the decrease in ε'ε by introducing e0 is always ||e'0y|| (Schott, 

2005). Hence, in each stepwise selection step, the eigenvector with the greatest AICc improvement is 

the eigenvector that decreases ε'ε (=||e'0y||) the most. Consequently, forward stepwise regression can 

be replaced with a simple algorithm that introduces eigenvectors in a decreasing order of ||e0y|| until 

AICc is minimized (also see Griffith, 2004b).  

This algorithm is not available when M  = I–11'/n and X contains explanatory variables other 

than an intercept. In this case, an exhaustive search is complicated by multicolinearity within X and 

among X and E. Thus, this study performs AICc minimization using M= I–X (X' X)-1X' only. 

 

5.2.5.3. Estimation for residual spatial dependence reduction 

In Case 2, which seems helpful to avoid bias in parameter estimates due to spatial dependence, 

we apply both M= I–X (X' X)-1X' and M  = I–11'/n. To save degrees of freedom, we select 

eigenfunctions satisfying λl_0  > 0 prior to the stepwise regression step. 
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Tiefelsdorf and Griffith (2007) demonstrate, using standard ESF, that two types of forward 

stepwise methods are useful for spatial dependence reduction: the MC-based method, and the 

accuracy-based method. The former selects eigenfunctions until the standardized MC of the residuals, 

z(MC), decreases to within a small absolute deviation from zero, δ, and the latter is a standard forward 

stepwise procedure that maximizes measure of model accuracy. Here, we demonstrate applying these 

two approaches for spatial dependence reduction, too. 

 

5.2.6. Relationships among methods 

At least three methods model spatial data using MC-based eigenvectors (eigenfunctions): 

ESF, Moran’s eigenvector maps (MEM: e.g., Legendre and Legendre, 2012), and the proposed 

method. MEM has several variants, including principal coordinate analysis of neighbor matrices 

(Borcard and Legendre, 2002; Dray et al., 2006) and asymmetric eigenvector maps (Blancheta et al., 

2008). 

Table 5-1 summarizes properties of these three methods. ESF is a topology-based method, 

which describes spatial connectivity using an adjacency matrix, while MEM and our method are 

distance-based methods, which describe spatial connectivity using a distance matrix (see also Griffith 

and Peres-Neto, 2006). Another difference is that ESF and MEM model discretized spatial phenomena, 

whereas our method models continuous spatial phenomena over an area D using observations 

randomly distributed in D. Despite such differences, interpretations of ESF and MEM are strictly 

equivalent (Dray et al., 2006), and our method, which is an extension of ESF, is also an extension of 

MEM for continuous space. More specifically, the distance matrixes (MK 0M  and M +K 0
+M +) 

essentially are identical. Furthermore, our eigenfunction selection criterion in Case 1 is also identical 

to the criterion for MEM. Specifically, both our method and MEM select all eigenfunctions 

representing positive eigenvalues. Meanwhile, our criterion in Case 2 also is similar to the criterion in 

MEM (see Table 5-1). Such similarities between our method and MEM are natural because both of 

them are distance-based approaches. 

Our assumptions are similar to the standard assumptions in geostatistics that a continuous 

spatial process is modeled using a distance function. In addition, our model is derived from a 

geostatistical model. Hence, our method seems important from the perspective of linking discussions 
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of the MC’s eigenvector-based approaches and discussions in geostatistics. Actually, our method can 

be considered as a basis function-based method that has been developed in geostatistics for both 

dimension and flexible model construction reductions (e.g., Cressie and Johannesson, 2008; Matsuo et 

al., 2011; Ren and Banerjee, 2013). Our method is distinctive from these methods in that OLS is 

applicable for the parameter estimation, and, therefore, ours might be useful as a simple method for 

geostatistical data modeling.  

Many studies of ESF discuss estimation problems in the presence of spatial dependence (e.g., 

Tiefelsdorf and Griffith, 2007; Griffith, 2003; 2006), whereas MEM has been applied mainly for 

spatial component analysis of ecological data (e.g., Borcard and Legendre, 2002; Peres-Neto et al., 

2006; Legendre and Legendre, 2012). Our method may be applicable not only for these purposes, but 

also for purposes that have been discussed in geostatistics (e.g., spatial interpolations, change of 

supports, sampling designs). 

 

 

 

Table 5-1: Comparison of approaches applying MC-based eigenvectors 

Method Proposed method ESF MEM 

Classification Distance-based Topology-based Distance-based 

Connectivity 

Matrix 
M +K 0

+M +(= M+K +M + −M + ) MWM MK 0M 

Space Continuous Discrete Discrete 

Eigenvector 

truncation criterion 

λ
+

l_0 > 0 (Case 1) 

λl_0 > 0 (Case 2) 

Variable 

(λl_0 > 0.25 is standard) 
λl_0 > 0 

Principal use N/A 
Estimations of  

spatial models 

Spatial component 

analysis 

 

 

 

 



  97  
 

5.3. An empirical study 

5.3.1. Outline 

This section utilizes the proposed method to analyze land prices in the Ibaraki prefecture of 

Japan. The response variable is the logarithm of officially assessed residential land prices in 2009 

(sample size: 587; Fig.5-3), which are provided by the Ministry of Land, Infrastructure and Transport 

(MLIT). Table 5-2 lists the explanatory variables. We apply four types of the proposed method: 

MC-based approaches whose M+ equals I +–1+1+'/n+ and I +–X+(X+' X
+)-1X+' (E_MC and EX_MC), 

respectively, and AICc-based approaches whose M+ equals I +–1+1+'/n+ and I +–X+(X+' X+)-1X+' 

(E_AICc and EX_AICc), respectively. Fig.5-4 portrays the 1st, 10th, and 100th eigenvectors (Note: 

they are selected only for the illustrative purpose, and all eigenvectors are considered in the 

subsequent analyses). Following Tiefelsdorf and Griffith (2007), eigenvectors in E_MC and EX_MC 

are selected until |z(MC)| of the residuals is less than 0.1. 

Results are compared with the standard linear regression model (LM), and the standard 

geostatistical model (GS), whose model is given by 

 εηXβy ++= ,    ),(~ 2K0η τN ,    ),(~ 2I0ε σN . (5-29) 

where K  is a covariance (kernel) matrix whose elements are given by the exponential function in 

Eq.(2-9) (Note: Eq.5-29 is identical to Eq.2-19 with its C is replaced with τ2K  + σ2I ). 

Subsequent results are from the R implementation provided by The Comprehensive R 

Archive Network (http://cran.r-project.org/), and mappings are from ArcGIS provided by ESRI Inc. 

(http://www.esri.com/). 
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Table 5-2: Explanatory variables 

Variables Description Unit 

Tokyo dist. Minimum railway distance from the nearest station to Tokyo station 
Km 

Station Distance to the nearest station 
Urban Dummy indicating 1 if a site is in an urbanized area 0 or 1 
Agriculture Area of agricultural land  

km2 par  
unit area 

Forest Area of forest 
Wasteland Area of wasteland 
Traffic Area of trunk transportation land 
Other land Area of other land (e.g., athletic stadium, port district ) 
Golf Area of golf course 
River Area of river and lake 
Sea Area of beach and body of seawater 

1) Data source: National Land Numerical Information download service 

 

 

Figure 5-3: Land prices in Ibaraki prefecture 
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5.3.2. Parameter estimation 

Following the discussion in §5.2.5, here, eigenfunctions satisfying λl_0>0 were selected. 

Behavior of z(MC)s during the stepwise selection procedures in E_MC, E_AICc , EX_MC, and 

EX_AICc are plotted in Fig.5-5. E_MC and EX_MC remove residual spatial dependences effectively 

using 10/45 and 11/42 eigenfunctions, respectively (see Fig.5-6). Interestingly, these are the selected 

eigenfunctions even if exhaustive searches are employed. E_AICc and EX_AICc also reduce z(MC)s 

substantially, although reductions of their z(MC)s are slower than those of E_MC and EX_MC 

1st (EX)                   10th (EX)                  100th (EX) 

Figure 5-4: 1st, 10th, and 100th eigenvectors. 

Note: Top: the eigenvectors in E_MC and E_AICc; Bottom: those in EX_MC and EX_AICc. 
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(E_AICc selects 30/45 eigenfunctions, and EX_AICc selects 27/42 eigenfunctions). In short, while 

both the MC-based approaches and the AICc-based approaches reduce z(MC) sufficiently, the former 

is more effective.  

 

        

Figure 5-5: Behavior of z(MC) in variable selections 
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Figure 5-6: Spectrum of eigenvalues (gray) of MK 0M  and selected eigenfunctions (black lines) 
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Table 5-3 summarizes estimation results for E_MC, E_AICc, EX_MC, EX_AICc, and LM 

and GS. EX_MC and EX_AICc, whose eigenvectors are uncorrelated with X. These implementations 

do not consider variance inflations due to spatial dependence (they consider variance deflation only), 

and, consequently, standard errors of their parameters are likely to be underestimated. In theory, 

standard errors of the coefficients in EX_MC and EX_AICc are always smaller than those in LM, 

whose underestimation by ignoring spatial dependence has been demonstrated (LeSage and Pace, 

2009). Thus, applying EX_MC or EM_AICc for parameter estimation is not necessarily preferred. 

Our result is counter to those for some studies that suggest removing variance inflation due to spatial 

dependence prior to estimation (e.g., Paciorek, 2010; Hughes and Haran, 2013). 

Estimation results of E_MC and E_AICc, which consider variance inflation due to spatial 

dependence, are similar to the results of GS, whose effectiveness in parameter estimation has been 

demonstrated (e.g., Tsutsumi and Seya, 2009). In E_MC and E_AICc, Station (–), Urban dum (+), 

Agriculture (–), Forest (–), Other land (+), River (–), and Ocean (–) are significant at the 0.05 level, 

and Traffic (+) in E_MC also is significant at the 0.10 level. These results indicate that land prices are 

high at sites with substantial urban facilities (Station, Urban dum, Other land, and Traffic), while low 

at sites with non-urban land uses (Agriculture, Forest, River, and Ocean). 

The partial-sill and nugget estimates from GS indicate that the variance of the spatial 

component is far greater than the variance of the non-spatial component. The range parameter 

estimate indicates that the distance that spatial dependence spans (effective range) is 19.8 (6.6×3) km. 

In other words, land prices have small scale spatial variation.  
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Table 5-3: Parameter estimates 

Variables 
LM E-MC E-AICc 

Coef. St.dev. Signif. Coef. St.dev. Signif. Coef. St.dev. Signif. 
Const 10.520 0.073 ***  10.320 0.058 ***  10.240 0.054 ***  
Tokyo dist. -0.001 0.000 **  0.000 0.000 0.000 0.000 
Station -0.048 0.006 ***  -0.030 0.005 ***  -0.039 0.006 ***  
Urban_dum 0.476 0.039 ***  0.479 0.032 ***  0.532 0.029 ***  
Agrculture -0.979 0.078 ***  -0.799 0.062 ***  -0.639 0.060 ***  
Forest -0.473 0.133 ***  -0.398 0.108 ***  -0.300 0.097 ***  
Wasteland -0.961 0.647 -0.299 0.527 -0.493 0.475 
Traffic 2.614 1.307 **  1.744 1.018 *  1.306 0.913 
Otherland 0.729 0.318 **  0.562 0.247 **  0.549 0.225 **  
Golf 0.186 0.434 -0.231 0.337 -0.025 0.301 
River -0.754 0.157 ***  -0.534 0.123 ***  -0.368 0.111 ***  
Ocean -1.066 0.329 ***  -0.663 0.262 **  -0.681 0.234 ***  
nugget 
partial-sill 
range 
z(MC) 42.09 0.029 -1.557 
AICc 454.7 157.9 25.3 

 
 

Variables 
EX-MC EX-AICc GS 

Coef. St.dev. Signif. Coef. St.dev. Signif. Coef. St.dev. Signif. 
Const 10.520 0.054 *** 10.520 0.051 *** 10.070 0.182 *** 
Tokyo dist. -0.001 0.000 *** -0.001 0.000 *** 0.000 0.001 
Station -0.048 0.004 *** -0.048 0.004 *** -0.059 0.009 *** 
Urban_dum 0.476 0.029 *** 0.476 0.027 *** 0.587 0.030 *** 
Agrculture -0.979 0.057 *** -0.979 0.054 *** -0.366 0.056 *** 
Forest -0.473 0.097 *** -0.473 0.092 *** -0.232 0.094 ** 
Wasteland -0.961 0.473 ** -0.961 0.447 ** -0.076 0.472 
Traffic 2.614 0.957 *** 2.614 0.903 *** 0.727 0.759 
Otherland 0.729 0.233 *** 0.729 0.220 *** 0.366 0.201 * 
Golf 0.186 0.318 0.186 0.300 -0.062 0.276 
River -0.754 0.115 *** -0.754 0.108 *** -0.365 0.099 *** 
Ocean -1.066 0.241 *** -1.066 0.227 *** -0.471 0.208 ** 
nugget 0.018 
partial-sill 0.117 
range 6.570 
z(MC) -0.017 -1.418 2) 

AICc 100.6 50.8 6.6 
1) *, **, *** denote significant levels (10%, 5% and 1%) 
2) Because residuals of GM are always 0, z(MC) cannot be used for GM 
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5.3.3. Exploratory spatial data analysis 

On the basis of the discussion in §5.2.5.1, no eigenfunctions are omitted before the stepwise 

selection procedure begins. EX_AICc is used here because: (i) The efficient eigenfunction selection 

algorithm (see §5.2.5.2) is applicable; (ii) E_MC and EX_MC cannot capture small scale variations 

(no eigenfunction whose λl_0 ≤  0 is selected even if exhaustive searches are performed); and, (iii) 

when performing ESDA, which describes spatial patterns in data, variance inflation between X and E 

in E_AICc is problematic. 

Land prices in each geometric center of the minor municipal units (number of units: 3,175) 

are interpolated using LM, EX_AICc, and GS (Fig.5-7). Although we use each minor municipal unit 

for mapping, because these units are at a fine spatial resolution, impacts of the shapes or sizes of these 

units on the resulting maps are sufficiently small. The results of EX-AICc and GS are quite similar, 

and both indicate high values nearby Mito, the capital of the Ibaraki prefecture, and Tsukuba and 

Hitachi, primal cities in this region. Such a feature is less clear in the LM result. Also, the 

distributions of low price areas in the LM result are quite different from those in the EX_AICc and 

GS results. 

 

 

 

 

LM                         EX_AICc                        GS 

Figure 5-7: Interpolatoin results 
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Figure 5-8: RMSE of the methods obtained using five 5-fold-cross validations 

 

 

A 5-fold cross-validation is iterated 5 times to compare the accuracy of each result. This 

5-fold cross-validation procedure is as follows: (i) Samples are randomly partitioned into 5 equal-size 

subsamples; (ii) A model is identified using 80% of the subsamples; (iii) Accuracy of a model is 

measured by fitting it to the remaining 20% of the subsamples; and, (iv) (ii) and (iii) are performed 

for all 5 cases. Root mean square error (RMSE) is used to evaluate model accuracy. Fig.5-8 

summarizes results of the cross-validations. RMSE for EX_AICc (average: 8,889) and GS (average: 

8,686) are about half of the RMSE for LM (average: 15,328). Thus, the importance of considering 

spatial dependence is confirmed. In addition, the accuracy of our OLS-based simple method is 

comparable with that of GS. 

One of the advantages of our method is that the estimated spatial components are decomposable. 

Here, the extracted spatial component–that is, the linear combination of all significant eigenfunctions–is 

decomposed into a linear combination of eigenfunctions satisfying (s1) λl _0 /λ1_0  ≥ 0.5, (s2) 0.5 >λl _0 /λ1_0 ≥

0.25, (s3) 0.25 >λl _0 /λ1_0 ≥ 0, and (s4) 0 >λl _0 /λ1_0, respectively (Fig.5-9). Roughly speaking, s1, s2, s3, and 

s4 describe components whose spatial scales are coarse, mid-coarse, medium, and fine, respectively. The 

coarser component, s1, indicates high values in the southwestern part of the landscape, which is nearby 

Tokyo, and the northwestern area, which is nearby Mito or Hitachi. Thus, s1 might indicate significant 

impacts of these primal cities. The mid-coarser component, s2, is slight, and any prominent spatial pattern 

does not seem to materialized at this scale. The medium scale component, s3, indicates high values around 

0
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some cities, including Mito, Tsukuba, Toride, Koga, and Inashiki. These places are well-developed 

compared to their surroundings, and, accordingly, s3 can be leveled as the local spatial pattern induced by 

these cities. Finally, land prices are strongly affected by the finer component, s4. It might be associated 

with local components that we cannot consider, such as living environment and geographical features. 

 

 

 

 

Figure 5-9: Plots of linear combinations of the eigenvectors selected from EX_AICc 

S shows the linear combination of all selected eigenvectors, and s1, s2, s3, and s4 show linear 

combinatons of eigenvectors satisfying λl _0 /λ1_0  0.5, 0.5 >λl _0 /λ1_0 0.25, 0.25 >λl _0 /λ1_0 0, and 

0 >λl _0 /λ1_0, respectively. 
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The extracted components constitute variance partitioning (see Legendre and Legendre, 2012, for 

more details). We divide the variance of land prices into non-spatial components (X), spatial components at 

each scale (s1, s2, s3, s4), and the disturbance (ε). Because these components are uncorrelated, and do not 

overlap, this partitioning differs from the conventional variance partitioning whose results are summarized 

using a 2-dimentional graph. Our result can be summarized using a 1-dimentional graph. The result shown 

in Fig.5-10 suggests that the spatial component, s1 + s2 + s3 + s4, explains 32.7% of the variation, with 

8.7% being attributed to coarse component s1, 0.3% being attributed to mid-coarse components s2, 9.9% 

being attributed to medium scale components s3, and 13.8% being attributed to finer scale component s4. 

The significance of the fine scale variation is consistent with the small range parameter obtained with GS. 

The fine scale component is ignored if the eigenfunctions are selected among functions satisfying λl _0 > 0, as 

both E_MC and EX_MC assume. 

One interesting result is that s1 and s3 are significant, whereas s2 is not. For comparative purposes, 

EX_AICc is fitted to the land prices in the 23 wards of Tokyo, and the variance partitioning is performed 

(Fig.5-10). The result differs from that for the Ibaraki prefecture; the most significant component is s1, 

followed in order by s2, s3, and s4. Thus, the absence of s2 is a feature specific to the Ibaraki prefecture. 

In summary, the proposed method is useful for both parameter estimation accounting for spatial 

dependence, and ESDA. 

 

 

 

Figure 5-10: Result of variance partitioning 

x: Non-spatial components; s1, s2, s3, s4: spatial components whose λl_0 /λ1_0 are within 1.00–0.50, 0.50–0.25, 

0.25–0.00, and below, 0.00 respectively; ε: disturbance. 
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5.4. A spatiotemporal extension 

5.4.1. Introduction 

 Spatiotemporal statistical models, which have been discussed extensively in geostatistics 

(e.g., Cressie, 1993; Cressie and Wikle, 2011), are classified into dynamic and non-dynamic models. 

The advantage of dynamic models is that they can model causation, they are generally 

computationally efficient, and the validity of their models (e.g., positive definiteness of 

variance-covariance matrix) is easily proved (Cressie et al., 2010). As a result, dynamic modeling has 

recently begun attracting increasing attention. On the other hand, non-dynamic models are still 

important as descriptive or exploratory tools (Cressie and Wikle, 2011). This study focuses on the 

latter group of models. 

 Standard non-dynamic geostatistics describes space-time processes by parameterizing the 

covariance using a function of distance and time lag. The effectiveness of geostatistical models has 

been demonstrated in spatiotemporal interpolation studies. However, they are not necessarily flexible 

as descriptive models. For instance, they cannot reveal space-time components in data, such as global 

spatial components, time-invariant spatial components, and so on. 

 The empirical orthogonal function (EOF) analysis (e.g., Wilks, 2006) is another 

geostatistical approach that extracts such space-time components using an eigen-decomposition, and 

studies have demonstrated its effectiveness for space-time descriptive analyses, including multiscale 

spatial component analyses, visualization, and multivariate analyses (see Cressie and Wikle, 2011). 

However, this approach applies only to discrete spatial data (lattice data), whereas a descriptive 

analysis is particularly important for continuous spatial data (geo-referenced data), in which complete 

observations are generally not possible. 

 As same as the EOF analysis, ESF extracts spatial components in spatial data, and its 

effectiveness for spatial descriptive analysis has been clarified (e.g., Griffith and Peres-Neto, 2006; 

Legendre and Legendre, 2012). However, ESF is also not for continuous spatial data but for discrete 

spatial data. 

 On the contrary, my extended ESF, which I call dESF (distance-based ESF) hereafter, is for 

continuous spatial data. Hence, its spatiotemporal extension might bring a sophisticated space-time 
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descriptive model. Thus, this section extends dESF for spatiotemporal data. 

 

5.4.2. Model 

 This section extends the distance-based ESF for spatiotemporal descriptive analyses. 

§5.4.2.1 discusses standard spatiotemporal geostatistics, and §5.4.2.2 extends the dESF for 

spatiotemporal data based on the discussion in §5.4.2.1. This study proposes a model for longitudinal 

data with a sample size of NT, where N denotes the number of observation sites on sI ∈D 2ℜ⊂ , and 

T denotes the number of observation times on t∈{1,... T }, in which the intervals are not necessarily 

uniform. 

 

5.4.2.1. Spatiotemporal geostatistical model 

The standard space-time geostatistical model is defined as follows (e.g., Gneiting and Guttorp, 

2010): 

 titititiy ,,,, εηµ ++= , (5-30) 

where y(si, t) are the response variables, µ(si, t) is a deterministic non-spatial component, η(si, t) is a 

stochastic spatial component, and ε(si, t)~N(0, σ2). 

The term η (si, t) is modeled by parameterizing its covariance using a function of distance and 

time lag. For example, the product-sum model (De Cesare et al., 2001), which is defined by Eq.(5-31), 

is one of the most common functions: 

 ),(),(),(),(],cov[ ,, ttcsscttcssc tjistjistiti ′+′+=′ηη , (5-31) 

where cs(si, sj) and ct(t, t' ) are functions describing spatial dependency and temporal dependency, 

respectively. 

When the model is applied to longitudinal data, Eq.(5-31) can be expressed using a matrix 

notation as 

 tststsst CCCIICC ⊗+⊗+⊗= , (5-32) 

where Cs (N
 ×  N) and Ct (T

 ×  T ) are spatial and temporal covariance matrices, respectively, I s (N
 ×  N) 

and I t (T
 ×  T ) are identity matrices, and ⊗  is the Kronecker product operator 
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5.4.2.2. ESF-based spatiotemporal eigenfunctions 

First, let us decompose Cs and Ct into EsΛsEs' and EtΛtEt', respectively, using 

eigen-decompositions. Then, Eq.(11) is expanded as 

 ))()(()()( ′⊗⊗⊗+′⊗+⊗′= tstststttstsssst EEΛΛEEEΛEIIEΛEC . (5-33) 

Eq.(5-33) models the spatial component, temporal component, and spatiotemporal component by 

weighting their corresponding eigenvectors, Es, Et, and Es⊗ Et, using their own eigenvalues (i.e., the 

diagonals of Λs, Λt, and Λs⊗ Λt), respectively. 

We apply the eigenvectors of MKM  and M tK tM t to Es and Et, respectively, where K t is a 

matrix describing temporal connectivity, and M  = I t –1t1t'/T. The elements in K t are given by k(t, t' ) = 

exp(–|t–t'|/r t), where r t is the longest time interval among the observations (see Dray et al., 2006). 

Since the eigenvectors of MKM  (or M tK tM t) and K  (or K t) are essentially identical,1 this assumption 

implies that we replace Cs and Ct with K , and K t, respectively. 

The first, second, and third terms in Eq.(5-33) are described by Es, Et, and Es ⊗ Et, 

respectively, and the elements explained by these terms can be summarized as Est =
 { Es⊗ 1t, 1s⊗ Et, Es

⊗ Et}, where 1s is a vector of ones. We can easily show that the vectors in Est are mutually orthogonal, 

i.e., E'stEst = I . Besides, because the means of the eigenvectors in Es and Et are uniformly zeros, the 

means of the vectors in Est are also zeros. Consequently, the vectors in Est are both orthogonal and 

uncorrelated (see also, Griffith, 2003). Thus, Est furnishes distinct (i.e., orthogonal and uncorrelated) 

map pattern descriptions of latent space-time dependence. 

Es⊗ 1t in Est explains spatial components in each time, which is explained by MC+ (see 

§5.2.2). As with the standard ESF, the vectors in Es⊗ 1t corresponding to large eigenvalues of 

M sK sM s (diagonal elements in Λs) explain global scale spatial components, and the vectors 

corresponding to small eigenvalues explain local components. Similarly, 1s⊗ Et explains temporal 

components, which are described by Eq.(5-34): 

 tdtdtztzttwMC
ij i

ttt
z

t

t

′′′= ∫ ∫≠

+ )(~)(~),(
1
2σ

, (5-34) 

 
tdtdttk

ttk
ssw

ij i
i

jit
′′

′
=
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),(

),(
),(

,
  

                                                
1The eigenvectors of MKM  are the eigenvectors of K  after an axis rotation using M . 
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where zt(t) denotes the variables defined on 1ℜ , )(~ tzt  denotes the variables that center zt(t), and 

2
tzσ  is the variance of zt(t). The eigenvectors in I s

⊗

Et describe those temporal components with 

scales that are signified by the eigenvalues, or MCt
+, of M tK tM t (i.e., the diagonals of Λt). Finally, Es

⊗ Et describes the spatiotemporal components that have scales signified by the eigenvalues of MKM

⊗ M tK tM t, which are equal to the diagonals of Λs⊗Λt (see Schott, 2005). 

 

5.4.2.3. ESF-based spatiotemporal model 

 This study proposes the following model 

 εγEEγE1γ1E1y +⊗+⊗+⊗+= st
c

tst
c

tss
c

ts )()()(α    ),(~ 2I0ε σN , (5-35) 

where “ c ” represents the complementary set, and γs, γt, and γst are parameter vectors. The parameters 

are estimated by the following steps. First, assume that all vectors in Es⊗ 1t,, 1s⊗ Et, and Es⊗ Et 

corresponding to non-zero eigenvalues are candidates to be entered into (Es⊗ 1t,)
 c, (1s⊗ Et)

 c, and (Es

⊗ Et)
 c. Second, substitute the candidate vectors into Eq.(5-35) sequentially in decreasing order of the 

absolute value of the correlation coefficients between y and each of the vectors, until the AICc is 

minimized. The OLS technique is used for the AICc calculations. Since the vectors are mutually 

orthogonal, the OLS estimates of γs, γt, and γst results in (Es⊗ 1t,)
 c ' y, (1s⊗ Et)

 c ' y, and (Es⊗ Et)
 c ' y, 

respectively. 

 The model can be defined on unobserved sites too. Suppose that y0 is a vector of unobserved 

response variables at time points t ∈ {1,... T}. Then, y0 is modeled as 

 εγEEγE1γ1E1y +⊗+⊗+⊗+= st
c

tst
c

tss
c

ts )()()( 0000 α    ),(~ 2I0ε σN , (5-36) 

where Es0, which is given by Eq.(5-37), is the eigenvector matrix approximated using the Nyström 

extension: 

 1
000 ))(()/)(/( −+′−′−= ssss NN ΛIΛE11IK11KE , (5-37) 

where I (Λs) is a diagonal matrix with an I-th element of 0 if the I-th diagonal of Λs is zero, and 1 

otherwise. Similarly, when the time points of y0 are not consistent with t ∈{1,... T}, Eq.(5-36) is 

modified by replacing Et with Et0, which is defined as 
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 1
000 ))(()/)(/( −+′−′−= tttttttttt TT ΛIΛE11IK11KE , (5-38) 

where I (Λt) is defined in the same way as I (Λs). 

The proposed model seems useful for descriptive analyses. For instance, response variables 

on arbitrary sites and times can be interpolated using Eq.(5-36). Furthermore, this model measures the 

significances of spatial, temporal, and spatiotemporal components in all space/temporal scales using 

γs, γt, and γst, respectively. These extracted components can be visualized by mapping the estimated 

linear combinations (e.g., estimate of (Es⊗ 1t,)
 c 
γs). 

Simplicity is also an advantage of this approach. As discussed previously, this method 

applies the OLS-based simple calculation procedure. In addition, in contrast to the spatiotemporal 

geostatistical model, which requires an inversion of the spatiotemporal covariance matrix (NT × NT), 

the proposed method does not explicitly manipulate such a large matrix. Instead, the proposed model 

imposes eigen-decompositions of K  (N × N) and K t (T × T). Hence, as long as neither N nor T is too 

large, this method is computationally efficient. For example, the proposed method might be suitable 

for analyzing data with a sample size of 1,000,000, where N = 1,000 and T = 1,000. Note that the 

assumed eigenvector selection procedure also makes my method computationally efficient. 

 

 

5.4.3. An empirical study 

5.4.3.1. Outline 

 This sub-section analyzes residential land prices, as officially assessed between 1995 and 

2006 in Tokyo, Japan (source: Ministry of Land, Infrastructure, and Transport). Since my method 

assumes longitudinal data, I use samples at 2,010 sites that had land prices assessed during the target 

period. The resulting sample size is 24,120. Table 1 summarizes the descriptive statistics of the land 

prices in each year. The table suggests that the land prices are, on average, decreasing over time. The 

land prices in 2000 are plotted in Fig.1. The eastern area showing high land prices is the central Tokyo 

area.  

I first apply the standard linear regression model (LM). The response variables are the 

log-transformed land prices. The explanatory variables are constant (Const), the distance to the 
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nearest railway station (Station), the railway network distance from the nearest station to Tokyo 

station (Tokyo), and the area of each land use type in 1 km × 1 km grids, including the sample sites 

(Paddy, Agriculture, Forest, Wasteland, Traffic, Other land, River, Golf) (see Table 5-5). To consider 

the temporal variation of the regression coefficients, the LMs are fitted in each year independently. 

Then, the residuals of the LMs are fitted to the distance-based ESF (dESF) and the 

spatiotemporal geostatistical model (GS), given as (see Eq.5-32): 

 εη1y ++= α ,   ),(~ tststsN CCCIIC0η ⊗+⊗+⊗ ,   ),(~ 2I0ε σN  (5-39) 

where the elements in Cs and Ct are given using the exponential model, as with the dESF (i.e., exp(–

d(si, sj)/r) and exp(–|t–t'|/r t), respectively). Note that, since temporal variations disappear after 

applying the LMs in each year independently, the dESF estimation becomes strictly identical to the 

estimation result of the dESF with no pure temporal components: 

 εγEEγ1E1y +⊗+⊗+= st
c

tss
c

ts )()(α    ),(~ 2I0ε σN . (5-40) 

Therefore, γt, shall not be discussed further in this paper. 

 The subsequent results are from the R implementation provided by The Comprehensive R 

Archive Network (http://www.r-project.org/index.html), and mappings are from ArcGIS, provided by 

ESRI Inc. (http://www.esri.com/). 
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Table 5-4: Summary statistics of the land prices (10 thou. JPY/m2) 

 
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 

Mean 59.4 52.7 48.7 46.7 43.6 40.9 39.1 37.6 36.3 35.5 35.2 36.0 

Median 44.3 42.4 41.0 39.9 37.3 35.2 33.8 32.4 31.3 30.5 30.3 30.5 

Std.dev. 64.7 47.2 37.5 34.9 32.2 30.4 29.3 28.3 27.7 27.6 28.1 31.0 

Min. 8.05 7.90 7.82 7.60 6.80 6.00 5.70 5.10 4.75 4.30 4.05 3.95 

Max 830 615 493 490 470 468 450 446 460 488 514 650 

 

 

 

Table 5-5: Explanatory variables  

Variables Description Unit 

Tokyo dist. Minimum railway distance from the nearest station to Tokyo station 
Km 

Station Distance to the nearest station 
Urban Dummy indicating 1 if a site is in an urbanized area 0 or 1 
Agriculture Area of agricultural land  

km2 par  
unit area 

Forest Area of forest 
Wasteland Area of wasteland 
Traffic Area of trunk transportation land 
Other land Area of other land (e.g., athletic stadium, port district ) 
Golf Area of golf course 
River Area of river and lake 
Sea Area of beach and body of seawater 

Data source: National Land Numerical Information download service 
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5.4.3.2. Parameter estimation 

 In each year, the coefficients of Const and Traffic are positive, and those of Tokyo, Station, 

Paddy, Agriculture, Forest, Wasteland, Other land, River, and Golf are negative. Roughly speaking, 

the results indicate that adjacency to transportation facilities (Tokyo, Station, and Traffic) inflates land 

prices, whereas non-urban land uses (Paddy, Agriculture, Forest, Wasteland, River, and Golf) deflate 

prices. These results are intuitively reasonable. 

 Transition of the regression coefficient estimates are plotted in Fig.5-12. Here, the estimates 

in each year are standardized by dividing them by their estimates in 1995 (i.e., the values βt/β1995 are 

plotted). Since the signs of all of coefficients are unchanged over time, βt/β1995 > 1.0 implies an 

increase of βt, and βt/β1995 < 1.0 implies a decrease. Fig.5-12 shows that both the positive influences of 

the transportation facilities (Tokyo, Station, and Traffic: solid lines) and the negative influences of the 

major non-urban land uses (Forest and Wasteland: dashed lines) increase gradually. This may indicate 

that the gap between land prices in urban areas with many transportation facilities and the prices in 

non-urban areas has gradually increased. 

 

 

 

Figure 5-12: Transition of the regression coefficients 
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5.4.3.3. Interpolation 

 The land prices in the geometric centers of the minor municipal units in each year (66,060 

points = 5,505 geometric centers × 12 years) are interpolated using the LM and dESF. The 

interpolation results in 1995, 2000, and 2005 are displayed in Fig.5-13. While the results of the LM 

and dESF are visually quite different, the result of the dESF seems better. For instance, the dESF 

succeeds in capturing the high land prices in central Tokyo and other major cities, including Kichijoji 

and Denenchofu. 

To compare the accuracy of the LM and dESF, a five-fold cross-validation is iterated five 

times. This five-fold cross-validation procedure is as follows: (i) Sample sites are randomly divided 

into five sub-sample sites; (ii) Models are estimated using the 4/5 sub-samples observed on the 4/5 

sites; (iii) The remaining 1/5 sub-sample values are interpolated using the estimated models; (iv) The 

interpolation accuracies are evaluated; and, (v) Steps (ii), (iii), and (iv) are performed for all five cases. 

The root mean square error (RMSE: Eq.21) is used to evaluate the model accuracy. Fig.5-14 (a) 

summarizes the resulting RMSEs. The average RMSE of the dESF is 0.219, and the average of the 

LM is 0.289. Thus, the interpolation accuracy of the dESF is better than that of the LM. 

I then compare the accuracies of the dESF and GS. Note that the GS is not available for all 

the samples because of its computational complexity. Hence, the 24,120 samples are divided 

randomly into five 4,824 sub-samples, and five-fold cross validations are applied for each of the 

sub-samples. The results are summarized in Fig.5-14 (b). Interestingly, the RMSEs of the dESF 

(average: 0.257) and GS (average: 0.257) are almost the same in all five cases. This is because our 

method is essentially identical to that of the GS, as discussed in §5.4.2. 

In contrast, the effectiveness of these methods is quite different from the viewpoint of 

computational cost. GS requires 32.53 seconds to interpolate 965 land prices using 3,859 samples. 

The dESF requires only 1.69 seconds to perform the same calculation. In both cases, the computer 

was a 64-bit laptop with 4.0 GB RAM. Furthermore, even in the original problem of interpolating 

66,060 land prices using the 24,120 samples, the dESF required only 36.36 seconds. 

In summary, the dESF is as accurate as the GS, and computationally more efficient. 
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(a)                                       (b) 

Figure 5-14: Comparison of the interpolation accuracies 

Note: (a) RMSEs of LM and dESF given by the 5-fold cross-validation using the full samples. The 

cross-validation is conducted 5 times. (b) RMSEs of dESF and GS obtained by the 5-fold cross-validation 

using 1/5 sub-samples, which are obtained by dividing the full samples randomly. The RMSEs are 

calculated in each sab-sample. 
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5.4.3.4. Spatial component analysis 

 The spatiotemporal components estimated by the dESF (i.e., s
c

ts γ1E ˆ)( ⊗ + st
c

ts γEE ˆ)( ⊗ ) 

are plotted on the left side of Fig.5-15. The figure shows, for example, that the spatial component 

inflates prices in central Tokyo and its southwestern area, as well as in the area along the Chuo-line, a 

prime railway route. These areas are all popular residential areas, so the result is intuitively consistent. 

The estimated spatiotemporal component can be decomposed in each spatial and temporal 

scale. For example, the component including spatial eigenvectors with large eigenvalues (or MC+s) 

describes global scale spatial component. I define spatial scales of the spatial eigenvectors in Es as 

Global scale  : 1.00 > MCl
+/MC1

+ > 0.50, 

Regional scale : 0.50 > MCl
+/MC1

+ > 0.25, 

Local scale  : 0.25 > MCl
+/MC1

+ > 0.00, 

where MCl
+ is the MC+ value of the l-th spatial eigenvector. Since the MCl

+s are proportional to λls, 

MCl
+/MC1

+ can be evaluated by λl
+/λ1

+. By definition, the estimated spatiotemporal component is the 

sum of the global, regional, and local components. Similarly, the temporal scales of the temporal 

eigenvectors in Et are defined as 

Long-term  : 1.00 > MCt, l
+/MCt,1

+ > 0.50, 

Short-term : 0.50 > MCt l
+/MCt,1

+ > 0.00, 

where MCt,l
+ is the MCt

+ value of the l-th temporal eigenvector. While st
c

ts γEE ˆ)( ⊗  is the 

time-variant component that explains the long-term and short-term temporal components, 

s
c

ts γ1E ˆ)( ⊗ , which do not depend on Et, is the time-invariant component. 

The estimated global components are plotted on the right side of Fig.5-15, and the regional 

and local components are shown in Fig.5-16. In 1995, the global component is significant in three 

areas: the central Tokyo area and areas around two cities, Kichijoji and Tachikawa. According to the 

questionnaire by NEXT Co. Ltd. in 2007 (http://www.next-group.jp/en/index.html), Kichijoji is the 

most popular residential city in Tokyo. On the other hand, Tachikawa is a major city that owns 

Tachikawa station, which has the greatest number of passengers of the stations in Tokyo, outside of 

the 23 wards including the central area (East Japan Railway Company: http://www.jreast.co.jp/e/). 

The global component seems to describe the positive influence of these prime urban areas. The three 
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hot spots gradually merged, until in 2005, they became incorporated into one large hot spot. This is 

evidence that the urban areas in Tokyo have been combined over time (i.e., conurbation has taken 

place). 

 

 

 

 

 

 

 

 

Figure 5-15: Extracted spatial components (Composite and Global component) 

Note: The composite component is defined by the sum of the global, regional, and local component. 
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 The regional scale component is again prominent around central Tokyo and Kichijoji. 

Beside, this component is also high in areas around the other cities, including Denenchofu, Hachioji, 

and Machida, which shows that these cities have regional scale influences. On the other hand, the 

local scale component seems to describe local heterogeneity. For instance, this component indicates 

high values in the area along the Chuo-line, which is a popular residential area, but indicates low 

values in the torus-shaped area around central Tokyo. The low values are somewhat unexpected. Thus, 

the multiscale decomposition is helpful to reveal hidden properties in spatiotemporal data. 

Furthermore, the regional and local components are relatively stable over time, in contrast to the 

global component. 

 

 

 

Regional (1995)                           Local (1995) 

Regional (2005)                           Local (2005) 
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Figure 5-16: Extracted spatial components (Regional and local component) 
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 The long-term, short-term, and time-invariant components are plotted in Fig.5-17. The 

long-term component in the mid-area, including the Chuo-line, and the southwest part of central 

Tokyo increased over time. This suggests that the land prices in these areas have become inflated 

compared to other areas. On the other hand, the estimated short-term component is quite small, 

although it displays relatively large variation in the central Tokyo area. This seems to imply 

heterogeneity in the central area. Finally, the time-invariant component suggests that land prices in 

central Tokyo and its southwestern area, as well as in the area along the Chuo-line are constantly high. 

 

Long-term (1995)                         Short-term (1995) 

Long-term (2005)                         Short-term (2005) 

0.3  0.1       0.0       -0.1  -3.0 

Figure 5-17: Extracted spatial components 
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 Since the spatiotemporal eigenvectors are all orthogonal, the following equation holds (see, 

Legendre and Legendre, 2012): 
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where the subscripts g, r, and l denote spatial scales (global, regional, and local), the subscripts 0, L, 

and S denote temporal scales (long-term and short-term), R2 is the R-squared of the dESF model, and 

R 2
A,B is the R-squared of the dESF model with selected eigenvectors that have spatial scales of A and 

temporal scales of B.  

The contribution of each spatiotemporal component to the model accuracy (i.e., R2) 

can be evaluated using R 2
A,B/R 2. Table 4 summarizes the values of R 2

A,B/R 2s, and shows that 

the spatial components are prominent in the order of the local, global, and regional 

components. Thus, it is verified that the land prices have prominent local scale spatial 

variations. On the other hand, about 93% of the components are present in the time invariant 

component, indicating that land prices are stable over time. In addition, the long-term 

component is stronger than the short-term component.  

 

 

Table 5-6: Contributions (%) of each component 

 Spatially variant component 
Global Regional Local 

Time invariant component 24.17 11.06 57.79 
Time variant 
component 

Long-term 1.646 0.365 4.500 
Short-term 0.092 0.052 0.033 
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5.4.4. Discussion 

This study extends the distance-based ESF for space-time modeling. The extended method, 

which is based on both the Moran coefficient and the standard geostatistical model, is suited for 

descriptive analysis, including spatiotemporal interpolation, spatial component extraction, and 

variance partitioning. 

The proposed method is superior to the standard geostatistical method in some respects. 

Firstly, the method is computationally more efficient while its interpolation accuracy is almost same 

with the standard geostatistical model. A number of computationally efficient geostatistical methods, 

which would be faster than my eigen-decomposition-based method, have been proposed (see, e.g., 

Sun et al., 2012). However, they generally impose some approximations, and, generally, their 

predictive accuracies are worse than the standard geostatistical model. The proposed method also 

performs an approximation by removing insignificant eigenvectors, though, since the approximation 

is performed by an AICc-minimization, the approximation would never brought accuracy 

deterioration. The proposed method, which requires calculating spatial eigenvectors, would be slow 

when N is large. On the contrary, the temporal eigenvectors, which is defined on a 1-dimensional 

space, can be approximated using the sine function (Griffith, 2000; Borcard et al., 2004). In short, the 

proposed method is particular efficient for long-term spatiotemporal data. 

Secondly, the proposed method reveals multiscale spatiotemporal structures in data, which 

cannot be captured by the standard geostatistical method. Spatial eigenvector-based approach have 

actively been discussed in ecology (see e.g., Legendre and Legendre, 2012), and, accordingly, like 

MEMs (see §5.2.6), my method might also be suited for ecological analysis. However, the proposed 

method is distinctive in that it models a continuous spatial process described by MC+ while the 

ecological approach models a discrete spatial process described by MC. 

The third advantage is simplicity. Its parameter estimation is conducted by an ordinary least 

squared (OLS)-based simple procedure and, and all conventional diagnostic statistics for linear 

regression model can be applicable directly. 

On the other hand, the method also has a number of drawbacks. Firstly, computational time of its 

eigenvector selection would be large when a non-OLS estimation method is used. This is because the 

efficient eigenvector selection algorithm (see §5.2.5) is only for the OLS-based model. Applying 



 123  
 

penalized regression methods, including the lasso and ridge regression, might be helpful to cope with 

this problem. Secondly, the model has a limitation that it is only for longitudinal data. An EM 

algorithm-based approach that considers unbalanced longitudinal data as balanced longitudinal data 

with missing observations (e.g., LeSage and Pace, 2004) might be useful to overcome this limitation. 

 

 

5.5. Summary 

This study extends ESF to a form paralleling geostatistical data modeling. The formulated 

model is based on both a valid spatial process model in geostatistics and standard ESF methodology, 

and expresses spatial patterns described by MCs. Furthermore, because ESF specifications 

approximate spatial ecomonetric models (i.e., SLM/SEM), which are for discrete spatial data (see 

Tiefelsdorf and Griffith, 2007), the proposed model also can be considered an extension of spatial 

econometric models to continuous space. The usefulness of the method presented in this paper is 

confirmed by utilizing it for parameter estimation and ESDA. 

As with standard ESF, an advantage of the proposed model is simplicity. Parameters in the 

proposed linear model are estimated using OLS, and values of eigenfunctions for arbitrary sites are 

obtained using a simple equation (Eq.5-23). The model is easily combined with other statistical models, 

such as those for logistic regression, Poisson regression, and mixed effects (see Griffith and Paelinck, 

2011). One of its drawbacks is the exhaustive search needed for ESDA. The efficient selection 

algorithm discussed in §5.2.5.1 cannot be used for non-Gaussian models. Hence, efficient algorithms 

for eigenfunction selections need to be developed. 

Continuous spatial model have been used to address various problems, which we do not 

discuss in this paper. Hence, examining the effectiveness of our method for more general problems is 

important. In addition, theoretical relationships between the proposed method and geostatistical 

models–for example, relationships between eigenfunctions extracted using the proposed method and 

variograms estimated using a geostatistical model–also must be clarified in future studies. 
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6. Sampling Design Problem: A Geostatistical 

Approach for Land Price Assessed Site 

Reduction 

 

Changing the spatial support for point data requires considering the efficiency of both the 

point interpolation and interpolation site allocation. Thus, this chapter discusses another COSP for 

point data, namely the sampling design problem. 

This chapter discusses how the spatial statistical sampling design approach can be applied to 

the land price-assessed site reduction problem in Japan. As the assessed sites are going to be reduced 

gradually after 2013, discussing this issue is important. However, the spatial statistical approach has 

never been applied to land price data. Accordingly, this chapter first extends the standard geostatistical 

sampling design approach for land price assessment data in Japan. Then, the effectiveness of the 

extended method is examined by applying it to actual land price data. Finally, the reduction problem 

is discussed using this method. 

 

 

6.1. Methodology 

6.1.1. Review of spatial sampling studies 

 Environmental/socio-economic data are monitored for various purposes. For instance, in 

Japan, concerns about weather have led to the measurement of weather data, and concerns about land 

transactions have led to the official assessment of land prices. Maintaining these data can be 

expensive. For example, the cost of the official land price assessment in Japan in 2010, which assesses 

land prices at 26,000 sites, is 3.74 billion JPY (Source: MLIT: 

http://www.mlit.go.jp/common/000213810.pdf), and similar amounts required each year. To use this 

investment effectively, the assessed site allocation must be determined judiciously, to help land 

transactions and other uses. Thus, discussing sample site allocation (assessed site allocation) or 

sampling design is important. 
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 Methodologies for spatial sampling design are classified into design-based methods, which 

use a pre-determined scheme, and model-based methods, which use a model (Wang et al., 2012). The 

former group includes simple random sampling, in which sample sites are decided randomly, 

systematic sampling, in which samples are selected based on a given and preset order, stratified 

random sampling, which performs simple random sampling in each pre-determined, non-overlapping 

group (e.g., sub-region, age group), and two-step sampling, which selects a group randomly and 

performs simple random sampling on that group. Since these methods are for independent and 

identically distributed (i.i.d.) samples (stratified random sampling and two-step sampling assume i.i.d. 

for samples in each group), samples must be homogeneous. Systematic sampling outperforms the 

other methods when no prior knowledge is available about the samples (Ripley, 1981; Dunn and 

Harrison, 1993), whereas stratified random sampling is efficient when attributes in samples have 

strong spatial dependence (Ripley, 1981). 

 The model-based methods perform an optimization using a Monte Carlo-type simulation 

technique, including the Markov chain Monte Carlo (MCMC) method (Gelfand and Smith, 1990) and 

the simulated annealing (SA) method (Kirkpatrich et al., 1983). These methods have been well 

discussed in geostatistics (see §6. 2). 

 According to Wang et al. (2012), the design-based methods are suitable for “how much” 

problems, including estimating a global mean and standard deviation (of a population) whereas the 

model-based methods are more suitable for “where” problems, including the sample (or assessed) site 

relocation problem. Since this study focuses on the latter problem, the model-based approach will be 

discussed from here on. 

 

6.1.2. Model-based sampling design 

 The model-based approach has been applied to two types of problems: the sampling design 

optimization problem for accurate spatial process description, and the optimization problem for 

efficient parameter estimation (Zimmerman, 2006; Zhu and Stein, 2005). Generally, the problem for 

accurate spatial process description minimizes either of the following objective functions (Zhu and 

Stein, 2005): 
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where s0 ∈ D 2ℜ⊂  denotes arbitrary sites in a study region D, S = {s1,...sN} D⊂  denotes the 

sampling design (i.e., a collection of sample sites), V(s0; S) denotes a squared prediction error (SPE) at 

location s0 under design S, and w(s0) denotes the weight assigned to location s0. Eq.(6-1) provides a 

mini-sum solution, which is suitable when the quality of the overall sampling design must be 

maximized (i.e., total loss must be minimized). Eq.(6-2) provides a mini-max solution, which is 

suitable when the maximum loss at arbitrary sites in D must be minimized. 

 On the other hand, the optimization problem for efficient parameter estimation finds the 

optimal design that makes parameter estimation efficient. Efficient semivariogram model estimation 

has been discussed in geostatistics. For instance, Russo (1984) shows that the sampling design with 

unified numbers of location pairs within each of the lag-distance zones (see Fig.2-4) provides efficient 

semivariogram estimates. Warrick and Myers (1987) extended Russo’s (1984) idea to consider 

directions. On the other hand, Muller and Zimmerman (1999) propose a design minimizing the MSE 

of parameter estimators, which is defined as 

 ])ˆ)(ˆ[()( ′−−= θθθθθM E , (6-3) 

where θ denotes the true parameter values and θ̂  denotes their estimators. Since θ is known, 

Eq.(6-3) cannot be applied directly. Hence, they minimize Eq.(6-3) by minimizing the inverse 

information matrix of the estimators that asymptotically converge to Eq.(6-3) (Zimmerman, 2006). 

The sampling design that minimizes Eq.(6-3) provides an efficient estimator. 

 Interestingly, it is known that the approaches for accurate spatial process description and 

approaches for efficient parameter estimation provide opposite results. More precisely, the former 

provides a spatially spread sampling design, while the latter provides a spatially clustered design 

(Zimmerman, 2006). However, these two approaches should not necessarily be discussed 

independently. In fact, the instability of θ (MSE of θ), which is minimized in the latter group, is likely 

to influence the model accuracy (or SPE), which is maximized in the former group. Thus, Zhu and 

Stein (2005) and Zimmerman (2006) discuss the accuracy maximization problem while considering 

the instability of θ in non-Bayesian fashions, whereas Diggle and Lophaven (2006) discussed the 
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same in a Bayesian fashion. 

 More recently, preferential sampling (Diggle et al., 2010) has been discussed extensively. 

This method allows dependency between sample values and sample allocations; for example, sample 

sites are densely located in areas where sample values are large (e.g., Olea, 2007; Diggle and Ribeiro, 

2007; Gelfand, 2012). The Bayesian technique is required for preferential sampling. Applying the 

preferential sampling technique is important when some secondary statistical analyses, including 

parameter estimation and spatial prediction, are needed using the samples (e.g., Diggle et al., 2010; 

Gelfand et al., 2012). 

 Since sampling design optimization requires finding the global optimum from among many 

local optimum, the aforementioned methods require a Monte Carlo method (e.g., the simulated 

annealing method), which is computationally expensive. The complexity is particularly serious when 

the Bayesian approaches are applied (see, Diggle et al., 2010; Zidec and Zimmerman, 2010). 

 The concern in this chapter is how to reduce the land price assessments sites. The reduction 

must be conducted to maintain the quality of the land price data. In other words, the resulting reduced 

design must describe land prices in the region well. Thus, I consider applying the accuracy 

maximization-based (or SPE-based) approach that finds the design with maximum descriptive 

capability. As a result of the computational expensiveness, this study does not consider either the 

instability of θ or the preference in sampling. The rationale for this is as follows. Ignoring the 

instability of θ on the accuracy maximization result is small (Zhu and Stein, 2005). Then, since the 

prime uses of the land price data (see §6.3.2) do not include statistical analyses, there is no clear 

advantage to applying preferential sampling. 

 

6.1.3. Accuracy maximization-based geostatistical sampling design 

 Generally, the objective functions in Eqs.(6-1) and (6-2) are minimized after changing them 

into a tractable discretized form, as follows 

 ∑
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ss , (6-4) 
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Eq.(6-4) or Eq.(6-5) are minimized, for example, by applying the simulated annealing method. The 
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simulated annealing method is a heuristic algorithm that uses the following optimization procedure: 

 (i) Set an initial design, S0, and an initial value for a parameter T, T0. 

 (ii) Iterate (ii-1) and (ii-2) iter times, alternately. 

 (ii-1) Let Si be the sampling design given at the i-th iteration, and let Si' be the design 

given by randomly replacing a sample site in Si with an un-sampled site in s0. 

 (ii-2) Calculate the values of the objective function, Cg(S), for Si and Si', where g ∈  

{1, 2} (i.e., either Eq.6-4 or Eq.6-5). Then, if Cg(Si' ) ≤  Cg(Si), Si+1 is Si'. On 

the other hand, if Cg(Si' ) > Cg(Si), Si+1 is Si', with the following probability: 

 




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


 −′
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SCSC igig )()(
exp

.
 (6-6) 

Otherwise, Si+1 is Si. Eq.(6-6) implies that the modified design, Si', is accepted 

with the probability given in the equation, even if the modification worsens the 

objective function. This acceptance is required to reach the global optimum. The 

probability given by Eq.(6-6) is controlled by the parameter T, with a greater 

value of T indicating a larger acceptance ratio. 

(iii) Replace T with pT, where p (0 < p < 1) is a fixed parameter that expresses the decreasing 

ratio of T. 

 (iv) Iterate (ii) and (iii) until Si converges. 

 

T0, S0, iter, and p must be determined a priori. Eq.(6-7) is a standard assumption for T0 (e.g., 

Brus and Heuvelink, 2007): 
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where S+
* is the optimal design given by the simulated annealing method in which step (ii-2) accepts 

only improvements (i.e., if Cg(Si' ) ≤  Cg(Si), Si+1 is given by Si', otherwise, Si+1 is given by Si ). 

Following Brus and Heuvelink (2007), this study sets S0 randomly, and T0, iter, and p are given by 

Eq.(6-7), 100, and 0.95, respectively. 
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6.2. Geostatistics for the land price assessed site reduction 

problem 

6.2.1. Background 

Japan has a huge deficit, and improving its financial soundness is a critical issue (Ministry of 

Finance, Japan: URL: http://www.mof.go.jp/english/index.htm). For the soundness, the 

efficiency/reduction of the land price assessment systems has been discussed, and it was decided that 

to reduce the number of assessed sites gradually after 2014 (YOMIURI ONLINE: 

http://www.yomiuri.co.jp/atmoney/news/20130109-OYT1T01049.htm: 2013/1/22 final access).  

To maintain the quality of the assessment, the reduction in the number of assessed sites needs 

to be managed carefully. While applying the aforementioned sampling design techniques seems 

helpful to this reduction problem, I was not able to find any studies that use them for land price data. 

Therefore, in this study, I construct a methodology for this reduction problem, after discussing the 

details of the land price assessment systems in Japan. 

 

6.2.2. Land prices assessment systems 

There are two prime land prices in Japan: the officially assessed land price and the prefectural 

land price. The officially assessed land price is assessed by the Land Appraisal Committee under the 

Ministry of Land, Infrastructure, Transport, and Tourism (MLIT) at the beginning of the year, and is 

based on the Land Market Value Publication Act. This assessment provides standard market values of 

land per square meter for standard sites. Here, the standard land market values are the prices that 

would be formed in an assumed transaction without any extraordinary incentives that induce 

participants to sell off or buy aggressively (Land and Property in Japan: 

http://tochi.mlit.go.jp/english/: 2013/9/2 final access). Recently, land prices at the 26,000 standard 

sites are assessed every year. The prices in each of the sites are examined by more than two real-estate 

appraisers.  

On the other hand, the prefectural land price is assessed by prefectures on July 1, based on the 

Enforcement Order for the National Land Use Planning Act. In this assessment, two or more real 

estate appraisers are placed on each site to assess the standard market value of the land per square 
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meter of a standard site (e.g., in 2012, 22,264 sites were assessed). The prefectural land price plays a 

complementary role to the officially assessed land price. 

The sites to be assessed are chosen from those in an urban planning area or from areas in 

which a certain number of land transactions is expected. In addition, the following criteria are used to 

decide on the assessed sites:  

 

Representativeness: The sites must represent the land price level of the surrounding area. 

Moderation : Occupancy condition, environment, land register, and so on, at the sites 

must be moderate. 

Stability : The occupancy condition must be stable. 

Certainty : The sites must be identifiable using, for example, land registers, 

buildings, and so on. 

 

The adequacy of the assessed sites is checked every year, and sites that violate any of these criteria are 

replaced by more suitable sites. These criteria are basically for the officially assessed land prices, 

although many prefectures adopt the criteria for the prefectural land prices too. In addition, to 

complement the officially assessed land price from the viewpoint of space, more prefectural land 

prices are assessed outside of urban planning areas. The prefectural land prices also complement the 

officially assessed land prices from the viewpoint of time. This is because their assessments are 

conducted just half a year after the officially assessed land prices. 

 These land price data are provided by the National Land Numerical Information Download 

Service. The data have three main uses: (i) as a reference for the usual land transactions; (ii) as a 

reference for land acquisition and compensation by administration; and (iii) as a reference for taxation 

(e.g., inheritance tax and property tax). 

 

 

 

 

 



 131  
 

6.3. Model for the reduction problem 

6.3.1. Assessed site reduction criteria 

Generally, spatial sampling is discussed in terms of data quality and assessment cost, so I do 

so here as well. The data quality is maintained by applying the accuracy maximization-based 

approach. Although this approach cannot consider the cost, this is not necessarily needed when data 

acquisition costs are uniform over space. The assessment cost of land prices seems near uniform. 

Hence, this study assumes uniformity of cost, and does not consider this aspect further. 

In addition to the data quality, considering the discussion in §6.2.2, I must consider the 

allocation criteria (including the four criteria) and diversity of use. The assessed site allocation criteria, 

which was discussed in §6.2.2, are summarized as follows: (i) Assessed sites must be allocated in 

areas with a certain number of expected transactions; (ii) An assessed site must have 

representativeness, moderation, stability, and certainty; and (iii) The prefectural land price data must 

complement the officially assessed land price data from the viewpoint of space and time. Since the 

prefectural land prices are assessed six months after the officially assessed land prices, temporal 

complementarity is automatically satisfied. In addition, because the accuracy maximization-based 

approach provides a sampling design with good coverage over a study area (Zidek and Zimmerman, 

2010), complementarity over space is also satisfied if the geostatistical approach is used. However, 

satisfying the four allocation criteria in point (ii) by applying the geostatistical approach is not 

necessarily straightforward. Although, since the existing assessed sites have been determined to be 

consistent with the criteria, the criteria are also fulfilled as long as the sites to be assessed are chosen 

from among the existing sites. 

I have clarified the following points: data quality and the complementarity on space and time 

are considered by applying the accuracy maximization-based approach; cost can be ignored by 

assuming uniformity of the assessment cost; the four allocation criteria are satisfied as long as the 

sites to be assessed are selected from among the existing assessed sites. In contrast, I am not sure how 

the expected number of land transactions and the diversity of use can be considered. Note that land 

transactions form one of the uses that falls under diversity of use. Hence, hereafter, I discuss only 

diversity of use. 
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6.3.2. Geostatistical assessed site reduction considering the diversity 

of use 

To consider data quality, I reduce the assessed sites by applying the accuracy 

maximization-based approach. We can select an objective function from Eq.(6-1) or Eq.(6-2), and can 

set the weights, w(s0), in these equations. §6.3.2 considers the most appropriate objective function and 

weights for each use (land transactions; land acquisition/compensation; taxation; see §6.2.2). 

For land transactions, the assessed sites must fall within areas in which many transactions are 

expected. Such a preference can be considered by applying the expected transaction numbers (per unit 

area) to w(s0). On the other hand, for land acquisitions/compensations or taxation, the assessed sites 

need to contain many households. This is because land acquisitions/compensations and taxation are 

conducted per household. In short, in the case of land transactions, w(s0)s are given by the expected 

numbers of transactions per unit area, while in the case of land acquisitions/compensations and 

taxation, they are given by the number of households per unit area. 

 Subsequently, the objective functions must be selected (either Eq.6-1 or Eq.6-2) for each 

use. The mini-sum function (Eq.6-1) minimizes the overall loss (the mean of the SPE, i.e., MSPE), 

but may include areas with a singularly large SPE. On the other hand, the mini-max function (Eq.6-2) 

Railway Railway 

Price  
(10thou. JPY/m2) 

Price  
(10thou. JPY/m

2
) 

Officially assessed land price                  Prefectural land price 

Figure 6-1: Residential land price in Ibaraki prefecture (2009) 
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avoids introducing such large SPE values, but its resulting design does not necessarily minimize the 

overall SPE or MSPE. 

 Land transactions reference both land price data and other data (e.g., real estate appraisal 

data and information on neighborhood transactions). The same holds for land 

acquisitions/compensations (e.g., expected profits and circumstances are checked). Accordingly, in 

these two uses, a certain level of loss in land price data can be covered by the other information 

referenced. However, to maintain the credibility of the land price data as an indicator of land 

transactions or land acquisitions/compensations, the inefficiency of including arbitrary sites must be 

reduced as much as possible. Accordingly, this study applies the mini-max approach for land 

transactions and land acquisitions/compensations, as it avoids introducing singularly large 

inefficiencies on arbitrary sites. 

 On the other hand, in Japan, land prices are directly related to taxation. For example, it has 

been established that the property tax valuation, which is a basis for property tax, must be about 0.7 

times the spatially adjacent officially assessed land price values. In addition, land assessments for 

inheritance tax purposes must be about 0.8 times the spatially adjacent land price values. Thus, to 

adequately conduct taxation, the quality of the land price data must be maintained as much as possible. 

Hence, when considering taxation, this study uses the mini-sum function, which maximizes the 

overall data quality. The resulting objective functions for each use are summarized in Table 6-1. 

 

 

Table 6-1: Objective functions for each use 

 Land transaction 
land acquisitions / 

compensations 
Taxation 

Objective 

function 
)]();(max[ 00 ss wSV  )]();(max[ 00 ss wSV  ∑

∈D

wSV
0

)();( 00
s

ss  

V(s0; S) SPE (squared prediction error) 

w(s0) 
Expected transaction 

numbers per unit area 

Household numbers 

per unit area 

Household numbers 

per unit area 

 



 134  
 

6.3.3. Computation of the weights (w(s0)) 

 The expected transaction numbers per unit area and the household numbers per unit area 

are used for the weights (see Table 6-1). The densities of householder numbers are calculated using 

data provided by E-Stat, a portal site provided by the Statistic Bureau, Ministry of Internal Affairs, 

and Communications, Japan (http://www.e-stat.go.jp/SG1/estat/eStatTopPortal.do). 

This study estimates the expected number of transactions based on the land transaction data 

provided by Land General Information System, a portal site provided by the MLIT 

(http://www.land.mlit.go.jp/webland/). Using this data, the number of transactions in each minor 

municipal unit is easily obtained. However, these data are based on voluntary answers to a 

questionnaire, and so might be unreliable. In addition, the transaction numbers per minor municipal 

unit are small compared to the number of the minor municipal units (e.g., in the Ibaraki prefecture, 

[the number of transactions in residential lands]/[the number of minor municipal units] is less than 1), 

which would also make the data unstable. 

To cope with such unreliability and instability, this study applies the Poisson-Gamma model 

(Bethlehem et al., 1990), which is defined as 

 ))()((~)( 000 sPsPoissonsP ×θ , (6-8) 

 ),(~)( 0 baGammasθ , (6-9) 

where a and b are parameters, P(s0) is the number of transactions in the minor municipal unit s0, and 

)( 0sP  is the population that generates P(s0). This study gives )( 0sP  by the number of households 

in s0. Under these assumptions, θ(s0) becomes the expected transaction number per household, and its 

estimator is given as 

 
bsd

asd
s ˆ)(

ˆ)(
)(ˆ

0

0
0 +

+=θ
.
 (6-10) 

Eq.(6-10) can be considered an empirical Bayesian estimator of θ(s0), with its prior distribution given 

by Eq.(6-9). Hence, as with the other Bayesian estimators, )(ˆ 0sθ  can be considered a shrinkage 

estimator. In the other words, )(ˆ 0sθ  is an estimator that copes with the aforementioned unreliability 

and instability. Finally, the estimator for the expected number of transactions is given by )()(ˆ 00 sdsθ . 
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6.4. An empirical study 

6.4.1. Outline 

In this section, I describe how to use the proposed approach to reduce the number of sites 

assessed for the residential land prices (the officially assessed land price data + the prefectural land 

price data) in the Ibaraki prefecture in 2009 (sample size: 1,084; see Fig.6-2). In this study, reductions 

are conducted for each of the three uses, and, for each use, the number of sites is reduced by 108 

(10% of the sample size), 325 (30% of the sample size), and 542 (50% of the sample size), 

respectively. In these reductions, 108, 325, or 542 sites are chosen randomly from among the existing 

1,084 assessed sites. Then, the best design is identified by applying the simulated annealing method. 

Here, s0 is given by the geometric centers of 3,943 minor municipal units. 

The SPEs are calculated using the standard geostatistical model given in Eq.(2-19). The 

response variables are the land prices (JPY/m2). The explanatory variables are the Euclidean distance 

to the nearest station (Station: km), the railway network distance from the nearest station to the Tokyo 

station (Tokyo dist. km), the railway network distance from the nearest station to the Mito station 

(Mito dist. km), and the area of each land use type (Paddy, Agriculture, Forest, Wasteland, Railway, 

Road, Other land, Golf, River, Beach, Ocean) per 1 km2 (see Table 6-2). The covariogram is given by 

the spherical model, Eq.(2-11), and parameters are estimated using the IRLS-based method (see 

§.2.2.4). 

 
Figure 6-2: Assessed site allocation 

Railway 
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Table 6-2: Variables applied in this empirical study 

Variables Description Unit Source 

Tokyo dist. 
Minimum railway distance from the nearest 
station to Tokyo station 

km 

NLNI* 
(2009) 

Mito dist. 
Minimum railway distance from the nearest 
station to Mito station 

Station Distance to the nearest station 
Paddy Area of paddy field 

km2 per  
unit area 

Agriculture Area of agricultural land  
Forest Area of forest 
Wasteland Area of wasteland 
Railway Area of railway 
Road Area of road 
Other land Area of other land 
Golf Area of golf course 
River/Lake Area of river/lake 
Beach Area of beach 
Ocean Area of beach and body of seawater 

Household 

Number 

Household numbers in each minor municipal 

unit 
Household 

National 

census (2005) 

Transaction 

numbers 

Transaction numbers of residential lands in 

each minor municipal unit 
Transaction 

number 

Land General 

Information 

System (2009) 

* NLNI: National Land Numerical Information download service 

 

 

 

Railway 

Transaction number 

Figure 6-3: Transaction numbers 
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6.4.2. Parameter estimation 

 Station and Tokyo dist. are negatively significant at the 1% level, and Mito dist. is 

negatively significant at the 10% level. These results suggest that railways are an important factor in 

determining land prices. On the other hand, Paddy, Agriculture, Forest, and River/Lake are negatively 

significant at the 1% level. This suggests that these non-urban land uses have a negative impact. 

The estimates of the partial-sill and nugget are 1.15 × 108 and 6.92 × 107, respectively. These 

results indicate that 62.5 [= {1.15 × 108/(1.84 × 108 + 6.92 × 107 )} × 100] % of the disturbance is 

explained by spatial dependence. The estimated range is 6.48 km, which suggests that the land prices 

have local spatial variation. 

The accuracy of the constructed model is checked by applying a five-fold-cross-validation. I 

first compare the resulting predicted values and their actual values using a 45° plot (see Fig.6-4). The 

comparison results suggest that the predicted values are similar to the actual values. The RMSE of the 

predicted values is 8,734 JPY/m2, which is sufficiently small compared to the standard deviation of 

the land prices (see Table 6-3). Therefore, the constructed model is sufficiently accurate. 
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Table 6-3: Parameter estimation results 

Variables Estimates t -values 

Const. 8.88×10 4 6.92  ***  

Tokyo dist –9.69×10 3 –3.73  ***

Mito dist –1.24×10 3 –1.95  *

Station –4.75×10 3 –8.21  ***

Paddy –2.09×10–2 –8.98  ***

Agriculture –2.69×10–2 –8.59  ***

Forest –1.60×10–2 –4.77  ***

Wasteland –6.21×10–3 –1.32 

Road –1.57×10–2 –4.70×10–1 

Railway 1.59×10–1 1.61 

Other land –3.24×10–3 –4.63×10–1 

River/Lake –2.21×10–2 –5.76  ***

Beach –4.10×10–2 –1.37   

Ocean –1.07×10–2 –1.45   

Golf –6.61×10–3 –6.35×10–1  

Nugget 6.92×10 7   

Partial-sill 1.15×10 8   

Range 6.48   
*, ** , ***  represent 10%, 5%, and 1% significance levels, respectively 

 

 

 

 

 

 

Figure 6-4: Comparison of the actual and predicted land price values 
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6.4.3. Result of the assessed sites reductions 

The SPEs and the two types of weights, namely the number of households and the expected 

number of transactions, are plotted in Fig.6-5 and Fig.6-6, respectively. The SPEs are high in 

non-urban areas, while the number of households and expected number of transactions are high in 

urban areas. In the other words, the SPE recommends having more assessed sites in non-urban areas, 

while the expected number of transactions and number of households recommend having more sites 

in urban areas. 
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Figure 6-5: Squared prediction errors 
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Railway Railway 
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Figure 6-6: Household numbers (left) and expected number of transactions (right) 
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The results of the reduction in the number of assessed sites for land transactions, land 

acquisitions/compensations, and taxation are plotted in Fig.6-7. The results indicate the following 

features (see also Fig.6-2). Many assessed sites in non-urban areas have been maintained. Many 

assessed sites around Mito city have been maintained. Many assessed sites have been removed around 

the second-largest cities, including Tsukuba, Tsuchiura, and Hitachi. The latter result indicates that 

assessed sites in the second-largest cities should be removed a priori. 

 To discuss the similarities in the results, the ratios of commonly reduced assessed sites are 

calculated for each pair of uses. Table 6-4 summarizes the ratios given a 50% reduction. This table 

suggests that the results for land transactions and land acquisitions/compensations are relatively 

similar, but are less similar to the result for taxation. This dissimilarity is due to the difference in 

objective functions (see Table 6-1). The resulting allocation for taxation is more dispersed in the area 

that includes Tsukuba, Tsuchiura, and Toride, as well as the area around Hitachi, when compared to 

the results for land transactions and land acquisitions/compensations (particularly when 50% of the 

sites are reduced: see Fig.6-7). Considering such differences would be important to reduce the 

assessed sites properly. 

 

 

 

Table 6-4: Ratio of sites that are commonly removed (50% reduction) 

 
Land transaction 

Land acquisition/ 

compensation 
Taxation 

Land transaction 1.00 0.93 0.57 

Land acquisition/ 

compensation 
0.93 1.00 0.55 

Taxation 0.57 0.55 1.00 
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Figure 6-7: Assessed site reduction results 
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Fig.6-8 plots the assessed sites that are removed in all three cases; in other words, the sites 

whose reductions are particularly recommended. This figure shows that, locally, a reduction in the 

number of assessed sites nearby to railway stations is recommended. However, globally, a reduction 

in the number of assessed sites around Toride, Tsuchiura, and Hitachi is recommended (the 10% 

reduction recommends a reduction in the number of sites around Toride only). 

 Finally, the realizations of the objective functions are summarized in Table 6-5. The figures 

in the table show that changes in the objective functions due to the reductions are small in all cases. In 

particular, the values before the reduction and the values after a 10% reduction are almost same. In 

addition, the decrease in the quality of the data is still small even when 50% of the sites are reduced. 

Thus, while smaller reductions are preferable to maintain the data quality, the data quality remains 

good even after a greater level of reduction. 

 

 

 

Table 6-5: Resulting objective function values 

Sample size Land transaction 
Land acquisition/ 

compensation 
Taxation 

Full 5.510 × 109 1.026 × 1012 2.866 × 1010 

10% reduction 5.510 × 109 1.026 × 1012 2.870 × 1010 

30% reduction 5.511 × 109 1.027 × 1012 2.934 × 1010 

50% reduction 5.517 × 109 1.028 × 1012 3.092 × 1010 

10% reduction              30% reduction              50% reduction 

Figure 6-8: Commonly reduced assessed sites 
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6.5. Summary 

 This chapter extended the geostatistical approach to include land price data in Japan, and 

applied the proposed approach to the assessed site reduction problem. The results indicate which assessed 

sites are recommended for reductions, the decrease in data quality after the reductions, and so on. In 

addition, the discussion shows the effectiveness of the geostatistical approach for the reduction problem. 

On the other hand, this study still has the following limitations. Firstly, it is not able to consider 

non-residential land prices, such as commercial land prices and industrial land prices. Non-residential land 

price data might have play a complementary roles to the residential land price data (e.g., an insufficiency 

of residential land price data might be covered by nearby non-residential land price data). To make my 

discussion more significant, non-residential land prices should be considered. In addition, the optimal 

allocations may possibly change drastically if a different geostatistical model is used (e.g., Fuentes et al., 

2007). Hence, the reliability of the results must be verified. Finally, constructing a geostatistical model that 

is more suited to the reduction problem would be important. 
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7. Summary and Future Directions 
 

 This study proposed spatial statistical methods for COSPs. Chapters 3 and 4 discussed the 

main COSPs for areal data, namely the areal interpolation problem and the MAUP. Chapters 5 and 6 

discussed the main COSPs for point data, namely the point interpolation problem and the sampling 

design problem. All of these discussions are important to conduct changing spatial support effectively.  

 Chapter 3 proposed a GWR-based areal interpolation method and clarified its effectiveness 

by comparing it to other geographical and geostatistical areal interpolation methods. I also conducted 

an empirical study of building stock estimation. Here, I verified that, while statistical methods have 

been accused of being ineffective in quantitative geography, the spatial statistical areal interpolation 

methods are efficient. Chapter 4 described the effectiveness of the GWR-based method for the MAUP. 

Chapter 5 discussed the extension to the ESF to handle continuous spatial data and applied the 

extended method to point interpolation, spatial component analysis, and so on. I also extended this 

method for spatiotemporal modeling. The results confirmed that the effectiveness of the proposed 

spatial and spatiotemporal models is comparable with standard geostatistical models. Chapter 6 

develops the geostatistical sampling design approach for the land price assessment site reduction 

problem, showing that this approach provides intuitively reasonable reduction results. 

 Each of the chapters has revealed the effectiveness of spatial statistics for COSPs. However, 

considering the recent developments in GIS, we still have a lot of problems that must discuss. Firstly, 

considering the recent diversification of spatiotemporal data (Goodchild, 2010), the interpolation of 

spatiotemporal data must be discussed more thoroughly. The ESF-based spatiotemporal model 

proposed in Chapter 5 is significant in this regard. On the other hand, the GWR-based areal 

interpolation method must also be extended for spatiotemporal data. The extension would be useful, 

for example, when constructing municipal-level panel data between 1990 and 2010 in Japan, when 

many municipal units were merged. In addition, spatiotemporal modeling would be helpful in 

resolving the land price assessment site reduction problem from a long-term perspective. 

 On the other hand, spatiotemporal data have got larger and larger in recent years. The 

ESF-based spatiotemporal model might be helpful for large spatiotemporal data because of its 

computational efficiency. Furthermore, since the GWR-based areal interpolation method does not 
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require inversion of the covariance matrix differ from the geostatistical models, it is also 

computationally more efficient than the standard geostatistical methods. However, these 

computational efficiencies would still be insufficient to handle so called “big data” (e.g., real-time 

twitter data). Thus, these methods must be made computationally more efficient. 

 Although I have discussed COSPs in each section somewhat independently, they should not 

necessarily be discussed in this way. For example, a researcher might need to estimate parameters 

considering the MAUP in an analysis using both areal data interpolated by an areal interpolation and 

point data interpolated by a point interpolation. Some geostatistical studies discuss such integrated 

problems by applying hierarchical Bayesian models (e.g., Sahu et al., 2010; Gelfand, 2010). 

Extending my methods to such problems is important. 

 While this study focuses mainly on model constructions, discussing these applications is 

also important. In this sense, the discussions of the building stock estimation in Chapter 3 and the land 

price assessment site reduction in Chapter 6 are meaningful. Currently, in a project in the National 

Institute of Environmental Studies, Japan, we are considering constructing a detailed population 

dataset using an areal interpolation technique. Such population data are already provided by the 

SEDAC (http://sedac.ciesin.columbia.edu/), although their data seem somewhat strange. In particular, 

their data on developing countries appear to be constructed using the simple areal weighting 

interpolation method, and their population values are disconnected at borders of regions/prefectures 

(see Fig.7-1). We have already confirmed that detailed populations can be estimated more accurately 

using my spatial statistical areal interpolation model. Completing our population data construction to 

provide this data is important. 

 Besides, providing calculation codes for the proposed methods is also important. I coded my 

results using R (http://cran.r-project.org/), a free statistical software package. We can upload packages 

(collections of R functions/codes) on R for free. Thus, uploading a package that collects my 

functions/codes is one way to achieve this. 
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Figure 7-1: Detailed population densities in Saudi Arabia (2.5 arc-minute grid cells) 

Note: Left: data provided by the SEDAC; Right: our estimates. 
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