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Abstract

Lead-based ferroelectric materials with the perovskite structure are widely used as
electromechanical devices. However, the physical nature of these materials is still not
understood completely. Especially, the microscopic origin of the ferroelectric phase transition
in these materials has not yet revealed clearly. To understand the phase transition mechanism
at the Curie temperature (T.) and its related lattice dynamics, it is useful to apply inelastic
light scattering techniques. Since the optical and acoustical modes are very sensitive to phase
transitions and low frequency relaxation phenomena can be directly observed by this method
under various conditions, it provides us with the information on the interatomic forces,
internal and external vibrations, and relaxation dynamics associated with the ferroelectric
phase transitions.

Relaxors are chemically- and structurally-disordered materials, and their relaxation
processes exhibit a slowing down behavior. They are characterized by a diffuse phase
transition extending in a wide temperature range without any macroscopic structural phase
transition. They do not show any ferroelectric long-range order below the dielectric maximum
temperature. During the last half century, many researchers have tried explain the diffuse
phase transition behavior of the relaxor ferroelectrics by using various experimental and
theoretical methods. Presently, it is widely accepted that relaxor properties are generally
governed by the dynamics of polar nano-regions (PNRs).

This thesis is devoted to the study of inelastic light-scattering properties of the lead-based
binary and ternary ferroelectric single crystals under an external electric field and domain
engineering processes. In order to explain the phase transition behaviors, we investigated the
characteristic temperatures associated with the evolution of the PNRs by investigating the
temperature dependence of their relaxation time.

First, we investigated the phase transition behaviors of unpoled Pb(Ini2Nbi:2)Os—
Pb(Mg1/3Nbs/3)Os—PbTiOs (PIN-PMN-PT) single crystals by using Brillouin and dielectric
spectroscopies in a wide temperature range. For obtaining the characteristic temperatures of
PNRs, we investigated the temperature dependences of the dielectric constant and the
Brillouin spectra, the former having been analyzed based on the curve fitting procedure by
using the Vogel-Fulcher law and the extended Curie-Weiss law.

Second, we compared the phase transition behaviors of unpoled, [001]c-and [011]c-poled single
crystals. By using different poling directions a single or peculiar multi-domain structures may
be realized according to the domain engineering process. Physical properties such as the sound
velocity in a GHz range and low-frequency dielectric properties were investigated having



focused on the complex phase transition behaviors in a frequency range between a few Hz and
a few hundreds of GHz.

Third, we investigated local structure by using angular dependence of Raman scattering. By
using Raman tensor analysis, we compare the observed results with the calculated results.
After then we analyze the temperature dependence of polarized and depolarize Raman spectra.
Lastly, we connect the CPs of Brillouin and Raman scattering spectra to study the broadband
spectra. From these analyses, we obtain two-type different relaxation behaviors.

In this thesis, chaps. 1 and 2 deal with the importance of dynamic properties related to a
phase transition. In chap. 3, we describe the experimental conditions about dielectric,
Brillouin, and Raman spectroscopies. In chaps. 4~6 describe sequentially the results and
discussions about the experimental results of PIN-PMN-PT. Finally, the brief conclusion of the
present results is presented.
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Chapter 1. Introduction

1. 1 Ferroelectricty

Ferroelectricity is a phenomenon that was discovered in single crystals of Rochelle salt [1.1].
Ferroelectrics have a spontaneous electric polarization P, that can be reversed by the
application of an external electric field as shown in Fig. 1. 1 [1.2].
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Ps=spontaneous polarization
Pr=remnant polarization

Ec=coercive field

Fig. 1. 1. A typical Ferroelectrics P-F hysteresis loop.

One distinctive characteristic of Ferroelectrics is the hysteresis loop in the polarization vs.
electric field curve. A net spontaneous polarization exists even at zero electric field and the
loop disappears at the Curie temperature T,, where the material undergoes a phase transition
from low temperature ferroelectric to high temperature paraelectric states. In a paraelectric
phase, the dielectric constant obeys Curie-Weiss law;

C

= m, for T>Tc (1 1)

€



where C and T, are the Curie-Weiss constant and Curie-Weiss temperature, respectively.

In ferroelectric materials, four kinds of groups are well known on the basis of the unit cell
structure: the tungsten-bronze group, the oxygen octahedral (ABOs, Perovskite) group, the
pyrochlore group and the bismuth layer-structure group [1.2-4]. Above all, the ABOs
perovskites have attracted much attention due to various factors.

1. 2 Ferroelectric phase transition

A thermodynamic, or phenomenological, theory that is used extensively to describe a phase
transition is the Landau free energy theory [1.2,4-6]. It is based on the polynomial
thermodynamics potential expressed in terms of deviation from the prototype paraelectric
state (P, = 0). Again, an order parameter (P) measures the extent of the departure of the
atomic (or electronic) configuration in the low symmetric phase (low temperature) from that
high symmetric (high temperature) phase.

Following a basic Landau-Devonshire theory [1.7,8], one assume
G(P,T) = —EP + Go + 7 aP? + - fP* + ZyPC + - (1.2
where the coefficients @, £, y are the 2rd | 4th "and 6th dielectric stiffnesses.

For the second-order phase transition f >0, y = 0. For the first-order phase transition
B <0, y > 0. The conditions for the stability of the system are

a6 96
5—0 and ﬁ>0, (1.3)

which gives one minimum above T, while, two minima below T, in the potential.

1. 2. 1 Second-order phase transition

Case B > 0. Since G is minimum for ¢ >0 when T >T,, and for « <0 when T < T, the
sign of @ must change at T.. In the first approximation a=ay(T — T;) with a constant a, > 0,
and the expansion of G'is given by

G(T,P):Gﬁ@PMéP‘* . (1. 4)

We now find the polarization without an external electric field (£=0) form



Z—izE:aP+ﬁP3+yp5 —0 15

and from the first approximation condition, it holds that

aog(Tc—T)

; for 7<T¢. (1.6)

P, =0 for T>Tc, P? =

The static dielectric susceptibility € is calculated from the equilibrium polarization. At
constant temperature, differentiating Pwith respect to %

opP 1
o = (T —T¢c) +3BP% ==, (1.7

& 1s obtained as

e = 1
ao(T-Tc)

for T > T, (1. 8a)

1

Szm for T<TC (188)

respectively. Eq. 1. 8a is same as the Curie-Weiss law. The second-order phase is well
described as |P;| goes continuously to zero at T, as Fig. 1. 2(b).
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Fig. 1. 2. P, of a ferroelectric with a (a) first-order phase transition and (b) second-order phase
transition.

1. 2. 2 First-order phase transition

Case y >0 and B < 0. Similarly to the pervious case, the stable states are given by

—B+(B2—4aoy(T—Tp)) "

P, =0 for T > Tg, P?= 2

,for T < T, (1.9




T, is called the Curie-Weiss temperature and is not same to T.. The obtained temperature
dependence of P, is shown in Fig. 1. 2(a). Contrary to the second-order phase transition, P;
disappear suddenly at T.. In first-order phase transition, & is obtained

1

€=ty for T > T, (1. 10a)

e = 1
T 4(To-T)

for T < T, (1. 10a)

as shown in Fig. 1. 3.
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Fig. 1. 3. The Curie-Weiss law of (a) first-order and (b) second-order phase transitions.

1. 3 Displacive and order-disorder type phase transitions

In 1959 Cochran [1.9] showed that in weakly anharmonic systems, ferroelectric phase
transitions are the result of instability of the lattice against a soft polar phonon at the centre
of the Brillouin zone. Later, it is modified in terms of anharmonic lattice dynamics [1.10] and
coupled order parameters.

For a second-order transition, we can write n (order parameter) as
N =no(To — T)*/? (1.11)
assuming that 7, is temperature independent.

The connection between a phonon frequency w and the corresponding order parameter n
follows from the equation of motion of a simple one-dimensional harmonic oscillator.



This write as

(1.12)

where F is the oscillator potential and n corresponds to a small amplitude displacement.

Eg.1. 12 writes again as

(1.18)
then

® = wo(T — Ty)/? (1.14)
The temperature dependences of the order parameter and the soft-mode frequency given by

Eqgs. 1. 11 and 1. 14 imply that the particles move in mean field corresponding to the long
range forces.

Expanding the free energy density G in a power series of P (from Eq. 1.2), we get
dpP _ 3 5
22 = —I[ao(T = To)P + BP3 +yP].

(1. 15)
where T is a kinetic constant, expressing Pas 6P + Py, and linearizing , we find
LD = —Iag(T — To)P + 3BP,? + 5yPy*]6P, (1. 16)

The solution of this equation is
8P(t) = 8P(0) exp(—2), (1.17)

where the polarization time t is given by a product of the isothermal dielectric susceptibility

xr = [ao(T = To)P + 3BPy* + 5yPy*] ™! (1.18)
and the inverse Landau kinetic coefficient;

T=yr/T. (1.19

Because inverse yr is proportional to |T — T;| for a second order transition, the polarization
relaxation time diverges at Tg,

T-> o as |T—-Tg|™L (1. 20)

This critical slowing down from the vanishing of the thermodynamic restoring force at Tg.



1. 4 Relaxor Ferroelectrics

Relaxor ferroelectrics (RFEs) (relaxors) are a special type of ferroelectrics which have been
extensively investigated over the past 50 years with the aim of tailoring their physical
properties. At the beginning relaxors have also been called dirty ferroelectrics as they exhibit
a diffuse frequency-dependent phase transition over a temperature range. The broad and
frequency dispersive behavior of the dielectric permittivity at T,, distinguishes relaxors from
normal ferroelectrics (see Fig. 1. 4). Relaxors can be separated into two groups: (i) such that
develop long-range ferroelectric order at T, (Fig. 1. 4(b)), and (ii) canonical relaxors (Fig. 1.
4(c)) which do not show a macroscopic phase transition, therefore remain isotropic, ze., the
polar-nano regions (PNR) or domains freeze at Tr = Typ resulting in a change of the

translational symmetry.

(@

/

T‘ 7—'m(-f) T

f d

Fig. 1. 5. Behavior of the dielectric permittivity &€ with respect to the different characteristic
temperatures Tg, Tp, T,, and T;: in normal ferroelectrics (a), relaxors with a phase

transition to ferroelectric (b), and canonical relaxors (c) [1.11].

In relaxor ferroelectrics, there are locally ordered nanoscale regions called chemically ordered
regions (CORs) where 1:1 type B-site ordering is observed. CORs are known to be static, stable
and independent of temperature. Another feature of relaxors is a PNR in which a local
spontaneous polarization exists and its direction is flipping randomly by thermal fluctuations.
Depending on the temperature evolution of PNRs, several characteristic temperatures can be
defined and discussed. On cooling from very high temperature, RFEs show the deviation of the
refractive index from the high temperature linear temperature dependence below the Burns
temperature Tg[1.12], which is usually a few hundred degrees above the dielectric maximum
temperature (T,,,) or a Curie temperature (T.). The dynamic PNRs appear at Tz and a normal
dielectric state changes into an ergodic relaxor state. Recently strong acoustic emission signals
were observed in Pb-based relaxors at an intermediate temperature 7* located between Ty
and T,,. It was suggested that the onset of rapid growth in the size of PNRs and the local
phase transformation in them may generate acoustic bursts at 7% [1.13]. The temperature

6



variation of characteristic relaxation times, usually estimated from dielectric dispersion, can
be described by the Vogel-Fulcher law [1.14], and dynamic PNRs freeze into static PNRs at
Tyr = Ty. These characteristic temperatures related to the temperature evolution of PNRs are

summarized in Fig. 1. 6 [1.15-16].

Start of a dynamic
Maximum of to static transition

Freezing dielectricconstant  of PNRs Appearance of
of PNRs PNRs
Low l, l \ High

temperature temperature

PNR ®
~cor | B e

D
@@
e

Fig. 1. 6. Temperature evolution of PNRs and characteristic temperature.

1. 5 Local symmetry of Relaxor Ferroelectrics

Pb(B'y3B";/3)05 such as PbZnisNbzs0s (PZN) and PbMgisNbzsOs (PMN) has a perovskite
structure with (on average) a cubic P,,3,, symmetry, with B'2* and B'’>* ions interchanging on
B sites. Measurements of the dielectric constant show that the crystal does not undergo a
sharp transition to a ferroelectric phase. Instead, the dielectric constant exhibits a broad
maximum. Below Ty, it deviates from Curie-Weiss law and exhibits strong frequency
dispersion. The structure of Pb(B';;3B";;3)03 is not homogeneous. If B’ and B” occupation
ratio was uniformly and ideally equal (1:2) throughout the crystal, it would have a
rhombohedral symmetry (£3m). But, a network of superstructure clusters with face-centered
cubic symmetry (F,,3,,) destroys the picture. The size of these clusters is of the order of 2~3
nm in PMN [1.17]. The most widely accepted hypothesis, so-called “space charge model,”

7



associates the F,,3, clusters with antiferroelectrically ordered regions [1.18] where the
Mg:Nb occupation ratio is equal to 1:1, ie., with local composition PMN [1.19]. Such 1:1
clusters carry an excessive negative charge, which is compensated by the positively charged
host matrix. The network of such charges acts as a source of random fields. From diffuse
neutron scattering in PMN [1.20], the polarzation inside a PNR has been reported to align
along the eight equivalent [111]c.

Table 1. I. Symmetry and size of average structure and local structures

Origin symmetry size
Average structure Pram
PNRs R3m 7~20 nm(below Tp)
COR Fram below 5 nm

1. 6 Review of various models of relaxor ferroelectrics

1. 6. 1 Dipolar glass model

The nonequilibrium dipolar glassy state of relaxors is characterized by two temperatures,
Ty, Burns temperature (or dipole temperature and Tf), freezing temperature. The relaxors
exhibits glassy behavior between these two characterization temperatures. However, these
two characterization temperatures are different from follow evidence. It is interesting to put
them together, although they are proposed independently. Burns and Dacol [1.12] made
comprehensive study on materials with both complex perovskite structure and tungsten
bronze structure by accurate measurement of optical refractive index, thermal expansion, and
Raman scattering. They found that up to hundreds degrees above T,,, where the index
deviates from a high temperature linear behavior, a local random polarization (or glassy
dipolar) still exist in the relaxor system. In the temperature range from T,, to Ty, the average

polarization P is zero, but the v P2? is not zero. Burns and Dacol reported the idea of
composition fluctuations is transformed.

The dipolar glass model was extended by Viehland et al [1.14] as superparaelectric model
to account for polar cluster interaction in analogy to magnetic spin glass. By fitting the
frequency and temperature dependent dielectric constants with Vogel-Fulcher relation

E

m] (1. 21),

f = foexp[—



where T; is the freezing temperature, £ the activation energy, f, the Debye frequency. The
extrapolated values of freezing temperature usually are very close to temperature of the
collapse in the remnant polarization. The fundamental difference between glassy dipole
freezing and thermal localization process in superparaelectrics is that freezing is a cooperative
performance, while the thermal localization is an independent behavior. This cooperative
performance is believed to be an indication of interactions between polar regions.

These models successfully explained the polar dynamics and their extreme slowing down at
the diffuse phase transition. However, they are not capable of describing the ferroelectric
symmetry breakdown on a nanometric scale [1.21]. The Vogel-Fuclcher relation is not the only
one that can describe the frequency and temperature dependence dielectric constants. A
superexponential function proposed [1.22] also can fit well with experiment results in the
range of its physical significance, though the physical origin is unclear.

1. 6. 2 Random field model

A spherical cluster glass model or spherical random-bond-random-field (SRBRF) model
involving both random bonds and quenched random fields has been recently proposed [1.23].
In this model, relaxor ferroelectric is regarded as an intermediate state between dipole glasses
and normal ferroelectrics. In contrast to dipolar glasses, where elementary dipolar moments
exist on the atomic scale, the relaxor state is characterized by the presence of nanoscale polar
cluster of variable sizes. This picture constitutes the basis of the superparaelectric model [1.24]
and of the more recent reorientable polar cluster model of relaxor [1.25]. The long range
frustrated intercluster interaction of a spin-glass type is also taken into account into this
picture. The system can be described by the pseudospin Hamiltonian:

H=—%;iJijPiP; — X hiP;. (1. 22)

Here the first sum is the interaction between the dipole moments (pseudospin) P at lattice
site 7 and j that are coupled by interaction constants J;; with Gaussian distribution. The
second sum denotes the interaction of the dipole moments P; (pseudospin) with quenched
random field h;, where ¥ h; = 0, but ¥ h;? # 0. The electric dipoles random distributed in the
system were treated as the main souses of random fields.

This model is capable of elucidating the static behavior of relaxors, such as the line shape of
quadrapole nuclear magnetic resonance (NMR) in PMN [1.23]. This model has been extended
to describe the dynamic of relaxor ferroelectrics by introducing Langevin-type equation of
motion [1.26]



1. 7 Domain engineering

A domain-engineered crystal is one which has been poled by the application of a sufficiently
high field along one of the possible polar axes of the crystal other than the zero field polar axis,
creating a set of domains in which the polarizations are oriented such that their angles to the
poling direction are minimized [1.27]. Therefore, in a perovskite material, there are three
possible sets of poling directions [111]e, [101]c, and [001]c (if monoclinic phases are ignored).
These directions correspond, respectively, to the polar axes of rhombohedral (%, point group
3m), orthorhombic (O, mm2) and tetragonal (7, 4mm) crystal phases. According to the
definition, this results in six possible domain-engineered structures, formed by cutting and
poling a perovskite crystal along certain directions; these are listed in Table 1. II. Also given
are the three possible monodomain structures 1/, 1C, and 17 formed by poling a perovskite
crystal along its polar axis.

Table 1. II. Engineered and monodomain states in perovskite single crystals [1.28].

Polar directions

Polar Poling for the resultant Do.m ain®

Crystal . . } i . Engineered

direction direction set of equivalent tructure
domainvariants structu
[111]c [111]c 1R
Rhombohedral [111]c [101]c [1-11]c,[111]c 2R
[001]c [111]c,[11-1]c,[1-11]c,[1-1-1]c 4R
[111]c [101]c,[011]c,[110]c 30
. [101]c [101]c 10
Orhorhombic [101)e [001]c [101]c,[011]c,[-101]¢,[0-11]c 40
[111]c [001]¢,[010]c,[100]c 3T
Tetragonal [001]c [101]c [001]c,[100]c 2T
[001]c [001]c 1T
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Chapter 2. Inelastic Light Scattering Spectroscopy

2. 1 Light scattering

Light is scattered by fluctuations in the dielectric tensor in a material. Fluctuations of
certain physical quantities are coupled to the fluctuations in the dielectric tensor. Near a
phase transition point, the fluctuations of some of these quantities are enhanced. Most of all,
inelastic light scattering is one of the powerful tools for the study of both the dynamic
properties and phenomena of a phase transition [2.1-5].

The inelastic scattering of light by long wavelength acoustic phonons gives rise to the
Brillouin spectra, whereas the scattering by optical phonons results in Raman spectra. A
large number of ferroelectric soft modes, which become unstable at Brillouin zone center, have
been studied by observing these inelastic components in the light scattering [2.2]. In addition,
the peak in the center of the spectrum is the contribution of incident photons that have been
elastically or quasi-elastically scatted with no change in frequency. These are called Rayleigh
scattering or central peak. Fig. 2. 1 gives the frequency spectrum of scattered light in the
three distinct frequency region [2.1].

Rayleigh scattering
or quasi-elastic scattering
G atokey ~--m~==- - anti-Stokes ----- >
Raman
ﬂ Raman
Brillouin Brillouin

/| |
Fr<equency shiﬁl 0 l\/ g

GHz range

D R e e R =

THz rangg

Fig. 2. 1. Schematic light scattering spectra
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The classical theory of light scattering in dense media developed by Einstein [2.6] and
Smoluchowski considers the sample as divided into small volume elements large enough to
contain many molecules, but of linear dimension small compared to the wavelength of light.
An incident light wave induces a dipole moment in each volume element, which becomes the
source of scattered radiation [2.7]. Provided that the induced polarization is constant through
the medium, the scattered radiation in all directions but the forward will be zero due to
destructive interference, because the wavelets scattered from each sub-region differ only by a
phase factor that depends on the relative position of the small volumes. Therefore, neglecting
small surface effects, it is possible to pair each small volume with another small one whose
scatted field is identical in amplitude, while opposite in phase, this they cancel out [2.8].

However, in real media, especially relaxor, there will be always small random fluctuations in
the local dielectric constant due to the thermal motion of the atoms and molecules in the
sample. Because these fluctuations should be uncorrelated from one volume element to the
next, these regions are optically different. That means that now light is also scattered in other
directions than forward due to only partial interference.

The local dielectric constant at a point at position r and time t, €(r,t), is generally described
by the dielectric constant fluctuation tensor 8e(r,t). It describes the relation between the local
and the average dielectric constant €y;

e(r,t) = ol + 8¢(r, t), 2.1
where Iis the (initial) dielectric constant second-rank tensor [2.9].

When the incident light is a plane wave with field amplitude E,, angular frequency w;, and
incident propagation vector k;, the incident electric field can be written as

Ei(r, t) = niEOeXpi(kl- 'r— a)it) (2 2)
with m; being the unit vector in the direction of the incident field.

At Large distance R from the scattering volume, the scattered electric field E;(r,t) can be
obtained from the fact that the Maxwell equations must hold for the total electric field, the
incident electric field and as well for the scattered electric field, where the total field is just the
sum of the two others;

E=E; +E,. 2.3

In the end it follows for the component of the scattered electric field E;(R,t) that

Es(R,t) =

E .
;’60 expik,R [, d*r
X expi(q T — w;t[ng - [ks % (kg x (e(r,t) - n)]], 2. 4)

where ng is the polarization, k, is the propagation vector, w; is the frequency of the
scattered plane wave field that reaches the detector, and Vindicates that the integral is over
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the whole scattering volume. The scattering wave vector g is defined as the difference between
incident and scattered propagation vector,

q= k;— k.. 2. 5)

The angle between k; and k is called the scattering angle 6 as Fig. 2. 2.

detector

analyzer

>

polarizer

Fig. 2. 2. Light of polarization n; and wave vector k; is scattered in all directions. Only
scattered light of wave vector kg, and polarization ng arrives at the detector.

Fig. 2. 2 makes clear that the magnitude of the scattering wave vector g can be computed as
q? = |q|?> = k? + k? — 2k; - k. 2.6)

When the scattering is quasi-elastic, the cosine rule becomes applicable and Eq. 2. 6 becomes
q% = k? + k% — 2k; - k; = 2k?(1 — cos 0) = 4k?sin’ S, @.7)

Or, with kg = k; = 2nn/A, where the length of the incident wave vector is written as function
of the refractive index n and the incident wave length 2;

8 dm 6
q—2ki51n5— S sin> 2.8)

This is the Bragg condition.
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Using the spatial Fourier transform of the dielectric fluctuation
8e(q,t) = [, d3rexpiq - rée(r,t), (2.9
Eq. 2. 4 can be rewritten as

Es(R,t) =

expl(k R — w;t)[ ng - [kg x (ks % (8e(r, t) - my)]]. (2.10)

This can be simplified [2.8];

EsRt) = SEO r e expi(koR — w;t)8e(q,0), (2.11)
where
Seis(q,t) = ng-be(q,t) - n; (2.12)

is the component of the dielectric constant fluctuation tensor along the initial and final
polarization direction.

The time-correlated function of E; can then be written as

< EX(R,0)E,(R,t) >= 1:S 'f};z' > < 8€is(4,0) > exp(~iwit). (2.13)
Then, the spectral density
Ip(w) = - [ dr < E*(DE(t + 1) > exp(—iaw;T) (2.14)

of light reaching the detector with ng, kg, and ws can be computed as

IN'%
I,(q, wg, R) = (mosz )Zn [ dt < Sei5(q,0)8ei5(q,t) > exp(int)  (2.15)

with I, = |E,|?> and
w = w; — w;. (2.16)

The latter means that the spectral density (the intensity measured by the detector) depends
only on the difference between the incident and the scattered frequency. Furthermore, from Eq.
2. 15 one can learn that [ ox k¥ and I, xR2. The A™* dependence means that
electromagnetic radiation with apparent in the blue color of the sky. The R™? dependence is
expected, because it just expresses the attenuation of spherical wave.

For a given experiment, the coefficient in Eq. 2. 15 becomes a constant, and the scattering
intensity is then only affected by the spectral density of the dielectric constant fluctuations,

Iis(q, @) « [ dt < 8ef,(q, 0)8ei5(q, t) >. (2.17)

The integral of Eq. 2. 17 over frequency, the integrated intensity at all frequencies, provides
16



information about the g-dependent mean-square fluctuation €;
Iis(q) =< |6e5 (@)1 >. (2.18)

A light scattering event is produced by the creation or annihilation of a phonon as indicated
in Fig. 2. 3.

Phonon creation Phonon annihilation
(Stokes event) (anti-Stokes event)

q, Wq

Fig. 2. 3. Diagrams for the first order photon-phonon scattering.

Conservation of energy and momentum between the photons and phonons yields for Stokes
event;

hwg = hwy — hwyg,
ki=k,—q. (2.19)
For anti-Stokes event
hwg = hwy + hwyg,
ks = ko +q. (2.20)
The spectral power density of the scattered light is obtained from Eq. 2.15 by
lis(q, ws)  |8€5(q, w)|? o [n(w) + 1]Imy;5(q, w), (2.21)

where the second identity is the fluctuation-dissipation theorem, y;; is the dielectric
susceptibility, n(w) is the Bose-Einstein thermal factor at frequency w and is given by

1

exp(z—;)) -1

We note that the spectral intensity is proportional to the imaginary part of the dielectric

n(w) = (2.22)

susceptibility. It is very useful when analyze a spectrum.
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2. 2 Raman scattering

Raman spectroscopy is now finding a very wide-ranging application in pure and applied
sciences. Actually, Raman scattering is a fundamental form of molecular spectroscopy. Thus it
is generally used to obtain information about the structure and properties of molecules from
their vibrational transitions [2.10]. When applied in solid state physics, Raman spectroscopy is
used to characterize materials, measure temperature, and find the crystallographic
orientation of a sample. The measurement of the Raman spectra of a crystal is one of the main
methods for obtaining information about its lattice vibration frequencies [2.11].

2. 2. 1 Origin of Raman scattering

Raman scattering is the inelastic scattering of a photon by molecular or crystal lattice
vibrations, with either gain or loss in the incident photon energy and accordingly equal loss or
gain in the scattering photon energy. The energy difference between the incident photon and
the Raman scattered photon is equal to the energy level of a vibration of the scattering
molecule. Note that the photon as a whole is never absorbed in Raman scattering, but rather
perturbs the molecule and induce it to undergo a vibrational or rotational transition. Thus the
Raman scattering doesn’t involve the actual attainment of an excited intermediate level, but a
virtual level, just like what Fig.2.3 shows. In practice, as a vibrational frequency has a value
of the order of 102 Hz. The resulting quantity is then a wavenumber in units of wave number
cml,

k(cm ™) =2 (2.23)

C’
where v and c indicate frequency shift (Hz) and the speed of light, respectively.

From the elementary classical theory derived by Ferraro et al [2.10], we can know more clear
about the origin of a Raman spectrum. Considering a diatomic molecule is irradiated by a
monochromatic light wave with an electric component which is described as;

E = Ejcos 2mvyt (2.24)
here E, is the intensity amplitude of the electric component and v, is the wave frequency.

The effect of the electric field on a molecule is to polarize the electron distribution. Thus, a
dipole moment is induced in the molecule. If the electric field is not too strong, the induced
dipole moment M, is given by:

My = aF = aE, cos 2mvyt (2.25)
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where o is a proportionality constant and is called polarizability.

Assuming the binding effect of the electronic charge distribution of the diatomic molecule is
approximated by a spring between its points like nuclei. Accordingly, the nuclei are space- and
rotation-fixed about their equilibrium positions but free to vibrate in simple harmonic motion
along one normal coordinate Q. If the molecule has a vibration with a frequency v;, the
nuclear displacement Q can be written as

Q = Qycos2mv;t (2.26)

where Q, is the vibrational amplitude. When the vibration amplitude is small, a is a linear
function of Q and can be expanded as a Taylor series in Q:

a=ay+(55) @+~ a+(55) Qocos2mt (2.27)

here «a, is the polarizability of the molecule at the equilibrium position, and (g—g) is the rate
0

of change of a with respect to the change in Q, evaluated at the equilibrium position.

From Eq. 2.25 to 2.27, we can obtain;

M, = ayEj cos 2yt + (Z—g) QoE, cos 2mvyt cos 2mvqt
0

= ayE, cos 2nvyt + % (g—g)o QoEo[cos{2m(vy +vq)t} + cos{2m(vy —v1)t}].(2.28)

The vibrating molecule can therefore be the source of scattered radiation. In the Eq. 2.28, the
first term represents an oscillating dipole that radiates light of frequency v, (Rayleigh
scattering), while the second term corresponds to the Raman scattering of frequency v, + v,
(anti-Stokes component) and v, —v; (Stokes component) which can be observed in any

particular direction. The second term vanishes when (Z_g) 1s zero. That is to say, to be Raman-
0

active, the rate of change of polarizability () with the vibration must not be zero.

3. 2. 2 Polarization in crystals

The polarizability of the crystal is anisotropic, 1.e. different for different directions in space.
Thus, it can be given in the form of the polarizability tensor related to the rectangular spatial
coordinate system (Z, j=x, y; 2);

Ayx Axy Ayxz
a; = [ayx Ayy a'yZ]_ (2.29)
Azx Azy Az
The polarizability tensor is symmetrical, i.e.@;; = a;; . Hence the number of distinct
components is reduced to six. According to Eq.2.28, if any one of the (Z_g) in six polarization
0
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tensor components is non-zero, a Raman spectrum can be observed. The rate of change of the
%a

polarizability (a_QZ

) also is a tensor of second order called Raman tensor for the Ktb mode.
K

For each vibrational mode is associated such a tensor(z—g) ; its general form depends upon the
K

symmetry of the mode characterized by an irreducible representation of the point group of a
crystal [2.4].

In present thesis, the back scattering geometry is employed, as shown in Fig.2. 4. The laser
beam (incident light) is directed along the Z axis, and the scattered light in the —Z direction is
collected. Both excitation and scattering are assumed to be in the form of parallel beams of
light. The excitation light is assumed to be polarized in the Y direction and the polarization of
the scattered light can be chose in either the X or the Y direction with the use of an analyzer.
The orientation of a single crystal in a given Raman experiments is generally specified by the
Porto notation [2.12]. Three directions x, y and z in the crystal are defined which are not
necessarily coincident with the crystallographic axes. If the crystal is oriented so that the axes
X, y, z are collinear with the space-fixed axes X, Y, Z. Thus the two configurations described in
Fig.2.4 are represented by z(yy)z and z(yx)z, the former is generally called VV scattering
geometry, while the latter is called VH scattering geometry. In the Porto notation, the first
symbol defines the direction of propagation of the incident light, while the last one refers to
the observation direction, i.e. the propagation of the scattered light. The symbols in
parentheses specify, in order, the polarization directions of the incident and scattered light.

€]
X
Sample

v
Z

Y

Fig 2. 4. The back scattering geometry usually used in Raman scattering.

In literature, phonon modes are addressed to in several ways. Group theory analysis, which
refers to phonon modes as irreducible representations, often uses the so called Mulliken
symbols (see Table 3.1). Here the capital letters gives information about the degeneration, i.e.,
if two different vibrations have the same frequency thus being equal in phonon energy, while
the subscripts g and u describe whether the modes are symmetric (g) and anti-symmetric (u)
with respect to the center of inversion. The subscripts 1 and 2 denote whether the mode is
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symmetric or anti-symmetric upon rotation about the center of the atom, while the
superscript > and " denote whether the mode is symmetric or anti-symmetric with respect to a
mirror plane horizontal to the principal rotational axis.

Table 2.1. Irreducible representations of phonon modes

Mode designation Description
A non-degenerated (single) symmetric mode, with respect to the
principle rotation axis n
B non-degenerated (single) anti-symmetric mode, with respect to
the principle rotation axis n
E doubly degenerated only in uniaxial and cubic crystals
ForT triply degenerated (occurs only in lattices with cubic symmetry)

2. 2. 3 Group theoretical analysis and Raman peak assignment for Pb-based perovskite
relaxors

As described in chapter 1 the ideal perovskite structure is Pm3.m though if two B-site cations
are present chemical 1:1 ordering of the structure can lead to a doubling of the unit cell and
results in face-centered cubic symmetry Fm3m [2.13]. For such symmetries and the occupied
Wyckoff positions in the perovskite structure the corresponding phonon modes at the I' point
of the Brillouin zone are given in Table 3.2. The letters R, IR, and I stand for Raman-active,
IR-active and silent mode, respectively.

Table 2.2. Wyckoff positions and corresponding phonon modes

Atoms Wyckoff position, Pm3m Phonon mode, Pm3m

acoustic optic
A la Flu
B 1b Fy, (IR)
0 3¢ 2F;,,(IR) + Fp,,(D

Atoms Wyckoff position, Fm3m Phonon mode, Fm3m
acoustic optic
A 8c Fiy Fzg(R)
B’ 4a F,(IR)
B~ 4b F,,(IR)

o) 924e A1g(R) + E4(R) + 2F;, (IR) +
Flg(1)+ FZg(R)+ FZu(I)

The F,,(rreducible representation associated to A-site cations) was assigned to the acoustic
vibration because Pb is the heaviest element in the structure, i.e., it should generate low-
wavenumber vibrations. Symmetry analysis cannot distinguish between IR active and
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acoustic modes and therefore this distinction has to be made on the basis of physics. As there
are always 3 acoustic modes and the wavevector should be small the heaviest atom is the most
likely to generate this mode. Though only a small degree of chemical B-site ordering or none
has been detected in RFE. TEM analysis has shown that the spectra should be interpreted in
terms of doubled perovskite structure [2.13, 14]. Therefore, on the local scale B-site chemical
ordering is always present, which is typical of all Pb-based relaxors with mixed B-site cations.
The selection rules and polarizability tensors for the cubic Fm3m it is possible to assign the
four allowed Raman-active modes (4,, + E, + 2F,,) to the Raman spectra [2.13]. The
assignment of the allowed Raman active modes is given in Table 2.3.

Table 2.3. Mode assignment for the symmetry-allowed Raman active modes in Fm3m [2. 15].

Mode (Approximate wave number) Phonon vibration
Ay 800 cm'! symmetric BOs stretching
E, 600 cm'! symmetric B-O stretching
Fayq 350 cm'! 0-B-O symmetrical bending
Fyq 45 cm1 Pb vibrations

It is widely believed that PNRs make peaks appear static to Raman spectroscopy, which is
sensitive to dynamic phenomena with lifetimes larger than the period of phonon oscillations,
which is ~ 107 12s. Thus it is not unexpected to see a contribution of the PNRs in the Raman
spectra as this is sensitive to intermediate- and short range order. Those Raman bands that
could be assigned to the expected Raman-active modes are caused by the local distortions in
the structure with R3m by the PNRs [2.13,16].

2. 3 Brillouin scattering

2. 3. 1 Elastic waves in condensed matter

In this part, fundamental concepts of the theory of elasticity are introduced, following mostly
the notation of the textbook of Nye [2.9].

Essential terms are the strain and stress tensors. To introduce them, we first define the
displacement vector u that shifted a point P that can be found by following the vector r from
the origin coordinate system to the point P with coordinates given by the vector 7, i.e.,

u=r—r (2.30)

The distance between any two infinitesimally adjacent points d/is given by

22



dl=\/dx? + dx? + dx?= ’dxiz (2.31)

using the Einstein summation convention behind the second equal. After a deformation it
becomes

dl=\/dx'? + dx'2 + dx'%= /dx’iz (2.32)

Therefore, it is possible to write

di?=dx'? = (dx; + du)’=dI? + 252 L dx;dx +%%d Xpdx, (2.33)
substituting dul dxk in the last step. Wlth dxld K = xk dx;dx, and swap of 7and [ in
the last term, finally we get

dl"?=dl? + 2uy,dx;dxy,. (2.34)
The strain tensor u;, is defined as

<1 (2uy ) (2.35)

(2 O u O
2 \0xy Ox;

Uik = Oxy Ox; Oxyp 0x;

The last approximation is valid, if second order terms can be neglected. Obviously, u;, is a
symmetric tensor. Each symmetric tensor can be diagonalized in any point. With the diagonal
elements u®, u®, u® the strain in any point can be written as the sum of three
independent terms, which give the strain in three orthogonal main directions.

dl'’? =(1+2u®)dx? + (1 + 2u@)dxd + (1 + 2u®)dx3. (2.36)

For u® « 1 and if higher order terms are neglected, the relative change of elongation
becomes

dx";'_dxiz 1+ 2u® —1 ~ 0@, (2.37)

Xi

With that approximation we can write the relative volume change of an infinitesimal small

volume element dV->dV~ as the sum of the diagonal elements of the strain tensor [2.9].

dVd;dV = Ujj. (238)

The resulting force Fon any partial volume of an elastic body can be written as the integral
over the forces on any element of the volume [ FdV. Because of the identity of action and
reaction for all forces between any two points within the volume the resulting force can also be
written as the sum over the integrals of the three components F;, [FdV, which can be
translated into an integral over the surface;
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dg;
fF,-dV:f%dV = oy df. (2.39)
Here, F; is expressed as divergence of a second rank, the stress tensor oj;

— 9%k
Fi =% (2.40)
In Eq. 2.39, df; are the components of a vector that is always oriented in the direction normal
to the surfaces. The nature of the stress tensor is visualized in the coordinate system, the
component g, of the stress tensor equals to the a-component of the force that is normal to
that x,-axis.

Fig 2. 5. Tllustraion of the stress tensor for the ¢,,-components working on a surface normal to
the x-aixs.

The work 8w that is achieved to perform a deformation is
dw = —Gik6uik. (241)

For reversible, elastic deformations it follows for the free energy A (A=U — TS that

Oik = (a—A)T . (2.42)

auik

For a perfectly elastic body, Hook’s law can be generalized to state that each component of the
stress tensor is linearly related to each component of the strain tensor;

Oik = CikimUim- (243)

Here, ciim 1s the fourth-rank stiffness tensor with 81 components. Taking into account the
symmetry of the strain and stress tensors, it is possible to reduce the number of coefficients to
36. However, these 36 components are not independent. In the general case the following
symmetry relations are valid:
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Cikim = Ckiim = Cikmi = Ckiml (2.44)

That is in an anisotropic body there are at most 21 independent components, which are
usually noted in a matrix notation, which uses the itemized identities to abbreviate the tensor
notation and to replace the tensor by a 6 X 6 matrix with only two indices per component. By
matrix notation, one can rewrite Eq. 2.43 as

|92 [C12€22C32C42C52C62 || Uz
03|_| C13C23C33C43C53C63 || U3
04 |C14C24C34—C4-4C54C64| u4|
lGSJ C15C25035C45C55C6s lluSJ
% lC16C26C36C46C56C66 Us

[01 [C11C21C31C416516611 Uq

(2.45)

While the discussion of the stiffness matrix for different crystal symmetries is done in
specialized treatments, here only the isotropic case, which is a good approximation for many
cases, including also most polymer systems, should be discussed in the rest of this section. For
an isotropic body, it can be shown that due to further symmetry considerations the stiffness
matrix in Eq. 2.43 has the following form [2.4];

017 [C11C21C31 0 0 0 U1
[“2} [C12C22C32 000 ]IuZI
03 _|613C23C33 0 00 “u3|
loal 0 0 0 Cu0 O ||ual

R

Og 0 0 0 0 0 Ceellug

The elastic constants are related to the propagating phonon wave velocity V. and the medium
density p, through the Christoffel’s equation [2.17].

(2.46)

CiximDiIm — PV26y) " um =0, (2.47)

where, I; and I, are the direction cosines of the phonon, u,, is the local displacement vector,
and §;; is the Kronecher delta.

Phonon velocity can be obtained by measuring the frequency shift of the respective Brillouin
component. Therefore, inelastic Brillouin scattering is a non-destructive powerful tool to
understand the elastic behavior of a material.

2. 3. 2 Theory of Brillouin scattering

The main principle of Brillouin scattering is the scattering of photons on sound waves and
the constructive interference of the multiply reflected light beam. A plane elastic wave creates
a periodic change of density and hence of the local dielectric constant in a medium. The typical
velocity of an acoustic wave is between 103 and 10* m/s. It is slower speed than light in
vacuum. Because of this great discrepancy the dielectric inhomogeneity can be regarded as a
quasi-static lattice on which the photons of the probing light are scattered. Thus, it is justified
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to treat the medium as a periodic multilayer stack with periodicity A, the wavelength of the
phonon, as shown in Fig. 2. 6. The probing laser light is multiply reflected on these layers and
the reflected light interferes on the detector, whose distant to the sample R is much larger
than the periodicity of the scattering planes (R » A). The reflected intensity reaches its
maximum when the interference is constructive, i.e.,

2nA sing =1 (2.48)

With refractive index n and wavelength of light A.

Fig. 2. 6. Brillouin scattering process

Insertion of Eq. 2.48 in the Bragg condition (Eq. 2.8) leads to

2m 4nn . 6

7 = TSlnE (249)
and

q="= (2.50)

The scattering wave vector g is equivalent to the wave vector k of the sound wave (k=2m/A), by
changing 0, ¢ can be chosen and at every ¢ the corresponding sound waves are probed
selectively. The identity ¢= k shows that the momentum conservation during the scattering
process is realized by a momentum transfer between the sound wave and the photon. From
this point of view it is clear that the scattered light changes its angular frequency from w; to
ws by inelastic interaction, in which an acoustic phonon can be either created (Stokes process)
or annihilated (anti-Stokes process) depending on the direction of motion of the acoustic wave.
In terms of energy conservation considerations it is clear that the exchanged energy hAw
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comes from the angular frequency of the phonon which is related to the phonon wavelength
and the velocity c of the acoustic wave by

21c

Wacoutic phonon — W = A (2.51)

Therefore, the frequency f = % shows a Doppler shift;

— 4% _ gy chmm 8
fs=fitg = fit5-—sinz, (2.52)
using the definition of ¢ given in Eq. 2.8. Here, the minus corresponds to a motion of the
acoustic wave away from the detector leading to a frequency decrease, and the plus
corresponds to a propagation direction of the acoustic waves towards the detector leading to an

increasing photon frequency.

2. 4 The Dynamic properties and Response function of light scattering

For discussion of the dynamics of the ferroelectric phase transitions, we consider the response
of damped harmonic oscillators and single Debye-type relaxations [2. 1].

When one dipole polarization at a 0 site, a; is deduced by an external field £ with a
frequency w, a; is expressed by fthough the polarizabiltity per unit volume of the system y,

a; = xs(w)f. (2.53)

Xs(w) of the damped harmonic oscillator model, y!(w) can be written in the following form;

2 w) = 2 (0)——2 — (2.54)

w?-w?2-iTyw’

where wg is the resonance frequency in the absence of damping and I}, is a damping constant.

The broad absorption peaks (Fig. 2. 7) in the orientational polarization range manifest that
no discrete energy levels exist for the rotational motions of the molecules due to manifold
interactions. Due to this reason the orientational polarization is characterized by a relaxation
process. Introducing the concept of relaxation, the complex dielectric constant can be written
as;

(W) = &g + —22 (2.55)

1+iwt’
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with real and imaginary parts as;

g'(w) =€y + 1:‘;‘;, (2.56)
e (w) = & + D, (2.57)

To account for the broader peaks in £’ more realistically, it is assumed that different parts
of the orientational polarization decline with distribution of relaxation times with the
distribution function g(t);

o g(t)dt

e (w) =€ + (6 — &) fo o (2.58)

with;

Jy gdr =1, (2.59)

g 8¢’
gll
L 1
-2 -1 0 | 2
Log frequency

Fig. 2. 7. Comparison of € and &" as function of log frequency for a single relaxation process.

When y.(w) is Debye relaxation model, yI(w) cab be written in the following from;
x4 (@)= x§(0) ystﬁ, (2.55)

where y; is a damping constant. From here, “I” and “r” denote damped harmonic oscillators
and Debye-type relaxations, respectively.
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If we take account of the interaction v;; in the mean-field approximation, the effective field
fi on the ith site is

fi=f+Xjvijq (2.56)

where we neglect the frequency dependence of v;;. In the mean-field approximation, f; is

treated using linear response theory;
a; = xs(W)[f + Xjvia]. (2.57)

The dynamic susceptibility x(w) is obtained as;

_ M — Nys(w)
x(w) = = o) (2.58)
If frequency go to 0, we know
Nys(0)
x(0) === (2.59)

1-vx(0)
The ferroelectric phase transition occurs when the denominator in Eq. 2.59 becomes zero;
1-vy,(0) =0, T=T,. (2.60)

In case of the Deby-type relaxation, y7(0) can be written as u?/kzT, and Eq. 2.60 gives
TC == v,le/kBT.

If we assume that the ferroelectric phase transition is induced by the damped harmonic
oscillator system, Eqgs. 2.54 and 2.59 give

Uy — _ NxbOws
1 w) = PR (2.61)
wf _NY'© o ,T-T¢
ol = iy @ = @85 (2.62)

Eq. 2. 62 is identical to the Lyddane-Sachs-Teller relationship, the system becomes untable as
x%(0) iverges.

In case of Deby-type relaxation,

I(4y) = N @ro
rHw) = - (2.63)
Y_Nxi(0) _ _  T-T¢
vs x7@©@ " TS e (2.64)

Eq. 2. 64 indicates the “critical slowing down” in the Ising model with mean-field theory.
At high temperature, inelastic light scattering spectrum I(w) is expressed as

I(w) = K%Im)((w). (2.65)
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In both cases the total integrated intensity of the peak can be obtained by making use of the
Kramers-Kronig relations as

I=[" I(w)dw « Rey(0). (2.66)

In the field of spectroscopy, it is general that the type of the ferroelectric phase transition is
determined by the behavior of the polarization spectral response around T,. If the
corresponding phonon mode frequency decreases to zero at T,, it is a signature of the
displacive type phase transition. In the order-disorder type one, the relevant phonon frequency
stays temperature independent, while another strongly temperature dependent excitation of
the relaxation occurs.
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Chapter 3. Experimental Methods

3. 1 Dielectric spectroscopy

Dielectric spectroscopy measures the dielectric properties of a polar compound as a function
of frequency. It is based on the interaction of an external field with the dipole moment of a
sample. For a linear, isotropic dielectric the time-dependent polarization P(t) and dielectric
displacement D(t) are related to the time-dependent electric filed E(t) through the
susceptibility x as:

P(t) = XE(v), (3.1
D(t) = (4my + 1E(), (3.2

The electric susceptibility x, which is second-rank tensor, is a dimensionless proportionality
constant that indicates the degree of polarization on a dielectric material in response to an
applied electric field and is also related to the polarizability by the Clausius-Mossotti relation.
The dielectric constant is related the electric susceptibility as:

dx+1=¢ (3.3)

When the frequency w of the electric field is changed, the definition of complex dielectric
constant therefore becomes:

Dye @t=g*E, e i@t (3. 4)

where D, and E, are the amplitudes of the displacement and electric fields, respectively.
When the frequency is too low, the phase difference 8 becomes zero reaching to quasi-static
case. The complex dielectric constant can be split into two parts.

&= %(cos& + isind) = &' (w) + ie"(w) (3.5)
0

where ¢’ is the real component, which is in phase with the applied field; ¢" is the imaginary
component, which is in quadrature with the applied field. Both components of the complex

dielectric permittivity are related each other by the Kramers-Kronig relations.

The frequency dependent behavior of ¢’ and &" for all polar compounds in the condensed
phase is described in Fig. 3. 3. The non-equilibrium effects appearing with increase in
frequency originate from the electric polarization that is built up of three parts, the
orientational, atomic, ad electronic polarization, each part corresponding with motions of a
different kind of microscopic particles, molecules and ions, atoms, and electrons, respectively.
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Fig. 3. 1 Dielectric dispersion and loss for a polar compound [3.1]

Dielectric constant of the specimens was measured by using LCR meter (HP4263B, Agilent)
and impedance analyzer (SI 1260). A home-made box furnace and Linkam stage (THMS 600,
Linkam) were combined to cover the temperature range from 300 °C down to -50 °C. For auto
measurement and fine adjustment process of delay parameter and number of average, the
data were collected by using NI LabVIEW™ gsoftware to measure temperature & frequency
dependence of the capacitance C, and dielectric loss D. The capacitance of a capacitor with the
dielectric is

__ EIgA

Cp ==, (3.6)

D =g—"=tan6, (3.7

&l

where, g, (8.85 x 10712F/m) is the permittivity of free space, A and d corresponds to the area
and thickness of the conducting electrode, respectively.

The unpoled samples were first heated to higher temperature and then measurements were
done in a cooling run at a rate of 1 °C/min. In contrast, the poled samples were measured in a
heating run and then measurements were done in a cooling run again for comparison between
the poled and unpoled condition.
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3. 2 Instrumentation of Inelastic Light Scattering

In light scattering experiments the difference in frequency between the scattered and
incident light extends from a few hertz to approximately 104 Hz (~3000 cm™!) and a range of
dispersing elements is required to resolve these differences. They have some characteristics in
common, although they differ on physical principles. The resoling power p is a property of a
spectrometer system of major importance. It is determined by the apparatus function W (the
representation the system gives of an incident laser beam of monochromatic light). If v is
the width of W then, for a given frequency v, the resolving power is:

v

p== (3.8)

The dispersion of a Raman (grating) spectrometer with a 1 m focal length is adequate, with
slit widths of a few microns, to accommodate diffraction gratings with p = 10° in first order
[3.2]. However, this magnitude of resolution is not easy to achieve for single grating with
excitations of energy less than ~100 cm™!. In case of study of Brillouin scattering in single
crystal, resolving powers as high as 10® are desirable, and values approaching this can be
conveniently achieved with the Fabry-Perot interferometer (FPI).

The physical principles of the two techniques and particularity of our systems used in this
thesis are to be discussed below.

3. 2. 1 Raman scattering experimental

For the Raman component, spectral dispersion is performed using a double or triple grating
monochromator to enhance contrast so that Raman lines near the laser excitation frequency
can be observed. The high collimation and narrow bandwidth of laser sources has been used as
a Raman excitation source, this provides much higher spectral source intensity, polarization
and straightness. Detection of scattered light is usually done by photon counting techniques
with a photomultiplier (PM) tube and charge-coupled device (CCD). The detector can achieve
sensitivities in the ultraviolet and visible spectral regions.

In modern spectroscopy usually multiple monochromators are employed for Raman
scattering. They can either be operated in an additive or in a subtractive mode as Fig 3. 2. For
a subtractive mode the first two monochromators have oppositely directed spatial dispersions.
This means that after passing the first two monochromateros the light which satisfies the
band-pass condition is refocused on the exit slit which serves as the entrance slit of the third
monochromator. Only the latter provides the spatial dispersion. Generally, CCD detector uses
the subtractive mode because the detector can record a much large part of the spectrum. For
operating of the subtractive mode the output slit is narrow, the linear dispersion and the
resolution are low. In order to obtain high resolution, the additive mode is essential with PM
tube. In case of the additive mode, the linear dispersion and the resolution are higher than the
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subtractive mode but the detector can record a small part of the spectrum, while the output
slit is wide.

Subtractive mode Additive mode
° better stray light rejection o higher spectral resolution
o large spectral range ° narrow spectral range
Entrance slit Entrance slit
S, S
Grating 1 Grating 1
IntermediatEA Additive
slits,, A A slits,,
G A 2 S h
Grating 2 Grating 2
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Int diat M
ntermediate <
slit s, ,

/T

Intermediate

= <«
v ooy

shit s,

Grating 3 Grating 3

)\.| )\'2 /[ }\\
CCD Detector & CCD Detector n—m

Fig. 3. 2. Schematic sketch of the subtractive and the additive mode for triple
monochromators [3.3]

Fig. 3. 3 is sketches of the setup for a double monochromator in the additive and subtractive
mode for Czerny-Turner arrangement. For instance, the additive mode needs two grating,
three slits, and four concave mirrors. The incoming light is two times additively dispersed by
the gratings 1 and 2. Scanning occurs by synchronous rotation of both gratings. The resolution
and suppression of stray light is greatly improved compared to a single monochrmator.
Although multiple monochromators reduce the intensity of spectrum by passing the grating,

1

we can approach more low frequency range below ~100 cm™" with high resolution.

For further improvement a third monochromator can be arranged behind the exit slit
resulting in a triple monochromator system. The third monochromator must be tuned to be
synchronous with the two other gratings. Such systems are often used for spectroscopic
analyses in the immediate vicinity of a very strong line such as a laser line. For the study of
phase transition, it is very powerful tool to study soft optic mode dynamics in ferroelectric, and
the low frequency relaxation process such as boson peak in glass system. In this case the third
monochromator operates with a wide slit and a sharp cut off towards the laser line.
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Fig. 3. 3. Schematic representation of a double monochromator in Czerny-Tuner grating
system.

Fig. 3. 3 is a block diagram of a micro-Raman spectroscopy setup used in the present study.
Raman spectra are excited using a diode-pumped solid-state laser (TORUS, Laser Quantum)
with a single frequency operation at 532 nm. The light beam is focused onto a sample by
objective lens. Scattered light is then collected by same objective lens using backward
geometry, and is focused on the entrance slit of a grating spectrometer, which acts as a tunable
filter. The scatted light is analyzed by a triple-grating spectrometer of the additive dispersion
(Jobin Ynon T-64000). The spectral resolution was below 2 cm™ (~60 GHz). The temperature
variation of the Raman spectra of all samples was carried out. In order to control temperature
on microscope, samples were inserted into a cryostat cell (THMS 600, Linkam), whose

temperature stability was +0.1 °C with ranges of -190 ~ 600 °C in temperature dependence

Raman measurements.
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Fig. 3. 4. The block diagram of micro-Raman spectroscopy.

The T64000 system is coupled modified microscope (BH-2, Olympus). The modified
microscope is two important features by using small prism mirror and rotation system of 57\
wave-plate. From %?\ wave plate, incident light and scattered light are changed direction of

polarization as Fig. 3. 5. By using the rotation system on microscope, angular dependence of
Raman scattering is investigated during temperature variation without rotation of samples.
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Fig. 3. 5. Comparison between rotation of sample (a) and %7\ wave-plate (b).
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3. 2. 2 Brillouin scattering experimental

Fabry-Perot interferometer

The high resolution required to obtain the Brillouin spectrum, coupled the intrinsic signal
from the materials with the usually extreme elastic scattering owing to sample surface
imperfections and scattering. In order to record the Brillouin spectrum, there are typical cases
where grating spectrometers can resolve the Brillouin frequency shifts with the part of huge
elastic scattering tail. It was imperfect method to get the weak Brillouin signals to resolve the
background of the normally extremely intense elastically scattered light because of their low
contrast ratio [3.4]. For the necessary and sufficient condition, FPI is suitable. Since E. Gross
who first experimentally demonstrated the existence of the velocity of sound by inelastic light
scattering in 1930, Brillouin scattering using a FPI has been a well-established method for the
investigation of thermally excited sound waves near GHz range in liquids and solids [3.5].

FPI
1
/ 1 //
P
2
I
//
Incident __5 \J
light ——* Lens Screen

Fig. 3.6 Principle of a Fabry-Perot etalon, which has a fixed mirror spacing L.

Generally, FPI (or Fabry-Perot etalon) consist of two mirror plates and is held accurately
parallel at a (fixed) distance L. Using a broad source of monochromatic incident light, we
obtain a system of concentric rings in the focal plane of the collecting lens (Fig. 3.6). For a
given spacing L the interferometer (etalon) will transmit only certain wavelength A as
determined by

To
T = 3

27%)sin2 (22L)
1+<7r2 )sm ( 1

(3.9
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where F, the finesse, is a quality factor depending primarily on the mirror reflectivity, and Tz,
(<1) is the maximum possible transmission determined by losses in the system. These
parameter are decided and fixed from quality of mirror coating inside FPI. When only those
wavelengths are satisfied as equation (3.2),

L=:-pl (3. 10)

where p is integral values, can be transmitted. After passing focal lens, we obtain the Airy
distribution. When we choose one line in center of screen, the form of transmitted wavelengths
are expressed in the following Fig. 3.7.

AL

>
!
|

-

AP A p+l

Fig. 3. 7. Two successively transmitted wavelengths from a single FPI.

The finesse F 1s related to the spacing between successive transmitted wavelengths AA
(known as the free spectral range, FSR) and the width 8A of a given transmission peak by:

__ A mVR

=% 0 (3.11)

where R is the reflectance (it is related the instrument function and the fineness of the
fringes). For R=0.7 we find F=8.3, whereas if R is increased to 0.95, F becomes 61.2. For
expression of the resolving power:

p =nkF, (3.12)

where F, is the effective finesse. The order of interference n is a maximum at the center of
the ring system and for L=0.1 m and A=500 nm has the value 4x 10°; operating with an
effective finesse F,=25 we have p=107 in single FPL.
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The FPI is used as a spectrometer by varying the spacing L so as to scan the light intensity
at different wavelengths. However it is immediately apparent that the measured intensity at a
given spacing is the sum of the intensities at all wavelengths satisfying condition Eq.(3.10). An
unambigious interpretation of the spectrum is thus impossible unless it is known a priori that
the spectrum of the light lies entirely within a wavelength spread< AA..

It 1s true that since:

AZ
M= (3.13)
and similarly:
AV(frequency) = i (3.14)

where c 1s the speed of light. AA can be increased arbitrarily large by decreasing L. However,
8\ increases proportional to AA and thus the resolution decreases. In fact Eq.(3. 11) shows
that the ratio between FSR, AX and the resolution 8A , is just the finesse F. In practice F
cannot be made much greater than about 100 due to limitations on the quality of mirror
substrates and coatings. The relationship between FSR and resolution is thus fixed within
limits determined by the achievable values of F.

In order to control the finesse F, we must choose pinhole size because the width 8A of a
transmission peak is related the resolution and mirror spacing L as shown in Fig. 3. 8.

FINESSE 80 100 120

TS = 1000
AL 800
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40 20 10 8 6 4 2 1

MIRROR SPACING [mm]

Fig. 3. 8. The relation between mirror spacing L and pinhole size [3.7]
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Nevertheless, single-pass FPI was insufficient for condensed matter system such as single
crystals. From last half century, multipass interferometer was developed with high resolution
[5, 6]. If high resolution is required combined with high contrast, for example to analyze the
linewidth of a narrow Brillouin component, a tandem arrangement of a multipass
interferometer and a spherical one may be successfully employed.

Tandem Fabry-Perot Interferometer

If two interferometers with mirror distances L; and L, are placed in cascade to transmit
two different interference orders p; = 2L, /A and p, = 2L,/A of the incident wavelength 2, the
transmitted intensity is composed of the product of the Airy function of both interferometers.
The total transmission curve is composed of a central elastic peak corresponding to exact
coincidence of one of the orders of each FPI, and small ghosts representing weakly transmitted
interference orders of the two interferometers. Fig. 3. 9 is a schematic of the transmission
curves of the etalon (a) FPI2, (b) FPI1 and (c) of both interferometers in series (tandem
operation) as a function of the mirror separation of the first etalon, L;.

(a)

FPI2

(b) ;

FPI1

Transmission

(@)

Ghost Tandem Ghost

—_—\M\ N

Wavelength >

Fig. 3. 9. Transmission properties for (a) FPI1, (b) FPI2, and (c) FPIs in series.
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Assuming that for a given value of L; both interferometers are in transmission, a change of
M2 in L; puts FPI1 into the next transmission order. Due to the common mounting of the
movable mirrors the change in the spacing of the second interferometer is smaller by a factor
of cos® with 6 the angle between the optical axes of the two interferometers as displayed in
the figure. Thus FPI2 is now not in transmission, and the transmission maxima of both
etalons lie at different values of L;. The same argument applies for inelastic excitations,
which are transmitted only if they belong to the common transmission order. The inelastic
signal represents closely the scattering cross section of the sample.

~

Translation
Stage

FPI1

Mirror

v

Direction of
Movement

n
v

Fig. 3. 10. Schematic view of the operation of a Sandercock-type tadem Fabry-Perot
interferometer.

For an experimental realization of the transmission, a flatness of the mirror surfaces of better
than A//200 and a parallelism of A//100 of the two mirrors of each interferometer are necessary.
To maintain the latter, a sophisticated active stabilization of the mirror alighment is needed,
as discussed above. In order to obtain the high contrast necessary to detect the weak inelastic
signals the light is sent several times through both interferometers using a system of retro-
reflectors and mirrors.
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The overall free spectral range can be increased 10 - 20 times over the FSR of a single
interferometer. Usually distances L; and L, are chosen such that L,/L; = k / n, where k and
n are incommensurate prime numbers. The effective FSR becomes k times the free spectral
range of the first interferometer. The major difficulty of tandem interferometry is represented
by the synchronization of the two interferometer scans. The changes 6L; and 8L, must
satisfy

8L,/ 8L, = Ly/L, (3.15)

In order to realize physically the synchronously scanned tandem interferometers, the two
scanning mirrors are mounted on the same scanning stage at an angle 0. (See Fig. 3.10).

In this way, L,=L;cosf and thus the ratio 8L,/ L; = 8L,/L, is satisfied. In the tandem
interferometer used for the measurements, L,/L; =19/20, corresponding to 6 ~ 18°.

/ Beam X
ﬁs;plitter o DPSS Laser (532nm)
\ N

Pin PM tube| *
hole | 1

T Polarizer

Microscope

Fig. 3. 11. The block diagram of micro-Brillouin spectroscopy.

Optics for a six-pass tandem interferometer

The application of linear piezoelectric scanning stage and PM tube has been achieved the
significant development of six-pass FPI. A most useful FPI is established by Sandercock et al
[3.8]. and has been the technique of standard Brillouin scattering study for high resolution
and contrast. The schematic of Sandercock type tandem FPI is shown in Fig. 3. 11. It passes
3+3 times through two different FPIs to increase its resolution and the contrast of a spectrum.
In the present study, a diode-pumped solid-state laser with a single frequency operation at 532
nm with 100 mW (Compass, Coherent) was used as an excitation source. A microscope (BX-60,
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Olympus) combined with a temperature controller (THMS 600, Linkam) was used to monitor
the sample surface and to control the temperature such as micro-Raman scattering system. In
case of the microscope for Brillouin scattering, modified microscope consists of polarizer and
analyzer in order to confirm domain structure.

CCD camera ( a)

Eyepiece

Scattered
light

Incident i E
Laser beam 5 : >‘ E

mirror
3x4.24

........... objective

o — sample

Fig. 3.12. Scheme of a modified microscope: (a) optical path in the microscope; (b) connecting
part of the microscope [3.9].

Modified microscope of light scattering

A laser beam is inserted into optical microscope, and it is reflected downward and focused by
an objective lens onto the sample. The scatted beam is collected by the same objective lens. It
is easy to adjust a focal point because focal point is monitored by using eyepiece of microscope.

In addition, a 90° prism for the outlet of the scatted light and a half-mirror for the
illuminator was placed side by side in was placed side by side in the original cube of the
microscope. As shown in Fig. 3. 12, the prism was used to direct the scattered light outside the
microscope. It is put on a rubber 0 ring which allows a minor adjustment of its orientation.
Selection between the light scattering experiment and the sample illumination can be made by
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sliding the cube. Use of the high optical quality objective lenses and the backward scattering
geometry are shown in Fig. 3. 12 provides this experiment with the following features: (a)
Because the objective lens focuses the laser beam, the size of the focal region, whose diameter
and length are denoted as dyand [,, respectively, in Fig. 3. 13, is much smaller than that
obtained with the conventional optical lens. (b) Changing lenses is easily done by the
mechanical revolver. (c) Since the objective lens not only focuses the laser beam but also
collects the scattered light, alignment is easy and exact.

Table 3.I summarizes the characteristics of the objective lenses used in this thesis. The
values in the table were obtained under the following conditions: the wavelength of a laser A=
532 nm and the diameter of a laser beam D;,= 0.35 mm. The dimension of the focal (or
scattering) region was caused by diffraction [3.10]. The spot diameter d, and the length I, of
the focal region are approximately given by:

4
do = (%) Af /Dy, (3.16)
_ (T 42
o = (%) d3/a, (3.17)
respectively, where f mean focal length. According to above calculation, the spot size is less

than 50 um. Micro Raman and Brillouin scattering are very powerful tools to investigate the
relaxor crystals which are characterized by microheterogeneity [3.11].

Table. 3. I. Characteristics of the objective lenses.

length of focal
Manifying Focal length working spot diameter
region
power (mm) distance(mm) (um)
(mm)
50X 3.6 10.6 6.967 0.048
20x 9 12 17.42 0.299
10x 18 10.6 34.84 1.194
5x 36 19.6 69.67 4.777
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Fig. 3. 13. Sample illumination and scattered light collection through the microscope [3.9]
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Chapter 4. Phase transition behaviors in relaxor ferroelectric
[001]-poled  Pb(Ini.2Nb1/2)Os—Pb(Mg1/3Nbgis)Os—PbTiOs
single crystals studied by Brillouin light scattering

4. 1 Introduction

Lead-based complex perovskite single crystals such as Pb[(ZnisNbws)i «TiOs (PZN-xPT) and
Pb[(Mg1/3Nbs)1-xTidlOs (PMN-xPT) have been studied intensively due to their excellent
piezoelectric performances since the pioneering work by Park et al [4.1]. The piezoelectric
coefficient d;; and the electromechanical coupling constant k;; of these systems were shown
to be more than 2000 pC/N and 90% respectively when the composition x was located near the
morphotropic phase boundary (MPB). However, PZN-xPT and PMN-xPT suffer from several
drawbacks, ze., low Curie temperature (Tc), low R-T (rhombohedral to tetragonal) transition
temperature (Tgr), and low coercive field, all of these limiting the temperature and electric
field usage ranges for practical applications. Extensive efforts have been focused on the
improvement of thermal stability of these lead-based perovskite relaxor ferroelectrics by
looking for new binary or ternary systems [4.2-3].

Recently, Pb(In12Nb1/2)Os—Pb(Mg1/sNbs/3)Os—PbTiOs (PIN-PMN-PT) ternary system was found

to show higher phase transition temperatures along with comparable piezoelectric
performances to PMN-xPT [4.4-8], which is expected to broaden the temperature and electric
field ranges for applications as piezoelectric devices. Recently, various properties of PIN-PMN-
PT single crystals near MPB including elastic, dielectric, and piezoelectric properties have
been studied under different poling conditions [4.9-21]. However, the ferroelectric phase
transition behaviors of PIN-PMN-PT single crystals have not been studied in detail. A great
portion of the published data on this system are reported on poled samples at room
temperatures, and studies on the phase transition behaviors in the temperature window of as-
grown or unpoled samples in comparison with poled ones are scarce. The dielectric constant in
the vicinity of the Curie temperature of PZN-xPT and PMN-xPT near MPB usually exhibits
very sharp, discontinuous changes, while that of PIN-PMN-PT is broad and diffusive [4.8].
These distinctive results suggest that the phase transition behaviors might be different
between binary and ternary systems. Understanding of the phase transition behaviors under
various conditions including dc bias field effect is prerequisite to improving material
performances and practical applications of PIN-PMN-PT, which is the motivation of this study.
In this chapter, we report the temperature dependence of acoustic anomalies, quasi-elastic
central peaks and dielectric properties of [001]-oriented PIN-PMN-PT single crystals under
unpoled and poled conditions. The observed acoustic anomalies and excitation of central peaks
will be discussed in detail in relation with the phase transition behaviors and dynamics of
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polar nano regions (PNRs), which is one of the key concepts in the physics of relaxor
ferroelectrics.

4. 2 Experimental

The single crystal used in the current study was supplied by TRS Technologies Inc. It was
grown by the modified Bridgeman method and has the nominal composition of 0.26PIN-
0.46PMN-0.28PT.

PbTiO (PT) T=490°C

0.0

1.00

PIN-PT 63/37
T=320°C 0.50

¢

PMN-PT 68/32
Tetragonal 0.50 T=150 °c

MPB
R

sample 0.25
comp081t10n Rhombohedral
1.00¢ . 3 y 0,00
0.00 0.25 0.50 0.75 1.00
Pb{[l‘li{szm)O_‘ (PIN) Pb(M gu;N bz'J)()J (PMN)

T=90"C T=-10"C

<

Fig. 4. 1 Phase diagram of PIN-PMN-PT [4.9].

It is well known that the exact contents of PIN, PMN and PT vary along the growth
direction and that the room-temperature symmetry and electromechanical properties depend
on the sample position in the grown crystal [4.8, 19]. The ds3, k33 and free dielectric constant
of [001]-poled crystals were 1340~1410 pC/N, 90~91%, and ~4310, respectively, at room
temperature. These results indicate that the investigated crystals can be close to the part B of
Ref.4.8 and to the R(1) or R(2) single crystals of Ref.4.19. The crystal dimensions were
2x11x0.5 mm3, and the largest surfaces were (001) pseudocubic planes. The Brillouin
spectrum was measured in the backward scattering geometry by using a conventional tandem
Fabry-Perot interferometer combined by a photomultiplier tube and a photon counting system.
Gold was vacuum-sputtered to form electrodes on the largest (001) surfaces. The crystal was
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inserted in a silicon oil at room temperature and was poled along the [001]¢ direction under a
dc bias field of 15 kV/ecm at 30 °C for one hour, where the subscript “c” represents cubic

coordinates. After poling, the electrodes were removed and the Brillouin spectra were
measured during the heating process. The wavelength of the excitation source was 532 nm.
The polarization direction of the incident laser beam was the (001) plane, which was
perpendicular to the poling direction. There was no analyzer for the scattered beam during the
measurement except when it was necessary to compare the polarized and depolarized
components of central peaks. Either an LCR meter (3522-50, Hioki) or the Solartron
impedance analyzer (SI1260) was used to measure the dielectric permittivity upon heating.

. . » » »
2mm
=1 I 11
with electrode polished

Fig. 4. 2. The (001)c-PIN-PMN-PT crystal with electrodes and the optical polished crystal.

4.3 Result and Discussion

Fig. 4. 3(a) shows three Brillouin spectra of unpoled PIN-PMN-PT at selected temperatures
in a semi-log plot to put stress on the substantial changes in spectral features in a wide
frequency and temperature ranges. Each spectrum consists of one Brillouin doublet
corresponding to the longitudinal acoustic (LA) phonons and a central peak (CP). The absence
of the transverse acoustic (TA) mode in the spectrum suggests that the average crystal
symmetry is close to cubic even at low temperatures [4.22]. It is noticed that the LA mode
frequency becomes softened and the CP intensity increases remarkably upon cooling. The
polarized component of CP was much stronger than the depolarized component.

The Brillouin frequency shift vy and the full width at half-maximum (FWHM) Iz were
obtained via the following fitting procedure. The spectral response of phonon modes as a
function of frequency v is usually modeled by the response function of the damped harmonic
oscillator having the form;
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I(v) =l 8% (4.1)

T (v2—v3)P+v2ry’

If vy is much larger than Iz as is usual, the above form is well approximated by a Lorentzian
function as

I'g/4
I(U) X IO (U—UB)2+F%3/4, (4 2)

where [, 1is a proportional constant. The measured spectrum /7 as a function of frequency v
was fitted by using (4. 2) convoluted by the Gaussian instrumental function of the

interferometer.
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Fig. 4. 3. (a) The Brillouin spectra of [001]c-oriented unpoled PIN-PMN-PT single crystals at a
few temperatures in a wide frequency range (b) The Brillouin spectra of unpoled and poled
single crystals measured at 30 °C. The inset of (a) shows the temperature dependence of
FWHM of CP which is inversely proportional to the relaxation time T.
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The Brillouin spectrum was fitted by using response functions of the damped harmonic
oscillator for the phonon modes and of the single Debye relaxator for CP, from which the
Brillouin frequency shift (vg) of the acoustic phonons and the full-width at half-maximum
(FWHM,T}) of phonons and unpolarized CP were obtained. The inset of Fig. 4. 3(a) shows the

temperature dependence of the FWHM of CP, which is equal to 1/7”, where 7 is the

relaxation time of the relevant process responsible for CP. In chapter 6, we discuss two
relaxations of CP by using broadband light scattering spectra. The temperature dependences
of vy and Iy measured upon cooling and heating are shown in Fig. 4. 4(a) and (b),
respectively, for the unpoled PIN-PMN-PT single crystal. The real part of the complex

dielectric constant (¢) is also shown in Fig. 4. 4(a) for comparison. ¢’ shows maxima near

200 °C of which the value is more than 40000 at 10 Hz. It exhibits frequency dispersion
typical in relaxors, re., the dielectric maximum shifts to higher temperature with probe
frequency. The temperature dependence of the characteristic relaxation frequency could be
obtained from the dielectric maximum temperature 7m along with its probe frequency £

which was fitted by using the Vogel-Fulcher law, f = f,exp[— where f, is the

E
kB(Tm_TVF)]
attempted frequency, £ the activation energy, kg the Boltzmann constant, and T, the Vogel-
Fulcher temperature. The best-fitted results are shown in the inset of Fig.4. 4 (b) with
parameters f, =4.6x1012 Hz, E/kz=610 K, and T, =454 K (=182 °C). These values of f,

and E/kgare typical for relaxors.

Broad and frequency-dependent dielectric constants are correlated with the acoustic
anomalies occurring in a wide temperature range. vy shows almost a constant value at high
temperatures from 400 to 600 °C. While vy shows a substantial softening below ~ 320 °C
accompanied by a significant increase in the hypersonic damping. These acoustic anomalies
can be explained by the formation of PNRs and their electrostrictive coupling to the acoustic
waves. As Fig.4. 3(a) shows, the growth of CP suggests the existence of polarization
fluctuations. The most probable origin of these polarization fluctuations is the formation of
PNRs at the so-called Burns temperature Ty, although the microscopic origin of PNRs is still

not settled completely [4. 24]. The inset of Fig.4(a) indicates a sudden change in 7 at about

320 °C, below which the relaxation time rapidly increases and Ty exhibit significant changes.
This characteristic temperature may thus be assigned as the intermediate temperature for the
present PIN-PMN-PT single crystal at which size & number of PNRs rapidly increase.

The increase in size and interactions between PNRs leads to the slowing down of their
dynamics, which is reflected in both the increase in the relaxation time of CP (see the inset of
Fig.4. 3(a)) and the diverging characteristic of the dielectric relaxation time represented by the
Vogel-Fulcher behavior. v shows a minimum near 100 °C, and Iz displays a maximum at
~90 °C, which may be attributed to the moderately diffused transformation into short-range
(or mesoscopic) polar states. This transition may be attributed to some kinetic effect, i.e., the
abrupt growth of PNRs at the (diffused) ferroelectric phase transition without changing the
directions of their dipole moments due to the frustrated interactions between PNRs [4.25]. The
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correlation length of the polar domains would be very small and the average symmetry may
not deviate from the prototype cubic phase appreciably, because TA mode, which is forbidden
at the backward scattering geometry in the cubic phase, is not observed at low temperatures.
Typical relaxor behaviors shown from both dielectric and elastic anomalies are also consistent
with the observation of the labyrinthine domain pattern [4. 18], which is typical in relaxors,
confirmed from similar compositions. Large thermal hysteresis can be moticed from both vg
and Ty, similar to PZN-4.5%PT [4.26]. The change in vz measured on heating became
sharper at about 137 °C compared to the relatively broad minimum obtained upon cooling.
This is accompanied by much larger I'z; recorded upon heating than upon cooling. This
thermal hysteresis may be related to the evolution of PNRs and polar domains in the low-
temperature phase. This kind of aging phenomena has often been observed from non-
equilibrium state in disordered systems like relaxor, dipolar glasses, spin glasses, etc.
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Fig. 4. 4 The temperature dependences of (a) the Brillouin frequency shift and (b) the FWHM
of the LA mode of the unpoled sample measured on both cooling and heating processes. The
dielectric permittivity is shown in Fig. (a) for comparison. The inset of (b) is the characteristic
relaxation frequency as explained in the text in the Arrhenius plot.
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Fig. 4. 3(b) shows the Brillouin spectra of the same crystal before and after poling (denoted
as "unpoled” and "poled”, respectively, in the figure) at 30 °C. The application of dc bias field

of 15 kV/cm induces several interesting changes in the Brillouin spectrum: (a) hardening of
the LA mode frequency and decrease in its half width, (b) suppression of the CP intensity, and
(c) the appearance of the TA mode. Since the electric field of 15 kV/em is lower than the
minimum field required to induce the tetragonal symmetry [4.20], the [001]c-poled PIN-PMN-
PT is expected to have a multidomain (or domain-engineered) state composed of four <111 >
rhombohedral domains [4.1] and may be considered to have a tetragonal symmetry on average.
In this case, the observed LA and TA modes may correspond to the (33 and Cu elastic
constants, respectively.
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Fig. 4.5. The Temperature dependence of the dielectric permittivity and the Brillouin shift of
the poled PIN-PMN-PT single crystal.

The discontinuous change in the LA mode frequency and the appearance of the TA mode can
be attributed the transformation from the relaxor-like state (or slightly distorted mesoscopic
ferroelectric state) into a domain-engineered state [4.1]. In addition, the fact that the TA mode
persists when the dc bias field is turned off indicates that the field induced structural change
remains stable even without the dc bias field. Brillouin frequency shifts were obtained at
room-temperature from the measured spectrum to calculate the elastic constants of a poled
sample and to compare them with previous reports. When the reported density of 8,102 kg/cm3
and the average refractive index 2.66 (at the wavelength of 546 nm) of PMN-35%PT are
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considered [4.12,27], the elastic constants Css and Cis of the poled sample are calculated to be
16.5 and 6.65 GPa at room temperature. These numerical values are very similar to the
reported elastic constants (C%=16.7 and C2,= 7.0 GPa) of the [001]c-poled PIN-PMN-PT single
crystal of a similar composition obtained in terms of the resonance method [4.8]. This result
seems to suggest that acoustic dispersion effect between the resomance technique and
hypersonic Brillouin scattering might be very small in PIN-PMN-PT of this composition.
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Fig. 4. 6. The temperature dependences of (a) the Brillouin frequency shift and (b) the FWHM
of the LA and TA modes of both the unpoled and poled samples measured on heating process.
The insets (¢c) and (d) show the extended plot of vz and the mode intensities of the poled
sample near the ferroelectric phase transitions, respectively.

55



Fig.4.5 shows the Brillouin shift of the LA mode along with the dielectric data of the poled
sample as a function of temperature measured upon heating. The dielectric permittivity shows
two clear anomalies at ~116 °C and ~165 °C consistent with dielectric properties of previous
study carried out on similar compositions [4. 20]. In addition, these two dielectric anomalies
are correlated with the step-like changes in the elastic property. The fact that the high-
temperature anomalies of both measurements do not appear at exactly the same temperature
1s not surprising, because the dielectric anomaly has some frequency dispersion and the
dielectric maximum temperature depends on the probe frequency. The comparisons of the
temperature dependence of vz and I’z of unpoled and poled samples are shown in Fig. 4. 6 (a)
and (b), respectively, obtained at the heating process.

The two insets (c) and (d) of Fig. 4. 6 show the extended plot of vy of the LA mode and the
intensity changes of both modes, respectively, of the poled sample near the ferroelectric phase
transitions. The temperature dependence of vy and I’y clearly shows that the two step-like
changes in vy are correlated to the hypersonic damping peaks at almost the same
temperatures. The inset (d) of Fig. 4. 6 shows that the TA mode intensity becomes zero at
~116 °C, which is a clear evidence for a structural phase transition at this temperature. Based
on the observed transition temperatures and comparison with previous studies [4.20], we
attribute the observed two dielectric and elastic anomalies to the successive phase transitions
from rhombohedral to tetragonal and then from tetragonal to cubic phases with increasing
temperature.
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Fig. 4. 6. The Brillouin spectra at -30 °C with dc field (red line), after turned off field
(blue line).
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We note that the tetragonal-cubic phase transition at high-temperature remains somewhat
diffused characterized by the frequency dispersion and a smeared change in vz compared to
PMN-xPT [4.25]. The diffuseness of the dielectric property at the Curie temperature has also
been observed from other PIN-PMN-PT single crystals [4.8,20] which is in contrast to the
sharp, discontinuous changes in the dielectric and elastic properties of PZN-xPT and PMN-
xPT near MPB at the cubic-tetragonal phase transition temperature. This may be understood
based on the suggestion by Chen et al on the intermediate state below the dielectric
maximum temperature on approaching the cubic phase [4.21]. They reported that [001]-
oriented 0.34PIN-0.25PPM-0.41PT exhibited an intermediate state via which transformation
from macrodomain to microdomain states occurs. The macroscopic long-range polar order
formed under high dc bias field does not disappear abruptly at the phase transition but
changes into microdomains due to inherent disorder and random fields in relaxors. Finally, we
point out that the temperature range of the intermediate tetragonal phase may be changed
and controlled depending on the previous poling treatment. When the crystal was poled under

the same electric field at =30 °C and the Brillouin spectrum was measured upon heating

without the dc bias field as Fig. 4. 7, the temperature dependence of vy and Iy showed two
clear anomalies at ~100 °C and ~125 °C. This means that the intermediate temperature range
can be reduced significantly by using poling at lower temperatures.

4.4 Conclusions

In conclusion, we compared the phase transition behaviors of unpoled and [001]c-poled PIN-
PMN-PT single crystals by using Brillouin light scattering and dielectric spectroscopies. The
unpoled sample showed broad elastic softening along with substantial dielectric dispersion,
which is typical in relaxors. The Burns temperature was determined to be about 550 °C by
observing the spectral changes in central peaks and the corresponding change in the
relaxation time. The small damping peak at ~90 °C was attributed to the development of
moderately diffused and short-ranged (or mesoscopic) polar state due to the abrupt growth
and merging of polar nanoregions without changing the directions of their dipole moments.
Poling the crystal under DC bias field of 15 kV/cm along the [001]c direction gave rise to the
appearance of the TA mode, suppression of the central peak, and substantial changes in the
LA mode properties, indicating structural transformation from the short-range polar state into
a domain-engineered rhombohedral state. The temperature dependence of dielectric and
elastic properties of the poled sample exhibited two clear anomalies at ~116 °C and ~165 °C.
These two-step changes were attributed to the successive phase transitions from
rhombohedral to tetragonal and then from tetragonal to cubic phases with increasing
temperature based on the observed transition temperatures and comparison with previous
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studies. The high-temperature tetragonal-cubic phase transition remained diffused even for
the poled sample, which may be understood as the transformation of macrodomains into
microdomains upon heating due to local random fields inherent in relaxors.

58



References
[4.1] S.-E. Park, and T. R. Shrout, J. Appl. Phys., 82 (1997) 1804.

[4.2] Z. -G. Ye, Handbook of Advanced Dielectric, Piezoelectric, and Ferroelectric Mater:
Synthesis Characterization and Applications, (Woodhead, Cambridge, 2008).

[4.3] F. Li, S. Zhang, Z. Xu, X. Wei, and T. R. Shrout, Adv. Funct. Mater., 21 (2011) 2118.

[4.4] Y. Hosono, Y. Yamashita, K. Hirayama, and N. Ichinose, Jpn. J. Appl. Phys., 44 (2005)
70317.

[4.5] G. Xu, K. Chen, D. Yang, and J. Li, Appl. Phys. Lett., 90 (2007 ) 032901.

[4.6] J. Tian, P. Han, X. Huang, H. Pan, J. F. Carroll III and D. A. Payne, Appl. Phys. Lett.,
91, (2007) 222903.

[4.7] P. Yu, F. Wang, D. Zhou, W. Ge, X. Zhao, H. Luo, J. Sun, X. Meng, and J. Chu, Appl.
Phys.Lett., 92 (2008) 252907.

[4.8] S. Zhang, J. Luo, W. Hackenberger, and T. R. Shrout, J. Appl. Phys., 104 (2008) 064106.
[4.9] X. Li, Y. Wang, L. Liu, X. Zhao, H. Luo, D. Lin, Mater. Chem. Phys., 122 (2010) 350.

[4.10] S. Zhang, J. Luo, W. Hackenberger, N. P. Sherlock, R. J. Meyer, Jr., and T. R. Shrout, J.
Appl.Phys., 105 (2009) 104506.

[4.11] X. Liu, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, J. Appl. Phys., 106 (2009) 074112.
[4.12] X. Liu, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, Appl. Phys. Lett., 96 (2010) 012907.
[4.13] E. Sun, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, Appl. Phys. Lett. 97 (2010) 032902.
[4.14] P. Finkel, H. Robinson, J. Stace, and A. Amin, Appl. Phys. Lett. 97 (2010) 122903).

[4.15] S. Zhang, F. Li, J. Luo, R. Xia, W. Hackenberger, and T. R. Shrout, Appl. Phys. Lett.,
97 (2010) 132903.

[4.16] F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, J. Appl. Phys., 107 (2010)
054107.

[4.17] W. Wang, D. Liu, Q. Zhang, B. Ren, Y. Zhang, J. Jiao, D. Lin, X. Zhao, and H. Luo, J.
Appl.Phys., 107 (2010) 084101.

[4.18] Q. Li, Y. Liu, J. Schiemer, P. Smith, Z. Li, R. L. Withers, and Z. Xu, Appl. Phys. Lett.,
98 (2011) 092908.

[4.19] P. Finkel, K. Benjamin, and A. Amin, Appl. Phys. Lett., 98 (2011) 192902.

[4.20] F. Li, S. Zhang, D. Lin, J. Luo, Z. Xu, X. Wei, and T. R. Shrout, J. Appl. Phys., 109

59



(2011) 014108.

[4.21] Y. Chen, K. H. Lam, D. Zhou, X. S. Gao, J. Y. Dai, H. S. Luo, and H. L. W. Chan, J.
Appl. Phys., 109 (2011) 014111.

[4.22] S. Zhang, G. Liu, W. Jiang, J. Luo, W. Cao, and T. R. Shrout, J. Appl. Phys., 110 (2011)
064108.

[4.23] R. Vacher, and L. Boyer, Phys. Rev. B, 6 (1972) 639.
[4.24] A. A. Bokov, and Z. -G. Ye, J. Mater. Sci., 41 (2006) 313.

[4.25] J. -H. Ko, D. H. Kim, S. Tsukada, S. Kojima, A. A. Bokov, and Z. -G. Ye, Phys. Rev. B,
82 (2010) 104110.

[4.26] J. -H. Ko, D. H. Kim, S. Kojima, W. Chen, and Z. -G. Ye, J. Appl. Phys., 100 (2006)
066106.

[4.27] C. He, F. Wang, D. Zhou, X. Zhao, D. Lin, H. Xu, T. He, and H. Luo, J. Phys. D: Appl.
Phys., 39 (2006) 4337.

60



Chapter 5. Phase transition behaviors in relaxor ferroelectric
[011]-poled  Pb(In12Nb12)Os—Pb(Mg1/sNbs)Os—PbTiOs
single crystals studied by Brillouin light scattering

5. 1 Introduction

The origin of the ferroelectric phase transition in the relaxor ferroelectrics is still in
controversy. In the last chapter, we discussed acoustic and dielectric properties of [001]c-poled
and unpoled PIN-PMN-PT crystals and determined Curie temperature, Trr, T*, and Tyg. In
this chapter, we report on the experimental results of a [001]c-poled crystal and discussion.

In this chapter, we report [011l]c-oriented xPIN-(1-x»)PMN-yPT (x=0.26, y=0.28) single
crystals under different poling conditions by using micro-Brillouin scattering and dielectric
spectroscopies over a wide temperature range between 20 and 700 °C during both cooling and
heating processes. This is a complementary work to our previous study of the last chapter,
where [001]c-oriented PIN-PMN-PT single crystals were studied by Brillouin and dielectric
spectroscopies.

5. 2 Experimental

The ternary 0.26PIN-0.46PMN-0.28PT single crystals used in the current study were
supplied by TRS Technologies Inc. Samples were oriented along the [011]c direction and the
largest (011) surfaces were vacuum-sputtered by gold to apply an external electric field.
Electric poling was achieved by applying a dc bias field of 15 kV/ecm to a crystal immersed in
silicone oil at room temperature.

Complex dielectric constant and Brillouin spectra were obtained from the same system of the
last chapter. Additionally, a forward symmetric scattering geometry was used to measure the
sound velocity in GHz range. From this geometry, we don’t need refractive index in order to
calculate the sound velocity.
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Fig. 5.1. Backward scattering and forward symmetric scattering geometries.

5. 3 Results and Discussion
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Fig. 5. 2. Dielectric permittivity and loss tand as a function of temperature for [011]c-poled

and unpoled PIN-PMN-PT single crystals measured at 1kHz during heating process.
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Fig. 5. 2 shows the temperature dependence of the real part of the complex dielectric constant
(¢’ + ¢") and the dielectric loss (tand = €”/¢’) of [011]c-poled and unpoled PIN-PMN-PT single
crystals, where ¢ and &' are the real and imaginary parts of the complex dielectric constant,
respectively. The data were measured upon heating at a probe frequency of 1 kHz. The Curie
temperature 7c¢ of both samples can be determined as the temperature of the dielectric
maximum, which is approximately 160 °C. For the poled crystal, € shows two sharp
anomalies at ~119 and ~126 °C, below 7¢. Similar dielectric anomalies were also observed for
[011]c-poled, Mn-doped 0.26PIN-0.42PMN-0.32PT, which were attributed to rhombohedral-
monoclinic and monoclinic-tetragonal phase transitions [5.9]. We attribute the two anomalous
temperatures of the poled sample to the rhombohedral-orthorhombic (7k-0) and orthorhombic-
tetragonal (7b-1) transition temperatures considering a previous report [5.11] and the fact that
poling along the [011]c direction induces the orthorhombic phase on an averaged structure. On
the other hand, unpoled PIN-PMN-PT exhibits one broad dielectric maximum, which is
considered to be the phase transformation from the rhombohedral phase to the cubic phase
without the intermediate orthorhombic phase [5.1,5]. This is consistent with a recent neutron
diffraction study on PIN-PMN-PT of the same composition, which showed that the unpoled
crystal maintained an average rhombohedral phase from room temperature to 7¢ [5.12].

The dielectric property of the unpoled sample, shown in Fig. 5. 2, exhibits typical relaxor
characteristics, such as diffuseness and deviation from the Curie-Weiss law. The temperature

dependence of ¢ may thus be analyzed by using an empirical relation that has been applied

to relaxors. We adopted the extended Curie-Weiss law [5.13] as given below to fit the dielectric
data of Fig. 1 in the paraelectric phase;

1 ! {1 + [T‘Tm“’”y}, (5.1)

gWT) Emax®) 263

where &,,,(v) and T,,(v) are the magnitude of the dielectric peak and the dielectric
maximum temperature at the probe frequency v, respectively. y and 6§, are fitting
parameters indicating the degree of the diffuseness of the phase transition. Fig. 5. 3 shows the
inverse of &'(v,T) and the best-fitted results obtained by Eq. 5.1. The obtained parameters are
summarized in Table 5. I. According to this result, y is close to 2, which means that typical
relaxor behavior is confirmed from unpoled 0.26PIN-0.46PMN-0.28PT. This may be attributed
to the enhanced frustration of B-site cations in this ternary system compared with in the
binary relaxor system.

Table 5. I. The obtained parameters for the dielectric constant of unpoled PIN-PMN-PT by
using Eq. 5.1 and calculated sound velocity in by using Eq.5. 2 compared with other method.

VBrillouin Vultrasonic§

V) T, (°C) /4 o condition

e

condition &

(m/s) (m/s)

unpoled 25638 169 1.99 31.6 poled 4683 4746

$(composition :0.25PIN-0.47PMN-0.28PT
63



o 1kHz &
fitting line /

2.0x10"

1/¢'

1.0x10™

1 L 1 L | L ! L 1 L |

180 200 220 240 260 280

Temperature (°C)

Fig. 5. 3. Inverse of dielectric permittivity measured at 1 kHz and best-fitted results (solid
line) obtained by Eq. 5.1.

Figures 5. 4(a) and 4(b) respectively show the Brillouin spectra of poled and unpoled PIN-
PMN-PT at a few selected temperatures along with fitting lines, as explained in the next
paragraph. The Brillouin doublet appearing at about +50 GHz is due to the scattering of
longitudinal acoustic (LA) phonons propagating along the [011]c direction. Also, a central
peak (CP), which is related to the relaxation process of dynamic PNRs, appears in the
paraelectric phase and grows as it approaches 7t. A strong CP appears in both the poled and
unpoled conditions below 7t, while its intensity decreases markedly upon heating to above
7t. For the poled sample, a TA mode clearly appears at about £31 GHz, as shown in Fig. 5.
4(a), with an additional low-frequency broad peak near +9 GHz below ~119 °C. The
appearance of the TA mode is a clear indication of symmetry lowering from the cubic phase
due to the appearance of macroscopic domain structures, which is consistent with the
dielectric anomaly shown in Fig. 5. 2. In contrast, the absence of the transverse acoustic (TA)
mode in the spectrum of Fig. 5. 4(b) indicates that the average symmetry of the unpoled
sample is essentially cubic because of quenched mesoscopic or nanoscale fine domain
structures even at low temperatures below 7t [5.26]. The origin of the lowest frequency
mode and its relation to a ferroelectric phase transition is discussed separately in the last of
this section.
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Fig. 5. 4 Brillouin spectra of (a) poled and (b) unpoled PIN-PMN-PT single crystals measured

at a few selected temperatures (solid circles) along with fitting lines.

The Brillouin spectra were fitted by the superposition of two kinds of response functions
consisting of damped harmonic oscillators for the LA (and TA) mode(s) and a single Debye
relaxator for the CP. Fig. 5. 5(a) and 5(b) respectively show the Brillouin frequency shift (vp)
and its full width at half maximum (FWHM, I's) of the LA mode of the unpoled sample as
functions of temperature. It is found that vy exhibits significant softening upon cooling
toward 7t. The temperature range above 7t in which the mode softening occurs amounts to
~300°C, which can be ascribed to the coupling with polarization fluctuations of dynamic PNRs
in the cubic phase. In contrast, I's is almost constant above about 300 °C and grows upon
cooling toward 7t, which is very similar to the cases of PMN and PMN-0.15PT [5.15]. The
characteristic temperature of PNRs in unpoled PIN-PMN-PT are also known: Tg = 590 °C,
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T* =320 °C . This enhancement of the acoustic damping near 7t is related to the slowing
down of the dynamics of PNRs, which is related to the narrowing of the CP. Large thermal
hysteresis can be observed from vy, which suggests the first-order nature of the diffuse phase
transition between cubic and rhombohedral symmetry at 7tc. The sound velocity of the poled
sample was measured at room temperature in the forward, symmetric scattering geometry by
using Eq. 5.2 [5.16].

V=184 (5.2)

.. 6>
2n sin

where 1, n, and 6 are incident wavelength (532 nm), refractive index (2.66), and scattering
geometry angle (60°), respectively

The obtained sound velocity of the LA mode is 4,683 m/s, which is close to the value for PIN-
PMN-PT of a similar composition measured by the ultrasonic technique [5.17]. These sound
velocities are given in Table 5. I. Such closeness was also confirmed for [001]c-oriented
0.26PIN-0.46PMN-0.28PT. These two results suggest that the acoustic dispersion effect in the
frequency range between 15 MHz (ultrasonic technique) and 45 GHz (Brillouin scattering)
may be negligible in PIN-PMN-PT at room temperature. That is, the frequency dependence of
the sound velocity is very small in the frequency range from 15 MHz to 45 GHz.
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Fig. 5. 5. Temperature dependence of (a) Brillouin frequency shift and (b) FWHM of the LA
mode of the unpoled sample measured during both cooling (blue and black open squares)

and heating (red circles) process.

Figures 5. 6(a) and 5. 6(b) show comparisons of the temperature dependences of vz and I's,
respectively, between unpoled and poled crystals. The two insets display extended views of the
temperature dependences of the LA mode intensity and I's near the phase transition

temperatures. Fig. 5. 7 shows the comparison between & and vg of poled samples. vy of the

TA mode is also shown. These two comparisons in Figs. 5. 6 and 5. 7 reveal the interesting
phase transition behaviors of PIN-PMN-PT.
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Fig. 5. 6. Temperature dependences of (a) Brillouin frequency shift and (b) FWHM of the LA
of the poled sample measured during heating (blue solid circles) and the unpoled sample
measured during both cooling (blue open squares) and heating (red open circles) processes.
Insets (c) and (d) show extended plots of the LA mode intensity and the FWHM of the poled
sample near the phase transition temperatures, respectively.

(i) vz and I's do not show any noticeable differences between the poled and unpoled crystals
over a wide temperature range down to ~126 °C (7b-1), that is, the LA mode softening extends
to temperatures below 7t. Only the kink in the temperature dependence of the mode intensity,
shown in Fig. 5. 6(c), is the signature of a diffuse phase transformation at 7t. The continuous
softening of vy down to a temperature well below 7t was also observed from [001]-poled and
[111]c-poled PIN-PMN-PT single crystals studied by Brillouin scattering and resonant
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ultrasonic spectroscopy [5.6]. These results clearly show that the diffuse phase transition near
7t is not affected by the poling process. The present results also suggest that 7o-r may be
understood as the depolarization temperature where the field-induced macroscopic
ferroelectric domains induced by poling at room temperature are decomposed into mesoscopic
polar domains coexisting with dynamic PNRs. Therefore, the phase of the poled crystal
between 70-r and 7t is expected to be nearly the same as that of the unpoled one from the
macroscopic point of view, and the coupling of the dynamic PNRs to the acoustic waves
dominates the acoustic properties in both samples. The diffuseness together with the dielectric
dispersion near 7t was attributed to tweed domain structures and the competition between
the antiferroelectric and ferroelectric ordering similarly to in relaxor states [5.2-3].

30k

e 20k
L 1= LA mode
e TA mode

AN
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s | 1 1 s |
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Fig. 5. 7. Dielectric permittivity (solid lines) and Brillouin frequency shift of the LA (black
solid squares) and TA modes (red solid circles) as functions of temperature for the [011]c-

poled PIN-PMN-PT single crystal.

(i) Both vg and I's exhibit discontinuous changes at 7b-r for the poled sample. In addition,
the two step like changes in vy occur at nearly the same temperatures as where the dielectric
anomalies appear, as can be seen in Fig. 5. 7. The temperature dependences of I's and the
mode intensity exhibit either a small discontinuity or a kink at 7k-o and 7o-r. In addition, 7k-o
is characterized by the appearance of the TA mode. It is clear that I's of the poled crystal in
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the rhombohedral phase is substantially smaller than that of the unpoled one. Poling the
sample along the [01l]lc direction can decrease the density of twin domain walls and
static/dynamic PNRs, which is expected to reduce the interaction between the acoustic waves
and the fluctuating polar regions and/or the mobile interfaces between domains, resulting in
lower acoustic damping in the poled condition. These changes are in agreement with similar
changes in damping behaviors induced by the poling process observed for [001]c-poled and
[111]c-poled PIN-PMN-PT single crystals [5.6].
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Fig. 5. 8. Contour map of Brillouin scattering intensity from [011]c-poled PIN-PMN-PT crystal
vs. temperature and frequency shift in the back scattering geometry.

Fig. 5. 8 shows the contour map of the Brillouin scattering intensity of [011]c-poled PIN-
PMN-PT as a function of frequency shift and temperature under the geometry of 180°. The low
frequency peak only appears in depolarized spectra below 7Tb-r with higher intensity than
other peaks. It seems coupled mode with CP below 7b-r. Also, the low frequency peak follows
soft mode behavior but diverse both the peak position and the FWHM near 7ot as Fig. 5. 9.
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However, this peak does not allow the selection rule of the present scattering geometry. In
order to find the origin of the low frequency peak, we performed forward scattering on [011]c-
poled and unpoled samples.
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Fig. 5. 10. (a) The Brillouin spectra in polarized (red circles) and depolarized mode. (b) The
Brillouin spectra in FSR=25 GHz with best fitted line at a few selected temperatures.
Temperature dependences of (¢) Brillouin shift and (b) FWHM of a low frequency peak of
the [011]c-poled sample measured during heating.

We expect that it is related the phonon propagation direction, because vg of a low frequency
peak is similar to vy of LA mode position by obtained in the forward scattering. In TEM
image, only large size micro/macro cracks between domain structures appeared in a [011]c-
poled sample [5.16]. From the phenomena, other axis (or axes) will be formed by [011]c-poled
process. Therefore, a low frequency peak may propagate both [011]c and wertical of [011]c.
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5. 4 Conclusion

The phase transition sequences of [011]lc-oriented 0.26PIN-0.46PMN-0.28PT single crystals
were investigated under different poling conditions by dielectric and Brillouin spectroscopies.
The unpoled sample showed a diffuse, frequency-dependent dielectric maximum, which was
accompanied by broad elastic softening and acoustic damping of the LA mode. The Brillouin
shift of the LA mode exhibited continuous softening down to a temperature well below the
Curie temperature, which suggests that the coupling of the fluctuating dynamic PNRs to the
acoustic waves plays the dominant role in the acoustic anomalies near the Curie temperature.
Poling the crystal along the [011]c direction induced two abrupt changes in both dielectric and
acoustic properties, which can be attributed to the rhombohedral-orthorhombic and
orthorhombic-tetragonal phase transitions. In case of [001]c-poled sample, two clear anomalies
at ~116 °C and ~165 °C were exhibited. These two-step changes were attributed to the
successive phase transitions from rhombohedral to tetragonal and then from tetragonal to
cubic phases with increasing temperature. However, the diffuse tetragonal-cubic phase
transition was not affected by the poling process, indicating that the macroscopic ferroelectric
domains are transformed into mesoscopic domains and PNRs at the orthorhombic-tetragonal
transition temperature. The acoustic damping in the rhombohedral phase was decreased
significantly by the poling process because of the reduced density of twin domain walls and
static/dynamic PNRs
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Chapter 6. Polarized Raman study of the phonon dynamics in
[001]-poled Pb(In12Nb1/2)Os—Pb(Mg1/sNbs/s)Os—PbTiOs

single crystals

6. 1 Introduction

Lead magnesioniobate, Pb(MgisNb2s)Os (PMN) is an well-known material as a relaxor
material showing a diffuse phase transition characterized by a strong frequency dispersion of
the dielectric susceptibility at temperatures near and below the T,,,,=—3 °C (270 K) [6.1].
However, Many properties of PMN-based relaxor are still unclear and the nature of the
relaxor behavior has yet to be understood, especially relaxation behaviors. One of the
difficulties is multiheterogeneity.

PMN has a perovskite structure with an averaged (macroscopic) cubic Pm3m symmetry with
Mg2+ and Nb5* ions randomly occupied B sites. However, PNRs appear below Burns
Temperature, at which nanometric local polarization clusters form. Size of the PNR steadily
increases from 7 to 20 nm as the temperature decreases. It would have a rhomboheral
symmetry R3m. But, a network of superstructure clusters (COR) with face-centered cubic
symmetry Fm3m destroys the picture. The size of these clusters is of the order of 2—3 nm; the
distance between the centers of neighboring clusters is smaller than 5 nm [6.2-3]. Thus, the
structures of PMN 1is considered as R3m, Fm3m and Pm3m symmetry in the disordered
matrix.

Especially in polarized Raman scattering studies, vibrational spectrum has a shorter
characteristic length scale, Raman spectrum is a good microprobe to study the nanodomain
structures. But most of all, low-frequency (low-wavenumber) spectra are important because
soft optic phonon mode and CP can explain phase transition behaviors and obtain relaxation
time.

In the present chapter, we discuss the role of the relaxational dynamics of the PNR by the
observation of the CP in the wide frequency and temperature ranges and confirm local
structure from [001]-poled and unpoled PIN-PMN-PT single crystals. We offer a complex
analysis of the temperature and angular dependences of the polarized (VV, z(x,x)Z),
unpolarized (VH, z(x,y)z) Raman spectra from unpoled PIN-PMN-PT crystals. This analysis
is based on the multiple-peak decomposition suggested by Siny et al. [6.4]. For the
investigation of relaxation behaviors, Brillouin and Raman spectra were measured at VV and
VH scattering. The fine analysis of the CP must be important, because many papers on CPs in
the spectra of Brillouin and Raman scattering discussed individually and they are
contradicted each other [6.5]
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6. 2 Experimental

A single crystal of 0.26PIN-0.46PMN-0.28PT was grown by the modified Bridgeman method.
Each surface is perpendicular to [001]lc of the pseudocubic orientation. Micro-Brillouin
scattering was measured with the same setup in Chap. 4, 5, while Raman spectra were
measured by a triple-grating spectrometer of additive dispersion (T64000, Horiba Jobin-Yvon)
as illustrated in Fig. 3. 4 with a resolution of 1.6 ~ 1.2 cm™. For fine measurement, we used
same condition, such as objective lens and laser power at focusing area. The scattered light
was collected at the scattering angle of 180° with polarized and depolarized configurations
shown in Fig. 6. 1.

y 4
(a) T (b) T
Incident A Incident 2 ..
light X light A

Scattered
light

<:L,_—1J> Scattered

light

Fig. 6. 1. Two main geometries used in the light scattering experiment, (a) z(x,x)Z (or VV)
and (b) z(x,y)z (or VH).

To investigate angular dependence of Raman spectra, we measured polarized and depolarized
Raman spectra with the same setup in Fig. 3. 5(b). It is possible to measure angular
dependence without rotation of sample in cryostat.

6. 3 Results and Discussion

6. 3. 1 Analysis of Raman spectra

The polarized (VV) Raman raw and reduced intensity spectra in unpoled PIN-PMN-PT are
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shown in Fig. 6. 2 at 30 °C. As known in Fig. 6. 2, all modes are broad and overlapped.
Therefore, we performed deconvolution process without partial analysis process. In order to
obtain CP intensity and it’s width, we directly decomposed the measured spectra using a
multiple-peak fitting procedure without reduced the Bose-Einstein factor (Eq.6.1).

_ (n(w)+1, for Stokes part
Flw,T) = { n(w), for anti — Stokes part, ©.1)
where
1
n(w) = m
(er)-1

The best fits could be achieved with the assumption of a Lorentzian-type CP and other peaks
described by the spectral response functions of a damped harmonic oscillators, modified by the
Bose-Einstein factor;

_4 Aw ] AiFiwizw
(@) =>———+ F(o,T) Z‘—(wZ—wiZ)2+w2rf (6.2)
where w;, A, and I' are peak position, intensity, and width, respectivly. 4dw of CP fitted
parameter is related 1/mt, where t is relaxation time [6.11~13].
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Fig. 6. 2. Polarized Raman spectra from raw data (black line) and corrected by the Bose-
Eistein factor (red line).
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6. 3. 2 Angular dependence of Raman spectra in unpoled PIN-PMN-PT

Figs. 6. 3(a) and 3(b) show the angular dependence of Raman spectra in unpoled PIN-PMN-
PT at 300 °C observed with VV and VH configurations, respectively. The Raman spectra
clearly change periodically with rotation. In particular, the intense peak at around 50 cm™ (in
case of PMN, a low-frequency peak is located 45 cm™), indicated by red closed circles, changes
markedly in intensity. However, the variation of the intensity of other peak is smaller than
PMN crystal [6.6]. It is considered more complex disordered matrix form by added anti-
ferroelectric PIN composition even though they has PT composition which contribute long-
range order.

Intensity (arb.unit)

0 200 400 600 800

Wavenumber (cm™)

Fig. 6. 3. Angular dependences of the Raman spectra in unpoled PIN-PMN-PT. (a) and (b)
present the spectra observed with VV and VH configurations, respectively.
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To analyze the angular dependences of Raman spectra, we carry out Raman tensor analysis
with rotation matrices about the cubic [001]c axis. From Table 2. 2-3, Fm3m symmetry has
four Raman active mode (2F, g Eg, and A;,). The Raman tensors of these modes are as follows;

a 0 O
Alg:<0 a 0)
0 0 a
b 0 O
E, :<0 b 0
0 0 b
0 d d
Fzgi<d 0 d), (6. 3)
d d 0

=

where a, b, and ¢ are constants. For the calculation of angular dependence, the rotation matrix R
is expressed as follow;

, [ cos 6 sing O
R:| —sin® cos6 0] (6. 4)
0 0 1

The angular dependences are calculated by
Rt (Aigor E; or Fp)- R. (6. 5)

The calculated angular dependences of the Raman intensities are described in Fig. 6. 4 by using F,,

mode. Because the A;, and E; modes show angular independence in VV mode.
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Fig. 6. 4. Calculated angular dependence of Raman scattering intensity in Fm3m. (a) and (b) are for
the VV and VH configurations, respectively.

In case of PMN, the observed intensity variation conforms to the calculated results, indicated that the
strong components at around 45 cm! stem from the COR of Fm3m symmetry. Also, the first-
principles calculation indicated that the mode in the #m3m region is located at around 45 cm!
[6.71.
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Fig. 6. 5. (a)Contour 3D map of polarized (VV) Raman scattering intensity from an unpoled
PIN-PMN-PT crystal vs. rotation and wavenumber (-100~150 cm™). (b)Observed angular
dependences of the peak intensity at 50 cm™ were calculated with Eq. 6. 3, 5. Calculated
curves are denoted by red solid line, which is for the VV configuration.

We now compare the observed intensity variation for the low-frequency component at 50 cm!
with calculated intensity. It is incredibly similar to PMN results. On the other hand, angular
dependence of the peak around 50 cm! is not compatible with that of R3m symmetry for PNR.
It is therefore reasonable to assign it to the F,, mode of #m3m symmetry.

6. 3. 3 Temperature dependence of Raman spectra

The deconvolutions of the Raman spectra of depoled PIN-PMN-PT are presented in Fig. 6. 6.
At 30 °C, polarized spectrum is decomposed into 11 lines. The peak frequencies are almost
independent of temperature. Also, VH spectra show normal cubic symmetry type spectra.
However, some of peaks appeared broad phase transition behavior related dynamics of PNRs.
As mentioned in chap. 1, COR shows temperature independence. Therefore peak intensity of
F,, mode of Fm3m symmetry doesn’t grow rapidly below Bruns temperature. Unlike the peak
of COR, 560 cm peak increase dramatically below T* as Fig. 6. 7. It was suggested that the
onset of rapid growth in the size of PNRs and local phase transformation. This temperature
almost same Brillouin scattering result. Also, the angular dependence of the intensity
variation of 560 cm™ peak conformed by the Raman tensor analysis in the R3m.
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Fig. 6. 6. Examples of multiple peak decomposition of Rama spectra measured at 30 °C in
(@VV and (b)VH geometry. The mode assignment cited results of first principles
computations in Pm3m [6.7].
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Fig. 6. 7. Temperature dependences of the intensity of the Raman peaks in (a) 50 cm™ and (b)
560 cm™.

From these results, we confirmed two types of local structure in unpoled PIN-PMN-PT: the
rhombohderally disorted PNR of R3m symmetry and 1:1 chemically order region of Fm3m
symmetry. However, we can’t find Pm3m symmetry by using present Raman analysis.
Because first-order scattering doesn’t allow Raman selection rule above T, (Pm3m).

Fig. 6. 8 shows temperature dependences of the Raman peak positions and the intensity of
peaks 1 and 2 of depolarized spectra. From here, we can find step-like change of peaks 1 and 2
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near Tr-r. Unfortunately, other peaks are too board and shape of spectra are too similar in
cubic and tetragonal symmetry in PIN-PMN-PT, we can’t obtain other structure phase
transition temperature such as T,.
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Fig. 6. 8 shows temperature dependences of the Raman peak positions and the intensity of
peaks 1 and 2 of depolarized spectra.

6. 3. 4 Two polarization relaxation observed in CP

The CP of a PIN-PMN-PT single crystal cannot be reproduced by single Debye-type
relaxation in a Brillouin scattering range. To confirm the lineshape of the CP, the spectra VH
scattering geometry are analyzed. Because the intensity of the CP in VV scattering geometry
doesn’t change below Burns temperature. As a first step to clarify its shape, Brillouin and
Raman spectra are combined to make the scanning range broad. Fig. 6. 9 shows the combined
spectra at two temperatures. They indicate that each CP can be expressed by two Debye-type

relaxations.

To connect between Brillouin and Raman spectra, the Brillouin spectra are measured in as
wide frequency range as possible (to 600 GHz) on a (001)c plate. The FWHM of the broader
one (~300GHz) corresponds to the single Debye-type CP in the Raman spectrum. In the case of
relaxor ferroelectrics, softening transverse optical phonon inside the PNRs exists below
Brurns temperature [6. 8], then, the CP appears. Therefore, the induced local polarization
inside the PNRs is the most probable origin of the relaxation process observed in the CP [6.9].

Origins of two relaxations could refer to the flipping motions of the polarization inside a PNR.
From diffuse neutron scattering in PMN [6.10], the polarization inside a PNR has been
reported to align along the eight equivalent [111]c. Therefore, the slower relaxation process
(the narrow Lorentzian peak) can correspond to the non-180° flipping accompanied by the
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change in strain, while the faster relaxation process (the broad peak) can correspond to the
180 flipping free from any change in strain [6.9].
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Fig. 6. 9. Broadband spectra of PIN-PMN-PT at VH scattering geometry at 300 °C and 180 °C
in log-log scale. Two spectra with different instruments are combined for the better
understanding of the lineshape. Fitted curves are constituted with two Debye-type relaxations
for the CP and DHOs with Bose-Einstein factor.
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The obtained temperature dependence of the slower relaxation time and the CP intensity is
shown in Fig. 6.10. 7,, is of the order picoseconds and rapidly grows toward T,,. However,
inverse of the slower relaxation time does not show linear behavior as Fig. 6. 10(b). The typical
critical slowing down is not observed near 7t¢. The local transition from dynamic to static
PNRs stops the farther slowing down. To reproduce such a suppressed slowing down by
random fields, we proposed the empirical equation of the stretched slowing down in the
vicinity of 7t as given by

1 1 (T-TY)F

?:EJF%’Q <p) (6. 6)
where f is the stretched index. In the case of § = 1.0, the eq. (6. 7) gives the normal critical
slowing down without random fields. In the case of § > 1.0, the slowing down of relaxation
time is suppressed and/or stretched by the increase of the strength of random fields.
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Fig. 6. 10. Temperature dependences of (a) the narrow CP intensity and (b) the inverse slower
relaxation time of a PIN-PMN-PT crystal. The solid line shows the values calculated by Eq.
6.6 of stretched slowing down.

As shown Fig. 6. 10(b), it is found that the value of $=1.3. However, the inverse fast
relaxation time of a broad central peak as a function of temperature shows a linear behavior
at short temperature range. This kind of temperature dependence is typical critical slowing
down in order—disorder type phase transitions.
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Fig. 6. 11. The inverse of the faster relaxation time of PIN-PMN-PT along with the best-fitted
reuslts (solid lines) by using Eq. 6. 7.

6. 4 Conclusion

Dynamical properties of the optic phonon and the PNRs of a relaxor ferroelectric PIN-PMN-
PT single crystal are studied in a broad frequency range from 10 GHz to 28.5 THz to explain
the mechanism of the diffuse ferroelectric phase transition. The CP is temperature dependent
in a wide temperature range, and two Debye-type relaxations are attributed to the CP. The
fast (short range dynamics) and slow (long range dynamics) relaxations show different
behavior. The slow relaxation process is considered to originate from the suppressed slowing
down by random fields. On the contrary, the inverse of the fast relaxation time shows critical
slowing down behavior in a narrow temperature range. From these results, we consider that
added PIN composition form random fields in long range scale but added PT composition
develop short range ferroelectric ordering near T,,. In addition, we confirm Fm3m and R3m
types of local structures in the disordered cubic matrix of PIN-PMN-PT by using angular
dependence of Raman scattering.
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Chapter 7. Summary

I compared the phase transition behaviors of unpoled and [001]c-and [011] c-poled 0.26PIN—
0.46PMN-0.28PT single crystals by using Brillouin, Raman light scattering and dielectric
spectroscopies.

We explained that unpoled and [001]c-and [011] c-poled samples showed various phase
transition behaviors by using considered dynamic/static behaviors of PNRs with local random
field.

In case of a [001]c-poled sample, The high temperature tetragonal-cubic phase transition
remained diffused even for the poled sample, which may be understood as the transformation
of macrodomains into microdomains upon heating due to local random fields inherent in
relaxors.

In case of a [011]c-poled sample, the diffuse tetragonal-cubic phase transition was not
affected by the poling process, indicating that the macroscopic ferroelectric domains are
transformed into mesoscopic domains and PNRs at the orthorhombic—tetragonal transition
temperature. The acoustic damping in the rhombohedral phase was decreased significantly by
the poling process because of the reduced density of twin domain walls and static/dynamic
PNRs.

The unpoled sample showed broad elastic softening along with substantial dielectric
dispersion, which is typical in relaxors. At 300 °C, the symmetry of B-site ordering CORs was
confirmed by investigating the angular dependence of low-frequency Raman spectra. The
CORs are located in a stable equilibrium state like PMN. Therefore, dynamic PNRs must
play an essential role in the formation of complex dynamic characteristics and/or diffuse
ferroelectric phase transition of this ternary system. The Burns temperature was determined
to be about 550 °C by observing the spectral changes as deviated normal lattice anharmonicity.
The small damping peak at 90 °C was attributed to the development of moderately diffused
and short-ranged (or mesoscopic) polar state due to the abrupt growth and merging of PNRs
without changing the directions of their dipole moments. Poling the crystal under DC bias
field of 15 kV/cm along the [001]c and [011]c direction gave rise to the appearance of the TA
mode, suppression of the central peak, and substantial changes in the LA mode properties,
indicating structural transformation from the short-range polar state into a domain-
engineered 4R and 2R state, respectively.

Two relaxations in an unpoled PIN-PMN-PT sample are investigated by the Brillouin and
Raman scattering. The slower and faster relaxation times determined by assuming the two
Debye-type relaxations. We attribute the fast and slow relaxations to the thermally activated
flipping of polarization inside the PNRs from compositional fluctuation. We consider that the
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faster relaxation indicates short range dynamics with ferroelectric order parameter by added
ferroelectric PT composition, while, the slower relaxation indicates long range dynamics with
the suppressed slowing down by random fields by added anti-ferroelectric PIN composition.
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