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Abstract— Annular microvoids formed by neutron-induced 

single-event burnout (SEB) in Si power diodes were observed by a 
slice-and-view technique. The axial symmetry of damage region 
reflects the spatially-isotropic thermal diffusion that occurred. 
Analytical formulae for the local rise in temperature during SEB 
were derived from the thermal diffusion equation. The local 
temperature was found to increase in direct proportion to the 
deposited energy, which was expressed as the time integration of 
the product of the applied voltage and the SEB current. This 
current is the result of charges generated by recoil ions and 
subsequent current-induced avalanche. The diameter of the 
damage region was estimated using the analytical formulae and 
the energy associated with Joule heating, which was calculated by 
TCAD device simulations, and was found to be comparable in size 
to the observed annular voids. The SEB current density was also 
calculated based on the simulated SEB current and the size of the 
damage region. 
 

Index Terms— Single event burnout (SEB), white-neutron 
irradiation, annular microvoids, thermal diffusion equation, 
current-induced avalanche (CIA) 

I. INTRODUCTION 
IGH ENERGY particles at sea level are produced by 

nuclear spallation reactions between cosmic rays and 
atmospheric nuclei. There is general agreement that 97% of 
these particles are white neutrons with a broad energy 
distribution [1]. Cosmic-ray-induced neutrons cause 
catastrophic failure in power devices in a stochastic manner 
[2]-[6]. The failure rate associated with single-event burnout 
(SEB) increases sharply with applied voltage when the voltage 
exceeds a certain threshold value. It is therefore crucial to 
optimize the SEB threshold voltage during the device design 
stage in order to achieve highly reliable devices and avoid 
chance failures. 

There have been several numerical investigations of the SEB 
failure mechanism [7]-[15]. In addition, white-neutron 
irradiation experiments and transient thermal simulations have 
been performed to analyze the SEB triggering mechanism in 
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silicon (Si) and silicon carbide (SiC) power devices [16]-[25]. 
A nuclear reaction between individual incident neutrons and Si 
nuclei induces recoil ion formation, and electron-hole pairs are 
generated along the ion track. A highly localized current then 
flows through the power device, and local thermal destruction 
can occur if the voltage applied to the device is higher than the 
SEB threshold voltage. 

Transient thermal simulations have been used to investigate 
the behavior of electron-hole pairs generated along the ion 
tracks in power devices under the influence of the applied 
voltage. The electrostatic potential adopts a funnel-like shape 
and the highly localized current results in an increase in the 
electron density in the vicinity of the n- drift region/n+ diffusion 
region interface [16], [18]-[20], [22]. This space charge effect 
leads to a shift of the peak electric field from the p- body 
region/n- drift region interface to the n- drift region/n+ diffusion 
region interface. Consequently, the electric field distribution 
assumes a hammock-like shape along the ion track, which 
corresponds to a region of negative differential resistance 
(NDR) [26], [27]. Punch-through at the anode contact 
subsequently occurs with increasing current density, and this 
corresponds to a region of positive differential resistance 
(PDR) [26]. Therefore, the diode behaves locally like a resistor. 
It was clarified that the SEB mechanism in power diodes is 
thermal failure caused by local secondary breakdown. 
Moreover, it was shown to be possible to control the SEB 
threshold voltage by optimal choice of device parameters such 
as the drift region thickness [16]-[20]. 

In the present study, annular microvoids formed by 
neutron-induced SEB in Si power diodes were observed using a 
slice-and-view technique. In addition, analytical formulae for 
the local rise in temperature during SEB were derived from the 
thermal diffusion equation. The diameter of the damage region 
was then estimated using these formulae together with the 
energy associated with Joule heating, which was determined by 
technology computer aided design (TCAD) device simulations. 
The SEB current density was also estimated based on the 
simulated SEB current and the size of the damage region. 

II. ANALYSIS OF NEUTRON-INDUCED SEB USING A 
SLICE-AND-VIEW PROCEDURE 

In the present study, white-neutron irradiation of Si power 
diodes was carried out. A schematic diagram of the 
experimental test circuit is shown in Fig. 1. A voltage of 1050 V, 
which is close to the SEB threshold, was applied between the 
cathode and anode during neutron irradiation. Fig. 2 shows the 
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chip failure rate as a function of the applied voltage for Si 
power devices. The failure rate is seen to increase sharply at a 
particular voltage, which is defined as the SEB threshold 
voltage [20]. Transient device simulations were carried out to 
clarify the SEB triggering mechanism for Si diodes, and the 
results are shown in Fig. 3. The applied voltage was 1050 V, 
and SEB was found to occur at this voltage. It can be seen that 
the aluminum surface remains at room temperature during the 
SEB event.  

Fig. 4 shows a scanning electron microscopy (SEM) image 
of the photoemission region at the anode identified using 
backside photoemission microscopy. The surface of the Al 
electrode showed no damage due to SEB. Fig. 5 shows SEM 
images of the Si surface after Al etching. A crater with an 
elevated rim is seen to be present, which is thought to be 
associated with motion of molten Si from within the device to 
the surface. Fig. 6(a) shows slice-and-view observations using 
FIB. The SEM image is at 0.4 μm depth from the Si surface. 
Two damage regions with a spacing of 2 μm can be observed, 
one of these regions is indicated by a yellow rectangle. The p+ 
diffusion layers in the anode region were indicated by the blue 
rectangles as shown in Fig. 6(b). Transient thermal device 
simulations were carried out for the cross section indicated by 
the dashed red line connecting the two damage regions in Fig. 
6(b). As shown in Fig. 6(d), hole current crowding occurs at the 
corners of the p+ diffusion layers, with a spacing of 2 μm. 
Consequently, the lattice temperature rises at the two points 
shown in Fig. 6(e). Therefore, the two damage regions indicate 
traces that branched hole currents flowed into the two p+ 
diffusion patterns. Fig. 7 shows slice-and-view SEM images of 
the damage region indicated by the yellow rectangle in Fig. 6(a). 
A unique annular microvoid with a diameter of about 1 μm was 
observed in the p- body region on the anode side, as shown in 
Figs. 7(a)-(c). The presence of this void suggests that the 
maximum lattice temperature in the device reached the melting 
point of Si due to the highly localized current caused by SEB. 
When this occurred, atoms in the melted region migrated to the 
device surface owing to thermal expansion of the Si. An 
annular void was then formed at the circumference of the 
damage region during the cooling process, and Si erupted 
above the device surface, as shown in Fig. 5(b). The 
axisymmetric shape of the void reflects the spatially isotropic 
thermal diffusion that occurred. 

As shown in Fig. 7(d), the void was no longer observed at a 
depth of 1.4 μm from the Si surface (inside the p- body region 
on the anode side). At a depth of 2.8 μm, a relatively straight 
crack was observed, as shown in Fig. 7(e). Furthermore, linear 
cracks were formed on both sides of the melt-solidification 
region located in the center of the damage region, as shown in 
Fig. 7(f). The cracks gradually began to disappear in deeper 
regions, as seen in Figs. 7(g)-(o), and were completely gone at a 
depth of 9.8 μm, as shown in Fig. 7(p). Typically, cracks in 
materials originate at edges and surfaces, and then propagate 
inwards. However, the cracks due to SEB are unique in shape 
and only form inside the device. 

Fig. 8 shows an analysis of the annular void region using 
high-angle dark-field scanning transmission electron 
microscopy (HAADF-STEM) and energy dispersive X-ray 
spectroscopy (EDX). A voltage of 1023 V, which is close to the 
SEB threshold, was applied to the sample during white-neutron 

irradiation, so that the chip failure rate due to SEB was a 
function of the applied voltage, as shown in Fig. 2. 
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Fig. 1.  Schematic diagram of experimental test circuit. 

 
Fig. 2.  Chip failure rate for Si power devices due to neutron-induced SEB as 

function of applied voltage (n- drift thickness; IGBT C > IGBT B > IGBT A) 
[20]. 

 
Fig. 3.  Simulated SEB current in Si power diode, maximum lattice 

temperature, and maximum surface temperature of aluminum anode. 
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Fig. 4.  SEM images of emission spot at anode identified using backside 

photoemission microscopy: (a) Low-magnification image and (b) 
high-magnification image. 

 

 
Fig. 5.  SEM images of Si surface after aluminum etching: (a) 
Low-magnification image, and (b) high-magnification image. 
 

 
Fig. 6.  Slice-and-view observations using FIB: SEM image at 0.4 μm depth 
from the Si surface (a). Device simulation results at the broken red line shown 
in (b) when the maximum lattice temperature reaches the Si melting point: (c) 
doping profile (/cm3), (c) hole current density (A/cm2) and (e) lattice 
temperature (K). 
 

 

 
Fig. 7.  Slice-and-view SEM images of damage region indicated by yellow 

rectangle in Fig. 6 (a): 
(a) depth of 0.8 μm from the Si surface (inside p- body on the anode side) 
(b) depth of 1.0 μm from the Si surface (inside p- body on the anode side) 
(c) depth of 1.2 μm from the Si surface (inside p- body on the anode side) 
(d) depth of 1.4 μm from the Si surface (inside p- body on the anode side) 
(e) depth of 2.8 μm from the Si surface (inside n- drift region) 
(f) depth of 3.0 μm from the Si surface (inside n- drift region) 
(g) depth of 3.2 μm from the Si surface (inside n- drift region) 
(h) depth of 4.0 μm from the Si surface (inside n- drift region) 
(i) depth of 4.5 μm from the Si surface (inside n- drift region) 
(j) depth of 5.3 μm from the Si surface (inside n- drift region) 
(k) depth of 5.8 μm from the Si surface (inside n- drift region) 
(l) depth of 6.3 μm from the Si surface (inside n- drift region) 
(m) depth of 7.3 μm from the Si surface (inside n- drift region) 
(n) depth of 7.8 μm from the Si surface (inside n- drift region) 
(o) depth of 8.8 μm from the Si surface (inside n- drift region) 
(p) depth of 9.8 μm from the Si surface (inside n- drift region) 
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Fig. 8.  HAADF-STEM image and EDX elemental maps. 

 
The void shown in Fig. 8 has a diameter of 0.34 μm, which is 
smaller than the value of 1 μm for the void shown in Fig. 7. 
Thus, the extent of the SEB damage region is variable. In the 
HAADF-STEM image, there is a contrast difference between 
the inside and outside of the annular void. This reflects the 
melt-solidification that occurred within the damage region due 
to the highly localized SEB current. Moreover, the Al elemental 
map shows that Al atoms have migrated from the anode to the 
inside of the device. 
 

III. ESTIMATION OF AREA OF DAMAGE REGION USING THERMAL 
DIFFUSION EQUATION 

In this section, analytical formulae for the local rise in 
temperature during SEB were derived from the thermal 
diffusion equation. The diameter of the circular damage region 
was estimated using these formulae together with the energy 
associated with Joule heating, which was determined by TCAD 
device simulations. This energy is calculated from the time 
integration of the simulated heat generated, based on the 
product of the voltage and the SEB current shown in Fig. 3. The 
first current peak at a time of 1×10-12 s is associated with 
acceleration of the initially generated electron-hole pairs along 
the recoil ion track by the electric field in the depletion region. 
Subsequent current flow is due to current induced avalanche. 
The temporary decrease in the current just before 1×10-9 s 
shown in Fig. 3 is caused by a decrease in the impact ionization 
rate at the n-/n+ interface, when the peak electric field shifts to 
deep within the n+ diffusion region [19] [20]. Finally, the 
current again increases due to impact ionization deep within the 
n+ diffusion region. The total SEB failure period in Fig. 3 is 
2.55×10-9 s, and during this period, the thermal diffusion length 
for Al is calculated to be 0.5 μm using 

8 2 -9
Al  0.9975 10 [μm /s] 2.55 10 [s] = 0.5μm D τ   = ×  × ×       (1) 

Here, DAl is the thermal diffusion coefficient for Al, and τ is 
the diffusion period. Thus, the heat does not propagate to the 

surface of the 5-μm-thick Al electrode in the short diffusion 
period of 2.55×10-9 s. This is consistent with the device 
simulation results shown in Figs. 3 and 6(e), which indicate no 
increase in the Al surface temperature. It is also in agreement 
with the SEM images of the Al surface in Fig. 4, where no 
damage due to SEB is observed. Therefore, the thermal 
boundary condition can be treated on the device surface as 
adiabatic boundary. The thermal diffusion equation during SEB 
is given by 

2
Si

( , ) ( )( , )
p

T t q tD T tt Cρ
∂ − ∇ =  ,

∂   
r r       (2) 

( ) ( ) ( )( ) .P t I t V tq t ⋅= =
Δ Δ         (3) 

Here, DSi (0.883 cm2/s) is the thermal diffusion coefficient for 
Si, q(t) is the heat generated per unit volume, expressed as the 
product of the SEB current I(t) and the applied voltage V(t), 
divided by the heat generation volume Δ [cm3], ρ (2.33 g/cm3) 
is the mass density of Si and Cp (0.69 J/gK) is the specific heat 
capacity of Si. 
The lattice temperature is expressed as 
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where T0 is the ambient temperature. 
The heat generation volume for the SEB is defined by 

( )/ 2 ' / 2, / 2 ' / 2, / 2 ' / 2a x a b y b c z cΔ − ≤ ≤   − ≤ ≤   − ≤ ≤ . 
The lattice temperature at the center of the heat generation 

volume is expressed by 

0 0
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Si Si

(5)
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where tf  [s] and E [J] are respectively the failure period and 
the energy due to Joule heating associated with the SEB. 
The error function erf (x) can be expanded in the following 

series. 
2 1

0

2 ( 1)erf ( ) .
!(2 1)

n n

n

xx
n nπ
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=
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 =

+∑       (7) 

This can be approximated as 

Si Al 
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For a failure period of 2.55×10-9 s, if 
Si 24 f

a
D t

π
≥

 
, the size 

of the heat generation region is given by 

Si4 1.68[μm]fa D tπ≥  =  .        (9) 

Therefore, when 
2

Si4f a
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≤ =  , Eq. (5) can be simplified as 
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In contrast, when 

Si 24 f

a
D t

π
≤

 
 , the size of the heat 

generation region is 

Si4 1.68[μm]fa D tπ≤  =  .       (11) 

The diameters of the damaged region in Fig. 7(b) and Fig. 8 
are 1 μm and 0.34 μm, respectively, both of which agree with 
Eq. (11). 

In the case of 
2

Si4a b f c
at t t t
Dπ

= = ≤ ≤  , Eq. (5) can be 

simplified using Eq. (8) as follows: 
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The size of the damage region was then estimated using Eq. 
(12) and the simulated energy E, which was calculated to be 
3.57×10-7 J by integrating the product of the voltage and the 
SEB current shown in Fig. 3 from 0 to 2.55×10-9 s. In addition, 
the potential distribution adopts a funnel-like shape during the 

SEB [19] [20]. The heat generation depth c is 150 μm in light of 
the potential deformation during the SEB shown in Fig. 9. 
Finally, the temperature T(tf) reaches the melting point of Si 
(1683 K) after 2.55×10-9 s, as shown in Fig. 3. By substituting E 
= 3.57×10-7 J, tf = 2.55×10-9 s, T (tf) = 1683 K and T0 = 300 K 
into Eq. (12), we obtain an a value of 0.406 μm, which is the 
same order of magnitude as the values of 1μm and 0.34μm in 
Fig. 7(b) and Fig. 8, respectively. The amount of initially 
generated charge due to recoil ions varies stochastically, and 
affects the size of the SEB damage region. 
Fig. 10 shows the simulated SEB current, and the maximum 

electron and hole current density determined by TCAD 
simulations. The maximum current density for both electrons 
and holes is on the order of 107 A/cm2. On the other hand, based 
on a maximum SEB current of 0.15 A and a Joule heating area 
of πa2 = π (0.406 μm)2, the maximum SEB current density is 
estimated to be 2.9×107 A/cm2, which is similar to the 
simulated current density shown in Fig. 10. Furthermore, the 
estimated current density 2.9×107 A/cm2 corresponds to the 
positive differential resistance (PDR) region shown in Fig. 11. 
These results support the validity of the proposed mechanism, 
by which SEB in power diodes occurs by thermal failure caused 
by local secondary breakdown. 
 

Fig. 9.  Electrostatic potential [V] at the times 2.55×10-9 s shown in Fig. 3. 
 

 
Fig. 10.  Simulated SEB current, and maximum electron and hole current 

density. 

[μm] 
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Fig. 11.  Simulated static characteristic of power diode. 

IV. CONCLUSION  
An analysis of neutron-induced SEB in Si power diodes has 

been carried out using a slice-and-view imaging technique. 
Unique annular microvoids were observed inside the devices, 
whose axially symmetric shape reflects spatially isotropic 
thermal diffusion. Analytical formulae for the local rise in 
temperature during SEB were derived from the thermal 
diffusion equation. The diameter of the damage region was 
theoretically estimated using these formulae together with the 
energy associated with Joule heating, which was calculated by 
TCAD device simulations. The estimated diameter of the 
damage region was similar to the observed sizes of the annular 
voids. Based on this diameter, the current density during SEB 
was calculated to be 2.9×107 A/cm2. This high current density 
corresponds to the positive differential resistance (PDR) region 
associated with secondary breakdown of the diodes. This holds 
for diode structures where the peak electric field can shift deep 
into the n+ diffusion region, if this region has doping density 
which is of a not too steep gradient dn/dx. These results support 
the proposed mechanism by which SEB in power diodes occurs 
due to thermal failure caused by local secondary breakdown.  
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