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Abstract

Organic conductors have attracted great interest because of the variety of possible electronic states,

such as Mott insulating, superconducting, metallic, and charge ordering states. The electronic states

in most organic conductors are highly two-dimensional (2D) because such conductors are layered

structures composed of organic molecules and anions. In these layered organic conductors, spin,

charge, and orbital degrees of freedom lead to intriguing physical properties at low temperatures. For

such properties, strong electron correlations in these 2D electronic structures play an essential role.

Hence, along with transition metal oxides and rare-earth metal complexes, organic conductors are

being recognized as important targets for studying strong correlation effects in the electronic states.

In layered 2D organic conductors, the interlayer charge transport properties are well-known to show

characteristic features in temperature and magnetic field dependent phenomena. Such phenomena are

strongly affected by scattering caused by (1) local magnetic moments in the anion layers and (2)

impurities (or defects) in the conducting layers. Despite the extensive experiments performed so

far, detailed mechanisms of the characteristic phenomena in the interlayer charge transport remain

unsolved problems. As high-quality single crystals can be produced, 2D organic conductors are good

candidates to study the interlayer charge transport. For this thesis, two material systems with layered

structures were chosen and systematic measurements of their electric and magnetic properties were

obtained. We give a brief overview of the results found for these materials.

(1) Conductivity and magnetism in π-d organic conductors κ-(BDH-TTP)2FeX4 (X =

Br, Cl)

In π-d organic conductors, the π conduction electrons within the organic molecular layers, where

transport behavior is strongly affected by electron correlations, are expected to interact with the

localized d electrons in the anion layers. To investigate the correlation between the conductivity and

magnetism, the magnetic and magnetotransport properties of the π-d systems κ-(BDH-TTP)2FeBr4

(FeBr4 salt) and κ-(BDH-TTP)2FeCl4 (FeCl4 salt) have been investigated. The π electrons in the

BDH-TTP sheets exhibit simple metallic behavior down to 30 mK for both salts. The magnetic

susceptibility of the FeBr4 salt, which is mainly associated with the Fe3+ d spins (S = 5/2), obeys

the Curie-Weiss law, indicating the presence of an antiferromagnetic (AF) transition at TN = 3.9 K.

In the AF state, a steep S-shaped increase in the magnetization at 1.5 T (HSF) in the field parallel to

the a-axis is found, which is ascribed to a spin-flop transition. Additionally, the magnetization curves

for fields perpendicular to the easy axis show an inflection point at Hc = 3.1 T, suggesting a spin

canting configuration in the bc-plane. A possible AF spin structure based on the magnetization data
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and molecular orbital calculations features a triangular lattice consisting of the Fe d electron spins

and the donor π electron spins. A steep decrease in the magnetoresistance (MR) for the AF state

is observed at HSF for H ∥ a, proving that the strong π-d interaction affects the electron transport

in the donor system. An anomalous broadening of the electron spin resonance (ESR) linewidth in

the critical region above TN is suggestive of a developing magnetic short-range order, for which the

low-dimensionality in the spin system is responsible.

For the FeCl4 salt, a rapid change in the magnetic torque at low magnetic fields is associated with

a change in sign at low temperatures below 0.4 K. The systematic measurements reveal that the 3d

spins have an AF order at about 0.4 K and that the torque sign change is caused by a metamagnetic

transition. A rapid decrease in the MR at the metamagnetic transition field provides clear evidence

of a finite π-d interaction. Characteristic temperature dependences of the magnetic susceptibility and

the ESR g-value are found in the paramagnetic phase, which are explained in terms of a single-ion

anisotropy effect. These physical properties of the FeCl4 salt indicate that both the π-d and d-d

interactions in this salt are much weaker than those in the FeBr4 salt.

(2) Incoherent interlayer charge transport in α-(BEDT-TTF)2NH4Hg(SCN)4

To investigate the incoherent interlayer transport in a 2D organic superconductor α-

(BEDT-TTF)2NH4Hg(SCN)4, we have performed the interlayer MR measurements for many samples

with different qualities. The temperature dependence of the interlayer resistivity is found to be

strongly sample-dependent. For some samples, the Shubnikov-de Hass oscillations are measured to

determine the Dingle temperature (TD), characterizing the sample quality. When TD is relatively

low, the incoherent interlayer transport becomes evident only in high magnetic fields parallel to the

layers. This incoherent behavior is due to the confinement effect of the electrons by the parallel field.

When TD is sufficiently high, the interlayer transport is incoherent in the whole angle and field region.

From the systematic measurements, we obtained the crossover field from the coherent to incoherent

interlayer transport as a function of TD. The crossover field is constant in the low TD region below 1.2

K but decreases with TD above it. This behavior is explained in terms of two conducting channels,

the band coherent and impurity-assisted incoherent channels.

This thesis is composed of four main sections; the introduction, experimental methods, κ-(BDH-

TTP)2FeX4 (X = Br, Cl), and α-(BEDT-TTF)2NH4Hg(SCN)4. In the introduction, a detailed back-

ground is presented and purposes of the study are explained. Next, experimental methods are ex-

plained and followed by a discussion on the magnetotransport properties and other magnetic properties

arising from the π-d interaction for the FeBr4 and FeCl4 salts. The incoherence in the interlayer charge

transport is then discussed for α-(BEDT-TTF)2NH4Hg(SCN)4.
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Chapter 1

Introduction

1.1 Background

Because of their novel electronic and chemical properties and their application for electronic devices,

organic materials have been extensively developed and studied in both industry and academia for

decades. Until the 1950s, organic compounds made of non metallic atoms had been thought to be

insulators because they had closed orbits. However, when an electron is removed from or added to an

organic polymer, the holes or electrons can move freely, and the polymer becomes conductive. In 1954,

a perylene-bromine charge complex was the first semiconducting organic material to be discovered.1

The first metallic polymer was synthesized by A. J. Heeger, A. G. MacDiarmid, and H. Shirakawa in

1975, for which they won the 2000 Nobel Prize in Chemistry.2 Synthetic metals are classified into two

groups: organic conducting polymers and organic conductors (molecular conductors). A Polymer is

a large molecule composed of many small elements connected by strong covalent bonds. A molecular

conductor is composed of small molecules that interact with each other through weak inter-molecular

interactions, and form a single crystal. Charges are transferred from donor molecules to acceptor

molecules, and the surplus holes can become conductive. Along with the success in the development

of organic conducting polymers, the organic molecular conductor, TTF-TCNQ was found in 1973 to

exhibit metallic conduction.3 Diagrams of the TTF, TCNQ molecules, and other organic molecules

are shown in Fig. 1.1.4 The conductive organic material exhibits conductance of up to σ = 104 Scm−1.

A number of other organic conductors and organic superconductors have since been synthesized.

The first organic superconductor, (TMTSF)2PF6, was discovered in 1980 and has a quasi-1-dimensional

(q1D) Fermi surface.5 This material undergoes a superconducting transition at 0.9 K under a hydro-

static pressure of 12 kbar. Following this discovery, electronic states of two-dimensional (2D) organic

BEDT-TTF salts were found to be superconducting under ambient pressure.6,7 The 2D κ and β′ type

salts, in which strong electron correlations are introduced, show superconducting transitions above 10

K. Moreover, three-dimensional (3D) superconductors, such as K doped C60, were developed (Tc ≈ 33

K). These studies on organic superconductors have been expanded in efforts to achieve higher Tc

values.

Recently, studies pursuing novel functionality in organic conductors, such as single-component

molecular crystals and molecular magnets, have also attracted attention.8
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1.1.1 Molecular conductor

Most molecular conductors are composed of donor and acceptor molecules. For example, in a (BEDT-

TTF)2X salt, two BEDT-TTF molecules supply one electron to the X anion (acceptor) molecule, giving

rise to one hole for every two BEDT-TTF molecules. By charge transfer between the molecules, cation

and anion radicals are generated in forming the salt. For this reason, molecular conductors are also

called charge transfer salts.

One important feature of organic conductors is the low dimensionality, arising from the large

anisotropy of the molecular structures. Illustrations of two crystal structures are shown in Fig. 1.2.

These examples show that the large p orbits from either the carbon or sulfur atoms of the donor

molecules overlap, allowing the π conjugated system to form. Because of charge transfer, the anion

molecules become insulating, and hence form insulating layers situated between conducting layers. The

TMTTF molecules from adjacent layers stack along the direction normal to the layer, thus, enabling

electron conduction to become 1D. In contrast, the BEDT-TTF molecules stack two dimensionally

within the donor layer as shown in Fig. 1.2. In the interlayer direction, the donor molecules are

separated from each other by the insulating anion layers. This particular stacking of the BEDT-TTF

salts enables 2D conduction within the layer, which means that the transfer integral is smaller for the

interlayer direction than that for the in-plane direction.

Many different molecular configurations have been found in the donors of the 2D systems as shown

in Fig. 1.3(a). In the β′ and κ type salts, the facing pair of donor molecules has a strong interaction and

can be dimerized. The electron correlation between each dimer plays an essential role in these salts.

One of the features of organic conductors is the simple Fermi surfaces in spite of their complicated

molecular arrangements. The band structures and the Fermi surfaces of some organic conductors are

shown in Figs. 1.3(b)-(d). Most salts have a 2D or 1D Fermi surface.

The band calculations for these salts are usually done by the tight-binding extended Hückel method,

which is a semiempirical approach. This method provides useful qualitative information of the Fermi

surfaces of organic conductors. However, there are some serious problems with parameters such as the

bandwidths and effective band masses. In recent years, the band calculations by the first-principles

method have been performed to investigate the detailed electronic structures for some molecular

metals. Figure 1.4(a) shows the band structure and the Fermi surface of α-(BEDT-TTF)2KHg(SCN)4

calculated using the extended Hückel method.14 The general structure of the energy band and the

shape of the Fermi surface agree very well with that found in the first-principles study shown in Fig.

1.4(b).15 The absolute value of the band width, however, is larger for the extended Hückel method

than that for the first-principles study, in this case.

We can control the molecular arrangement by changing either the species of anions or the crystal-

lization process. As a result, a variety of physical and electronic properties such as superconducting

transitions, density waves, charge order, and Mott insulating phases have been observed. Because of

this variety, organic conductors have attracted much attention in the fields of chemistry, and physics,
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both experimentally and theoretically.

Figure 1.1: Examples of organic molecules. (D) and (A) denote the donor and accepter molecules, respectively.4

Figure 1.2: (a) Crystal structure and conducting direction of 1D material. (b) Crystal structures of 2D systems.

The 2D conducting layers are separated by the insulating anion layers.9,10
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Figure 1.3: (a) Relation between the donor arrangement and the unit cell for a range of organic conductors.

(b)-(d) Fermi surfaces for the donor layer for the θ, β′, and κ type organic conductors.11–13

Figure 1.4: Band structure and Fermi surface of α-(BEDT-TTF)2KHg(SCN)4 at 104 K using (a) the extended

Hückel method and (b) the first-principles density functional theory.14,15
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1.1.2 π-d organic conductor

π and s electrons (holes) are able to move freely as conduction carriers within the salts. If dopants

having d orbits, such as transition metals like Fe, are located in the sea of the conduction s electrons,

the Heisenberg-type exchange interactions between the s and d spins are given by

−2Jsdδ(r)S · s, (1.1)

where S and s denote the spins of the s and d electrons, and Jsd is exchange interaction parameter.

Effective field, acting on a s electron decreases with distance from a d electron; this decay is described

by the δ function for the distance. This s-d interaction causes spin polarizations of the conducting s

spins near the localized d spins, enabling long-ranged exchange coupling of the d spins via the s spins.

The coupling mechanism is referred to as the RKKY (Ruderman-Kittel-Kasuya-Yoshida) interaction,

which is important in magnetic diluted alloys.

In the 1990s, studies of organic conductors containing magnetic 3d spins (π-d systems) began

to reveal novel magnetic and transport properties. In π-d systems, the π conduction electrons, the

transport behavior of which are affected by strong electron correlations, were expected to interact with

the localized d spins. Accordingly, this situation enabled magnetic conductors to be designed that

exhibited phenomena, highlighting the importance of the interplay between the electron transport and

magnetism, which cannot be observed in traditional magnetic conductors.16–21 In π-d systems such

as λ-(BETS)2FeCl4 and TTP[Fe(Pc)(CN)2]2 (Pc: Phthalocyanine), interesting phenomena have been

observed, where the cooperation between the strong π-d interaction (exchange interaction between the

conducting π spins and localized 3d spins) and strong electron correlations among the π electrons play

an essential role.22,23 The structures of these π-d systems are shown in Figs. 1.5 and 1.6. The anion

layers containing Fe(III) ions with large 3d moments and the donor layers are arranged alternately in

λ-(BETS)2FeCl4. For this sandwiched structure, the magnitude of the π-d interaction depends on the

distance between the anion and donor molecules. In contrast, the Fe(Pc)(CN)2 molecule contains both

π conduction electrons on the Pc ligand and a 3d moment on the Fe3+ ion. Thus, the π-d interaction

in TPP[Fe(Pc)(CN)2]2 is larger than that in the salts with the sandwiched structure. λ-(BETS)2FeCl4

undergoes a magnetic-field-induced superconducting phase, whereas the normal superconducting phase

is easily destroyed by the magnetic field. The anomalous temperature dependence of the specific heat

in this salt is also regarded as a result of the π-d interaction.25 TTP[Fe(Pc)(CN)2]2 exhibits a large

negative magnetoresistance (MR) as seen in Fig. 1.6(b). Recently, an organic ion-radical salts without

metal ions have also been found in which conductivity and magnetism coexist.26
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Figure 1.5: (a) Schematic of the crystal structure of λ-(BETS)2FeCl4. (b) Interlayer resistance when the field

is exactly parallel to the conduction plane. (c) Temperature vs. magnetic field diagram.22

Figure 1.6: (a) Structure of TTP[Fe(Pc)(CN)2]2. (b) Interlayer conductance vs. magnetic field.23,24
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1.2 Incoherent interlayer transport

1.2.1 Incoherent interlayer transport in q1D systems

The incoherent behavior of the interlayer charge transport in the highly anisotropic conductors has

been one of the long-standing issues in solid state physics.27,28

The incoherence of the interlayer charge transport was first discussed in a q1D organic conductor

(TMTSF)2PF6.
29,30 (TMTSF)2PF6 has a pair of corrugated 1D Fermi surfaces [see Fig. 1.7(a)],

which are perpendicular to the a-axis (the most conducting direction). When a high magnetic field

is applied along the second conducting direction (b-axis), the electrons are driven in the kc direction

on the Fermi surface by the Lorentz force. In real space, the electrons run at constant velocity in

the a-axis but move sinusoidally in the least conducting direction (c-axis). The width of the electron

motion in real space is given by

∆z =
4tz

evFHb
, (1.2)

where tz is the transfer integral along the c-axis, vF is the Fermi velocity, and Hb is the magnetic

field component along the b-axis. As the field increases, the amplitude of the sinusoidal motion ∆z

diminishes and becomes smaller than the distance between layers. The electrons are then confined

in each layer; the electronic states are decoupled between adjacent layers. Hence, the interlayer

transport is prohibited without scattering and thus becomes incoherent in high magnetic fields.31 In

this situation, the angular dependence of the MR cannot be explained by the Boltzmann transport

theory. The interlayer MR for (TMTSF)2PF6 is shown in Fig. 1.8(a).29 Apart for the dips caused

by the Lebed resonance, the MR background shape changes above 1 T. The interlayer MR has a

maximum (minimum) in a field perpendicular (parallel) to the layer, whereas the Boltzmann transport

theory predicts the opposite behavior. This unconventional MR behavior, the reversal of the angular

dependence in the MR, is considered as indicating incoherent interlayer transport, and has been

extensively studied both theoretically and experimentally.29,31–33

1.2.2 Incoherent interlayer transport in 2D systems

In recent decades, another criterion for incoherent transport has been discussed for 2D systems.27,28,34

In metallic materials, the electron conduction is ascribed to the coherent motion of electrons in

the band states. A model commonly used for 2D materials consists in the free motion of electrons

within the 2D planes and nearest-neighbor hopping between the planes. The energy is given by

ϵk =
ℏk2

∥

2mc
− 2tz cos(kzc), (1.3)

where k∥ and kz are the in-plane and z-axis components of the momentum, respectively. mc is the

in-plane effective mass and c is the length between the adjacent layers. Because tz is finite, the

cylindrical Fermi surface is corrugated as shown in Fig. 1.9. For typical 2D organic conductors, a
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Figure 1.7: (a) Fermi surface of (TMTSF)2PF6.
10 (b) Schematic diagrams of the q1D Fermi surface and the

electron motion with a magnetic field applied along the second conducting direction (∥ kb). (c) Confinement of

the electron motion in real space.

highly 2D electronic state is formed at tz of approximately 1 K, and a Fermi energy of order 1000 K.

With this model, the electron motion can be well described by the Boltzmann transport theory.

The coherence of the interlayer charge transport can be determined by the relation between two

factors; the interlayer transfer integral tz and the scattering time τ . For tz ≫ ℏ/τ , a cylindrical

2D Fermi surface with corrugation given by tz is well defined. The electrons can easily move in the

interlayer direction without scattering, the interlayer transport is then being coherent. The angular

dependence of the MR is well described by the Boltzmann transport theory. The evidence for the

coherent transport is the observation of a narrow peak, called the coherence peak, in the MR under

high fields parallel to the layers. This peak arises from small cyclotron orbits [shown in Fig. 1.10(b)]

on the side of the corrugated cylindrical 2D Fermi surface.35 Additionally, the MR has characteristic

oscillatory behavior dependent on the field angle, which is called angular-dependent magnetoresistance

oscillation (AMRO). The AMRO arises from the periodic cyclotron motion across the corrugated Fermi

surface. The interlayer conductivity for a corrugated 2D Fermi surface with axial symmetry is given

by

σzz(H) = σ0zz

{
J2
0 (ckF tan θ) +

∞∑
ν=1

2J2
ν (ckF tan θ)

1 + (νωcτ cos θ)2

}
.

σ0zz =
2e2mct

2
zcτ

πℏ4
=

(
ṽz
vF

)2 Ne2τ

mc
. (1.4)

Here c is the interlayer spacing, kF is the Fermi wave number, e is the elementary charge, ṽz = 2tzc/ℏ,

and N is the density of electrons.36,37 The nth Bessel function Jn has zeros, giving resistance peaks

when the field angle satisfies the relation

ckF tan θ = π (n− 1/4) (n = 1, 2, 3 · · · ). (1.5)
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Figure 1.8: (a) MR perpendicular to the ab-plane for (TMTSF)2PF6. The field angle θ is rotated from the c-

to the b-axis. The red curve is added to guide the eyes. (b) Data for magnetic fields of 3, 5, and 7 T, plotted

as the natural logarithm of the deviation from a reference value versus the natural logarithm of the magnetic

field strength, perpendicular to the ab plane. (c) MR at 0.1 T for the cb-rotation.29

In the opposite limit (tz ≪ ℏ/τ), electrons cannot tunnel between the layers without scattering.

The interlayer transport then becomes incoherent; the in-plane momentum and energy of the electrons

are no longer conserved. A reversal of the angular dependence of the MR, similar to the 1D case,

is also observed. In this limit, a corrugated 2D Fermi surface is not defined and it might be a good

picture that each layer has an independent 2D Fermi surface.28,34

In the intermediate condition, tz ≈ ℏ/τ , the interlayer transport is rather complicated. The

interlayer transport between the adjacent layers is dominated by a quantum tunneling (not by a

diffusive process). However, successive tunneling rarely occurs because the scattering probability is

relatively large. For this case, the angular dependent MR was first calculated by McKenzie and Moses

and it is clarified that the MR formula is also given by Eq. (1.4).27 However, the absence of successive

interlayer tunneling means there is no coherence peak in parallel fields. This transport process was

originally called weakly incoherent. However, in this thesis, we refer to it as weakly coherent because

the transport between adjacent layers is dominated by the tunneling (a coherent process).

In this condition, the crossover from the coherent to incoherent transport regimes takes place

as the magnitude of τ or tz decreases. The tz value was tuned for the first time in an artificial

GaAs/AlGaAs superlattice by changing the AlGaAs barrier thickness between the GaAs 2D electronic
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Figure 1.9: Corrugated 2D Fermi surface.

Figure 1.10: (a) Angular dependence of the MR for βH-(BEDT-TTF)2I3. In addition to the AMRO peaks, a

sharp peak structure in the MR appears for magnetic fields nearly parallel to the conduction layer (θ = ±90◦).35

(b) An example of the electron orbits on the q2D Fermi surface under a magnetic field parallel to the layer.35

states by Kuraguchi et al.38 For the superlattice with large (small) tz, the conventional (reversal)

angular dependence in the MR is observed as seen in Fig. 1.11. For both samples, the AMROs are

superimposed on the MR. In some highly 2D organic conductors, the criteria for the coherent transport

have been investigated.28,34,39,40

The sample quality (τ) dependence of the interlayer transport was first investigated in a 2D system,

α-(BEDT-TTF)2KHg(SCN)4 by Kartsovnik et al.41 They found that the angular dependence of the

MR behavior was different between two samples with different qualities. (Fig. 1.12). The reversal

of the MR background, scaled by the field component perpendicular to the layer, was observed for

a dirty sample, whereas a clean sample shows the normal MR background with a coherence peak in

fields parallel to the layer. This study shows that the interlayer MR in the incoherent regime is very

similar to the decoupled case of the 1D systems by the confinement effect: both the scattering and the

confinement effect by the parallel field play crucial roles in the incoherent behavior of the interlayer

14



Figure 1.11: Angular dependence of the interlayer MR for (a) sample ♯1 (ℏ/τ = 0.98 meV) and (b) sample ♯2

(ℏ/τ = 1.03 meV) of the GaAs/AlGaAs superlattices. The field dependence for (c) sample ♯1 and (d) sample

♯2. Sample ♯1 exhibits a coherence peak near 90◦.38

transport in 2D systems.

15



Figure 1.12: Interlayer resistance of two α-(BEDT-TTF)2KHg(SCN)4 salts as a function of the polar angle θ

recorded at different azimuthal angles ϕ, P = 0 kbar, H= 10 T.41 A coherence peak is evident for the clean

sample (see inset in the upper panel).
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1.2.3 Confinement effect in 2D systems

The confinement scenario with the large parallel field in the 1D systems was applied to an anisotropic

2D system,40 whose cylindrical Fermi surface has an elliptic cross-section.

Over most parts of the orbit, the electrons have an in-plane velocity component v⊥ perpendicular

to the magnetic field. On the anisotropic Fermi surface (see Fig. 1.14), when the field is applied

parallel to the
−−→
OP1 (along the shortest Fermi wave vector), electrons close to P1 experience a very

weak Lorentz force because they have small v⊥. The transport of these electrons remains coherent

at high fields. In contrast, electrons close to P2 experience a strong Lorentz force, and are likely to

be incoherent. When the field is nearly parallel to
−−→
OP2, the electrons over most parts of the Fermi

surface have large v⊥. Hence, the interlayer transport is likely to be incoherent, and the layers are

decoupled. However, when the magnetic field is applied nearly parallel to
−−→
OP1, a small portion of the

electrons on the Fermi surface has a large v⊥. Hence, the electrons remain coherent and a coherence

peak can be observed.

The Fermi surface of (BEDT-TTF)2Br(DIA), obtained by AMRO measurements, is presented in

Fig. 1.13(b).40 Actually, a dip in the MR (corresponding to a MR reversal) is enhanced in high field

along the long axis but a coherence peak is found in high field along the short axis as shown in Fig.

1.13(c). The results also show that a crossover from the coherent to incoherent behavior takes place

as the parallel field along the long axis increases.

The behavior of the interlayer MR in the coherent and incoherent limits is summarized in Fig.

1.15(c). For the coherent interlayer transport, the AMRO peaks and the normal MR background are

observed. In the limit of the incoherence, a reversed shape is seen in the MR, which is scaled by the field

component perpendicular to the layer, even at low magnetic fields. The studies mentioned above show

that the incoherent interlayer transport is strongly affected by the relation between tz and τ , as well

as by the confinement effect caused by the parallel field. However, no systematic investigations have

been performed, and it remains unclear how the crossover from the coherent to incoherent transport

is induced (see Fig. 1.15). Thus, it was necessary to investigate the MR when only the tz or τ is

modulated and to clarify the effect of the parallel field on the incoherent transport. In this study, we

chose to vary the quality (τ) of samples of an organic superconductor α-(BEDT-TTF)2NH4Hg(SCN)4,

which was expected to have small tz becaused of the large anion molecules. The quality of each sample

is quantitatively checked by the quantum oscillation measurements. The angular dependence of the

MR and the temperature dependence of the resistance for various single crystals can provide much

information on the coherence of the interlayer charge transport.
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Figure 1.13: (a) Second derivative curves of the resistance for (BEDT-TTF)2Br(DIA) at 13.8 T. Peak and

dip structures are seen in the angular dependences of the resistance. (b) Fermi surface in the a∗c-plane and a

polar-plot of the widths of the peak (∆θpeak) and dip ∆θdip. (c) Second derivative curve of the resistance at

azimuthal angle of ϕ = −30◦. The dip at θ = 90◦ appears at high fields and the peak appears at low fields.40

Figure 1.14: (a) A 2D Fermi surface. The Fermi velocity vF at an arbitrary point P , which is perpendicular to

the tangential line.

18



Figure 1.15: Schematics of (a) coherent and (b) incoherent interlayer transport. (c) MR behavior in the

incoherent and coherent interlayer regimes.
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1.3 Materials investigated

1.3.1 π-d organic conductors κ-(BDH-TTP)2FeX4 (X = Br, Cl)

π-d systems

To date, many π-d systems, following novel designs, have been investigated, although most of them

are insulators or semiconductors at low temperatures because of electronic instability. The exceptions

are κ-(BETS)2FeBr4 (X = Br, Cl),42,43 λ-(BETS)2FexGa1−xCl4,
44 (EDO-TTFVO)2FeCl4,

45 (EDO-

TTFVODS)2FeBr4,
46 (EDT-DSDTFVSDS)2FeBr4,

47 (EDT-DSDTFVO)2FeX4 (X = Br , Cl),48 and

β′′-(EDO-TTFVODS)2FeBr4(SCE)0.15,
49 which exhibit metallic or superconducting behavior at low

temperatures. Another important feature of these salts is the low dimensionality of the electronic

states. Because of this feature, peculiar behavior has been observed in superconducting,22,50 and

magnetic properties in these salts.25 These aspects require a special effort to find typical examples

of metallic π-d systems, because the insulating or semiconducting states sweep away the intriguing

phenomena that arise from the interplay between the electron transport and magnetism.

Figure 1.16: BDH-TTP and BDA-TTP

Over the last decade, the structurally similar BDA-TTP and BDH-TTP based π-d systems with

tetrachloroferrates Fe(III)Cl4 have been synthesized. The donors of 2,5-bis(1,3-dithian-2-ylidene)-

1,3,4,6-tetrathiapentalene (BDA-TTP) and 2,5-bis(1,3-dithiolan-2-ylidene)-1,3,4,6-tetrathiapentalene

(BDH-TTP) contain no TTF unit (Fig. 1.16).51 The structures of β-(BDA-TTP)2FeCl4 and κ-(BDH-

TTP)2FeCl4 are shown in Fig. 1.17(a) and 1.18(a), respectively. β-(BDA-TTP)2FeCl4 exhibits an

metal-insulator (MI) transition at a high temperature (113 K) and has an AF order at TN = 8.5 K. The

MI transition is suppressed with increasing pressure with superconductivity appearing above 4.5 kbar

[Fig 1.17(b)].52 In contrast, κ-(BDH-TTP)2FeCl4 (FeCl4 salt) is metallic down to 1.5 K undergoing

no magnetic transition as shown in Fig. 1.18(b).53 In these salts, the FeCl−4 anions (Fe3+ ions)

retain their large local magnetic moments, S = 5/2. Taking into account the structural similarity,

the simple metallic behavior observed in the FeCl4 salt indicates that the ratio of the transfer integral

(bandwidth) to the electron correlation energy is larger than that in β-(BDA-TTP)2FeCl4. It is well

known that intriguing phenomena arising from the enhanced interplay between the electron transport

and magnetism can emerge when energy scales of both are comparable.54 Therefore, reducing the

bandwidth of the FeCl4 salt would be of interest.
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Figure 1.17: (a) Crystal structure of β-(BDA-TTP)2FeCl4. (b) Temperature-pressure phase diagram of β-

(BDA-TTP)2MCl4 (M = Fe, Ga). The solid (open) symbols correspond to data for M = Fe (Ga).52

Figure 1.18: (a) Crystal structure of κ-(BDH-TTP)2FeCl4 viewed from the a-axis (upper) and the c-axis (lower).

(b) Temperature dependence of the resistance for κ-(BDH-TTP)2FeCl4.
53

BDH-TTP salts

Figure 1.19(a) shows the donor arrangement in the ac-plane for κ-(BDH-TTP)2FeBr4 (FeBr4 salt).

The donors form a dimerized structure, where the electronic interaction represented by the intradimer

overlap integral c1 is responsible. The calculated overlap integrals are c1 = 19.0, c2 = 15.6, p = 6.31,

and q = -6.64 ×10−3. These values are slightly smaller than those for the FeCl4 salt, 19.3, 15.7, 6.36,

and -6.79 ×10−3, respectively, showing the smaller bandwidth for the FeBr4 salt. The intradimer

overlap integral c1 is not much larger than the intermolecular integrals c2, p, and q; the BDH-TTP

molecules are weekly dimerized compared with other κ-type salts.43,55 The calculated band structure

and Fermi surface of the FeBr4 salt are shown in Figs. 1.19(c) and (d), respectively.53 Because of

the layered structure, the Fermi surface is highly 2D; a cylindrical Fermi surface that extends over
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the Brillouin zone is formed, similar to those of the other κ phases, κ-(BETS)2FeCl4 and κ-(BEDT-

TTF)2Cu(CN)3.
43,55 The isostructural FeCl4 salt has a similar calculated band structure and Fermi

surface. The values of the lattice parameters and the unit cell volume in the FeBr4 salt are slightly

larger (a: 0.8 %, b: 3.0 %, c: 0.1 %, and V : 4.0 %) than those in the FeCl4 salt (a = 11.039, b =

37.471, c = 8.169 Å, and V = 3379 Å3). The crystallographic data for both salts, obtained using the

X-ray diffraction, are summarized in Table 1.1.

Figure 1.19: (a) BDH-TTP molecular arrangement. The overlap integrals for the FeBr4 salt (FeCl4 salt), c1,

c2, p, and q are 19.0 (19.3), 15.6 (15.7), 6.31 (6.36), and −6.64 (−6.79) ×10−3, respectively. (b) Anisotropic

triangular lattice of the BDH-TTP dimmers. (c) Energy bands and (d) Fermi surface calculated with the

tight-binding approximation using the extended Hückel Hamiltonian.53
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Table 1.1: Crystallographic data for κ-(BDH-TTP)2FeBr4 and κ-(BDH-TTP)2FeCl4.
53

κ-(BDH-TTP)2FeBr4
a κ-(BDH-TTP)2FeCl4

53

Formula C20H16S16FeBr4 C20H16S16FeCl4
Formula weight 1144.77 966.94

Temperature (K) 298.2 295.2

Wave length (Å) 0.7107 (Mo Kα) 0.7107 (Mo Kα)

Crystal system Orthorhombic Orthorhombic

Space group Pnma Pnma

a (Å) 11.130(4) 11.0388(15)

b (Å) 38.598(3) 37.471(5)

c (Å) 8.177(4) 8.1693(10)

V 3513(2) 3379.1(8)

Z 4 4

Dcalc (Mgm−3) 2.164 1.901

Total no. of reflections 4608 2490

No. of reflections observed 2007 2094

(I > 2σ(I))

No. of parameters 198 190

R1, wR2 0.0424, 0.0400 0.0387, 0.0754

GOF 1.671 1.035

aCrystallographic data for both salts were obtained from the X-ray diffraction measurements performed by Assoc.

Prof. J. Yamada and Dr. H. Akutsu at the University of Hyogo.
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Calculation of the π-d interactions in the BDH-TTP salts

AF ordered structures and TN in various π-d systems have been successfully explained in terms of

the cooperation between the π-d and d-d exchange interactions, which are calculated from the overlap

integrals.56,57 The same procedure is followed in analyzing the spin structure of the present π-d

system. The strengths of the calculated exchange interactions and TN are summarized in Tables 1.2

and 1.3. The exchange interaction paths are indicated in Fig. 1.20(a). The strengths of all exchange

interactions for the FeBr4 salt are larger than those for the FeCl4 salt. The calculated TN are 4.00 K

for the FeBr4 salt and 1.33 K for the FeCl4 salt (Table 1.3).

In the FeBr4 salt, the direct d-d interaction (JI/kB) is estimated to be 0.31 K, along the a-axis

[Fig. 1.20(a)]. This gives the exchange energy EJ = 2JIzS(S + 1)/3kB = 3.62 K with z = 2 (the

number of the nearest neighbor sites) and S = 5/2. This direct interaction predominantly leads to an

antiparallel spin arrangement along the a-axis. In contrast, there are six π-d interactions (J1 - J6),

the largest one of which, J4 (J4/kB= 3.93 K) governs the dominant AF interaction between the Fe

3d and π spins (Table 1.2). The largest overlap integral c2 determines the AF coupling between the

π dimer sites along the c-axis. Therefore, the possible spin alignment along the c-axis is AF, given

by the 3d - J4 - π dimer - c2 - π dimer -J4 - 3d path, as shown in Fig. 1.20(a). Along the interlayer

direction (b-axis), the strongest interaction between the 3d spins in the same unit cell is given by the

3d - J4- π dimer - J4 - 3d path, establishing the ferromagnetic (F) coupling. Consequently, the 3d spin

configuration are proposed, as depicted in Figs. 1.20(a) and (b).

Figure 1.20: (a) Possible spin structures and definitions of the six π-d interactions (J1 - J6). (b) Dominant

interaction paths along the b-axis.
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Table 1.2: Calculated π-d and d-d interactions for κ-(BDH-TTP)2FeBr4 and κ-(BDH-TTP)2FeCl4. The inter-

action paths are indicated in Fig. 1.20(a).

κ-(BDH-TTP)2FeBr4 κ-(BDH-TTP)2FeCl4
J/kB (K) J/kB (K)

π-d b 1 0.03 0.01

2 0.07 0.05

3 0.20 0.17

4 3.93 1.76

5 0.14 0.07

6 1.10 0.78

d-d b I 0.31 0.11

Table 1.3: Total π-d interactions and Néel temperatures calculated from the individual interactions for κ-(BDH-

TTP)2FeBr4 and κ-(BDH-TTP)2FeCl4.

κ-(BDH-TTP)2FeBr4 κ-(BDH-TTP)2FeCl4
Jπ−d

c 8.32 K 3.88 K

J ′
π−d

c 2.62 K 1.80 K

Jd
d 0.62 K 0.22 K

x e 0.057 0.021

J (direct) f 3.62 K 1.28 K

J (indirect) f 0.38 K 0.050 K

TN
f 4.00 K 1.34 K

bCalculated by Assoc. Prof. T. Mori at the Tokyo Institute of Technology.56,57

cJπ−d = 2J1+2J3+2J4 and J ′
π−d = 2J2+2J5+2J6 are the cooperative and frustrating π-d interactions, respectively.

dTotal d-d interaction is given by Jd = 2JI.
ex is the π spin polarization factor given by x = 5Mπ/Md = (5χq/2kBCπ)|J ′

π−d − Jπ−d| where χq and Cπ are the

staggered susceptibility and the Curie constant for the π electrons. x = 1 for the case of the entirely localized spins.

Here, Cπ/χq = 500 K is assumed, which is obtained for λ-(BETS)2FeCl4.
fFrom the mean-field theory for S = 5/2, TN is given by kBTN = (35/6)|J ′

d−Jd|+(35/6) ·(χq/2kBCπ) (J
′
π−d − Jπ−d)

2
.

The first term is the contribution of the direct d-d interaction and second term is the indirect π-d interaction. Jπ−d and

J ′
π−d are the cooperative and frustrating π-d interactions. For these salts, J ′

d = 0.
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1.3.2 α-(BEDT-TTF)2NH4Hg(SCN)4

Isostructural α-(BEDT-TTF)2MHg(SCN)4 (M = K, Tl, Rb, and NH4) salts have attracted interest

because of their low-temperature properties. α-(BEDT-TTF)2NH4Hg(SCN)4 (NH4 salt) produces a

superconducting transition at ∼1 K. However, the other salts are metallic down to low temperatures

with a magnetic transition at approximately 10 K. Some experimental studies have suggested that the

ground states of the K, Tl, and Rb salts are density-wave states.

Figure 1.21: (a) Crystal structure, (b) donor arrangement, (c) calculated band structure, and Fermi surface

for α-(BEDT-TTF)2NH4Hg(SCN)4.
58 The overlap integrals are c1 = −2.4, c2 = 5.9, c3 = −0.5, c4 = −0.1,

p1 = −8.8, p2 = −9.5, p3 = 13.7, and p4 = 13.5 (×10−3).

The crystal structure for the NH4 salt is shown in Fig. 1.21(a) and (b).58 This salt has a layered

structure, where the donor layers and anion layers are alternately stacked along the b-axis. The

structure is triclinic and the unit cell angles are α = 103.65◦, β = 90.53◦, and γ = 93.30◦. The

side-by-side S—S contacts of the donor molecules form a 2D network in the ac-plane [Fig. 1.21(b)].

The transverse overlap integrals p1-p4 are larger than those along the stacking direction (c1-c4),

corresponding to the q1D structure. In consequence of the anisotropic structure, the NH4 salt has

anisotropic Fermi surfaces, one of which is a pair of 1D Fermi surfaces along the kc direction and the

other is a 2D cylindrical Fermi surface as shown in Fig. 1.21(c).

The Shubnikov-de Haas (SdH) oscillations for the NH4 salt, shown in Fig. 1.22(a), have an oscilla-

tion frequency corresponding to the 2D α orbit.59 The oscillation amplitude is reduced by increasing

temperature, which gives the effective mass of the electron. The mass plot in Fig. 1.22(b) reveals an

effective mass ratio for the NH4 salt of 2.5, which is larger than those of the other isostructural salts

(∼1.5).59 Thus, the electron correlation in the NH4 salt is larger than the other salts.
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Figure 1.22: (a) SdH signal at 0.05 K and high fields for α-(BEDT-TTF)2NH4Hg(SCN)4. The inset shows the

FT spectrum of the signal. (b) Oscillation amplitude divided by temperature vs. temperature. The solid line

is the fitted result using the LK formula.59

Figure 1.23(a) shows the angular dependences of the MR at various azimuthal angles.60 The AMRO

peaks are clearly observed. The 2D cylindrical Fermi surface, seen in Fig. 1.21(c), was experimentally

confirmed from the polar plots of the peak positions.60

The interlayer transfer integral of the isostructural K salt is tz ≈ 0.03 meV, which is small for

organic conductors.41 The result indicates that the electronic state of the K salt is highly 2D. The

NH4 salt is also expected to have a small tz, because of the structural similarity. Hence, the crossover

from the incoherent to coherent interlayer transport can be observed for these systems when τ is

changed. Furthermore, only the NH4 salt is superconducting; the other salts form density-wave states

at low temperatures. None of the magnetic transitions in the NH4 salt are suitable for observing the

interlayer transport crossover.
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Figure 1.23: (a) Angular dependence of MR for α-(BEDT-TTF)2NH4Hg(SCN)4. AMRO peaks clearly observed.

(b) Polar plots of the AMRO peaks. (c) Cylindrical Fermi surface obtained from AMRO data.60

28



1.4 Purpose

In layered 2D organic conductors, the interlayer charge transport properties are well-known to show

characteristic features in temperature and magnetic field dependent phenomena. Such phenomena

are strongly affected by scattering caused by (1) local magnetic moments in the anion layers and

(2) impurities (or defects) in the conducting layers. Despite the extensive experiments performed so

far, detailed mechanisms of the characteristic phenomena in the interlayer charge transport remain

unsolved problems. As high-quality single crystals can be produced, 2D organic conductors are good

candidates to study the interlayer charge transport. For this thesis, two material systems with layered

structures were chosen and systematic measurements of their electric and magnetic properties were

obtained.

(1) Conductivity and magnetism in π-d organic conductors κ-(BDH-TTP)2FeX4 (X =

Br, Cl)

In π-d systems, some interasting phenomena have been found, although most of them are insulators

or semiconductors at low temperatures. κ-(BDH-TTP)2FeX4 (X = Br, Cl) are the candidates for

metallic π-d systems. To clarify the effect of the large 3d magnetic moment on the metallic interlayer

transport of the π spins, the magnetic susceptibility, X-band ESR, magnetic torque, and MR of both

salts were investigated. The FeBr4 salt appears to have the larger π-d and d-d interactions than the

FeCl4 salt. A comparison of the two salts will be made, and the physical properties caused by the π-d

interaction elucidated.

(2) Incoherent interlayer charge transport in α-(BEDT-TTF)2NH4Hg(SCN)4

The crossover from the incoherent to coherent behavior in the interlayer transport of 2D systems

is known to take place when the interlayer transfer or scattering time is changed. However, no

systematic investigations have been performed and how the crossover is induced remains unclear. α-

(BEDT-TTF)2NH4Hg(SCN)4 is a highly 2D organic superconductor, which has both 1D and 2D Fermi

surfaces. To investigate the crossover from incoherent to weakly coherent interlayer transport in this

system, the interlayer MR measurements were performed for many crystals with different quality. The

angular dependences of the MR are expected to show large dependences on sample quality arising from

the crossover phenomenon. The quality of each sample was quantitatively checked by the quantum

oscillation measurements. The angular dependence of the MR and the temperature dependence of the

resistance for various single crystals can provide much information on the coherence of the interlayer

charge transport.
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Chapter 2

Experimental Techniques and Measurements

2.1 Band-structure-measuring techniques

2.1.1 Landau quantization

The motion of the electrons in a magnetic field H depends on the Lorentz force acting on them,

ℏ
dk

dt
= −ev ×H, (2.1)

where k(t) is the electron wave vector. The velocity v is related to the electron energy ε by

v =
1

ℏ
∂ε(k)

∂k
. (2.2)

Equation (2.1) implies that the component of the electron wave vector parallel to H is a constant

as dk/dt is perpendicular to v. Hence dk/dt is perpendicular to ∂ε(k)/∂k,which means the energy

associated with the electron orbit is constant. Therefore, the path of the electron orbit in k-space

is defined by the intersections of surfaces of constant energy with planes perpendicular to v. If the

electron orbits are closed, the motion of the electron can be described using the cyclotron frequency

ωc,

ωc =
eH

mc
, (2.3)

where mc is the cyclotron mass defined as

mc =
ℏ2

2π

∂Sk
∂ε

, (2.4)

with Sk being the k-space cross-sectional area of the closed orbit. The relationship between the area

of the orbit in real space and k-space is

Sr =

(
ℏ
eH

)2

Sk. (2.5)

The momentum of an electron under magnetic field is

p = ℏk − eA,H = ∇×A, (2.6)

where A is the magnetic vector potential. From the Bohr quantization condition, the orbits for a

electron subjected to an applied magnetic field are quantized as∮
p · dr = (n+ γ)h = 2π(n+ γ)ℏ, (2.7)
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where n is an integer and γ is a phase factor (γ is 1/2 for a free electron). Using eq. (2.6), a time-

integrated version of Eq. (2.1), the Kelvin-Stokes theorem, and various vector identities, the left hand

side of Eq. (2.7) becomes∮
p · dr =

∮
ℏk · dr −

∮
eA · dr = −e

∮
(r ×H) · dr − e

∫
(∇×A) · dσ

= e

∮
H · (r × dr)− e

∫
H · dσ = 2eΦ− eΦ = eΦ, (2.8)

where Φ denotes the magnetic flux. As a result, from Eqs. (2.7) and (2.8), the flux is quantized,

Φ =
2πℏ
e

(
n+

1

2

)
. (2.9)

Here, from Eq.(2.5), the flux is expressed in k-space as

Φ = HSr = H

(
ℏ
eH

)2

Sk =

(
ℏ
e

)2 Sk
H
. (2.10)

Therefore, the relation between the orbital area in k-space and the magnetic field is given by

Sk =

(
n+

1

2

)
2πe

ℏ
H. (2.11)

Separating k parallel and perpendicular components with respect to H, the energy of a free electron

is written as

ε =
ℏ2

2me
(k2∥ + k2⊥) =

ℏ2

2me

(
Sk
π

+ k2⊥

)
. (2.12)

From Eqs. (2.12) and (2.11),

ε =
ℏeH
me

(
n+

1

2

)
+

ℏ2

2me
k2⊥. (2.13)

In a 2D system, the second term in Eq. (2.13) is zero. Hence, we obtain

ε = ℏωc

(
n+

1

2

)
, (n = 0, 1, 2, · · · ) (2.14)

from which, we find that the electron energy is quantized in the magnetic field. The energy levels are

called“ Landau levels”.

2.1.2 Quantum oscillation in q2D conductors

In 3D systems (including the q2D case), the energy spectrum in the plane perpendicular to the field is

degenerate. In k-space, the only permitted states for the electrons lie on so called“ Landau tubes”.

Each Landau tube crosses the Fermi level at different points.

In a magnetic field, the energy difference between adjacent Landau levels is obtained from Eq.

(2.14) as

∆ε =
ℏeH
me

= ℏωc. (2.15)

Clearly, the energy difference between Landau levels is larger at higher fields than at lower fields.

Hence, as the field increases, the gap between Landau levels widens. Next, we consider the density
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of states (DOS) near the Fermi level. Electrons occupy the Landau levels up to the Fermi level. In

forming the ground state, electrons occupy the states of the lowest Landau levels; the highest occupied

level determines the Fermi level and in turn the energy of the Fermi level determines the Fermi surface.

With increasing magnetic field, the number of occupied states in the highest Landau level (n), which

lies inside the Fermi surface, decreases and vanishes rapidly when the Landau level touches the Fermi

level. The electrons in the Landau level n fall to the lower n − 1 level, and the total free energy

decreases. As the field increases further, the free energy once again increases. This leads to a periodic

variation in the free energy and the DOS. Consequently, oscillations occur in the physical properties

such as magnetization, resistance, and heat capacity.

From Eq. (2.11), the number of Landau levels below the Fermi energy EF is given by

n =
EF

ℏωc
=

ℏ
2πe

SF
1

H
. (2.16)

Therefore, the oscillation frequency is given as

F =
∆n

∆(1/H)
=

ℏ
2πe

SF . (2.17)

The oscillation frequency is proportional to the cross-sectional area of the Fermi surface. Equation

(2.17) also indicates that the interval of the oscillations is inversely proportional to the intensity of

field.

These quantum oscillations are observed under extreme conditions such as low temperature and

high field. At a finite temperature, the electrons are thermally excited, and the oscillation amplitude

diminishes. Hence, to observe these oscillations, the thermal energy should be smaller than the period

of the Landau levels,

kT ≪ ℏωc. (2.18)

Landau quantization requires the electron trajectories are closed orbits. However, if the electrons

are scattered by impurities, phonons or other electrons, Landau quantization does not occur and no

quantum oscillation appears. Thus, the scattering time of the electrons should be sufficiently longer

than the cyclotron period, given by condition

τ ≫ 1/ωc, (2.19)

or

ℏ/τ ≪ ℏωc. (2.20)

Equation (2.20) requires the energy width of Landau levels from thermal broadening (ℏ/τ) to be

smaller than the energy gap between successive Landau levels.

2.1.3 Lifshitz-Kosevich formula

The general treatment of quantum oscillations in 3D metals was derived by Lifshitz and Kosevich.61

Consider the Fermi surface as containing one extremal cross section perpendicular to the field. If the
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Figure 2.1: Schematic of Landau levels when magnetic field increases.

energy dispersion surface is assumed parabolic, the oscillatory part of the Gibbs potential, Ω̃, can then

be written as a sum of harmonics, which is periodic with scale 1/H,

Ω̃ = (eH)5/2
V

4π4mcℏ1/2

∞∑
p=0

RTRDRS

p5/2
cos

[
2πp

(
F

H
− 1

2

)
− π

4

]
, (2.21)

where V is the total volume of the sample, p denotes the pth harmonic for the fundamental frequency,

and RT, RD, RS are the damping factors that are associated with temperature, scattering, and spin,

respectively.

The oscillatory part of the magnetization M̃ is obtained by field differentiation of Ω̃ for constant

chemical potential ξ. The longitudinal and transverse components of M̃ are given by

M̃∥ = −

(
∂Ω̃

∂H

)
ξ

, (2.22)

M̃⊥ = − 1

H

(
∂Ω̃

∂θ

)
ξ,H

= − 1

F

∂F

∂θ
M̃∥. (2.23)

M̃∥ = − 3

25/2π
N0β0

(
H

F

)1/2
 ∞∑
p=0

RTRDRS

p3/2
sin

[
2πp

(
F

H
− 1

2

)
− π

4

] , (2.24)

where β0 = eℏ/mc, N0 = (V/3π2)(2mcξ/ℏ2)3/2.

The damping factors are written as

RT =
KpµT/H

sinh(KpµT/H)
, (2.25)

RD = exp
(
−2π2pkBTD/β0H

)
= exp (−KpµTD/H) , (2.26)

RS = cos

(
1

2
pπgµ

)
, (2.27)

where TD is the Dingle temperature, which gives a measure of sample quality, g the spin-splitting

factor, µ the effective mass ratio µ = mc/me, and K = 2π2kBme/eℏ ≈ 14.7. The Dingle temperature
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is given by

TD =
ℏ

2πkBτ
, (2.28)

where τ is the scattering time averaged over the cyclotron orbit. Hence, a higher-quality sample has

a longer τ , which infers a smaller TD.

As seen in the above, the amplitude of the oscillations is reduced by the damping factors. From the

temperature dependence of the oscillation amplitude A, the ln(A/T ) vs. T plot gives the effective mass

ratio. The large scattering rate (large TD) also reduces the oscillation amplitude. TD is obtained by

measuring the field dependence of the oscillation amplitude, which for typical clean organic conductors

is ∼1 K (∼ 1 ps).

2.1.4 Angular-dependent magnetoresistance oscillation

When a magnetic field is applied to a 2D conductor, the angular dependence of the interlayer resis-

tance exhibits an oscillation as shown in Fig. 2.2(a). The oscillation is called the angular-dependent

magnetoresistance oscillation (AMRO or ADMRO); it does not depend on the strength of the field.

but depends on its orientation. The AMRO was observed for the first time by Kajita et al. in the

MR of an organic conductor θ-(BEDT-TTF)2I3.
62 The following theoretical explanation was given by

Yamaji.36 Consider a simple q2D band structure,

E(k) =
ℏ2

2mc

(
k2x + k2y

)
− 2tz cos (ckz) , (2.29)

where kx and ky are the in-plane components of the wave vector k, and kz is the perpendicular

component of k, c is the length between the adjacent layers. In the magnetic field, the electrons are

subjected to the Lorentz force, Eqs. (2.1) and (2.2). The intersection of the Fermi surface with the

kxkz-plane is illustrated in Fig. 2.2(b). When the magnetic field H is inclined at an angle θ from the

kz-direction towards the kx-direction, the trajectory of the semiclassical closed orbit is given by the

intersection of the Fermi surface and the plane perpendicular to the field. That is,

kx sin θ + kz cos θ = p = k(0)z cos θ, (2.30)

where k
(0)
z is the point where the kz-axis intersects the orbital plane. The area of the orbital plane Sk

in k-space is calculated assuming that tz/EF ≪ 1,

Sk cos θ =

∫ π

0
dϕ

{
k2F + 4mtz cos

[
c
(
k(0)z − kF tan θ cosϕ

)]}
, (2.31)

= SF + 4πmctz cos(ck
(0)
z ) · J0 (ckF tan θ) , (2.32)

where SF = πk2F , and J0 is the Bessel function J0(z) = (1/2π)
∫ 2π
0 cos(z sin θ)dθ. When z ≥ 1, J0(z)

is approximately J0(z) ≈ (2/πz)1/2 cos(z − π/4). Thus, when the condition

ckF tan θ = π (n− 1/4) (n = 1, 2, 3 · · · ) (2.33)
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holds, Sk does not depend on k
(0)
z because Sk cos θ = πk2F . Hence, the system can be regarded as

being completely 2D at these θ values, and consequently, the resistance has a local maximum at these

angles. This oscillation is called AMRO (sometimes also referred to as Yamaji oscillation or ADMRO)

and the associated angle is called the Yamaji angle.

The velocity of the electrons along the z-axis is given by

vz =
∂E

ℏ∂kz
=

2tzc

ℏ
sin(kzc). (2.34)

The average of vz over a cyclotron orbit is calculated as

⟨vz⟩ =
∮
vzdϕ =

2tzc

ℏ
J0(ckF tan θ) sin(ck(0)z ). (2.35)

As factors J0(ckF tan θ) and ⟨vz⟩ are zeros at the Yamaji angle, the electrons are unable to move in

the direction parallel to the z-axis. Hence the conductivity is zero (equivalently, the resistance show

peaks) at the Yamaji angles.

From the periodicity of the AMRO peaks, as given by Eq. (2.33), we can extract kF along the

field direction. Thus, the in-plane Fermi surface can be obtained by the AMRO measurement.

Figure 2.2: (a) MR of θ-(BEDT-TTF)2I3 against the magnetic field direction.62 (b) Intersection of the Fermi

surface with the kxkz-plane.
36

2.1.5 Magnetoresistance in q2D conductors

Next, the MR behavior in q2D systems will be quantitatively explained using the Boltzmann transport

theory. The energy dispersion in Eq. (2.29) gives the velocity components,

vx =
ℏkx
mc

, vy =
ℏky
mc

, vz =
2tzc

ℏ
sin kzc. (2.36)

The conductivity tensor for a charge particle in a magnetic field is given by

σij =
e2

4π3

∮
dS

ℏ|v|

∫ ∞

0
vi(0)vj(t)e

−t/τdt. (i, j = x, y, z). (2.37)
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The velocity v along the orbit is integrated for each area element of the Fermi surface dS. These

orbits are determined from the Lorentz equation, Eq. (2.1). When the field is inclined at an angle θ

to the interlayer direction, we have

ℏ
dkz
dt

= −ev0H sin θ, (2.38)

where v0 is the in-plane Fermi velocity (v0 = vx = vy), which is assumed to be constant. For this case,

ky (kx = ky) is a constant. By integrating Eq. (2.38),

ckz(t) = ckz(0) + Ωct sin θ, (2.39)

where the frequency Ωc is given by Ωc = ev0cH/ℏ, at which the fastest quasiparticles traverse the

Brillouin zone. Ωc can also be ascribed using the cyclotron frequency ωc = eH/mc [Eq. (2.3)] as

Ωc = kycωc. Equations (2.36) and (2.39) give the velocity in the c direction,

vc(t) =
2tzc

ℏ
sin [ckz(0) + Ωct sin θ] . (2.40)

By integrating Eq. (2.37), the conductivity can be obtained:

σzz(H) = σ0zz

{
J2
0 (ckF tan θ) +

∞∑
ν=1

2J2
ν (ckF tan θ)

1 + (νωcτ cos θ)2

}
. (2.41)

σ0zz =
2e2mct

2
zcτ

πℏ4
=

(
ṽz
vF

)2 Ne2τ

mc
,

where Jν is the νth order Bessel function (shown in the previous subsection), N is the density of

electrons, and ṽz = 2tzc/ℏ. The summation term diminishes with increasing ωcτ (increasing field),

hence the conductivity at high fields is governed by the first term. The conductivity shows a minimum

at the Yamaji angles because of the J2
0 (ckF tan θ) term. The angular and magnetic field dependence

of the resistivity ρzz(H) = 1/σzz(H) are shown in Fig. 2.3. As ωcτ decreases (H or τ decreases), the

AMRO peaks diminish [Fig. 2.3(a)].
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Figure 2.3: (a) Interlayer MR for different magnetic fields. From top to bottom, the value of ω0τ varies from 4 to

0 with step interval of 0.4. The parameter settings are EF /tz = 100 and mctzc
2/ℏ2 = 0.045. (b) Magnetic field

dependence of the interlayer MR at fixed angles. B/B0 = ωcτ . The positions of θ
(1)
min and θ

(1)
max are indicated

in the inset.37

37



2.2 Experimental and analysis techniques

2.2.1 Helium refrigerator

For this study, two Oxford 20T superconducting magnets and a 17T superconducting magnet were

used. The 17T superconducting magnet system combined with a 4He cryostat can cool the sample

space down to 1.6 K.

3He cryostat

The 20T superconducting magnet system is combined with a 3He cryostat, in which samples are cooled

down to 0.3 K. Figure 2.4 shows the operating principle of the 3He cryostat. In the condenser (or“ 1

K pot”), the 4He gas is pumped and cooled down to around 1 K.

The 3He gas is absorbed by cooling the sorption pump, and the gas can be emitted by heating the

pump. Most of the 3He gas can be cooled and condensed near the condenser. The sorption pump is

then cooled, reducing the vapor pressure above the liquid 3He. The sample space can then be cooled

to around 0.3 K.

Figure 2.4: Schematic diagram of the 3He cryostat.

Dilution refrigerator

The second 20T superconducting magnet system is combined with a 3He dilution refrigerator, which

can continuously cool samples down to ∼30 mK.
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Figure 2.5 shows a schematic diagram of the refrigerator. In the condenser, the 4He gas is pumped

and cooled to ∼1 K. The heat exchangers allow the heat to pass from the mixture to the condenser,

effectively cooling the mixture. The 4He gas passes continuously through the bath via a needle valve

(impedance) and into the condenser. The mixture flows through the“ Still”, which is maintained at

∼0.6 K. Through the heat exchanger, the mixture transfers its heat to the Still and is cooled. Next,

the mixture flows past the“Cold Plate”, where more heat is transferred from the mixture, until the

mixture ends up in the“Mixing Chamber”.

In the Mixing Chamber, the 3He - 4He mixture separates into two phases, the 3He-rich phase (3He

concentrated, the upper phase, comprising almost 100 % 3He) and the 4He-rich phase (3He dilute, the

lower phase, which has 6.6 % 3He). The 3He dilute phase is pumped into the Still and the 3He liquid

in the concentrated phase is transferred into the dilute phase. The system then gains entropy and is

cooled to 20-30 mK.

In the Still, only 3He is distilled from the mixture and pumped out of the Still as gas. The 3He

gas is then pumped back to the beginning of the system, where it is mixed with the incoming 3He and

4He gases. Eventually, the 3He sources are closed off and essentially only 3He is circulating through

the main part of the cryostat.

Figure 2.5: Schematic diagram of the 3He dilution refrigerator.
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2.2.2 Electron spin resonance measurements

Principle

The magnetic moment of a single free electron is described by µs = −gµBS. In a magnetic field H,

the energy difference ∆U between the two spin states, corresponding to the magnetic spin component

ms =
1
2 ,−

1
2 , called as Zeeman energy, is given by

∆U = gµBH

(
1

2

)
− gµBH

(
−1

2

)
= gµBH. (2.42)

Consider microwave radiation of frequency ν interacting with an electron. If the energy of the mi-

crowave equals the Zeeman energy, an electron in the ms = −1
2 state absorbs the microwave energy,

and is excited into the ms = 1
2 state. This phenomenon is called electron spin resonance (ESR) or

electron paramagnetic resonance (EPR). The condition for resonance is

hν = gµBH. (2.43)

We shall investigate the resonance as a function of the frequency ω for constant magnetic fields

H0. The absorption spectrum is obtained by taking the Fourier transformation of the spin correlation

function. We assume that the resonance frequency ω(t, r) fluctuates about an average value. The spin

correlation function for ω is given by

Ψ(τ) =
⟨ω(τ)ω(0)⟩
⟨ω(0)2⟩

, (2.44)

where ⟨ω(0)2⟩ is the second moment of the absorption spectrum, and is expressed as ωd =
√

⟨ω(0)2⟩.

According to the Kubo-Tomita theory,63 the Fourier transformation (ϕ) of the absorption spectrum

is

ϕ(t) = exp

(
−ω2

d

∫ t

0
(t− τ)Ψ(τ)dτ

)
. (2.45)

When only the dipole-dipole interaction is considered between spins, we can take Ψ(τ) = 1 because ω

does not depend on time; ω(t) = ω(0). Thus,

ϕ(t) = exp

(
−
ω2
dt

2

2

)
(2.46)

is obtained. The Fourier transformation for ϕ(t) gives the resonance absorption spectrum I(ω),

I(ω) =
1√
2πωd

exp

(
−(ω − ω0)

2

2ω2
d

)
. (2.47)

This function is a Gaussian.

Next, we consider the strong exchange interaction effects on the spins. On time scales of J/ℏ(=ωe),

the spin information is lost because of the exchange interaction J . Hence, the spin correlation function

is, for example, given by

Ψ(τ) = exp
(
−ω2

eτ
2
)
, (2.48)
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which rapidly decreases at τ ∼ 1/ωe. For simplicity, the spin correlation function is assumed to have

form

Ψ(τ) =

1 (0 < τ < 1/ωe),

0 (τ > 1/ωe),
(2.49)

for which Eq. (2.45) becomes

ϕ(τ) = exp

(
−
ω2
d|t|
ωe

)
. (2.50)

If we assume ωe ≫ ωd, from the Fourier transform of Eq. (2.50), the absorption spectrum is obtained

as

I(ω) =
ω2
d/ωe

π

{
1

(ω − ω0)2 + (ω2
d/ωe)2

}
. (2.51)

This spectrum has Lorentzian form. The type of function thus depends on the properties of Ψ(τ).

When ωe ̸= 0, the linewidth ωd becomes narrower (ω2
d/ωe) because of the motion of the electron. This

is called motional narrowing (exchange narrowing).

The phase difference between spins becomes entirely random on time scales greater than some T2,

called the spin-spin relaxation time. The spin system relaxes its energy obtained from the microwave

radiation via thermal equilibrium with the lattice system. The time scale for this relaxation defines

the spin-lattice relaxation time (T1). The total relaxation time is given by

1

T
=

1

T2
+

1

2T1
. (2.52)

Parameters obtained from ESR

The ESR signal is obtained from the differential of the absorption.

g -value

The g-value is obtained experimentally from the resonance field using Eq. (2.43). For a free

electrons, g = 2. If strong spin-orbit coupling exists, the g-value differs from g = 2. In particular, the

rare-earth metals exhibit g-values different largely from 2 owing to the orbital motion. If an atomic

system has an unpaired spin in a p, d, or f orbit, the distribution of the electron is anisotropic, and

resonance fields in each field direction are different from each other. Hence the g-values are anisotropic.

Linewidth

An electron is affected, not only by the external field, but also by local magnetic fields Hloc arising

from the dipole-dipole interaction with other electrons. This Hloc can be a source of the linewidth,

which is time-modulated. The second moment is given by

⟨∆H2⟩ = (3/4)µ2Σj,k
(3 cos2 θj,k − 1)

r6j,k
, (2.53)

where j and k index the electrons, rj,k is the distance between the spins, and θj,k is the angle be-

tween the vector rj,k and the field. The absorption reduces to Gaussian when only the dipole-dipole
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interactions are taken into account. The relation between the second moment and the peak-to-peak

linewidth is then given by

∆Hpp = 2
√

⟨∆H2⟩. (2.54)

If two or more paramagnetic different ions exist, two absorption spectra are expected because of

the different g-values of the ions. However, if the exchange interaction is also taken into account, only

one absorption line can be observed because of the exchange narrowing. The absorption line is near

the average of the resonance fields for two ions.

Integrated amplitude

The amplitude of the absorption I is proportional to the imaginary part of the susceptibility

χ′′. The amplitude SI of the absorption spectrum I(ν) can be defined as the area of the absorption

spectrum,

SI =

∫
I(ν)dν ≈ ν0C

∫
χ′′(ν)

ν
dν. (2.55)

From the Kramers-Kronig relation, we can obtain

(2/π)

∫
χ′′

ν
dν = χ0, (2.56)

where χ0 is the static susceptibility of the sample. Thus, we obtain the relation

SI =
πν0
2
Cχ0, (2.57)

which implies that the absorption line and the integrated amplitude are proportional to the static

susceptibility.

2.2.3 Magnetic torque measurements

Principle

When the magnetization is parallel to the easy-axis, the electron energy is lower than when the

magnetization is parallel to the hard-axis. This difference between the electron energies is defined

as the magnetic anisotropy. A magnetic torque is induced on the sample when the magnetic field is

not exactly parallel to the magnetic moment of the sample. In other words, the magnetic anisotropy

induces a force that changes the direction of the magnetic field.

For the paramagnetic phase, the magnetization M induced by a field H is given by M = χH,

where χ is the 3× 3 magnetic susceptibility tensor. As the magnetic susceptibility for a paramagnet

is independent of the magnetic field, the magnetic anisotropy energy is expressible as

Ea =

∫ M

0
HM =

1

2
HχH =

1

2
MH. (2.58)

When the field H is rotated in the xy-plane, H can be written using the field angle θ, H =

(H cos θ,H sin θ, 0). The magnetic susceptibility has diagonal form, and the magnetization vector
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can be written as

M =


Mx

My

Mz

 =


χx 0 0

0 χy 0

0 0 χz




Hx

Hy

Hz

 . (2.59)

Hence, the magnetic anisotropy energy is

Ea =
1

2

(
χx cos

2 θ + χy sin
2 θ
)
H2. (2.60)

The magnetic torque is given by the differential of the free energy in the field angle,

τ = −∂E
∂θ

=

∫
∂M

∂θ
dH =

1

2
(χx − χy)H

2 sin 2θ. (2.61)

That is, the magnetic torque exhibits a periodicity of 180◦, and is proportional to the square of the

field. From the magnetic torque, we obtain the anisotropy of the susceptibility, χx − χy.

Figure 2.7 shows the angular dependence of the magnetic torque for

α-(BEDT-TTF)2KHg(SeCN)4.
65 The torque curves show a sin 2θ dependence in accordance with Eq.

(2.61).

Figure 2.6: Angular dependences of the g-value (or magnetization) and the magnetic torque for a paramagnetic

phase. τ is zero at the maximum and minimum of the g-value.

For an antiferromagnetic phase, the total magnetization is the sum of the magnetizations for the

two spin sublattices. The magnetic anisotropy energy is given by 1
2(χ⊥−χ∥), where χ⊥ and χ∥ are the

respective magnetic susceptibilities when the field is perpendicular and parallel to the easy-axis. With

increasing field parallel to the easy-axis, the magnetization exhibits a jump because of the anisotropy

in magnetic energy. An example of a plot between the magnetization (M) and H is shown in Fig.
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Figure 2.7: Angular dependence of the magnetic torque for α-(BEDT-TTF)2KHg(SeCN)4. The broken curves

show the sin 2θ dependence. The inset presents the H2 dependence of the torque amplitude.65

2.8 (a). At the zero field, the spins are ordered antiferromagnetically. At the spin-flop transition field

HSF, the spins rapidly change direction, corresponding to the jump in magnetization, as illustrated in

Fig. 2.8 (c). At high fields, the spins are aligned parallel to the field, and the magnetization becomes

saturated.

In contrast, with increasing field perpendicular to the easy-axis, the spins gradually change direc-

tion, and are aligned with the field direction at high fields [Fig. 2.8 (b)]. Thus, the M -H curve shows

a monotonic increase up to the saturation field.

Figure 2.9 shows the field dependences of the magnetic torque for λ-(BETS)2FeCl4, which has an

AF phase at low temperatures.64 A rapid change of τ is observed at HSF for the field nearly parallel

to the easy axis. The slope of the τ -H curves become constant above 10 T, corresponding to Hsat.
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Figure 2.8: (a) Magnetization curves of an antiferromagnetic system. HSF and Hsat are the spin-flop field and

saturation field, respectively. (b) Schematics of the spins when the field is parallel to the magnetic hard-axis

and (c) the easy-axis.

Figure 2.9: Field dependence of the magnetic torque for λ-(BETS)2FeCl4 at 0.45 K. θ and ϕ are the field angles

tilted from the b∗-axis to the c- and a′-axes, respectively.64
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Measurements

In this study, the magnetic torque was measured using an AFM micro-cantilever (SII-SS-ML-PRC400,

Seiko Instruments, Japan).65 A small amount of silicon grease was used to attach single crystal samples

to the cantilever as seen in Fig. 2.10 (a). Figure 2.10 (b) shows the resistance bridge circuit for the

torque measurement. Under an applied magnetic field, the resistance changes as the cantilever bends

from both the magnetic torque of the sample and gravity. The relative change in the resistance

Rsample/(Rreference+Rsample) is proportional to the magnetic torque. Hence, the change in the voltage

ratio VAB/VCD yields the change in the magnetic torque.

In general, the magnetic susceptibility measurements provide important microscopic information

on the magnetic properties in the 3d spin state. A SQUID magnetometer, for instance, is known as a

quite sensitive tool to probe the magnetic properties, but it can be carried out in limited temperature

and field regions. In addition, a microcantilever enables us to precisely measure the magnetic torque

even for a tiny single crystal, and serves as a convenient and powerful tool to elucidate the magnetic

properties at very low temperatures and high magnetic fields.66–73

Figure 2.10: (a) Setting of the sample for magnetic torque measurements. (b) The resistance bridge circuit. C

represents the ac current and D is the ground. The voltage difference between A and B was measured.
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2.3 Experimental details

2.3.1 π-d organic conductors κ-(BDH-TTP)2FeX4 (X = Br, Cl)

The BDH-TTP donor was synthesized following an established procedure.74 Single crystals of κ-

(BDH-TTP)2FeX4 (X = Br, Cl) were grown by electrocrystallization of BDH-TTP (0.0125 mol) with

either Et4NFeBr4 or Et4NFeCl4 (0.05 mmol) in a solvent of 10% acetone/chlorobenzene (17 mL) under

an argon atmosphere. The application of a constant current of 0.15 µA for 20-30 days produced thin

black plate-like crystals. The BDH-TTP and single crystals were synthesized with the Yamada group

at the University of Hyogo and the Enoki group at the Tokyo Institute of Technology.

The magnetic susceptibility was measured using a SQUID magnetometer (MPMS-7, Quantum

Design) up to 7 T in the temperature range of 2-300 K. Several single crystals were aligned along the

crystal axes for the measurements. The core diamagnetism was subtracted from the raw data.

X-band ESR spectra were measured in the range of 3.5-300 K with a microwave power of 0.6 mW

using a X-band EPR spectrometer (TE-200, JEOL) equipped with an helium continuous-flow cryostat

(ESR910, Oxford Instruments). The single crystals were aligned on a silicon rod with a small amount

of Apiezon N grease and sealed in a quartz tube under a ∼50 mbar helium atmosphere (exchange gas)

for the low-temperature measurements.

The resistance and the MR were measured using the conventional four-probe ac technique down

to 30 mK. Current was applied along the inter-plane direction (b-axis). The electrical contacts were

made with carbon paste and thin gold wires (ϕ = 10 µm). The samples were covered with Apiezon

N grease to avoid micro cracks forming during the cooling process. The magnetic field was applied

using a 20T superconducting magnet.

The magnetic torque τ was measured using microcantilevers.65 The measurements were carried

out in a superconducting magnet and at low temperatures generated by either a dilution refrigerator

or a 3He cryostat. The magnetic field was rotated in the ab- and cb-planes of the crystals.

The de Haas-van Alphen (dHvA) effect of the magnetic torque for the FeCl4 salt was measured

using microcantilevers in fields up to 35 T and temperatures down to 0.5 K. The magnetic field

was applied using a solenoid magnet equipped with a 3He cryostat at the National High Magnetic

Field Laboratory (NHMFL) in Tallahassee, USA. The dHvA measurements were performed with the

cooperation of Prof. J. S. Brooks and Dr. D. Graf at the NHMFL.

2.3.2 α-(BEDT-TTF)2NH4Hg(SCN)4

The single crystals of α-(BEDT-TTF)2NH4Hg(SCN)4 were synthesized by Kanoda Laboratory at The

University of Tokyo.

The interlayer resistivity was measured using the conventional four-terminal method and the ap-

plied ac current was 1∼10 µA. For all nine crystals, the AMROs were measured by the two-axis-rotator

in magnetic fields at 1.6 K. The applied magnetic fields of up to 15 T were generated using the 17T
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superconducting magnet.

For the same crystals, the measurements of the Shubnikov-de Haas (SdH) oscillations were con-

ducted at temperatures down to 0.3 K. Fields of up to 17.5 T were applied using the 20T supercon-

ducting magnet equipped with the 3He cryostat. Current was applied along the interplane direction

(b-axis). The electrical contacts were made with carbon paste and thin gold wires.
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Chapter 3

Results and Discussion for κ-(BDH-TTP)2FeX4

(X =Br, Cl)

3.1 Results for κ-(BDH-TTP)2FeBr4

3.1.1 Magnetic properties

The temperature dependences of the magnetic susceptibility χ and χT at 0.5 T along all crystal-

lographic axes are shown in Figs. 3.1(a) and (b), respectively. As the temperature decreases, the

susceptibilities monotonically increase and then show peaks at 3.9 K. Above 20 K, the susceptibilities

can be well fitted by the Curie-Weiss law χ = C/(T −Θ). The best-fit parameters, used in producing

the three curves, are presented in Fig. 3.2, and are Ca = 4.53, Cb = 4.55, Cc = 4.65 emu·K·mol−1,

Θa = −1.1 K, Θb = −3.3 K, and Θc = −3.4 K, where the subscripts indicate the field direction. The

deviation from the Curie-Weiss law is evident below 20 K. The Curie constant of ∼4.6 emu·K·mol−1

shows that the susceptibility is dominated by the localized Fe 3d spins of S = 5/2 as the Pauli para-

magnetic susceptibility arising from the conduction π electrons is negligible (∼ 10−4 emu·mol−1).

Therefore, the sharp peaks of the magnetic susceptibilities are ascribed to an AF transition of the

3d spins (TN = 3.9 K), taking into account the negative Weiss temperature of −1.1 - −3.4 K. Note

that, with the anisotropy axis along the a-axis, the uniaxial anisotropy along the a-axis appears even

well above TN. Specifically, the susceptibility for H ∥ a is largest above TN and then shows a steepest

decrease below TN. In contrast, the susceptibilities for H ∥ b and H ∥ c behave almost the same. The

behavior of the susceptibility near the AF transition cannot be explained in terms of a simple collinear

AF structure in the ordered state, but it suggests a canted-spin structure.75,76

The magnetization (M) vs. H plots at 2 K and 5 K are presented in Figs. 3.3(a) and (b),

respectively. For H ∥ a, a steep increase at 1.5 T is evident, which can be ascribed to a spin-flop

transition of the Fe 3d spins (HSF = 1.5 T) with the magnetic easy axis along the a-axis. For H ∥ b and

H ∥ c, the magnetization curves increase more gradually with H, but the curvatures change slightly

(inflection points) at 3.1 T (Hc). These changes are more evident in the differential curves (dM/dH),

and are likely caused by weak ferromagnetic (WF) transitions (spin canting) along these axes. Using

linear fits to the M -H curves below and above Hc, it is estimated that the WF moment induced at

the transition is about 0.35 µB per a 3d spin for both H ∥ b and H ∥ c. Above TN, the M -H curves

become smooth with no indication of any field-induced transition, as seen for the curve at 5 K [Fig.

3.3(b)].

49



Figure 3.1: Temperature dependences of the magnetic susceptibilities χ for κ-(BDH-TTP)2FeBr4 for H = 0.5

T along all crystal axes. (b) χT vs. T plot.

Figure 3.2: Low-temperature data (below 50 K) of the magnetic susceptibilities for κ-(BDH-TTP)2FeBr4 at

H = 0.5 T. The dashed, dotted, and solid lines show the Curie-Weiss law χi = Ci/(T −Θi), where i = (a, b, c).
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Figure 3.3: Magnetization vs. field plot for κ-(BDH-TTP)2FeBr4 measured at (a) 2 K and (b) 5 K along the

three crystallographic directions. The differential curves, dM/dH are also shown in (a).
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An ESR signal with a single Lorentzian lineshape is observed down to about 20 K. At temperatures

below 20 K, an additional small sharp signal appears on the high field side (g ≈ 2.002) of the main

broad signal [see inset in Fig. 3.4(a)]. The sharp signal is ascribed to impurities because of its

very small intensity (only about 0.01 percent of the main signal intensity at 31 K). The observed

Lorentzian-shaped single ESR signal proves that the exchange narrowing occurs, and the d electron

spins are coupled via the exchange interaction.

Figure 3.4: Temperature dependences of (a) the ESR linewidth ∆Hpp, (b) the g-value, and (c) the inverse spin

susceptibility χ−1
spin of κ-(BDH-TTP)2FeBr4 for the three crystallographic directions. Inset: ESR signal at 31

K. The solid curve represents the fitted Lorentzian curve. An arrow indicates the small signal arising from

impurities.

The temperature dependence of the ESR linewidth (∆Hpp), the g-value, and the inverse of the

ESR intensity corresponding to the spin susceptibility (χ−1
spin) are shown in Figs. 3.4(a), (b), and

(c), respectively, with the field aligned along the three crystallographic axes. For all field directions,

the linewidth gradually decreases with decreasing temperature, and then diverges as temperatures

fall below 100 K. The linewidth becomes too wide to observe below 25 K. The divergent behavior is

52



more pronounced for H ∥ b and H ∥ c. The g-values, while almost temperature independent above

50 K, slightly increase below 50 K. The divergent behavior of the linewidth at low temperatures is

likely because of critical phenomena associated with the AF transition at 3.9 K. The inverse spin

susceptibility χ−1
spin roughly shows a T -linear behavior, consistent with the static susceptibility [Fig.

3.1(a)].

The angular dependences of the linewidth at 110 K and 30 K are shown in Figs. 3.5(a) and (b),

respectively. At 110 K, the angular dependences can be expressed in the functional form A+Bcos2θ

with maxima obtained for H ∥ b as shown by solid and dashed curves, for H in the bc- and ba-planes,

respectively. At 30 K, the critical phenomena governs the spin system, and the angular dependence

deviates from the conventional sinusoidal form, particularly in the behavior for H ∥ a, for which the

linewidth drops sharply.

Figure 3.5: Angular dependences of the linewidth ∆Hpp for κ-(BDH-TTP)2FeBr4 at (a) 110 K, and (b) 30 K.

The magnetic fields are rotated in either the bc-plane (circles) or the ba- plane (squares). Dashed and solid lines

are the fitting curves for the ba- and bc- planes, respectively, using ∆Hpp = A+B cos2 θ.
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3.1.2 Resistance and magnetoresistance

The resistivity monotonically decreases with decreasing temperature over the entire temperature range

as shown in Fig. 3.6. No sign of superconducting transition is observed down to 30 mK [inset of

Fig. 3.6]. Here, data for the typical κ-phase superconductors, κ-(BEDT-TTF)2Cu(NCS)2 and κ-

(BETS)2FeBr4 are instructive. They show broad resistance peaks at ∼100 and 60 K, respectively.43,77

With increasing hydrostatic pressure, the two peaks are smeared out and disappear at 3 kbar and 5

kbar, respectively,77,78 and are associated with the suppression of superconductivity. These results

strongly suggest that the electron correlation effect, which is likely related to the superconducting

mechanism and the broad peak, is reduced through the band broadening induced by the hydrostatic

pressure. From analysis of κ-salts, we conclude that the electronic state of the FeBr4 salt may be

close to states in the high-pressure phases of κ-(BEDT-TTF)2Cu(NCS)2 and κ-(BETS)2FeBr4.
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Figure 3.6: Temperature dependence of the interlayer resistivity for κ-(BDH-TTP)2FeBr4. Inset: Low temper-

ature data (below 15 K).

The interlayer MR ratio at 30 mK is shown in Fig. 3.7. In Fig. 3.7(a), we note that the resistance

forH ∥ a (θ = 90◦) suddenly drops by 46 % at 2.0 T, corresponding toHSF. This steep change provides

direct evidence of the strong π-d interaction. Above HSF, the resistance increases quadratically and

then linearly with field, which for 2D systems is explained by the Boltzmann transport theory.37 As

the field is tilted from the a- to the b-axis, the sharp drop at HSF is smeared out. For H ∥ b, the

resistance gradually decreases as the field increases to 5 T. Figure 3.7(b) presents the MR for fields in

the bc-plane. Below 5 T, all the curves show a gradual decrease with increasing field. This behavior

corresponds to the gradual increase in the magnetization [M -H curves for H ∥ b and c in Fig. 3.3(a)].

For 2D systems, the interlayer resistance is field independent in magnetic fields perpendicular to the

layers.37 This trend is present in the results for H ∥ b with fields above 5 T (θ = 0◦).

Note also that the resistance slightly increases for H ∥ a below HSF. For H aligned along the easy-

axis, the AF ordered 3d spins fluctuate significantly by the increasing field. The fluctuating magnetic
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potential leads to an additional scattering of π electrons as the field nears HSF. Such behavior has

been observed in many dilute magnetic alloys.79,80

The resistances at 30 mK, 0.55 K, and 1 K for H ∥ a are shown in Fig. 3.8. The resistance drop

arising from the spin-flop transition at HSF is smeared out slightly as temperature increases.

3.1.3 Magnetic torque

For measurements of the magnetic torque, the field is rotated in two rotation planes, the ab- and cb-

planes. In this subsection, θ is defined as the field angle from the a- or c-axis to the b-axis. Note that

the amplitudes of the magnetic torque curve are different between the positive and negative directions

because of the structure of the cantilever.

The torque is generally given by τ = µ0(M × H). For a paramagnetic state, we obtain τ =

(1/2)(M1−M2) sin 2θ, where M1 and M2 are the magnetizations along the principal axes and θ is the

field angle from the principal axis. Because paramagnetism for the π spins is negligible, the 3d spins

are the dominant contributors to the torque.

The torque curve τ(H) at 1.2 K, shown in Fig. 3.9(c), exhibits a sharp peak at 1.7 T. The curve

rapidly decreases above 1.7 T. This behavior is associated with change in sign for fields nearly parallel

to the a-axis (θ ≤ 30◦). The peak field corresponds to the spin-flop transition field (HSF) [Fig. 3.3(a)].

As the direction of the field approaches the b-axis (θ = 80◦), the peak is smeared and τ changes its sign

at higher fields. All the τ(H) curves become field-independent above 6 T, indicating the saturation of

M . At 4K, τ(H) changes monotonically, and no sign changes occur.

As shown in Fig. 3.9(a), the angular dependence of τ is given by a simple sin 2θ curve below HSF,

but exhibits complicated behavior above HSF. At fields above 4 T, the τ(H) curve tends to show a

reversed sin 2θ dependence.

For the cb-plane rotation of H, the τ(H) curves show no rapid change, but show the sign changes

at 1.2 K[Fig. 3.10(c)]. At 4 K, the τ(H) and τ(θ) curves for the cb-rotation are similar to those for

the ab-rotation.
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Inset: Calculated M vs. H curves.
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Figure 3.8: Interlayer resistance for κ-(BDH-TTP)2FeBr4 in the magnetic field along the a-axis at various

indicated temperatures.
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3.2 Discussion for κ-(BDH-TTP)2FeBr4

In the previous section, it was shown that the Fe 3d spin system is in the AF ordered state below

3.9 K, whereas the π electrons are in the metallic state down to 30 mK. Moreover, the Fe 3d spins

exhibited characteristic magnetization curves, closely correlated with the MR behavior. Here, a few

important key issues are discussed to understand these phenomena.

3.2.1 Magnetic anisotropy

In the AF state, the anisotropic magnetization is observed, which is associated with the coexistence

of the spin-flop transition and spin canting. Interestingly, a large uniaxial anisotropy along the a-axis

is observed in the magnetic susceptibility and also for the paramagnetic state (Fig. 3.1), where such

anisotropy is in general absent. The susceptibility anisotropy is much larger than that expected from

the g-values. Here we analyze the anisotropy in the paramagnetic state. The single-ion crystal field

(CF) and dipole-dipole interaction is known to lead to anisotropy in the magnetic susceptibility.81

The effects of the Dzyaloshinskii-Moriya (DM) and anisotropic exchange interactions can be excluded

from the origin as these contributions are much smaller than the others, as we shall show later. The

anisotropy energy of the single-ion CF effect up to the quadratic terms can be described as

Eanis = DS2 + E(S2
x + S2

y). (3.1)

This term gives anisotropic susceptibilities,

(χν − χµ)single−ion =
2Ng2µ2BS(S + 1)(Kν −Kµ)

15(kBT )2
, (3.2)

where Kx = −Ky = −E(2S − 1)(2S + 3)/4 and Kz = −D(2S − 1)(2S + 3)/4. N denotes the number

of the magnetic ions, and (ν, µ) = (x, y, z). The z-axis is taken as the a-axis (easy axis). The effect

from the dipole interaction is similarly described,

(χν − χµ)dipole =
2N
[
g2µ2BS(S + 1)

]2
(ψν − ψµ)

9(kBT )2
, (3.3)

where ψν denotes the dipole sums ψν =
∑
j,ν

r−3
i,j

(
3xijµxijνr

−2
ij − δµν

)
. The sum of (χν − χµ)single−ion

and (χν − χµ)dipole gives the total anisotropies of the susceptibilities ∆χνµ = χν − χµ. The curves

for ∆χab and ∆χcb, plotted in Fig. 3.11 as a function of T−2, show a linear dependence over a wide

temperature range, demonstrating that the above model is appropriate. By fitting the data with this

model (the solid lines in Fig. 3.11), we obtain parameters D = -0.38 K and E = 0.038 K using the

calculated values for the Fe 3d spins, ψa − ψb = 3.95 × 1022 cm−3 and ψc − ψb = 1.59 × 1022 cm−3.

The negative value of D is consistent with the magnetic easy axis along the a-axis (z-axis) and the

result |D| ≫ E shows that the CF has a nearly uniaxial symmetry.
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Figure 3.11: Plot of the anisotropies of the susceptibilities vs. T−2 in the paramagnetic region for κ-(BDH-

TTP)2FeBr4. Solid lines are the fitted results above 18 K. See text for details.

3.2.2 Magnetic structure and spin canting in AF ordered state

The TN values calculated using the mean field approximation are in good quantitative agreement

with the experimental data, TN = 3.9 K for the FeBr4 salt and TN < 1.5 K for the FeCl4 salt. The

small jumps in the magnetization for H ∥ b and H ∥ c seen in Fig. 3.3(a) indicate that the 3d spins

in the AF state are canted from the easy axis (a-axis). There are three possible mechanisms for the

canted configuration of the AF spin state: 1) spin frustration effect,82 2) ligand-field difference between

the two independent FeBr4 anions,83,84 and 3) the DM interaction.85,86 Each of the three possible

mechanisms are discussed next.

1) Figure 3.12 shows a schematic of the spin structure for the FeBr4 salt stemming from the

coexisting Fe 3d and π spins. The κ-type salts to which the present FeBr4 salt belongs [see

Fig. 1.19(b)], are modeled as a highly frustrated triangular π spin systems with the donor dimer

as the fundamental unit (π1 and π2) because all of the nearest neighbor exchange interactions

are AF.54,87 The exchange interactions between the dimers are given by 2t2/U , where t and

U are the overlap integral and the on-site Coulomb interaction, respectively. In the triangular

lattice of the BDH-TTP dimers [Fig. 1.19(b)], the ratio of the two exchange interactions J ′/J

[= (t′/t)2] is estimated from t′ = (p2 + q2)1/2 and t = c2 to be 0.22 . This J ′/J ratio is not

close to unity (fully frustrated case), but it causes some frustration for the AF order of the Fe

3d spins via Jπd, because the Fe d1 spin is frustrated aided by the two major AF interactions, J4

and J6, with the dimer spins, π1 and π2, respectively [Fig. 3.12(a)]. It is difficult to estimate the

effect of the π spin frustration on the 3d AF order, but it is a possible reason for the canted-spin

structure.
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Figure 3.12: (a) Possible spin structures and definition of the six π-d interactions (J1-J6). (b) Possible 3d spin

structures for H ∥ c.

2) The two independent tetrahedral FeBr−4 ions are alternately inclined from the a-axis in the

ac-plane by about 11◦. This alternating inclinations cause some spin canting in the ac-plane.

However, this effect cannot explain the spin canting in the ab-plane (magnetization jump for

H ∥ b) because of the mirror symmetry (parallel to the ac-plane) of the structure.

3) The DM interaction is generally written as DDM(Si×Sj), which can lead to a spin-canting. The

structure of the neighboring Fe ions has no inversion symmetry, giving a non-zero DDM vector.

The mirror symmetry parallel to the ac-plane suggests that a DDM vector possibly exists along

the b-axis, causing a spin canting in the ac-plane. The amplitude of the DDM vector is estimated

as |DDM| ∝ (∆g/g)JI ∼ 0.046×0.31 ∼ 0.015 K, where ∆g is the deviation from the free electron

g-value. Because the DM interaction is much smaller than JI and the anisotropy parameter D,

the DM interaction will not be the dominant mechanism of the spin canting.

Based on the above discussion, possible canted-spin structures are proposed in Fig. 3.12(b). At

zero field, all the d spins are slightly canted from the easy axis (a-axis). Note that the total moment

vanishes in this configuration. For H ∥ c slightly above Hc, there is a rearrangement in the canted-spin

configuration, associated with the small jumps of the magnetization. In this field range, the 3d spins
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have a WF character. The average change in angle of the canted spins may be several degrees, causing

a magnetization jump of about 0.35 µB. At higher fields, all the spins are almost aligned along the

c-axis; the total moment is saturated. This magnetization process is consistent with the M -H curves

in Fig. 3.3(a). A similar process will occur also for H ∥ b.
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3.2.3 ESR linewidth and critical phenomena

The deviation in the susceptibility from the Curie-Weiss behavior above TN (Fig. 3.2) is suggestive of

the development of spin fluctuations originating from the low-dimensionality. The broadening of the

ESR signal is also an important signature of a developing short-range order, which typically appears

in low dimensional antiferromagnets.

In general, the ESR linewidth can be expressed in terms of the following function∑
k

|Fk|2⟨Sz
k(τ)S

z
−k(0)⟩2, where the dynamic contribution ⟨Sz

k(τ)S
z
−k(0)⟩ representing the spin fluctu-

ations is the correlation function of Sz
k ,which is governed by the isotropic exchange interaction.88–90

The static contribution |Fk| is the k-component of the Fourier transform for the second moment from

all the interactions that do not conserve the total spin, such as the dipole-dipole interaction, CF effect,

DM interaction, anisotropic exchange interaction, and hyperfine interaction.

In the high temperature regime above 120 K, the lineshape is Lorentzian, indicating the strong

exchange narrowing. In this case, the spin correlation function has a strong exponential decay, for

which the correlation time is characterized by the exchange frequency ℏωex = 2z
√
S(S + 1)J . The

ESR peak-to-peak linewidth ∆Hpp is given by the second moment M2 and exchange frequency ωex,

∆Hpp =
20

3

ℏM2

gµBωex
(3.4)

assuming a cubic symmetry, and M2 = ⟨[Hint, S+][Hint, S−]⟩/⟨[S−, S+]⟩ where Hint includes all inter-

actions contributing to the linewidth.

For the dipole-dipole interaction between the d spins, MDipole
2 is given by

MDipole
2 = [3/(4ℏ2)]S(S + 1)g4µ4B

∑
ij

(
3 cos2 θij − 1

)2
r−6
ij , (3.5)

where rij is the distance between the ith and jth 3d spins and θij is the angle between the rij vector

and the field. The maximum linewidth is estimated as ∆Hdipole
pp = 1.1 mT for H ∥ a, taking z = 2,

g = 2, and J ∼ Jπd = 8.32 K (Table 1.3). The linewidth arising from the dipole interaction between

the π and d spins has a smaller contribution. Accordingly, the dipole-dipole interaction cannot solely

explain the linewidth in Fig. 3.5(a). The second moment arising from an axial CF effect is given by

MCF
2 = (1/10)D2(2S − 1)(2S + 3)(1 + cos2 θ), (3.6)

where θ is the angle of magnetic field from the principle axis of the CF (∥ a).91 Taking |D| = 0.38 K

and J ∼ Jπd, we obtain a maximum linewidth of ∆HCF
pp = 15 mT for H ∥ a. The second moment for

the DM interaction is given by

MDM
2 = (2/3)D2

DMS(S + 1)(1 + cos2θ), (3.7)

where θ is the angle of magnetic field from the principle axis of the DDM vector.92,93 As DDM ∼

(∆g/g)Jd, ∆H
DM
pp is much smaller than ∆HCF

pp . Similarly, the linewidths arising from the anisotropic
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exchange interaction, ∼ (∆g/g)2J , and the hyperfine interaction are also negligible. In this way, we

infer that the major contribution to the linewidth is from the CF effect. The estimated values are

comparable to the experimental data at high temperatures [Fig. 3.4(a)]. The estimations are also

consistent with the result that the linewidth is highest for H ∥ a at temperatures above 180 K [Fig.

3.4(a)].

As the temperature approaches TN, the spin fluctuations related to the q-vector defining the AF

ordered state grows. This process takes place over a wide temperature range as the short-range

magnetic order develops, especially for low-dimensional antiferromagnets.88–90 In the ESR spectra,

this process is observed as a successive increase in the linewidth near TN. This is what we observed

in the linewidth in the critical region.

Here we note that the linewidth broadening is pronounced in the field directions parallel to the b-

and c-axes [Fig. 3.4(a)], which are the direction of the spin canting. Therefore, it is concluded that

the fluctuations related to the spin canting are significantly pronounced in the critical region.

Broadening occurs because the correlation function ⟨Sz
k(τ)S

z
−k(0)⟩ does not decay fast enough to

guarantee convergence of the time integral of the correlation function.91,92 This will lead to a broader

lineshape than the Lorentzian shape. At present, it is not clear whether the lineshape deviates from

a Lorentzian shape at low temperatures.

3.2.4 Magnetic potential effect on the MR

In the FeBr4 salt, the presence of the MR decrease below TN (Fig. 3.7) is evidence of the inter-

play between the electron transport of π electron carriers and magnetism of the Fe d electron spins.

Characteristic negative MRs have been reported in some π-d systems.21,52,94,95 For example, β-(EDT-

DSDTFVSDS)2FeBr4 exhibits semiconducting behavior below 30 K, and a negative MR is observed

at low temperatures.94 For the AF superconductor κ-(BETS)2FeBr4 with Tc = 1 K and TN = 2.5 K,

the resistance decreases with increasing field after the superconductivity and then the AF phase are

broken.95 These features have been explained in terms of the magnetic potential effects via the π-d

interactions Jπ−d.

A schematic of the magnetic potential effect on the π spin transport is presented in Fig. 3.13. In

the FeBr4 salt, the 3d spins have the AF order (Fig. 1.20). The π spins see the magnetic potential

produced by the Fe 3d spins via the interaction Jπds · S . When the π spins pass through the layers

in the AF state, the magnetic potential alternately changes its sign, depending on the direction of

the Fe 3d spin polarization [Fig. 3.13(a)]. This effectively reduces the interlayer transfer integral; the

interlayer resistance of the π spins then increases. When all the Fe 3d spins are aligned by fields, the

π spins see the homogeneous magnetic potential, which then decreases the resistance [Fig. 3.13(b)].

Figure 3.14 is a schematic of the d spin alignment and the MR behavior. For H ∥ a (easy axis),

the 3d spins rapidly align at HSF, giving a steep decrease in resistance. For H ∥ c the Fe 3d spins

gradually align along the field (the magnetization smoothly increases with field), giving a moderate
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Figure 3.13: Schematic of magnetic potential effect on the π electron transport for (a) H < HSF and (b)

H > HSF when the field is applied parallel to the a-axis (easy axis).
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Figure 3.14: Schematic of d spins and MR behavior for (a) H ∥ a and (b) H ∥ c. The black arrows indicate the

3d spins.

decrease in resistance. After the Fe 3d spins are aligned, the resistance is predominantly determined

by the orbital effect that depends on the field direction.37 This magnetic potential effect arises from

the Zeeman effect. Therefore, the change in resistance should be independent of the field direction. As

seen in Fig. 3.7, the decrease in resistance is actually almost independent of the field direction (46∼50

% for H in the ab-plane and 42∼50 % for H in the cb-plane.), which is consistent with the above

picture. At TN in zero magnetic field, no anomaly in the resistance is observed (Fig. 3.6) in contrast

to κ-(BETS)2FeBr4. The reason is that the 3d spins strongly fluctuate over a wide temperature range

near TN which smears out the resistance anomaly.

Next, we semiquantitatively discuss the magnetic potential effect on the field dependence of the

MR in an analogy with the tunneling MR model.96,97 The simple model proposed is that the interlayer

transport is described by a quantum tunneling process. The tunnel conductance G is generally given

by G = e2|T |2/h, where |T | is the transmission coefficient. If we assume that a π electron with a spin

only antiparallel to the 3d spins can tunnel through the FeBr4 layer, the spin dependent transmission

coefficient of the electron tunneling through the next FeBr4 layer will be given by |T | ∝ cos δ, where
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δ is the angle between the 3d spins of the neighboring layers. Because the total magnetization in

field is M(H) = M0cos(δ/2) (M0: saturated magnetization), we obtain the spin dependent tunnel

conductance Gspin ∝ [M(H)/M0]
2, which gives a negative MR

R(H)

R(0)
=

1

1 + αR(0)(M(H)/M0)2
, (3.8)

where R(0)/[1 + αR(0)] is the resistance in the high field limit. A similar relation in the MR is

also given for dilute magnetic alloys, where the s-d interaction is crucial,80 and for ferromagnetic

materials.98

To simulate the MR in detail, it is necessary to develop a more suitable model. However, the

above simple model is helpful for a qualitative understanding of the spin-dependent tunneling. We

present the M(H)/M0 curves from the ∆R(H)/R(0) data for H ∥ a and b, from which the quadratic

background is subtracted, in the inset of Fig. 3.7(a). The M(H)/M0 curve for H ∥ a has a rapid

increase at 2.0 T, whereas it gradually increases to 5 T for H ∥ b. These results are roughly consistent

with the M(H) curves at 2 K in Fig. 3.3(a).
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3.3 Results for κ-(BDH-TTP)2FeCl4

3.3.1 Magnetic properties

The temperature dependences of the magnetic susceptibility χ and the inverse of χ were measured

along each crystallographic axis at 0.5 T, and are shown in Fig. 3.15(a). The χ−1 plots show a linear

dependence on temperature that follow the Curie-Weiss law with a small Weiss temperature Θ ≈ −0.2

K. The χT values [Fig. 3.15(b)] are almost constant above 50 K and the Curie constant of C = 4.4

emu·K·mol−1 is evidence for the high spin state (S = 5/2) of the Fe(III) ion. Here, we should note that

the Pauli paramagnetism of the π spins is negligible. At lower temperatures, χT shows a characteristic

temperature dependence [inset of Fig. 3.15(b)], the origin of which will be discussed later.

Figure 3.15: (a) Temperature dependence of the magnetic susceptibility for κ-(BDH-TTP)2FeCl4 along each

crystal axis at H = 0.5 T. (b) χT vs T plots. Inset: Low-temperature data below 30 K. The solid curves

represent the simulation results obtained using D = −0.1 K and E = 0.042 K.

The plots of magnetization (M) vs. H at 2 K for different field directions are shown in Fig. 3.16.

All theM -H curves approximately follow the Brillouin function and show no indications of a magnetic

transition.
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Figure 3.16: Magnetization vs. magnetic field measured at 2 K for κ-(BDH-TTP)2FeCl4.
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In the ESR measurements, a single Lorentzian signal is observed in the entire temperature range.

Because of the small π spin (S = 1/2), the ESR signal arises predominantly from the 3d spins

(S = 5/2). The temperature dependences of the peak-to-peak linewidth (∆Hpp), the g-value, and

the inverse of the spin susceptibility (χ−1
spin) are shown in Figs. 3.17(a)-(c), respectively. We see that

the linewidths show peculiar temperature dependences. For H ∥ a, the linewidth gradually increases

with decreasing temperature down to 3.5 K, but a cusp is seen at 130 K. For H ∥ c, a broad hump is

observed at 130 K, whereas such an anomaly is ambiguous for H ∥ b. The g-values are almost constant

above 50 K, but show steep changes at low temperatures below 50 K, the origin of which will also be

discussed later. The χ−1
spin plots are approximately linear with temperature, consistent with the χ−1

plots shown in Fig. 3.15(a). For H ∥ c, the χ−1
spin plot has a broad cusp at 130 K, corresponding to

the hump in the linewidth plots. However, the origin of the anomaly is unclear at present.

Figure 3.17: Temperature dependences of the (a) ESR linewidth ∆Hpp, (b) g-value, and (c) inverse of the spin

susceptibility.

The angular dependences of the linewidth and g-value at 200 and 3 K are shown in Fig. 3.18.
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A double-minimum dependence of the linewidth is clearly seen for H in the ab-plane but is not so

evident for H in the bc-plane. The g-values have a sinusoidal dependence at 3 K for H in both the

ab- and bc-planes but are almost constant at 200 K. The angular dependences of the g-values at 3 K

are well fitted with g(θ) = g1 cos
2 θ + g2 sin

2 θ [solid curves in Fig. 3.18(c) and (d)], showing that the

principal axes correspond to the crystal axes.

Figure 3.18: Angular dependences of the ESR linewidth ∆Hpp at 200 and 3 K for H in the (a) ab- and (b)

bc-planes. Dotted and dashed curves denote the simulation results for the anisotropic crystal field and the

dipole-dipole interaction effects, respectively. Angular dependences of the ESR g-value at 200 and 3 K for H

in the (c) ab- and (d) bc-planes. Solid curves are the fitted curves using g(θ) = g1 cos
2 θ + g2 sin

2 θ. The fitted

values in (c) are g1 = 1.8 and g2 = 2.3, whereas those in (d) are g1 = 1.8 and g2 = 2.1.
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Figure 3.19: Temperature dependence of the resistivity. Inset: Low-temperature data below 15 K.

3.3.2 Resistivity and MR

The resistivity shows a monotonic decrease with decreasing temperature to 30 mK, as shown in Fig.

3.19, and no sign of superconductivity is seen. The monotonic temperature dependence is similar to

that observed in the FeBr4 salt.

Figure 3.20 shows the normalized MR data, ρ/ρ0 curves at 30 mK, where ρ0 is the resistance at

zero field. The MR for H ∥ a [θ = 90◦, Fig. 3.20(a)] exhibits an abrupt drop by about 20% at 0.2

T and then increases with increasing field. As the field is tilted from the a-axis to the b-axis, the

MR drop becomes more moderate [inset of Fig. 3.20(a)] and, simultaneously, the positive MR at high

fields is suppressed. For H in the bc-plane, the MR drops at low fields have no noticeable dependence

on the field angle [Fig. 3.20(b)]. However, the increase in the positive MR at high fields becomes

large as the field is tilted from the b-axis to the c-axis. Such an abrupt drop in the MR at low fields

has also been observed in the FeBr4 salt, which can be interpreted as the suppression of the magnetic

potential by the spin-flop transition of the Fe 3d spins.80 The evidence for a spin-flop transition for

the FeCl4 salt will be given below. The positive MR at high fields is explained by the orbital effect in

2D systems.37 Figure 3.21 shows the normalized MR for H ∥ a at various temperatures, in which the

drop in the MR at 0.2 T is reduced as temperature increases above 0.4 K.
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Figure 3.20: Normalized MR at 30 mK for H in the (a) ab- and (b) bc-planes. Insets: Close-ups of the low-field

data below 1.5 T.
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Figure 3.21: Normalized MR at various temperatures for H ∥ a.
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3.3.3 Magnetic torque

In this subsection, θ is defined as the field angle from the a- or c-axis to the b-axis. The field

dependences of the magnetic torque for a range of field angles in the ab-plane are shown in Figs.

3.22(c) and (d). The τ(H) curves (not shown) are almost linear above 4 T below 1 K, irrespective

of the field direction. The result indicates that the magnetization is fully polarized above 4 T (M ∼

const.). The angular dependence is given by the simple sine curve at high fields, which has zeros at

θ = 0◦ and 90◦ for H in the ab- and bc-planes. Therefore, the principle axes of the magnetization

correspond to the crystal axes, consistent with the results of the ESR measurements.

The torque curves at low fields show peculiar field dependences that are associated with the sign

change. When the field is nearly parallel to the a-axis (θ ≈ −1◦), the sign change is observed at the

lowest field of ∼ 0.15 T, and then a kink occurs at ∼ 0.25 T [red and black arrows in right panel of

Fig. 3.22(c)]. The sudden sign change in the torque is caused by a rapid rearrangement of the spin

structure. Similar sign changes have previously been observed in λ-(BETS)2FeCl4, κ-(BETS)2FeBr4,

and the FeBr4 salt [Fig. 3.9(c)], which are ascribed to spin-flop transitions.64,66 Thus, we infer that

the easy axis of the 3d spins is the a-axis and the spin-flop or metamagnetic transition takes place at

around 0.15 T. At this magnetic transition, a steep decrease in the MR is seen [Fig. 3.20(a)], which

provides clear evidence of a finite π-d interaction. The kink at 0.25 T in Fig. 3.22(c) is ascribed to

a transition from the AF phase to the paramagnetic phase. The spin-flop transition field is much

smaller than that (∼ 1.5 T) for the FeBr4 salt. As the field is tilted from the a-axis to the b-axis, the

torque changes sign at higher fields. This tendency is closely related to the behavior of the steep MR

decrease shown in Fig. 3.20(a), to be discussed later. When the field is nearly parallel to the b-axis,

we see whether a dip or peak at ∼ 0.7 T [Fig. 3.22(d)], which is also caused by the transition to a

paramagnetic phase.

Figure 3.22(a) shows the τ(θ) curves for the FeCl4 salt at 30 mK, which are qualitatively very

similar to those of the FeBr4 salt. The τ(θ) curves show a rapid change [Fig. 3.22(a)], which is

strongly field-dependent. These changes are ascribed to the magnetic transition. At 1.5 K, the τ(θ)

curves are simple sin 2θ curves, similar to those of the FeBr4 salt above TN.

For the H rotation in the cb-planes, the τ(θ) and τ(H) curves at 30 mK are shown in Fig. 3.23.

At 30 mK, τ(H) changes monotonically up to 0.5 T, and becomes linear with field above 0.5 T. The

behavior indicates that the magnetization saturates above 0.5 T . The τ(θ) curves at 30 mK and 1.5 K

show a sin 2θ dependence, which differs from the data for H in the ab-plane. The results are consistent

with the picture of the AF order with the easy axis along the a-axis.

The torque curves for θ = 173◦ at various temperatures are shown in Fig. 3.24. A sudden sign

change induced by the spin-flop transition occurs at 0.15 T at a low temperature. As the temperature

increases, the change at 0.15 T is smeared and is completely suppressed above 0.5 K. The results show

that for the AF order TN is approximately 0.4 K.
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Figure 3.22: Field angle and magnetic field plots of magnetic torque for κ-(BDH-TTP)2FeCl4. Magnetic fields

are rotated in the ab-plane at 30 mK and 1.2 K.
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Figure 3.23: Field angle and magnetic field plots of magnetic torque for κ-(BDH-TTP)2FeCl4. Magnetic fields

are rotated in the cb-plane at 30 mK and 1.2 K. Schematic shows the field direction and sample alignment.
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Figure 3.24: Field dependence of magnetic torque for κ-(BDH-TTP)2FeCl4 at various temperatures.
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3.3.4 de Haas-van Alphen oscillation

The field dependence of the magnetic torque for κ-(BDH-TTP)2FeCl4 up to 35 T at 0.5 K is shown in

Fig. 3.25(a). The field is rotated in the ab-plane and the field angle from the b-axis is denoted by θ for

this measurement. Above 24 T, the de Haas-van Alphen (dHvA) oscillations are clearly observed [Fig.

3.25(b)]. Fig. 3.26(b) presents the Fourier transformation (FT) spectra of the oscillations, which have

one peak around the frequency F = 4760 T, corresponding to approximately 100 % of the Brillouin

zone (4596 T). F shows a 1/ cos θ dependence, indicating a cylindrical Fermi surface.

The amplitude of the FT spectra A at θ = 0◦ diminishes with increasing temperature. By the

Lifshitz-Kosevich formula, A/T is given as

A/T = a
Kµ/H

sinh(KµT/H)
, (3.9)

where a is a constant, K = 14.7, µ is the effective mass ratio. The A/T vs T plot (mass plot) is shown

in Fig. 3.26(c). The effective mass ratio of the electron is calculated to be µ = mc/me = 2.0, where

me is the mass of the free electron. Thus, some electron correlation exists in the FeCl4 salt.

Figure 3.25: (a) Field dependence of magnetic torque for κ-(BDH-TTP)2FeCl4 at 0.5 T. (b) High field region

of the dHvA oscillations. Schematic shows the field direction and sample alignment.
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Figure 3.26: (a) FT amplitude vs. field angle plots for κ-(BDH-TTP)2FeCl4. (b) FT spectra of the oscillations

at various temperatures. The FT amplitude shows the 1/ cos θ dependence presented by a solid curve. (c) Mass

plot. From the solid fitting curve, the effective mass ratio is estimated as µ = 2.0.
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3.4 Discussion for κ-(BDH-TTP)2FeCl4

3.4.1 ESR linewidth

Here, the contribution of the 3d spins to the ESR linewidth is considered as the ESR signal arises

predominantly from the 3d spins. The observed ESR signal has a Lorentzian lineshape suggesting the

exchange narrowing of the linewidth.

Similar to that for the FeBr4 salt, the second moment M2 is calculated for the FeCl4 salt. The

contribution of the crystal field to M2 has a cos2θ dependence with a maximum value for H ∥ a [Eq.

(3.6)]. Assuming |D| = 0.1 K (see below) and J = 0.2 K, the calculated results are obtained as shown

by the dotted curve in Fig. 3.18(a). In contrast, the Dzyaloshinskii-Moriya interaction,85,86 gives

MDM
2 ∝ D2

DM and DDM ≈ [(g − g0) /g0]J , where g0 is the g-factor of the free electron. This term is

negligible because of the negligible value of g-g0.

The other dominant contribution arises from the dipole-dipole interaction between the 3d spins.

The contribution to the second moment is given by Eq. (3.5). Taking g = 2 and J = 0.2 K, we

obtain calculated results shown by the dashed curves in Figs. 3.18(a) and (b). Note that the dashed

curves have a double-minimum dependence, qualitatively consistent with the experimental results.

To obtain quantitative agreement, more realistic models are required that include the E term of the

crystal field as well as the cross terms between the crystal field and dipole interaction effects in M2.

Although there still remain ambiguities in the calculations, we can conclude that the ESR linewidth

arises mainly from both effects with J ≈ 0.2 K.

3.4.2 Magnetic susceptibility and g-value

The magnetic susceptibility of the FeCl4 salt follows the Curie-Weiss law with a low Weiss temperature

[Fig. 3.15(b)], and the AF order occurs at a very low temperature (TN ∼ 0.4 K). These results show

that the AF interaction between the 3d spins in the FeCl4 salt is much smaller than that in the FeBr4

salt (TN = 3.9 K). Therefore, the characteristic temperature dependences of χT [Fig. 3.15(b)] and the

g-values below 50 K [Fig. 3.17(b)] can be interpreted by a single-ion picture. Here, we consider the

single-ion anisotropy described by the two parameters D and E. The spin Hamiltonian is given by

H =
∑
i

giµBHiSi +DS2
z + E

(
S2
x − S2

y

)
(i = x, y, z), (3.10)

where the first term corresponds to the Zeeman energy in the external field Hi, µB is the Bohr

magneton, gi is the g-value of the electron spin, and Sx, Sy, and Sz are the spin operators (S = 5/2).99

The total magnetic moment is given by the statistical average for the six sublevels of the 3d spins,

⟨M(T )⟩ =

∑
j Mjexp

(
−Ej

kBT

)
∑

j exp
(
−Ej

kBT

) (j = 1, 2, · · · , 6), (3.11)

whereMj and Ej represent the magnetic moment and the eigenvalue for the jth sublevel, and ⟨M(T )⟩

is the statistical average of the total magnetic moment per mole, which corresponds to the experimental
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data χ = ⟨M(T )⟩/H. The temperature dependence of χT is calculated with the fitting parameters

gi, D, and E. The results calculated with gx = 1.998, gy = 2.008, gz = 2.006, D = −0.1 K, and

E = 0.042 K well describe the temperature dependence, as shown by the solid curves in Fig. 3.15(b).

Here, x, y, and z correspond to the b-, c-, and a-axes, respectively. The magnetic easy axis is the

a-axis, which is consistent with the torque data. The agreement with the experimental results seems

satisfactory. For the calculation, the AF interaction between the 3d spins, J , is ignored. As shown

in the previous subsections, J is estimated to be ∼ 0.2 K, which is on the same order of magnitude

as D. In the paramagnetic phase, the effect of the isotropic J leads to a shift in M in the mean field

approximation. This does not cause a significant difference in the calculated results because the Weiss

temperature determined by J is only ∼ −0.2 K.

If the characteristic temperature dependences of the ESR g-values [Fig. 3.17(b)] have the same

origin as those of the linewidths, we should see a strong correlation between them because χT ≈

Kg(T )2 and K = NAµ
2
BS(S + 1)/3kB (here NA is the Avogadro constant). Figure 3.27 presents the

plots of χT vs. g2 in the temperature range 5-80 K. Although the data are somewhat scattered, we see

a linear correlation, indicated by the dashed line. This result strongly indicates that the characteristic

temperature dependences of the g-value and χT originate from the same effect as the anisotropic

crystal field. The solid line corresponds to the case of isolated paramagnetic spins with K = 1.1.

The discrepancy may be caused by the effect of finite J because the g-factors are more sensitive to a

molecular field proportional to J .

Figure 3.27: χT vs. g2 plots in the temperature range between 5 K and 80 K. Solid line corresponds to the case

of isolated paramagnetic spins. Dashed line denotes the least square fitting.
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Figure 3.28: Feld dependence of the calculated magnetization from MR data at 30 mK.

3.4.3 Magnetoresistance

In the previous section, we proposed quantum tunneling between the layers as a simple model of the

interlayer transport. Similar arguments can be applied to the FeCl4 salt.

After subtracting the quadratic background arising from the orbital effect,37 we obtain from the

MR data at 30 mK the Mcalc(H) curves for H ∥ a and b shown in Fig. 3.28. Mcalc(H) for H ∥ a

shows a rapid increase at 0.15 T, which corresponds to the spin-flop transition, and then saturates

above 0.2 T. In contrast, with increasing field, Mcalc(H) for H ∥ b monotonically increases with the

field, and then saturates above 0.7 T. This gradual increase in the field perpendicular to the easy axis

is a typical behavior of antiferromagnets.

3.4.4 Comparison of results for the FeCl4 and FeBr4 salts

Table 3.1: Comparison of parameter values obtained for κ-(BDH-TTP)2FeCl4 and κ-(BDH-TTP)2FeBr4.

salt |Dexp| T exp
N HSF

a) ∆ρ/ρ0
b) J

calc c)
d J

calc d)
πd T calc

N

FeCl4 0.1 K 0.4 K 0.15 T 20% 0.22 K 2.1 K 1.34 K

FeBr4 0.38 K 3.9 K 2.0 T 50% 0.62 K 5.7 K 4.0 K

a) For H ∥ a at 30 mK.

b) Reduction ratio of the MR at the spin-flop field.

c) Calculated d-d interaction.56

d) Calculated effective π-d interaction.56

Here, it will be worthwhile to compare the physical parameters characterizing the electronic states

of the FeCl4 and FeBr4 salts. Several parameters are summarized in Table 3.1. The experimentally

determined T exp
N (0.4 K) of the FeCl4 salt is one order of magnitude lower than that (3.9 K) for the

FeBr4 salt. Concomitantly, the spin-flop field HSF (0.15 T) in the FeCl4 salt is lower than that (2.0 T)

for the FeBr4 salt. In π-d systems, the donor—anion distance provides important information on the
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π-d interaction. For the FeCl4 salt, the shortest distance between the sulfur atom of BDH-TTP and

the chlorine atom of the FeCl−4 anion (S—Cl distance) is 3.661(2) Å, which is somewhat longer than

the sum of the van der Waals radii [vdW (Bondi) = 3.55 Å]. In contrast, the shortest S—Br distance

in the FeBr4 salt is 3.715(3) Å, which is closer to vdW (Bondi) = 3.65 Åthan the difference (∼0.11 Å)

between the shortest S—Cl distance and the vdW radii in the FeCl4 salt. This structural distinction

between the FeCl4 and FeBr4 salts should result in the lower T exp
N and HSF observed in the FeCl4 salt.

The MO calculations using the mean field approximation that were previously reported,56 show

that the d-d exchange interaction of Jd = 0.22 K and the effective π-d interaction Jπd for the FeCl4

salt are about one-third of those for the FeBr4 salt. Consequently, the FeCl4 salt has a smaller T calc
N

(= 1.34 K) in the mean field approximation. However, this value is rather high as compared with T exp
N .

Assuming kBT
exp
N ≈ (2/3)|Jd|S(S + 1), we obtain |Jd| ≈ 0.07 K. This value is rather small compared

with |J | ≈ 0.2 K, estimated from the ESR linewidth analysis.

The reduction ratios for the MR in the FeCl4 and FeBr4 salts in the spin-flop transition at 30

mK are ∼20 and ∼50%, respectively. The reduction ratio reflects the amplitude of the effective π-d

interaction Jπd (2.1 K for the FeCl4 salt and 5.7 K for the FeBr4 salt) as the spin-dependent tunneling

conductance is directly related to the magnetic potential formed by the π-d interaction.

In the uniaxial crystal field, the spin-flop field HSF is simply given by HSF =
√

2|HAHE| =

(2/µB)
√

|JdD|, where HA is the anisotropic field and HE is the exchange field. Taking Jd = 0.07 K

and |D| = 0.1 K for the FeCl4 salt and Jd = 0.62 K and |D| = 0.38 K for the FeBr4 salt, we obtain

HSF = 0.25 and 1.44 T for the FeCl4 and FeBr4 salts, respectively. HSF = 0.25 T is in approximate

agreement with the experimental value of HSF = 0.15 T.

In contrast to the monotonic temperature dependence of the linewidth in the FeBr4 salt above 50

K, the linewidth in the FeCl4 salt has a peculiar temperature dependence [Fig. 3.17(a)], the origin

of which is not clear at present. Additionally, the linewidth in the FeBr4 salt shows critical behavior

(a rapid increase) for different field directions when approaching TN below 50 K, whereas such a

phenomenon is not found in the FeCl4 salt down to 3.5 K. The absence of critical behavior is most

likely because of the small exchange interaction in the FeCl4 salt compared with that in the FeBr4

salt.

The angular dependence of the ESR linewidth in the FeBr4 salt is considerably different from that

in the FeCl4 salt. For the FeBr4 salt, the major contribution to the ESR linewidth is not the dipole

interaction but the crystal field effect. Therefore, a simple 1+cos2θ dependence is observed for the

FeBr4 salt. Indeed, these results are consistent with the analyses of the susceptibility anisotropy; the

FeBr4 salt has a larger crystal field parameter |D| (∼ 0.38 K) than the FeCl4 salt (∼ 0.1 K). The

large |D| for the FeBr4 salt is a consequence of the larger distortion in the FeBr4 tetrahedral structure

because of the larger ionic radius.
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3.4.5 Magnetic torque simulations

To explain the magnetic torque data, a simple two-spin model is proposed, which corresponds to

two magnetic sublattices [Fig. 3.29(c)]. The magnetic properties of the FeBr4 and FeCl4 salts are

dominated by the 3d spins with large magnetic moments. The 3d spins on the nearest-neighbor Fe

ions along the a-axis are antiferromagnetically coupled with each other. The AF coupling occurs via

two different pathways: one direct and the other indirect via the π-d interaction.56 As discussed

previously, the ligand field of the 3d spin has an approximate uniaxial symmetry, so that the total

energy E of the two 3d spins with the exchange coupling J in a field H will be mainly given by the

sum of the Zeeman effect, the exchange interaction, and the anisotropic ligand field,

E = EZeeman + Eexchange + Eanisotropy, (3.12)

EZeeman = −gµBS1H cos(φ1 − θ) + gµBS2H cos(φ2 − θ), (3.13)

Eexchange = −JS1S2 cos(φ2 − φ2), (3.14)

Eanisotropy = −D(S2
1 cos

2 φ1 + S2
2 cos

2 φ2), (3.15)

where S1 and S2 are the 3d spins (S1 = S2 = 5/2), φ1 and φ2 are the respective angles for S1 and S2

from the easy axis (a-axis) [Fig. 3.29(c)], θ is the field angle from the easy axis, and D (> 0) is the

uniaxial anisotropy parameter of the ligand field. The spin angles φ1 and φ2 are determined so that

the total energy has a minimum at a fixed θ and H. The magnetic moment M per spin and the total

torque τ are obtained from the following relations,

M(H, θ) =
1

2
[gµBS1 cos(φ1 − θ)− gµBS2 cos(φ2 − θ)], (3.16)

τ(H, θ) = −∂E/∂θ. (3.17)

In this simulation, the temperature fluctuation is not included; the results should therefore be com-

pared with the data taken at very low temperatures (T ≪ D and T ≪ J).

The simulations for the FeBr4 salt with the parameter values D = 0.26 and J = 1.02 K are shown

in Figs. 3.29(a), (b), and (d). For H ∥ a (θ = 0◦), the M(H) curve shows a sharp increase and a spin-

flop transition at 1.7 T [Fig. 3.3(a)], and is saturated above 2.8 T, where the full Bohr magneton (5µB

per spin) is induced. For H ∥ b (θ = 90◦), the M(H) curve linearly increases with increasing H, and

saturates above 4.7 T. The τ(H) curve has a peak at the spin-flop transition. The field dependences

of both φ1 and φ2 at θ = 10◦ in Fig. 3.29(b) clearly show jumps at the spin-flop transition. Above

the saturation field of M(H), we note that the τ(H) curves become constant. Below the spin-flop

field of 1.7 T, the τ(θ) curves in Fig. 3.29(d) are given by the sin 2θ dependence . In the intermediate
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Figure 3.29: Simulations of (a) magnetization and (b) magnetic torque as a function of field at various field

angles and the field dependences of the two spin angles at a field angle θ = 10◦. (c) Schematic of two d spins

and spin angles. (d) Field angle dependence of the simulated magnetic torque and the two spin angles at

2.2 T. The parameter values D = 0.26 and J = 1.02 K were fitted to reproduce the experimental data for

κ-(BDH-TTP)2FeBr4.
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Figure 3.30: (a) Simulations of (a) magnetization and (b) magnetic torque as a function of field at various field

angles and the field dependences of the two spin angles at a field angle θ = 30◦. (c) Field dependence of the

simulated magnetic torque and the two spin angles at 0.3 T. The parameter values D= 0.14 and J = 0.07 K

are were fitted to reproduce the experimental data for κ-(BDH-TTP)2FeCl4.
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region between the spin-flop and the saturation fields, the τ(θ) curve shows a sign change in the range

0◦ < θ < 90◦. This is caused by a gradual but large change in the spin angles as shown in Fig.

3.29(d). Above the saturation field, the τ(θ) curve approaches the sin 2θ dependence and becomes

field-independent. All these features are consistent with the experimental data.

The simulations on the FeCl4 salt with the parameters D = 0.14 K and J = 0.07 K are illustrated

in Fig. 3.30. Because of the small J (J < D), a metamagnetic transition (not a spin-flop transition)

takes place in fields nearly parallel to the a-axis. Indeed, the M(H) curve at θ = 0◦ clearly shows a

jump to the full moment at ∼ 0.13 T [Fig. 3.30(a)]. At the metamagnetic transition, the τ(H) curve

exhibits a peak, followed by a steep change [Fig. 3.30(b)]. This change is caused by a large spin angle

jump for S2 as shown in Fig. 3.30(b). As the field is tilted away from the a-axis, the metamagnetic

transition is suppressed, and only a smooth change is seen with θ > 85◦. In the τ(θ) curves [Fig.

3.30(c)], sudden changes are also evident, which are attributed to the spin angle jumps (metamagnetic

transition). These simulations reproduce the experimental data for the FeCl4 salt.

We note some discrepancies between the experimental data and the simulations. For instance, the

M(H) curves in the experimental data show smooth changes at the transition fields in comparison

with those in the simulations. This would be ascribed to the temperature fluctuation effect. Some

other details are not completely reproduced by the simulations probably due to the presence of the

bi-axial anisotropy of the ligand field, Dzyaloshinsky-Moriya interaction, and/or finite π-d interaction,

as discussed in previous chapter. However, the essential features of the magnetic properties in organic

π-d systems are reproduced by our proposed two-sublattice model. Along with the simulations, the

torque measurements will be re-recognized as a powerful tool to determine the microscopic parameters

of the AF ordered states.
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Chapter 4

Results and Discussion

for α-(BEDT-TTF)2NH4Hg(SCN)4

4.1 Results

4.1.1 Temperature dependence of resistivity

The temperature dependences of the resistivities of nine samples (♯1-♯9) are shown in Fig. 4.1(a). The

superconducting transition is observed at ∼1 K for all the samples (Tc ≈ 1 K), which is consistent

with the previous reports. However, the temperature dependence is strongly sample-dependent. For

samples ♯1-♯5, the resistivities have broad humps at 110-150 K and then decrease with decreasing

temperature, whereas the resistivities monotonically decrease with decreasing temperature in the

whole temperature region for samples ♯7-♯9. Such resistivity humps have been observed in some 2D

layered compounds as discussed later. The resistivity humps are more evident for samples with lower

residual resistivity ratios defined as RRR = ρ290K/ρ2K as shown in Fig. 4.1(b). The inset of Fig.

4.1(b) shows the hump resistivity normalized at 290 K (ρhump/ρ290K) vs. RRR plot. The ρhump/ρ290K

value has a tendency to decrease with increasing RRR. We see no significant correlation between RRR

and Tc, and between ρhump/ρ290K and Tc.

4.1.2 Shubnikov-de Haas oscillation

The field dependences of the resistance are shown in Fig. 4.2. The SdH oscillations are clearly observed

above 4 T for sample ♯1. The Fourier transform (FT) spectrum of the oscillation [Fig. 4.3(a)] shows

a single frequency of about 560 T, corresponding to the α orbit [shown in Fig. 4.14(a)], and its

harmonics (2α and 3α). Figure 4.3(b) shows the angular dependence of the oscillation frequency

F [T ]. The frequency is proportional to 1/ cos θ, where θ denotes the field angle from the b-axis

(interlayer direction). The 1/ cos θ dependence and no node of the oscillation clearly show that the

observed Fermi surface is highly 2D.

The energy band of a simple cylindrical 2D Fermi surface with a corrugation given by tz will be

approximated by E = ℏ2k2F /2mc − 2tz cos(kzc). We define the Fermi energy, EF = ℏ2k2F /2mc =

ℏ2SF /2πmc, where SF = πk2F is the cross-sectional area. Because of the finite tz value, the corrugated

2D Fermi surface has the maximum and minimum cross-sectional areas, Smax = 2πmc(EF + 2tz)/ℏ2

and Smin = 2πmc(EF − 2tz)/ℏ2, respectively, giving two different oscillation frequencies. Therefore,

if the tz value is sufficiently large, we will observe nodes formed by the two frequencies arising from
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Figure 4.1: (a) Temperature dependences of the resistivity for various samples. (b) Normalized resistivity at

290 K for α-(BEDT-TTF)2NH4Hg(SCN)4. Inset: Log plots of normalized height of the hump vs. RRR.

Smax and Smin. We have carefully observed the SdH oscillations, but found no sign of such nodes in

the range between 4 T and 17.5 T. The result shows that the difference of the two frequencies given

by ∆F = (Smax − Smin)/2πeℏ follows the relation ∆F (1/4 − 1/17.5) ≤ 1/2. It gives the upper limit

of tz, tz ≤ 0.03 meV.100

The Landau levels are broadened by the scattering of the electrons, which is mainly caused by

impurities or defects at low temperatures. The scattering gives the width of ∼ ℏ/τ , where τ is

the scattering time. This broadening reduces the oscillation amplitude and the reduction factor is

characterized by the Dingle temperature TD = ℏ/(2πkBτ), where kB is the Boltzmann constant. We

can estimate TD from the so-called Dingle plot (Fig. 4.4), fitting the field dependence of the oscillation

amplitude A by the equation,

ln [AH sinh (KµT/H)] = KµTD/H + a, (4.1)

where K = 14.7 [T/K], µ is the ratio of the effective mass to the free electron mass µ = mc/me =
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2.5, and a is a constant.59,61 We estimated TD for six samples, which ranges from 0.93 to 1.73 K as

listed in Table 4.1. For samples ♯7-♯9, we cannot calculate TD because the oscillations are too small,

probably TD > 2 K.

Table 4.1: Sample dependence of the Dingle temperature.

sample ♯1 ♯2 ♯3 ♯4 ♯5 ♯6

TD (K) 0.93 1.16 1.19 1.22 1.40 1.73

τ (× 10−12 s) 1.31 1.04 1.02 1.00 0.87 0.70
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Figure 4.3: (a) FT amplitude vs. the quantum oscillation frequency F (T) at 0.3 K for sample ♯1. (b) Angular

dependence of F (T). The solid curve shows the result calculated by F (T) = F0/ cos θ (F0 =560 T). Inset:

Schematic of the crystal and field angle.

93



-4

-3

-2

-1

0

0.120.100.080.06

#3 -4

-3

-2

0.120.100.080.06

#4

1.5
1.0
0.5

0.0
-0.5
-1.0

0.140.120.100.080.06

#1 -1.5
-1.0
-0.5
0.0
0.5
1.0

0.140.120.100.080.06

#2

-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

8.5x10-28.07.57.06.56.0

#5
-3.0

-2.5

-2.0

-1.5

8.5x10-28.07.57.06.56.0

#6

1/  -1µ0 H (T  )

ln
[A

H
si

nh
(K
µT

/H
)]

ln
[A

H
si

nh
(K
µT

/H
)]

1/  -1µ0 H (T  )

ln
[A

H
si

nh
(K
µT

/H
)]

ln
[A

H
si

nh
(K
µT

/H
)]

1/  -1µ0 H (T  )

1/  -1µ0 H (T  )

1/  -1µ0 H (T  ) 1/  -1µ0 H (T  )

ln
[A

H
si

nh
(K
µT

/H
)]

ln
[A

H
si

nh
(K
µT

/H
)]

D = 0.92 KT D = 1.16 KT

D = 1.22 KT

D = 1.40 KT

D = 1.19 KT

D = 1.73 KT

Figure 4.4: Dingle plots of the SdH oscillation for samples ♯1-♯6.

94



4.1.3 Angular dependent magnetoresistance

The angular dependences of the MR for some samples at 0.3 K are shown in Figs. 4.5 and 4.6. At

low fields under 3 T, the resistances decrease to zero around θ = 90◦, due to the superconducting

transition. The MR above 3 T strongly depends on the TD (sample quality). For sample ♯1 with

TD = 0.93 K, the MR at high field shows large AMROs, where the small and rapid SdH oscillation

is superimposed, as shown in Fig. 4.5(a). The background MR has a maximum around 90◦ and

a minimum around 0◦. The AMRO is slightly asymmetric around 90◦ because of the monoclinic

structure.

For samples ♯5 (TD = 1.40 K) and ♯6 (TD = 1.73 K), V-shaped dips around θ = 90◦ appear at

high fields and the AMRO amplitudes are suppressed [Figs. 4.5(c) and (d)]. We note that the angle

region of the V-shaped dip is wider for the larger TD sample. In the other angle region, the MR is

similar to that for sample ♯1. For sample ♯9 (TD is unknown), the angular dependence of the MR has

no AMRO and the MR is completely reversed in all the angle region at high fields [Fig. 4.6(b)].

To reproduce the experimental results in Fig. 4.5(a), we calculated the AMROs by Eq. (2.41) for

several ωcτ values in Fig. 4.7. Using the Fermi wave number kF = 1.35 nm−1 of the α orbit and the

layer spacing c = 2.06 nm, we take kFc = 2.78. For τ = 3 ps, giving ωcτ = 3.6 at 17 T, we note that

the relative amplitudes of the successive AMRO peaks for sample ♯1 at various fields in Fig. 4.5(a)

are well reproduced as shown in Fig. 4.7(a). The scattering time τ used in the calculation is longer

than the value obtained by the Dingle plot (τ = 1.31 ps). This is because the AMRO amplitude is

not sensitive to small-angle scattering whereas the SdH oscillation is reduced by any scattering losing

the phase coherence. We also show the calculated AMROs at different τ values in Fig. 4.7(b), which

should be compared with the data of the other samples with shorter τ in Figs. 4.5(b)-(d) and 4.6. As

τ reduces, the MR background and the AMRO peaks gradually decrease and the MR approaches a

simple sine curve with a maximum at θ = 90◦. These calculations are apparently inconsistent with

the experimental results.

The V-shaped dip around θ = 90◦ can never be explained by the Boltzmann transport theory

and indicates the incoherent interlayer transport. For sample ♯9, the SdH oscillations and the AMRO

peaks are slightly observed. The MR background reversal, the incoherent interlayer transport, occurs

in almost the whole angle region [Fig. 4.6(b)]. As discussed later, the background reversal at high

fields is scaled by the perpendicular field component to the ac-plane (H cos θ). Such behavior has

already been found for (TMTSF)2PF6
29 and α-(BEDT-TTF)2KHg(SCN)4.

41 Our data show that the

crossover of the interlayer transport from the weakly coherent to incoherent regime is induced by the

scattering.
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Figure 4.7: Simulated MR as a function of the field angle with kF = 1.35 nm−1. Simulations for (a) τ = 3 ps

at various fields and (b) µ0H = 17 T at various scattering time τ .
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The horizontal angular dependences of the MR at various azimuthal angles from the a-axis (ϕ)

are presented in Figs. 4.8 and 4.9. For samples ♯1-♯3, the AMRO strongly depends on ϕ, reflecting

the anisotropy of the Fermi surface structure. The V-shaped MR reversal around θ = ±90◦ is evident

around ϕ = 45◦ and 225◦ but not clearly observed at the other angles. For sample ♯7, it is surprising

that the MR is almost independent of ϕ and the V-shaped feature appears around θ = ±90◦ at all the

ϕ values [Fig. 4.9(c)]. These features stand out in the polar plots of the resistances at θ = ±90◦ as

shown in Fig. 4.10. For sample ♯2, the polar plot has a dumbbell shape with sharp dips. The sharp

dips are evident in the ϕ = 45◦ direction, where the V-shaped MR reversal is observed. For sample

♯5, a similar dumbbell shape is seen. However, for sample ♯7, the polar plot has an almost circular

shape; the resistance is independent of the azimuthal angle ϕ. The absence of the azimuthal angle

dependence of the MR is already reported for a dirty crystal of α-(BEDT-TTF)2KHg(SCN)4.
41
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Figure 4.8: Angular dependences of the resistance at 14.5 T and 1.6 K for α-(BEDT-TTF)2NH4Hg(SCN)4. The

curves are shifted for clarity.

Figure 4.11(a) shows the resistance near θ = −90◦ for sample ♯2. A small peak in the MR

at θ = ±90◦ is ascribed to the coherence peak.35 The peak is evident in the second derivative

curve d2R/dθ2, [Fig. 4.11(b)], where we can define the peak width ∆θpeak = 0.96◦. The coherence

peak arises from the small closed orbits formed on the side of the corrugated Fermi surface and the

geometrical analysis gives the peak width ∆θpeak ≈ 2kF tzc/EF .
35 Using EF = ℏ2k2F /2mc ≈ 26 meV,

we obtain the interlayer transfer integral tz ≈ 0.078 meV. This value will be reasonably consistent
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with the inequality obtained from the analysis of the SdH oscillation, tz ≤ 0.03 meV because rather

large ambiguity is included in these estimations. For κ-(BEDT-TTF)2I3, similar discrepancy between

the two analyses is found; the absence of the node in the quantum oscillations shows tz ≤ 0.016 meV

but the coherence peak width gives tz ≈ 0.061 meV.28
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Figure 4.10: Polar plots of the interlayer resistances for θ = ±90◦ at 1.6 K and 14.5 T in samples (a) ♯2, (b) ♯5,

and (c) ♯7.

Figure 4.11: (a) Close-up of the resistance at 14.5 T, 1.6 K, and ϕ = 110◦ for sample ♯2. A coherence peak is

seen at θ = −90◦ (b) The second derivative curve of the resistance, giving the peak width ∆θpeak = 0.96◦.
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4.2 Discussion

4.2.1 Temperature dependence of resistivity

The temperature dependences of the interlayer resistivity show a broad hump around 120 K. Sim-

ilar humps in the resistivity have been observed for various 2D superconducting materials such as

Sr2RuO4,
101,102 YBa2Cu3O6.87,

103 κ-(BEDT-TTF)2Cu(CN)2]Br,
104 κ-(BEDT-TTF)2Cu(NCS)2,

105 κ-

(BEDT-TTF)2FeBr4,
106 and λ-(BEDT-TTF)2FeCl4.

107 A large number of the theoretical models have

been proposed to explain the anomalous behavior in the interlayer resistivity.102,108,109 Most of the

theories suggest that the coherent band picture is not appropriate for the interlayer transport.

The temperature dependence of the interlayer resistivity has been systematically investigated for

κ-(BEDT-TTF)2Cu(NCS)2 crystals, whose defects are controlled by the irradiation of X-rays or pro-

tons.105 A broad resistivity hump is clearly observed around 100 K for a pure crystal. However,

the resistivity decreases above ∼50 K and then the hump is suppressed for the irradiated (damaged)

crystals. All the crystals have metallic temperature dependence at low temperatures. To explain these

results, Analytis et al. assumed that the total interlayer conductivity is described by a formula,

σ⊥(T,H) = σB⊥(T,H) + σimp
⊥ (T,H), (4.2)

where σB⊥ is the interlayer band conductivity given by the Boltzmann transport,

σB⊥ = (ρ0 + ρimp + ρintrinsic(T ))
−1, ρ0 is residual resistivity, ρimp is the contribution of the defect

scattering to the resistivity, which is almost temperature-independent. ρintrinsic(T ) is the intrinsic

temperature-dependent scattering contribution, which gives metallic conductivity at low temperatures

(ρintrinsic(T ) ∝ T 2). σimp
⊥ is the conductivity by the interlayer impurity channel, which is proportional

to the density of impurities nimp. The second term in Eq.(4.2) slightly decreases with temperature,

so the temperature dependence of the interlayer resistivity ρ⊥ = 1/σ⊥ may have a broad hump. After

the irradiation, both ρimp and σimp
⊥ increase, and the hump is consequently suppressed.

In α-(BEDT-TTF)2NH4Hg(SCN)4, the high TD samples (♯7-♯9) has the smaller resistances than

the low TD samples at the high temperatures and show the smaller humps. The behavior is consistent

with the above model. In the low temperature limit, the total resistivity is given by ρ⊥ = ρ0+ρimp. In

the high temperature limit, the second term in Eq. (4.2) will be dominant, ρ⊥ ≈ 1/σimp
⊥ . Therefore, we

obtain RRR ≈
[
(ρ0 + ρimp)σ

imp
⊥

]−1
, showing that the lower-quality sample has the lower RRR. This

is consistent with the results of κ-(BEDT-TTF)2Cu(NCS)2. However, as shown in Fig. 4.12, we see

that the RRR has a tendency to increase with TD although the data points are rather scattered. This

result seems inconsistent with the above model. For κ-(BEDT-TTF)2Cu(NCS)2, Tc is also reduced by

the irradiation. However, we have not seen significant correlation between Tc and TD for α-(BEDT-

TTF)2NH4Hg(SCN)4. The reasons of the discrepancies between the two salts are not clarified yet.
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Figure 4.12: RRR vs. Dingle temperature plot. Dashed curve is a guide for the eye.

4.2.2 Incoherent interlayer transport

The V-shaped MR reversals at θ ≈ 90◦ have been found for the relatively high TD samples [see Figs.

4.5(d), 4.6, and 4.9(c)]. Figure 4.13(a) and (b) shows the interlayer resistance ∆R = R(θ)−R(θ = 90◦)

as a function of the perpendicular field component H cos θ (= H⊥) above 7 T for samples ♯9 and ♯8,

respectively. We note that the ∆R values are completely scaled by H⊥ in all the angle regions for

sample ♯9. A similar scaling is found in a limited angle region for sample ♯8. As presented in Fig.

4.13(c), ∆R exhibits a power law ∆R ∝ (µ0H⊥)
p. For these samples, we should note that the scaling

is observed in the wide θ region at any ϕ angles; the incoherent behavior is independent of the field

direction in the layer, irrespective of the anisotropic structure of the Fermi surfaces. The results show

that the scattering effect plays a dominant role in the incoherent behavior for the relatively high TD

samples.

The similar scaling behavior has already been observed in the angular dependent MR of the 1D sys-

tems (TMTSF)2X (X = ClO4, PF6) with p =1.2529,31 and a 2D system α-(BEDT-TTF)2KHg(SCN)4

(p is unknown).41 The scaling for the 1D systems has been explained in terms of the confinement of

the electron motion within the layer at the high parallel fields. For (TMTSF)2X, as the parallel field

along the b-axis increases, the amplitude of the sinusoidal motion shrinks in the interlayer direction,

and then the electrons are confined in each layer; the electronic states are decoupled between the adja-

cent layers. Once the electronic states are decoupled by the parallel field, the interlayer MR does not

depend on the parallel field: the MR should depend only on the perpendicular field. The decoupling

field Hdecouple is given by

µ0Hdecouple ≈
4tz
evF c

. (4.3)

This equation gives µ0Hdecouple ≈ 40 T for (TMTSF)2PF6, but the experimental results exhibit

µ0Hdecouple ≈ 0.5 T. As suggested by Strong et al.,31 the interlayer decoupling can happen even for

H ≪ Hdecouple due to electron correlation effect in the layer.
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Since the decoupling is driven by the Lorentz force, the effect strongly depends on the direction

of vF of the electrons; the decoupling effect is maximum (minimum) when the field is perpendicular

(parallel) to vF . This is probably the reason why the decoupling effect has clearly been observed for the

1D systems, where the vF vectors on the whole Fermi surface is almost aligned with the same direction.

This is not the case for 2D systems, where the vF vectors are distributed in all the directions in the

layer. Therefore, the decoupling will depend on the field direction in the layer, reflecting the anisotropy

of the 2D Fermi surface, as observed in the anisotropic 2D system (BEDT-TTF)2Br(DIA).40

For sample ♯2, we can construct the anisotropic cross-section of the 2D Fermi surface from the

periodicity of the AMRO [Fig. 4.8(b)] as shown in Fig. 4.14(b). The results are consistent with the

previous studies.60 The cross-section is slightly elliptical with the long axis in the θ = 40◦ direction,

which well agrees with the band calculation [Fig. 4.14(a)].58

The V-shaped MR background reversal around θ = ±90◦ is observed at the directions indicated

by red arrows in Fig. 4.14(b). These azimuthal angles correspond to the directions parallel to the

flat parts of the 1D and 2D Fermi surfaces as shown by the dashed lines in Fig. 4.14(a). The vF

vectors on these flat parts are almost perpendicular to the field. Therefore, many electrons undergo

the confinement effect by the parallel field in these directions. This is another evidence showing that

the V-shaped MR background reversal around θ = ±90◦ is caused by the confinement effect. We

obtain similar behavior for three different samples with TD ≤ 1.19 K. These results show that the

confinement effect plays a dominant role in the incoherent behavior for the relatively low TD samples.

The coherence peak is observed only at ϕ ≈ 110◦ for sample ♯2. At present, it is not clear why the

coherence peak appears only at ϕ ≈ 110◦.
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Figure 4.13: Interlayer resistance ∆R = R(θ)−R(θ = 90◦) as a function of the perpendicular field component

µ0H cos θ for samples (a)♯9 and (b)♯8. (c) Log-log plots of ∆R vs. µ0H cos θ for samples ♯2, ♯8, and ♯9.

The curves are shifted for clarity. The solid lines denote the power law behavior ∆R ∝ (µ0H⊥)
p. At high

perpendicular fields, ∆R deviates from the power law for samples ♯2 and ♯8, where the crossover field µ0H
CO
∥

is defined as indicated by the arrows.
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Figure 4.14: (a) Calculated Fermi surface of α-(BEDT-TTF)2NH4Hg(SCN)4.
58 Dashed lines denote the flat

parts of the 1D and 2D Fermi surfaces. (b) Cross section of the 2D Fermi surface obtained by the AMRO for

sample ♯2. The MR background reversal is clearly observed at the angles denoted by red arrows.
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4.2.3 Crossover

The experimental results are summarized in Fig. 4.15. We have obtained the two important results

on the incoherent behavior (the V-shaped MR background reversal). 1) When TD is relatively high

(τ is relatively short), the interlayer transport is incoherent irrespective of the field direction. For

sample ♯9, the MR background reversal is observed at fields down to 3 T [Fig. 4.6(b)], where the

scaling ∆R ∝ (µ0H⊥)
p behavior is evident even at θ = 0◦ (µ0H∥ = 0 T). This fact clearly shows that

the confinement effect by the parallel field is not required for the incoherent transport. Therefore,

we can conclude that the scattering effect plays a dominant role in the incoherent behavior for the

relatively high TD samples. 2) When TD is relatively low (τ is relatively long), the V-shaped MR

background reversal becomes evident at ϕ ≈ 45◦ and 135◦, where the vF vectors of the most electrons

are perpendicular to the field (Fig. 4.8). The results apparently show that the confinement effect by

the parallel field is required for the incoherent transport.

Figure 4.15: Summary of the experimental results.

Here, we can see the crossover from the weakly coherent to incoherent interlayer transport, charac-

terized by the crossover parallel field HCO
∥ . For the relatively high TD samples, HCO

∥ should be quite

low since the incoherent behavior is observed even forθ = 0◦ (µ0H
CO
∥ ≈ 0 T). For the relatively low

TD samples, the incoherent behavior depends on the field strength and azimuthal angle ϕ as well. For

simplicity, we define HCO
∥ at ϕ ≈ 45◦, where the incoherent behavior is the most evident. For instance,

∆R for sample ♯2 follows the power law ∆R ∝ (µ0H⊥)
p up to θ = 80.4◦, but deviates from the law

above it at 14.5 T [Fig. 4.13(c)]. Therefore, the crossover filed is estimated as µ0H
CO
∥ = 14.5 cos(80.4◦)

= 14.3 T. Similarly, we can define HCO
∥ for samples ♯1-♯6 (TD ≤ 1.73 K), which is plotted as a function

of TD as shown in Fig. 4.16. In the low HCO
∥ region, the interlayer transport is in the coherent regime.

In Fig. 4.16, we note HCO
∥ ≈ 14 T, independent of TD in the low TD region. When TD is

sufficiently low, it is reasonable that the confinement condition is determined only by the parameters

of the electronic structure tz and vF in Eq. (4.3). Using tz ≈ 0.078 meV and vF = 6.3 × 106 cm/s
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from vF = kFℏ/mc, we obtain µ0Hdecouple ≈ 2.4 T. This value reasonably agrees with µ0H
CO
∥ ≈ 14 T

since µ0Hdecouple gives the lower limit of the crossover. We could expect that HCO
∥ is constant even

in the limit of TD → 0 K. On the other hand, as TD increases above ∼1.2 K, HCO
∥ decreases almost

linearly. If TD further increases, we expect that HCO
∥ decreases down to zero. Actually, for sample ♯9,

we see the MR background reversal is observed in the whole angle region, suggesting µ0H
CO
∥ ≈ 0 T.

The above results will be interpreted according to the two-conducting-channel model given by

Eq. (4.2). The model was first applied to the incoherent behavior in high fields for α-(BEDT-

TTF)2KHg(SCN)4 by Kartsovnik et al.110 In this model, it is assumed that the band (coherent)

conductivity term σB⊥ gives the conventional AMRO but the impurity-channel term σimp
⊥ shows the MR

background reversal, following the power law. For α-(BEDT-TTF)2NH4Hg(SCN)4, the conductivity

should be dominated by the band conductivity term σB⊥ in the low TD limit since the conventional MR

behavior is observed as shown in Fig. 4.5(a). In this case, the incoherent behavior will be induced by

the confinement effect, whose crossover field µ0H
CO
∥ is determined by tz and vF in Eq. (4.3). As long

as the σB⊥ term is dominant, HCO
∥ will be independent of TD, which is consistent with the result for

TD < 1.2 K (Fig. 4.16). In the high TD limit, the conductivity will be dominated by the impurity-

channel term σimp
⊥ . Therefore, we will observe the power law behavior, the MR reversal background

as shown in Fig. 4.6(b). In this limit, we will obtain µ0H
CO
∥ ≈ 0 T.

108



Based on the above model, we simulated the angular dependence of the interlayer resistance ρ⊥

as shown in Fig. 4.17. The σB⊥ is calculated with the same parameters shown in Fig. 4.7(a), and

σ0zz = 1 and σimp
⊥ = [ρ1 + ρ2(µ0H⊥)

p]−1, where ρ1 = 0.2, ρ2 = 0.4, and p = 1.25. For comparison,

the 1/σB⊥ and 1/σimp
⊥ terms at 15 T are indicated by the dotted and dashed curves, respectively. We

note that the overall behavior of the total resistance 1/(σB⊥ + σimp
⊥ ) is quite similar to the data in Fig.

4.5(d). In this simulation, the σimp
⊥ term is dominant around θ = 90◦. Therefore, the V-shaped MR

behavior is evident for 38◦ ≤ θ ≤ 142◦. The crossover field µ0H
CO
∥ will be defined at θ ≈ 38◦ and 142◦.

As the field is further tilted, the σB⊥ contribution becomes dominant so we observe the conventional

AMRO around θ = 0◦ and 180◦. If the TD of the sample is lower (σB⊥ contribution is larger), we

will see the V-shaped MR behavior in a narrower angle region; the crossover field will increase. In

this way, the increase of µ0H
CO
∥ with decreasing TD in Fig. 4.16 is qualitatively interpreted by the

two-conducting-channel model.

Figure 4.17: Angular dependence of simulated total interlayer resistance ρ⊥ = 1/(σB
⊥ + σimp

⊥ ). The 1/σB
⊥ and

1/σimp
⊥ terms at 15 T are indicated by the dotted and dashed curves, respectively. In this simulation, we take

kF = 1.35 nm−1 and τ = 3 ps for σB
⊥, and ρ1 = 0.2, ρ2 = 0.4, and p = 1.25 for σimp

⊥ . See the text in detail.
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Chapter 5

Conclusions

(1) Conductivity and magnetism in π-d organic conductors κ-(BDH-TTP)2FeX4 (X =

Br, Cl)

The physical properties of the 2D π-d systems κ-(BDH-TTP)2FeX4 (X = Br, Cl) have been

measured to investigate the electronic state. Both salts exhibit metallic conductivity down to 30

mK.

For the FeBr4 salt, the localized Fe 3d spins with S = 5/2 have the AF transition at 3.9 K with

the magnetic easy axis along the a-axis while the π electrons show metallic conductivity down to 30

mK. The canted AF spin structure is proposed, causing the WF transitions for H ∥ b and H ∥ c.

The dominant mechanisms of the spin canting are the spin frustration and anisotropic crystal field

effects. The ESR signal is observed in the wide temperature range down to 20 K. Above 120 K, the

ESR lineshape is Lorentzian, showing the strong exchange narrowing. Below 50 K, ESR linewidth

shows the critical phenomenon toward the AF order, which is associated with the deviation of the

magnetic susceptibility from the Curie-Weiss behavior. The angular dependence of the ESR linewidth

at low temperatures suggests that the critical broadening of the linewidth is significantly enhanced

by the spin fluctuation in addition to the effect of the low dimensionality. From the anisotropy of the

susceptibility above TN, the CF parameters (D = −0.38 K, E = 0.038 K) are estimated. The evidence

of the strong π-d interaction is obtained by the magnetoresistance measurements, where the magnetic

potential created by the 3d spins plays an essential role.

For the FeCl4 salt, the magnetic susceptibility, arising mainly from the localized 3d spins of the

Fe ions, obeys the Curie Weiss law down to 2 K with a small Weiss temperature of ∼-0.2 K. The

magnetic torque measurements demonstrate that the 3d spins (S = 5/2) show the AF order at ∼0.4

K, with the easy axis parallel to the a-axis, and that the metamagnetic transition takes place at ∼0.15

T for H ∥ a. A simple two-spin sublattices model is found to well reproduce the essential features

of the torque data in the AF states. The metamagnetic transition is associated with a sharp drop

of the interlayer resistance at low temperatures. Such behavior is explained in terms of the simple

model of the quantum tunneling between the layers, and provides strong evidence of the finite π-d

interaction for the FeCl4 salt. χT and the g-value have characteristic temperature dependences below

50 K. The χT behavior is well explained by the single-ion anisotropy model, and the numerical fitting

gives the anisotropy parameters D = −0.1 K and E = +0.042 K. The linear correlation between χT

and g2 suggests that the temperature dependences of both χT and the g-value have the same origin.

The ESR signal has the Lorentzian lineshape, showing the exchange narrowing. The ESR linewidth
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is simulated by the simple model including both the crystal field and dipole interaction effects with

the exchange interaction J ≈ 0.2 K. This J value is high compared with Jd ≈ 0.07 K obtained from

the relation kBT
exp
N ≈ (2/3)|Jd|S(S + 1) for TN = 0.4 K.

(2) Incoherent interlayer charge transport in α-(BEDT-TTF)2NH4Hg(SCN)4

The interlayer transport of an organic superconductor α-(BEDT-TTF)2NH4Hg(SCN)4 has been

investigated for many samples with various qualities. For the samples with TD < 1.2 K, the incoherent

interlayer transport, the MR background reversal, is found to be induced by the confinement effect

due to the parallel field. The crossover field µ0H
CO
∥ from the weakly coherent to incoherent interlayer

transport is estimated as about 14 T. The µ0H
CO
∥ value, which is independent of TD, is determined

by the band parameters, tz and vF . For the higher TD samples, µ0H
CO
∥ decreases with increasing

TD. These results are interpreted on the assumption of two conducting channels, the band coherent

and impurity-assisted incoherent channels in the interlayer transport. The band coherent channel σB⊥

gives the conventional MR behavior, but the electrons undergo the confinement effect by the parallel

field. The impurity-assisted incoherent channel gives the V-shaped MR, characterized by the power

law behavior ∆R ∝ (µ0H⊥)
p. When TD > 1.2 K (the impurity concentration is sufficiently large),

the σimp
⊥ term becomes relatively large especially in the field parallel to the layer, which leads to the

V-shaped MR. In the high TD limit, the σimp
⊥ term is dominant; the power law MR is observed in the

whole angle and field region.
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