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Abstract
The vortex, a quantized magnetic flux surrounded by local supercurrents, plays an important

role in the magnetic properties of type-II superconductors. While vortices are understood to behave
as line-like objects within a mean-field theory, this simple notion may not be appropriate in uncon-
ventional superconductors like copper-oxide (cuprate) or iron-based superconductors because of the
nature of their intrinsic superconducting mechanism or their crystalline structures. Motivated by such
critical characteristics for vortex states, namely “multibandness” and “dimensionality”, I explore in
numerical simulations theoretic aspects of novel vortex states in unconventional superconductors.

In Chapter 1, I shall first review the fundamental magnetic properties in conventional supercon-
ductors within the framework of the Ginzburg-Landau (GL) theory, and thereby introduce the vortex
as the principal player in type-II superconductors. The microscopic theory known as the Bardeen-
Cooper-Schrieffer (BCS) theory is also reviewed to connect with phenomenological parameters that
appear in the GL theory. I then provide an overview of the latest timeline of discoveries in the field of
superconductivity, and illuminate two characteristics, multibandness and dimensionality, which have
an inevitable impact on vortex states. For multibandness, I review the latest theoretical studies that
simply extending conventional multiband theory (N = 2: N for the number of superconductivity
condensation) in a straightforward manner is not sufficient for more general cases (N ≥ 3), and
that essentially novel superconductivity appears spontaneously, i.e. time-reversal symmetry breaking
(TRSB). A multicomponent GL theory is introduced that extends the conventional GL theory to
describe multiband superconductivity and used to discuss the stability condition of the TRSB state.

In Chapter 2, I focus attention on the temperature dependence of the stability condition for the
TRSB state based on the BCS theory. Additionally, for the following discussion of vortex states in
multicomponent TRSB superconductors, I explain the principal parameterization used in numerical
calculation based on the time-dependent Ginzburg-Landau (TDGL) method.

In Chapter 3, I begin discussing vortex structures in multicomponent TRSB superconductors
simulated using a TDGL method near the critical temperature Tc where the GL theory is valid. Single-
vortex solutions reveal qualitatively anomalous vortex structures associated with multiple divergent
coherence lengths.

In Chapter 4, I employ the TDGL method to investigate interactions between vortices in the
multicomponent TRSB superconductor. A novel intermediate state is found that is characterized by
vortex clustering when the material parameters satisfy a certain condition wherein the nucleation
field is slightly larger than the thermodynamic field (Hn & Htc). A calculation of the interface energy
reveals that the vortex cluster is associated with positive interface energy. I thereby compose novel
H-T phase diagrams where the multicomponent TRSB superconductor cannot be classified as simply
type-I or type-II as in conventional single-component superconductors.

In Chapter 5, I investigate further details of the H-T phase diagrams, focusing in particular on
the lower critical field (Hc1) accompanying with the novel vortex state. Using the TDGL method, I
demonstrate typical magnetization curves (M -H) and highlight vortex penetration at Hc1. Remark-
able dynamics are found to occur during vortex penetration that suggest an experimental method to
probe the TRSB state in multicomponent superconductivity.

In Chapter 6, I turn to the study of vortex states affected by the dimensionality. A typical
system of interest is the cuprate superconductors which have been well established as having two-
dimensional superconductivity originating within CuO2 layers. As characterized by the anisotropy
parameter γ ≡ ξab/ξc with ξc (ξab) denoting the coherence lengths perpendicular (parallel) to the
CuO2 layers, the vortex states in layered superconductors with large γ vary considerably depending
on the direction of the applied magnetic fields. Although the vortex states in perpendicular fields
(H ⊥ ab) are nowadays well elucidated, those in parallel fields (H ‖ ab) where vortices are confined
between the CuO2 layers, namely Josephson vortex (JV) states, have not been equally investigated.
Because of the commensurability condition between the JV lattice constant determined by the external
magnetic fields and periodicity of the layered structure, interlayer JVs can take various configurations.
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Using the Langevin simulation for the in-plane JV flow dynamics subject to point-like pinning centers,
I analyze the experimental results on the resistivity using a single crystal of underdoped YBa2Cu3Oy

with anisotropy parameter γ ∼ 50. I thereby identify a unique JV lattice state not seen previously.
Chapter 7 provides a summary of general conclusions and an outlook for the new developments

described above.
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Definitions

Definitions of acronyms

AFM Antiferromagnetic
BCS Bardeen Cooper Schrieffer
FM Ferromagnetic
GL Ginzburg-Landau
HTSC High-temperature superconductor
JV Josephson vortex
MCGL Multi-Component Ginzburg-Landau
SC Superconductor
SDW Spin density wave
TDGL Time-dependent Ginzburg-Landau
TRSB Time-reversal symmetry breaking
TRSR Time-reversal symmetry reserved
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Definitions of notation

A Vector potential
B Magnetic flux density
∆ Superconductivity gap
e Charge on an electron, e = 1.602× 10−19C
F Helmholtz free energy
G Gibbs free energy
h Planck constant, h = 6.626× 10−34Js
~ Reduced Planck constant, ~ = h/(2π) = 1.055× 10−34Js
H Applied magnetic field
Hc1 Lower critical field
Hc2 Upper critical field
Hn Nucleation field
Htc Thermodynamic field
Js Superconductivity current (Supercurrent)
k Wave number
kB Boltzmann constant, kB = 1.381× 10−23JK−1

κ GL parameter κ ≡ λ/ξ
λ Magnetic-field penetration depth
m Electron mass, m = 9.109× 1031kg
m∗ Effective mass of a Cooper pair, m∗ ≈ 2m
M Magnetization
µ0 Vacuum permeability
ωD Debye frequency
Φ0 Magnetic flux quantum, Φ0 = hc/2e = 2.068× 10−15Wb
ψ Order parameter
T Temperature
Tc Critical temperature
ξ Superconductivity coherence length
x, y, z Coordinates of real space
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Chapter 1

Introduction

Superconductivity, which was discovered in 1911 by H. Kamerlingh Onnes [1] in his intensive
development of the experimental environment at low-temperature, represents one of the vast historical
stages in modern physics. The characteristics of zero resistivity is interesting in view of not only
fundamental physics but also applications. As Onnes proposed in his speech for the Nobel prize win,
superconductivity was readily expected to yield successes in applications such as high-field magnets
by taking advantage of its dissipationless conductivity. Another hallmark, perfect diamagnetism,
was discovered in 1933 by W. Meissner and R. Ochsenfeld [2]. They found that magnetic fields are
excluded from the interior of superconductors, a phenomenon that cannot be explained by perfect
conductivity. However, it was soon realized that the critical field at which the superconductivity is
broken by magnetic fields are typically low, at most 1 kOe in the known materials at that time.

Therefore, the discovery of type-II superconductors, which were firstly proposed by A. A. Abrikosov
(1957) [3], was an important breakthrough in superconductivity applications. In type-II superconduc-
tors, magnetic flux lines can elegantly penetrate the interior of superconductors as units of magnetic
flux quanta (vortex ), which typically resulted in high critical fields. Historically, widespread interest
was sparked by Kunzler’s discovery of Nb3Sn with its extremely high upper critical field Hc2 [4].
Currently, continuing developments have carried on in areas such as power transmission and storage,
magnetic resonance imaging (MRI), superconducting quantum interference devices (SQUIDs), and
magnetic levitation (Maglev) for mass transportation. All these applications are concurrently the
focus of further research into new material synthesis, process engineering, and novel properties of
superconductors, to bring forth new functionality in superconductivity.

In the same year as Abrikosov’s work on type-II superconductivity, Bardeen, Cooper and Schri-
effer published a theory of superconductivity that helped to understand the underlying microscopic
mechanism. Their proposal was that electrons form ‘Cooper pairs’ through interactions between
electrons mediated by phonons [5]. The Cooper pair is two coupled electrons with spins anti-aligned
that can establish an energy gap between the ground state and the lowest quasiparticle excitation
state. This fundamental mechanism of the BCS theory succeeded in explaining various phenomena
of superconductivity.

In this Chapter, we first review the various fundamental theoretical models of superconductivity.
We start with the Ginzburg-Landau (GL) theory which is powerful in discussing magnetic properties
and vortex solutions. Next, the BCS theory is presented to provide microscopic interpretations to
phenomenological parameters that appear in the GL theory. Keeping the unique magnetic properties
of superconductivity in our mind, we overview the recently discovered superconductors. As we shall
see, these superconductors, termed unconventional superconductors in this thesis, cannot be treated
by conventional theories.



2 Introduction

1.1 Ginzburg-Landau (GL) Theory

The Ginzburg-Landau (GL) theory is powerful in discussing phase transitions, symmetry breaking
and the magnetic response of superconductors. The vortex state, which in this thesis is the main
player we are interested in when discussing the intermediate state in superconductivity, is derived from
the GL theory as first proposed by Abrikosov [3]. The GL theory introduces a pseudo-wavefunction
ψ(r) as a complex order parameter, with |ψ(r)|2 representing the local density of superconducting
electrons, ns(r). This theory commences with an expansion of the free-energy density in powers of |ψ|2
and |∇ψ|2. The well-known GL coupled differential equations for ψ(r) and the vector potential A(r)
are derived by applying a variational method on the free-energy density functional. Although the
GL theory succeeded in explaining intermediate-state phenomena, where spatially inhomogeneous
superconductivity must be analyzed, only limited attention was paid to the theory until Gor’kov
revealed that the GL theory is derivable in a rigorous limit from the microscopic BCS theory for
Green functions which enable spatial inhomogeneity to be treated [6]. The GL theory was proved to
be in principle valid near Tc if the spatial variation of ψ and A are not too rapid.

In this section, we introduce following Ref. [6] the fundamental framework of the GL theory, and
review how the vortex solution is derived analytically.

1.1.1 GL free-energy functional

The free-energy density f is expanded in a series of the form introducing a wavefunction-like order
parameter ψ = |ψ|eiφ,

f = fs − fn0 = α|ψ|2 +
β

2
|ψ|4 +

1

2m∗

∣∣∣∣(~
i
∇− 2e

c
A

)
ψ

∣∣∣∣2 +
(∇×A)2

8π
, (1.1)

where α and β represent two phenomenological coefficients and m∗ is the effective mass which depends
on the material. When ψ = 0, this properly yields the free energy of the normal state fs = fn0 +
B2/8π2.

In the absence of magnetic fields and gradients, we have

fs − fn = α|ψ|2 +
β

2
|ψ|4. (1.2)

Evidently, the coefficient α should change sign at Tc. Making a Taylor series expansion of α(T ) about
Tc, we have

α(T ) = α(0)

(
T

Tc
− 1

)
, (1.3)

with α(0) > 0. Figure 1.1 shows the typical behaviors of the GL free energy f at the different
temperature regimes, T > Tc, T = Tc, and T < Tc. When α > 0, the minimum of the free energy is
fixed at |ψ|2 = 0 corresponding to the normal state; otherwise, for α < 0, the minimum occurs when

|ψ|2 = |ψ∞|2 = −α
β
, (1.4)

where |ψ∞| represents the absolute value of order parameter for the equilibrium state. Substituting
this value back into Eq. (1.1), one finds

fs − fn =
−H2

tc

8π
=
−α2

2β
, (1.5)

where Htc denotes the thermodynamic critical field.
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Figure 1.1: Schematics of GL free energy f at typical temperature regimes.

We next consider the remaining terms in Eq. (1.1) which deal with the gradients of ψ and vector
potential A. By the definition of the order parameter, ψ = |ψ|eiφ, the term is rewritten,

1

2m∗

[
~2(∇|ψ|)2 +

(
~∇φ− 2eA

c

)2

|ψ|2
]
. (1.6)

The first term gives the extra energy associated with gradients of the order parameter. The second
term gives the kinetic energy associated with supercurrents in a gauge-invariant form. Becuase φ is
constant in the London gauge,1 it can be simply written as (2e)2A2|ψ|2/m∗c2. Equating this to the
kinetic-energy density for a London superconductor A2/8πλ2

eff, we find

λ2
eff =

m∗c2

4π|ψ|2(2e)2
. (1.7)

When we identify n∗s = |ψ|2 with the total density of conduction electrons n∗s, the expression agrees
with the London penetration depth λL, except for the presence of the starred quantities related to
effective number, mass, and charge.2

GL differential equations

The GL differential equations for the order parameter ψ and vector potential A are derived by a
variational method,

αψ + β|ψ|2ψ +
1

2m∗

(
~
i
∇− 2e

c
A

)2

ψ = 0, (1.8)

and

J =
c

4π
rotB =

2e~
2m∗i

(ψ∗∇ψ − ψ∇ψ∗)− (2e)2

m∗c
ψψ∗A, (1.9)

or equivalently,

J =
2e

m∗
|ψ|2

(
~∇φ− 2e

c
A

)
− 2e|ψ|2vs. (1.10)

1The London gauge requires setting ∇ ·A = 0.
2According to the London equations, developed by brothers Fritz and Heinz London, the penetration depth is derived

as λL(0) = (mc2/4πnse
2)1/2 with the temperature dependent quantity ns decreasing continuously to zero as T → Tc.
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The coherence length ξ is derived from Eq. (1.8) by treating the problem for zero-magnetic field
A = 0, and hence we can take ψ to be real valued. We here consider the distortion of the order
parameter δ from the bulk value ψ = (1 + δ)ψ∞, where ψ2

∞ = −α/β. The GL equation Eq. (1.8) is
then reduced to,

(α+ 3βψ2
∞)δ =

~2

2m∗
d2δ

dx2
. (1.11)

Introducing the wavefunction δ = A exp(−
√

2x/ξ), the equation for the coherence length ξ is found
to be

ξ2 =
~2

2m∗|α|
. (1.12)

The London penetration depth λ also is obtained from the GL equation for supercurrents in
Eq. (1.10) multiplying ∇,

∇×∇×B = −4π|ψ|2(2e)2

m∗c2
B, (1.13)

with ∇×A = B and ∇φ = 0. This can be transformed by a vector identity to the London’s equation
coupled with the Maxwell equation, namely ∇2B = B/λ. One then finds,

λ−2 =
4π|ψ|2(2e)2

m∗c2
. (1.14)

Let us next discuss the nucleation field of a superconductor in a bulk sample in the presence of
fields H along the z axis. We here consider the linearized GL equation in which the term β|ψ|2ψ is
neglected, (

∇
i
− 2π

Φ0
A

)2

ψ = −2m∗α

~2
ψ ≡ ψ

ξ2
. (1.15)

This is appropriate only when the order parameter ψ becomes much smaller than the bulk value ψ∞
in magnetic fields. Introducing a convenient gauge choice Ay = Hx and Ax = Az = 0, the linearized
GL equation can be modified and it is reasonable to look for a solution of the form,

ψ = eikyyeikzzf(x). (1.16)

Substituting this into Eq. (1.15), we find

− f ′′(x) +

(
2πH

Φ0

)2

(x− x0)2f =

(
1

ξ2
− k2

z

)
f, (1.17)

where

x0 =
kyΦ0

2πH
. (1.18)

Multiplying by ~2/2m∗, we immediately notice that the form is the same as the Schrödinger equation
for a particle of massm∗ bounded in a harmonic oscillator potential with constant force (2π~H/Φ0)2/m∗.
This is formally solved in analogy with the quantized states of a charged particle in a magnetic field
and yields the Landau level solution. The resulting eigenvalues are

εn =

(
n+

1

2

)
~ωc =

(
n+

1

2

)
~
(

2eH

m∗c

)
, (1.19)

and the eigenfunction yields

H =
Φ0

2π(2n+ 1)

(
1

ξ2
− k2

z

)
. (1.20)

The highest value occurs when kz = 0 and n = 0, which correspond to the nucleation field Hn, or in
other words, the upper critical field Hc2,

Hn =
Φ0

2πξ2
. (1.21)
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Relating the nucleation field Hn in Eq. (1.21) and the thermodynamic Htc in Eq. (1.5), we arrive
at the simple expression,

Hn =
√

2κHtc, (1.22)

where κ ≡ λ/ξ is the well-known GL parameter which depends only on material properties. The
threshold value κ = 1/

√
2 indeed classifies superconductors as either type-I (Hn < Htc) or type-

II (Hn > Htc). For type-II superconductors, one meets to Hn in decreasing magnetic fields, and
|ψ|2 starts to grow continuously from zero in a second-order transition. On the other hand, type-
I superconductors in decreasing field would be supercooled from Htc until ideally Hn, and exhibit
discontinuous and irreversible jump of |ψ|2 to ψ2

∞ in a first-order transition.

1.1.2 Classification of superconductivity

As proposed in A. A. Abrikosov’s pioneering work [3], the classification of superconductors was
originally discussed based on the GL theory investigating the interface energy between the super-
conducting and normal domains. We seek solutions of the differential equations Eq. (1.8) and (1.9)
subject to the following boundary conditions:

ψ = ψ∞ and B = 0 for x→ +∞
ψ = 0 and B = Htc for x→ −∞

We here consider a one-dimensional problem, and take ψ as real. The calculation of the interface
energy corresponds to evaluating the excess Gibbs free energy at Htc,

Γ =

∫ +∞

−∞
(gsH − gs0)dx =

∫ +∞

−∞

(
fsH −

BHtc

4π
− fs0

)
dx

=

∫ +∞

−∞

[
α|ψ|2 +

β

2
|ψ|4 +

1

2m∗

∣∣∣∣(~
i
∇− 2e

c
A

)
ψ

∣∣∣∣2 +
(B −Htc)

2

8π

]
dx, (1.23)

where fn0 − fs0 = H2
tc/8π is used. This can be further simplified using the relation obtained from

the integrated GL equation in Eq. (1.8)

0 =

∫ +∞

−∞

[
α|ψ|2 + β|ψ|4 +

1

2m∗

∣∣∣∣(~
i
∇− 2e

c
A

)
ψ

∣∣∣∣2
]
dx. (1.24)

Subtracting this from Eq. (1.23), the interface energy is obtained with equating to (H2
tc/8π)δ as,

δ =

∫ +∞

−∞

[(
1− B

Htc

)2

−
(
ψ

ψ∞

)2
]
. (1.25)

Therefore, there is a crossover from positive to negative interface energy which was first illumi-
nated by Abrikosov in superconductors that he termed type-II. Although analytic calculations of the
interface energy for all parameter regime is difficult, the crossover is numerically proved to occur at
κ = 1/

√
2. Moreover, an important consequence is that the crossover of sign in the interface energy

at κ = 1/
√

2 coincides to the relation Htc = Hn. In a type-II superconductor, magnetic fields pen-
etrate into a superconductor in units of quantized flux Φ0 = hc/2e = 2.07 × 10−15Wb to utilize the
negative interface energy. Giving the name vortex, they result typically in high upper-critical-field
(Hc2) enabling industrial applications.
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(a) (b) (c) 

Figure 1.2: (a) Typical M -H curves for type-I and type-II superconductors. Schematics of H-T phase
diagrams for (b) type-I superconductors and (c) type-II superconductors. The double and single lines
represent first- and second-order transition, respectively.

1.1.3 Magnetic properties of type-II superconductors

A typical magnetic feature of superconductors subject to small applied magnetic fields is the well-
known Meissner effect, in which the applied is excluded from the superconductor, producing perfect
diamagnetism. Nevertheless, as discussed in the previous section, superconductors are classified as
either type-I or -II depending on whetherHn < Htc (κ < 1/

√
2) orHn > Htc (κ > 1/

√
2), respectively;

Fig. 1.2 shows schematics of typical H-T phase diagrams and magnetization curves (M -H curves for
short). We here discuss an analytical derivation of the vortex states that contributes the building
block of the vortex structure.

Structure of single vortex

When magnetic fluxes penetrate a type-II superconductor, the vortices are distributed sparsely
forming an array throughout the material. As long as the separation is larger than λ, the interaction
between vortices is negligible, and one can treat them as being isolated.

Given the axial symmetry of the situation, the problem is reduced to finding a self-consistent
solution of the GL equations for ψ(r) and B(r). Hence one can calculate the extra free energy ε1 per
unit length of the line given a definition of the lower critical field Hc1, where the Gibbs free energy
must have the same value whether the first vortex is inside or outside the sample,

Gs|no flux= Gs|first vortex. (1.26)

Because G = F − (H/4π)
∫
Bdr and Gs = Fs in the absence of a flux, the condition becomes

Fs = Fs + ε1L−
Hc1

∫
Bdr

4π

= Fs + ε1L−
Hc1Φ0L

4π
, (1.27)

where L is the length of the vortex line in the sample. Therefore, one has

Hc1 =
4πε1
Φ0

. (1.28)

The calculation of ψ, B and ε1 for arbitrary κ unfortunately requires a numerical solution of the
GL equation. Therefore, considerable attention has been given to the extreme type-II limit, in which
κ = λ/ξ � 1, where useful analytical results can be obtained.

We here try to approach the full solution of the nonlinear GL equations. It is convenient to
introduce a vortex wavefunction of the form

ψ = ψ∞f(r)eiθ, (1.29)
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which complies with the axial symmetry and the fact that the phase of ψ varies by 2π. This actually
corresponds to the existence of a single flux quantum associated with vortex currents. This phase
choice for ψ fixes the gauge choice for A so that

A = A(r)θ̂, (1.30)

with

A(r) =

(
1

r

)∫ r

0
r′B(r′)dr′. (1.31)

Near the center of the vortex, this becomes

Ar→0 =
B(0)r

2
, (1.32)

whereas far from the center of an isolated vortex, it becomes

Ar→∞ =
Φ0

2πr
, (1.33)

as the total flux contained is
∮

A · ds = 2πrA∞ = Φ0.
When Eq. (1.29) is substituted into the GL equation, we find after simplifying that f satisfies

f − f3 − ξ2

[(
1

r
− 2πA

Φ0

)2

f − 1

r

d

dr

(
r
df

dr

)]
= 0. (1.34)

The current has only one component, that associated with θ, and from the GL equation it is

J = − c

4π

dB(r)

dr
= − c

4π

d

dr

[
1

r

d

dr
(rA)

]
=
e∗~
m∗

ψ2
∞f

2

(
1

r
− 2πA

Φ0

)
. (1.35)

The problem is now to find simultaneous solutions of these two nonlinear differential equations for
f(r) and A(r). Because this requires numerical methods in general, we examine certain limit cases
which enable analytical treatments.

First, let us look at the center of the vortex, as r → 0. Using Eq. (1.32), Eq. (1.34) becomes

f − f3 − ξ2

[(
1

r
− πB(0)r

Φ0

)2

f − 1

r

d

dr

(
r
df

dr

)]
= 0. (1.36)

Let us assume that the solution starts as f = crn with n ≥ 0, then Eq. (1.36) becomes

crn − c3r3n − ξ2

[(
1

r
− πB(0)r

Φ0

)2

crn − n2crn−2

]
= 0. (1.37)

As r → 0, the leading term is proportional to rn−2(1 − n2). For this to vanish, n = 1 and f must
start out proportional to r at the core. Seeing the structure in Eq. (1.36), only odd powers of r now
enter the expansion of f . Working out the coefficient of the next term, we find

f(r) ≈ cr
{

1− r2

8ξ2

[
1 +

B(0)

Hc2

]}
, (1.38)

which shows that the rise of f(r) starts to saturate at r ≈ 2ξ. To get the normalization constant c,
we must go further to bring the f3 term into play. However, it is clear that c must be ∼ 1/2ξ for
isolated vortices, so that the series in Eq. (1.38) matches the long-distance behavior, where f → 1.
A reasonable approximation to f over the entire range is

f ≈ tanh
νr

ξ
, (1.39)

where ν is a constant ∼ 1.
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High-κ approximation

Because the order parameter recovers almost to unity in a distance ∼ ξ, we can make a convenient
approximation when λ � ξ, or equivalently κ � 1. we treat f as a constant ' 1 where the London
equations govern the field and currents outside the core except for a core region with radius ∼ ξ,
namely,

4πλ2

c
rotJs + B = 0. (1.40)

This relation should be modified by inserting a term that considers the presence of the core,

4πλ2

c
rotJs + B = ẑΦ0δ2(r), (1.41)

where ẑ is a unit vector along the vortex and δ2(r) is a two-dimensional δ function as the location of
the core. Combining Eq. (1.41) with the Maxwell equation rotB = (4π/c)J, we obtain

λ2rot rotB + B = ẑΦ0δ2(r). (1.42)

As divB = 0, this can be written

∇2B− B

λ2
= −Φ0

λ2
ẑδ2(r). (1.43)

This equation has an exact solution

B(r) =
Φ0

2πλ2
K0

( r
λ

)
, (1.44)

where K0 is a zeroth-order Bessel function. At large distances, K0(r/λ) behaves approximately as
e−r/λ but diverges logarithmically as ln(λ/r) when r → 0. Noted that the divergence of Eq. (1.44) is
cut off at r ∼ ξ where |ψ|2 starts dropping to zero, and thus B(r) is actually regular at the center of
the vortex.

For our reference, the typical structure of a single vortex is shown in Fig. 1.3(a), where the order
parameter is suppressed within a scale of coherence length ξ and supercurrents localize within a range
of penetration depth λ. Figure 1.3(b) shows the structure of the order parameter associated with
phase φ in the x-y coordinate. Based on the penetration of magnetic fluxes, type-II superconductors
exhibit an intermediate state that is associated with a triangular lattice structure within a sample.

Vortex line energy

We next consider the vortex-line tension, namely the free energy per unit length ε1. Neglecting
the core, we have only the contributions from the field energy and the kinetic energy of the currents,

ε1 =
1

8π

∫
(B2 + λ2|rotB|2)dS. (1.45)

This can be transformed by a vector identity to

ε1 =
1

8π

∫
(B + λ2rot rotB) ·BdS +

λ2

8π

∮
(B× rotB) ·Bds

=
1

8π

∫
|B|Φ0δ2(r)dS +

λ2

8π

∮
(B× rotB) · ds, (1.46)

where the line integrals around the inner and outer perimeter of the integration exclude the core.
The first term contributes nothing, whereas the second term goes to zero at infinity but gives a finite
contribution in encircling the core, specifically,

ε1 =
λ2

8π

[
B
dB

dr
2πr

]
ξ

. (1.47)
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𝜉 
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(a) (b) 

Figure 1.3: Analytic results of a vortex structure for κ = 2. (a) Radial dependence of order parameter
ψ(r) and Bz(r) from the center (r = 0) of a single vortex. Amplitude of order parameter and Bz are
normalized by bulk value ψ∞ and the thermodynamic field Htc, respectively. (b) Spatial distribution
of the order parameter colored in terms of phase φ.

Using dB/dr = Φ0/2πλ
2r, this reduces to

ε1 =
Φ0

8π
B(ξ) ≈ Φ0

8π
B(0), (1.48)

where B(ξ) ≈ B(0) because f → 0, and hence Js → 0 in the core. Imposing a cut-off approximation
at ξ, we have

ε1 ≈
(

Φ0

4πλ

)2

lnκ, (1.49)

which depends logarithmically on core size. This is straightforwardly reformulated into more physical
terms using the relation Φ0 = 2

√
2πλξHc,

ε1 =
H2

c

8π
4πξ2 lnκ, (1.50)

which shows that the line energy is of the same order as the condensation energy lost in the core, but
larger by a factor of order 4 lnκ.3

Interaction between vortices

Based on the approximation κ� 1, it is easy to treat the interaction energy between two vortices.
The magnetic field in the presence of two vortices is given by the field superposition

B(r) = B1(r) + B2(r)

= [B(|r− r1|) +B(|r− r2|)]ẑ, (1.51)

where r1 and r2 specify the core positions of the two vortex lines and B(r) is given by Eq. (1.44). The
energy is calculated by substituting this into Eq. (1.50) and using vector transformations, resulting
in a total increase in free energy per unit length,

∆F =
Φ0

8π
[B1(r1) +B1(r2) +B2(r1) +B2(r2)]

= 2

[
Φ0

8π
B1(r1)

]
+

Φ0

4π
B1(r2). (1.52)

3Therefore, errors in handling the core should be unimportant for κ� 1.
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The first term represents simply the sum of the two individual line energies. The second term is the
sought-after interaction energy

F12 =
Φ0B1(r2)

4π
=

Φ2
0

8π2λ2
K0

(r12

λ

)
. (1.53)

This energy falls off as r
−1/2
12 e−r12/λ at large distances and varies logarithmically at small distances.

The interaction is repulsive for the usual case in which the fluxes have the same rotational sense
within the two vortices.

We calculate the force arising from the interaction by taking the derivative of F12 in Eq. (1.53).
For example, the force on line 2 in the x direction is

f2x = −∂F12

∂x2
= −Φ0

4π

∂B1(r2)

∂x2
=

Φ0

c
J1y(r2), (1.54)

using the Maxwell equation rotB = 4πJ/c. Putting this back into a vector form, the force per unit
length on vortex 2 is

f2 = J1(r2)× Φ0

c
, (1.55)

where the direction of Φ0 is parallel to the flux density. Generalizing to an arbitrary array, we obtain

f = Js ×
Φ0

c
, (1.56)

where Js represents the total supercurrent density caused by all other vortices and also includes any
net transport currents at the location of the vortex core.

This result indicates that an array of vortices feels finite transverse forces from any transport
current; hence vortices will move unless they are pinned by inhomogeneities such as dislocations,
defects or impurities. Such flux motion causes finite energy dissipation and induces a longitudinal
resistive voltage, which is crucial for any applications of type-II superconductors used for strong
currents or fields.

1.2 Bardeen-Cooper-Schrieffer (BCS) Theory

As we have seen in the GL free-energy functional in Eq. (1.1), the coefficients α and β are
phenomenological parameters, and their microscopic definitions are unclear. As demonstrated by L.
P. Gor’kov [7], the GL theory can be connected with the celebrated microscopic theory, namely the
Bardeen-Cooper-Schrieffer (BCS) theory. Although the original work by Gor’kov based on the Green
functions enables us to fully access microscopical definitions in the GL theory,4 We here discuss
simply the derivation of GL formalism by analyzing a BCS gap function obtained by the mean-
field approximation to provide a basic understanding to show consistency between the BCS and GL
theories.

1.2.1 Mean-field approximation

We start from the well-established reduced BCS Hamiltonian where necessary interactions between
electrons (k, ↑) and (−k, ↓) to form the Cooper pairs are neglected,

H =
∑
k,σ

ξknkσ +
∑
k,k′

Vk,k′c
†
k↑c
†
−k↓c−k′↓ck′↑, (1.57)

4As we shall soon see, the inhomogeneity term which corresponds to the kinetic term in GL functionals cannot be
discussed.
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where nkσ = c†kσc−kσ is the particle number operator and

ξk = εk − µ =
~2k2

2m
− µ (1.58)

is the kinetic energy of a free electron measured from the chemical potential µ.
We are going to calculate various physical properties of superconductors at finite temperature.

However, it is inconvenient to treat the interaction term in Eq. (1.57). We here consider a mean-field
approximation based on the pair operators

b†k = c†k↑c
†
−k↓,

bk = (b†k)† = (c†k↑c
†
−k↓)

† = c−k↓ck↑, (1.59)

which yield averages in terms of the BCS state,

b̄∗k = 〈ΨBCS|b†k|ΨBCS〉 = ukv
∗
k,

b̄k = 〈ΨBCS|bk|ΨBCS〉 = u∗kvk, (1.60)

and take deviations from the average δb†k, δbk, one finds,

b†k = b̄∗k + δb†k,

bk = b̄k + δbk. (1.61)

Neglecting quadratic terms in δb†k and δbk, the interaction term in the reduced Hamiltonian of
Eq. (1.57) can be thenreby rewritten as,∑

k,k′

Vk,k′c
†
k↑c
†
−k↓c−k′↓ck′↑ =

∑
k,k′

Vk,k′b
†
kbk′

≈
∑
k,k′

Vk,k′
(
b̄∗kbk′ + b̄k′b

†
k

)
−
∑
k,k′

Vk,k′ b̄
∗
kb̄k′

= −
∑
k

(
∆∗kbk + ∆kb

†
k

)
+

1

2

∑
k

(
∆∗kb̄k + ∆kb̄

∗
k

)
, (1.62)

where we define

∆∗k ≡ −
∑
k′

Vk,k′ b̄
∗
k′ ,

∆k ≡ −
∑
k′

Vk,k′ b̄k′ . (1.63)

The reduced BCS Hamiltonian thereby takes the form

HMF =
∑
k

ξk

(
c†k↑ck↑ + c†−k↓c−k↓

)
−
∑
k

(
∆∗kc−k↓ck↑ + ∆kc

†
k↑c
†
−k↓

)
+

1

2

∑
k

(
∆∗kb̄k + ∆kb̄

∗
k

)
. (1.64)

This Hamiltonian can be diagonalized by a suitable linear transformation, namely the Bogoliubov-
Balatin transformation, to define new Fermi operators γk

ck↑ = u∗kγk↑ + vkγ
†
−k↓,

c†−k↓ = −v∗kγk↑ + ukγ
†
−k↓, (1.65)
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where the numerical coefficients uk and vk satisfy the condition |uk|2 + |vk|2 = 1. The full form of
the mean-field Hamiltonian is

HMF =
∑
k

[
2ξk|vk|2 − (∆∗ku

∗
kvk + ∆kukv

∗
k) +

1

2

(
∆∗kb̄k + ∆kb̄

∗
k

)]
+
∑
k

[
ξk
(
|uk|2 − |vk|2

)
+ ∆∗ku

∗
kvk + ∆kukv

∗
k

] (
γ†k↑γk↑ + γ†−k↓γ−k↓

)
+
∑
k

(
2ξkukvk −∆ku

2
k + ∆∗kv

2
k

)
γ†k↑γ

†
−k↓ +

∑
k

(
2ξku

∗
kv
∗
k −∆∗ku

∗2
k + ∆∗kv

∗2
k

)
γ−k↓γk↑ (1.66)

This can be diagonalized when uk and vk are chosen so that the coefficients of γk↑γ−k↓ and γ†k↑γ
†
−k↓

vanish which are physically unimportant, specifically,

2ξkukvk + ∆∗kv
2
k −∆ku

2
k = 0. (1.67)

Multiplying through by ∆∗k/u
2
k and solving using the quadratic formula, the above diagonalization

condition yields
∆∗kvk
uk

=
(
ξ2
k + |∆k|2

)1/2 − ξk = Ek − ξk, (1.68)

where Ek =
√
ξ2
k + |∆k|2. Imposing the normalization condition |uk|2 + |vk|2 = 1 and using the

relation |vk/uk| = (Ek − ξk)/|∆k|, we can solve for the coefficients obtaining

|vk|2 = 1− |uk|2 =
1

2

(
1− ξk

Ek

)
. (1.69)

The diagonalized Hamiltonian is finally reduced using the above relations,

H′MF =
∑
k

(ξk − Ek + ∆kbk) +
∑
k

Ek

(
γ†k↑γk↑ + γ†−k↓γ−k↓

)
. (1.70)

The second term can be interpreted as the particle number operators for quasi-particles of up-spin and
down-spin, that is γ†k↑γk↑ = nk↑ and γ†−k↓γ−k↓ = n−k↓. The Hamiltonian obtained here is therefore
equivalent to that of a free-electron system except for the first term which correspond to the BCS
ground state. The quasi-particles excited from the BCS ground state are considered as Fermi particles
with excitation energy Ek within the mean-field approximation.

1.2.2 Gap function for finite temperatures

Having identified Ek as the excitation energy of a Fermion quasi-particle, it must be a positive
quantity as Ek ≥ ∆k. The probability for a quasiparticle to be excited at thermal equilibrium is
given by the Fermi-Dirac distribution function,

〈γ†k↑γk↑〉(= 〈γ
†
−k↓γ−k↓〉) = f(Ek) = (eβEk + 1)−1, (1.71)

where β = 1/kBT . The quantity we are going to calculate is the probability 〈bk〉, in which the off-

diagonal terms 〈γ−k↓γk↑〉 and 〈γ†k↑γ
†
−k↓〉 are neglected because they do not contribute to the average,

〈bk〉 = 〈c−k↓ck↑〉 = u∗kvk

(
1− 〈γ†k↑γk↑〉 − 〈γ

†
−k↓γ−k↓〉

)
= u∗kvk (1− 2f(Ek)) . (1.72)
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We then obtain a gap function ∆k(T ) at finite temperature T by substituting 〈bk〉 for bk in the
self-consistent condition in Eq. (1.63),

∆k = −
∑
k′

Vkk′u
∗
kvk [1− 2f(Ek)]

= −
∑
k′

Vkk′
∆k′

2Ek′
tanh

(
βEk′

2

)
. (1.73)

Using the well-established BCS approximation where Vkk′ = −V with cut-off energy ~ωD and ∆k =
∆k′ = ∆, the self-consistency condition becomes

1

V
=

1

2

∑
k

tanh(βEk/2)

Ek
, (1.74)

where Ek = (ξ2
k + ∆2

k)1/2. Equation (1.74) determines the temperature dependence of the energy gap
∆(T ).

The critical temperature Tc is obtained as ∆(T )→ 0, and correspondingly Ek → |ξk|. Changing
the summation for k to an integral for ξk using the density of states for a normal state at the Fermi
surface N(0), Eq. (1.74) becomes

1

N(0)V
=

∫ ~ωD

0

1

ξk
tanh

(
ξk

2kBTc

)
, (1.75)

where the interval of integration is changed using the symmetry of odd functions. This integration
can be solved by defining variable x = ξ/2kBTc and integrating by parts,

1

N(0)V
=

∫ ~ωD/2kBTc

0

tanh(x)

x
dx

=
[

ln(x) tanh(x)
]~ωD/2kBTc

0
−
∫ ~ωD/2kBTc

0

ln(x)

cosh2(x)
dx. (1.76)

As kBTc � ~ωD for normal metals, tanh(x) ≈ tanh(∞) = 1 and
∫∞

0 ln(x)/ cosh2(x)dx = ln(π/4eγ)
with Euler’s constant γ = 0.577215 · · · . We then finally obtain the relation for the critical temperature
Tc as

1

N(0)V
= ln

(
2eγ~ωD
πkBTc

)
. (1.77)

1.2.3 Derivation of the GL equation

As revealed by Gor’kov [7], the GL theory is appropriate near the critical temperature Tc where
the gap |∆k| is sufficiently small. We here analyze the behavior of the gap equation Eq. (1.74) close
to Tc, and try to obtain the GL equation for the order parameter ψ.

First, we consider the Taylor expansion for the gap function assuming sufficiently small ∆k as
T → Tc,

∆ = N(0)V∆

∫ ~ωD

0
f(Ek)dξk

≈ N(0)V∆

∫ ~ωD

0
dξk

[
f(ξk) + (Ek − ξk)

df(ξk)

dEk

∣∣∣
Ek=ξk

+ · · ·
]

≈ N(0)V∆

∫ ~ωD

0
f(ξk)dξk +N(0)V∆|∆|2

∫ ~ωD

0

dξk
2ξk

df(ξk)

dξk
, (1.78)
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where f(ξk) = tanh(βξk/2)/Ek and Ek − ξk =
√
ξ2
k + |∆|2 − ξk ≈ |∆|2/2ξk. Taking the following

integration formulas [8], ∫ ∞
0

tanhx

x
dx→ ln

1.14~ωD
kBTc

,∫ ∞
0

dx

x

d

dx

(
tanhx

x

)
→ − 1

π2

7ζ(3)

8
, (1.79)

where ζ(3) is the Riemann zeta-function we obtain the relation(
N(0)V ln

1.14~ωD
kBT

− 1

)
∆− N(0)V

2(πkBTc)2

7ζ(3)

8
|∆|2∆ = 0, (1.80)

which is equivalent to the GL equation in Eq. (1.8) except for the kinetic term.

Comparing Eqs. (1.8) and (1.80), we are able to estimate by setting ψ = |∆|, the coefficients in
the GL free-energy functional in terms of the microscopic quantities:

α(T ) =

(
N(0)V ln

1.14~ωD
kBT

− 1

)
,

β =
N(0)V

2(πkBTc)2

7ζ(3)

8
. (1.81)

As mentioned earlier, α(T ) is temperature dependent and β is always a positive value.

1.3 Unconventional Superconductors : Overview

Unconventional superconductors, generally identifying the category of superconducting materials
for which the BCS theory is not applicable, have always been the source of intense debate in super-
conductivity research. To the best of my knowledge, the term unconventional superconductor was
first applied to CeCu2Si2 discovered in 1979 with Tc = 0.5K [9]. Although it is believed that the su-
perconductivity even for unconventional cases still originates with the formation of Cooper pairs, the
conventional mechanism of phonon-mediated interaction as described in BCS theory appears not to
be strong enough [10]. All other unconventional superconductors, for example UBe13, UPt3— known
as a heavy Fermion system, Sr2RuO4— a spin-triplet superconductor, or the BEDT-TTF system—an
organic superconductor, are systems providing exciting area of research that challenge and expand
our understanding of superconductivity.

However, we will concentrate our interest on materials that have recorded high superconductivity
critical temperatures. A major breakthrough was achieved with the discovery of the copper-oxide
(cuprate) compounds, the first La2−xBaxCu4Oy of which was found in 1986 by J. G. Bednorz and K.
A. Müller [11]. For application purposes, the cuprate superconductors are still important materials
because of their typically higher Tc than the boiling temperature of liquid nitrogen. In contrast, the
highest critical temperature in metallic compounds was attained in magnesium diboride (MgB2 at
Tc = 39K) by Akimitsu’s group [12]. Furthermore, the discoveries of iron-based superconductors by
Horono’s group in 2007 [13] were recent sensational news in the superconductivity research. Remark-
ably, the critical temperatures of the latter superconductors actually exceed theoretical predictions
of Tc ∼ 30− 40K based on the BCS theory. We shall highlight these high-Tc superconductors in the
following sections.5

5Timelines of superconductivity critical temperatures Tc’s can be found in several websites, for example
http://sakaki.issp.u-tokyo.ac.jp/user/kittaka/contents/others/tc-history.html.

http://sakaki.issp.u-tokyo.ac.jp/user/kittaka/contents/others/tc-history.html
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(a) 

(b) 

(c) 

Figure 1.4: (a) Crystalline structures of cuprate superconductors. (b) CuO2 layer illustrating elec-
tronic orbitals Cu dx2−y2 and O pσ. Reproduced with permission from Ref. [18]. (c) Typical phase
diagram of a cuprate superconductor in terms of temperature and hole doping. Reprinted by permis-
sion from Macmillan Publishers Ltd: Nature [19], copyright 2010.

1.3.1 Copper-oxide superconductors

The first copper-oxide (cuprate) superconductor La2−xBaxCu4Oy was actually a material unex-
pected as a superconductor with the remarkably high critical temperature of Tc ∼ 30K [11]. Sur-
prisingly, higher Tcs were soon to appear from substitution synthesis in YBa2Cu3Oy with Tc = 93K,
the first time the boiling point of liquid nitrogen 77K [14] was exceeded, and Bi2Sr2Ca2Cu3Oy with
Tc = 107K [15]. The highest recorded critical temperature among the cuprates (and for all supercon-
ductors) to date is achieved in HgBaCa2Cu3Oy with Tc = 135K [16].

The crystalline structures of the cuprate superconductors (see Fig. 1.4(a)) are typically com-
posed of two-dimensional superconducting planes of copper oxide CuO2 (Fig. 1.4(b)), interposed by
insulating blocking layers with other elements. A typical electrical phase diagram of a cuprate su-
perconductor is shown in Fig. 1.4(c). In general, the undoped parent compounds are classified as
Mott insulators, in which strong local Coulomb interactions cause the materials to become insulators
instead of metals. Within this Mott-insulator state, antiferromagnetic (AFM) ordering of the copper
ions is found within the CuO2 planes. The AFM ordering appears only in a narrow region of the
phase diagram and is quickly suppressed by hole doping; superconductivity emerges after the static
AFM order has been suppressed [17].

That being the case, cuprate superconductors provide diverse playgrounds for magnetic char-
acteristics, in other words, vortex states of our interest. Although magnetic properties in cuprate
superconductors were readily studied after their discoveries, it was soon recognized that the conven-
tional mean-field theory was no longer applicable and hence the H-T phase diagram becomes more
complicated, because of the strong two-dimensionality and thermal fluctuations due to the high criti-
cal temperatures. The strength of two-dimensionality is often expressed by the anisotropy parameter
γ ≡ ξab/ξc with ξab and ξc for the superconductivity coherence lengths in ab-plane (CuO2 planes) and
c-axis (perpendicular to CuO2 planes), respectively. Large anisotropy in cuprate superconductors is
obviously originated from the layered crystalline structure of CuO2. We postpone giving a detailed
discussion here of vortex states and H-T diagrams in cuprate superconductors, leaving the topic for
separate development in a later for chapter 6.
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1.3.2 Magnesium diboride (MgB2)

Superconductivity in MgB2 confers the highest transition temperature Tc = 39K among metallic
superconductors to date. The crystalline structure of MgB2, as shown in Fig. 1.5(a), is an alter-
nating structure of honeycombed boron layers and magnesium layers. From much intensive work
performed immediately after discovery, MgB2 has a simple superconductivity mechanism based on
the electronphonon coupling. The most direct evidence for the phonon-mediated mechanism comes
from the isotope effect [20], in which the Tc increased by about 1 K when 10B was used instead of
11B6. Other experiments such as photoemission spectroscopy, scanning tunneling microscopy, and
neutron scattering measurements, also support the BCS mechanism [21, 22]. In terms of the origin
of superconductivity, MgB2 might be categorized to conventional superconductivity.

However, the remarkable property of MgB2 is that there are two superconductivity gaps with
∆π(0) = 2meV and ∆σ(0) = 7meV, denoting σ and π bands of the boron electrons, as well established
nowadays [21, 22]. Figure 1.5(b) shows the Fermi surface obtained by band structure calculations [23].
Green and blue cylinders (hole-like) come from the bonding px,y bands, the blue tubular network (hole-
like) from the bonding pz bands, and the red (electron-like) tubular network from the antibonding pz
band. In Fig. 1.5(c), the values of the two gaps extracted from scanning tunneling spectroscopy are
plotted as a function of temperature [24]. Both gaps follow typical temperature dependence predicted
by the BCS theory as indicated by the lines, and disappear at the same Tc. According to the BCS
theory, the material independent relation 2∆(0) = 3.54kTc tells that the two energy gaps should then
correspond to Tc,π = 15K and Tc,σ = 45K. However, the finite interband coupling results in a single
Tc = 40K, which is unexpectedly lower than the Tc,σ. This consequence was pointed out by Mazin
et al that the interband scattering between the σ and π bands is exceptionally small owing to the
different symmetries in their charge-density distributions [25].

As we shall discuss in the next section, two-band superconductivity has been theoretically con-
sidered since from the 1950s in view of superconductivity in transition metals[26]. Although several
candidate material had been suspected earlier as having multiband superconductivity, MgB2 is the
first to be undoubtedly identified as having two-band superconductivity. Also, it is noted that MgB2

is a simple s-wave superconductor in which the gaps do not have nodes [27, 28], while other un-
conventional superconductors are known as d-wave for cuprate superconductors [29], or p-wave for
Sr2RuO4 [30], for example. Furthermore, the multibandness in MgB2 arise essentially new physical
phenomena such as Leggett’s collective mode [31].

1.3.3 Iron-based superconductors

In recent research on superconductors as well as on condensed matter physics, the discovery of
iron-based (Fe-based) superconductors has been sensational, not only in yielding various high Tc com-
pounds, but also in enriching theory with a new mechanism of superconductivity rich in multiband
properties. After the first Fe-based superconductor discovered in 2006, LaFePO with Tc = 4K [32],7

exploration for other Fe-based superconductors was sparked by the subsequent discovery in 2008 of
LaFeAs(O1−xFx) exhibiting a higher Tc of 26K [13]. Very soon after this, substitution of the lan-
thanoid element (Ln) was subsequently attempted and achieved a higher Tc, namely NdFeAs(O1−xFx)
with Tc = 51K [33] and SmFeAs(O1−xFx) with Tc = 55K [34]. These materials are nowadays termed
“1111”-type labeled for their atomic ratios. The crystalline structure of these 1111-type consists of
an alternate stacking of FePn (Pn: pnictogen) and LnO layers. Each FePn layer is composed of a
network of FePn4 tetrahedra and each Fe layer forms a two-dimensional square sublattice.

Also readily discovered were other kinds of Fe-based superconductors, consisting of an alternate
stacking of the same FePn and alkaline-earth layers but different structures, namely the “122”-type

6On the other hand, the isotope effect for Mg is much smaller, signaling that the boron atom vibrations are more
important for superconductivity in MgB2.

7The material, discovered during a systematic research on transparent semiconductors, is isostructural with p-type
oxychalcogenide semiconductors LaCuSO.
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(a) (b) (c) 

Figure 1.5: Characteristics of MgB2: (a) Crystalline structure. Reprinted with permission from [22].
c© IOP Publishing. Reproduced with permission of IOP Publishing. All rights reserved. (b) Fermi
surface. Reprinted with permission from [23]. Copyright 2001 by the American Physical Society. (c)
Temperature dependence of the gap values extracted from scanning tunneling spectroscopy (plots),
and fitted by the BCS gap function ∆(T ) (lines). Reprinted with permission from [24]. Copyright
2002 by the American Physical Society.

such as hole-doped (Ae,K)Fe2As2 with the highest Tc = 38K [35, 36] or electron-doped Ae(Fe,Co)2As2

(Ae: alkaline-earth elements) with the highest Tc of 23K. Among the all Fe-based superconductors,
the 122-type should have been well-studied experimentally because single crystals were successfully
synthesized earlier than other materials. Therefore, the Fermi surface of this material has been quickly
established and understood.

AFeAs (A: alkaline elements), as “111”-type, was discovered with Tc = 18K, where each Ae
element in the 122-type is substituted by two A elements [37]. β − FeSe, as 11-type, consists of the
simplest α−PbO structure and a stacking of tetrahedron layers of FeCh4 (Ch: chalcogen) [38]. This
material exhibits a lower critical temperature of Tc ∼ 8K as grown than its highest one because of
suppression of superconductivity owing to an excess of Fe [39]. Under high pressure or by certain
annealing operations, FeSe exhibits a higher critical temperature of 37 K [40]. Other compounds
consisting of perovskite-like blocking layers have also been synthesized [41, 42], such as Sr2VFeAsO3

(21113-type) and Sr3Sc2Fe2As2O5 (32225-type). They also exhibit comparably high Tc of 37K and
45K, respectively. The crystalline structures of the Fe-based superconductors are summarized in
Fig. 1.6. It is noted that quasi two-dimensional superconducting layers are also found in these
materials, which resemble cuprate superconductors although anisotropy parameter γ in Fe-based
superconductors is contrastively smaller.

The series of Fe-based superconductors were immediately recognized as a new class of unconven-
tional superconductor because they produced a maximum Tc of 56 K which cannot be explained by a
phonon-mediated electron-pairing interaction [46]. The parent phases of Fe-based superconductors are
revealed as anti-ferromagnetic (AFM) order in a spin density wave (SDW) states [47]. Figure 1.7(a)
shows a typical electronic phase diagram of Fe-based superconductors for both electron and hole
doping cases [44]. These materials have presented a novel playground to investigate the magnetic
interactions that lead to pairing in superconductivity and pairing symmetries. In Fig. 1.7(b), pos-
sible gap symmetries in Fe-based superconductors are illustrated, namely s++-wave, s±-wave, nodal
s±-wave, and dx2y2-wave. Note that the s++ and s± states all have the same symmetry that either
do not change sign under rotating the crystal axes by 90◦, whereas the d-wave state changes sign
under 90◦ rotation. Although the gap symmetries in Fe-based superconductors are not conclusive at
this moment, it is emphasized that they depend sensitively on the doping ratio and the presence of
both repulsive and attractive interband couplings. Of all the above-mentioned fundamental proper-
ties of Fe-based superconductors, the most relevance for this thesis is the presence of multiple gaps
and interband couplings. From the Fermi surface of, for example, Ba0.6K0.4Fe2As2 single crystals
shown in Fig. 1.7(c), more than three bands contribute to its superconductivity [45]. Nearly isotropic
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Figure 1.6: Crystalline structures of iron-based superconductors: “1111”-, “122”-, “111”-, “11”-
, “21113”-, and “32225”-type compounds. The top-left schematic represents the top view of the
common layer in iron-based superconductors, i.e., that of either FePn or FeCh (Pn: pnictogen,
Ch: chalcogen). Reproduced with permission from Ref. [43]. Copyright 2012 The Japan Society of
Applied Physics.

(a) 

(b) 

(c) 

Figure 1.7: Characteristics of Fe-122 type superconductors: (a) Typical electronic phase diagram [44].
(b) Gap symmetries [44]. (c) Three-dimensional plot of the superconductivity gap size (|∆|) and Fermi
surface in Ba0.6K0.4Fe2As2 [45]. c© IOP Publishing. Reproduced by permission of IOP Publishing.
All rights reserved.
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superconductivity gaps open simultaneously at the bulk Tc on each Fermi surface sheet with electron
and hole characteristics. Although the most natural interpretation for the pairing order parameter
is an s-wave symmetry, we cannot rule out the possibility of nontrivial relative phases between the
order parameters on the different Fermi surface sheets, which may bring totally different properties
of superconductivity as an intrinsic consequence of multibandness to be discussed later.

1.4 Theories of Multiband Superconductivity

As we have previously stated, multiband superconductors have been widely recognized recently
since the discovery of high-Tc superconductors such as MgB2 and the Fe-based superconductors.
However, it is worth remarking that the theoretical framework for multiband superconductivity was
actually established soon after the publication of the BCS theory, and essentially different properties
to single-band superconductors were uncovered that derive from the interaction between the different
superconducting condensates. In this section, I first introduce these early theories for two-band
superconductivity, and then review recent ones for multi-band superconductors highlighting their
essential properties.8

1.4.1 Early theories of two-band superconductivity

The extension of the BCS theory to two-band superconductivity was undertaken first by H. Suhl
et al [26] to describe superconductivity in transition elements. At that time, the work was apparently
motivated by experimental facts resulting from the small isotope effect, which indicated that the
conventional electron-phonon interaction mechanism was insufficient.

We first introduce the reduced BCS Hamiltonian for two-band superconductivity by analogy with
the single-band BCS theory [26],

H =
∑
k1σ

ξk1c
†
k1σ

ck1σ +
∑
k2σ

ξk2c
†
k2σ

ck2σ

−
∑

k1,k1
′

V11(k1,k1
′)c†k1↑c

†
−k1↓c−k1

′↓ck1
′↑ −

∑
k2,k2

′

V22(k2,k2
′)c†k2↑c

†
−k2↓c−k2

′↓ck2
′↑

−
∑

k1,k1
′

V12(k1,k2
′)c†k1↑c

†
−k1↓c−k2

′↓ck2
′↑ −

∑
k1,k1

′

V12(k2,k1
′)c†k2↑c

†
−k2↓c−k1

′↓ck1
′↑, (1.82)

where ξk1 and ξk2 are the kinetic energies in the first and second band, V11 and V22 are the electron-
electron potentials for intra-band interactions, and V12 for inter-band interactions. As in the single-
band BCS theory, we assume that the summations extend only over k1 and k2 values corresponding
to energies within a distance ±~ωD of the Fermi surface.

Following Bogoliubov’s method for a single-band, we introduce operators γ by linear transforma-
tions indexed by j,

ckj↑ = u∗kjγkj↑ + vkjγ
†
−kj↓,

c†−kj↓ = −v∗kjγkj↑ + ukjγ
†
−kj↓. (1.83)

The gap equations for a finite temperature are obtained in a general form directly,

∆kj = −
∑
k′j

Vjj(kj ,k
′
j)

1− fkj
2εk′j

∆k′j
−
∑
k′l

Vjl(kj ,k
′
l)

1− fkl
2εk′l

∆k′l
. (1.84)

8In the following discussion, we use the term multiband superconductor when the number of bands N contributing
to superconductivity is three or more (N ≥ 3). For simplicity, we shall consider without loss of generality just three
bands (N = 3).
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We here assume that the intraband and interband pairing potentials are approximated in the con-
ventional way,

V11(k1,k
′
1) = −V11,

V22(k2,k
′
2) = −V22,

V12(k1(2),k
′
2(1)) = −V12. (1.85)

For simplicity, we assume an identical cut-off energy of ~ωD for both bands. Thus, Eq. (1.84) becomes

∆j = Nj(0)Vjj∆j

∫ ~ωD

−~ωD

tanh(βEj/2)

2Ej
dξj +Nl(0)Vjl∆l

∫ ~ωD

−~ωD

tanh(βEl/2)

2El
dξl, (1.86)

noting that the ∆j are independent of kj and depend only on the band index j.
As for a single band, the transition temperature is obtained in the limit ∆j → 0. The condition

for a nontrivial solution in Eq. (1.86) is that the determinant of the matrix of coefficients multiplying
the vector ∆j vanishes. That is, ∣∣∣∣ N1V11x− 1 N2V12x

N2V12x N2V22x− 1

∣∣∣∣ = 0, (1.87)

with definition x = ln(1.14~ωD/kBTc). The relation for Tc is obtained by a quadratic equation in x,

ln

(
1.14~ωD
kBTc

)
=
N1V11 +N2V22 ± [(N1V11 +N2V22)2 + 4N1N2V

2
12]1/2

2N1N2(V11V22 − V 2
12)

. (1.88)

Enhancement of Tc

An insightful remark on the critical temperature was given by J. Kondo [48] in that overall critical
temperature Tc increases with the presence of interband couplings.

First, we consider the limit N2 → 0. We thereby have x → 1/N1V11, which recovers the simple
BCS solution. When x is expanded in terms of N2, we have

x =
1

N1V11

(
1− N2V

2
12

N1V 2
11

)
. (1.89)

A smaller value of x gives a higher transition temperature; indeed, Eq. (1.89) indicates that the
overall Tc is always higher with multi-bands than with a single band.

Second, we consider the limit V12 → 0, where we have either x → 1/N1V11 or x → 1/N2V22.
Assuming 1/N1V11 ≤ 1/N2V22, for example, x can also be expanded in terms of V12, yielding

x =
1

N1V11

(
1−N2

V 2
12

V11

1

N1V11 −N2V22

)
. (1.90)

Given N1V11 ≥ N2V22, Eq. (1.89) also indicates Tc increases.
We emphasize this result in our discussions based on the GL theory, which requires validating

close to Tc.

Collective excitation

Another unique characteristic resulting from the presence of interband couplings was proposed
by Leggett, namely the collective excitation (Leggett mode), where the relative phase between the
bands oscillate and propagate in a superconductor [49]. Although we do not discuss this characteristic
here regarding relevance to this thesis, the only remarking is the presence relative phases, which can
first appear in multiband superconductors and arise essentially different property from the single-
band case. The Leggett mode was experimentally observed, for instance, in a typical two-band
superconductor MgB2 [31].



1.4 Theories of Multiband Superconductivity 21

Figure 1.8: Phase diagram for superconductivity order parameters based on a three-band BCS model,
including the TRSB state. Reprinted with permission from [52]. Copyright 2010 by the American
Physical Society.

1.4.2 Time-reversal symmetry breaking (TRSB) in multiband superconductivity

The question “Does the two-band theory suffice as a general multiband theory?” naturally arises.
The answer is “No” when we consider combination of multiple interband couplings required for a
more complete discussion on multiband superconductors with more than three bands contributing.
We shall review the further novel property of multiband superconductors.

In addition to the fact that superconductivity is understood as a spontaneous breaking of the
gauge symmetry, the most intriguing aspect in multiband superconductivity is the possibility that
other symmetry breaking mechanisms may arise. The idea that time-reversal symmetry breaking
(TRSB) in a superconductor with multiple condensations was first proposed by D. F. Agterberg
et al. in view of CeCo2, CeRu2, and LaB6 which have been known as hosts of unconventional
Fermi surface topologies [50, 51]. They assumed the pairing state was caused by the unusual BCS
mechanism in substances of cubic and hexagonal symmetries where several Fermi surface pockets are
centered at or around some high symmetry points of the Brillouin zone. Their conclusion was that the
symmetry imposed on the multiple pocket positions could give rise to a multidimensional nontrivial
superconducting order parameter. More specifically, time-reversal symmetry in the pairing state is
broken, even with s-wave superconductivity.

The TRSB state was invoked recently by V. Stanev and Z. Tešanović inspired by the discovery that
Fe-based superconductors also possess multiple superconducting condensates [52]. They considered
a simple microscopic model with multiple bands connected via repulsive pair-scattering terms, and
thereby found three possible superconducting order parameters, one of which breaks time-reversal
symmetry to relax the frustration between intercomponent couplings, as shown in the phase diagram
in Fig. 1.8. Later on, other pairings such as s+ id symmetry [53, 54] or s+ is symmetry [55] as well
as junctions structures [56, 57] have also been discussed.

Based on the new concept of multiband TRSB superconductivity, various interesting properties
have been intensively studied recently. The TRSB state in principle has two energy-degenerate chiral
ground states analogous to the state in spin-triplet superconductivity. An initial analysis of the GL
free energy revealed a chiral domain structure and associated fractional vortices [58, 59].

Collective excitations in the multiband TRSB superconductivity were also readily studied [60,
61, 62]. Generally, the mass of the Leggett mode is proportional to the strength of the interband
couplings, and in multiband superconductivity, heavy mass makes excitation and detection difficult.
However, a surprising feature was pointed out that the mass of the Leggett mode becomes small
close to the TRSB transition and vanishes at the transition point, making it stable and detectable by
Raman spectroscopy, for example, and would serve as a ‘smoking gun’ for the TRSB transition [63].
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1.4.3 Multicomponent GL theory for TRSB superconductivity

As introduced in Sec. 1.1, the GL theory is a powerful approach to discuss magnetic properties
or stability of states. Motivated by novelties in multiband TRSB superconductivity, this section is
devoted to reviewing the principal framework used in this thesis. Termed the multicomponent GL
theory, a stability condition and phenomenological properties of the TRSB state are discussed as
performed by X. Hu and Z. Wang [64].9

The GL free-energy density functional for a multicomponent superconductor is derived from the
BCS theory in the same way as with two components [65, 66],

f =
∑

j=1,2,3

[
αj |ψj |2 +

βj
2
|ψj |4 +

1

2mj

∣∣∣(~
i
∇− 2e

c
A)ψj

∣∣∣2]−∑
j<k

γjk(ψjψ
∗
k + c.c.) +

1

8π
(∇×A)2,

(1.91)

where summations run over the number of components. In the following discussion, a three-component
system is considered for simplicity and without loss of generality. The coefficients are conventionally
defined as

αj(T ) = αj(0)

(
T

Tcj
− 1

)
αj(0) > 0 (1.92)

where Tcj ’s are the critical temperatures for individual components without the couplings, and βj ’s
are positive constants. γjk’s stand for the intercomponent couplings and can be either positive or
negative, corresponding to attractive or repulsive coupling, respectively.

As illustrated in Fig. 1.9, attention is paid to the combination of intercomponent coupling param-
eters. If γ12γ23γ13 > 0 holds, as for the time-reversal symmetry reserved (TRSR) state, the system
behaves as a single-band superconductivity.10 In contrast, γ12γ23γ13 < 0 represents a TRSB state on
which we now focus. Hereafter, we treat explicitly a system where all γjk’s are negative, noting that
a simple gauge transformation in Eq. (1.91) links it to the other possible instances.

The multicomponent GL equations are derived from the free-energy density functional in Eq. (1.91)
by a variational method,

αjψj + βj |ψj |2ψj +
1

2mj

(
~
i
− 2e

c
A

)2

ψj − γjlψl − γjnψn = 0, (1.93)

and for supercurrents,
c

4π
∇×∇×A =

∑
j

2e~
mj
|ψj |2

(
∇φj −

2π

Φ0
A

)
, (1.94)

where j, l, n are indices of the components and φj the phase of the order parameter.

Stability condition of the TRSB state

Around the critical point, which itself is to be determined, the order parameters in the bulk follow
the linearized equations of Eq. (1.93), α1 −γ12 −γ13

−γ12 α2 −γ23

−γ13 −γ23 α3

ψ1

ψ2

ψ3

 = Q ·Ψ = 0, (1.95)

with coupling matrix Q. The critical temperature Tc in composite superconductivity is given by the
highest temperature where the determinant of Q becomes zero,

α1α2α3 − 2γ12γ23γ13 − α1γ
2
23 − α2γ

2
13 − α3γ

2
12 = 0. (1.96)

9This section is reprinted excerpt with permission from [64]. Copyright 2012 by the American Physical Society.
10The GL theory for TRSR superconductivity is discussed in Appendix B.
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(a) (b) (c) (d) 

Figure 1.9: Schematics of the phase configuration for the three-component system. The cases (b) and
(d) represent the TRSB state with nontrivial intercomponent phases φjk ≡ φk − φj 6= 0, π, whereas
the cases (a) and (c) the TRSR state with trivial values φjk = 0, π.

According to Sylvester’s criterion11 [67], one has αj > 0 and αjαk − γ2
jk ≥ 0 at Tc. This is

appropriate because the critical temperature in composite superconductivity is above those for each
single component, and not below those in the two-component superconductivity, despite negative
couplings (see Sec. 1.4). If Eq. (1.96) has a single root at T = Tc, or equivalently, if there are two
independent vectors in the coupling matrix Q, the ratios between the order parameters given by
Cramer’s rules for the components of the matrix Q should be real. The order parameters for three-
component superconductivity can then be taken as real numbers, apart from a common phase factor,
as for single- and two-component superconductivity. Equation (1.96) has a doubly degenerate root,
or equivalently, there is only one independent vector in Q, when

α1α2 − γ2
12 = α1α3 − γ2

13 = α2α3 − γ2
23 = 0 (1.97)

at Tc, because ∑
j<k

εjεk =
∑
j<k

(αjαk − γ2
jk) (1.98)

with εj the eigenvalues of Q and each term in the second summation nonnegative. The single indepen-
dent vector in the coupling matrix Q leaves room for complex order parameters in Eq. (1.96) despite
the fact that all parameters in Q are real. It is clear that this situation occurs in a system with three
or more components, and hence has no counterpart in single- or two-component superconductivity.
Equation (1.97) is the first condition for a TRSB state specified by complex order parameters. It is
easy to see that relations in Eq. (1.97), as well as the associated ones αjγkl + γjkγkl = 0, correspond
to single zeros, because γjk 6= 0. One finds,

αkαl − γ2
kl

αjαl − γ2
jl

=
αk + γjkγkl/γjl
αj + γjkγjl/γkl

=

(
γkl
γjl

)2

(1.99)

at T = Tc.
The order parameters in the bulk for T . Tc are given byα1 + β1ψ

2
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2
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Setting ψ1 real, which is always possible, the imaginary parts of ψ2 and ψ3 obey[
α2 + β2ψ

2
2 −γ23

−γ23 α3 + β3ψ
2
3

] [
Im(ψ2)
Im(ψ3)

]
=

[
0
0

]
. (1.101)

11Sylvesters criterion is a necessary and sufficient criterion to determine whether a Hermitian matrix M is positive-
definite, namely all the principal minors of M should be nonnegative.
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Therefore, for complex order parameters, one has α3β2|ψ2|2 + α2β3|ψ3|2 ' −α2α3 + γ2
23 up to O(t)

with t ≡ (Tc − T )/Tc. In the same way, one obtains two other similar relations, and thus 0 α3β2 α2β3

α3β1 0 α1β3

α2β1 α1β2 0

|ψ1|2
|ψ2|2
|ψ3|2

 = A′ ·Ψ =

−α2α3 + γ2
23

−α1α3 + γ2
13

−α1α2 + γ2
12

 . (1.102)

We then arrive at the following temperature dependence of the order parameters up to O(t),

|ψj |2 ' −
αj + γjkγkl/γkl

βj
. (1.103)

The relation α1 − γ12ψ2/ψ1 − γ13ψ3/ψ1 = 0 from Eq. (1.95) is then equivalent to

α1√
β1

+
α2√
β2
eiφ21 +

α3√
β3
eiφ31 = 0, (1.104)

for T . Tc, where φ21(φ31) is the phase difference between ψ2(ψ3) and ψ1. Clearly, the condition for a
stable state of complex order parameters is equivalent to that of a triangle formed by three segments:

αj√
βj

+
αk√
βk

>
αl√
βl
, (1.105)

for T . Tc with j 6= k 6= l. The above result can be derived from any of the three relations in
Eq. (1.95), as there is only one independent vector there. A phase diagram for the equilibrium
state for a three-component superconductor with frustrated intercomponent couplings is displayed in
Fig. 1.10(a).

The relations (1.97) and (1.105) constitute the complete set of conditions for the stability of a
state with complex order parameters, i.e., TRSB superconductivity. The special case with isotropic
parameters discussed previously satisfies these conditions. A phase transition at a lower temperature
between the TRSB and TRSR states is possible for appropriate temperature-dependent parameters
(see Fig. 1.10(a)), where interesting physics is expected.

Properties of multicomponent TRSB superconductivity

Based on the multicomponent GL theory in the previous section, phenomenological properties in
the TRSB state were also investigated in Ref. [64].

To analyze the coherence length, we concentrate on instances where the order parameters have
an isotropic bulk value and equal effective masses in two of the three components. We give an
infinitesimal distortion to one of the components and estimate the propagation of this distortion in
the system. Unique to the present TRSB state, the distortion propagates in a manner different from
that in isotropic components. Therefore, an essentially anisotropic system should be treated, where
α1 = α2 = α3 ≡ α, β1 = β2 = β3 ≡ β and γ12 = γ23 = γ13 ≡ γ yielding an amplitude for the order
parameter in the bulk of |ψj | =

√
−(α+ γ)/β ≡ ψ0 with the critical point at α + γ = 0 and phase

differences of φ21 = −φ31 = 2π/3.
As displayed in Fig. 1.10(c), an infinitesimal stretch in the component with a possibly different

effective mass (m1) ψ1 = (1 + δ1)ψ0 at x = 0 causes distortions in the other two components with the
same effective mass (m23) ψ2 = (1 + δ2)ψ0 exp[i(2π/3 + δ3)] and ψ3 = (1 + δ2)ψ0 exp[i(2π/3 + δ3)].
All the distortions decay exponentially into the bulk (x→∞) with a length scale of the order of the
coherence length. In the present TRSB state, the distortions in the amplitudes and phases generally
are dependent one with the other, because the phase differences are determined by the amplitudes
(see Eq. (1.104)); this is in contrast with superconductivity without TRSB.

The GL equation for ψ1 with spatial variation

α1ψ1 + βψ2
0ψ1 − γ(ψ2 + ψ3) =

~2

2m1

∂2ψ1

∂x2
(1.106)
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(a) (b) 

(c) 
I II 

Figure 1.10: (a) Phase diagram for a three-component superconductor with stable TRSB supercon-
ductivity at the central part and TRSR superconductivity at the corners. (b) Two chiral TRSB
states with intrinsically complex order parameters of a three-component superconductor in a Joseph-
son junction with a constriction structure. (c) Definitions of distortions in complex order parameters
with equal bulk amplitude (left), and two characteristic distortions of mode-I and mode-II (right).
Reprinted with permission from [64]. Copyright 2012 by the American Physical Society.

is reduced to

(α+ 3βψ2
0)δ1 + γδ2 +

√
3γδ3 =

~2

2m1

∂2δ1

∂x2
, (1.107)

where only the lowest-order infinitesimal distortions are considered. Similarly, one has the following
two equations for the other two components:

γ

2
δ1 +

(
α+ 3βψ2

0 +
γ

2

)
δ2 −

√
3γ

2
δ3 =

~2

2m23

∂2δ2

∂x2
, (1.108)

√
3γ

2
δ1 −

√
3γ

2
δ2 +

(
α+ βψ2

0 −
γ

2

)
δ3 =

~2

2m23

∂2δ3

∂x2
. (1.109)

(1.110)

For exponentially decaying distortions δj = Aj exp(−
√

2x/ξ), one has−2α− 3γ − ~2ξ−2

m1
γ

√
3γ

γ/2 −2α− 5γ/2− ~2ξ−2

m23
−
√

3γ/2√
3γ/2 −

√
3γ/2 −3γ/2− ~2ξ−2

m23


A1

A2

A3

 =

0
0
0

 , (1.111)

where the bulk order parameter ψ0 =
√
−(α+ γ)/β has been included. The coherence length ξ of the

system is determined by the zero determinant of the above coupled linear equations. Interestingly,
associated with the doubly degenerate roots at Tc in the present TRSB state, two divergent ξ’s exist
as solutions to the above equation:

~2ξ−2

−(α+ γ)m1
=

3m23

2m1

2 + m23
m1
±
√

(m23
m1

)2 − 4m23
3m1

+ 4
3

1 + 2m23
m1

, (1.112)
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up to O(t).
The ratios between the Aj ’s (the distortion amplitudes) are given by

A2

A1
= − R

2(3− 2R)
,

A3

A1
= −
√

3(2−R)

2(3− 2R)
, (1.113)

where R is defined by the right-hand side of Eq. (1.112). For m1 = m23, one finds that the solution
with minus sign in Eq. (1.112) is specified by R = 1, and A2/A1 = −1/2 and A3/A1 =

√
3/2 (mode-I

as shown in Fig. 1.10(c)), whereas the solution with plus sign in Eq. (1.112) is specified by R = 2, and
A2/A1 = 1 and A3/A1 = 0 (mode-II as shown in Fig. 1.10(c)). Whereas mode-II is conventionally
associated with just variations in the amplitudes of the order parameters, known as superconductivity
without TRSB, mode-I is novel in which these variations are coupled and is specific to the TRSB
state.

Other quantities for the present superconductivity are obtained straightforwardly. The London
penetration depth λ is obtained from the multicomponent GL equations for supercurrent Eq. (1.94),

λ−2 =
4π(2e)2

c2

(
−1− γ12γ13

α1γ23

)∑
j

αj
βjmj

. (1.114)

The thermodynamic critical field Htc is derived using the form of the order parameters in Eq. (1.103),

H2
tc

8π
=

1

2

(
1 +

γ12γ13

α1γ23

)2∑
j

α2
j

βj
. (1.115)

Additionally, the nucleation field Hn at which superconductivity appears upon lowering the magnetic
field is found to be

Hn =
Φ0

2π

−1− γ12γ13/α1γ23∑
j<k L

2
jL

2
k

∑
j

L2
j +

√∑
j

L4
j −

∑
j<k

L2
jL

2
k

 , (1.116)

with L2
j = ~2/2αjmj .

As introduced in Sec. 1.1, superconductors are classified as either type-I or type-II by the condition
Hn < Htc or Hn > Htc, respectively. In single-component superconductors, or in general supercon-
ductors with TRSR, the ratio between the these two fields is given by

√
2λ/ξ. Therefore, the GL

parameter κ ≡ λ/ξ = 1/
√

2 separates type-I and type-II superconductors. In a superconductor with
TRSB, clearly Htc 6= Φ0/2

√
2πξλ and Hn 6= Φ0/2πξ

2 based on Eqs. (1.115) and (1.116). This conclu-
sion implies that the GL parameter κ is insufficient in classifying the present TRSB superconductivity,
and magnetic properties such as vortex states remained unclear.

1.5 Summary: Vortex Matter in Unconventional Superconductors

In this introductory chapter of this thesis, I have highlighted;

• Principal magnetic properties and vortex states in conventional superconductors;

• Multibandness and dimensionality in unconventional superconductors; and

• Theoretical framework for multiband (or multicomponent) superconductors.
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Table 1.1: Superconductivity characteristics and electronic structures of cuprates, MgB2, and Fe-
based superconductors [43].

Cuprates MgB2 Fe-based

Relevant elements to superconductivity Cu 3dx2−y2–O 2pα B 2pσ, 2pπ Fe 3d

Number of condensates (N) N = 1 N = 2 N ≥ 3

Pairing mechanism Spin fluctuation Phonon Spin/Orbital fluctuation

Pairing symmetry dx2−y2 s s±/s++

Electronic state of parent material AFM Mott insulator Paramagnetic metal AFM metal (semi-metal)

Anisotropy parameter γ 100 ∼ 102−3 1 ∼ 5 1 ∼ 10

To begin, I introduced the two fundamental theories, i.e. GL and BCS theories. Based on the GL
theory, I have focused on the magnetics properties in superconductors, and especially on the analytical
derivation of the vortex state, and how it plays an important role in the magnetic properties. I have
also reviewed the BCS theory to discuss the temperature dependence of the gap function, and how
the GL formalism is derived.

Next, I reviewed the current understanding of relevant unconventional superconductors, namely
cuprates, MgB2, and Fe-based superconductors, which are noted for typically high Tc. Table 1.1
summarizes the features of the electronic structures and physical properties of them. For the cuprate
superconductors, superconductivity arises when either hole or electron carriers are doped in the
CuO2 plane. The Fermi level exists in the Cu 3dx2−y2-O 2pα degenerate band, and thus only a single
electronic band is involved in superconductivity. In contrast, Fe-based superconductors have been
found to have five Fe 3d bands crossing the Fermi level resulting in multiband superconductivity
according to band calculations and experimental studies. MgB2 was introduced as a well-established
two-band superconductor in which 2pσ and 2pπ bands in boron are involved in the Fermi level.

Finally, I reviewed early and recent theories for multiband superconductors, and emphasized that
a straightforward extension performed in the two-band case is not appropriate for the multiband case
when the interband couplings are frustrated, namely time-reversal symmetry breaking (TRSB). The
multiband TRSB superconductor is essentially novel where both gauge and time-reversal symmetries
are spontaneously broken. Based on such exotic superconductors, intensive studies have been un-
dertaken within both the BCS and GL theories, and novel characteristics in the multiband TRSB
superconductor have been investigated. However, magnetic properties such as vortex states have not
been well studied owing to the complexity of the order parameters, although the multicomponent GL
theory indeed indicates that TRSB superconductivity cannot be classified as either type-I or type-II
by the conventional GL parameter κ.

I shall thereby discuss the following issues as objectives of this thesis:

1. To characterize vortex structure in a multiband TRSB superconductor

2. To explore novel magnetic properties and classification of multiband TRSB superconductors

3. To suggest experimental methods for identifying a TRSB state

For these objectives, I employ numerical approaches based on the multicomponent GL theory. In
Chapter 2, the temperature dependence of the TRSB stability condition is discussed based on the
BCS gap functions; this is useful for constructing H-T phase diagrams. Also, I explain principal
parameterization used in numerical simulations. In Chapter 3, vortex structure in the multiband
TRSB superconductor is discussed to clear item 1 above. In Chapter 4, novel vortex states and H-T
phase diagrams of multiband TRSB superconductivitor are discussed in response to items 2 and 3. In
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Chapter 5, typical magnetization curves (M -H curves) are modeled which can be easily approached
experimentally in fulfilling item 3 as well.

Moreover, dimensionality is also an interesting characteristic in the recently discovered unconven-
tional superconductors, which commonly consist of layered structure. The strength of the dimension-
ality is typically characterized by the anisotropy parameter γ ≡ ξab/ξc, where ξc(ξab) is the coherence
length perpendicular (parallel) to the superconductivity planes. In the (quasi) two-dimensional su-
perconductors, the conventional scheme describing vortices in an isotropic systems is no longer valid
because the vortex structure is strongly related to the coherence length.

A typical but unambiguous example is the cuprate superconductor, which exhibits significantly
large anisotropy parameter of order γ = 10 ∼ 100. Indeed, the vortex states in the cuprate supercon-
ductors have been investigated for some time and various vortex states and phase diagrams are now
well established. Whereas all these studies were performed for vortices perpendicular fields to the
planes (H ⊥ ab), vortex states in a parallel field (H ‖ ab) are in contrast unclear although theoretical
studies indicate novel vortex states.

In this thesis, such vortex states in structurally layered systems, i.e. Josephson vortex (JV),
are discussed motivated by the experimental results observing the dynamics of JVs. I then purpose
to identify novel JV states by means of a comparative study between numerical simulations and
experimental approaches.



Chapter 2

Temperature Dependence of the TRSB
State

2.1 Stability Condition of the TRSB State with Gap Functions
∆j(T )

A stability condition for the TRSB state was discussed in Ref. [64] based on the multicomponent
GL theory, which is valid near the critical temperature Tc. In this section, We employ the temperature-
dependent BCS gap functions to explore the stability condition of the TRSB state for the finite-
temperature regime which is useful when constructing H-T phase diagrams.

The BCS Hamiltonian for single-band superconductivity is extended straightforwardly to the
multiband case [26],

H =
∑
j≤N

[∑
kj ,σ

ξkjc
†
kjσ

ckjσ −
∑
kj ,k′j

Vjjc
†
kj↑c

†
−kj↓c−k′j↓ck′j↑

]
−

∑
j 6=l,j,l≤N

∑
kj ,kl

Vjlc
†
kj↑c

†
−kj↓c−k′l↓ck

′
l↑, (2.1)

with N ≥ 3. The second and third terms correspond to the intra- and inter-band couplings, respec-
tively. The coupled self-consistent BCS gap equations for multiband superconductors are derived
straightforwardly using a mean-field approach [6],

∆j =VjjNj(0)∆j

∫ ~ωD

−~ωD

dξj
2Ej

tanh
( Ej

2kBT

)
+
∑
j 6=l

VjlNl∆l

∫ ~ωD

−~ωD

dξl
2El

tanh
( El

2kBT

)
, (2.2)

with ∆j = −
∑

kj
Vjj〈c−kj↓ckj↑〉 −

∑
j 6=l
∑

kl
Vjl〈c−kl↓ckl↑〉 and Ej =

√
ξ2
j + |∆j |2; here, an identical

cut-off energy ~ωD is taken in all bands for simplicity. The coupled BCS equations for the three-band
case are rewritten, g11 − f1(E1, T ) g12 g13

g12 g22 − f2(E2, T ) g23

g13 g23 g33 − f3(E3, T )

 ∆1

∆2

∆3

 =

 0
0
0

 , (2.3)

where

fj(Ej , T ) = Nj(0)

∫ ~ωD

−~ωD

dξj
2Ej

tanh

(
Ej

2kBT

)
, (2.4)
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and gjl = [V−1]jl with

V =

 V11 V12 V13

V12 V22 V23

V13 V23 V33

 .

Let us focus on the solution of Eq. (2.3) with complex gap functions that specify a TRSB state,
where there is only one independent vector in Eq. (2.3). Clearly, setting ∆1 real, which is always
possible, one has the following equation,[

g22 − f2(E2, T ) g23

g23 g33 − f3(E3, T )

] [
Im(∆2)
Im(∆3)

]
=

[
0
0

]
. (2.5)

For the nontrivial solution, one obtains a relation for the absolute values of the gap functions:

[g22 − f2(E2, T )] [g33 − f3(E3, T )] = g2
23. (2.6)

Similarly, one has two other relations. The three relations then yield

[gjj − fj(Ej , T )]2 =
g2
jlg

2
jn

g2
ln

, (2.7)

where j 6= l 6= n. Noticing that, in the matrix in Eq. (2.3), all diagonal terms (gjj−fj) take the same
sign as seen from Eq. (2.6), and there is only one independent vector, one can show that (gjj − fj)
and gjlgjn/gln have the same sign. The relations Eq. (2.7) therefore are rewritten as

fj(Ej , T ) = gjj −
gjlgjn
gln

. (2.8)

Interestingly, they take the same form as for the single-band case, except that the intraband coupling
is renormalized by the interband couplings.

There is only one independent vector in the matrix in Eq. (2.3),

∆1

g23
+

∆2

g13
+

∆3

g12
= 0, (2.9)

which actually permits complex solutions for Eq. (2.3). From Eq. (2.9), to find a complex solution,
one needs to form a triangle using the three segments |∆j(T )/gln|, and therefore∣∣∣∣∆j(T )

gln

∣∣∣∣+

∣∣∣∣∆l(T )

gjn

∣∣∣∣ > ∣∣∣∣∆n(T )

gjl

∣∣∣∣ . (2.10)

While varying the temperature, one of these three inequalities may be broken, whereby the system
makes a transition to a TRSR state where phase differences between the order parameters take trivial
values, i.e. 0 or π. More specifically, the TRSB-to-TRSR state transition takes place when one of the
inequalities is replaced by an equality∣∣∣∣∆j(T )

gln

∣∣∣∣ =

∣∣∣∣∆l(T )

gjn

∣∣∣∣+

∣∣∣∣∆n(T )

gjl

∣∣∣∣ . (2.11)

The critical temperature of a TRSB superconductor can be derived from Eq. (2.8) by setting
∆j = 0,

Nj(0) ln
2eγ~ωDj
πkBTc

= gjj −
gjlgjn
gln

, (2.12)

with the Euler constant γ = 0.577215 · · · . In the following discussion, we focus on multiband super-
conductors with a TRSB state as an equilibrium bulk state.

Figure 2.1 shows results from numerical calculations based on the gap functions obtained using
the mean-field approximation discussed here. In Fig. 2.1(a), the three gaps functions are equivalent
as in the single-band BCS model with ∆(0)/kBTc = 1.76. In contrast, in Fig. 2.1(d), kinks appear
in the temperature dependence of the three ∆j(T ) at which the inequality Eq. (2.10) is broken (see
Fig. 2.1(f)).
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(a) 

(c) 

TRSB TRSB TRSR 

(b) 

(d) 

(e) 

(f) 

Figure 2.1: Temperature dependence of gap functions ∆j(T ) obtained from numerical calculations.
Both |∆j(T )| and T are normalized by the overall critical temperature Tc. Parameters are given
as (a-c) complete isotropic system: (V12, V23, V13) = (−0.2,−0.2,−0.2) and (d-f) anisotropic system:
(V12, V23, V13) = (−0.2,−0.18,−0.21) for the interband couplings, with identical intraband couplings
V11 = V33 = V33 = 0.5 and density of states Nj(0) = 0.5. Panels (a, d) and (b, e) are amplitude and
phases of gaps (The phase of the first-band is fixed as φ1 = 0). Panels (c, f) show the stability of the
TRSB state in terms of the inequality relation |∆1/g23| − |∆2/g13| − |∆3/g12| < 0.



32 Temperature Dependence of the TRSB State

2.2 Derivation of Multicomponent GL Equations

In focusing on the behavior of the gap functions sufficiently close to the overall Tc, the problem
can be stated in terms of the GL formalism. By expanding the coupled BCS equations in Eq. (2.3)
near Tc in the same way as in Sec. 1.2, we obtain the multiband version of the GL equations (except
for gradient terms),(

gjj −Nj(0) ln
2eγ~ωD
πkBT

)
∆j +

7ζ(3)Nj(0)

16(πkBTc)2
|∆j |2∆j + gjl∆l + gjn∆n = 0, (2.13)

with ζ(3) the Riemann zeta-function. By comparing with the conventional expression for the GL
equations obtained from Eq. (1.91) and taking the order parameters as ψj = ∆j [65, 66, 59, 64, 68],
one has

αj(T ) = −
[
Nj(0) ln

2eγ~ωD
πkBT

− gjj
]
,

βj =
7ζ(3)Nj(0)

16(πkBTc)2
,

γjl = −gjl. (2.14)

Additionally, the mj ’s can be found in the same way as for single-band superconductors by neglecting
the cross terms between different bands, as done in the other works [65, 66, 59, 64, 68].

2.3 Parameterization for Numerical Simulation

In exploring the magnetic properties in multicomponent TRSB superconductors, an analytic
treatment of the vortex states for a TRSB superconductor is very difficult because amplitudes and
phases of the order parameters are spatially intertwined; hence, a numerical approach is taken. As
the parameterization in numerical simulations is always an important consideration, we begin with a
discussion of our choice of numerical parameters in connection with analytical solutions.

Recalling the discussion in Sec. 1.4.3 of the thermodynamic field Htc and nucleation field Hn in a
TRSB superconductor, we here consider a simple case, namely that the second and third bands are
the same but differ from the first band. In this case, the two characteristic fields are rewritten as

Htc = 2

√
2π

β1

(
− α1 −

γ12γ13

γ23

)(
1

2
+
r2
α

rβ

)1/2

, (2.15)

Hn = 2κ1

√
2π

β1

(
− α1 −

γ12γ13

γ23

)
rαrm + 2 + |rαrm − 1|

2 + 1/rαrm
, (2.16)

with rα = α2,3/α1, rβ = β2,3/β1, rm = m2,3/m1 and κ1 = (m1c/2e~)
√
β1/2π as a material-dependent

parameter for the first component.

As the simplest but nontrivial case, we set rα = 1, rβ = 1 and γ12 = γ23 = γ13 corresponding to
an isotropic bulk state, and vary the mass ratio rm between 0 and 1.1 In this case, the ratio between
the nucleation and thermodynamic fields is

ρ = Hn/Htc = κ1
3rm

2rm + 1

√
2

3
. (2.17)

1To see the magnetic response of the intercomponent phases, it is convenient to focus on the regime rm < 1 where
the second and third components become smaller than the first, and the TRSB state is suppressed by the magnetic
field; the response cannot be seen easily when rm > 1 and the second and third components are equivalent.
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(a) (b) 

TRSR TRSB TRSB 

Figure 2.2: Temperature dependence of the order parameters ψj in the bulk, represented in polar
form with (top) amplitude |ψj | and (bottom) phase φj , obtained using a TDGL method with inter-
component couplings (a) isotropic case: (γ12, γ23, γ13) = (−0.3,−0.3,−0.3), and (b) anisotropic case:
(γ12, γ23, γ13) = (−0.32,−0.3,−0.28).

As for a single-component superconductor, the magnetic responses of the multicomponent supercon-
ductors change drastically across ρ = Hn/Htc = 1, which corresponds to a characteristic value of
κ1

κ∗1 =
2rm + 1

3rm

√
3

2
. (2.18)

Hereafter, we perform our numerical study by varying the value of κ1.2

For our numerical calculation based on the multicomponent GL theory, a time-dependent Ginzburg-
Landau (TDGL) method is employed. Figure 2.2 shows the temperature dependence of the order
parameters in the bulk using the TDGL method. As shown in Fig. 2.2(a), the complete isotropic
case preserves the TRSB state over the whole temperature regime up to Tc. In the TDGL calculation
used in the following discussions, the system temperature is set at T = 0.97Tc where the GL theory
is valid. Note that as shown in Fig. 2.2(b), when the bulk character is anisotropic, the TRSB state
becomes unstable near Tc. As I explore the magnetic properties in a TRSB superconductor using the
multicomponent GL theory near Tc, such anisotropic bulk cases are neglected for simplicity.

2Our these parameterization does not affect the bulk values, but establishes the response to the fields which is the
aspect of greater interest.
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Chapter 3

Unconventional Vortex State in
Multicomponent TRSB
Superconductors

As introduced in Chap. 2, the TRSB state emerges in the system of multiple order parameters with
frustrated inter-component couplings, where phase differences among order parameters are neither
0 nor π. Based on the multicomponent GL theory for the TRSB state, it has been indicated that
there are more than two coherence lengths diverging at Tc, and the nucleation field Hn and the
thermodynamic field Htc have been derived analytically [64]. It is found that the well known GL
number κ = λ/ξ = 1/

√
2 is not appropriate any more for categorizing the TRSB superconductors.

In this chapter, we numerically investigate vortex states in the TRSB superconductors by adopt-
ing the time-dependent Ginzburg-Landau (TDGL) approach extended to multi-component system,
focusing on the vicinity of the critical temperature where the GL approach is justified. We first ana-
lyze the structure of a single vortex, and compare it within that in single-component superconductors.
We then investigate the stable configuration of multiple vortices.

For the TDGL calculation here, we obey the condition discussed in Chap. 2 based on the ratio
between Htc and Hn. The parameters which decide bulk properties are given simply as α1 = α2 =
α3, β1 = β2 = β3 and γ12 = γ23 = γ13, but only masses are parameterized as m2 = m3 = rm ·m1

with 0 < rm < 1. For these parameters, the amplitudes of three order parameters are equivalent,
and phase differences are 2π/3 in the bulk state. For ρ ≡ Hn/Htc < 1, type-I superconductivity
appears associated with the first-order transition from the Meissner state to the normal state. While
for ρ > 1, penetration of vortices into a bulk sample is expected. To investigate vortex solutions
by the TDGL method, a periodic boundary condition is adopted to fix the number of vortices in a
system (See App. A for details).

This chapter is partly reproduced from; Y. Takahashi, Z. Huang and X. Hu, Physica C 493, 82
(2013). Copyright 2013 Elsevier B.V.

3.1 Single-Vortex Solution

Using the TDGL method, single-vortex structures in the TRSB superconductor are demonstrated.
We here consider the two cases that the mass ratio rm is taken as rm = 1 and rm = 0.3, with
threshold value κ∗1 ≈ 1.22 and κ∗1 ≈ 2.18, respectively. For the present TDGL calculation, the
material parameter κ1 is fixed as κ1 = 2.5.

Figure 3.1 shows the TDGL result for single-vortex solution. Parameters are taken as κ1 =
2.5, γjk = −0.3|α10|, and T = 0.97Tc. To characterize the vortex structures quantitatively, I
try to fit the order parameters by f(r) ≈ tanh (r/ξ) and the magnetic flux density by b(r) ≈
Φ0/(2πλ

2)K0(r/λ), as discussed in Sec. 1.1 for for single-component superconductors. It is clearly

http://www.sciencedirect.com/science/article/pii/S0921453413001408
http://www.sciencedirect.com/science/article/pii/S0921453413001408


36 Unconventional Vortex State in Multicomponent TRSB Superconductors

(c) (d) (e) 

(a) (b) 

Figure 3.1: Single vortex structure in a multicomponent TRSB superconductor of isotropic mass ratio
(rm = 1). Parameters are given as κ1 = 2.5, γjk = −0.3|α10| and T = 0.97Tc. (a) Vortex structure
in radial direction denoting TDGL results (marks), fittings (lines) and deviation of intercomponent
phase (φ23 = φ3 − φ2) from 2π/3 (stem plots). |ψj | and φ23 are normalized by the bulk values, and
Bz is normalized by the value at the center of vortex core. (b) Enlarged view of panel (a) near bulk
values of order parameters. Bottom panels represent the simulation boxes for (c) Bz, (d) |ψ1| and (e)
φ23.

seen that good agreements are achieved with ξ = 2.9 and λ = 3.4. Because the fitting function for the
magnetic field density b(r) is applicable at the region where order parameters are almost recovered to
bulk values, the fitting result seems acceptable with cut-off at r ∼ ξ. The phase differences between
the three components hold the bulk value of 2π/3 in the whole space. Therefore, the vortex structure
in the isotropic system is essentially same as that in conventional single-component superconductors.

In contrast, the vortex structure in the anisotropic system of rm = 0.3 in Fig. 3.2 shows differences
from the isotropic case. We obtain two recovery lengths of order parameters with ξ1 ≈ 3.1 and
ξ23 ≈ 3.9 for respectively |ψ1| and |ψ2,3|, and a penetration depth of the magnetic field with λ ≈ 2.5.
Actually, as seen in the Fig. 3.2(b), the amplitudes of order parameters cannot be fitted by the
functions away from the vortex core. Additionally, the phase difference between second and third
order parameters deviates from the bulk value of 2π/3 as indicated by the stem plots. Due to the
magnetic flux density in the vortex core, the order parameters are suppressed with coupled distortions
of amplitudes and phases.

We hereby characterize that there are multiple length scales, namely recovery lengths of each
order parameter |ψj |, phase modulation δφ23 and penetration depth λ. Figure 3.3 shows temperature
dependence of the multiple length scales for the anisotropic mass ratio of rm = 0.3. It is notable that
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(a) (b) 

(c) (d) (e) 

Figure 3.2: Same as Fig. 3.1 except for rm = 0.3.
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Figure 3.3: Temperature dependence of multiple length scales diverging up to the critical temperature
Tc as ∝ (1− T/Tc)

−1/2. Parameters are rm = 0.3 and κ1 = 2.5.

(a) (b) (c) 

Figure 3.4: 8-vortex solution in the isotropic system rm = 1 (κ∗1 ≈ 1.22) calculated with κ1 = 2.0. (a)
Magnetic induction Bz. (b) Amplitudes of order parameters |ψj | (|ψ1| = |ψ2| = |ψ3| all same here).
(c) Spatial profiles of |ψj | and Bz in the x-direction as indicated by the red line in (a) and (b).

in addition to the coherence length ξj and also penetration depth λ, we have another length scales
associated with phase modulation between components, which are divergent with temperature up to
Tc.

3.2 Multi-Vortex Solution

We next discuss interaction between vortices in a TRSB superconductor with performing TDGL
calculations with multiple vortex numbers. Figure 3.4 shows a result of multi-vortex configurations for
the isotropic system of (rm = 1) where conventional vortex structure is confirmed as seen in Fig. 3.1.
As expected, a typical vortex-lattice configuration can be found same as that in single-component
superconductors. Such a vortex-lattice configuration can be seen any κ1 values with κ1 > κ∗1.

On the other hand, interesting vortex configuration is found for the anisotropic system of rm = 0.3.
Fig. 3.5 shows the results for κ1 = 2.25 which is slightly above κ∗1 ≈ 2.18 for this mass ratio. As
seen in Fig. 3.5 (b) for the order parameters, eight separated vortices clearly form a “cluster”, which
indicates that the vortex-vortex interaction is attractive in long range and repulsive in short range.
It is noted for Fig. 3.5(a), referring to the magnetic flux density, tjat separation of magnetic fluxes
is obscure. This is probably corresponding to a larger penetration depth than the distances between
neighboring vortices. Figure 3.5(c) refers to the profiles of the vortices across the x-axis direction. It
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(a) (b) (c) 

Figure 3.5: 8-vortex solution in the anisotropic system rm = 0.3 (κ∗1 ≈ 2.18) calculated with κ1 = 2.25.
(a) Magnetic induction Bz. (b) Amplitudes of order parameters |ψj |. (c) Spatial profiles of |ψj | and
Bz in the x-direction as indicated by the red line in (a) and (b).

(a) (b) (c) 

Figure 3.6: Same as Fig. 3.5 except for κ1 = 2.1.

is obvious that the amplitudes of order parameters recover to finite values at the center of the domain
region.

For comparison, we present in Fig. 3.6 the results for κ1 = 2.1 which is slightly below κ∗1 = 2.18.
One finds a giant vortex state with N = 8 vorticity which indicates the type-I nature. In the normal
region, the order parameters are completely suppressed by the magnetic field as seen in Fig. 3.6(c),
in sharp contrast with that in Fig. 3.5(c).

3.3 Summary

In this chapter, we have numerically investigated both single and multiple vortex structures in
the TRSB superconductivity at the vicinity of the critical temperature Tc with the TDGL approach.
In the isotropic case where the three components have the equivalent strength with same inter-
component couplings, the system simply behaves as type-I and type-II superconductor on the two
sides of Hn = Htc, same as single-component superconductors. However in anisotropic systems,
the formation of vortex cluster is revealed for Hn & Htc, which cannot be observed in conventional
superconductors. We will investigate further details of the mechanism for this novel vortex state in
the next chapter.
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Chapter 4

H-T Phase Diagram of
Multicomponent TRSB
Superconductors

In the previous chapter, single and multiple vortex solutions in the TRSB superconductor are
studied by means of the multicomponent TDGL method. From the single-vortex solutions, we found
an intrinsic vortex structure in the TRSB superconductor that there are multiple divergent length
scales different from conventional one. From the multi-vortex solutions, we observed interesting
vortex state in which vortices form a cluster as its equilibrium state instead of forming a typical
lattice structure, at a certain condition where the nucleation field Hn is slightly larger than the
thermodynamic field Htc. The appearance of such unconventional states also indicates that the
TRSB superconductor is not straightforwardly categorized to type-I or type-II by the GL parameter
κ = λ/ξ = 1/

√
2.

As a matter of fact, several numerical calculations using multicomponent GL theory exposed
anomalous magnetic properties such as fractional vortices or unconventional vortex states [58, 69, 61,
59, 70, 71, 72, 73, 74]. However, a systematic study seems lacking, and magnetic phase diagrams are
unclear at the moment of this writing.

For the purpose of comprehensive understanding in magnetic properties of a TRSB superconduc-
tor, we further study vortex states, especially focusing on mechanism of the exotic unconventional
state, and aim to construct a H-T phase diagram in this chapter. We first discuss vortex states and
a mechanism of vortex cluster simulated by the TDGL method. Then, interface energies in a TRSB
superconductor is calculated for understanding classification of TRSB superconductor. Finally, all
results are summarized in the H-T phase diagrams.

This chapter is reproduced with permission from; Y. Takahashi, Z. Huang and X. Hu, J. Phys.
Soc. Jpn. 83, 034701 (2014). Copyright 2014 The Physical Society of Japan.

4.1 Vortex States in TRSB Superconductors

We here adopt the TDGL method again with the magnetic periodic boundary condition which
confines fixed number of vortices N in the simulation box (see App. A). The results shown below
are for N = 8, while we have confirmed the main conclusions remain valid using large systems. As a
material parameters, we set as rm = 0.3 meaning anisotropic mass ratio which gives κ∗1 ≈ 2.18, and
κ values are parametrized.

Figure 4.1 shows vortex configurations at three distinctive parameter regimes, where Hn < Htc

(κ1 < κ∗1), Hn & Htc (κ1 & κ∗1) and Hn � Htc (κ1 � κ∗1). In Fig. 4.1(a-e) where κ1 < κ∗1, we observe
a typical phase separation between superconductivity and normal states which represents a type-
I superconductor. This result is the same as the conventional single-component superconductors.

http://arxiv.org/abs/1309.1570
http://arxiv.org/abs/1309.1570
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As seen in Fig. 4.1(a), the order parameters show different recovery lengths from normal to bulk
superconductivity region due to anisotropic mass ratio rm.

For κ1 & κ∗1, we find an unconventional vortex state. Figures 4.1(f-k) show a vortex cluster,
where multiple vortices (N = 8) form a domain of vortex bundle. As seen in Fig. 4.1(f), the order
parameters have finite values inside the domain region which is clearly different from Fig. 4.1(a). As
seen in Fig. 4.1(k), phase differences inside the cluster are either zero or π indicating a TRSR state,
while the bulk region keeps a TRSB state (φjk = 2π/3). This phase separation between TRSB and
TRSR states is essential for the stability of vortex cluster. It is noted that for the vortices locating
at the phase boundary the vortex cores are not overlapping for the three components.

For κ1 � κ∗1, Figs. 4.1(l-q) show typical triangular vortex-lattice configurations which represent
a type-II superconductor. In this parameter regime, order parameter phase differences at the vortex
core are slightly modulated from bulk values, and no TRSR domain can be observed.

It is noted that when the system is totally isotropic, namely rm = 1, the vortex-cluster state
does not appear, where modulation in amplitudes and phases in order parameters are decoupled as
discussed in Ref. [64].

4.2 Interface Energy in TRSB Superconductors

In a single-component superconductor, the GL parameter κ = 1/
√

2 given by the condition
Hn = Htc coincides with that where sign change in interface energy takes place [75, 76], which
dichotomizes a superconductor into type-I or type-II. Therefore, it is interesting to evaluate interface
energy in the TRSB superconductor where the vortex-cluster state appears, and thus the simple
classification of type-I and type-II superconductor does not apply. For this purpose, we calculate the
excess Gibbs free energy in a one-dimensional system,

Γ =

∫ ∞
0

(gsH − gs0)dx, (4.1)

where, gsH and gs0 are energy density with and without applied fields, respectively. Calculation of
interface energy essentially needs a numerical approach as shown for a single-component supercon-
ductor [6] and for a two-component cases [77]. We here use the multicomponent TDGL scheme for
one-dimensional system.

The boundary conditions are given,

|ψj | = 0 and B(x) = Htc for x→ 0
|ψj | = |ψj0| and B(x) = 0 for x→∞

where |ψj0|’s are bulk values of order parameters in each component, and Htc is the thermodynamic
field of TRSB superconductor in Eq. (2.15).

Typical interface structure is shown in Fig. 4.2(a) for rm = 0.3 and κ1 = 3. As we have seen in
the single-vortex structure, there are several length scales which are intrinsically observed in a TRSB
superconductor with anisotropic mass ratio. In addition to typical spatial variations for Bz and |ψj |,
it should be noted that while the phase difference indicates a TRSB state (φ23 = 2π/3) at the one
side of bulk region (|ψj |/|ψj0| = 1 and Bz/Htc = 0), the phase difference φ23 is slightly modulated
from the bulk value at the other side at the normal state (|ψj |/|ψj0| = 0 and Bz/Htc = 1).

Figure 4.2(b) shows κ1 dependence of the interface energy Γ for several typical values of mass
ratio rm. Numerical errors are negligible in these plots. The interface energy decreases monotonically
and changes its sign with increase of κ1 at κ∗∗1 . Therefore in a TRSB superconductor, there are two
typical thresholds κ1, for example, κ∗∗1 ≈ 3.0 and κ∗1 ≈ 2.18 for rm = 0.3, which makes it much
different from a TRSR superconductor.

Based on the above results, a phase diagram for material paramters is constructed in Fig. 4.3,
with two phase boundaries κ∗1 and κ∗∗1 which separate the Meissner phase, vortex-cluster phase and
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Figure 4.1: Typical vortex configurations solved by the TDGL method for (a-e) Hn < Htc, (f-k)
Hn & Htc and (l-q) Hn � Htc, for κ1 = 2.0, κ1 = 2.25 and κ1 = 6.0, respectively, with the mass ratio
rm = 0.3, interband couplings γ12 = γ23 = γ13 = −0.3|α10| and temperature T = 0.97Tc. Panels (a,
f, l) are spatial profiles of |ψ1|, |ψ2|, |ψ3| and Bz along y = 0 (red line) on the other panels. Panels
(b, g, m) denote magnetic induction Bz. Panels (c, h, n), (d, i, o), (e, j, p) denote amplitude of order
parameters |ψ1|, |ψ2| and |ψ3|, respectively. Panels (k, q) denote phase difference between the second
and third components φ23.
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(a) (b) 

Figure 4.2: (a) Typical TDGL calculation result to evaluate the interface energy Γ representing
spatial variation of |ψj |, φ23 and Bz, which are normalized by bulk values |ψj0|, φ23 = 2π/3 and
the thermodynamic field Htc, respectively. (b) κ1 dependence of the interface energy Γ in TRSB
superconductors. Γ is normalized by the thermodynamic field for the first component without inter-
component coupling.

vortex lattice phase. The two phase boundaries overlap at rm = 1, which is consistent with the fact
that no vortex-cluster state can be found in the isotropic system.

4.3 Vortex States at H . Hn

Here we consider the field dependence of vortex states in the regime κ∗1 < κ1 < κ∗∗1 where a vortex
cluster is observed. Variations of the system upon sweeping applied magnetic fields is simulated by
changing the number of vortices N with fixed system size. Figure 4.4 shows the vortex configurations
with the same material parameters and system size as those in Fig. 4.1(f-k) but with different vortex
number (a) N = 8 and (b) N = 36. Figure 4.4(a) represents a vortex state at lower magnetic
field, forming a typical vortex cluster state. On the other hand, a typical vortex lattice is observed in
Fig. 4.4(b), and apparently the phase differences between order parameters are either 0 or π associated
with a TRSR state in the whole system. Here, order parameters are suppressed by the magnetic field
in different ways in accordance with effective masses mj , which results in a breaking of the stability
condition of TRSB state in Eq. (1.105). The magnetic-field-induced TRSB to TRSR transition is
seen for κ1 > κ∗1.

4.4 H-T Phase Diagrams of TRSB Superconductors

In this section, we construct H-T phase diagrams of multicomponent TRSB superconductor in the
three regimes (a) Hn < Htc (κ1 < κ∗1), (b) Hn & Htc (κ∗1 < κ1 < κ∗∗1 ) and (c) Hn � Htc (κ1 > κ∗∗1 ).

In Fig. 4.5(a), the TRSB superconductor shows simply typical type-I property. At high magnetic
fields, superconductivity with a TRSB state is totally suppressed, and transfers to a normal state
(|ψj | = 0). This is essentially the same H-T phase diagram as a conventional single-component
superconductor. The phase transition between Meissner and normal states is unambiguously first
order.

Figure 4.5(b) shows the novel H-T phase diagram which includes the vortex-cluster state as an
unconventional intermediate phase. The vortex-cluster phase is located above the lower critical field
Hc1 where vortices start to penetrate into a superconductor. For the stronger magnetic field slightly
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Figure 4.3: Phase diagram for vortex state in the TRSB superconductor in terms of rm and κ1

including the Meissner, vortex cluster and vortex lattice phases. See text for definitions.

(b) N = 36 (a) N = 8 

Figure 4.4: Vortex configurations representing amplitude of ψ1 and order parameter phase difference
φ23 calculated with magnetic flux number (a) N = 8 and (b) N = 36. Material parameters are same
as in Fig. 4.1(d-g).
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Figure 4.5: H-T phase diagrams for multicomponent superconductors with frustrated intercomponent
couplings. Three diagrams are characterized by conditions: (a) Hn < Htc (κ1 < κ∗1), (b)Hn & Htc

(κ∗1 < κ1 < κ∗∗1 ) and (c) Hn � Htc (κ1 > κ∗∗1 ). The double and single lines represent first- and
second-order transition, respectively. The dashed line represents the TRSB-TRSR transition.

below the nucleation field Hn, a conventional vortex lattice with TRSR state appears as shown in
Fig. 4.4.

The phase transition between the vortex cluster and the Meissner states is likely not continuous.
The second-order transition at Hc1 in a type-II superconductor is understood by additional Gibbs
free energy ∆G due to vortex penetration represented by [6]

∆G = Gs
∣∣
first flux

−Gs
∣∣
no flux

=
B

Φ0
ε1 +

∑
Fij −

BH

4π
,

where ε1 is vortex line energy and Fij =
Φ2

0
8π2λ2

K0(
rij
λ ) is vortex interaction energy with the zeroth

Bessel function K0. For conventional case with repulsive vortex interaction, the energy cost is ∆G ≈ 0
because B is much small inside the superconductor (B ≈ 0), and the interaction energy is also neg-
ligible (Fij ≈ 0) as inter-vortex distance is large enough. However when vortices form a cluster as
observed in the TRSB superconductor, vortices penetrate into a superconductor feeling finite inter-
action energy Fij , and consequently the system will see a finite energy jump ∆G which corresponds
naturally to a first-order transition.

Finally, Fig. 4.5(c) shows the H-T phase diagram for Hn � Htc (κ1 > κ∗∗1 ). Since the vortex
lattice state is observed at magnetic fields Hc1 ≤ H ≤ Hn, the phase diagram is essentially same
as the single component case. However, it is remarked that there are two regimes in terms of order
parameter phase configurations. For a low magnetic field regime, order parameter phases are locally
modulated only in a vortex core, and the overall system preserves a TRSB state. For a high magnetic
field slightly below Hn, the system transfers to a TRSR state as seen in Fig. 4.4. Between the
two states, vortex configurations do not show obvious differences and inter-vortex distance changes
proportionally to strength of applied magnetic field.

4.5 Discussions

Using a numerical approach on multicomponent GL theory, we have revealed that, in a multi-
component superconductor with frustrated intercomponent couplings, a vortex-cluster state appears
at an intermediate magnetic field regime between Meissner and vortex lattice states when the ma-
terial parameters satisfy Hn & Htc. While numerical results are shown explicitly for the case where
the material parameter of the first component κ1 and mass ratios between the components rm are
varied whereas the other parameters relevant to a bulk value of order parameter are put the same,
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the appearance of a vortex-cluster state is general for all possible parameters as far as the stability
conditions of a TRSB state discussed in Chap. 2 are satisfied except for the isotropic case.

The vortex-cluster state is expected to be observable by conventional vortex imaging methods. It
is also interesting to examine the behavior of magnetization around Hc1. The magnetization curve
will be different from either that of type-I or that of type-II superconductor. Careful experiments are
required and such unique magnetic behavior will also support the novelty of a TRSB superconductor.

It is appropriate to make some discussions on the nature of transition between the vortex cluster
and vortex lattice. Since the spatial symmetry is different between the two states, a weak first-order
transition is expected. However, in the present work we could not find clear evidences for it since no
thermodynamic quantity has been calculated directly. On the other hand, the nature of the TRSB-
TRSR transition in Fig. 5(c) is a more subtle issue. This transition has only been discussed in absence
of magnetic field (and thus without any vortex) [52, 63]. While it was argued to be first order [52],
a numerical analysis indicated a continuous transition [63]. Therefore, the nature of TRSB-TRSR
transition remains to be an issue to be addressed in future works.

The vortex-cluster state associated with domain separation of the time-reversal symmetry has
been also reported in the numerical studies based on the three-component GL theory [61, 69]. It is
mentioned in these studies that vortex cores of individual components do not overlap at the domain
boundary, suggesting the existence of fractional vortices. In the present study, similar vortex-cluster
structure is observed as indicated on the panels in Fig. 4.1(h-j), where blue lines denote orientation
of the vortex cluster. However, separation of the cores is still unclear, and possibility of fractional
vortices should be studied further. While fractional vortices which appear at the boundary between
two chiral TRSB superconductors were studied well [59, 58, 69], those at a boundary between TRSB
and TRSR states are also interesting.

4.6 Summary

Magnetic properties of multiband superconductors with frustrated interband couplings are inves-
tigated by means of the multicomponent Ginzburg-Landau (GL) theory, and we have investigated
response of the novel superconducting state to an external magnetic field. When parameters satisfy
the condition Hn & Htc, with Hn the nucleation field and Htc the thermodynamic field, we have re-
vealed the novel H-T phase diagram including the unconventional vortex state, namely vortex cluster,
which cannot be categorized to either type-I or type-II. The vortex cluster is associated with local do-
main separation between time-reversal symmetry broken and time-reversal symmetry reserved states,
and it is expected to appear via a first order transition from the Meissner state. We have studied
the interface energy in a time-reversal-symmetry broken superconductor, and found that material
parameters for sign change in the interface energy do not coincide with those for Htc = Hn.
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Chapter 5

Magnetization Curves of
Multicomponent TRSB
Superconductors

The H-T phase diagrams for multicomponent superconductors with frustrated intercomponent
couplings are constructed that includes the unconventional vortex state (vortex-cluster (VC)) located
above the lower critical field Hc1 at which vortices start to penetrate a superconductor. It is well
established in conventional type-II superconductors that the phase transition at Hc1 is second-order
as the excess vortex-line energy and negative interface energy are compensated, and the vortex-
interaction energy is negligible because of the repulsion [6]. However, when the vortex interaction
is not simply repulsive, as in the VC state, such a conventional scenario is not appropriate and the
phenomenological behavior at Hc1 is nontrivial. Whereas all previous discussions on the vortex states
in multicomponent superconductors have been based on equilibrium states, we pay special attention
to the transient vortex states that arise in for example the magnetization process.

For this purpose, the TDGL method is an added useful approach that enables the magnetization
process of a superconductor to be simulated subject to a boundary condition associated with the
applied magnetic fields. we here employ this method to model the magnetization (M -H) curves of
multicomponent superconductors with frustrated intercomponent couplings, and discuss the dynamics
of vortex penetration at Hc1. The numerical details are explained in App. A

To discuss vortex penetration, the choice of boundary conditions is an important issue that di-
rectly affects conclusions. As introduced in App. A, we employ the two boundary conditions for the
superconductor-ferromagnet (SC-FM) and superconductor-insulator (SC-I) interfaces, and compare
the results. The disadvantage to note in using the S-I boundary condition is that vortices at Hc1

are excessively screened at the boundary and larger applied fields than Hc1 are needed [78]. This
screening is inconvenient when probing the VC phase.

Because we shall focus on macroscopic properties, the simulation box is prepared as large as
possible so as to contain many vortices even at Hc1. The size of the simulation box is set at 150λ10×
130λ10. The modeled magnetization curves are thereby sufficiently smooth, which differ markedly
from those for mesoscopic systems.1

1M -H curves in mesoscopic systems show ”step-like” behaviors because vortex penetration into a system causes a
finite energy difference owing to boundary effects.
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Figure 5.1: (Left panel) Magnetization (M -H) curves of multicomponent superconductors with frus-
trated intercomponent couplings subject to the SC-FM boundary condition, in comparison with
typical material parameters for type-I, type-VC, and type-II with κ1 = 2.0, 2.5 and 5.0 with common
rm = 0.3, respectively. (Right Panel) (a) and (b) show images of the system at Hc1 (indicated by
arrows in the left panel) representing |ψ1| and φ23.

5.1 M-H Characteristics

SC-FM boundary condition

We begin our discussion of characteristics by looking at M -H curves obtained by applying the
SC-FM boundary condition; see left panel in Fig. 5.1. Typical material parameters are used: rm = 0.3
and κ1 = 2.0, 2.5, and 5.0 corresponding to type-I (Hn < Htc), type-VC2 (Hn & Htc), and type-II
(Hn � Htc), respectively.

Focusing on each magnetization behavior at Hc1 where the M -H curves start to drop, we find that
the type-VC superconductor shows an abrupt jump in magnetization as in type-I superconductors,
but still displays finite diamagnetism.

The small diamagnetism at Hc1 actually indicates the presence of a typical vortex state associated
with a TRSR state, as seen in Fig. 5.1(a), which represents images of |ψ1| and φ23 for the system. In
this instance, no VC state can be found, and the system transforms completely into a TRSR from
the TRSB state.

In contrast, both type-I and type-II superconductors exhibit typical M -H curves, which feature
a magnetization jump following the phase transition from the superconductivity to normal state, and
a continuous change associated with conventional vortex penetration. Both behaviors are consistent
with the H-T phase diagrams discussed in Chap. 4.

SC-I boundary condition

We next present M -H curves obtained using the S-I boundary condition; see Fig. 5.2. All material
parameters are the same as for the previous case.

In a type-VC superconductor, we see no vortex state and superconductivity is almost suppressed.
This result can be understood as an enhanced screening because of SC-I boundary effects, and there-
fore the VC state is overshadowed. The small diamagnetism in the M -H curve stems from slight
surface superconductivity at the edge of the simulation box, as seen in the image for |ψ1| (Fig. 5.2(a)).

An interesting behavior is found even in a type-II superconductor in that the M -H curve exhibits
an unexpected magnetization jump at Hc1. As seen in Fig. 5.2(b), we find a typical vortex-lattice

2For convenience, we call this parameter regime “type-VC”.
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Figure 5.2: Same as for Fig. 5.1 except the SC-I boundary condition is used.

configuration associated with a TRSB state, whereas intercomponent phase differences are suppressed
from the bulk value 2π/3 by interior magnetic fields. Note that the cause of a stripe-like structure
indicating a TRSR state is discussed in the next section.

5.2 Vortex Penetration Dynamics

To clarify the anomalous behavior in M -H curves at Hc1, we next discuss the time-dependence of
the vortex states when the magnetic fields are applied to a multicomponent TRSB superconductor.

Collective vortex penetration

Using the SC-FM boundary condition, we have found typical vortex configurations at Hc1 both
in type-VC and type-II superconductors associated with TRSR and TRSB states, respectively. To
begin, Fig. 5.3 shows as a reference the time-dependence of the vortex configurations for type-II
superconductors at H = 0.048Hc1. Generally, in a conventional type-II superconductor, vortices
penetrate a system diffusively and are distributed forming (locally) a triangular lattice. Such typical
vortex penetration dynamics can be observed here.

In contrast, Fig. 5.4 shows the time-dependence of the vortex configurations for type-VC super-
conductors at the same field. In this instance, we find that the vortex penetration is always associated
with domain separation between the TRSB and TRSR states as evident in panel (d) for the inter-
component phase difference φ23. As seen in the magnetic flux density Bz, vortices are collectively
entering the superconductor but are confined to the TRSR domain, forming a typical vortex-lattice
configuration. Such collective vortex penetration is considered unique to vortex dynamics in type-VC
superconductors.

Fractional vortex penetration

For the M -H curves of type-II superconductors subject to the SC-I boundary condition, we have
also found an anomalous behavior at Hc1 showing abrupt changes in magnetization. When we look
closely at the vortex penetration process along the edge of the system, an interesting phenomenon
can be seen, namely the creation and annihilation of fractional vortices.

Fig. 5.5 shows the evolution of the vortex configurations at certain time-steps for the different
order parameters |ψj | and phase difference. Each sequence corresponds to an enlarged view of the red
box from in Fig. 5.2(b). First, we clearly find that within the system two chiral TRSB states appear
indexed by the initial vortex entering. The two domains change with time as the vortex configuration
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(a) (b) (c) (d) 

Figure 5.3: Time-dependence of vortex states at Hc1 in a multicomponent TRSB superconductor
(type-II). Material parameters are rm = 0.3 and κ1 = 5.0 satisfying the condition Hn � Htc. (a)
Spatial profiles of the magnetic flux density Bz along the red line in the panel (b), system images of
(b) Bz, (c) amplitude of the order parameter for the first-component |ψ1|, and (d) intercomponent
phase difference φ23. Values of magnetic flux density Bz are normalized as B′z = Bz/Hc1 (the prime
has been dropped). The SC-FM boundary condition is used here, and t0 is the relaxation time for
the equilibrium state.
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(a) (b) (c) (d) 

Figure 5.4: Same as for Fig. 5.3 except the material parameters are rm = 0.3 and κ1 = 2.5 satisfying
Hn & Htc (type-VC).
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evolves. Furthermore, along the chiral domain walls marked by red dashed lines in the images, the
vortex cores are dissociated, indicating fractional vortex ; this dissociation is especially clear near the
system edge.

Indeed, the occurrence of fractional vortices was discussed in Ref. [58], focusing on the domain
boundaries between the two chiral TRSB states. Also, based on the two-component London theory,
the spatial variation of the intercomponent phase φjk allows for a fractional vortex solution at the
surface [79]. The origin of the fractional vortices in this simulation is considered as essentially similar
to the two-component case. The dissociation of vortex cores in this system is triggered by similar
mechanisms. It should be emphasized that the degree of freedom in the intercomponent phases yields
entirely novel properties, which also has a close relationship with TRSB.

5.3 Discussion

For the unique material parameters of the type-VC superconductors satisfying the condition
(Hn & Htc), we have focused on the anomalous change in magnetization at Hc1 as depicted in the
M -H curves. Strictly speaking, a similar magnetic response can be observed in the so-called low-κ
superconductors, where the GL parameter κ is slightly larger than 1/

√
2 [80]. In such superconduc-

tors, the vortex interaction is small and any vortex configuration is nearly degenerate [76] resulting
also in sharp changes in magnetization. Therefore, the experimental identification of the type-VC
superconductor will require accurate characterization of magnetic properties.

We find no vortex-clustering when the SC-I boundary condition is imposed. Increasing the applied
fields, the system is suppressed almost in a normal state except the surface superconductivity. In
view of the experimental observation of the VC state, the screening effect of the superconductors is
crucially obstructive, as we have seen the inconsistent results between SC-FM and SC-I boundary
conditions. For probing the VC state, one should experience reducing magnetic fields or temperature
(i.e. field-cool), where internal vortices are not affected by the screening.

Collective vortex penetration is a remarkable hallmark of TRSB states in multiband superconduc-
tors. Time-dependent imaging (e.g. Lorentz microscopy) of the magnetic-flux density will provide a
powerful means to observe this phenomenon. As the parameters for the time-scale are arbitrary in
the present calculation, further improvements are required to simulate experimental situations.

5.4 Summary

By means of the TDGL method subject to the finite boundary conditions, we have analyzed
M -H curves and vortex penetration dynamics at the lower critical field Hc1 in multicomponent
superconductors with frustrated intercomponent couplings. In the unique parameter regime where
the thermodynamic critical field and nucleation field satisfy the conditionHn & Htc, we have identified
anomalous magnetic behaviors at Hc1 where abrupt magnetization changes occur associated with a
phase transition between the TRSB and TRSR states. Novel vortex penetration dynamics, namely
collective vortex penetration, is expected to be explored with a view to reduce surface screening. Even
in the parameter regime for type-II superconductivity (Hn � Htc), anomalous vortex penetration
is expected following the occurrence of fractional vortices at the surfaces of samples. The range of
characteristics shown should be given particular attention as a means to probe TRSB in multiband
superconductors with s± symmetry.
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(a) (b) (c) (d) 

TRSB1 TRSB2 

Figure 5.5: Time-dependence of vortex configurations at the system boundary. The images, showing
an enlarged view of the enclosed area indicated in Fig. 5.2(b), represent the amplitude of the order
parameters |ψj | and the intercomponent phase difference φ23 = φ3− φ2. The range of φ23 is changed
here to −π ≤ φ23 ≤ +π to emphasize the two chiral TRSB states.
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Chapter 6

Probing Commensurate Ground States
of Josephson Vortex in Layered
Superconductors

Up to the previous chapter, we have discussed novel vortex states in which the multibandness plays
an important role, and found essentially different vortex structure where multiple divergent coherence
lengths exist as a consequence of time-reversal symmetry breaking. Regarding unconventionality of
vortex structure, as a matter of fact, various studies have been undertaken for long time triggered
by emergence of new superconductivity mechanisms. Among them, intensive efforts might have been
devoted to copper-oxide (cuprate) high temperature superconductors (HTSCs) motivated not only by
their extremely high critical temperatures Tc, but also by manifold vortex states and phase transitions
originated their common features of dimensionality and thermal fluctuation.

In this chapter, we briefly review the vortex states in cuprate HTSCs and discuss interesting
dynamics of interlayer vortices, which are governed by intrinsic vortex structure and commensurability
between vortex lattice constants and two-dimensional layered structure.

This chapter is reproduced with permission from; Y. Takahashi, M.-B. Luo, T. Nishizaki, N.
Kobayashi and X. Hu, J. Nanosci. Nanotechnol. 14, 2859 (2014). Copyright 2014 American Scientific
Publishers.

6.1 Backgrounds

As introduced in Chap. 1, a general H-T phase diagram in conventional type-II superconductors
consists essentially of the Meissner and vortex states. However, discovery of cuprate HTSCs has
totally renewed such a basic picture, and sparked further interests on vortex states. It was sooner
understood that the mean-field theory of vortex states is not applicable any more for the cuprate
HTSCs due to their intrinsic features;

1. Strong two-dimensionality: Crystalline structure of cuprate HTSCs possesses two-dimensional
(2D) superconductivity planes (CuO2 planes) and insulator layers, which are periodically stacked
in a nano-scale along the c-axis (perpendicular to CuO2 planes).

2. Strong thermal fluctuations: Thermal fluctuations dominate the vortex states in a wide tem-
perature region due to high critical temperature.

For example, such these features can be seen in resistivity measurements. When magnetic fields are
applied perpendicular to CuO2 layers, resistivity starts to drop gradually with decrease of temperature
at a certain point which correspond to the upper crirtical field Hc2(T ), but remains finite values until
the melting transition temperature Tm where the resistivity becomes completely zero. This is caused

http://www.aspbs.com/jnn.html#v14n4
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(a) (b) 

Figure 6.1: Schematics of vortex states in cuprate superconductors. (a) Vortex state in perpendicular
magnetic fields to CuO2 planes (pancake vortices). (b) Vortex state in parallel magnetic fields to
CuO2 planes (Josephson vortices).

by the strong two-dimensionality and superconductivity fluctuation due to extremely small coherence
length in the cuprate system.1

Cuprate HTSCs are extremely type-II superconductors since the coherence length ξ is small,
typically in the order of 10 nm, whereas the penetration depth λ is contrastively large, typically in
the order of 1000 nm, in ab-plane for instance. Therefore, it is remarked that vortices in cuprate
HTSCs are essentially nano-scale objects, and that competition between the comparable vortex-core
size and interlayer separation may generate unconventional effects in macroscopic observables. On
the other hand, nano-scale manipulations of vortices are required in view of future applications of
cuprate HTSCs.

When the magnetic field is applied perpendicular to the CuO2 planes, vortex cores of the normal
state appear in the superconducting planes. As seen in Fig. 6.1(a), the vortex currents are confined
within CuO2 planes and form suppressed vortex structure with the core size typically of the coherence
length ξab along the CuO2 plane and ξc along the c-axis. Such a vortex is called a pancake vortex,
and the thermodynamic properties of the pancake-vortex state have been investigated soon after
the discovery of cuprates HTSC. The pancake vortices in each CuO2 planes store magnetic flux
lines coupled weakly each other via interlayer Josephson effect, and the vortex lines behave as elastic
objects. Nowadays, it is well established that the vortices in cuprate HTSC take various states. Unique
phase transitions such as first-order vortex-lattice melting and continuous vortex-glass transition
induced by point-like defects are well understood by now [81, 82, 83, 84, 85]. Furthermore, the
variety of vortex states provided an interesting playground familiar as vortex matter for a good
model of thermodynamic physics. Figure 6.2 shows a typical H-T phase diagram established in
YBa2Cu3Oy (YBCO) [86].

When the magnetic field is applied parallel to the CuO2 planes, the layered structure gives birth
to more interesting vortex states. It is considered that the periodic layered structure provides a
stack of intrinsic Josephson junctions (IJJs) where the superconductivity planes are separated by the
insulator layers and coupled by the Josephson effect [87]. The magnetic fluxes are localized in the
insulator layers between the superconductivity planes to save the energy costs. Such localization of
interlayer vortices is known as the intrinsic pinning effect [88]. The interlayer vortex is called as
Josephson vortex (JV) as shown in Fig. 6.1(b).

1The strength of thermal fluctuation in cuprate HTSCs is obvious by the Ginzburg number Gi ≡
16π3κ4γ(kBTc)

2/Φ3
0Hc2(0) approximated as∼ 10−2, in contrast to conventional superconductors such as Nb (Tc ∼ 9.3 K,

Gi ∼ 10−10) and NbSe2 (Tc ∼ 7.2 K, Gi ∼ 10−4).
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Figure 6.2: Vortex-matter phase diagram in untwinned YBa2Cu3Oy [86]. c© 2000 IOP Publishing.
Reproduced by permission of IOP Publishing. All rights reserved.

The thermodynamic properties of interlayer JVs have been attracting significant interests [89, 90],
and novel vortex states including vortex smectic [91, 92] and Kosterlitz-Thouless phase [93] have
been proposed theoretically so far. The phase diagram of JV states has also been investigated
experimentally [94, 95, 96, 97, 98, 99]. To determine the phase boundary between liquid and lattice
phase of JVs, drops in in-plane (ab) resistivity upon temperature decrease were used. Interestingly,
the phase boundary (melting line) exhibited remarkable oscillatory which was understood to be caused
by the commensuration of JV lattice with the layered structure [94, 95, 99]. In the present work, I
probe deeply into the JV-lattice phase by the flow dynamics, and try to derive better understanding
on the ground-state JV lattice as the function of magnetic fields.

In the ground state of a JV system, the vortex-lattice constant along the c-axis should be Ns, with
N an integer and s the separation between neighboring CuO2 layers, due to the intrinsic pinning effect,
in sharp contrast to the Abrikosov vortex-lattice for which the vortex-lattice constant is determined
purely by the strength of magnetic fields and can be continuous. Figure 6.3(a) shows typical JV
lattice configurations which satisfy the commensurability condition [92, 100], where the horizontal
lines correspond to superconductivity layers (CuO2) and the length is rescaled by the anisotropy
parameter γ (x→ x/γ). The magnetic fields for the two standard JV lattices, where one of the main
axes is either parallel or perpendicular to the CuO2 layers, are given by

A-lattice: B =

√
3Φ0

2γ(Ns)2
,

B-lattice: B =
Φ0

2
√

3γ(Ns)2
, (6.1)

where Φ0 is the magnetic flux quantum.
In addition to the above two JV lattice orientations, rotational JV lattices have also been pro-

posed [100, 101], which are characterized by a unit vector r = me1 + ne2 as shown in Fig. 6.3(b),
where r denotes the vector between nearest-neighbor vortices in the same layer, and e1 and e2 are
unit vectors of the triangular vortex lattice. Based on this definition, the corresponding magnetic
field is given by

R-lattice: B =

√
3

2

φ0

N2(n2 + nm+m2)γs2
. (6.2)
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Figure 6.3: Josephson vortex (JV) lattices satisfying the commensurability condition. The x-axis is
rescaled by the anisotropy parameter γ. Solid horizontal lines (black) correspond to the CuO2 planes.
(a) A-type and B-type JV lattices in order of magnetic field strength. (b) Rotational JV lattices:
R1-lattice is defined with the commensurability condition (n,m,N) = (2, 1, 1), and R2-lattice with
(n,m,N) = (3, 1, 1).

In the present work, we try to illuminate the flux-flow dynamics of the A-, B- and R-lattices.
First, the flux-flow resistivity of JVs under various magnetic fields is simulated in terms of Langevin
dynamics. The oscillatory behavior of resistivity upon the magnetic field is then related to the
commensurate JV lattices. Next, experimental results for bulk single crystals of under-doped YBCO
are presented, where an oscillation in the resistivity with magnetic field has also been observed.
Finally we compare the both results by simulations and experiments and give a conclusion.

6.2 Theoretical Approach

6.2.1 Model and simulation details

We consider a superconductor of layered structure with applied magnetic field parallel to the
layers. The model system is a stack of superconductivity planes of thickness d and period s, as shown
schematically in Fig. 6.4. In the Langevin dynamics at zero temperature, the overdamped equation
of motion for the i-th JV at position ~ri is described

η
d~ri
dt

=

Nv∑
j 6=i

~F vv(~ri − ~rj) +

Np∑
k=1

~F vp(~ri − ~Rk) + ~Flp + ~FL, (6.3)

where η is the viscosity coefficient, Nv and Np are the total number of JVs and point-like pins,
respectively; JVs feel the following forces: F vv JV-JV repulsion, F vp attractive interaction between
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Figure 6.4: Schematic picture of simulation model.

JV and point-like pinning center, F lp pinning potential by periodic layered structure,

~F vv( ~rij) =
ε0
λab

K1(rij/λab)r̂ij ,

~F vp( ~rip) = −Apε0
2rip
R2

p

Θ(rip −Rp)r̂ip,

~Flp(rip) = F 0
lp sin(2πz/s)ẑ, (6.4)

and the in-plane uniform Lorentz force FL.

The parameters are given as follows: the penetration depth in ab plane λab = 2000 Å, interlayer
distance s = 12 Å and the anisotropy parameter γ = 36, corresponding to under-doped YBCO, pin
density of 0.8/λ2, pin size of Rp = 0.38s, strengths of point pinning of Ap = 0.05 and layer pinning of
F 0

lp = 1.0. The units for length, energy, temperature, force and time are taken as λab, ε0, ε0/kB, ε0/λab
and ηλ2

ab/ε0. The resistivity in our simulation is calculated in connection with flux-flow velocity v as
ρ = E/J = vBΦ0/F , where the relations E = vB and F = JΦ0 have been used. In dimensionless
form, the resistivity in the system size S is simply given by ρ = vNv/FS.

6.2.2 Field dependence of resistivity

Figure 6.5 displays the magnetic-field dependence of resistivity caused by the JV flow for several
typical driving forces F = 0.034, 0.040, 0.042, and 0.046. An oscillation of resistivity upon magnetic
field sweeping is clearly observed. As the values of the magnetic fields corresponding to the typical
vortex structures are indicated (see Eq. (6.1)), one can see that the peaks in resistivity occur roughly
at the magnetic fields corresponding to the commensurate JV lattices.

I have also paid attention to the driving-force dependence of modes in flux-flow dynamics, with
typical vortex configurations and the statistics of vortex velocity shown in Fig. 6.6. Figure 6.6(a)
is for JV flow state under a relatively large driving force F = 0.046. For A2-lattice, many JVs are
pinned and dislocations are generated which suppress coherent motions of JVs. On the other hand,
dislocations are rare for R1-lattice, and JVs move coherently at this driving force. This property of
R1-lattice can be understood as a consequence of the fact that the Burgers vector is not parallel to
layers [102].

Figure 6.6(b) is for a relatively small driving force F = 0.034. In this case, dislocations permit
creep motions for A2-lattice, whereas R1-lattice is totally pinned. As a result, resistivity of R1-lattice
can be smaller than A2-lattice one at weak driving force as seen in Fig. 6.5.
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Figure 6.5: Magnetic field dependence of flux-flow resistivity simulated by the Langevin dynamics at
T = 0. Characteristic magnetic fields calculated from the commensurability conditions are indicated
with arrows.
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Figure 6.6: Typical configurations of Josephson vortices (JVs) for (a) F = 0.046 and (b) F = 0.034,
with charts at righthand side for the distributions of flow velocities at different layers.
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6.3 Experimental Approach

6.3.1 Experimental setup

Resistivity due to the JV flow has been investigated in single crystals of YBa2Cu3Oy (YBCO). As
the anisotropy parameter for optimum doped YBCO is comparably small as γ ' 8, JV lattices with
small lattice constant cannot not be reached experimentally, since A2-lattice, for example, corresponds
to H ≈ 40 T (see Eqs. (1) and (2)). To overcome this difficulty, I synthesized high-quality single
crystals of underdoped YBCO with sufficiently large anisotropy parameter γ ' 50, which makes
it possible to investigate the flux-flow resistivity in JV lattices with small lattice constants under
experimentally accessible magnetic fields [99].

High quality single-crystals of YBCO were grown by a self-flux method using a Y2O3 crucible [86].
The oxygen content y was controlled by the annealing condition under 1 bar nitrogen at 475◦C for
5 days [99]. Underdoped YBCO was successfully obtained with critical temperature Tc ' 30. The
anisotropy parameter of this sample is estimated as γ ' 50 using the empirical relation between the
critical temperature Tc and the anisotropy parameter [103, 104, 105].

Because of the orthorhombic crystalline structure of YBCO, single crystals possess twin boundaries
which work as pinning potentials. In order to avoid this undesirable effect, I extracted untwinned
domains by cutting off the twin boundaries. Electric resistivity along the c-axis ρc(T,H) was measured
by a conventional dc four-probe method with current density J = 5 (A/cm2). Magnetic field direction
is fine-tuned parallel to the layers H ‖ ab (θ = 0◦) by the two-axial rotational sample holder. The
following results are all obtained with high alignment precision of ∆θ < 0.05◦.

6.3.2 Experimental results

Figure 6.7 shows the temperature dependence of c-axis resistivity ρc(T ). The inset is for resistivity
in a wide field range of magnetic fields (0 5 µ0H 5 15 T). At the higher magnetic field µ0H > 5 T,
the resistivity drops to zero monotonically upon temperature decrease. However, the resistivity
at µ0H = 1 T shows anomalous behavior that the resistivity once decreases until a characteristic
temperature T1, but increases up to another characteristic temperature T2, then finally decreases
again to zero. Similar behaviors are observed at several magnetic fields in the regime 0 < µ0H < 5 T.
However, at µ0H = 0.1 and 2 T, a conventional monotonic behaviors are seen.

The magnetic field dependence of c-axis resistivity ρc(H) has been measured in detail between
the two characteristic temperatures T1 and T2. Figure 6.8 shows ρc(H) at T = 24 K. As seen in the
inset, the resistivity oscillates clearly against the applied magnetic field H. In order to illuminate
the relation between the resistivity oscillation and the JV lattice commensurability condition, the
resistivity with respect to B−1/2 is replotted as shown in the main panel of Fig. 6.8. It becomes clear
that the peak positions of resistivity locate at the magnetic fields associated with the A-lattices given
in Eq. (6.1), with the anisotropy parameter γ = 50 when the interlayer distance s = 11.7 nm and
flux quantum Φ0 = 2.068 × 10−15 Wb are taken into account. It is remarked that this anisotropy
parameter γ agrees perfectly with the estimation from the critical temperature Tc of this sample as
discussed above. The peak positions remain unchanged for current densities J = 5, 7.5 and 10 A/cm2.
When the current density is much higher (J > 30 A/cm2), the oscillatory behavior disappears.

In addition to the peaks of A-lattice with large lattice constants, we observe two resistivity peaks
associated with R1-lattice and B2-lattice. To the best of our knowledge, this is the first experimental
result which signatures the existence of the nontrivial R1-lattice.

6.4 Discussions

Several comments should be made as follows. First, while many peaks in resistivity are observed in
experiments with high precision, the present simulation fails to see peaks with large lattice constants
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Figure 6.7: Temperature dependence of c-axis resistivity for magnetic fields µ0H ≤ 5 T. Inset:
resistivity in the wide range of magnetic fields 0 ≤ µ0H ≤ 15 T. The arrows indicate the characteristic
temperatures T1 and T2 between which anomalous behaviors in resistivity are observed.
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Figure 6.8: c-axis resistivity versus rescaled magnetic field B−1/2 for current densities J =
5.0, 7.0, 10.0 A/cm2 at T = 24.0 K. Inset: c-axis resistivity versus magnetic field in linear scale
for J = 5.0 A/cm2.
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and thus needs further improvement. Secondly, as seen in Fig. 6.8, the A3-lattice yields a resistivity
dip instead of a peak, in contrast to other A-lattices with higher indices. For the second point, it
is noticed that dependence of the resistivity on the strength of driving force varies with the lattice
configuration, as shown in Fig. 6.6. It may also be caused by the so-called smectic phase in between
the JV crystal and liquid at high magnetic fields [92], which should modify the flux-flow dynamics.
All these points should be addressed in future works.

6.5 Summary

To summarize, we have investigated flow dynamics of Josephson vortices in cuprate supercon-
ductors, both theoretically and experimentally. Our simulation based on the Langevin dynamics has
revealed oscillatory behaviors in the Josephson vortex flow resistivity associated with the commen-
surability condition between vortex lattice and the layered structure. An oscillatory resistivity has
also been observed in high-quality single crystals of underdoped YBa2Cu3Oy with large anisotropy
parameter. From the theoretical and experimental results, a nontrivial Josephson-vortex lattice has
been figured out for the first time.
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Chapter 7

Conclusion and Outlook

In this thesis I have studied novel vortex states in recent unconventional superconductors where
multibandness or dimensionality produces nontrivial magnetic properties of superconductivity.

In terms of “multibandness”, I have reviewed the BCS and GL theories with the view to inves-
tigate multiband superconductivity, and illuminated an exotic superconductivity state, namely the
TRSB state induced by frustrated interband couplings. Although various unique properties in multi-
band TRSB superconductivity were revealed through intensive theoretical work, magnetic properties
such as the vortex states had not been well studied. Motivated by the preceding analytic study on
the TRSB state based on multicomponent GL theory, I have the explored the magnetic properties of
multicomponent TRSB superconductivity employing a TDGL method extended to the multicompo-
nent system to treat the magnetic response of superconductors where amplitudes and phases of the
order parameters are spatially intertwined. The principal conclusions are summarized as follows:

• I have analyzed single vortex structures in multicomponent TRSB superconductors, and iden-
tified multiple divergent length scales, namely 1) recovery lengths for each order parameter,
2) spatial modulations of intercomponent phases, and 3) the magnetic-field penetration depth.
This multiplicity of length scales originates with the degrees of freedom in the intercomponent
phases, which is intrinsic to multicomponent systems. When the intercomponent phases are
exceptionally locked, the problem is simply reduced to single-component case.

• With systematic calculations of the vortex interaction in multicomponent TRSB superconduc-
tors, H-T phase diagrams are constructed classifying these superconductors into three categories
based on the thermodynamics field Htc and nucleation field Hn: type-I (Hn < Htc), type-VC
(Hn & Htc), and type-II (Hn � Htc). When the material-dependent parameters satisfy the
condition Hn & Htc, a novel vortex state appears where multiple vortices form a cluster associ-
ated with the domain separation between the TRSB and TRSR states. Whereas the boundary
between type-I and type-VC is given by the two characteristic fields, the boundary between
type-VC and type-II is given by a sign change in the interface energy Γ for multicomponent
TRSB superconductivity. The two criteria Hn = Htc and Γ = 0 do not coincide in multicom-
ponent TRSB superconductivity.

• I have used the TDGL method to model magnetization (M -H) curves for multicomponent
TRSB superconductors and highlighted vortex penetration dynamics at the lower critical field
Hc1. For type-VC, M -H curves show anomalous behavior where vortices start to penetrate a
superconductor collectively induced by the domain separation of TRSB and TRSR. This is a
consequence of the unique VC state above the Hc1 seen in the H-T phase diagram. For type-II,
the M -H curves still show anomalous behavior at Hc1. Here, the creation and annihilation
of fractional vortices occur at the sample edge caused by intercomponent phase modulation.
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Both anomalous behaviors at Hc1 are expected to be a probe of the TRSB state in multiband
superconductors.

In terms of “dimensionality”, I have focused on interlayer vortices known as Josephson vortices
(JVs) in high-Tc cuprate superconductors. When external fields are applied parallel to the lay-
ers, magnetic fluxes are confined between the superconducting layers and localized by the interlayer
Josephson effect. The JV ground states can be identified by their oscillatory resistivity resulting
from the JV dynamics governed by commensuration between the periodicity of the superconductivity
layers and JV lattice constants. Motivated by the experimental result observing the unexpected os-
cillatory resistivity from the JV dynamics in a cuprate superconductor (YBa2Cu3Oy) with anisotropy
parameter γ ∼ 50, I have analyzed the novel JV dynamics based on a Langevin dynamics scheme for
JV dynamics. The principal finding is:

• I have identified a nontrivial flow mode for the rotational JV lattice in addition to trivial flow
modes for the parallel and perpendicular JV lattices.

At the time of writing, a TRSB state in multiband superconductors has note been experimen-
tally observed. Possible candidates are the Fe-based superconductors with s± pairing because of
their multibandness with more than three superconductivity condensates and the existence of repul-
sive interband couplings. Future efforts to explore the exotic superconductivity are intently desired.
Because magnetic properties are generally one of the more fundamental features measured experimen-
tally, the above conclusions on the magnetic properties in multicomponent TRSB superconductors
are expected to be a useful and convenient indication of exotic superconductivity in addition to the
other smoking-gun evidence provided by other related work.

It is interesting to see layered crystalline structures as beeing significant in superconductors, even
in Fe-based superconductors, which draws in the work on interlayer JVs in this thesis. Recently, a
JV state was experimentally identified in an Fe-based superconductor despite a comparably smaller
anisotropy parameter γ ∼ 4 − 6 [106]. Because JVs are localized by the interlayer Josephson effect,
the multiband effect on JV states are entirely nontrivial with competition between interlayer and
interband couplings.



Appendix A

Time-Dependent Ginzburg-Landau
Method

The time-dependent Ginzburg-Landau (TDGL) method is generally used to simulate the phe-
nomenological magnetic response of superconductors as performed in the early studies of thin films
such as nucleation [107, 108], magnetization [109], and I − V characteristics [110]. Furthermore,
the TDGL method has been used recently to simulate vortex states in mesoscopic systems to study
geometric effects triggered by experimental developments in micro-fabrication techniques [78, 111,
112, 113, 114].

This appendix is devoted to explain the computational details of the TDGL method for multi-
component superconductors that has been used in this thesis.

A.1 TDGL Equations

The TDGL equations govern the dynamics of the superconductivity order parameter ψ(r, t)
and the electromagnetic vector potential A(r, t). The conventional TDGL equations for a single-
component superconductor [115] is extended to multicomponent form by introducing a component
index j as in the approach used for the two-component case [116],

~2

2miDi

(
∂

∂t
+ i

2e

~
Φ

)
ψj = − δf

δψ∗j
, (A.1)

σ

c

(
1

c

∂A

∂t
+∇Φ

)
= − δf

δA
, (A.2)

with Dj the diffusion constant, σ the normal conductivity, Φ the electric potential, and f the mul-
ticomponent GL free-energy density functional in Eq. (1.91). By choosing an appropriate gauge, we
take Φ = 0 and for simplicity ignore details of the dynamic relaxation process. Here, time is in units
of τ1 = ξ2

1/D1 and the normal conductivity σ is in units of c2τ1/4πλ
2
1.

A.2 Dimensionless Forms

For calculational convenience, we introduce dimensionless quantities. Length scales are based on
those for the first-component of individual single-component case (i.e. γ = 0) at T = 0; the coherence
length ξ10 =

√
~2/2m1|α10| and the penetration depth λ10 =

√
m1c2β1/8π|α10|e2 with definition

α10 ≡ α1(T )|T=0. The dimensionless quantities are defined as,

x = λ10x
′, ψj = ψ10ψ

′
j , γjk = |α10|γ′jk,

f =
H2

1c

4π
f ′, A = λ10H1c

√
2A′, B = H1c

√
2B′, J =

2e~ψ2
10

m1ξ10
J′, (A.3)
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where |ψ10|2 = |α10|/β1 and H1c =
√

4π|α10|ψ2
10 are the bulk OP and thermodynamic critical field

of the individual first-component at T = 0, respectively. B, A, and J are the magnetic induction,
the vector potential and the supercurrents, respectively. Based on these dimensionless quantities, the
multicomponent GL free-energy density functional in Eq. (1.91) is rewritten by dropping the prime,

f =
∑
j

[
αj0
α10

εj |ψj |2 +
βj
2β1
|ψj |4 +

m1

mj

∣∣∣∣( ∇iκ1
−A

)
ψj

∣∣∣∣2]−∑
j<k

γj,k(ψjψ
∗
k + c.c.) + (∇×A)2, (A.4)

with a material-dependent parameter for the first-component κ1 = λ10/ξ10 = (m1c/2e~)
√
β1/2π, and

temperature terms εj = (T/Tcj − 1) with corresponding critical temperature Tcj for each component.

A.3 Numerical Techniques

We numerically solve the TDGL equations based on the finite difference approximation. When we
assume that the line-tension of the vortex lines is high, the problem is simplified to a two-dimensional
calculation. To maintain gauge invariance after discretization [117], we introduce an auxiliary vector
of so-called link variables,

Ux(x, y) = exp

(
−iκ1

∫ xn+1

xn

Ax(η, y)dη

)
,

Uy(x, y) = exp

(
−iκ1

∫ yn+1

yn

Ay(x, ζ)dζ

)
, (A.5)

where vector xn = (xn, yn) is an arbitrary reference point, and Uµ with µ = x, y is complex valued
and unimodular as U∗µ = U−1

µ .

Using the link variables, the TDGL equations are rewritten as,

m1D1

mjDj

∂ψj
∂t
− m1

mj

1

κ2
1

∑
µ=x,y

U∗µ
∂2(Uµψj)

∂µ2
+

α1

|αj |
ψj +

βj
β1
|ψj |2ψj −

∑
j<k

γjkψk = 0, (A.6)

σ
∂A

∂t
+∇×∇×A = Js, (A.7)

where Js = (Js,x, Js,y) is given,

Js,µ =
∑
j
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mj
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∗
j

∂(Uµψj)
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∂(U∗µψ
∗
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])
. (A.8)

After the discretization procedure [115] with square meshes of size h as schematically shown in
Fig. A.1, the magnetic field in a mesh is calculated as,

Bz;xn,yn =
1−Wz;xn,yn

iκ1h2
, (A.9)

with Wz;xn,yn = U∗x;xn,yn+1
U∗y;xn,ynUx;xn,ynUy;xn+1,yn , and the supercurrents as,
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)
. (A.11)
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Figure A.1: Numerical discretization scheme representing the evaluation points for ψj ’s (circle), Js

and U (square), and Bz (triangle).

Finally, the TDGL equations that are to be solved take the form, for the order parameters,

m1D1

mjDj

∂ψj;xn,yn
∂t

= Fψj ;xn,yn , (A.12)

where
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and for Ux, Uy,
∂Ux;xn,yn

∂t
= − i

σ
FUx;xn,yn , (A.14)

∂Uy;xn,yn

∂t
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σ
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where
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FUy ;xn,yn = Im
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h2
+
∑
j
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mj
Uy;xn,ynψ

∗
j;xn,ynψj;xn,yn+1

 . (A.17)

Equations (A.12), (A.14), and (A.15) are integrated by a one-step forward-difference technique, with
time step ∆t,

ψj;xn,yn(t+ ∆t) = ψj;xn,yn(t) + Fψj ;xn,yn∆t, (A.18)

Ux;xn,yn(t+ ∆t) = Ux;xn,yn(t) exp

(
− i
σ

FUx;xn,yn∆t

)
, (A.19)

Uy;xn,yn(t+ ∆t) = Uy;xn,yn(t) exp

(
− i
σ

FUy ;xn,yn∆t

)
. (A.20)
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A.4 Boundary Conditions

To solve the TDGL equations numerically, we impose the following two types of boundary condi-
tions on a simulation box which yield qualitatively different situations.

Periodic boundary condition

To investigate the interaction between multiple vortices, one introduces a so-called magnetic
periodic boundary condition, which confines a fixed number of vortices in a simulation box [117, 118,
119, 120],

ψj(x, Ly) = ψj(x, 0),

ψj(Lx, y) = ψj(0, y) exp(iyΦ/Ly),

Ay(Lx, y) = Ay(0, y) + Φ/Ly,

Ay(x, Ly) = Ay(x, 0), (A.21)

where Φ specifies the total reduced flux as N = Φ/2π in the simulation box with the size Lx and Ly
in the x and y directions.

This boundary condition is convenient for investigating inherent vortex interactions as bulk as
discussed in Chapters 3 and 4, because the simulated vortex states are not affected by undesired
boundary effects, as we shall discuss next.

Finite boundary condition

As studied by de Gennes using a microscopic theory [121], a general boundary condition at a
surface of a finite system takes the form(

~
i
∇− 2e

c
A

)
ψj

∣∣∣∣
n

=
i~
b
ψj , (A.22)

where b is an extrapolation length from the surface to the point at which ψj would go to zero outside
of a superconductor. The value of b will depend on the nature of the material in contact with the
superconductor. The condition for limit b → ∞ means that there is no current passing through the
surface, namely the superconductor-insulator (SC-I) boundary condition. In contrast, the condition
for limit b→ 0 corresponds to a boundary in contact with a ferromagnetic material, hence the name
superconductor-ferromagnet (SC-FM) boundary condition. The other boundary condition for the
superconductor and normal-metal depends on the appropriate intermediate value of b. In this thesis,
both the SC-I and SC-FM boundary conditions are used and results compared in simulations of the
magnetization process and vortex states in a finite system as discussed in Chap. 5.

A finite boundary condition is more convenient when studying vortex states or magnetization
(M -H) curves affected by the sample geometry.1 Figure A.2 shows typical M -H curves for type-I
and type-II superconductors based on the introduced multicomponent TDGL method.2 Using a large
simulation box (150λ10×130λ10) containing hundreds of vortices, we can approach ideal M -H curves,
which are different from the mesoscopic systems where only a couple of vortices are confined within
the simulation box.

For the SC-FM boundary condition in Fig. A.2(a), both M -H curves of type-I and type-II su-
perconductivity start to drop almost at the same applied field, which are qualitatively different from
experiments. This is an undesired consequence of using the SC-FM boundary condition where vortices
always start to penetrate at Hc1 ≈ Htc independent of the GL parameter κ [78].

1For instance, vortices near the surface will experience a repulsive force due to the external field, but an attractive
force due to an “image” vortex [122].

2Mass ratio rm = 1 is used, which yields essentially the same magnetic properties as conventional superconductors
(see Chapter 3)
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(a) 

A 

B 

B A C D 

(b) 

C 

D 

Figure A.2: Typical magnetization (M -H) curves based on the multicomponent TDGL method
subject to (a) the superconductor-ferromagnet (SC-FM) and (b) the superconductor-insulator (SC-I)
boundary conditions. Material parameters are given as κ1 = 1.0 and κ1 = 2.5 representing type-I
and type-II superconductors, respectively, with rm = 1 common to both. Other parameter values are
the same as introduced in Chap. 2. The size of the simulation box is 150λ10 × 130λ10 with square
meshes of 1λ10 × 1λ10. Panels A, B, C, and D represent magnetic flux density Bz (normalized by
each applied field H/H1c) of the simulation box at indicated points in the M -H curves.
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Appendix B

Magnetic properties in TRSR
superconductors

B.1 Multicomponent GL Equations for TRSR Superconductivity

We here discuss a multicomponent superconductor with intercomponent couplings unfrustrated,
i.e. γ12γ23γ13 > 0, and analytically derive that it is similar to a single-component case close to Tc.

Around the critical temperature, the order parameters are given by the linearized version of
Eq. (1.93),  α1 −γ12 −γ13

−γ12 α2 −γ23

−γ13 −γ23 α3

ψ1

ψ2

ψ3

 = X ·Ψ = 0. (B.1)

The critical temperature Tc is given when the determinant of X becomes zero. To satisfy the condition
that X is positive definite at T > Tc, all determinants of principal minors take non-negative values
according to the Sylvester’s criterion, namely αj ≥ 0 and αjαk − γ2

jk ≥ 0. For the case where X
has a single zero eigenvalue at T = Tc (in contrast to the case of two zero eigenvalues for the TRSB
state discussed in Sec. 1.4.3 and Ref. [64]), one has

∑
j 6=k εjεk =

∑
j 6=k(αjαk − γ2

jk) > 0 with εj the
eigenvalues of X, which indicates that at least one term in the second summation should be positive
(equivalently a single zero eigenvalue), for example α2α3 − γ2

23 > 0.
When X has two independent vectors at T = Tc, the ratios among order parameters for T ≤ Tc

are given by the Cramer’s rules from Eq. (B.1),

ψ2

ψ1
=

α1α3 − γ2
13

γ12α3 + γ13γ23
=
γ12α3 + γ13γ23

α2α3 − γ2
23

,

ψ3
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α1α2 − γ2
12
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γ13α2 + γ12γ23

α2α3 − γ2
23

, (B.2)

where αjγkl+γjkγjl 6= 0 since αj ≥ 0 and γjkγklγjl > 0. It is noticed that the above relations indicate
α1α2 − γ2

12 > 0 and α1α3 − γ2
13 > 0. One then arrives at

ψ2
2

ψ2
1

=
α1α3 − γ2

13

α2α3 − γ2
23

,

ψ2
3

ψ2
1

=
α1α2 − γ2

12

α2α3 − γ2
23

. (B.3)

For T ≤ Tc, the OPs follow the coupled GL equations,α1 + β1ψ
2
1 −γ12 −γ13

−γ12 α2 + β2ψ
2
2 −γ23

−γ13 −γ23 α3 + β3ψ
2
3

ψ1

ψ2

ψ3

 = X′ ·Ψ = 0.
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Since the determinant of X′ should be zero, one has the following OPs taking into account Eq. (B.3),

ψ2
1 ≈

−K23 det X

β1K2
23 + β2K2

13 + β3K2
12

,

ψ2
2 ≈

−K13 det X

β1K2
23 + β2K2

13 + β3K2
12

,

ψ2
3 ≈

−K12 det X

β1K2
23 + β2K2

13 + β3K2
12

, (B.4)

where Kjk = αjαk − γ2
jk up to O(1− T/Tc).

B.2 Properties in TRSR Superconductors

Other quantities for a TRSR superconductor are straightforwardly available with the conventional
approach [6].

Penetration length

The London penetration depth λ is obtained from the GL equation for supercurrents in Eq. (1.94)
multiplying ∇,

∇×∇×B = −4π(2e)2

c2

∑
j

|ψj |2

mj
B, (B.5)

with ∇×A = B and ∇φj = 0. This can be transformed by a vector identity to the London’s equation
coupled with the Maxwell equation, namely ∇2B = B/λ. One then finds,
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4π(2e)2
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(
|ψ1|2
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m2
+
|ψ3|2

m3

)
≈4π(2e)2

c2

(
K23
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)
−det X

β1K2
23 + β2K2

13 + β3K2
12

. (B.6)

Coherence length

In order to calculate the coherence length, we consider a one-dimensional system with the bound-
ary condition that the order parameters recover from normal to bulk values, |ψj | → |ψj0| as x→ +∞,
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=α2(ψ2 − ψ20) + 3β2ψ

2
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2m3
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=α3(ψ3 − ψ30) + 3β3ψ

2
30(ψ3 − ψ30)

− γ23(ψ2 − ψ20)− γ13(ψ1 − ψ10). (B.7)

Taking ψj − ψj0 = aj exp(−
√

2x/ξ) with a single length scale ξ, the equations are rewritten,α1 + 3β1ψ
2
10 − ~2ξ−2/m1 −γ12 −γ13

−γ12 α2 + 3β2ψ
2
20 − ~2ξ−2/m2 −γ23

−γ13 −γ23 α3 + 3β3ψ
2
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The coherence length ξ is then obtained from det Y = 0,

ξ−2 ≈ 2

~2

−det X

K23/m1 +K13/m2 +K12/m3
. (B.9)

Thermodynamic field

The thermodynamic magnetic field Htc is equated with free energy difference between supercon-
ductivity and normal state in absence of magnetic fields in Eq. (1.91), namely fn−fsc =

∑
j=1,2,3 αj |ψj |2+

βj |ψj |4. One can readily derive with the OPs in Eq. (B.4),

H2
tc

8π
≈ 1

2

(det X)2
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23 + β2K2

13 + β3K2
12

. (B.10)

Nucleation field

Finally, the nucleation field Hn is derived from the linearized GL equations in the presence of
fields H. Taking the gauge Ay = Hx,Ax = 0, Az = 0, the OPs can be expressed ψj = eikyyeikzzf(x),
which yield similar forms to the Schrödinger equation,

− ~
2mj
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~

2mj

(
2πH
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(
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)
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where x0 = kyΦ0/2πH. Based on the lowest Landau level solution with fj = bj exp
[
−1

2
2πH
Φ0

(x− x0)2
]
,

we obtain
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 = Z · b = 0. (B.12)

The nucleation field is derived with det Z = 0 and kz = 0,

Hn ≈
Φ0

2π

2

~2

−det X

K23/m1 +K13/m2 +K12/m3
. (B.13)

B.3 Summary

Based on the coherence length ξ and the penetration depth λ obtained here, the characteristic
fields can be rewritten as Htc = Φ0/2

√
2πξλ and Hn = Φ0/2πξ

2. We obviously find that Hn/Htc =√
2λ/ξ =

√
2κ, with the GL parameter κ. Therefore, magnetic properties in a TRSR superconductor

are essentially the same as a conventional single-component case.
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[52] V. Stanev and Z. Tešanović. Three-band superconductivity and the order parameter that breaks
time-reversal symmetry, Phys. Rev. B 81, 134522 (2010).

http://link.aps.org/doi/10.1103/PhysRevLett.101.107007
http://link.aps.org/doi/10.1103/PhysRevB.78.060505
http://www.pnas.org/content/105/38/14262.abstract
http://prb.aps.org/abstract/PRB/v79/i1/e014522
http://prb.aps.org/abstract/PRB/v80/i6/e064506
http://stacks.iop.org/0953-2048/22/i=7/a=075008
http://link.aps.org/doi/10.1103/PhysRevB.79.220512
http://jjap.jsap.jp/link?JJAP/51/010005/
http://stacks.iop.org/0034-4885/74/i=12/a=124508
http://stacks.iop.org/0295-5075/83/i=4/a=47001
http://stacks.iop.org/0295-5075/83/i=4/a=47001
http://www.tandfonline.com/doi/abs/10.1080/00018732.2010.513480
http://dx.doi.org/10.1038/nature07057
http://ptp.oxfordjournals.org/content/29/1/1.short
http://ptp.oxfordjournals.org/content/36/5/901
http://ptp.oxfordjournals.org/content/36/5/901
http://link.aps.org/doi/10.1103/PhysRevB.60.14868
http://stacks.iop.org/0295-5075/48/i=4/a=449
http://link.aps.org/doi/10.1103/PhysRevB.81.134522


[53] W.-C. Lee, S.-C. Zhang and C. Wu, Pairing State with a Time-Reversal Symmetry Breaking
in FeAs-Based Superconductors, Phys. Rev. Lett. 102, 217002 (2009).

[54] C. Platt, R. Thomale, C. Honerkamp, S.-C. Zhang and W. Hanke, Mechanism for a pairing
state with time-reversal symmetry breaking in iron-based superconductors, Phys. Rev. B 85,
180502 (2012).

[55] S. Maiti and A. V. Chubukov, s + is state with broken time-reversal symmetry in Fe-based
superconductors, Phys. Rev. B 87, 144511 (2013).

[56] T. K. Ng and N. Nagaosa, Broken time-reversal symmetry in Josephson junction involving
two-band superconductors, Europhys. Lett. 87, 17003 (2009).

[57] S.-Z. Lin, Josephson effect between a two-band superconductor with s + + or s ± pairing
symmetry and a conventional s-wave superconductor, Phys. Rev. B 86, 014510 (2012).

[58] Y. Tanaka and T. Yanagisawa, Chiral Ground State in Three-Band Superconductors, J. Phys.
Soc. Jpn. 79, 114706 (2010).

[59] T. Yanagisawa, Y. Tanaka, I. Hase and K. Yamaji, Vortices and Chirality in Multi-Band Su-
perconductors, J. Phys. Soc. Jpn. 81, 024712 (2012).

[60] Y. Ota, M. Machida, T. Koyama and H. Aoki, Collective modes in multiband superfluids and
superconductors: Multiple dynamical classes, Phys. Rev. B 83, 060507 (2011).

[61] J. Carlström, J. Garaud and E. Babaev, Length scales, collective modes, and type-1.5 regimes
in three-band superconductors, Phys. Rev. B 84, 134518 (2011).

[62] V. Stanev, Model of collective modes in three-band superconductors with repulsive interband
interactions, Phys. Rev. B 85, 174520 (2012).

[63] S.-Z. Lin and X. Hu, Massless Leggett Mode in Three-Band Superconductors with Time-
Reversal-Symmetry Breaking, Phys. Rev. Lett. 108, 177005 (2012).

[64] X. Hu and Z. Wang, Stability and Josephson effect of time-reversal-symmetry-broken multi-
component superconductivity induced by frustrated intercomponent coupling, Phys. Rev. B 85,
064516 (2012).

[65] M. E. Zhitomirsky and V.-H. Dao, Ginzburg-Landau theory of vortices in a multigap supercon-
ductor, Phys. Rev. B 69, 054508 (2004).

[66] A. Gurevich, Limits of the upper critical field in dirty two-gap superconductors, Physica C 456,
160 (2007).

[67] G. Arfken, Mathematical Methods for Physics, 3rd ed., (Academic Press, San Diego, 1985).

[68] N. V. Orlova, A. A. Shanenko, M. V. Milošević, F. M. Peeters, A. V. Vagov and V. M. Axt,
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