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Abstract

Spatial data have become more diverse as geograpioicnation systems (GIS) have
developed, and as a result, so have the spatiglogspfor these data (e.g., aggregation units, data
locations, and so on). This has created opporasitthere spatial supports of data at hand do not
compatible with the spatial supports that the usenst. Thus, developing methodologies for change
of spatial support problems (COSPs), such as tbklgm of how to convert prefectural population
data into municipal population data is a criticalue in geographical information sciences.

COSPs consist of two sub-problems: (i) the probtgrohanging the spatial support itself;
and (ii) the problem related to (i). If we considee two major types of spatial data, namely adetd
(or lattice data) and point data (or geo-refereraagd), we can sub-divide the problems in (i) imo
sub-problems: (i-1) changing the spatial suppartafeal data (e.g., a gridded population interjpmfat
using municipal population data); and (i-2) chaggihe spatial support for point data (e.g., weather
data interpolation on gridded points using datanfrmonitoring stations; i.e., changing the support
from the monitoring station sites to the griddednfs). A possible solution to sub-problem (i-1)
applies the areal interpolation technique, and latiso to sub-problem (i-2) applies the point
interpolation technique. Therefore, discussingrpation problems is important from the viewpoint
of COSPs.

The sub-problems (i-1) and (i-2) each have thein cancomitant problems. The modifiable
areal unit problem (MAUP) is a problem relatedité)( The MAUP refers to the problem of bias in
the model parameters due to aggregation. A tymgample of the MAUP is that the correlation
coefficient between two aggregated variables chawdgastically, depending on their aggregation (or
areal) unit. Therefore, changing the spatial supfmwrareal data (or areal data interpolation) must
consider both the interpolation accuracy and théuence of the MAUP, especially when the
interpolated data are used for secondary analgsethe other hand, the sampling design problem is a
problem related to (i-2). An example of a samplohgsign problem is efficient weather station
allocation. This problem is closely related to ajesin the support of point data. Here, point data
interpolation must consider both the interpolatmeuracy and the efficiency of the interpolated sit
allocation.



Thus, this study focuses on four types of COSRelanterpolation and its related problem,
the MAUP, and point interpolation and its relatadhgling design problem.

While these COSPs are currently popular topicsaostatistics, non-geostatistical spatial
statistical models, such as geographically weighegptession models and spatial filtering models,
have rarely been applied to these problems. Diswysdl relevant spatial models would be extremely
helpful in constructing sophisticated methodologeaddress COSPs. Hence, this study discusses the
four COSPs by applying a wide variety of spatiatistical models.

The outline of this study is as follows. Chaptenttoduces my discussion. In particular, this
chapter indicates that developing new methodolofgie€OSPs is important, considering the recent
diversification of spatial and spatiotemporal datag that spatial statistical models offer a paadgt
useful set of solutions. Chapter 2 summarizes thsicbspatial statistical models, including
geostatistical models, spatial filter models, ané ¢eographically weighted regression model. The
subsequent chapters discuss COSPs. Chapters 3disclids the areal interpolation problem and the
MAUP, which are COSPs for areal data. Then, Chapferand 6 discuss the point interpolation
problem and the sampling design problem, whichC&Ps for point data.

Chapter 3 extends the geographically weighted ssgge (GWR) model for areal
interpolation. The GWR model captures spatial logteneity by allowing coefficients to vary across
space. The extended GWR-based model has the faljpweidvantages: it captures spatial
heterogeneity in the same way as the conventiol@R@nodel; it provides the best unbiased linear
predictor, as do existing geostatistical arealrpdtation models; it satisfies the volume presagvin
property (e.g., the sum of the interpolated mumiigopulations must equal the actual
prefectural-level population), which is the mostsibaproperty that must be satisfied in areal
interpolation. In addition, | discuss how a non-iige constraint is imposed on the interpolated
values.

The effectiveness of the GWR-based method is exainby applying it to a simulation
study. The simulation results reveal that this métbutperforms conventional non-statistical areal
interpolation methods, including the areal weightinterpolation method and the dasymetric method.
On the other hand, the results also show thatdberacy of proposed method is unstable compared to
the conventional methods, and its accuracy posbhyorse than them.



To examine the effectiveness of the GWR-based mndeitih@ practical application, it is also
applied to an empirical study of interpolating nuipal building stocks for various categories
(wooden/non-wooden, residential/non-residentiamgletion year) in Japan. The results again show
the effectiveness of the proposed method from iaepoint of interpolation accuracy and the ability
to explain the spatially dependent component.

In contrast to the standard GWR model, the exter@@tR model explicitly considers an
aggregation mechanism, and offers a solution tdMA&JP. In fact, this is an aggregate-level model
that furnishes unbiased, consistent, efficient, amadymptotically normal estimators of
non-aggregate-level parameters. Hence, Chapteariags the effectiveness of the method from the
viewpoint of the MAUP. This chapter first descrikeesimulation study, and reveals that the model
effectively copes with the MAUP as long as the isthatale of the aggregation is not coarser than th
spatial scale of the underlying spatial heteroggndihen, the GWR-based model is applied to a
criminal analysis. The results confirm that the wmlodprovides intuitively reasonable
non-aggregate-level parameter estimates using gaige variables.

Thus, Chapters 3 and 4 discuss the COSPs for @aitsal Next, Chapters 5 and 6 discuss the
COSPs for point data.

Chapter 5 focuses on the point interpolation pmobl&his problem has been discussed
extensively among geostatisticians. However, g#ettal point interpolation methods generally
have the following drawbacks. First, the methodsrat necessarily simple to implement, and spatial
adjustments are required to extend them (e.ghdorGaussian data). Then, they can easily become
computationally intractable, particularly when mpelating spatiotemporal data.

The eigenvector spatial filtering (ESF) method, ebhimodels spatially dependent
components using eigenvectors of a proximity matsxelatively straightforward to implement and
extend. Thus, Chapter 5 extends ESF for point potation, while considering both simplicity and
computational efficiency. Note that, ESF has alyebden extended for interpolating lattice data,
which are point data with sample sites that arediand finite. On the other hand, this study fosuse
on interpolating geo-referenced data, which ardgrendype of point data, with sample sites that are
distributed in a continuous spatial region. Her8FEs extended while ensuring consistency with both
the standard ESF method and standard geostatistics.



The ESF-based extended method is applied to agpiacel analysis. The results show that its
point interpolation accuracy is almost the sam#hasstandard geostatistical method. In additioa, th
results demonstrate the method’s efficiency fortisceile spatial component extraction, estimation in
the presence of spatial dependence, and variamggopéng analysis.

The proposed method is then extended to includeospaporal modeling. The analysis
results show that its interpolation accuracy is shme as the standard spatiotemporal geostatistical
method, while its computation time is substantisdlys than the geostatistical method.

Chapter 6 focuses on the sampling design problemchais another COSP of point data.
Whereas point interpolations have been well rebealc studies on sampling designs are still
relatively limited and, even for the most standgedstatistical approach, their effectiveness i sti
unclear. In particular, since the geostatisticgrapch has been applied mainly to natural scieats d
how appropriate it is for social economic data.(damnd price data) remains unclear.

Hence, this chapter discusses the land price assassite reduction problem (a sampling
design problem) in Japan. Since Japan is planrongradually reduce the number of land price
assessment sites, discussing this problem is ieuport first extend the standard geostatistical
approach to consider the properties that must tleded in the reduction problem. In particular, |
discuss how the land price assessment site albwcatiteria launched by the government, the uses of
land prices, and so on, are considered in the gistgtal method. The method is then applied to the
reduction problem in the Ibaraki prefecture, Jafjdme results suggest that the extended geostatistic
method provides intuitively reasonable reducticsutts.

Finally, the discussions are summarized and cdedun chapter 7.
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1. Introduction

1.1. Development of GIS and spatial data diversification

In accordance with the development of Geographiforimation Systems (GIS), the
interdisciplinary use of geographical informatiavhich refers to “information about places on the
Earth’s surface, knowledge about where somethingnewledge about what is at a given location”
(Goodchild, 1997), has become widespread. The @wnlof GIS can be summarized as follows (see,

Goodchild, 2010):

Between the 1960s and the late 1980s:
The term GIS was coined and GIS evolved into a lyidalopted software
application.

Between the late 1980s and the early 1990s:
Discussions began about the science of GIS, andr@gbic Information Sciences
(GISc), which is a research field for “the devel@mnand use of theories, methods,
technology, and data for understanding geograptocegsses, relationships, and
patterns” (Mark, 2000; Goodchild, 2010), was esshield.

After the early 1990s:
GIS and GISc advanced rapidly in accordance wighdiavelopment of computer
technology, and now, GIS is widely adopted, notydior research, but also in

practical applications.

Based on such backgrounds, developed technolagiting GIS and GISc can be classified
in four categories (Goodchild, 2009): (i) systerus ffositioning (e.g., Global Positioning Systems:
GPS); (ii) systems for data acquisition (e.g., lisdeand airborne remote sensing), (iii) systeros f
data dissemination (e.g., National Land Numericaforimation download services (NLNI):
http://niftp.mlit.go.jp/ksj/; Google Maps: httpsriaps.google.com/), and (iv) systems for analysis
(e.g., ArcGIS, provided by ESRI: http://www.esrinaf). Due to the developments of (i) and (i),

spatial data (i.e., collections of geographicabinfation) have diversified dramatically, whereas th
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development of (iii) has increased the opportusite handling such diversified spatial data. Thus,
diversified spatial data handling has become irginggdy important.

The diversification of spatial data introduces deiecation of their spatial supports (e.g.,
areal units, data locations, and so on). In faetalaaggregated) units take various spatial schies
example, in Japan, areal units of social econoia thke either prefectural units, municipal urots,
minor municipal units. Furthermore, areal units rife& depending on the study field (e.g., many
natural science data are aggregated into gridsseskanany social economic data are aggregated into
administrative units). On the other hand, in theecaf point (non-aggregated) data, data locations
differ depending on the data source. For exampldapan, land price assessment sites and weather
observation sites are incompatible.

The diversity of spatial data increases opportesitihere the spatial supports of the data at
hand do not accord with the spatial supports fackvthe users want. For example, one might wish to
analyze gridded population data while only munitipapulation data are available. In another
example, one might require weather data in eactomminunicipal unit while the weather data are
available only at their specific monitoring stasonTo cope with such difficulties, discussing

techniques of changing spatial supports is incnghgsimportant.

1.2. The change of support problems

Spatial interpolation, including point interpolaticand areal interpolation, is a useful
technique for changing spatial supports. Point rpdkation, which refers to the point data
interpolation using point data with different sitéas been discussed thoroughly in geostatistigs, (e
Cressie, 1993; Cressie and Wikle, 2011), whosdrorgga point interpolation study in mining (see,
§2.2). On the other hand, areal interpolation, Whifers to the areal data interpolation usinglarea
data with different spatial scale of aggregatioas been discussed mainly in geography rather than
geostatistics. This is partly because an approagertding on the nature of aggregation (i.e., areal
unit) is consistent with geographic common senspe(®haw and Taylor, 1981), whereas such
dependency is not necessarily preferred in (getidtital literatures (e.g., Tobler, 1979). In titeer
words, an areal interpolation problem that considaeal units explicitly is a geographical problem

rather than a (geo-)statistical problem (Gelfartd, (.
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On the other hand, as GIS develops, the importahdescussing changing spatial support is
being increasingly recognized and an increasing baunof geostatisical studies have started
discussing spatial interpolation problems underaméwork called the change of support problem
(COSP: e.g., Gotway and Young, 2002; Cressie ande\\2011). The major sub-problems in COSP
can be summarized as shown in Table 1-1 (see, @@ Young, 2002).

While the point interpolation problem and areakrpblation problem are the central COSP
problems (see Table 1-1), the COSPs also inclugléottowing related problems: the modifiable areal
interpolation problem (MAUP: e.g., Openshaw, 1984 the sampling design problem (e.g., Wanhg
al., 2012). In the MAUP, which is related to the &riegerpolation problem, is the problem that the
change of aggregation units changes the spatial alalysis results. For instance, Openshaw and
Taylor (1979) showed that the correlation coeffitibetween two variables changes between -0.97
and 0.99, depending on the aggregation units. Anéatpolation must be performed considering not
only interpolation accuracy but also its influenoesthe MAUP, especially when the interpolated data
are used for secondary analyses. On the other hWhadsampling design problem discusses, for
example, efficient weather monitoring sites allamat This problem is closely related to point
interpolation; point interpolation must be perfodneonsidering not only the interpolation accuracy
but also efficiency of the interpolated site allb@a. In fact, even if the interpolation model is
accurate, when the allocation of interpolated sgesot good, the resulting interpolated data dyali
might be poor.

In summary, change of spatial support must beudssed considering not only interpolation

problems themselves, but also the MAUP and the kagngesign problem.
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Table 1-1: Example of COSPs

Data before conversion Data after conversion Relateblems
Point interpolation
Point data
Areal data Sampling design
Block interpolation
Areal data ) . .
(including averaging)
Point data Areal interpolation
Point data . .
Areal data Mf)dlflat?le areal urnt problem
(including ecological fallacy)

Y The figure is constructed while referring to Goyveand Young (2002)

1.3. Problems in COSP studies

Geostatistics is a sub-field within spatial statst(see §2.1); a study area of discussing
statistical spatial data analysis (Hainireg al, 2010). Spatial statistical models, including
geostatistical models, spatial filtering modelsg(e Griffith, 2003), and geographically weighted
regression model (GWR: e.g., Fotheringheinal, 2002), have been discussed extensively in recent
years.

While the COSPs have been discussed extensivalgcient geostatistics, the COSPs have
less focused in the other spatial statistics. Thidd be due to the fact that geostatistics origithas
an interpolation (or COSP) study, whereas the atpatial statistics did not (see §2.2). Howevet, as
will show later, both of these spatial interpolatiapproaches (or approaches of changing spatial
support) are essentially identical. Hence, it gmicant to examine effectiveness of non-geodiatib
spatial statistical models from the perspectivthefCOSPs.

Another problem is the lack of interdisciplinarysdissions of the COSPs. Although the
COSPs have been studied both in geography andagstist, their interdisciplinary discussions
seem insufficient. Such a tendency is particulpriyminent in areal interpolation studies (see, tdrap
3). Because advantages and disadvantages of gbamrlapnd geostatistical approaches are quite
different, interdisciplinary discussions would bdfeetive to develop more sophisticated

methodologies.

! The term COSP itself is used only among geosititiss.
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In summary, the COSPs must be discussed from adérqgaerspective while referring to

geography, geostatistics, and non-geostatisticdladstatistics (see §2.1).

1.4. Outline of this study

The objective of this study is developing new methlogies for the COSPs mainly focusing
on spatial statistics, while paying attention togg@aphical literatures too.

Fig.1-1 organizes the chapters in this study. la text chapter, | discuss the spatial
statistical models, including the geostatisticabielpthe spatial filtering models, and the GWR nmode
Then, between chapter 3 and 6, | discuss the CO®Ie referring to both spatial statistics and
geography. Concretely, chapter 3 proposes a GWBRdbareal interpolation model, and compares its
efficiency with the other geographical and spatshtistical models. Chapter 4 applies the
GWR-based model for the MAUP. Chapter 5 proposegaial filtering-based point interpolation
method, and compares it with the standard poirjratiation methods, and chapter 6 discusses a
sampling design problem of land prices using a gistical approach. Finally, | summarize my

whole discussion in chapter 7.

‘ Chapter 1: Introduction ’

‘ Chapter2: Spatial statistical models ‘

COSP of areal data COSP of point data

Chapter 3: Areal interpolation problem Chapter 5: Point interpolation problem

Chapter 4: Modifiable areal unit problem | Chapter 6: Sampling design problem

Chanptei7: Discussio

Figure 1-1: Outline of this study
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2. Spatial Statistical Models

2.1. Spatial analysis and spatial statistics

According to Haining (2003), the term spatial aseywhich refers to an analysis performed
by applying techniques and models that use explitie spatial referencing associated with each dat
value or object that is specified within the systemder study, can be traced back to at least th8sl9
(see Berry and Marble, 1968). Spatial analysisuihes several distinct elements; however, the
statistical analysis of spatial data, which is mef@ to by statisticians as spatial statistics Igjip
1981; Haininget al,, 2010), is an element that has been discusseslywid

Spatial statistics is distinct from non-spatiak (i standard) statistics in that it considers
fundamental properties of spatial data: spatialeddpnce and spatial heterogeneity (e.g., Anselin,
1988). Spatial dependence is the property thatatdist that attribute values located closely in
geographic space are similar. This property is latgmwn as the first law of geography; “Everythisg i
related to everything else, but near things areemmetated to each other” (Tobler, 1970). The
consideration of spatial dependence is importamtekample, in modeling spatial data accurately (or
appropriately) (see, e.g., Cressie, 1993) and $b dttistical significant appropriately (see, e.9.
LeSage and Pace, 2009). Thus, spatial dependendelingis one of the primal topics in spatial
statistics. The geostatistical model, which is dssed in §2.2 and the spatial filter model, whgh i
discussed in 82.3, are models representative afridesy spatial dependence (Griffith and Paelinck,
2011).

On the other hand, spatial heterogeneity is aiaspbease of observed or unobserved
heterogeneity and is a familiar problem, e.g., tandard econometrics (Anselin, 2010). Different
from spatial dependence, spatial statistical modeds not necessarily required to capture spatial
heterogeneity. In fact, some sort of heterogeneity be captured by applying a standard linear
regression model. Spatial statistics is helpfutapturing spatial heterogeneity, with its featurasy
gradually over space. GWR, which is discussed i, 8allows such heterogeneity (i.e., spatially
continuous heterogeneity) to be captured by apglgipatially varying parameters. Note that spatial
dependence and spatially continuous heterogenestydifficult to separate, and that modeling this

type of heterogeneity is useful to capture spatglendence (Fotheringhahal, 2002).
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This chapter discusses the primal spatial stegistapproaches of addressing spatial

dependence and spatial heterogeneity.

2.2. Geostatistics

Geostatistics, which is a sub-field within spagidtistics, originates from a series of studies
by D.G. Krige, a professor at the University of Wétersrand, South African (Diggle, 2010). He
promoted using statistical methods for mineral esgtions (Krige, 1951). Motheron (1963) refined
his work into a theory of stochastic process withaziograms and semivariograms (see §2.2.1). In
addition, based on this theory, he proposed alimestr unbiased prediction (BLUP) methodology for
spatial data, which he termed kriging in honor o6DKrige. The Motheron methodology has been
discussed and extended, particularly by applieensisis and mathematicians (Hainieigal, 2010),
and a field of study discussing the methodologyoi known as geostatistics.

Such an evolution of geostatistics is very differelom that of other methods of spatial
statistics, which have been developed mainly inorea) sciences and quantitative geography. As a
result, it has often been mentioned that geostist distinctive (e.g., Haininet al, 2010).

Seq.2.2 briefly discusses geostatistics.

2.2.1. Basic assumptions

The geostatistical model describes a stochasticegeothat is a family or collection of
random variables. The members of the collectionblmidentified or indexed by a set of locatians
0 D 009, whered takes the value 2 or 3 in most cases (Schaberb@ngeGotway, 2005). When
dis greater than 1, a stochastic process is alkmaarandom field.

Standard geostatistics models a stochastic prdbesssatisfies stationarity and ergodicity.
Stationarity is an assumption that the propertiésthe stochastic process remain unchanged,
depending on the locations. This lack of changdlesaus to model the stochastic process using only
one model. On the other hand, ergodicity is anraption that the dependency between two samples
asymptotically goes to zero as the distance betwreetwo samples increases (see, e.g., Arbia, 2006)

Ergodicity ensures that the true mean and covagiarica stochastic process are the same as their
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estimates (Arbia, 2006). Since most stationaryhgtstic processes satisfy ergodicity (the random
work process is an exception: Gaetan and GuyonQ)20tereafter, | discuss stationary stochastic
processes without paying further attention to eigtyd

Let Z(s) be a real-valued stochastic process defineddwnaain,D. Z(s) is called a strict (or
strong) stationary process if its (finite dimensibnoint distributions are invariant under spashilfts

(Gneiting and Guttorp, 2010); that is,
F[Z(s)]=F[Z(s +h )l (2-1)

whereF[ ] is the distribution function anti;00¢ is a lag distance that separates sifemnds.
Eq.(2-1) implies that all moments of the stochagtimcess are unchanged throughout the do@Dain
While strict stationarity is a condition of thestlibution, the second-order (or weak)
stationarity is a weaker stationarity that condiicthe first and second moments 4{§) using
Egs.(2-2) and (2-3):
HZ(s)]=0, (2-2)
Cor[Z(s), Z(s +h ;)] =ch ;), (2-3)

wherec(h;j) is a distance function called a covariogram (@vaciance function). A strict stationary
process is always a second-order stationary prodegsthe reverse is not always true. As an
exception, wher¥(s) is a second-order Gaussian process whose expectatd covariance obey
Eq.(2-2) and Eq.(2-3), respectively, it is alsdracsstationary (Gaussian) process.

Matheron (1973) proposes the other type of statihecalled intrinsic stationary. This
imposes stationarity on the incremef(s) —Z(s + h;;), using Egs.(2-4) and (2-5):

E[Z(s)- Z(s +h ;)] =0, (2-4)

1

EVaf[Z(S)—Z(S +h l=yh ;). (2-5)
wherey(h;;) is a distance function called a semivariogrand(2r(h;;) is called a variogram). The
intrinsic stationary process is an analog of tladiatary increment process used frequently in time

series analyses (Schabenberger and Gotway, 209%2-E) is expanded as
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M) =SValZ(s) - 2s +h )] = (Val A8 +Vai Z(s +h )] -2Co0 28, Zs +h )],

= (vl Z(s)]-20(h )}

=c@-c(h ;). (2-6)
Eq.(2-6) suggests that a second-order stationageps that includegh;;) corresponds to an intrinsic
stationary process witf{h;;) (Cressie, 1993). In contrast, becaof®) is undefined for somgh;)
(e.g.,c(0) is undefined for the linear semivariogram moHgl2-13), the reverse is not necessarily
true. In short, second-order stationarity includésnsic stationarity.

While the aforementioned stochastic processessateopic in the sense thhy in c(h;;) or
y(hi;) does not depend on directions, a stochastic prosessisotropic ifh;; does depend on
directions. There are at least two types of anipiddis: the geometric anisotropy and the zonal
anisotropy. Geometric anisotropy applies a lineandformation (or rotation) of the 2D coordinate
system. More precisely, suppose thas a vector whose elements are giverhpyandB is a matrix
for the liner transformation, then, the covariogrand semivariogram are defined using the elements
in Bh. Zonal anisotropy uses a linear combination oisatropic model, ¢(h;;) or y(h;;)), and a model

depending only on a lag distance in one directien, €(h;;) + c(hy), whereh,;10*"). For more details

about anisotropy, see e.g., Zimmerman (1993).

2.2.2. Models for covariogram and semivariogram

Suppose thay is a response variable vector with elements thmtyothe second-order
stationary process (i.eE[y]=0, E[yy] = C, where 0 is a vector of zeros, an€ is a
variance-covariance matrix are givendg;)). Then, the standard geostatistics describesphéal
process oy using)'y, wherel is a vector of weights andis a vector of variables observeddn

To ensure the validity of the spatial proce&s,) = 1"y, the variance oZ(s), Var[Z(s)], must

be non-negative (e.g., Armstrong and Diamond, 1,984} is,
Vafry] =0. (2-7)

Eq.(2-7) can be expanded as
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Vairy]=EQY)AY) 1= EyyT,
=3'C)>0. (2-8)
The second line of Eq.(2-8) is identical to theifpes semi-definite condition fo€ (or c(h;j)). Thus,
to ensure thavar[Z(s)] is non-negativeg(h;;) must be defined by a positive semi-definite fuorctor
equally,y(h;;) must be defined by a negative semi-definite fiamc(it is readily derived from Eq.2-6).
According to Cressie (1993), the positive definées ofc(h;;) is the only necessary and sufficient
condition for a valid spatial process model.

Various positive definite functions fa(h;;) have been proposed. The standard functions are

as follows:
r’+og? if h,=0
Exponential modelc(h ;) = 2 eXF{-LJ otherwise (2-9)
r’+o°? if h,=0
Gaussian model )= 2 2-10
)=y, ex;{—h—‘z'J otherwise, (2-10)
r
r’+og? if h,;=0
3
Spherical model  ¢(h ) ={r? Eh—lh if O<h.<r (2-11)
) 2r 273 &
0 otherwise '
r’+o° if h;=0
Matérn model ch )= Y . 2-12
(")) r2 2v—1lr( )(@hJ KV[@LJ otherwise (12)
v r r

whered?, 7%, andr are parameters called nugget, partial-sill, anyea respectively” denotes the
variance of the micro-scale spatial variation andfieasurement error’ denotes the variance of the
spatially dependent component, ancheasures the range of the spatial dependence, Herdhe
spherical model Eq.(2-11) is interpreted as théadie at which the spatially dependent component
vanishes (i.e.¢(hj;)=0). On the other hand, interpretationsrah the other models, in whiot(h;j)
becomes zero only asymptotically, are not necdgsstraightforward. Hence, the effective range,
denoting the distance at which 95% of the spatiddpendent component vanishes, has often been

applied. It was numerically clarified that= 3r when the exponential model Eq.(2-9) is used,rard
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rx/l_% when the Gaussian model Eq.(2-10) is used (Zimrmeramd Stein, 2010). In the Matérn model

shown in Eq.(2-12)I'(v) is the gamma function and,(+) is the modified Bassel function. The
Matérn model i — 1 times differentiable. In the other worglgontrols the smoothness of this model.
The exponential model is a particular case of tleéwh model wittv = 0.5, and the Gaussian model
is an extreme case of the Matérn model, with «o (Hoetinget al, 2006).

Because of such generality, use of the Matérn mbaglbeen encouraged, for example, by
Stein (1999). On the other hand, the spherical meadch provides a sparse covariance matrix, is
computationally more efficient (Gneiting and Guftp2010): Note that all of the models assuime
to be a Euclidean distance, and positive defingerg not guaranteed when non-Euclidean distance
measures are applied (Curriero, 2006). In additibe,spherical model is valid only on a Euclidean

space with a dimension below 3 (Fuentes and Ra@10).
c(hi,)
Nugget ¢

Partial-sill

- >
Range

Figure 2-1: Image of covariogranme(h; ;)

c(hij)

Figure 2-2: Image of the smoothing parameter:

Note: This diagram illustrates three covariogragash with the same range, but with different smiagth
parameters.

! Since the spherical function forces zero valuesfiar(h;j) with hy; >r, C becomes sparserifis

small.
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On the other hand, various negative definite fumstihave also been proposed fortfrg)).

The standard functions are as listed below:

Linear model  p(h ;) = 0 T h,=0 (2-13)
77 g?-r?h;  otherwise
0 if h,=0
Exponential modgih ;) = b2 g2 ex;{—hj otherwise (2-14)
r 1
0 it h,=0
Gaussi del y(h ) = ? 2-15
aussian model y(h ;) o? —rzexr{—%] otherwise (2-15)
it h,=0
3
Spherical model y(h ) =<0 - rz[g% —%h—;} if O<h;<r (2-16)
r
o?+r? otherwise
0 ifh, =0
Matérn model — y(h ;) = o2 -1 @L VK \/Eh otherwise (-17)
2" (v) r) " r '

Egs.(2-14), (2-15), (2-16), and (2-17) are givenshystituting Eqgs.(2-9), (2-10), (2-11), and (2-12)
into Eq.(2-6). These models describe both the stooder stationary process, which is described by
c(hi;), and the intrinsic stationary process, whichdsatibed by (h;;). In contrast, Eq.(2-13) does not
have a corresponding(h;;), and the linear model, which describes the istdrstationary process,

cannot describe the second-order stationary process

(M) 4

»

Partial-sill

N t
ugge ¢‘<—_> > h,
Range

Figure 2-3: Image of semivariogran(h;;)
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2.2.3. Geostatistical model
Geostatistics models the response variafless
y=pnte, (2-18)
wherepn = E[y] is a deterministic non-spatial mean function, and a spatial stochastic process. In
many casesy is given by a linear function argis given by the second-order (or strict) Gaussian
process as
y=Xp+eg, e~NQC) (2-19)

whereX is a matrix of explanatory variables, ghi a vector of parameters.

2.2.4. Estimation

While a number of estimation methods have beempqgmed for geostatistical models,
including the maximum likelihood method (Mardia aktarshall, 1984), the restricted maximum
likelihood method (e.g., Stein, 1999), the Bayesstimation method (e.g., Handcock and Stein,
1993), and the estimation function-based methods.,(&chabenberger and Gotway, 2005), the
weighted least squares (WLS)-based method (Crek38h) is one of the most standard approaches.
In what follows, | explain the WLS-based parametgtimation for Eq.(2-19).

| first consider the case thX is known. In this case, is given by ¢ =y — Xp. Consider

fitting y(h) to {&(s) —&(s+h) }* (see Eq.2-5), whereandh are vectors whose elements arandh;,
respectively, and(s) is £ with its locations are specified usisglt is known that §(s) —&(s+h) }?

has a large variance, and the variance makesttimg finefficient (Cressie, 1993). To cope withsthi

problem, y(h) is fitted after the elements ing(s)—&(s+h)}* are averaged (Schabenberger and

Gotway, 2005). The averaging is performed in eadhthe lag-distance zones, which are
pre-determined based &n For example, the elements i8(§) —&(s+h) }, with h between 0 m and

10 m, are averaged; the elements #sf —&(s +h) }?, with h between 10 m and 20 m, are averaged;

and so on. Typically, to stabilize the fitting, tlag-distance zones are decided so as to includastt

30 location pairs in each lag. In addition, theveets in {£(s) —&(s +h) }* with h more than half the

maximum lag-distance (i.e., ménf] are discarded.
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y(hy) 4 \

Semivariogram

Empirical model
semivariogram

> b

Figure 2-4: Image of the empirical semivariogram and semiyggeam model

There are several averaging equations. For exalaitheron (1963) proposes Eq.(2-20):
A 1 . .
ph) =5 D) ~Es+ (2-20)
[

wherel {= 1,... L} is the index of the lag-distance zonésis their corresponding distance, adds
the number of pairs in theth zone. Cressie and Hawkins (1980) indicate katheron’s estimator,
which contains a squared term, is not robust falievs, and propose the following robust averaging

equation:

) CN
ZN.{.Z'E(S) 8s+h)| }
0494

y(h) = (2-21)

0457+

As a result of replacing{ £(s) —&(s+h) }* with {Z|g(s) —&(s+h) ['3}*, the Cressie and Hawkins's
estimator is more robust than Matheron’s estimg@ressie, 1993). In both estimatorg(h,) is
called an empirical semivariogram.

The empirical semivariogram is defined only fotag-distancesh, (see Fig.2-4). Hence, to
model semivariograms on arbitrary distances, a\smmigram model (e.g., the exponential model)

must be fitted to the empirical semivariogram. Gie$1985) suggests fitting a semivariogram model,

y(h) , using the non-linear WLS that minimizes Eq.(2:22)

> SO AR (2:22)
| | |
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EqQ.(2-22) can be minimized using standard non-liséatistics packages.
In summary, wheiXp in Eq.(2-19) (o in EqQ.2-18) is known, a semivariogram model can

be fitted using the following steps: (i) Calculate = y — XB; (ii) Estimate the empirical
semivariogram ofg by averaging §(s) —&(s+h) }? using either Eq.(2-20) or Eq.(2-21); and (iii) Fit

a semivariogram model for the empirical semivardmgihby minimizing Eq.(2-22).

On the other hand, whet$ (or n) is unknown 8 and® must be estimated simultaneously.
This is becausp depends 08, and vice versa. The iterative-reweighted leasaseg (IRLS) method
is applicable for the simultaneous estimation. Bstimation procedure is described as follows

(Schabenberger and Gotway, 2005):
1: Estimate the ordinary least squares (OLS) estisnaff, fi
2: Calculateg =y —X§.

3: Estimate the empirical semivariogram using EQ@Ror Eq.(2-21), and fit a
semivariogram model using the non-linear WLS ediiona
4: ConstrucC, with elementg(h), given by substituting(h) estimated in step 3 into

Eq.(2-6).

5: Update ﬁ using its generalized least squares (GLS) estimatdch is defined as
B=(X'CIX)IX'Cly. (2-23)

6: Iterate steps 2 to 5 until the parameter vatoewerge.

The variance-covariance matrix of the resultiﬁgis given as
Varp] = (X'CX) . (2-24)

Eq.(2-24) is useful when testing the significanteﬁo
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2.2.5. Kriging

The best linear unbiased prediction that applige@statistical model is called kriging. This
section explains kriging, in line with Schabenberged Gotway (2005).
Suppose thay, is the unobserved response variable atssitdhe basic equation for(sy),
based on Eq.(2-19), is
Yo = XoB + &, Vafg,]=0?, Cor[e, &,] = ¢, (2-25)
wherex, is a vector of explanatory variableg,is the disturbance with variane& andc is a vector

of covariances betweeg ands.

The objective of kriging is to find the best linaarbiased predictor (BLUP)y, , of y, that

satisfies the following conditions:

Best (minimum variance) argmin E[(y, - 90)2] , (2-26)
)

Linearity Yo =AY, (2-27)

Unbiasedness E[yo] = E[V,]- (2-28)

Y, is identified by identifyingi that satisfies above conditions. Sirk{gg] = Xo' ﬁ , the unbiasedness
suggests thato'fi = E[ §,], whereas the linearity suggests tEaty,] = E[L'Y] :xxfs. These two

conditions imply thak,' ﬁ =X ﬁ , Or equivalentlyxy' = A' X.
On the other han®&[(yo— ¥, ) in Eq.(2-26) can be expanded using Eqgs.(2-25)(af2¥) as
El(Yo — 90) 1= El(Yo = 2Y)°],
=Var[y,] +Var[L'y] - CovpY, Y,],
=g +1'CL-2)C. (2-29)
After all, the BLUP can be identified by minimizingg.(2-29) on condition thaty =A' X. The
problem is solved by minimizing the Lagrangian, ethis defined as
L=0Z +L'CL-20"c+2m'(X'A —X,), (2-30)

wherem is a vector of Lagrange multipliers. By differemgiEq.(2-30) with respect toandm, the

following first-order conditions are given:

%L=2Ck—20+2Xm =0, (2-31)
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i|_=2m'(X'x—x0)=o. (2-32)
om

By solving Egs.(2-31) and (2-32),is given as
A=CLCc+CX(X'C™X) ™ XC™X,, (2-33)
Cy =C*-Ccx(x'c*x)*x'c™.
Consequently, ¥(s,) is given by substituting Eq.(2-33) into Eq.(2-2&3, follows:
§o =XoB +C'CH(y = XB), (2-34)
B=(X'CIX)IX'Cly.
The mean square prediction error (MSPE) ff, which is called kriging variance, is also given b
substituting Eq.(2-33) into Eq.(2-29), as follows:
MSPEy,] =0? +c'Cc+ (X, —c'CX)(X'C™X)*(x;, —-cC™X). (2-35)
Thus, the interpolated value ¢f is given by y,, and its uncertainty can be measured using
Eq.(2-35).

For more details about geostatistics, see, fomgia Cressie (1993), Schabenberger and

Gotway (2005), Gelfandt al. (2010), and Cressie and Wikle (2011).
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2.3. Spatial filtering

While conventional geostatistics models spatigletielence uses a distance function (i.e.,
c(h) or y(h)), the spatial filtering approach (e.g., Griffit2dQ10) models it with map pattern variables
(Getis and Giriffith, 2002). There are two main ggdfiltering approaches: the approach of Getis
(1990), which defines the map pattern variablegbylying theG; statistics (Getis and Ord, 1992);
and the approach of Griffith (1996), which is cdllEigenvector spatial filtering (ESF), which define
the variables based on the Moran coefficient (MQrah, 1950). One of the biggest advantages of
these spatial filtering approaches is simplicityifith, 2003; Getis, 2010). Their basic models are
identical to the standard linear regression maaied, accordingly, their implementations, estimatjons
and extensions are straightforward. In additioe, ¢fffectiveness of the spatial filtering approaches
has been recognized in various purposes includargrpeter estimations in the presence of spatial
dependence (e.g., Tiefersdorf and Griffith, 200@ayn and Simanis, 2013), and exploratory spatial
data analysis (ESDA), such as spatial pattern arsabnd spatial interpolation (e.g., Griffith, 2003
Legendre and Legendre, 2012).

This section explains th&; statistics-based spatial filtering approach arel MC-based
approach.

Note that the term "spatial filtering" is also kmoas a technique that separates an image into
signals (or a de-noised image) and noise, in theéystield of image analysis (e.g., Russ, 2006). For
example, the moving average filter separates agentao a de-noised image, which is defined by the
moving average of adjacent pixel values, and nd@smilar interpretation is possible for the spatial
statistical spatial filtering techniques too: trdscompose underlying process in spatial data inte p
(or de-noised) spatial dependent component ande rtbigt could not be explained by the spatial
dependent component. Thus, spatial filtering irtiapatatistics and spatial filtering in image arsi$

are compatible.

2.3.1. G; statistics-based spatial filtering

The G; statistics is a local indicator of spatial asstieia(LISA: Anselin, 1995) that detects

local spatial clusters, and is defined as
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G :—Zj¢i W)Y, (2-36)
Zm i

wherew(h;;) represents the spatial connectivity betwgeands, andy; is a response variable. Here,
w(h;i;) can be defined, for example, by applying a distadecay function or a function that takes 1 if
hi; is less than a threshold, and 0 otherwise (sgg,@etis, 2010). By desigg, must be positive. The
value ofG; is large if higher values are clustered nearbg,tand small (close to zero) if lower values
are clustered nearby & That is, a higlG; suggests tha is a hot spot, and a 0@, suggests tha
is a cool spot.

The significance of hot or cool spots is testechgishe expectation and variance@f which

are given under the randomized hypothesis, as

_w(hs.s))
E[G]= Z"“ 3 (2-37)
N-1 )
o SOHIN=1-> ,S;
Var[Gi]:Z,¢lw<r(s s))| 2 PIMLGCIEDIVE 59
(N-D%(N-2) Vi -
Y. :M Y. :Z:j;ti yjz —Y2-
i1 N-1 i2 N-1 I

For more details abo@; statistics, see Getis and Ord (1992) and Ord astts GL995).

The G; statistics-based spatial filtering approach fdtdre spatially dependent component in
yi using G; /E[G]. Here, G; /E[G] describes the deviation of the spatial patternyofrom the
hypothesized spatially randomized distributi@s) /E[Gj] is greater than 1 if the response variables
nearbys are larger than expected, a@g/E[G] is smaller than 1 if the values are smaller than
expected). In other word&;/E[G;] captures the spatial patternsypfAccordingly, by dividingy, by
G /E[G]], the spatial patterns iy, are filtered out, and the spatially random (or ejpeindent)
component iy, y3, is given as

-1
yio =(%j Vi (2-39)
In addition, the spatially non-random (or depenfleatmponent iry;, ys, is given byy, —yS.
The G; statistics-based spatial filtering approach idulser spatial dependence modeling.

For example, Getis (2010) estimates the linearesegion model, which is defined as
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Yi Sa+X%.B+% .0, +&, & ~N(@O0?), (2-40)
by applying the following procedure: (i) Spatialpg@dences iy, X, andx , are tested using the
Moran coefficient (see §2.3.1.1); (ii) Variables thvisignificant spatial dependence (MC) are
decomposed into spatially dependent and indeperd@mponents by applying th® statistics-based
spatial filtering technique. In this case, whentspadependences ig andx;; are significant, the

model is modified as follows:
Vi =a+ VXA XA A% Lt E, & ~N(0,0%); (2-41)
(iii) The parameters in the modified model areraated using OLS. Getis and Griffith (2002) and

Getis (2010) demonstrate that this simple procedffectively removes spatial dependence in

residuals and improves model accuracy.

2.3.2. MC-based spatial filtering

2.3.2.1. MC-based eigenfunctions
The Moran coefficient (MC), which is defined by tHiellowing equation, is a spatial

dependence diagnostic statistics:

MC = N ZMWMz
Iwl zZMz .

where 1 is a vector of onesz is a vector of diagnosed variablé¥, is a binary and symmetric

(2-42)

connectivity matrix with diagonals of 0, afd is a projection matrix. Two types of the projeatio
matrix M have been applied, namdly11/N andI-X(X'X)™?X' (e.g., Anselin and Rey, 1991). Here,
I-11'/N is used ifz contains raw data, are-X(X'X) X" is used ifz is a residual vector of a linear
regression model. The expectation and variandd©fgiven under the randomized hypothesis is as

follows (see Tiefelsdorf and Griffith, 2007):

tr[MWM ]

E[MC] = N_K .

(2-43)
(N = K)tr[(MWM)?] -tr[MWM ]?

VafMC] =2 (N-K)Z(N-K+2)

(2-44)

whereK is the number of variables K. In this caseMC > E[MC], MC = E[MC], MC < E[MC]

imply positive spatial dependence, no spatial ddperoe, and no spatial dependence, respectively.
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The significance oMC can be tested using Egs.(2-43) and (2-44).

Consider the eigen-decomposition diVM (i.e., MWM —EAwiEw', WhereAyq, is the
diagonal matrix of the eigenvalués..,.. Ay andEg ={ey,..8,..e\} is a matrix of the eigenvectors).
WhenM = I-11/N, only one eigenvalue ing, indicates 0, and the eigenvectorsEiy, are mutually
orthogonal ¢'e = 1 andg'g = 0) and orthogonal th (1'e = ' 1= 0). On the other hand, whéh =
I-X(X' X)*X', K (rank of X) eigenvectors indicate 0, and the eigenvector&;in are mutually
orthogonal and orthogonal ¥ (X'g = g' X = Q) (Griffith, 2003).

In both casesg' 1= 0 is satisfied, provided tha{ includes a constant. This means that the
orthogonality also implies no correlation amorgy, {.€,...ey}. More precisely, usingg' 1= 0, the
numerator of the correlation coefficient betwegnand e, results in the equation representing
orthogonality: ¢ —1¢'1)' (en—1e, 1) — &' e, Thus, the eigenvectors are both orthogonal and
uncorrelated.

CalculateMC of g as

N eMWMe,

MCle ] =
lel=7c1 € Me,

_ N €EuAwEwe
ICl (Me))'(Me))

A 0
[0.---de,---0] | A ‘ ét:el
N _ a0
IC1 ge
=1%;., | (2-45)

Here, we use the orthogonality amamg. e,..ey (i.e.,6'e@ = 1 andg'g = 0) and the property thise,

= g'. Eq.(2-45) suggests that tHdCs of e,..q,..ey are proportional to their corresponding

eigenvaluesiy,.. ,.. An.

1 WhenM = I-11'/N, Me, = (I-11/N)g = g —(11' @)/N = . Here,1' @ =0 is used for the expansion.
On the other hand, whavt = 1-X(X' X) X', Me, = (1-X(X' X)*X")g = ¢ -X(X' X)*X'g = . Here,
X' @=0is used for the expansion. Thie, = g.
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Consequently, the eigenvectors provide distinat.,(iorthogonal and uncorrelated) map
pattern descriptions of latent spatial dependendth, each level being indexed by &mC that is
proportional to its corresponding eigenvalue (@hff2003). Specificallyg, is the set of numerical
values with the largest positidC (maximum positive spatial dependenaejievable by any set of
real numbers for the spatial arrangement define@ byhen,e, is the set of values with the largest
positive MC uncorrelated with, and orthogonal &, andey is the set of nhumerical values with the
largest negativ®1C (maximum negative spatial dependence) achievableghuncorrelated with, and

orthogonal togy,... e,... ey1 (see Fig.2-5).

M e

1st eigenvector 5th eigenvector
10th eigenvector 50th eigenvector

Figure 2-5: Images of the eigenvectors

Here, the 1st, 5th, 10th, and 50th eigenvectosiéfM (M = [-11/N) defined on a 10 by 10 gridded
space are plotted.
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Suppose thaEy = ey, +...y + ...y, whereE is a matrix composed afeigenvectors in
Ewn (L < N), wherel is the index of thé.-eigenvectors, ang is the weight for thé-th eigenvector,
then, theMC of Ey is given, using Eq.(2-45), as

MC[Ey] = ’N (e1y1+"'e|_y|_)'M’WM (eyit---ey)
1Twil (ely1+"'e|_y|_)M(ely1+"'eLyL)

__N ey +e Vi )EmAwEwE@n+-en)
1'wi (e +-e y )M(ey, +---ey)

A T vée |
[v.€e -y ee 0---0]

_ N i A 0
w1 yiee +--yide !

_ N KA
WIS S VZZVZMC[Q (2-46)

wherel,,... 4,..., 4L are the eigenvalues corresponding tolthetgenvectors. Eq.(2-46) shows that the
MC of Ey is given by the weighted average of M€s of the eigenvectors. In other words, not only
the eigenvectors themselves, but also their line@nbination, Ey, describes the map pattern
description of latent spatial dependence explamedC.

Note that decompositions dC, such as Eq.(2-46), have often been discussedn§tance,
the localMC (or local Moran’s | statistics), defined by Eq42}, is a local indicator of spatial

association (LISA: Anselin, 1995), and can be cbaisid as a decomposition of the (globag.

LGRS S 2@ D), (2-47)

Z(z ~2)?
The localMC is used to test whether local spatial dependenpeeisent around theh sample. The

localMC is expressed using matrix notation as followsf@lgglorf, 1998):
ZM(sW,)Mz
Z’'Mz ,

MC =N

(2-48)
whereW; is W with all elements replaced with zeros, exceptli@ei-th row and column, ang is the

scaling parameter for theh sample. The glob&liC is given by the localiCs as
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,1 MG, = ,N ZzM(s'Wi)Mz
1TW14 1W1 ZMz )

=MC. (2-49)
Thus, similar to Eq.(2-46), the loddlC is a decomposition of the gloldIC.

2.3.2.2. Eigenvector spatial filtering
The MC-based spatial filtering approach, callecerigector spatial filtering (ESF), captures
spatial dependence usikg. The basic linear model of ESF is
y=XB+Ey+sg, £~N(,0?). (2-50)

Since Eq.(2-50) is identical to the standard limegression modef andy can be estimated using the

OLS estimation. Provided thit = I-11'/N, the estimates ¢f andy are as follows:
~ -1
X'X EX) (X
b= J (2:51)
v XE | Ey),

B L(Xx EX\*
Var| ' |=0 YE | (2-52)
Y :

and their variances are given as

On the other hand, B = 1-X(X"' X)™X', which imposeX'e = &'X = 0, their estimators and variances

5 )

yield

_ [(X'XE);X'VJ (2-53)
~ . -1
Var[BJ = JZEX X Oj
5 0 |
= 0’2(0(’;()_1 ?J (2-54)

Eq.(2-52) suggests that,M =1-11/N, the correlation betweexX andE inflates the variances oﬁi

and y. HenceM = [-X(X'X)™X', which imposes no correlation betwe¥randE, seems helpful,
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for example, when identifying a model accuratelytifaut aggravating the instability oﬁ and y).

On the other hand, considering the spatially dependomponent correlated witk is useful in
reducing the omitted variable bias, which is thashilue to factors that cannot be considered in the

model (see LeSage and Pace, 2009). Thus, the aisoropM =1-11/N seems helpful when testing
the significance offi (and y), considering the omitted variable bias problem.

ESF is implemented as follows: (Bqy and Ag, are extracted frorMWM ; (i) The
eigenvectors responding to small eigenvalues,ishamallMCs (see Eq.2-45) are removed; and, (iii)
Significant eigenvectors are chosen by applyingas-based stepwise variable selection procedure
for Eq.(2-50). Step (ii) is conducted by removihg tigenvectors with eigenvalues that are small or
of the wrong nature. For example, the criteridiC[e]/MC[e;] > 0.25 has been used to analyze
positive spatially dependent components (GrifféB03), whileMC[e]/MC[e;] < —0.25 has also been
applied when analyzing negative spatial dependamiponents (e.g., Griffith, 2006). Step (iii) is @on
by maximizing the model accuracy (e.g., adjus®dnaximization) or minimizing residual spatial
dependence (measurglC). In each step of the stepwise selection procedbee eigenvector that
maximizes the accuracy or minimizes the residuatiapdependence is introduced into the model. In
the latter case, a stopping rule is needed. Tadelsand Griffith (2007) set this rule using |M}[<
0.01 (i.e., the procedure is conducted uMIC] of ¢ is less than 0.01).

As in theG; statistics-based approach, the ESF is also sit@Giffith, 2003). The basic ESF
model is identical to the standard linear modell entherefore easy to implement and extend, for
example, by combining it with standard non-spatiadels (e.g., Poisson and logistic regression: see,
e.g., Griffith, 2002; 2004a). Another advantagetttd ESF is its effectiveness in capturing spatial
dependence. Tiefelsdorf and Griffith (2007) showatttthe ESF effectively removes spatial
dependence from residuals, and Griffith (2006) destrates its effectiveness in analyzing negative
spatial dependent components hidden by dominarntiy@spatial dependence. Thayn and Simanis
(2013) show that the ESF reduces spatial misspatiifin errors, increases the strength of a motel fi
frequently increases the normality of the modelduwas, and can increase the homoscedasticity of
model residuals. Hughes and Haran (2013) demoadtnat usefulness of an ESF-based generalized
linear mixed model for a spatial dependence armalfisat considers spatial confounding. Spatial

confounding occurs when variance inflation, caubgdcollinearity, is introduced between spatial
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processes in the explanatory variables and thdasgabcess in the response variables (see e.g.,
Paciorek, 2010).

Applications of ESF are increasing because of itscticality, expandability, and other
appealing factors. For instance, Chun (2008) aniffitGr(2009) use ESF for spatial interaction
analyses (see also, Tiefelsdorf, 2003). Pecci anmdtapollo (2010), Patuellet al. (2011), and
Cuaresma and Feldkircher (2013) employ it for ecgicoanalyses. Griffith and Peres-Neto (2006)
and Jacoket al. (2008) use it for ecological analyses, and Madaman and Paez (2012) use it for
urban design analyses. Thus, ESF has become aapapay to address spatial dependence (lBace

al., 2011).

2.4. Geographically weighted regression (GWR)

While the geostatistical model and the spatiatffittg models capture spatially dependence,
GWR captures spatial heterogeneity by using spatialrying parameters. The basic model is given

as
y=XB, +&, &~N(0,0%), (2-55)

whereB; is a vector of parameters that depend on locaioGWR estimate$; by imposing the
constraint that thef;s in each site are strongly related to nearby ebsens. In particular, the
estimates for sitg are given by Eq.(2-56). Here, a WLS estimator atiger weights is assigned for

nearby samples, and smaller weights are assigmeddie distant samples:
B =(X'W,X)*X'W,y, (2-56)

whereW; is a diagonal matrix in which thjeh element describes the weight of jita sample foi;.
The weight is modeled by a distance-decay funct{m,). The standard weighting functions are as

follows:
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2
Gaussian model k(h ;)= exp{—mj (2-57)

WP
Bi-square model k(h ) = ll_r_z if b <r (2-58)
0 otherwuse
W, T
)] H
Tri-cube model kh,) = ll‘r—s} TR, <r (2-59)
0 otherwuse

wherer is a bandwidth parameter. Smalimeans the existence of small-scale spatial hetemity,
and asr increases, the estimates ff asymptotically converge on the standard OLS eséima
(Fotheringhanet al., 2002).

The value ofr is estimated by cross-validation or by minimizitite corrected Akaike
information criterion (AlCc). The cross-validatianinimizes the cross-validation score, which is

defined as
2Ly =907, (2-60)
where y_; is given as
Vi =XBs- (2-61)
Here,x; is a vector of explanatory variablessatandp, is defined as
B = (XGW X )XWy, (2-62)

where X, yi, andW, are X, y, andW;, respectively, but without theirth elements. On the other

hand, the AlICc minimization of the GWR model isidefl as

AlCc= 2N log(62) + Nlog(27) + N| N+ tracdHl (2-63)
N +2-tracdH] ),
whereH is a matrix in which théth row, h;, is defined as
h, =x! (X'W, X) 7 X'W,, (2-64)
and 42 is
> (v —xiBy)
52 i (2-65)

- N —[2tracdH] -tracdH'H]] .
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By minimizing either Eq.(2-60) or Eq.(2-63), we cadentify the optimalr. In both casest is
estimated numerically.
For more details about GWR, see e.g., Fotheringbtal. (2002) and Wheeler and Paez

(2010).
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3. Areal Interpolation Problem: A GWR-based
Approach

Chapter 3 and 4 discuss change of support probfemareal data. Specifically, chapter 3
discusses the areal interpolation problem, andligmussion is arranged for the MAUP in chapter 4.

This chapter establishes a GWR-based areal intgipnlmethod by combining GWR with a
standard geostatistical areal interpolation apgrodde effectiveness of the constructed method is
examined by applying a simulation study. After thatknown municipal-level road stock data, which
possibly form an important index in achieving ackttype society, are interpolated by applying this
method for the known prefectural-level road stoelitad The advantages and disadvantages of the
methods of statistical areal interpolation, inchglithe proposed method, are discussed in this

empirical study, and an additional GWR-based apros presented based on this discussion.

Population (10 thou.)
10C

50
25
0

0 5 10 20 km
|

Figure 3-1: Image of areal interpolation
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3.1. Introduction

3.1.1. Review of areal interpolation studies

Areal interpolation (aggregation unit conversiorgshbeen discussed extensively among
geographers (e.g., Wright, 1936; Tobler, 1979; @bdd and Lam, 1980). Primal geographical areal
interpolation methods are as follows (see also, Big): the areal weighting interpolation method
(Wright, 1936) that interpolates data by a propoai allotment using areal weights; the
point-in-polygon method (e.g., Sadahiro, 2000) tiggregates areal data that are replaced with point
data; the dasymetric method (Wright, 1936; Fished aangford, 1995) that applies proportional
allotment whose allotment weights are determinethgusupplementary data (e.g., population
distribution only for residential area); the pychgfactic method (Tobler, 1979), which models data
using a spatially smooth function first, and agagteg the smoothed data after that; and the
regression-based methods (Flowerdew and Green,, 18832, 1994), which are based on the
Expectation Maximization (EM) algorithm. Images thfese methods are summarized in Fig.3-2.
Among these methods, the dasymetric method, thagpjtlactic method, and the regression-based
methods have been developed significantly.

The dasymetric method has been discussed in catargitgeography, particularly, after its
efficiency was recognized in some comparative st the 1990s (e.g., Fisher and Langford, 1995,
1996; Mrozinski and Cromley, 1999). Extensions lbé tdasymetric method has been discussed
extensively (e.g., Xie, 1995; Eicher and BrewerD20Mennis and Hultgren, 2006; Reibel and
Agrawal, 2007; Kim and Yao, 2010; Zhang and QuilR20Schroeder and Riper, 2013; Langford,
2013), and some of them reveal that areal intetipplaaccuracy heavily depends on the
supplementary data quality. Thus, the dasymetrithatehas been discussed with the focus on how

supplementary data are considered.
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Figure 3-2: Images of the primal areal interpolation methods
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The pycnophilactic method, which conducts spatiadijooth interpolation, has been
discussed mainly focusing on its theoretical aspeather than use of supplementary data (e.g.,
Brillinger, 1990, 1994; Mulleet al, 1997). In somewhat deferent context, Kyriaki@804) proposes
a geostatistical method, which is called area-toHp@\TP) kriging. While ATP kriging also provides
spatially smooth interpolation result, it is superto the pycnophilactic method in that, as with
conventional kriging, it minimizes MSPE. Some exsiens of ATP kriging and the other
kriging-based methods have been discussed in gmstisg (e.g., Kyriakidis, 2004; Yoo and
Kyriakidis, 2006; Gooverts, 2006; Gotway and Your2§07; Yoo, et al, 2010; Murakami and
Tsutsumi, 2012). As an interesting finding, Yebal (2010) shows that the pycnophilactic method
and the ATP kriging solve similar problems, and,aaesult, their interpolation results possibly be
very similar.

Finally, the regression-based method has been d@edefor hierarchical Bayesian modeling
(e.g., Mugglin and Carlin, 1998; Muggliat al, 1999, 2000). The hierarchical modeling-based
approach is quite flexible. For example, Satual. (2010) consider both spatial dependence and
spatial heterogeneity, and, also, they considertiphell supplementary data. Thus, the hierarchical
Bayesian areal interpolation is a recent hot tapigeostatistics (e.g., Gelfand, 2010; Sahal, 2010;

Cressie and Wikle, 2011; Berroalal., 2012).

3.1.2. Fundamentals of areal interpolation

This section discusses the fundamentals of are@rpolation. Here, | assume that
unobserved variables in non-aggregate level umésiraerpolated using observed variables given in
each aggregate level unit.

Areal interpolation is defined as a spatial intéagion that considers an aggregation

mechanism, which is defined as

yvolume — Nvolumeyvolume. (3_1)

volume ;

Here,y is a vector of the unknown count/volume (extensixgriables given in the non-aggregate

volume

level units, y is a vector of the known count variables giverthia aggregate level units, and

Nvolume

is an aggregation matrix. Eq.(3-1) implies tha #ygregations of the unknown variables in
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volume

y must be equal to the known variables #*"™ (for example, the aggregations of municipal

populations must be equal to actual prefecturalufaions). This property is called the volume
preserving property (or the pycnophilactic propkhty mass balance property), and is one of the most
basic properties that must be considered in anéaipolation (Lam, 1983).

Eq.(3-1) can be expanded to describe the aggoegatiechanism of density (intensive)
variables, as follows:

y=Ny, (3-2)
y = M—lyvolume’ y=M —1yvolume’ N =M INvelumey

whereM is a diagonal matrix, the elements of which arégiws for the non-aggregate level units,
and M, which has the same elements, but for the aggrelgat! units. Eq.(3-2) means that the
aggregated values gf(the non-aggregate level density variables) mastdual toy (the aggregate
level density variables). For example, when thenelats iny are population densities, the elements in
M must be the areas of each unit. Because Eq.(BdlEqg.(3-2) are identical, the volume preserving
property is satisfied if either equation is saédfi As | will discuss later, the dasymetric methisds
Eq.(3-1) for the volume preserving property, whiiany of the geostatistical studies use Eq.(3-2).

The interpolation equation of the dasymetric mdt{@nd the areal weighting interpolation
method) is given by multiplying the generalizeddérse matrix (e.g., Menke, 1989) Nf°“™ which

minimizes the norm of "™ from the left side of Eq.(3-1), as follows:

9v0|ume: Nvolumé(Nvolume’ Nvolume) -1 yvolumel (3_3)

where the generalized inverse matrix!°"™ (N'°"™® NY°™9 " hecomes a matrix describing a
proportional distribution ratio. Eq.(3-3) showsttltae dasymetric method provides a minimum-length
solution to Eq.(3-1) (Kyriakidis and Yoo, 2005). dtso implies that extensions of the dasymetric
method are based on the minimum-length solution.
A problem of the minimum-length solution is that&nnot consider spatial dependeha.
possible extension that can do so is to mgdelEq.(3.2) using a geostatistical model, as
y=Xp+g e~NQC). (3-4)

Substituting Eq.(3-4) into Eq.(3-2) yields the &lling equation:

! The dasymetric method captures (spatial) hetemityeby applying supplemental data.
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0 C CN
V1= 7P 1o 8 WLl , (3-5)
y NXp Ng |, Ne 0 NC NCN')|,
where 0 (=NO0) is a vector of zeros. The conditional expectatiby is given based on Eq.(3-5) as
¥ =Xp+CN'(NCN) (Y - NXP). (3-6)

Thus,y can be interpolated using Eq.(3-6). As with trendard geostatistics, this equation minimizes

the MSPE. In additiony, as given by Eq.(3-6), satisfies the volume présgrproperty. This is
easily confirmed by substituting into Eq.(3-2):
y = N(Xp + CN'(NCN') (¥ - NXB))

= NXB +NCN'(NCN") (¥ — NXB)
=NXB + (Y - NXp),
=y. (3-7)
Many geostatistical areal interpolation methodg]uding the ATP kriging and some hierarchical
Bayesian models, use Eq.(3-6) as their basic iotatipn equation.
Thus, this study considers developing an areatrpaiation method that is

consistent with the aforementioned fundamentals.

3.2. GWR-based areal interpolation

3.2.1. Background

While geostatistics is a sub-field in spatial stits, non-geostatistical spatial statistical
models, including the GWR and the spatial filter dels, have rarely been applied for areal
interpolation. Exceptionally, Lo (2008) and L&t al (2011) applied GWR for areal interpolation.
However, their methods do not minimize MSPE. In diieer words, their methods are insistent with
the discussions in geostatistics (see §3.1.2).

This section develops a GWR-based areal interpolatiethod that explicitly minimizes

MSPE.
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3.2.2. Model

Following geostatistical approach, which appliestandard geostatistical model for the
non-aggregate level model, this study applies ttendard GWR model Eq.(2-55) for the

non-aggregate level model. Namely, | assume EQ.€58he non-aggregate level model:

y=p+e, e~ N(0,0°M), (3-8)

n= <X’kBk> ) (3-9)
wherexy is a vector of the explanatory variables in kit non-aggregate level unf, is a parameter

vector for thek-th unit, and <x> denotes a vector whose elements are given byorder to consider

the weights (e.g., areas) of each unit, variantesaoe weighted by. By substituting Eq.(3-8) into
Eq.(3-2), my full-model is derived as

YR WEM) (ﬁa}'\'ﬁg] [NMM NMMNI\’I’H_ (3-10)

BLUP ofy, which minimizes MSPE, is given, as same as tlostgtistical models, as
Y=p+MN(NMN) (Y -Np). (3-11)
While geostatistics controls spatial dependencedmnameterizing its variance-covariance matix
using a distance function, the GWR-based modelrotngpatial heterogeneity by the non-aggregate
level spatially varying coefficierfi in n. Note that, as Fotheringhagh al (2002) pointed out, GWR
effectively captures spatial dependence, and, dougly, the proposed GWR-based method would

capture spatial dependence too.
The proposed model Eq.(3-10) can be summarizey aNyg, g Whereygwrisy that is

given by Eq.(3-8), and the predictor Eq.(3-11) M&PE-based solution of = Ny ;,,r. On the other

hand, the dasymetric method provides the minimumgile solution of y =Ny (or Eq.3-1).

Accordingly, the proposed model can be considesdraextension of the dasymetric method that

considers spatial heterogeneity and minimizes MSPE.

The predictory satisfies the volume preserving property. It isved as
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Y =N(u+MN'(NMN)™(y - Np))

=Np + NMN'(NMN") (Y - Np)

NM + (Y = NM)

I
<I

(3-12)

3.2.3. Estimation

Parameters in our model Egs.(3-10) must be estdhatecondition thay is unknown and
y is known. Some geostatistical studies prove ctersiy of aggregate level model-based parameter

estimation (e.g., Naglet al, 2011). Hence, this study also considers estimggiarameters using the

aggregate level model in Eq.(3-10), i.e.,
¥ =Np+Ng, Ne ~ N(0,NMN"), (3-13)
The GLM estimator ofy is given as
B = (X (NMN) X)X (NMN) 7y (3-14)
X, =W Y2NX Y. =W YNy, W, =NW,N'.
ﬁk is identical to the estimator of the standard G\WRapter 4 discusses properties of the estimator

from the viewpoint of MAUP.

The proposed method is implemented as followsTi¢ optimal bandwidth parameter in

W, is estimated via a cross-validation based on EIB}3 (ii) ﬁk is estimated by substituting the

calibrated bandwidth into Eq.(3-14); (iiiy is predicted by substituting the estimatég into
Eq.(3-11).

Following ATP kriging (see 83.1), | refer to theoppsed method ATP GWR.
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3.2.4. Non-negative constraint

One of the drawbacks of ATP GWR is that it allovegative interpolated values whereas
negative interpolated values are physically imgaesin most cases (Yoet al, 2010). For example,
interpolated population must be non-negative. Tthis,section considers introducing a non-negative
constraint in our model.

The proposed method minimizes MSPEyofwhich is modeled by Eq.(3-8), on condition

that Eq.(3-2). The minimization problem is writtas
argmin  (y —p)'M 7 (y - p), (3-15)
y

s.t. Ny=Vv. (3-16)
Hence, by solving the problem of minimizing Eq.@)Dbn condition that Eq.(3-16) and Eq.(3-17), a
non-negative constraint can be introduced.
y>0 (3-17)
Let expand Eq.(3-15), and rewrite the minimizagwablem as
argmin yYM ™y -2¢'M 7y + p’'M M, (3-18)
y
sit. Ny=y, y>0.
Eq.(3-18) is identical to the basic form of the draic programming problem (e.g., Nocedal and
Wright, 2006), which is given as
argymin %y'Qy —-Cy +const, (3-19)
Ay <a, By =b.
where Q, A, andB are known matrixes, and b, andc are known vectors. In our setting, =
(1/2M™, A is an identity matrixB = N, a is a vector of -1y = y, ¢ = 2V ™p, andconst=p' M '
(compare EQ.3-18 and Eq.3-19). After all, the negative is introduced by replacing the

interpolation applying Eq.(3-11) with the interpiide by solving the quadratic programing problem.
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3.3. Asimulation study

3.3.1. Outline

This section compares accuracies of areal intetipalanethods by employing the Monte
Carlo simulation proposed by Fisher and Langforé9g). This simulation evaluates interpolation
accuracies to non-aggregate level units repeat®dijarying aggregate level unistimes. This study
applies the minor municipal districts in Ibarakefacture for the non-aggregate level units, and the
data interpolated are the employee numbers in 28d@ple size = 4,800: Fig.3-3).

The aggregated level units are generated by iteyaltie following procedur® times: ()N
minor municipal districts are randomly chosen; Egch of theN units are expanded by merging them
with their adjacent minor municipal districts; )ilif a minor municipal district is included in more
than one expanded units, one of the expanded nalitding the minor municipal district is selected
randomly and the minor municipal district is mergeith it; (iv) Steps (ii) and (iii) are repeatedtilin
all minor municipal districts are included in anf/the expanded units. Following Cockings al
(1997), we seN to 50, andP to 300. Namely, areal interpolations from the bgit 50 units to the

4,800 minor municipal districts are iterated 300ds.

Value 7 ?
(people/km2) 3
1800 -
600 - 1800 /
200 - 600 - O
50 - 200 % %

0-50 e
T
£y

Figure 3-3: The employee numbers in the minor municipal units
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This simulation examines whether or not the progoS&VR-based method (ATP GWR)
outperforms the standard areal interpolation methtte areal weighting interpolation method (AW)
and the dasymetric method (DA).

The proportional distribution ratios (i.e., the raknts inN"*"™ or N) used in DA and ATP
GWR are given by the building land areas in theanimunicipal units. In the other words, DA and
ATP GWR distribute the employee humbers only faidiog lands. Besides, ATP GWR considers the
following explanatory variables: ratio of urban @reotal length of roads per unit area (kmfkm
averages of the railway distances (km) from theesastation to the Tokyo and Mito stations that ar
weighted by their numbers of annual passengersp(epedNote that the Mito station is the central
station in Ibaraki prefecture. The tri-cube funntigq.(2-59) is used in ATP GWR to model spatial
heterogeneity, and the bandwidth parameterestimated via the cross-validation.

Calculations in this study were performed using R12Z (provided by CRAN), and

visualization was done using ArcGIS 10.1 (provitgESRI).

Table 3-1: Response Variables and Explanatory Variables

Variables Description Source
Ministry of Internal
Employee Numbers of employees in each municipal unit or minAffairs and
Numbers municipal district Communications

Statistics Bureau

Building land areas that are calculated by aggiegat
the indicator variables by 100m x 100m grids,
indicating 1 if the grid is a building land, and |0
otherwise

Urban_ratio Ratio of urban area
Road_density | Length of roads per unit area
Averages of the railway distances from the near®HiNI;

TM_dist station to the Tokyo and Mito stations that is vinégl | East Japan Railway
by their numbers of annual passengers Company

Building land

NLNI: National Land Numerical Information downloaérvice
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Figure 3-4: Spatial distribution of the building land areas

3.3.2. Result

The root mean square error (RMSE: Eq.3-20) andrtban absolute error (MAE: Eq.3-21),

which are applicable even if some elementg @me zeros, are used for accuracy evaluations.

RMSE= |~ Sy, - 907 (3-20)
4800
A= Sy, -9, (3-21)
48004 K kT

wherey is the actual employee numberkisth minor municipal district andy, is the interpolated

employee numbers in that district.

The RMSEs and MAEs of AW, DA, and ATP GWR are sumpeal in Tables 3-2 and 3-3.
The result indicates that the RMSEs and MAEs ofggteposed method are better than those of AW
and DA on average. However, these differences lmtwd P GWR and DA are not so large. Hence, |
test their difference using the Tukey’s test (Tyke977), a test for multiple comparison. Table 3-4
summarizes the test results. The table shows tmataccuracies of DA and ATP GWR are
significantly different at the 1% level.

On the other hand, the maximums and the standafidtatens of the RMSEs and MAEs of

GWR are greater than those of DA. Thus, the perdoice of GWR is unstable. To overcome this
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problem, applying Bayesian estimation, which i®& ef shrinkage estimation, might be helpful.
Subsequently, MAE for each unit, which is defined a
MAE, =~ % —gten | (3-22)
3002, Y ~ Yk :
whereiter is the index of the iteration numbers, are ploitedrig. 3-5. This figure shows that the

accuracy of AW is worse, and that the accuracy P &SWR is superior to DA, particularly in the

middle and southeastern areas.

Table 3-2: Summary statistics of RMSE

Statistics AW DA ATP GWR
Mean 769 555 549
Median 767 555 545
Standard deviation 27.0 13.2 19.8
Maximum 883 618 629
Minimum 702 512 512

Table 3-3: Summary statistics of MAE

Statistics AW DA ATP GWR
Mean 370 264 257
Median 370 264 255
Standard deviation 8.28 2.92 6.43
Maximum 401 272 287
Minimum 346 255 249

Table 3-4:Test result of the differences among the methoutgyugukey'’s test

RMSE MAE
Pair t-value Significance t-value Significance
AW — DA 139 238
AW — ATP GWR 143 224
DA — ATPGWR 3.69 14.5

* &

, " and” represent significant levels (10%, 5%, and 1%peetvely)
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0-280

DA ATP GWR

Figure 3-5: MAE of each method
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Finally, interpolation results of the three methads plotted in Fig. 3-7. Here, for easy
understanding, the employee numbers are intergblaging the municipal level employee numbers
(Sample size: 48; Fig.3-6). The results suggedttti@ interpolation results of DA and ATP GWR,
which consider supplementary data, are much mon#éasito the true distribution (Fig. 3-3) than the
result of AW. This result agrees with geographistiidies that emphasize the importance of
considering supplementary data (ekjsher and Langford ,1995; 1996). The result of Bppears to
be smoothed overly, whereas the result of ATP G¥/R3s smooth, which is more similar to the true
distribution. The over-smoothness of DA would be da its strong assumption that the employees
are distributed evenly in building lands. Thuseefiveness of GWR is verified from the viewpoint of

avoiding such an over-smoothed result.

Value
(people/km2)

1800 -
600 - 1800
200 - 600

50 - 200

Figure 3-6: Municipal level employee numbers
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Figure 3-7: Interpolation results
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3.4. An empirical study

3.4.1. Backgrounds

Building stock (total floor area) data have ofteseb used as “basic units” in economic
analysis. For instance, the Flood Control Projecbribmic Assessment Manual issued by the
Ministry of Land Infrastructure, Transport, and Tismm (MLIT) estimates flood damage costs to
buildings using building stock data (flood damagestc= total floor area x appraised value of
buildings per unit area), and energy consumptiastanated using building stock data in many cases
(e.g., Yamagateet al, 2013). In addition, building stock data would bequired to achieve a
stock-type society.

Given this background, the importance of buildingck data has been recognized, and,
since 2010, Building Stock Statistics have beervidem by the MLIT each year. These statistics
estimate the stock amounts using the Housing amdl [Survey, Corporations Survey on Buildings,
Statistics Survey on Construction, and so on. Tgreyide building stock amounts in each category
(residence/non-residence, wooden/non-wooden, cdiopleperiod). However, the data are only
available at the prefecture level, whereas moréalyadetailed (e.g., municipal level) stock daile
required for, for example, compact city planningl afimate change adaptation planning. Accordingly,
this study considers constructing municipal lewdlding stock data.

A bottom-up approach that estimates stocks by clamypinicro level data, such as GIS data
of buildings, would be an effective way to constraccurate municipal building stock data. However,
performing such an approach for all municipalitiesJapan would be prohibitively costly. On the
other hand, a top-down approach that interpoldtesrtunicipal building stocks using the prefectural
data would be a far more efficient way to constthetdata.

Thus, this section considers applying areal intiatgan techniques, including ATP GWR, to

municipal-level building stock estimation.
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3.4.2. Review of municipal level building stock estimation

The Property Tax Ledger (issued by the Fixed Ptgpgeax Division, Local Tax Bureau) and
the Basic Survey of City Planning (issued by eachicipality) are the prime sources of municipal
level stock data (Sakata and Yoshikawa, 2001).

The Property Tax Ledger is based on site surveymbyicipalities, and is updated every
year. Since the objective of this ledger is taxatibis quite accurate, and therefore, using thia ds
the best way to accurately construct the municipedl stock data (Sakata and Yoshikawa, 2001).
However, completing the municipal data for multiglears using the Property Tax Ledger would
seem to be difficult.

The Basic Survey of City Planning comprises Gl&gdand is constructed every five years
based on the Fundamental Land Classification Surieg data are based on aerial surveys and site
surveys. As investigated by Miyagi (2009) and Teotset al. (2012), Chiba and Kanagawa are the
only prefectures in the Tokyo metropolitan ared fitavide GIS data. In other words, this data is no
yet available for all prefectures.

With regard to residential building stocks, mupdilevel building stock data are assessed
by the Housing and Land Survey, which is a basistie Building Stock Statistics. However, this
survey does not provide non-residential buildingcks. To the best of the author’s knowledge, no
attempt has yet been made to provide detailed esidential stock data across Japan.

This section applies areal interpolation methadthe prefecture level data of the
Building Stock Statistics, and estimates the muaicilevel residential and non-residential stock
amounts. 83.4.3 compares the effectiveness ofregwed aterpolation methods from the viewpoint of
the building stock estimation, and 83.4.4 perfothres building stock estimation based on the results

of the comparison.
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3.4.3. Comparative analysis of the building stock estimation

3.4.3.1. Data and models
In this section, the ATP GWR model is used to esténthe municipal residential stocks that

were completed by 2005 (sample size: 1,803) usig prefectural stock data (Building Stock
Statistics). Then, the accuracy of the estimatesgiasured by comparing the results to the actdal da
This section also compares broader several metlioelsareal weighting interpolation method (AW),
the dasymetric method (DA), the geostatistical méthwith predictive equation given by Eq.(3-6)
(GS2: see Gotway and Young, 2007), and the ATP GkdRel. In addition, | apply the geostatistical
method implemented in ArcGIS 10.2 (GS1). GS1 isdtandard form of ATP kriging, and has the

following predictive equation:
y=al+CN'(NCN')(y —aN1), (3-23)

wherea is a parameter. GS1 is a geostatistical modeldbat not consider explanatory variables.
Among the methods compared, AW and GS1 are easpjeimented using ArcGIS, and DA is also a
simple proportional distribution. Thus, AW, DA, af&E1 are practical.

DA, GS2, and ATP GWR have the advantage that thigildition ratios (the elements of N)
can be arranged using supplementary data, whiahihdhis study using the building land area in
each municipality (owing to a limitation of ArcGI&S1 does not have this advantage). In addition,
the number of railway stations and the densitielsuiifliings are used as explanatory variables in GS2
and ATP GWR. Furthermore, to avoid negative buddstock estimates, | introduce non-negative
constraints into these methods. Note that AW anceBtnates are always non-negative. On the other
hand, owing to a limitation of ArcGIS, non-negatisenstraints cannot be introduced into GS1. GS1
and GS2 use the exponential covariogram model B).¢2 capture spatial dependence, and ATP
GWR uses the Gaussian kernel model Eq.(2-57) ttumaspatial heterogeneity. Finally, each of the

methods is summarized in Table 3-5.
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Value 1km2/100I<m2) o T

8.0C-
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0.00-0.04 - gLt Ty )
« " ;}7}0' 300 600 km

Figure 3-8: Prefectural residential stock densities (2005)

Table 3-5: Summary of the areal interpolation methods

o . _ Spatial Spatial
Method Distribution ratio Explanatory variables ,
dependence heterogeneity
AW Area
DA Building land area NA
GS1 Area X
GS?2 Numbers of railway x
T | Building land area stations per unit area
ATP GWR » X
Road densities

Y Data source: National Land Numerical Informatiawdload services

Municipal level residential stock data are requiked accuracy verification, and are
provided by the Housing and Land Survey (see §B.#@wever, the data differ to the Building Stock
Statistics, which | use for estimation in that thigynot consider shared spaces in apartments, which
account for about 20% of total residential stockcérdingly, this study evaluates the accuracy ef th
estimates using the Property Tax Ledger data (2B08%1 municipalities in the Tokyo metropolitan
area, which are corrected by Miyagi (2009) and Sismi et al. (2012). However, these data have
some limitations. The first is the region. In thégard, | consider that the target region incluoleth
urban areas (e.g., central Tokyo area) and normuab@as (e.g., Tama area), and we can grasp some
sort of tendency using the data in this region.o8dly, Building Stock Statistics includes data on

residences for public servants, which the Prop€aty Ledger does not. This may introduce discord
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between these data in some municipalities. Howéwemsider this influence to be sufficiently small
because the Building Stock Statistics data andpthéectural level aggregations of the Property Tax

Ledger are quite similar (see Fig. 3-9). Their eratios are 7.1% at maximum.

km? 500 - Building Stock Statistics (for estimation)

400 - Tokyo
300 -
200 - Chiba Saitar::nagawa
100 -
Property Tax Ledger (for validation)
"0 10 20 30 40 so0k

Figure 3-9: Comparison of the Building Stock Statistics datd Broperty Tax Ledger data

3.4.3.2. Parameter estimation result

Table 3-6 summarizes the parameter estimationteestiiGS2 and ATP GWR. As shown in
this table, in both models, the numbers of railgtgtions are significant at the 1% level, while the
road densities are not significant. The lack ohgigance of the road densities might be because th
effect of the road densities is already explaingdhle building land areas, which | use as distidyut
ratios.

The range parameter of GS2 is relatively smalis Tindicates that the building stock data
have local scale spatial dependence. On the otlmed, the bandwidth parameter of ATP GWR is
quite large, which implies an absence of spatialefogeneity (i.e.,p; are constant across
municipalities). ATP GWR considers heterogeneityWsighting each municipality based on spatial
adjacency, which describes spatial heterogeneity,baiilding land area, which describes non-spatial
heterogeneity (see Eq.3-14). Hence, the resultigmphat heterogeneity across municipalities id wel

captured by building land area only.
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Table 3-6: Parameter estimates 8652andGWR

GS2 GWR
. - Estimates Std.err. -
Estimates Std.err.  Signif Max Min Max Min Signif.
Const 15.5 9.99x1h 7 15.6 15.4 1.00 9.67x10
;‘;?O'nc:ra”way 36.7 627 ” 36.7 36.5 500 499
Road density 1.90x10 2.17x10" 2.34x10" 6.40x10° 2.07x10" 2.04x10"
range (km) 31.3
bandwidth (km) 2867
D denote 1% significant levels
3.4.3.3.  Accuracy comparison result
The accuracy of each model is assessed usingltbeiing six measures:
1 A
RMSEz\/EZ(in—in)Z’ (3-24)
i
1 < 2
RMSE_derr 1;7032(3‘ -v)? (3-25)
i
1 g¢ -y Y’
RMSPE= > (3-26)
18034 y¢ )
MAE-mZ] -y ’ (3-27)
MAE_ den—— |y (3-28)
I
AC_ C
MAPE = 181032|yi Ry (3-29)
i

RMSE and MAE are sensitive to errors at municipgithat have large amounts of stock. RMSE_den
and MSE_den are sensitive to errors at municipalitvith large stock densities. RMSPE and MAPE
are standardizations of RMSE and MAE, respectivielyge values of RMSPE and MAPE indicate
that the errors are large compared to the amodirst®ck (or to stock densities).

Here, two cases are assumed for GS2 and ATP GWéRcase with explanatory variables
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and the case without explanatory variables (cotstanly). Table 3-7 summarizes the results of the
accuracy comparison. The table suggests that AWGESTH which do not consider supplementary data
as distribution ratios (elements of N) or explamateariables, are inefficient. This confirms the
importance of considering supplementary data ialanéerpolation.

The two spatial statistical methods, GS2 and ATPRG\Wutperform DA, the efficiency of which has
been demonstrated. In addition, GS2 is more aceul@tn ATP GWR. This could be because the
stock data have spatial dependence, but no spatlogeneity (see §83.4.3.2). However, the accuracy
of GS2 with explanatory variables is worse than G@&tout explanatory variables. This result is
intuitively inconsistent. ATP GWR does not havelsstrange results, and so may be better than GS2

at capturing the influence of the explanatory Valga.

Table 3-7: Accuracy comparison result (gray: better than Béld: best)

Without explanatory With explanatory
AW DA GS1 variables variables

GS2 GWR GS2 GWR
RMSE 7.97x10 2.62x160 6.85x16 1.93x16 4.52x16 2.19x16 2.76x16
RMSE_den. 1.44x10 8.50x1d 1.68x10 7.58x10 1.08x10 1.24x10 1.22x10
RMSPE 1.47 8.35xI0  7.43  539x10" 6.57x10" 6.27x10" 6.22x10'
MAE 4.26x10 1.70x10 3.71x16 1.26x16 1.93x16 1.18x16 1.27x16
MAE_den. | 9.07x1b 5.12x1d 9.53x1d 4.34x10 5.47x1d 4.49x1d 4.51x1d
MAPE 3.29 574x1®  1.92  3.75x10" 4.59x10" 3.56x10" 3.60x10"
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whose accuracy is best), and ATP GWR (with explanyatariables) with the true stock amounts. The
figure shows that GS2 and ATP GWR are more accutete DA in many of the municipalities.
Specifically, GS2 outperforms DA in 63.9% (171/244) municipalities, whereas ATP GWR

outperforms DA in 71.0% (171/241) of municipalities

each of the results is visually quite similar te thue values. In addition, it seems that GS2 afd A

| Estimated values

GS2without explanatory variables)

Figure 3-10: Comparison of the estimated values and the true values

Fig.3-10 compares the stock amounts estimatedAyds2 (without explanatory variables

Fig.3-11 plots the interpolation results of DA, Z3and ATP GWR. This figure suggests that

GWR capture the stock values of the central Tolkga detter than DA.
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Figure 3-11: True residential stock densities (Property Tax Ledged) estimated stock
densities of DA, GS2, and ATP GWR (with explanatory variables)

Then, the error ratios of DA, GS2, and ATP GWR pletted in Fig.3-12. This figure
suggests that DA overestimates the stocks in nbaruareas. Such a tendency is not seen in the
results of GS2 and ATP GWR. Note that, because hef ¥olume preserving property, the
overestimation in non-urban areas implies an ursienation in urban areas.

Local residual spatial dependence is tested usiadocal MC (see §2.3.2). Fig.3-13 summarizes the
tests results. The white dots in the figure represaunicipalities whose residual spatial dependésice
significantly positive (i.e., municipalities whogesidual values are similar to their surrounding
municipalities), and black dots represent munidijgal with significant negative dependence (i.e.,
municipalities whose residual values are dissimitatheir surrounding municipalities). This figure
demonstrates that the spatial dependence compamieiot) could not be captured by DA, is captured
well by GS and ATP GWR. However, the residuals & @nd ATP GWR still show significant
positive spatial dependence in the central TokymaaAs a result, their global MCs (see §2.3.2) are
positively significant at the 1% level. Thus, fugwstudies need to extend statistical areal intatjool

methods to capture spatial dependence more adgguate
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Figure 3-12: Error ratios of DA, GS2, and ATP GWR (with explanatory variables)
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Figure 3-13: Significance of residual local MC for DA, GS2, and ATP GWR (with

explanatory variables)
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3.4.4. Municipal building stock estimation results

Building stocks in each type (residence/non-residenvooden/non-wooden, completion
years) are estimated using ATP GWR with explanatanjables, and using GS2 without explanatory
variables, which was the most accurate. The esomaésults in 1991, 2000, and 2007 are shown in
Fig.3-14 (wooden residential stocks), Fig.3-15 @mamoden residential stocks), Fig.3-16 (wooden
non-residential stocks), and Fig.3-17 (non-woodemiresidential stocks).

The results of the two methods are visually simitard roughly speaking, the estimation
results are intuitively reasonable. The resultssaltcessfully describe concentrations of stocks in
urban areas. The concentration is particularly pnent in the non-wooden stocks.

On the other hand, these results include someggrpnints. For example, the non-wooden
residential stocks estimated by GS2 indicate extgrsmall values in the North Kanto area. In
addition, the stock amount estimates in some mpalities indicate 0. Accordingly, the spatial

statistical methods must be developed furthermore such odd results.

3.4.5. Discussion

This section compares the effectiveness of thel amapolation methods by applying them
to building stock estimation. As a result, the aacy of the spatial statistical methods, includ®§2
and ATP GWR, is confirmed. | also verify the im@orte of considering supplementary data as
distribution ratios and explanatory variables. Tdliiscussion is significant when needing to estimate

the building stocks required in a compact city pplnd climate change adaptation policy effectively
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3.5. Summary

This chapter constructs GWR-based areal interpolatiethods, and then, we confirmed their
effectiveness by comparing them with standard argeipolation methods. This method is consistent
with geographical studies in that they can be a®reid as an extension of the dasymetric method
whose accuracy has been shown (see §3.2.2). Betliiesnethod is consistent with geostatistics in
that they give their interpolation equations ustmgditional expectations (or minimize MSPE). To
the best of my knowledge, the proposed methodesotily GWR-based areal interpolation method
that explicitly minimizes MSPE.

| also found that statistical areal interpolatioethods possibly be inaccurate if assumptions
in these methods (e.g., assumption of the Gauststibuted disturbance) are inconsistent with data
distributions. This finding is consistent with teidies that pointed out inefficiency of statistiaeeal
interpolation methods (e.g., Cromley al, 2012). On the other hand, | also showed thadisttal
methods are accurate if the method applied is walgadiciously. It would be an important finding
for further discussions of statistical areal intdghions. Especially, clarifying effectiveness and
limitations of the statistical methods would bewienportant.

Areal interpolation (or changes in the supporaidal data) must be discussed while paying
attention to the MAUP, particularly when the intelgted areal data are used for secondary analyses

(see §81.2). Accordingly, the next chapter consitiers to apply the GWR-based model to the MAUP.
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4. Modifiable Areal Unit Problem: A GWR-based
Approach

4.1. Introduction

Areal interpolation models have often been usecbfme with the problem of bias in parameter
estimates due to aggregations (see, e.g., Wong; 2Belfand, 2010), which is known as the
modifiable areal unit problem (MAUP; Openshaw arayldr, 1979). While a number of efficient
areal interpolation methods have been proposed ¢ggher and Langford, 1995; Xie, 1995; Eicher
and Brewer, 2001; Mennis and Hultgren, 2006; Redloel Agrawal, 2007; Kim and Yao, 2010; Zhang
and Qui, 2011), there are, as yet, no theoreticlfficient solutions for MAUPs (Siffedt al.,, 2006;
Butkiewicz and Ross, 2010).

There are two factors that affect the seriousnésheoMAUP (Wong, 2009). The first is the
underlying spatial pattern of the data. The MAURdaes serious if the data are positively spatially
dependent, while its influence is small if the date negatively dependent (e.g., Reynolds, 1998). T
second is the aggregation process. Since largabitiiy can be canceled out, the MAUP also
becomes serious when the aggregation units are.larg

According to Swiftet al (2008), in geography, at least five approache® teeen proposed to
address the MAUP. The first is by applying GWR.c8iltWR captures spatial patterns of data, which
is a source of MAUPs, GWR is believed to be rolistealing with the MAUP. However, GWR does
not consider aggregation mechanisms, and so ia sotution to MAUPs (Fotheringhaet al, 2002;
Wong, 2009). The second approach is to apply ngneggted data (e.g., Tagashida and Okabe, 2002).
The third approach estimates aggregate-level pdemmeby considering non-aggregate-level
structures in a variance-covariance matrix (e.ggnmer and Steel, 1998). The fourth approach
optimizes the zoning system by minimizing intra-owariances and maximizing the variances
between zones (Openshaw, 1984). Finally, the éifthroach applies a sensitivity analysis (e.g., Odoi
et al,, 2003; Swiftet al,, 2008).

In geostatistics, the MAUP is considered a sub-embof the change of support problem
(COSP) (see 81.2). Whereas the majority of COSHiestufocus on interpolation problems, some

discuss the MAUP and its related problems (e.gtw@p and Young, 2002; Gelfand, 2010; Nagte
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al.,, 2011). However, geographical MAUP studies andstsistical COSP studies have been
discussed almost independently (see also, Haiaingl, 2010). Combining the discussions of the
MAUP from geography and geostatistics would bemapartant step in advancing discussions on the
MAUP. As mentioned previously, GWR is believed ®rbbust to the MAUP in the geography field.
Therefore, extending GWR based on geostatisticadies of COSP would be significant. Fortunately,
| have developed a GWR-based areal interpolatiodeil@TP GWR), and this model is constructed

in a geostatistical manner. Hence, this chapteliepthe ATP GWR for MAUP.

4.2. MAUP and the GWR-based model

The ATP GWR model (Eqg.3-10), which is constructe&3.2.1, is given as

HIREAR M CAES (O oove
y Np) (Ne), Ne 0) (NM NMN'/|,
= (X\By)
where its aggregate level model, which is usegpfzameter estimation, is
¥ =Np+Ne Ne~N(O NMN'). (4-2)
Based on Eq.(4-2), the estimate$pfs

Bic = XW'2 (NN W) W2 (NN W Py (4-3)
where X = NX (Eqg.4-3 equals to Eq.3-14). Eq.(4-3) is a geneedlileast squares (GLS) estimator
with its weighting matrix isWY2(NN)*WY2. W, = NW, N' is a diagonal matrix whoseth
diagonal represents spatial connectivity betwednnon-aggregate level unit ainth aggregate level

unit (the average connectivity between ki non-aggregate level unit and each non-aggrdgast

unit in thei-th aggregate level unit). As illustrated in Fid.4thei-th diagonal considers the shapes of
thei-th unit. NN', which is another matrix i (NN')* W2, is also a diagonal matrix whos¢h

diagonal is large when thdh spatial unit is small. In shortWk considers the shape of spatial units

andNN' considers the size of spatial units. Sin%k andNN' are diagonal matrixesy.*? and

(NN')* are computed efficiently.
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Figure 4-1: Image of spatial connectivity

Our aggregate-level model Eq.(4-2) is identicast@ndard GWR. Therefore, the variance—
covariance matrix of[Aik is given as (see Fotheringhatnal., 2002)
CovB, 1=V, Vi, (4-4)
Vi = (XWE2(NN) W 2X) WY (NN) W2
where 62 denotes the estimatesmt. By substituting Eq.(4-3) into Eq.(4-2), the filtgalues of y

are given by?zNL ¥y, whereL is a matrix whoséth row isx'Vy, andx, is a vector of explanatory

variables observed at Using this property,5? is given as (see Cressie, 1998)

G2 = (Y —Np)'(y —Np) (4-5)
tr{(I =NL)(I =NL)} ,

where p =<x'k|§k>. Significance of}x can be tested using diagonal elements of Eq.(4-4).

This method estimates non-aggregate-level paragfgtarespective of the aggregation units
of data at hand. Besides, the estimatorg,ofvhich are identical to the standard GLM estimsitare
unbiased, consistent, efficient, and asymptoticatiymal. In other words, unlike the standard GWR,
which does not consider aggregation mechanisms, B\NR can be considered a solution to MAUP

(see, also, 8§4.1).
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4.3. A simulation study

4.3.1. Outline

This section examines the effectiveness of ATP GMRMAUP by applying a simulation
study. There are at least two simulation approadbre&WR. The first utilizes the eigenvectors of a
double-centered proximity matrix (see Wheeler amadelsdorf, 2005; Paezt al, 2011). For example,
Paezet al (2011) apply the first, third, and fourth eigeatgrs of a proximity matrix for their first,
second, and third spatially varying parameterspaetively. This approach enables controlling
collinearity among spatially varying parameters,ichihis a critical factor that determines the
effectiveness of GWR (Wheeler and Tiefelsdorf, 2005

The second approach models spatially varying paensady using spatial processes (e.g.,
Finley, 2011). For instance, the spatial procesesstcovariance is modeled, based on the Gaussian

covariance function Eg. (2-10), as
hZ,.
ok,k') =12 ex;{—%] , (4-6)

This function is consistent with the Gaussian kkfaection Eq. (2-57), which is commonly used in
GWR. Unlike the eigenvector-based approach, thisagrh enables us to control the spatial scales of
spatially varying parameter distributions by tuning

Spatial scale is an essential factor determinesst#r@usness of MAUP. Besides, the
influence of collinearity has already been discdssell in Wheeler and Tiefelsdorf (2005) and Paez
et al (2011). Hence, we conduct a simulation studyheflatter type, focusing on MAUP and spatial
scales and paying attention to the collinearity agnepatially varying parameters.

In our simulation, we first generate non-aggredete! response variables and explanatory
variables on 50 x 50 sites. The explanatory vaegbiclude one intercept and two variablgs,and
X 2, generated independently fra(0, 1), respectively. The response variables are gesterasing

Eq. (4-7):
Vi =a(K) + X151 (K) + %, 8, (K) + &, & ~N(@©0%), (4-7)

where a(k), S1(K), and Sx(k) are spatially varying parameters. They are geedrasing Gaussian

processes whose means are zeros and covariant®ifsnare Eq. (4-6), where thevalues for both
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a(K) andp,(k) are 2.0 and that fgfy(k) is 0.5. Note that the zero means of the parandses not
imply insignificance of them, and they possiblydignificant at some sites in the assumed space. The
zero means are also assumed in Reeal. (2011). The intercept anxl, corresponding ta®=2.0
explainyy effectively, whereas,; does not. Our simulations are performed by altgsfre {1.0, 4.0},

r = {5, 10, 20}.

Under the above settings, we first generate the distributions ofx(k), £1(k), andga(k) for
each of the six (= 2 x 3) cases (the true distidimst whens*= 1.0 andr = 5 or 20 are shown in Fig.
4-2). Then, in each of the six cases, the followisigps are iterated 100 times: (i) the
non-aggregate-level variablgs,, X, andyy are generated; (i1, X2, andyy are aggregated intd
aggregation units, which are generated by Vororessellation; (iii) the non-aggregate-level
parameters in ATP GWR are estimated by using tlyeeagted variables; and (iv) the accuracies of
the non-aggregate-level parameter estimates areumezhby comparing them with their true values.
If our (aggregate-level) model effectively recovére non-aggregate-level parameters irrespective of
the M aggregation units, we can say that the methodkast for MAUP. Considering the suggestion
of Paezet al (2011) that data applied for GWR should not balsrwe assum& = 400.

Regular lattices (e.g., 50 x 50 grids) are usuably assumed much in GWR simulation
studies. One of the reasons is that regular Iattde not appear to be representative of real-world
geographical topologies (Farbet al, 2009). However, since the objective of COSP istuds to
mitigate the influences of spatial supports (shaiee, etc.), most COSP simulation studies discuss
the modeling of continuous spatial process, whighfree from such spatial supports, and the
continuous space is approximated by using a discepiatial process on regular points (e.g.,
Kyriakidis and Yoo, 2005; Naglet al, 2011). Thus, our assumption of 50 x 50 site®issistent with

the standard assumption in COSP studies.

4.3.2. Result

The estimates af(k), £1(K), andpx(K) given in each of the first attempts witfi = 1.0 and
= {5, 20} are plotted in Fig.4-2. The results shtlve tendency of the accuraciesagk) andfx(k),
which explainy, well, to be good and of the accuracyfeik) to be poor. Also, the estimates obtained

whenr = 20 are more accurate than the estimates obtaihedr = 5.
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Figure 4-2: Plots of estimated(k) 1(K), andg.(k), and their true values (right) whef= 1.0
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We measure the accuracies of the parameter essirogtasing the root mean square error
(RMSE) and R-squaredR]). Since 2,500 (50 x 50) parameters are estimatesach attempt, the
RMSEs and?¥’s given in each attempt are averaged and plottsti@sn in Fig.4-3. In this figure, the
average RMSEs ans obtained by the non-aggregate-level standard GBMR_NAg) are also
plotted for comparison. Note that since ATP GWRaiisaggregate-level model, the results must be
worse than the GWR_Nag results. This figure shdwas the RMSEs anB’s in our method change
significantly depending om, and that the change is particularly large whea small. This result
indicates that our method can be inefficient wHendpatial process of spatially varying coefficient
too local. The RMSEs and®s also change depending on the explanation cafedilof the
explanatory variables. Specifically, the averdfe of a(k) and S,(k), which explainy, well, are
between 0.4 and 1.0, whereas those8,@() are between 0.1 and 0.6. This result suggeststliea
parameter estimates of our model should be disdumsky when they are significant. In contrast, the
impact ofo? is relatively small. In summary, ATP GWR effeciiveecovers the non-aggregate-level
parameter (i.e., robust for MAUP), when the explanavariables are significant and their spatial
variations are not too local compared to their aggtion scales.

To examine collinearity among the estimated paramsetthe correlations among the
estimated parameters wheh= 1.0 andr = {5, 20} are summarized in Fig.4-4. This figuneggests
that any serious spurious correlation, which comtdur even when the explanatory variables are
uncorrelated, is not aroused in our simulation.

We then compare the bandwidth parameter estima&tisgebn two aggregate-level models:
ATP GWR and the aggregate-level standard GWR (GWR_the GWR that models the
aggregate-level variables; the geometric centeesaoh aggregation unit are used to calculate $patia
connectivity). The average RMSEs of their bandwiglihameters are evaluated and plotted in Fig.4-5.
Here, the estimates of GWR_NAg are regarded as thed values. As shown in this figure, the
estimates of ATP GWR are more accurate than thb&MR_Ag in all cases. In each of the six cases,
at least 91% of attempts indicate efficiency of AB®WR over GWR_Ag. However, the estimates of
ATP GWR are still upwardly biased, and this biag#sticularly prominent whem is small (see

Fig.4-6). We need to discuss the reduction oflthas in a future study.
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Figure 4-3: RMSEs and?¥’s of the estimates k), £1(K), andf(k)

Note: Here, the averages of the RMSEs Rfsdare plotted (black line: ATBWR; gray line: GWR_NAGQ).
The bold lines represent averages, and the gapgedetthe bold lines and the thin lines near them
represent the standard deviations ofRMSE orR’s.

75



0.4 7 _ 8 0.4
0.2 i —_T i 0.2 _E_ R
0.0 . 0.0 . % I

[ : M T
02 - i _i_ _ci)_ —0.2 L _‘_ L
—-0.4 - 0.4 | | |

T T T
a(k) andy(K) oK) andBx(k)  u(k) andB(K) a(k) andpy(K) oK) andBx(k)  u(k) andB(K)
r=5 r=20

Figure 4-4: Correlation coefficients among spatially varying parametérs (..0)

1017~
i ’\ —
_ o—-= ——
o
0.0
A T T T T T
c 10 20 10 20 10 20
r 5.0 10.0 20.0

Figure 4-5: RMSEs of the bandwidth parameter estimates

Note: Black line: ATP GWR; Dark gray line: GWR_Aghe true bandwidth parameter values are ¢
by the estimates of GWR_Nag.
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Figure 4-6: Averages of the bandwidth parameter estimates

Note: Black line: APGWR; Dark gray line: GWR_Ag; Light gray line: GWRAJ\

4.4. An empirical study

4.4.1. Outline

In this section, we apply ATP GWR and GWR_Ag foe @005 municipal-level crime data
(sample size: 249; source: Criminal statistics, 7206f the Tokyo metropolitan area, as shown in
Fig.4-7. Our response variables are the numberiofes per krh (Fig.4-7), which we refer to as
crime density. Since utilizing many explanatory ightes in GWR could introduce serious
multicollinearity (Wheeler and Tiefelsdorf, 2005)e apply only two explanatory variables: the
constant and the population densities (thousanglequar 1kry source: Population census, 2005),
which are shown in Fig.4-8. In this analysis, GWR_éstimates the parameters in 249 municipal
unit-level variables and ATP GWR estimates the patars in (the geometric centers of) 10,247
minor municipal districts from the 249 samples.

We use R, a free statistical software provided hg Tomprehensive R Archive Network
(http://cran.r-project.org/), for computation, andArcGIS, provided by ESRI Inc.

(http://www.esri.cor), for mapping.
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Value
(Num.of crimes /km2)

240 -
160 - 240
120 - 160
80-120
40 - 80
24 - 40
12- 24
8- 12
4- 8
0- 4

Figure 4-7: Crime densities in the municipal units

Value
(thou./km2)

20.0 -
17.5-20.0
15.0-17.5
12.5-15.0
10.0-12.4
7.5-10.0
50- 75
25- 50
1.0- 25
0.0- 1.0

Figure 4-8: Population densities in the municipal units
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4.4.2. Result

The bandwidth parameter estimates of ATP GWR andRGg are 4.89 km and 5.01 km,
respectively. These results suggest that crimeitieh®ave local spatial variation. Fig.4-9 shoWws t
spatial plots of the local trend parameter estisyatgich we refer to 88cons(k) andpfeopuiatioK), and
Fig.4-10 summarizes their significance levels. Tasult of ATP GWR is consistent with that of
GWR_Ag. Besides, the estimates of ATP GWR, which gpatially smooth, seem to appear more
natural. Since many GWR studies have discussedpatal plots of their own parameter estimates,

providing a seemingly natural result would be impot.

- 50
- 50
- 20
- 10

- -10
- -20

- -50

Proputation (K): ATP GWR Propulation (K): GWR_Ag

Figure 4-9: Local trend parameter estimates
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In each model, the estimates ff.ns(K)s are significantly high in the central Tokyo area
This result seems to indicate heterogeneity of éinea. This result is intuitively consistent. Oe th
other hand, the estimates Sf.puaiodK)S are significantly positive in the suburban aretJokyo,
whose distance from the Tokyo station is betweerkrhOand 40 km, with significance particularly
prominent in the northern area of Tokyo. Roughtg significant area agrees with the commutable
area of Tokyo with many populations (see Fig.4A&)cordingly, our result could indicate the danger
of having heavily populated areas in the commutabdas.

In summary, ATP GWR, which effectively mitigates MR, is useful for both simulation

data and actual data.

Significant level

B

5%
10%
None

¥ L

-r;‘-ﬁ__“ E Significant level

oY 1%
5%

10%
None

Tokyo st

ﬂPopuIatior(k): ATP GWR ﬂpopmaﬁor(k): GWR_Ag

Figure 4-10: Significance of the local trend parameter estimates
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4.5. Summary

This study discussed the effectiveness of ATP GWRobusing on MAUP. While several
studies have often indicated that MAUP is yet tadmolved (e.g., Butkiewicz and Ross, 2010), ATP
GWR, whose non-aggregate-level parameter estimatesunbiased, consistent, efficient, and
asymptotically normal, can be considered a metbaégolve MAUP. We confirmed the effectiveness
of the method for MAUP in a simulation and an erapgir study. Since the original GWR model,
which does not consider aggregation mechanism,otsansolution to MAUP, my discussion of
extending GWR for a solution to MAUP is significant

However, our method still has some problems. Fiost, simulation study indicates the
ineffectiveness of the method when spatially vagyparameters have local spatial patterns. Some
studies (e.g., Fisher and Langford, 1995) have shitzvat non-aggregate-level spatial patterns are in
aggregate-level variables and can be effectivelptwwad when detailed auxiliary data (e.g.,
high-resolution land use data) are considered gneagation mechanisms. The aggregation mechanism
in our model can easily be extended by modifydigHence, it is important that we consider the
detailed auxiliary data iN to make our method more effective. Another problemulticollinearity.

As with the standard GWR, ATP GWR too seems toesufifom multicolliearity in many cases,
particularly when the number of explanatory vamgbis large. To tackle this problem, applying a
penalized form of GWR such as geographically weidhtidge regression (Wheeler, 2007) or
geographically weighted lasso regression (Whe2@39) model might be useful.

We have discussed MAUP while referring to COSP istidn geostatistics. Since the
primary objective of COSP studies is to changeiapsitipports such as point interpolation and areal
interpolation, MAUP has not been discussed in COtekature sufficiently. Discussing MAUP in
terms of COSP studies would be an important steprtt developing more sophisticated solutions for
MAUP.

In short, chapter 3 and 4 discussed two main CG&Pareal data: the areal interpolation
problem and the MAUP, and showed that the propdséd GWR deals with these two problems

effectively.
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5. Point Interpolation Problem: An Eigenvector
Spatial Filtering-based Approach

While the previous chapters discussed the COSParéal data, Chapters 5 and 6 discuss
the COSPs for point data. Chapter 5 discusses o mterpolation problem, which has been
discussed actively in the field of geostatisticewedver, geostatistical methods have a number of
drawbacks. First, they are not necessarily strioghird to implement and extend. Second, the
methods can easily become computationally intréetgbarticularly when spatiotemporal data are
interpolated.

Thus, | extend the ESF, which is simple and possild model spatiotemporal data
computationally efficiently, for the point inter@dion problem. The effectiveness of the extended
method is examined by applying it to land priceefpblations. Note that the usability of the extahde
method is not restricted within the point interga problem. Hence, the extended method is also
applied for several other purposes, including patam estimation in the presence of spatial
dependence, spatial component extraction, anaéasputation.

Two types of point data are appeared in this gectontinuous spatial (or geo-referenced/
point-referenced/geostatistical) data, i.e., the dstributed ond?, and discrete spatial (or lattice)

data; the data distributed on a discrete space.

5.1. Introduction

5.1.1. Review of point interpolation studies

Kriging (see 82.2.5) is a standard point interpofamethod. There are variations in kriging.
For instance, simple kriging (kriging with a knowrean), ordinary krigingkriging with an unknown
and constant mean), university kriging (kriging lwitoordinates as explanatory variables), and
regression kriging (kriging with explanatory varied) are prime linear geostatistical models. Then,
log-normal kriging (kriging with log-transformedsgonse variables), trans-Gaussian kriging (kriging

with Box-Cox transformed response variables), amjudctive kriging (kriging with non-linear
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transformed response variables) are prime non#igeastatistical models (see, e.g., Cressie, 1993).
These methods have the following features: (i) thegimize the MSPE; and (ii) they interpolate
continuous spatial data. Feature (i) ensures Heapoint interpolation is accurate. On the otherdha
since a complete observation of continuous spdttd is generally not possible, the interpolatibn o
continuous spatial data is important. Thus, théufea(ii) increases the importance of kriging sasdi
(see also, Longlegt al,, 2010).

Point interpolation problems have also been dismli$s non-geostatistical spatial statistics.
For instance, Martin (1983), Bennettal (1983), and LeSage and Pace (2004) discuss ahatign
based on the SLM (see LeSage and Pace, 2009) abdngtflels, Griffith and Paelinck (2011)
discuss ESF-based interpolation, and Leen@l (2000) and Harriet al (2010; 2011) propose
GWR-based interpolation techniques. The SLM/SEMebaand ESF-based approaches interpolate
discrete spatial data by considering spatial depecel and the GWR-based approach interpolates

continuous spatial data by considering spatialrbgeneity.

5.1.2. Fundamentals of point interpolation

While the basic assumptions of the aforementior@dtpnterpolation methods differ, their

basic models (except for non-linear geostatisticatlels) are essentially identical. Their basic niode

b S R A g IS

where the subscript™ indicates missing sitegt denotes a deterministic trend component; BnH,,

are formulated as

andXy, are the matrix of covariance among observatiassibetween observation sites and missing

sites, and among missing sites, respectively. Tieeligtors of each approach are defined by the

conditional expectation gf, y,, which is given based on Eq.(5-1) as

Yo =ho +EoZ (Y —R). (5-2)
Eq.(5-2), which is identical to the kriging predictgiven in Eq.(2-34), minimizes the MSE. In the
other words, the kriging and non-geostatisticatripblation methods are essentially identical.
On the other hand, their implementation procedaresdifferent between the methods for
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continuous spatial data, including kriging and theographically weighted regression (GWR)
approach, and the methods for discrete spatial, dattuding approaches based on the spatial lag
model (SLM), the spatial error model (SEM), and thigenvector spatial filtering (ESF). The
continuous spatial data methods estimate paramaséng observed data only (i.g.,= p + ¢ in
Eq.5-1 is used for parameter estimation), and perfan interpolation by substituting the estimated
parameters into Eq.(5-2). The discrete spatial da¢thods use the EM-algorithm-based iterative
calculation procedure, which is summarized as ¥adto(i) the initial values are set for the unobserv
data,yo; (ii) the parameters are estimated using both rebgeand unobserved data (i.e., Eq.5-1 is
used for parameter estimation); (iii) the unobseérdata are updated by substituting the estimated
parameters into Eq.(5-2); and (iv) iterate stepsaind (iii) until the unobserved data converge.
Furthermore, the continuous spatial data methoddetma continuous stochastic process, while the
discrete spatial data methods model the spatialliegum that forms among observed and
unobserved data (see Fig.5-1).

Although continuous spatial data interpolation particularly important, as discussed
previously, the SLM/SEM and ESF cannot be definecaa@ontinuous space, owing to the algebraic
limitations. More precisely, the ESF requires ageaidecomposition of a matrix that describes the
connectivity among all given sites. Since eigenetiggosition is tractable only for a finite
dimensional matrix, the number of sites must bédinThus, the ESF is essentially a method in a
discrete space. Similarly, since the SLM and SEjuie an inversion of a proximity matrix, which
is tractable only if the dimension of the proximitatrix is finite, they are also models in a disere
space. Consequently, they cannot interpolate antants spatial process.

Overcoming such a limitation is significant nothyofor point interpolation problems. It is
also important to be able to apply the ESF or SUBMSto other problems, which have been
discussed by modeling continuous spatial procestjding the sampling design problem (e.g., Wang
et al, 2012), gradient analysis (e.g., Banerjee, 20d1),block prediction (e.g., Cressie, 1993).

This chapter considers extending the ESF to coatiswspatial data modeling. The extended

model is then applied to spatial and spatiotemgatafpolation, as well as other purposes.
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Figure 5-1:Images of the point interpolation approaches

Note: Black circles denote observed sites and vdiitdes denote unobserved sites

5.2. ESF on continuous space

This section extends ESF for modeling continuqagial data. In §5.2.1, we briefly discuss
the eigenfunction-based specification of the steshdpeostatistical model, which has actively been
applied for continuous spatial data modeling. 11288 an eigenvector-based model (Eqg.5-6), which
describes continuous spatial phenomena, is comsttuzased on the geostatistical model. Then, we
show that the model is a valid geostatistical modetl that it can be considered as a MC-based ESF
model.

The continuous space model requires an eigen-demsitign of an infinite dimensional
kernel matrix, which is computationally intractabledence, 85.2.3 and 5.2.4 discuss how this
eigen-decomposition is performed. 85.2.3 shows ttmatinfinite dimensional matrix can be divided
into blocks (Eq. 5-21), given certain assumptioBgs(5-13, 5-14), and then 85.2.4 shows that the
eigenfunctions of the infinite dimensional matrianc be approximated using an approximation
technique called the Nystrém extension (eDgineas and Mahoney, 2005

Based on discussions in §5.2.3 and 5.2.4, 85.2difree our model (Eq.5-6) to a tractable
form (Eqg.5-24). Subsequently, implementation of miedel is discussed, focusing on accurate model
identification problems and residual spatial degrog reduction problems. Finally, 85.2.6 compares

the constructed method with the other eigenfunebiased spatial methods.
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5.2.1. Geostatistics and eigenfunctions
The standard geostatistical model Eq.(2-18) caexpended, by decomposiagnto spatially
dependent component and spatially independent coemppas(e.g., Gneiting and Guttorp, 2010):
Y, = W+, +u;, (5-3)
wheres (i=1,...n) is a site inD, andy; is an element im. #; +u; is an element ik wherey; is a
spatially dependent component, anet N(0, 6°). The termy; is modeled using a covariogram. For

instancey; can be modeled using the exponential model EQ.&59
cov(y;.n,) =12 exp(-h ; /1)
=72k(s,S,) - (5-4)

As shown in the second line of Eq.(5-4), covariafmections are defined by the product of the
variance parameter (partial-sij and a kernel functiok(s,s). Employing the eigen-decomposition

for k(s.,s), #i in Eq.(5-3) can be expanded as follows (e.g.,dPenand Holmes, 2004):
T :ZQM , (5-5)
=1

whereg; is thel-th eigenfunction ok(s, s). If o°> 0, then geostatistical models are valid if anty on

if k(s, s) is a positive semidefinite function (Cressie, 3p9

5.2.2. The eigenfunction-based model

Suppose that the regidn is filled by an infinite number of points, includj N observation
sites. EqQ.(5-3) may be rewritten using matrix riotags

y" =X"B+E*y+e", g" ~N(", %), (5-6)

wherey’, X*, €, 0", andl” respectively arg, X, ¢, 0, andl with dimensions of infinity, ande* is a
matrix of eigenfunctions extracted from a kernetnmaX*p, E*y, ande” in Eq.(5-6) correspond ta,
ni (which is defined using Eq.5-5), andn Eq.(5-3), respectively. Following ESF, | ugéK* "M " for
then"x n" kernel matrix, wher& " is an infinite dimensional standard kernel matardM " is | '—
1°1"/n* or "= X* (X" XH1X™,

Just like for the geostatistical model Eq.(5-B);K'M™ must be a positive semidefinite
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matrix. In other wordsM "K*M*| = M*IK*| must be non-negative. We can satisfy this commlity
defining the elements iK™ using a positive semidefinite function. Followikg.(5-4), we apply an
(positive definite) exponential functioh(s, §) = expfhi/r), and following some studies of
distance-based spatial filtering (e.g., GriffittddPeres-Neto, 2006; Dray al, 2006; Griffith, 2010)y

in the function is the longest distance in the mimin spanning tree covering thieobservation sites
distributed inD.

By design, thediagonals ofK" are not zerok(s, s) = exp(0/r) # 0), and as a result,
M*K*M™ does not explain spatially dependent components, rather a mixture of spatially
dependent components and self-dependent compoffdrigspoint is inconsistent with standard ESF,
which models spatially dependent components onlpwéver, the unneeded self-dependent

components itM 'K*M™ can be detached as

M*K*M*=M'KIM*+M*, (5-7)
whereK," is K* with its diagonals replaced with zerdd.'K,"M* explains the spatially dependent
components, anill* ( =M7I"M") explains the self-dependent components.

Thus, the eigenfunctions ® K,"M*, rather than oM KM, should be used in a spatial
dependence analysis. Fortunately, eigenfunctionthe$e matrixes are identical (Griffith, 2003).
Furthermore, the diagonal matrix of eigenvalue#6K "M*, A*, and the same matrix ™M Ko'M™,
Ao, have the following relationship:

AT = E?uII’M KM TE T,

=Efy MK M E}, +Ef,' M E},

I

+ E+ - +[(=+ +
=Ag fuif M (EfuII—K EK)
EK
. (15 o
:Ao+[ POR J (5-8)
K b

where Ey is the subset composed Kfeigenfunctions whose eigenvalues are ze®$, _, is the

subset composed of the other eigenfunctions BE'gy= [E'uix, E'«]), |7,_« IS an identity matrix,

0" andOx are matrixes of zeros. Becaldé inducesK zero eigenvalues that are the same for matrixes
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M*K*M* andM*K,"M*, Eq.(5-8) suggests that the-K remaining eigenvalues M K,"M™ are their
counterparts foM "K*M™* minus 1.

After all, if only the eigenvalues ofl 'K*M™ are replaced with the eigenvaluesMfK ;"M ™*
using Eq.(5-8), Eq.(5-6) can be considered as eeirtbdt describes pure spatial dependence (without
self-dependence). Precisely,y in Eq.(5-6) furnishes distinct map pattern degwis of latent

spatial dependence that is explained§*, which is defined fob as

‘MK M
MC* = lim —_ 2% o2
T

= lim n Zi2j¢i k(f’si)zzj
EOIIMCIY 27 :

where Z is the i-th element ofMz. By construction, mean ofZ is 0. BecauseZZz/n

(5-9)

represents the variance &, Eq.(5-9) can be expanded as

1 2.2 K887

MC* = lim — (5-10)

SLAADIDIN. CI)

whereaf=z 'z'iz/n. Under the assumption of infill asymptotics, whfdls D by an infinite number

of missing sites, Eq.(5-10) may be further exparaied

.1 Ju]Ms s)Fr0s0s
M | [ [Ks 5)dsds (1)

We assume a finite number of missing sites (e, ), whereas the number of observation SNes
unchanged. Hence,in k(s, 5) = exp¢h;,/r), which is determined based on tReobservation sites,

also is unchanged.

WhenCo\ Z,Z;] = E[ ZZ;] = 0, the expectation &fiC" yields

1 .¢i_[k($,3-)E[Z,Z-]dsdsj
E[MC"] === =0 (5-12)
7 Ij#i-[ k(s .s;)dgds,

nt  zZ"M'K;M*z"

' Eq.(5-9) can be written #4C" = ————
KL eyt

, too.
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On the other handyiC" is large when the co-variationiij are large and/or the co-variations are

positively related td(s, s) (i.e., the co-variations are explainedHfy, s)).
In summary, this section defines our model Eq)(5vhich is based on a geostatistical
model, and shows that it captures spatial deperdeescribed bC*, MC defined in a continuous

study region.

5.2.3. The double centered kernel matrix in continuous space

Our model Eq.(5-6) requires an eigen-decompositiohl ‘K "M ™ (or M*K "M ™), which is
computationally intractable. To achieve it, in thisbsection, | expansl '"K*"M* to a tractable form.
After some assumptions are imposed in §5.2.3.1appgoximateM ‘K *M™ using a finite number of

observations (85.2.3.2). The result is used in.85& the eigen-decomposition approximation.

5.2.3.1. Assumptions
Because of the existence of the projection mafrix expressing similarities among arbitrary

sites inD usingM *K*M ™ directly is difficult. Hence, the following assutigns are imposed:

j k(s ,s;) pds; = %Z K(s,.s,), (5-13)
[Ks.5)Rds =D K., (5-14)

wherep; is a probably density function, argd (I: 1,..N) ands; (J: 1,..N ) are observation sites.
Combining Egs.(5-13) and (5-14) yields
1 N N
[[Ms.5) pRdsds =3 > Ks s, (5-15)
1=1J=1
Egs.(5-13), (5-14), and (5-15) assume that the amersimilarities among arbitrary sites are

approximated by the average similarities among mfasien sites.

5.2.3.2. The double centered kernel matrix

8§5.2.3.2 discusses expansionMfK*'M™ to a tractable matrix. First, the [)-th element of
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M*K*M* given byk'(s, s) is approximated using our assumptions define@5r2.3.1. Then, the
tractable version oM "K*M* (Eq.5-21) is derived using the approximatét, s) (Eq.5-17). The
result is used in 85.2.4 to calculate eigenfunation

SupposeM = 1"—=1"1"/n", the (, j)-th element oM K*M", is expressed under infill asymptotics as

K'(s,5) = ks,5,) - [ k(S 5,) pds; -

[Ks.s)nds +[[ks.s) pRdsds (5-16)
Eq.(5-16) is written using matrix notation KS—(1"1"/n )K" —=K*(1"1"/n") + (1" 1"/n")K*(1"1"/n").
Eq.(5-16) is approximated using the assumptions(&ds), (5-14), and (5-15) as
k*(S,S):k(S,,Sj) Zk(si S;)—— Zk(sl’sj) sz(SI’SJ (5-17)
1=1J=1
Based on Eq.(5-17), the similarity between obs@natitess ands; is
k' (s1.8y) = K(sy,85) = _z k(s ,S;) - _z k(s S;) - _ZZ k(s .s;) (5-18)
1=1J=1

whereas the similarity between an arbitrary sitend an observation sisgis

. 1 1 1
k (S’S.]):k(SHSJ)_NZk(S’SJ)_NZk(SI’S.] _N_ZZ (SI’SJ (5-19)
J=1 1=1

On the one hand, the x N matrix whose I, J)-th element is given by Eq.(5-18) equM&M , the
kernel matrix regarding the observation sites. e dther hand, a DNkvector with itsJ-th element
given by Eq.(5-19) results ki, a vector representing similarities between aitrarly sites and each

observation site:
k' =k, -k 1'/N-TK/N+TK11/N?
=k, (1 -11'/N)-1'K /N(I =11'/N)
=(k, -1'K /N)(I =11'/N), (5-20)
wherek; is a 1N vector whosel-th element ik(s, s5). In short, Egs.(5-13), (5-14), and (5-15) and
M*=1"-1"1"/n" imply thatM "K*"M" is

MKM -
M*K*M*=| mM - (5-21)
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wherem;=k;—1'K/N, and “=" in Eq.(5-21) represents unspecified sidirires.

When M*="-X*(X" X*)'X*, by performing a similar analysisyi'"K*M* is given by
Eq.(5-21) withM=[-X(X' X)X andm; = k; —x (X' X)X"' K, wherex; is a 1)K vector of K
explanatory variables observed at an arbitrary sitdq.(5-21) implies thaMKM is a part of

M*K*M™, according to our assumptions.

5.2.4. Eigenfunction extraction using the Nystrom extension
. . : . . A B
Eq.(5-21) is helpful to approximate its eigenfunns. Let(B Cj be a A+B) x (A+B)
matrix for whichA, B, andC are matrixes whose sizes @peA, BxA, andBxB. Suppose that the first

. L A B
A-columns in theA+B columns are randomly selected. Then, the eigetifurg of (B j are

approximated by the Nystrdm extension as

EA
oen.t) =

where A = EpAAEA". The dimension of Eq.(5-22) is noA«{B) x (A+B) but rather A+B) x A. The
Nystrom extension performs a low-rank approximaf(gee, e.g., Cressie and Wikle, 2011).
In our case, the eigenfunctions MffK*M*, E*;,, are approximated, under the assumption

thatN observation sites are randomly sampleb jras

E i
Efu = €l (5-23)

wheree i =ki Er A andMKM  =E,,AEw'. Eq.(3-27) suggests that the eigenfunctions atsitey

in D are approximated bg 1.
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5.2.5. Implementation of the method

Based on discussions in 85.2.3 and 5.2.4, we éxpiand our basic model Eq.(5-6) to a
tractable form (Eqg.5-24). Then, its basic paramestimation procedure is explained. Details of the
procedure are discussed with a focus on accurateinidentification (85.2.5.2) and residual spatial

dependence reduction (85.2.5.3).

5.2.5.1. Estimation steps
Eq.(5-6) may be rewritten using Eq.(5-23) as

y X E €
Yi |=[ X B+ & v+ & (5-24)

where §',yi, ="'} =Yy, {X,x', —'}=X",{E,e', ="'} =E",and ', &, —'} =¢ (see Eq.5-6),
E’ is a subset ol eigenfunctions inE*y, y, X, E, and ¢ are matrixes/vectors defined d

observation sites, angl x;, €, andg; are variables defined on an unobserved site. Exi®ontains

the following sub-model regarding observation sites
y=XBp+Ey+e, e~ N(0,0?%l). (5-25)

Estimation of parameters in Eq.(5-25) may be dosiaguthe sub-model. The estimation
procedure is as follows: (i) Extradfy, from MKM ; (ii) Select eigenfunctions irkq, whose
eigenvalues are greater than some threshold vahe construck; and, (iii) Apply an OLS-based
stepwise selection procedure for the sub-modellowolg studies of ESF (e.g., Tiefelsdorf and
Griffith, 2007), we recommend the forward selectst@pwise method.

The purpose of estimation is identifying Eq.(5-2&hich has eigenfunctions & "K,'M ™.
Hence, the eigenfunction selection step (i) mwstpbrformed using eigenvalug$ o of M*K,"M ™.
2’| o cannot be evaluated directly. However, the follegvirelationship holds betweery ; and the

eigenvalueg, o of MK (M (see Fig.5-2):

. { 0 if 4, ,=0

= 5-26
Ao a(d o, +1)-1 otherwise, (5-26)

wherea = lim n/ N, which is introduced because of the Nystrom extengsee Williams and Seeger,

n-oo
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2001). Eq.(5-26) suggests that, is proportional td, o. Hence ' ; can be evaluated usiig.

Becausen > 1 and i ¢+1>0 (4 ¢t1 equal the eigenvalues KM , which are positive
semidefinite: see Eq.5-8), Eq.(5-26) also means tha corresponding td, o is always positive,
unlessi o = 0. After all, eigenfunctions corresponding ty @n, describe positive spatial dependence
in D (see Fig. 5-2). This result is consistent withiradication in Griffith (2006) that negative spatial
dependent is not of interest.

We now discuss details of steps (ii) and (iii) asig two purposes for applying our method:
accurate model identification (Case 1); and, residipatial dependence reduction (Case 2). The
model given in Case 1 might be useful for an exgitmy spatial data analysis (ESDA) such as spatial
interpolation and spatial pattern analysis. Casehelpful when avoiding bias in parameter estimate
and/or their standard errors due to spatial depaselée.g., LeSage and Pace, 2009).

85.2.5.2 and 85.2.5.3 discuss Case 1 and 2, résggct

Eigenvalues oMK (M: 1, o Eigenvalues oM KoM ™ a (4 o+1) -1
Value Value 4
oA, +1)-1
}“170 ( 1C )
0 ‘ > 0
= -1
.
N BT 2 R
Eigenvalues oMKM : / o+1 Eigenvalues oM " K*M™: a (4j o+ 1)
Value Value
o _
0 P = o» |  Nystrom extension

(low rank approximation)

Figure 5-2: Relationship among eigenvalues

93



5.2.5.2. Estimation for accurate model identification

Considering eigenfunctions with not only large eigmues but also small eigenvalues is
important for accurate model identification (Aubey al, 1993; Cressie and Wikle, 2011). Hence,
with regard to Case 1, this study removes no eigetions in step (ii).

In contrast, in the subsequent step (iii), a largmber of eigenfunctions must be considered
in the forward stepwise procedure. We apply the AKEZ,.(5-27), which is robust in such a situation

(Burnham and Anderson, 2002), for the objectivecfiom of our stepwise variable selection:

T

AlCc= N{Iog(%j +1+log 271} L2K(KFLHD

5-27

N-K-L-1. ( )
The AICc-minimization-based forward stepwise regi@s technique can become

computationally intensive. To cope with this prablethe AlCc-minimization is replaced with an

efficient algorithm. Supposd = I-X (X' X)*X'; then the following equation holds:

X XX 0 0
(XE.e&)E|=| O 1 0 (5-28)
e 0 0 1)
whereE is a subset of eigenvectors that is selectedrireeateps, and, is a candidate eigenvector to
be entered intd, If Eq.(5-28) holds, the decreasesla by introducinge, is always||€wy|| (Schott,
2005). Hence, in each stepwise selection stepeigenvector with the greatest AICc improvement is
the eigenvector that decreasés(=||€oy||) the most. Consequently, forward stepwise regoassan
be replaced with a simple algorithm that introdueggnvectors in a decreasing ordet|afy|| until
AICc is minimized (also see Griffith, 2004b).
This algorithm is not available whéni = [-11/n andX contains explanatory variables other
than an intercept. In this case, an exhaustivecegarcomplicated by multicolinearity withid and

amongX andE. Thus, this study performs AICc minimization usiMg 1-X (X' X)™X"' only.

5.2.5.3. Estimation for residual spatial dependence reduction
In Case 2, which seems helpful to avoid bias impeter estimates due to spatial dependence,
we apply bothM= 1-X (X' X)’X' and M = I-11/n. To save degrees of freedom, we select

eigenfunctions satisfying o > O prior to the stepwise regression step.
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Tiefelsdorf and Griffith (2007) demonstrate, usistgndard ESF, that two types of forward
stepwise methods are useful for spatial dependeedaction: the MC-based method, and the
accuracy-based method. The former selects eigetidascuntil the standardized MC of the residuals,
z(MC), decreases to within a small absolute deviatiomfzerog, and the latter is a standard forward
stepwise procedure that maximizes measure of nambelracy. Here, we demonstrate applying these

two approaches for spatial dependence reduction, to

5.2.6. Relationships among methods

At least three methods model spatial data using Bd€ed eigenvectors (eigenfunctions):
ESF, Moran's eigenvector maps (MEM: e.g., Legendnel Legendre, 2012), and the proposed
method. MEM has several variants, including priatipoordinate analysis of neighbor matrices
(Borcard and Legendre, 2002; Dratal., 2006) and asymmetric eigenvector maps (Blanostesd,
2008).

Table 5-1 summarizes properties of these three adsthESF is a topology-based method,
which describes spatial connectivity using an aztj@y matrix, while MEM and our method are
distance-based methods, which describe spatialembinity using a distance matrix (see also Griffith
and Peres-Neto, 2006). Another difference is tf&ff Bnd MEM model discretized spatial phenomena,
whereas our method models continuous spatial phenanover an are® using observations
randomly distributed irD. Despite such differences, interpretations of E®H MEM are strictly
equivalent (Drayet al, 2006), and our method, which is an extensioB®F, is also an extension of
MEM for continuous space. More specifically, thestdnce matrixesMK M and M*K;"M™)
essentially are identical. Furthermore, our eigeafion selection criterion in Case 1 is also ideati
to the criterion for MEM. Specifically, both our thed and MEM select all eigenfunctions
representing positive eigenvalues. Meanwhile, oiberion in Case 2 also is similar to the criterian
MEM (see Table 5-1). Such similarities between m@thod and MEM are natural because both of
them are distance-based approaches.

Our assumptions are similar to the standard assongpin geostatistics that a continuous
spatial process is modeled using a distance fumctio addition, our model is derived from a

geostatistical model. Hence, our method seems itapbfrom the perspective of linking discussions
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of the MC'’s eigenvector-based approaches and dizmssin geostatistics. Actually, our method can
be considered as a basis function-based methodh#satbeen developed in geostatistics for both
dimension and flexible model construction redudiée.g., Cressie and Johannesson, 2008; Matsuo

al., 2011; Ren and Banerjee, 2013). Our method indisre from these methods in that OLS is

applicable for the parameter estimation, and, fbeee ours might be useful as a simple method for
geostatistical data modeling.

Many studies of ESF discuss estimation problentberpresence of spatial dependence (e.qg.,
Tiefelsdorf and Griffith, 2007; Griffith, 2003; 260 whereas MEM has been applied mainly for
spatial component analysis of ecological data (&grcard and Legendre, 2002; Peres-Nsital,
2006; Legendre and Legendre, 2012). Our methodhbeagpplicable not only for these purposes, but
also for purposes that have been discussed in @itiss (e.g., spatial interpolations, change of

supports, sampling designs).

Table 5-1: Comparison of approaches applying MC-based eigsorse

Method Proposed method ESF MEM
Classification Distance-based Topology-based Destebased
Connectivity ey A s

: M'Ko M (=M'K'M"-M") MWM MK oM
Matrix
Space Continuous Discrete Discrete
Eigenvector 2’1 0> 0 (Case 1) Variable 1 >0
truncation criterion i 0> 0 (Case 2) (4 0> 0.25 is standard) -0

o Estimations of Spatial component
Principal use N/A _ _
spatial models analysis
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5.3. An empirical study

5.3.1. Outline

This section utilizes the proposed method to amalgnd prices in the Ibaraki prefecture of
Japan. The response variable is the logarithm fialfy assessed residential land prices in 2009
(sample size: 587; Fig.5-3), which are providedh®sy Ministry of Land, Infrastructure and Transport
(MLIT). Table 5-2 lists the explanatory variablédle apply four types of the proposed method:
MC-based approaches whobt" equalsl*—1"1"/n* and I*-X* (X" X*)*X* (E_MC and EX_MC),
respectively, and AlCc-based approaches whibEe equals|*—1*1"/n* and |"*=X*(X*" X*)'x™
(E_AICc and EX_AICc), respectively. Fig.5-4 portsathe 1st, 10th, and 100th eigenvectors (Note:
they are selected only for the illustrative purposed all eigenvectors are considered in the
subsequent analyses). Following Tiefelsdorf andfi@ri(2007), eigenvectors in E_MC and EX_MC
are selected until |z(MC)| of the residuals is thas 0.1.

Results are compared with the standard linear ssgme model (LM), and the standard

geostatistical model (GS), whose model is given by
y=Xp+n+e, n~N(,7%K), £~ N(0,0%l). (5-29)
whereK is a covariance (kernel) matrix whose elementsgiven by the exponential function in
Eq.(2-9) (Note: Eq.5-29 is identical to Eq.2-19hitis C is replaced with?K + ¢?).
Subsequent results are from the R implementatiaviged by The Comprehensive R
Archive Network (http://cran.r-project.org/), andappings are from ArcGIS provided by ESRI Inc.

(http://www.esri.con.
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Figure 5-3: Land prices in Ibaraki prefecture

Table 5-2: Explanatory variables

Variables Description Unit
Tokyo dist. | Minimum railway distance from the nesirgtation to Tokyo station Km
Station Distance to the nearest station
Urban Dummy indicating 1 if a site is in an urba&tizarea Oorl
Agriculture | Area of agricultural land
Forest Area of forest
Wasteland | Area of wasteland
Traffic Area of trunk transportation land km? par
Other land Area of other land (e.g., athletic stagjiport district ) unit area
Golf Area of golf course
River Area of river and lake
Sea Area of beach and body of seawater

D Data source: National Land Numerical Informatiawdload service
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Figure 5-4: 1st, 10th, and 100th eigenvectors.

Note: Top: the eigenvectors in E_MC and E_AICc; Bottom: those in EX_MC and EX. Al

5.3.2. Parameter estimation

Following the discussion in 85.2.5, here, eigenfioms satisfying4, >0 were selected.
Behavior ofz(MC)s during the stepwise selection procedures in E, HCAICc , EX_MC, and
EX_AICc are plotted in Fig.5-5. E_MC and EX_MC rereaesidual spatial dependences effectively
using 10/45 and 11/42 eigenfunctions, respectiy@de Fig.5-6). Interestingly, these are the sedecte
eigenfunctions even if exhaustive searches aremmgl E_AICc and EX_AICc also redug@C)s

substantially, although reductions of the{MC)s are slower than those of E_MC and EX_MC
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(E_AICc selects 30/45 eigenfunctions, and EX_Al@tests 27/42 eigenfunctions). In short, while
both the MC-based approaches and the AlCc-basedages reducEMC) sufficiently, the former

is more effective.

Z(MC) 2(MC)
45 - 45 -
35 - —F MC 35 —FEX_MC
o5 ——E_AICc 25 —EX_AICc
15 - 15 -
5 4 5 -
51 10 20 S5 10 20
Figure 5-5: Behavior ofz(MC) in variable selections
3 2
3 - 8 -
g g
R - R -
o - o -
I I I I I I I I I I
0 10 20 30 40 0 10 20 30 40
E_MC E_AICc
Q ?
8 - 8 -
R - R -
S - S -
o — o
T T T T T I I I I 1
0 10 20 30 40 0 10 20 30 40
EX_MC EX_AICc

Figure 5-6: Spectrum of eigenvalues (gray)MK (M and selected eigenfunctions (black lines)
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Table 5-3 summarizes estimation results for E_ MCAIEc, EX_MC, EX_AICc, and LM
and GS. EX_MC and EX_AICc, whose eigenvectors amuelated withX. These implementations
do not consider variance inflations due to spategiendence (they consider variance deflation only),
and, consequently, standard errors of their parensere likely to be underestimated. In theory,
standard errors of the coefficients in EX_MC and BXCc are always smaller than those in LM,
whose underestimation by ignoring spatial depeneldres been demonstrated (LeSage and Pace,
2009). Thus, applying EX_MC or EM_AICc for parametsstimation is not necessarily preferred.
Our result is counter to those for some studiesdhggest removing variance inflation due to spatia
dependence prior to estimation (e.g., PaciorekQ2Bilighes and Haran, 2013).

Estimation results of E_MC and E_AICc, which comsidariance inflation due to spatial
dependence, are similar to the results of GS, wleffeetiveness in parameter estimation has been
demonstrated (e.g., Tsutsumi and Seya, 2009). MEand E_AICc, Station (=), Urban dum (+),
Agriculture (-), Forest (=), Other land (+), Rivet), and Ocean (-) are significant at the 0.05lleve
and Traffic (+) in E_MC also is significant at tBel0 level. These results indicate that land prares
high at sites with substantial urban facilitiesatitn, Urban dum, Other land, and Traffic), whibevl
at sites with non-urban land uses (Agriculture e8grRiver, and Ocean).

The partial-sill and nugget estimates from GS iat#icthat the variance of the spatial
component is far greater than the variance of the-gpatial component. The range parameter
estimate indicates that the distance that spatijpéddence spans (effective range) is 19.8 (6.6m3) k

In other words, land prices have small scale spegidation.
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Table 5-3: Parameter estimates

Variables LM E-MC E-AICc
Coef St.dev Signif.| Coef St.dev Signif.| Coef St.dev Signif.
Cons 10.52(  0.07: *** 10.32(  0.05¢ *** 10.24(  0.05¢ ***
Tokyo dist | -0.001  0.00C ** 0.00C  0.00¢( 0.00C  0.00¢
Statior -0.04¢  0.00€ *** -0.03C  0.00% *** -0.03¢  0.00€ ***
Urban_dur | 0.47¢ 0.03¢ *** 0.47¢  0.03z *** 0.532  0.02¢ ***
Agrculture | -0.97¢  0.07¢ *** -0.79¢  0.06z *** -0.63¢  0.06( ***
Fores -0.47%  0.13% ¥ -0.39¢  0.10¢ *** -0.30C  0.097 ***
Wastelan | -0.961  0.64: -0.29¢  0.527 -0.49:  0.47¢
Traffic 2.61¢ 1.307 ** 1.74¢ 1.01¢ * 1.30¢  0.91:
Otherlan 0.72¢  0.31¢ ** 0.56z 0.247 ** 0.54¢  0.22t **
Golf 0.18¢ 0.43¢ -0.231 0.33i -0.02¢  0.301
River -0.75¢  0.157 *** -0.532  0.12% *** -0.36¢  0.111 ***
Oceal -1.06€  0.32¢ *** -0.66%  0.26z ** -0.681  0.23¢ ***
nugge
partial-sill
range
z(MC) 42.09 0.029 -1.557
AlCc 454, 157.¢ 25.%
Variables EX-MC EX-AICc GS
Coef. St.dev. Signif.| Coef. St.dev. Signif.| Coef. St.dev. Signif.
Const 10.520 0.054 *** 10.520  0.051 *** 10.070 0.182 ***
Tokyo dist. | -0.001 0.000 *** -0.001  0.000 *** 0.000 0.001
Station -0.048 0.004 *** -0.048  0.004 *** -0.059  0.009 ***
Urban_dum| 0.476 0.029 *** 0.476  0.027 *** 0.587  0.030 ***
Agrculture | -0.979 0.057 *** -0.979  0.054 *** -0.366  0.056 ***
Forest -0.473 0.097 *** -0.473  0.092 *** -0.232  0.094 **
Wasteland | -0.961 0.473 ** -0.961  0.447 ** -0.076  0.472
Traffic 2.614 0.957 *** 2.614  0.903 *** 0.727  0.759
Otherland 0.729 0.233 *** 0.729  0.220 *** 0.366 0.201 *
Golf 0.186 0.318 0.186 0.300 -0.062 0.276
River -0.754 0.115 *** -0.754  0.108 *** -0.365  0.099 ***
Ocean -1.066 0.241 *** -1.066  0.227 *** -0.471  0.208 **
nugget 0.018
partial-sill 0.117
range 6.570
z(MC) -0.017 -1.418 2)
AlCc 100.6 50.8 6.6

1)*, ** **% denote significant levels (10%, 5% andA)

2 Because residuals of GM are always 0, z(MC) caheatsed for GM
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5.3.3. Exploratory spatial data analysis

On the basis of the discussion in 85.2.5.1, nondigestions are omitted before the stepwise
selection procedure begins. EX_AICc is used heoage: (i) The efficient eigenfunction selection
algorithm (see 85.2.5.2) is applicable; (i) E_M@daEX_MC cannot capture small scale variations
(no eigenfunction whosé o < 0 is selected even if exhaustive searches arermpeetl); and, (iii)
when performing ESDA, which describes spatial pattén data, variance inflation betwe¥randE
in E_AICc is problematic.

Land prices in each geometric center of the minanigipal units (number of units: 3,175)
are interpolated using LM, EX_AICc, and GS (Fig)5&lthough we use each minor municipal unit
for mapping, because these units are at a finéaspesolution, impacts of the shapes or sizehese
units on the resulting maps are sufficiently smahe results of EX-AICc and GS are quite similar,
and both indicate high values nearby Mito, the tepf the Ibaraki prefecture, and Tsukuba and
Hitachi, primal cities in this region. Such a faatus less clear in the LM result. Also, the

distributions of low price areas in the LM resule aquite different from those in the EX_AICc and

GS results.
Price Price Price

(10,000yen/m2) (10,000yen/m2) (10,000yen/m2)
5 A

5—

EX_AICc

Figure 5-7: Interpolatoin results
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1,000 JPY/rA
20

LM EX_AICc GS

Figure 5-8: RMSE of the methods obtained using five 5-foldssrealidations

A 5-fold cross-validation is iterated 5 times tonguare the accuracy of each result. This
5-fold cross-validation procedure is as follow$:Jamples are randomly partitioned into 5 equad-siz
subsamples; (i) A model is identified using 80%tbé subsamples; (iii) Accuracy of a model is
measured by fitting it to the remaining 20% of thédsamples; and, (iv) (ii) and (iii) are performed
for all 5 cases. Root mean square error (RMSE)seduto evaluate model accuracy. Fig.5-8
summarizes results of the cross-validations. RM&EEX_AICc (average: 8,889) and GS (average:
8,686) are about half of the RMSE for LM (averat®;328). Thus, the importance of considering
spatial dependence is confirmed. In addition, theusacy of our OLS-based simple method is
comparable with that of GS.

One of the advantages of our method is that thenatdd spatial components are decomposable.
Here, the extracted spatial component—that islittear combination of all significant eigenfunctssfis
decomposed into a linear combination of eigenfemstisatisfying (s1) o/l 0 2 0.5, (s2) 0.5 % ¢/41 o=
0.25, (s3) 0.254 o/l 02 0, and (s4) &4 /41 o respectively (Fig.5-9). Roughly speaking, s1,s2,and
s4 describe components whose spatial scales arsecanid-coarse, medium, and fine, respectivelye Th
coarser component, s1, indicates high values irsthehwestern part of the landscape, which is iyearb
Tokyo, and the northwestern area, which is nearlitp Mr Hitachi. Thus, s1 might indicate significant
impacts of these primal cities. The mid-coarser ponent, s2, is slight, and any prominent spatittepa

does not seem to materialized at this scale. Trdiumescale component, s3, indicates high valuegraro
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some cities, including Mito, Tsukuba, Toride, Kogad Inashiki. These places are well-developed
compared to their surroundings, and, accordin@ycan be leveled as the local spatial pattern ieduxy
these cities. Finally, land prices are strongheeiéd by the finer component, s4. It might be aased

with local components that we cannot consider, sugclving environment and geographical features.

Hitachi
Mito

Value

Figure 5-9: Plots of linear combinations of the eigenvectors selected from E3c Al

S shows the linear combination of all selected eigenvectors, anssk3, and s4 show linear
combinatons of eigenvectors satisfyiigo/4; ¢ = 0.5, 0.5 % /41 0 2 0.25, 0.254 o/11 0 2 0, and
0> ol21_o respectively.
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The extracted components constitute variance joauitig (see Legendre and Legendre, 2012, for
more details). We divide the variance of land @icego non-spatial components (X), spatial comp&an
each scale (s1, s2, s3, s4), and the disturbahcBgcause these components are uncorrelated,@andtd
overlap, this partitioning differs from the conviemtal variance partitioning whose results are surizad
using a 2-dimentional graph. Our result can be sariz®ed using a 1-dimentional graph. The result show
in Fig.5-10 suggests that the spatial component; s2 + s3 + s4, explains 32.7% of the variatioith w
8.7% being attributed to coarse component s1, h8Mg attributed to mid-coarse components s2, 9.9%
being attributed to medium scale components s3,1828P6 being attributed to finer scale component s4
The significance of the fine scale variation is sistent with the small range parameter obtainetl Bif.
The fine scale component is ignored if the eigecfions are selected among functions satisfying 0, as
both E_MC and EX_MC assume.

One interesting result is that s1 and s3 are sagmif, whereas s2 is not. For comparative purposes,
EX_AICc is fitted to the land prices in the 23 wamf Tokyo, and the variance patrtitioning is peried
(Fig.5-10). The result differs from that for theathki prefecture; the most significant componenslis
followed in order by s2, s3, and s4. Thus, the ats®f s2 is a feature specific to the Ibaraki geefre.

In summary, the proposed method is useful for lpattameter estimation accounting for spatial

dependence, and ESDA.

Disturbance (1.9%)

Non-spatial component (65.4%) Spatial component (32.7%) /
X sl s2 s3 s4 €
0% 20% 40% 60% 80% 100%

Ibaraki prefecture

Disturbance (0.8%)

Nor-spatial compone (58.7% Spatial component (40.5%)
................... L - - o

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
The 23 wards of Tokyo (refference)
Figure 5-10: Result of variance partitioning

x: Non-spatial components; s1, s2, s3, s4: spetiaiponents whosg o /4, o are within 1.00-0.50, 0.50-0.25,
0.25-0.00, and below, 0.00 respectivehyisturbance.
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5.4. A spatiotemporal extension

5.4.1. Introduction

Spatiotemporal statistical models, which have bdscussed extensively in geostatistics
(e.g., Cressie, 1993; Cressie and Wikle, 2011) chssified into dynamic and non-dynamic models.
The advantage of dynamic models is that they cardeinccausation, they are generally
computationally efficient, and the validity of theimodels (e.g., positive definiteness of
variance-covariance matrix) is easily proved (Geess al., 2010). As a result, dynamic modeling has
recently begun attracting increasing attention. @ other hand, non-dynamic models are still
important as descriptive or exploratory tools (Gresand Wikle, 2011). This study focuses on the
latter group of models.

Standard non-dynamic geostatistics describes djraeeprocesses by parameterizing the
covariance using a function of distance and tinge Tehe effectiveness of geostatistical models has
been demonstrated in spatiotemporal interpolatiodies. However, they are not necessarily flexible
as descriptive models. For instance, they cannvatatespace-time components in data, such as global
spatial components, time-invariant spatial comptsieand so on.

The empirical orthogonal function (EOF) analysie.g(, Wilks, 2006) is another
geostatistical approach that extracts such spawe-tbmponents using an eigen-decomposition, and
studies have demonstrated its effectiveness farespme descriptive analyses, including multiscale
spatial component analyses, visualization, and ivaulate analyses (see Cressie and Wikle, 2011).
However, this approach applies only to discretetigpaata (lattice data), whereas a descriptive
analysis is particularly important for continuoymsgal data (geo-referenced data), in which coreplet
observations are generally not possible.

As same as the EOF analysis, ESF extracts spatraponents in spatial data, and its
effectiveness for spatial descriptive analysis basn clarified (e.g., Griffith and Peres-Neto, 2006
Legendre and Legendre, 2012). However, ESF isradsdor continuous spatial data but for discrete
spatial data.

On the contrary, my extended ESF, which | call BE&istance-based ESF) hereafter, is for

continuous spatial data. Hence, its spatiotempexténsion might bring a sophisticated space-time
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descriptive model. Thus, this section extends diéBpatiotemporal data.

5.4.2. Model

This section extends the distance-based ESF fatiopmporal descriptive analyses.
85.4.2.1 discusses standard spatiotemporal gesigtsti and 85.4.2.2 extends the dESF for
spatiotemporal data based on the discussion inZ%.4This study proposes a model for longitudinal
data with a sample size BT, whereN denotes the number of observation sitesdiD [ 02, and
T denotes the number of observation times[dfi,... T}, in which the intervals are not necessarily

uniform.

5.4.2.1. Spatiotemporal geostatistical model
The standard space-time geostatistical model isebfas follows (e.g., Gneiting and Guttorp,
2010):
Yig S Hig Hiig * Eips (5-30)
wherey(s,t) are the response variablegs,t) is a deterministic non-spatial componeyt(s,t) is a
stochastic spatial component, ais, t)~N(0, o°).
The termy (s,t) is modeled by parameterizing its covariance usirignction of distance and

time lag. For example, the product-sum model (Dea@zet al., 2001), which is defined by Eq.(5-31),
is one of the most common functions:

COVITi ] = € (5, 8)) + e (L) + 6 (8.5 (L.E) | (5-31)
where cys, §) andcg(t,t') are functions describing spatial dependency amdaporal dependency,
respectively.

When the model is applied to longitudinal data,(E@®1) can be expressed using a matrix
notation as
C,=C.,0Ol,+l ,0C, +C,OC,, (5-32)
whereCs (Nx N) andC, (Tx T) are spatial and temporal covariance matricepeately,|s (Nx N)

andl, (Tx T) are identity matrices, andl is the Kronecker product operator
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5.4.2.2. ESF-based spatiotemporal eigenfunctions
First, let us decompose€C; and C; into EAEs and EA[E,, respectively, using
eigen-decompositions. Then, Eq.(11) is expanded as
C =(EAENDI, +I O0EAE)+E.ODE)NA,OA)NE,OE,) . (5-33)
Eq.(5-33) models the spatial component, temporahpmment, and spatiotemporal component by
weighting their corresponding eigenvectdes, E,, andEs E,, using their own eigenvalues (i.e., the
diagonals ofA, A;, andAsO Ay), respectively.

We apply the eigenvectors KM andM KM, to Es andE;, respectively, wher&, is a
matrix describing temporal connectivity, akld=1,—1,1,/T. The elements iK, are given b(t, t') =
exp(4t-t'|/ry), wherer, is the longest time interval among the observati(see Dray et al., 2006).
Since the eigenvectors MKM (or MK M,) andK (orK,) are essentially identicalthis assumption
implies that we replac€s andC; with K, andK;, respectively.

The first, second, and third terms in Eq.(5-33) described byEs, E; and Eso E;,
respectively, and the elements explained by thersastcan be summarizedBg={Eso 1, 10 E, Es
0 Eg, wherelis a vector of ones. We can easily show that dators inEg are mutually orthogonal,
i.e., E'sEst = |. Besides, because the means of the eigenvect@sandE; are uniformly zeros, the
means of the vectors B are also zeros. Consequently, the vector&grare both orthogonal and
uncorrelated (see also, Griffith, 2003). Thig,furnishes distinct (i.e., orthogonal and uncomeda
map pattern descriptions of latent space-time digece.

Es01, in Eg explains spatial components in each time, whiclexglained byMC" (see
85.2.2). As with the standard ESF, the vectorEim 1; corresponding to large eigenvalues of
MKM;s (diagonal elements im\) explain global scale spatial components, and \tketors
corresponding to small eigenvalues explain locahponents. Similarlyls0 E; explains temporal

components, which are described by Eq.(5-34):
+ 1 = AS 41 '
MG =— [ [w(t 070z (), (5-34)
O-Zt J#

k(t,t")
jj . j K(t, ,t")dtdt’ -

Vvt(swsj):

The eigenvectors dfIKM are the eigenvectors Kf after an axis rotation usirlg.
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where z(t) denotes the variables defined an', Z(t) denotes the variables that centgt), and

o, is the variance of(t). The eigenvectors ihs E; describe those temporal components with

2
z
scales that are signified by the eigenvaluedGy’, of MK M (i.e., the diagonals of,). Finally, E¢
0 E; describes the spatiotemporal components that $@ales signified by the eigenvaluesviKM

0 MKM,, which are equal to the diagonalsAafi] A, (see Schott, 2005).

5.4.2.3. ESF-based spatiotemporal model

This study proposes the following model

y=al+(E,01)°y,+@A,0E)y, +(E,OE)y,+e €~N(@O0°l), (5-35)

where ““” represents the complementary set, a0¢;, andys are parameter vectors. The parameters
are estimated by the following steps. First, asstima¢ all vectors irEs[] 1, 1s[1 E;, andEs[] E;
corresponding to non-zero eigenvalues are candidatbe entered intde([] 1,,)°, (1[J E) €, and Es
[1Ey) ©. Second, substitute the candidate vectors int(bE2%) sequentially in decreasing order of the
absolute value of the correlation coefficients kewy and each of the vectors, until the AICc is
minimized. The OLS technique is used for the AlGdcualations. Since the vectors are mutually
orthogonal, the OLS estimatesyef y;, andyg results in Es0 1,,)°"y, (10 E) 'y, and EsO E) 'y,
respectively.

The model can be defined on unobserved sitesSigapose tha, is a vector of unobserved

response variables at time poitt§l {1,... T}. Then,y, is modeled as
Yo =al+(EqOL) v +(Lo DE) Y +(Eo DE) yq+e  £~NOO’1), (536)
where Eg, which is given by Eq.(5-37), is the eigenvectatrix approximated using the Nystrém
extension:
Eow=(Ky—1,UK/N)I-11"/N)E (A +I(A)) T (5-37)
wherel(Ay) is a diagonal matrix with ahth element of O if the-th diagonal ofAs is zero, and 1
otherwise. Similarly, when the time points wf are not consistent with [1{1,... T}, Eq.(5-36) is

modified by replacindg; with E,, which is defined as
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Eio = (Ko ~ 11K /T)(I, ~ LI /T)E (A +1(A) (5-38)

wherel (A is defined in the same way H2\s).

The proposed model seems useful for descriptivéyses For instance, response variables
on arbitrary sites and times can be interpolaté@sgusq.(5-36). Furthermore, this model measures the
significances of spatial, temporal, and spatioterapoomponents in all space/temporal scales using
Ys Y andyg, respectively. These extracted components carisoalized by mapping the estimated
linear combinations (e.g., estimate BE[( 1;,) “ys).

Simplicity is also an advantage of this approach. discussed previously, this method
applies the OLS-based simple calculation procedureaddition, in contrast to the spatiotemporal
geostatistical model, which requires an inversibthe spatiotemporal covariance matriXT{x NT),
the proposed method does not explicitly manipusateh a large matrix. Instead, the proposed model
imposes eigen-decompositionskof(N x N) andK, (T x T). Hence, as long as neithdmor T is too
large, this method is computationally efficient.rlexample, the proposed method might be suitable
for analyzing data with a sample size of 1,000,8@00ereN = 1,000 andl = 1,000. Note that the

assumed eigenvector selection procedure also nmakesethod computationally efficient.

5.4.3.  An empirical study

5.4.3.1. Outline

This sub-section analyzes residential land priessofficially assessed between 1995 and
2006 in Tokyo, Japan (source: Ministry of Land,réstructure, and Transport). Since my method
assumes longitudinal data, | use samples at 2 jpd9that had land prices assessed during thettarge
period. The resulting sample size is 24,120. TAbdrimmarizes the descriptive statistics of the land
prices in each year. The table suggests that titegdaces are, on average, decreasing over timg. Th
land prices in 2000 are plotted in Fig.1. The easéeea showing high land prices is the centraly®ok
area.

| first apply the standard linear regression moge¥). The response variables are the

log-transformed land prices. The explanatory vaeisibare constant (Const), the distance to the
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nearest railway station (Station), the railway ratwdistance from the nearest station to Tokyo
station (Tokyo), and the area of each land use itydekm x 1 km grids, including the sample sites
(Paddy, Agriculture, Forest, Wasteland, Traffich@tland, River, Golf) (see Table 5-5). To consider
the temporal variation of the regression coeffitdethe LMs are fitted in each year independently.
Then, the residuals of the LMs are fitted to thetatice-based ESF (dESF) and the

spatiotemporal geostatistical model (GS), give(sas Eq.5-32):

y=al+n+e, n~N@OC,OI +1 ,0C, +C,OC,), &~N(©O0?) (539)
where the elements i@ andC; are given using the exponential model, as withdB8F (i.e., exp(—
d(s, s)/r) and exp({#-t'|/r;), respectively). Note that, since temporal vaviasi disappear after

applying the LMs in each year independently, th&EEstimation becomes strictly identical to the

estimation result of the dESF with no pure tempocahponents:
y=al+(E,01,)°y, +(E,0E)°y,+¢ &~N(00°). (5-40)
Thereforey,, shall not be discussed further in this paper.
The subsequent results are from the R implementgtiovided by The Comprehensive R

Archive Network (http://www.r-project.org/index.hbpand mappings are from ArcGIS, provided by

ESRI Inc. (http://www.esri.com/).

i Price
; (10thou. JPY/)

oY . 60 - 28-32
M, 48 - 60 24 - 28
= 40 - 48 20- 24
i 36 -40 16 - 20

32-36 0-16

L ~ The central Tokyo

Figure 5-11:Land prices in 2000
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Table 5-4: Summary statistics of the land prices (10 thoiY,/dB)

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
Mean 59.4 52.7 48.7 46.7 43.6 409 39.1 376 36.3 355 352 36.0
Median | 44.3 424 410 399 373 352 338 324 313 305 303 305
Std.dev.| 64.7 47.2 375 349 322 304 293 283 27.7 276 281 31.0
Min. 805 790 7.82 7.60 6.80 6.00 570 5.10 4.75 430 4.05 3.95
Max 830 615 493 490 470 468 450 446 460 488 514 650
Table 5-5: Explanatory variables

Variables Description Unit
Tokyo dist. | Minimum railway distance from the nesrgtation to Tokyo station Km
Station Distance to the nearest station
Urban Dummy indicating 1 if a site is in an urbaciarea Oorl
Agriculture | Area of agricultural land
Forest Area of forest
Wasteland | Area of wasteland
Traffic Area of trunk transportation land km? par
Other land Area of other land (e.g., athletic stagjiport district ) unit area
Golf Area of golf course
River Area of river and lake
Sea Area of beach and body of seawater

Data source: National Land Numerical Informationvdfmad service
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5.4.3.2. Parameter estimation

In each year, the coefficients of Const and Teadfie positive, and those of Tokyo, Station,
Paddy, Agriculture, Forest, Wasteland, Other ldRigder, and Golf are negative. Roughly speaking,
the results indicate that adjacency to transpomdtcilities (Tokyo, Station, and Traffic) inflatéand
prices, whereas non-urban land uses (Paddy, AgrieylForest, Wasteland, River, and Golf) deflate
prices. These results are intuitively reasonable.

Transition of the regression coefficient estimatess plotted in Fig.5-12. Here, the estimates
in each year are standardized by dividing themhigyjr testimates in 1995 (i.e., the valyggiq95 are
plotted). Since the signs of all of coefficient® amchanged over timg/f1995 > 1.0 implies an
increase off,, andB/f1005 < 1.0 implies a decrease. Fig.5-12 shows that thathpositive influences of
the transportation facilities (Tokyo, Station, ardffic: solid lines) and the negative influencdgte
major non-urban land uses (Forest and Wastelarsthedalines) increase gradually. This may indicate
that the gap between land prices in urban areds métny transportation facilities and the prices in

non-urban areas has gradually increased.

3.5 1 —— e Tokyo

3.0 - // — Station

25 | / _ Paddy

2.0 - / /// ........... ——Adgreculture
— =Forest

15 - — -=Wasteland

1.0 - Traffic

o5 -4 X e Other hand

oo L~ e River

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2306+ Golf

Figure 5-12: Transition of the regression coefficients
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5.4.3.3. Interpolation

The land prices in the geometric centers of theommunicipal units in each year (66,060
points = 5,505 geometric centers x 12 years) aterpolated using the LM and dESF. The
interpolation results in 1995, 2000, and 2005 aseldyed in Fig.5-13. While the results of the LM
and dESF are visually quite different, the restlthee dESF seems better. For instance, the dESF
succeeds in capturing the high land prices in eéfitskyo and other major cities, including Kichijoj
and Denenchofu.

To compare the accuracy of the LM and dESF, affileé-cross-validation is iterated five
times. This five-fold cross-validation procedureass follows: (i) Sample sites are randomly divided
into five sub-sample sites; (ii) Models are estimdatising the 4/5 sub-samples observed on the 4/5
sites; (iii) The remaining 1/5 sub-sample valuesiaterpolated using the estimated models; (iv) The
interpolation accuracies are evaluated; and, @pstii), (iii), and (iv) are performed for all fivcases.
The root mean square error (RMSE: Eq.21) is usedviduate the model accuracy. Fig.5-14 (a)
summarizes the resulting RMSEs. The average RMStBeoflESF is 0.219, and the average of the
LM is 0.289. Thus, the interpolation accuracy & tHESF is better than that of the LM.

| then compare the accuracies of the dESF and @G tHat the GS is not available for all
the samples because of its computational complexignce, the 24,120 samples are divided
randomly into five 4,824 sub-samples, and five-foldss validations are applied for each of the
sub-samples. The results are summarized in Fig.fa)l4Interestingly, the RMSEs of the dESF
(average: 0.257) and GS (average: 0.257) are althestame in all five cases. This is because our
method is essentially identical to that of the @Sdiscussed in §5.4.2.

In contrast, the effectiveness of these methodguige different from the viewpoint of
computational cost. GS requires 32.53 secondstéwpiolate 965 land prices using 3,859 samples.
The dESF requires only 1.69 seconds to performsémee calculation. In both cases, the computer
was a 64-bit laptop with 4.0 GB RAM. Furthermorgge in the original problem of interpolating
66,060 land prices using the 24,120 samples, ti8dEquired only 36.36 seconds.

In summary, the dESF is as accurate as the GS;@ngutationally more efficient.
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Figure 5-13: Interpolation results
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Figure 5-14: Comparison of the interpolation accuracies

Note: (a) RMSEs of LM and dESF given by the 5-faldss-validation using the full samples. The
cross-validation is conducted 5 times. (b) RMSEdEBESF andsS obtained by the 5-fold cross-validation
using 1/5 sub-samples, which are obtained by digidihe full samples randomly. The RMSEs are
calculated in each sab-sample.
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5.4.3.4. Spatial component analysis
The spatiotemporal components estimated by thd=dES, (E,01,)°y.+(E; UE,)Y4)

are plotted on the left side of Fig.5-15. The figgwhows, for example, that the spatial component
inflates prices in central Tokyo and its southwestgea, as well as in the area along the Chug+ine
prime railway route. These areas are all populsidestial areas, so the result is intuitively cetesit.

The estimated spatiotemporal component can be dexxed in each spatial and temporal
scale. For example, the component including spai@nvectors with large eigenvalues K€’s)

describes global scale spatial component. | dedfipatial scales of the spatial eigenvectorSdas

Global scale :1.00 MC,"/MC,"> 0.50,
Regional scale : 0.50MC,"/MC;"> 0.25,
Local scale : 0.25 MC,"/MC;" > 0.00,

whereMC," is theMC" value of the-th spatial eigenvector. Since tMC,"s are proportional tds,
MC,"/MC;" can be evaluated by'/%,". By definition, the estimated spatiotemporal congt is the
sum of the global, regional, and local componeS8imilarly, the temporal scales of the temporal
eigenvectors ific; are defined as

Long-term :1.00 :MC, ,"/MC,;"> 0.50,

Short-term  : 0.50 MC,,"/MC;,;" > 0.00,
where MC,," is the MC," value of thel-th temporal eigenvector. WhildE O E,)°y,, is the
time-variant component that explains the long-teand short-term temporal components,
(E, 01,)°y,, which do not depend d, is the time-invariant component.

The estimated global components are plotted omigfn side of Fig.5-15, and the regional
and local components are shown in Fig.5-16. In 198& global component is significant in three
areas: the central Tokyo area and areas arounditi@s, Kichijoji and Tachikawa. According to the
guestionnaire by NEXT Co. Ltd. in 2007 (http://wwext-group.jp/en/index.html), Kichijoji is the
most popular residential city in Tokyo. On the othend, Tachikawa is a major city that owns
Tachikawa station, which has the greatest numbgraséengers of the stations in Tokyo, outside of
the 23 wards including the central area (East Jaaiway Company: http://www.jreast.co.jp/e/).
The global component seems to describe the positfiteence of these prime urban areas. The three
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hot spots gradually merged, until in 2005, theydmee incorporated into one large hot spot. This is
evidence that the urban areas in Tokyo have bembioed over time (i.e., conurbation has taken

place).

Chuo-line Tachikawa Kichijoji

Composite (2005) Global (2005)

S —— Railway
0.3 0.1 0.0 -0.1 -3.0

Figure 5-15: Extracted spatial components (Composite and Global component)

Note: The composite component is defined by the sum of the global, regional, and local component.
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The regional scale component is again promineatrat central Tokyo and Kichijoji.
Beside, this component is also high in areas ardi@dther cities, including Denenchofu, Hachioji,
and Machida, which shows that these cities haveomadj scale influences. On the other hand, the
local scale component seems to describe local dggtaeity. For instance, this component indicates
high values in the area along the Chuo-line, whécla popular residential area, but indicates low
values in the torus-shaped area around centraloldkye low values are somewhat unexpected. Thus,
the multiscale decomposition is helpful to reveatiden properties in spatiotemporal data.
Furthermore, the regional and local componentsrelaively stable over time, in contrast to the

global component.

Kichijoji Chuo-line

Hachiaji

Denenchofu
Regional (1995)

Regional (2005) Local (2005)
EE——— —— Railway
0.2 0na N0 AT R0

Figure 5-16: Extracted spatial components (Regional and local component)
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The long-term, short-term, and time-invariant comgnts are plotted in Fig.5-17. The
long-term component in the mid-area, including @luo-line, and the southwest part of central
Tokyo increased over time. This suggests that &nel lprices in these areas have become inflated
compared to other areas. On the other hand, thmatetl short-term component is quite small,
although it displays relatively large variation the central Tokyo area. This seems to imply
heterogeneity in the central area. Finally, theetimvariant component suggests that land prices in

central Tokyo and its southwestern area, as well #ee area along the Chuo-line are constantli.hig

Chuo-line

The central Tokyo
Long-term (1995) ~ Short-term (1995)

Long-term (2000) Short-term (2000)

Long-term (2005) Short-term (2005)

— Railway

EE———
03 01 0.0

Time-invariant component

Figure 5-17: Extracted spatial components
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Since the spatiotemporal eigenvectors are allogdhal, the following equation holds (see,

Legendre and Legendre, 2012):

R*=Rj, + Ry, +Rjs + R + R? +RPs + R% + R’ + R, (5-41)

where the subscriptg r, andl denote spatial scales (global, regional, and Jota¢ subscripts @,
andS denote temporal scales (long-term and short-teRnis theR-squared of the dESF model, and
R?sg is theR-squared of the dESF model with selected eigenvethat have spatial scalesAdfnd

temporal scales @.

The contribution of each spatiotemporal componerthe model accuracy (i.6%)
can be evaluated usiiRfag/R? Table 4 summarizes the valuesRfh g/R?s, and shows that
the spatial components are prominent in the ordethe local, global, and regional
components. Thus, it is verified that the land gsichave prominent local scale spatial
variations. On the other hand, about 93% of thepmmants are present in the time invariant
component, indicating that land prices are stabler dime. In addition, the long-term

component is stronger than the short-term component

Table 5-6: Contributions (%) of each component

Spatially variant component
Global Regional Local
Time invariant component 24.17 11.06 57.79
Time variant Long-term 1.646 0.365 4.500
component Short-term 0.092 0.052 0.033
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5.4.4. Discussion

This study extends the distance-based ESF for dfraeemodeling. The extended method,
which is based on both the Moran coefficient anel $hkandard geostatistical model, is suited for
descriptive analysis, including spatiotemporal riptdation, spatial component extraction, and
variance partitioning.

The proposed method is superior to the standardtgistical method in some respects.
Firstly, the method is computationally more effigi@vhile its interpolation accuracy is almost same
with the standard geostatistical model. A numbecarfiputationally efficient geostatistical methods,
which would be faster than my eigen-decompositiaseal method, have been proposed (see, e.g.,
Sun et al, 2012). However, they generally impose some apprations, and, generally, their
predictive accuracies are worse than the standeodtgtistical model. The proposed method also
performs an approximation by removing insignificaigenvectors, though, since the approximation
is performed by an AlCc-minimization, the approxtroa would never brought accuracy
deterioration. The proposed method, which requiadsulating spatial eigenvectors, would be slow
when N is large. On the contrary, the temporal eigenvsctahich is defined on a 1-dimensional
space, can be approximated using the sine fun@Baiffith, 2000; Borcardet al, 2004). In short, the
proposed method is particular efficient for longatespatiotemporal data.

Secondly, the proposed method reveals multiscaéagpmporal structures in data, which
cannot be captured by the standard geostatistiethod. Spatial eigenvector-based approach have
actively been discussed in ecology (see e.g., Lldrgeand Legendre, 2012), and, accordingly, like
MEMs (see §5.2.6), my method might also be suitedetological analysis. However, the proposed
method is distinctive in that it models a continsagpatial process described MC* while the
ecological approach models a discrete spatial ggodescribed bylC.

The third advantage is simplicity. Its parametdinaation is conducted by an ordinary least
squared (OLS)-based simple procedure and, andoalentional diagnostic statistics for linear
regression model can be applicable directly.

On the other hand, the method also has a numbdragfbacks. Firstly, computational time of its
eigenvector selection would be large when a non-@4tBnation method is used. This is because the

efficient eigenvector selection algorithm (see &9.2s only for the OLS-based model. Applying
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penalized regression methods, including the lagssiorilge regression, might be helpful to cope with
this problem. Secondly, the model has a limitatibat it is only for longitudinal data. An EM
algorithm-based approach that considers unbalalwregitudinal data as balanced longitudinal data

with missing observations (e.g., LeSage and Pdi#})2might be useful to overcome this limitation.

5.5. Summary

This study extends ESF to a form paralleling getsiteal data modeling. The formulated
model is based on both a valid spatial process hindgeostatistics and standard ESF methodology,
and expresses spatial patterns described by MCsthdfmore, because ESF specifications
approximate spatial ecomonetric models (i.e., SLBM$, which are for discrete spatial data (see
Tiefelsdorf and Griffith, 2007), the proposed modédo can be considered an extension of spatial
econometric models to continuous space. The usfslof the method presented in this paper is
confirmed by utilizing it for parameter estimatiand ESDA.

As with standard ESF, an advantage of the proposedel is simplicity. Parameters in the
proposed linear model are estimated using OLS,vahees of eigenfunctions for arbitrary sites are
obtained using a simple equation (Eq.5-23). Theehmdeasily combined with other statistical models
such as those for logistic regression, Poissoressgin, and mixed effects (see Griffith and Paklinc
2011). One of its drawbacks is the exhaustive seameded for ESDA. The efficient selection
algorithm discussed in 85.2.5.1 cannot be useshdorGaussian models. Hence, efficient algorithms
for eigenfunction selections need to be developed.

Continuous spatial model have been used to add@ssus problems, which we do not
discuss in this paper. Hence, examining the effengiss of our method for more general problems is
important. In addition, theoretical relationshipstween the proposed method and geostatistical
models—for example, relationships between eigeiome extracted using the proposed method and

variograms estimated using a geostatistical motial-raust be clarified in future studies.
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6. Sampling Design Problem: A Geostatistical
Approach for Land Price Assessed Site
Reduction

Changing the spatial support for point data reguizensidering the efficiency of both the
point interpolation and interpolation site allocati Thus, this chapter discusses another COSP for
point data, namely the sampling design problem.

This chapter discusses how the spatial statissiaipling design approach can be applied to
the land price-assessed site reduction problerapard As the assessed sites are going to be reduced
gradually after 2013, discussing this issue is irfga. However, the spatial statistical approach ha
never been applied to land price data. Accordirtbig, chapter first extends the standard geostatist
sampling design approach for land price assessohiat in Japan. Then, the effectiveness of the
extended method is examined by applying it to ddara price data. Finally, the reduction problem

is discussed using this method.

6.1. Methodology

6.1.1. Review of spatial sampling studies

Environmental/socio-economic data are monitoredviarious purposes. For instance, in
Japan, concerns about weather have led to the nemasot of weather data, and concerns about land
transactions have led to the official assessmentanél prices. Maintaining these data can be
expensive. For example, the cost of the officiatlarice assessment in Japan in 2010, which assesse
land prices at 26,000 sites, is 3.74 billion JPY ouse: MLIT:
http://www.mlit.go.jp/common/000213810.pdf), andngdar amounts required each year. To use this
investment effectively, the assessed site allooatiust be determined judiciously, to help land
transactions and other uses. Thus, discussing sagifd allocation (assessed site allocation) or
sampling design is important.
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Methodologies for spatial sampling design aredifeesl into design-based methods, which
use a pre-determined scheme, and model-based rsethibith use a model (Warg al, 2012). The
former group includes simple random sampling, iniclvhsample sites are decided randomly,
systematic sampling, in which samples are selebeskd on a given and preset order, stratified
random sampling, which performs simple random samggh each pre-determined, non-overlapping
group (e.g., sub-region, age group), and two-stappting, which selects a group randomly and
performs simple random sampling on that group. &itltese methods are for independent and
identically distributed (i.i.d.) samples (stratdieandom sampling and two-step sampling assunde i.i.
for samples in each group), samples must be honeogsn Systematic sampling outperforms the
other methods when no prior knowledge is availaieut the samples (Ripley, 1981; Dunn and
Harrison, 1993), whereas stratified random sampimegfficient when attributes in samples have
strong spatial dependence (Ripley, 1981).

The model-based methods perform an optimizatiangua Monte Carlo-type simulation
technique, including the Markov chain Monte CalMQMC) method (Gelfand and Smith, 1990) and
the simulated annealing (SA) method (Kirkpatriehal, 1983). These methods have been well
discussed in geostatistics (see 86. 2).

According to Wanget al (2012), the design-based methods are suitablénhfaw much”
problems, including estimating a global mean armahdard deviation (of a population) whereas the
model-based methods are more suitable for “wherablpms, including the sample (or assessed) site
relocation problem. Since this study focuses onldtier problem, the model-based approach will be

discussed from here on.

6.1.2. Model-based sampling design

The model-based approach has been applied toypes tof problems: the sampling design
optimization problem for accurate spatial processcdption, and the optimization problem for
efficient parameter estimation (Zimmerman, 2006y amd Stein, 2005). Generally, the problem for
accurate spatial process description minimizeseeitti the following objective functions (Zhu and

Stein, 2005):
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C.(S) = [V (s0; S)W(so)dsy (6-1)
D

C,(S) =maxV (s,; S)w(s,)] (6-2)
wheres, LI D 002 denotes arbitrary sites in a study regdnS = {s;,..s} [ D denotes the
sampling design (i.e., a collection of sample }jtées,; S denotes a squared prediction error (SPE) at
locations, under desigrg, andw(s)) denotes the weight assigned to locatgrEq.(6-1) provides a
mini-sum solution, which is suitable when the qtyalof the overall sampling design must be
maximized (i.e., total loss must be minimized). (Be) provides a mini-max solution, which is
suitable when the maximum loss at arbitrary sitd3 must be minimized.

On the other hand, the optimization problem fdiceit parameter estimation finds the
optimal design that makes parameter estimatiorieffi. Efficient semivariogram model estimation
has been discussed in geostatistics. For insté&usso (1984) shows that the sampling design with
unified numbers of location pairs within each dof thg-distance zosgsee Fig.2-4) provides efficient
semivariogram estimates. Warrick and Myers (198dereded Russo’'s (1984) idea to consider
directions. On the other hand, Muller and Zimmerr(E®09) propose a design minimizing the MSE

of parameter estimators, which is defined as

M (8) = E[(6-0)(6-6)], (6-3)

where 0 denotes the true parameter values efhcﬂenotes their estimatorSince 0 is known,
Eq.(6-3) cannot be applied directly. Hence, theyimize Eq.(6-3) by minimizing the inverse
information matrix of the estimators that asymmally converge to Eq.(6-3) (Zimmerman, 2006).
The sampling design that minimizes Eq.(6-3) proside efficient estimator.

Interestingly, it is known that the approaches docurate spatial process description and
approaches for efficient parameter estimation gl®vdpposite results. More precisely, the former
provides a spatially spread sampling design, wttike latter provides a spatially clustered design
(Zimmerman, 2006). However, these two approachesuldh not necessarily be discussed
independently. In fact, the instability 8f(MSE of@), which is minimized in the latter group, is likel
to influence the model accuracy (or SPE), whicmaximized in the former group. Thus, Zhu and
Stein (2005) and Zimmerman (2006) discuss the acgumaximization problem while considering
the instability of@® in non-Bayesian fashions, whereas Diggle and Lephg2006) discussed the

126



same in a Bayesian fashion.

More recently, preferential sampling (Diggie al, 2010) has been discussed extensively.
This method allows dependency between sample valogsample allocations; for example, sample
sites are densely located in areas where samplewake large (e.g., Olea, 2007; Diggle and Ribeiro
2007; Gelfand, 2012). The Bayesian technique isiired for preferential sampling. Applying the
preferential sampling technique is important wheme secondary statistical analyses, including
parameter estimation and spatial prediction, aexleé using the samples (e.g., Diggteal., 2010;
Gelfandet al, 2012).

Since sampling design optimization requires figdihe global optimum from among many
local optimum, the aforementioned methods requirBlante Carlo method (e.g., the simulated
annealing method), which is computationally expessiThe complexity is particularly serious when
the Bayesian approaches are applied @agle et al, 2010; Zidec andimmerman, 2010).

The concern in this chapter is how to reduce &inel lprice assessments sites. The reduction
must be conducted to maintain the quality of thmellprice data. In other words, the resulting reduce
design must describe land prices in the region .wEHus, | consider applying the accuracy
maximization-based (or SPE-based) approach thaits fithe design with maximum descriptive
capability. As a result of the computational expesizess, this study does not consider either the
instability of @ or the preference in sampling. The rationale fus tis as follows. Ignoring the
instability of @ on the accuracy maximization result is small (amd Stein, 2005). Then, since the
prime uses of the land price data (see 86.3.2) alontlude statistical analyses, there is no clear

advantage to applying preferential sampling.

6.1.3. Accuracy maximization-based geostatistical sampling design

Generally, the objective functions in Eqs.(6-1) 46-2) are minimized after changing them

into a tractable discretized form, as follows

C(S) = D V(sy: W(Sy) , (6-4)
oD
C,(S) =max[V (sq; S)W(s, )] - (6-5)

Eq.(6-4) or Eq.(6-5) are minimized, for example, dpplying the simulated annealing method. The
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simulated annealing method is a heuristic algorithat uses the following optimization procedure:
(i) Set an initial desigry, and an initial value for a parameferT,.
(ii) Iterate (ii-1) and (ii-2)iter times, alternately.
(ii-1) Let § be the sampling design given at tké iteration, and Ie§' be the design
given by randomly replacing a sample sit&iwith an un-sampled site &.
(ii-2) Calculate the values of the objective fuant Cy(S), for § andS', whereg O
{1, 2} (i.e., either Eq.6-4 or EQ.6-5). Then,G{(S') < Cy(S), S«1isS". On

the other hand, I€«(S") > C«(S), S+1isS', with the following probability:

. {_ Cy(S)-C, (S)J

T (6-6)

Otherwise, §; is S. Eq.(6-6) implies that the modified desidh, is accepted
with the probability given in the equation, everthie modification worsens the
objective function. This acceptance is requiredetich the global optimum. The
probability given by EQq.(6-6) is controlled by tiparameterT, with a greater
value ofT indicating a larger acceptance ratio.
(iif) ReplaceT with pT, wherep (0 <p < 1) is a fixed parameter that expresses the dsitrg
ratio of T.

(iv) Iterate (ii) and (iii) untilS converges.

To, &, iter, andp must be determined a priori. Eq.(6-7) is a stath@dmsumption fof, (e.g.,

Brus and Heuvelink, 2007):

- _Ca(S)-Cy(S)
0 N log(0.8)

(6-7)

whereS,” is the optimal design given by the simulated atinganethod in which step (ii-2) accepts
only improvements (i.e., iCy(S' ) < CyS), S+1 is given byS', otherwise, S, is given byS).
Following Brus and Heuvelink (2007), this studyssg& randomly, andT,, iter, andp are given by

Eq.(6-7), 100, and 0.95, respectively.
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6.2. Geostatistics for the land price assessed site reduction
problem

6.2.1. Background

Japan has a huge deficit, and improving its fin@rgbundness is a critical issue (Ministry of
Finance, Japan: URL: http://www.mof.go.jp/engliskdéx.htm). For the soundness, the
efficiency/reduction of the land price assessmgstesns has been discussed, and it was decided that
to reduce the number of assessed sites gradualtgr a2014 (YOMIURI ONLINE:
http://lwww.yomiuri.co.jp/atmoney/news/20130109-OYI1L049.htm: 2013/1/22 final access).

To maintain the quality of the assessment, theatéoluin the number of assessed sites needs
to be managed carefully. While applying the aforetiomed sampling design techniques seems
helpful to this reduction problem, | was not aliddinhd any studies that use them for land pricedat
Therefore, in this study, | construct a methodoldgy this reduction problem, after discussing the

details of the land price assessment systems amJap

6.2.2. Land prices assessment systems

There are two prime land prices in Japan: theiafficassessed land price and the prefectural
land price. The officially assessed land pricesseassed by the Land Appraisal Committee under the
Ministry of Land, Infrastructure, Transport, andufiem (MLIT) at the beginning of the year, and is
based on the Land Market Value Publication ActsTdgsessment provides standard market values of
land per square meter for standard sites. Herestdmedard land market values are the prices that
would be formed in an assumed transaction withawt extraordinary incentives that induce
participants to sell off or buy aggressively (Landand Property in Japan:
http:/tochi.mlit.go.jp/english/: 2013/9/2 final @ess). Recently, land prices at the 26,000 standard
sites are assessed every year. The prices in édoh sites are examined by more than two reakesta
appraisers.

On the other hand, the prefectural land price sessed by prefectures on July 1, based on the
Enforcement Order for the National Land Use Plagniwt. In this assessment, two or more real

estate appraisers are placed on each site to absestandard market value of the land per square
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meter of a standard site (e.g., in 2012, 22,2@&& sitere assessed). The prefectural land price plays
complementary role to the officially assessed lanice.

The sites to be assessed are chosen from those unban planning area or from areas in
which a certain number of land transactions is etqze In addition, the following criteria are uged

decide on the assessed sites:

Representativeness: The sites must representritigiice level of the surrounding area.

Moderation : Occupancy condition, environment, laedister, and so on, at the sites
must be moderate.

Stability : The occupancy condition must be stable.

Certainty . The sites must be identifiable usingr £xample, land registers,

buildings, and so on.

The adequacy of the assessed sites is checkedymaaryand sites that violate any of these crit@réa
replaced by more suitable sites. These criteriabasgcally for the officially assessed land prices,
although many prefectures adopt the criteria fa&r fhefectural land prices too. In addition, to
complement the officially assessed land price fittve viewpoint of space, more prefectural land
prices are assessed outside of urban planning.areasprefectural land prices also complement the
officially assessed land prices from the viewpaifttime. This is because their assessments are
conducted just half a year after the officiallyessed land prices.

These land price data are provided by the Natibaald Numerical Information Download
Service. The data have three main uses: (i) ageaeree for the usual land transactions; (ii) as a
reference for land acquisition and compensatioadministration; and (iii) as a reference for tagati

(e.g., inheritance tax and property tax).
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6.3. Model for the reduction problem

6.3.1. Assessed site reduction criteria

Generally, spatial sampling is discussed in terfndata quality and assessment cost, so | do
so here as well. The data quality is maintainedapplying the accuracy maximization-based
approach. Although this approach cannot considerctst, this is not necessarily needed when data
acquisition costs are uniform over space. The ass®t cost of land prices seems near uniform.
Hence, this study assumes uniformity of cost, avebsdot consider this aspect further.

In addition to the data quality, considering thecdission in 86.2.2, | must consider the
allocation criteria (including the four criteriahé diversity of use. The assessed site allocatiberia,
which was discussed in 86.2.2, are summarized lisv® (i) Assessed sites must be allocated in
areas with a certain number of expected transagtigiii) An assessed site must have
representativeness, moderation, stability, anchayt and (iii) The prefectural land price datasnu
complement the officially assessed land price diata the viewpoint of space and time. Since the
prefectural land prices are assessed six montles tife officially assessed land prices, temporal
complementarity is automatically satisfied. In dddi, because the accuracy maximization-based
approach provides a sampling design with good @@esover a study area (Zidek and Zimmerman,
2010), complementarity over space is also satidfi¢de geostatistical approach is used. However,
satisfying the four allocation criteria in point)(by applying the geostatistical approach is not
necessarily straightforward. Although, since théstaxg assessed sites have been determined to be
consistent with the criteria, the criteria are digfilled as long as the sites to be assessedlaween
from among the existing sites.

| have clarified the following points: data qualaynd the complementarity on space and time
are considered by applying the accuracy maximinabi@sed approach; cost can be ignored by
assuming uniformity of the assessment cost; the &location criteria are satisfied as long as the
sites to be assessed are selected from amongittm@assessed sites. In contrast, | am not same h
the expected number of land transactions and tersity of use can be considered. Note that land
transactions form one of the uses that falls umlilegrsity of use. Hence, hereafter, | discuss only

diversity of use.
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Figure 6-1: Residential land price in Ibaraki prefecture (2009)

6.3.2. Geostatistical assessed site reduction considering the diversity

of use

To consider data quality, | reduce the assesseds siily applying the accuracy
maximization-based approach. We can select an tgetinction from Eq.(6-1) or Eq.(6-2), and can
set the weightsy(sy), in these equations. §86.3.2 considers the mgebapate objective function and
weights for each use (land transactions; land aiitpri/compensation; taxation; see §86.2.2).

For land transactions, the assessed sites mustithlh areas in which many transactions are
expected. Such a preference can be consideredpbyirapthe expected transaction numbers (per unit
area) tow(sy). On the other hand, for land acquisitions/comp#ans or taxation, the assessed sites
need to contain many households. This is becaugkdaquisitions/compensations and taxation are
conducted per household. In short, in the casarad transactionsy(s))s are given by the expected
numbers of transactions per unit area, while in ¢hee of land acquisitions/compensations and
taxation, they are given by the number of househpét unit area.

Subsequently, the objective functions must bectede(either Eq.6-1 or Eq.6-2) for each
use. The mini-sum function (Eg.6-1) minimizes therall loss (the mean of the SPE, i.e., MSPE),

but may include areas with a singularly large SBE the other hand, the mini-max function (Eq.6-2)
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avoids introducing such large SPE values, butesilting design does not necessarily minimize the
overall SPE or MSPE.

Land transactions reference both land price dathagher data (e.g., real estate appraisal
data and information on neighborhood transactionsfhe same holds for land
acquisitions/compensations (e.g., expected prafiid circumstances are checked). Accordingly, in
these two uses, a certain level of loss in landepdata can be covered by the other information
referenced. However, to maintain the credibility tbe land price data as an indicator of land
transactions or land acquisitions/compensatiores,irthfficiency of including arbitrary sites must be
reduced as much as possible. Accordingly, this ystapplies the mini-max approach for land
transactions and land acquisitions/compensatiorss, ita avoids introducing singularly large
inefficiencies on arbitrary sites.

On the other hand, in Japan, land prices arettjirezlated to taxation. For example, it has
been established that the property tax valuatidnichvis a basis for property tax, must be about 0.7
times the spatially adjacent officially assesseutlarice values. In addition, land assessments for
inheritance tax purposes must be about 0.8 timesspiatially adjacent land price values. Thus, to
adequately conduct taxation, the quality of thellprice data must be maintained as much as possible
Hence, when considering taxation, this study us$es niini-sum function, which maximizes the

overall data quality. The resulting objective fuans for each use are summarized in Table 6-1.

Table 6-1: Objective functions for each use

_ land acquisitions / :
Land transaction . Taxation
compensations

Objective .

jec max(V (so; S)W(s, )] maxV (so; S)W(s, )] 2V (50} S)Wls,)
function SolID
V(so; S SPE (squared prediction error)

Ws) Expected transaction Household numbers Household numbers

® numbers per unit area per unit area per unit area
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6.3.3. Computation of the weights (W(S))

The expected transaction numbers per unit arearentousehold numbers per unit area
are used for the weights (see Table 6-1). The tiessif householder numbers are calculated using
data provided by E-Stat, a portal site providedisy Statistic Bureau, Ministry of Internal Affairs,
and Communications, Japan (http://www.e-stat.gB@d/estat/eStatTopPortal.do).

This study estimates the expected number of tréiosacbased on the land transaction data
provided by Land General Information System, a gorsite provided by the MLIT
(http://www.land.mlit.go.jp/webland/). Using thisaid, the number of transactions in each minor
municipal unit is easily obtained. However, thesstadare based on voluntary answers to a
guestionnaire, and so might be unreliable. In &mditthe transaction numbers per minor municipal
unit are small compared to the number of the mmanicipal units (e.g., in the Ibaraki prefecture,
[the number of transactions in residential lands§[number of minor municipal units] is less than 1
which would also make the data unstable.

To cope with such unreliability and instabilityjghstudy applies the Poisson-Gamma model

(Bethlehenet al,, 1990), which is defined as

P(sy) ~ Poissorié(s,) X P(sy)) . (6-8)
6(s,) ~ Gamma(a, b) , (6-9)
wherea andb are parameter$(sy) is the number of transactions in the minor my@tunits, and

P(s,) Is the population that generate&s). This study givesP(s,) by the number of households
in S. Under these assumptiort¥s,) becomes the expected transaction number per holagseand its

estimator is given as

5y d(sp)+a )
0() as) b (6-10)

Eq.(6-10) can be considered an empirical Bayesstimator off(sy), with its prior distribution given

by Eq.(6-9). Hence, as with the other Bayesianmegbrs, 67(30 ) can be considered a shrinkage
estimator. In the other Words§7(sO i an estimator that copes with the aforementianeeliability

and instability. Finally, the estimator for the exped number of transactions is given é{/so)a(so).
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6.4. An empirical study

6.4.1. Outline

In this section, | describe how to use the propasgoroach to reduce the number of sites
assessed for the residential land prices (theialfffcassessed land price data + the prefectural la
price data) in the Ibaraki prefecture in 2009 (skengize: 1,084; see Fig.6-2). In this study, reiunst
are conducted for each of the three uses, andedoh use, the number of sites is reduced by 108
(10% of the sample size), 325 (30% of the sampte)siand 542 (50% of the sample size),
respectively. In these reductions, 108, 325, or &5 are chosen randomly from among the existing
1,084 assessed sites. Then, the best design ifiekiby applying the simulated annealing method.
Here,s is given by the geometric centers of 3,943 minanicipal units.

The SPEs are calculated using the standard gestistatimodel given in Eq.(2-19). The
response variables are the land prices (JB)Y/fine explanatory variables are the Euclidearadis
to the nearest station (Station: km), the railwatwork distance from the nearest station to theydok
station (Tokyo dist. km), the railway network dista from the nearest station to the Mito station
(Mito dist. km), and the area of each land use gedy, Agriculture, Forest, Wasteland, Railway,
Road, Other land, Golf, River, Beach, Ocean) pbmi(see Table 6-2). The covariogram is given by
the spherical model, Eqg.(2-11), and parameterseatienated using the IRLS-based method (see

§.2.2.4).

Figure 6-2: Assessed site allocation
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Table 6-2:Variables applied in this empirical study

Variables Description Unit Source
. Minimum railway distance from the neargst
Tokyo dist. station to Tokyo station
Mito dist. Mlnl_mum rf':ulway_ distance from the nearest km
station to Mito station
Station Distance to the nearest station
Paddy Area of paddy field
Agriculture | Area of agricultural land
Forest Area of forest NLNI*
Wasteland Area of wasteland (2009)
Railway Area of railway K
Road Area of road m- per
unit area
Other land Area of other land
Golf Area of golf course
River/Lake | Area of river/lake
Beach Area of beach
Ocean Area of beach and body of seawater
Household | Household numbers in each minor municipal National
_ Household
Number unit census (2005)

Transaction
numbers

Transaction numbers of residential lands |in Transaction
each minor municipal unit number

Land General
Information
System (2009)

* NLNI: National Land Numerical Information downldaervice

Transaction numbe

Aga
-8

Figure 6-3: Transaction numbers
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6.4.2. Parameter estimation

Station and Tokyo dist. are negatively significattthe 1% level, and Mito dist. is
negatively significant at the 10% level. These Itsssuggest that railways are an important faator i
determining land prices. On the other hand, Paélgsiculture, Forest, and River/Lake are negatively
significant at the 1% level. This suggests thas¢heon-urban land uses have a negative impact.

The estimates of the partial-sill and nugget ai® & 16 and 6.92 x 1) respectively. These
results indicate that 62.5 [= {1.15 x Q.84 x 16+ 6.92 x 10)} x 100] % of the disturbance is
explained by spatial dependence. The estimateceriang.48 km, which suggests that the land prices
have local spatial variation.

The accuracy of the constructed model is checkedgmying a five-fold-cross-validation. |
first compare the resulting predicted values amd thctual values using a 45° plot (see Fig.6-de T
comparison results suggest that the predicted salte similar to the actual values. The RMSE of the
predicted values is 8,734 JPY/{mvhich is sufficiently small compared to the startideviation of

the land prices (see Table 6-3). Therefore, thattooted model is sufficiently accurate.
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Table 6-3: Parameter estimation results

Variables Estimates t -values
Const 8.88x10 6.92
Tokyo dist -9.69x10 -3.73
Mito dist -1.24x10 -1.95 ’
Station -4.75x10 -8.21
Paddy —2.09x108 -8.98
Agriculture —-2.69x10 -8.59
Forest -1.60x10 -4.77
Wasteland -6.21x1H  -1.32
Road -1.57x16  -4.70x10"
Railway 1.59x10" 1.61
Other land -3.24x1®  -4.63x10"
River/Lake —-2.21x10 -5.76
Beach —-4.10x10 -1.37
Ocean —1.07x198 -1.45
Golf -6.61x10°  —6.35x10"
Nugget |  e92xa6
Partial-sill 1.15x1¢
Range 6.48

* Kk

.7, represent 10%, 5%, and 1% significance levelpeetively

Predicteivalue: 15.0 -
(10 thou. JPY/r)

10.0

5.0

0.0 | Actual value
0.0 5.0 10.0 15.0 (lo thOU \]PY/ﬁ)

Figure 6-4: Comparison of the actual and predicted land price values
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6.4.3. Result of the assessed sites reductions

The SPEs and the two types of weights, namely timber of households and the expected
number of transactions, are plotted in Fig.6-5 &ig.6-6, respectively. The SPEs are high in
non-urban areas, while the number of householdseapécted number of transactions are high in
urban areas. In the other words, the SPE recomntemdsg more assessed sites in non-urban areas,
while the expected number of transactions and nurmblouseholds recommend having more sites

in urban areas.

Household
number transactions
1600 - 50 -
800 - 1600 20-50
400 - 800 10-20
200 - 400 05-10
| 100 - 200

0-100

B 02-05 (4a¥e 4
00-02 AN
——Railway { &

Figure 6-6: Household numbers (left) and expected number of transactions (right)
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The results of the reduction in the number of ass#ssites for land transactions, land
acquisitions/compensations, and taxation are platteFig.6-7. The results indicate the following
features (see also Fig.6-2). Many assessed site®nrurban areas have been maintained. Many
assessed sites around Mito city have been maiutaihany assessed sites have been removed around
the second-largest cities, including Tsukuba, Tewah and Hitachi. The latter result indicates that
assessed sites in the second-largest cities sheuleimoved a priori.

To discuss the similarities in the results, thigosaof commonly reduced assessed sites are
calculated for each pair of uses. Table 6-4 sunmearthe ratios given a 50% reduction. This table
suggests that the results for land transactions land acquisitions/compensations are relatively
similar, but are less similar to the result foraaan. This dissimilarity is due to the differenite
objective functions (see Table 6-1). The resulifigcation for taxation is more dispersed in theaar
that includes Tsukuba, Tsuchiura, and Toride, a$ agethe area around Hitachi, when compared to
the results for land transactions and land acdoigitcompensations (particularly when 50% of the
sites are reduced: see Fig.6-7). Considering suffarehces would be important to reduce the

assessed sites properly.

Table 6-4: Ratio of sites that are commonly removed (50% c&dn)

. Land acquisition/ .
Land transaction . Taxation
compensation

Land transaction 1.00 0.93 0.57
Land acquisition/

. 0.93 1.00 0.55
compensation
Taxation 0.57 0.55 1.00
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Land transaction

80 km

80 km
] N L L L I 1 1 L L )

10% reduction - 30% reduction 50% remtuct
Land acquisition/compensation

80 km 80 km 80 km
L 1 1 L 1 I 1 L | N L 1 1 1 1 1 1 1 | N L 1 1 L 1 1 L L J

10% reduction 30% reduction 50% rastuct
Taxatior

Figure 6-7: Assessed site reduction results
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Fig.6-8 plots the assessed sites that are remavetl three cases; in other words, the sites
whose reductions are particularly recommended. Tipise shows that, locally, a reduction in the
number of assessed sites nearby to railway statborecommended. However, globally, a reduction
in the number of assessed sites around Toride,hitga; and Hitachi is recommended (the 10%
reduction recommends a reduction in the numbeiteg around Toride only).

Finally, the realizations of the objective funatsoare summarized in Table 6-5. The figures
in the table show that changes in the objectivetions due to the reductions are small in all calses
particular, the values before the reduction andvidees after a 10% reduction are almost same. In
addition, the decrease in the quality of the datstill small even when 50% of the sites are reduce
Thus, while smaller reductions are preferable tontain the data quality, the data quality remains

good even after a greater level of reduction.

— Railway
= Station

Railway
Station

Railway
Station

80 km
L 1 1 1 I |

10% reduction 30% reduction 50% remtuct

80 km
J

Figure 6-8: Commonly reduced assessed sites

Table 6-5: Resulting objective function values

. . Land acquisition/ .
Sample size Land transaction , Taxation
compensation
R 5510x10 | 1.026x 16 | 2.866 x 18
10% reduction 5.510 x 10 1.026 x 1& 2.870 x 1&°
30% reduction 5.511 x 10 1.027 x 1& 2.934 x 1&
50% reduction 5.517 x 10 1.028 x 1& 3.092 x 1&°
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6.5. Summary

This chapter extended the geostatistical apprdaciclude land price data in Japan, and
applied the proposed approach to the assesseditetion problem. The results indicate which esses
sites are recommended for reductions, the decrieadata quality after the reductions, and so on. In
addition, the discussion shows the effectivenesbefjeostatistical approach for the reduction jerob

On the other hand, this study still has the follogvlimitations. Firstly, it is not able to consider
non-residential land prices, such as commercial [aites and industrial land prices. Non-residédiad
price data might have play a complementary rolethéoresidential land price data (e.g., an insigfficy
of residential land price data might be coverednbgrby non-residential land price data). To make my
discussion more significant, non-residential lanitgs should be considered. In addition, the ogtima
allocations may possibly change drastically if tiedént geostatistical model is used (e.g., Fueatesd.,
2007). Hence, the reliability of the results musterified. Finally, constructing a geostatisticaddel that

is more suited to the reduction problem would bpartant.
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7. Summary and Future Directions

This study proposed spatial statistical methodsCOJOSPs. Chapters 3 and 4 discussed the
main COSPs for areal data, namely the areal int&ipo problem and the MAUP. Chapters 5 and 6
discussed the main COSPs for point data, namelyaoi® interpolation problem and the sampling
design problem. All of these discussions are imgrdrto conduct changing spatial support effectively

Chapter 3 proposed a GWR-based areal interpolatiethod and clarified its effectiveness
by comparing it to other geographical and geostedisareal interpolation methods. | also conducted
an empirical study of building stock estimation.rélel verified that, while statistical methods have
been accused of being ineffective in quantitatieeggaphy, the spatial statistical areal interpofati
methods are efficient. Chapter 4 described thectfeness of the GWR-based method for the MAUP.
Chapter 5 discussed the extension to the ESF tdldaontinuous spatial data and applied the
extended method to point interpolation, spatial ponent analysis, and so on. | also extended this
method for spatiotemporal modeling. The resultsfiomed that the effectiveness of the proposed
spatial and spatiotemporal models is comparablé witindard geostatistical models. Chapter 6
develops the geostatistical sampling design apprdac the land price assessment site reduction
problem, showing that this approach provides iively reasonable reduction results.

Each of the chapters has revealed the effectigenfespatial statistics for COSPs. However,
considering the recent developments in GIS, welstite a lot of problems that must discuss. Firstly
considering the recent diversification of spatigi@nal data (Goodchild, 2010), the interpolation of
spatiotemporal data must be discussed more tholpughe ESF-based spatiotemporal model
proposed in Chapter 5 is significant in this rega@th the other hand, the GWR-based areal
interpolation method must also be extended forigigaihporal data. The extension would be useful,
for example, when constructing municipal-level gdadeta between 1990 and 2010 in Japan, when
many municipal units were merged. In addition, spamporal modeling would be helpful in
resolving the land price assessment site reduptioblem from a long-term perspective.

On the other hand, spatiotemporal data have ggedaand larger in recent years. The
ESF-based spatiotemporal model might be helpful lfwge spatiotemporal data because of its

computational efficiency. Furthermore, since the E¥Wased areal interpolation method does not
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require inversion of the covariance matrix differorh the geostatistical models, it is also
computationally more efficient than the standardoggatistical methods. However, these
computational efficiencies would still be insuféiait to handle so called “big data” (e.g., real-time
twitter data). Thus, these methods must be mad@utationally more efficient.

Although | have discussed COSPs in each sectiorewthat independently, they should not
necessarily be discussed in this way. For exangplesearcher might need to estimate parameters
considering the MAUP in an analysis using both ladasa interpolated by an areal interpolation and
point data interpolated by a point interpolatiolont® geostatistical studies discuss such integrated
problems by applying hierarchical Bayesian modeaigy.( Sahuet al, 2010; Gelfand, 2010).
Extending my methods to such problems is important.

While this study focuses mainly on model consiong, discussing these applications is
also important. In this sense, the discussionh@btilding stock estimation in Chapter 3 and #rall
price assessment site reduction in Chapter 6 aenimgful. Currently, in a project in the National
Institute of Environmental Studies, Japan, we awesitlering constructing a detailed population
dataset using an areal interpolation techniquehSuwapulation data are already provided by the
SEDAC (http://sedac.ciesin.columbia.edu/), althotlg#ir data seem somewhat strange. In particular,
their data on developing countries appear to bestoocted using the simple areal weighting
interpolation method, and their population values disconnected at borders of regions/prefectures
(see Fig.7-1). We have already confirmed that @etgiopulations can be estimated more accurately
using my spatial statistical areal interpolationdalo Completing our population data construction to
provide this data is important.

Besides, providing calculation codes for the pegabmethods is also important. | coded my
results using R (http://cran.r-project.org/), eefatistical software package. We can upload ppeska
(collections of R functions/codes) on R for freenu$, uploading a package that collects my

functions/codes is one way to achieve this.
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Figure 7-1: Detailedpopulation densities in Saudi Arabia (2.5 arc-minute grid cells)

Note: Left: data provided by the SEDAC; Right: our estimates.
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