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Chapter 1 

General Introduction 

  

Medical applications of atmospheric-pressure plasma 

In physical sciences, “plasma” refers to the fourth state of matter; on the other hand, in medicine and 

biology plasma is known as the non-cellular fluid component of blood. Intriguingly, the term plasma 

has been coined by Irving Langmuir to emphasize that the characteristics of ionic liquids ubiquitous 

in biology and medicine are analogous to plasma in the physical sciences [1]. Recently, it is expected 

to inform the development of plasma medicines [2] for cancer [3-6], glioma [7], blood coagulation 

[8], disruption of the human hepatocyte cytoskeleton [9], sterilization [10-19], and Parkinson’s 

disease [20]. Therefore, plasma medicine is an attractive new research area [21-23]. 

 

Low-frequency plasma jet generates reactive oxygen species 

Atmospheric-pressure cold plasma (APCP) has been used for various applications and has many 

advantages: (i) inexpensive operation costs in vacuum-free systems; (ii) use of a moderate gas 

temperature; (iii) facilitation of delicate and flexible operations; and (iv) generation of reactive 

oxygen species (ROS) [24], typically hydroxyl radicals (OH•) [25-29], superoxide anion radicals 

(O2
-
•) [30], hydroperoxy radicals (HOO•) [31], singlet oxygen (

1
O2), and atomic oxygen (O) [32]. 

These features of APCP enable the exploitation of a novel field of chemical reactions both in solution 

[33-35] and under dry conditions. In particular, medical applications using ROS generated by APCP 

is at the center of intense research efforts [36]. 

 For the study, a low-frequency (LF) plasma jet was used for the APCP processing. The 

plasma shape was elongated from the end of a glass tube, in which helium gas flowed, by the 

application of an alternating-current high voltage (ranging from -3.5 to +5.0 kV at a frequency of 

13.9 kHz) to a single-sided electrode. Helium plasma with a low gas temperature was generated in an 

elongated shape. The discharge power of the plasma was approximately 3 W. Various active oxygen 

species such as superoxide anion radicals produced from O2 of the ambient gas by the plasma were 

supplied to the solution. Thus, plasma-induced chemical processing, which diffuse into the liquid 

phase and thus react with substances in solution, is induced by LF plasma jet. 

 

 



2 

The reduced pH method for plasma sterilization 

Sterilization in aqueous solution is one of the most in-demand applications of plasma medicine 

because the organism is also present in aqueous conditions, such as root canal therapy in dentistry 

[37] and the prevention of surgical site infection [38]. For sterilization in aqueous solution, our 

research group has presented a new method of plasma sterilization, named “the reduced pH method”, 

by which plasma sterilization in solution under acidic conditions (pH <4.8) occurs much more 

efficiently than under neutral conditions (pH 6.5) [31].   

The assumed mechanism of plasma sterilization in solution using the reduced pH method is 

as follow [38]. The plasma-generated O2
-
• in air diffuses into solution. O2

-
• in the solution is 

known to be in equilibrium with HOO• in which acid dissociation constant is pH 4.8 [39, 40]. This 

reaction means that O2
-
• converts into HOO• at lower pH conditions (<4.8). Unlike the charged 

molecular O2
-
•, the non-charged molecular HOO• easily permeates into the cell membrane, of 

which the lipid bilayer has a permselective property. Therefore, the HOO• can then react with 

biomolecules inside the cell and cause various molecular changes to induce highly effective 

bacterial inactivation. 

 

Fundamental understanding of the chemical effect 

Proteins are built from series of up to twenty L-amino acids and have all functions in biological 

systems. For example, proteins play roles such as catalyst, transporter and scaffolding in cytoplasm. 

These proteins are different from most of synthetic polymers because of their structure accounted for 

by the unique monomer unit. Most of the proteins fold into characteristic shape by following the 

sequence of the monomer units in contrast with synthetic polymers. Interactions involved in the 

protein folding are van der Waals force, hydrogen bond, and electrostatic and hydrophobic 

interactions. Among them, hydrogen bond confines the protein conformation and, therefore it mainly 

defines their characteristic structure.  

 Although various biomedical applications of the atmospheric pressure plasma have been 

developed over the past decade, fundamental understanding of interactions between plasma and 

biomacromolecules has remained insufficient. Few experiments have examined the atmospheric 

pressure plasma destructed the tertiary structure of DNA in aqueous solution [41, 42] and 

degradation of protein in dry conditions [43, 44]. Recently, it has been reported that the APCP 

degrades proteins in aqueous solution. For example, APCP inactivates infectious prion protein [45], 

activates lipase in solution after treated within one minute [46], and inactivates recombinant green 

fluorescent protein (GFP) in E. coli cells [47]. 
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Objective for this study 

Plasma medicine is an attractive new research area, but fundamental understanding of interaction 

between plasma and biomolecules and molecular mechanism of plasma medicine has remained 

insufficient. In this study, we investigated the chemical effects of atmospheric-pressure cold plasma 

on an enzyme hen egg white lysozyme, 20 naturally occurring amino acids, and amyloid-ß fibrils in 

aqueous solution and the mechanism of plasma sterilization in solution using the reduced pH method. 

These data provide fundamental information for elucidating the mechanism of protein inactivation 

and sterilization for biomedical plasma applications. 
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Chapter 2 

Mechanism of Plasma Sterilization Using the Reduced 

pH Method 

 

2.1 Molecular Mechanism of Plasma Sterilization in Solution 

with the Reduced pH Method: Importance of Permeation of 

HOO Radicals into Cell Membrane 

 

 

Introduction 

Low-temperature atmospheric-pressure plasma (LTAPP) has attracted considerable attention for use 

in various medical and life science applications. The merits for LTAPP are as follows: (i) inexpensive 

operation costs in vacuum-free systems, (ii) use of moderate gas temperature, (iii) facilitation of 

delicate and flexible operations, and (iv) generation of reactive oxygen species (ROS) [1], typically 

hydroxyl radicals (OH•) [2-6], superoxide anion radicals (O2
-
•) [7], hydroperoxy radicals (HOO•) [8], 

singlet oxygen (
1
O2), and atomic oxygen (O) [9]. These features allow for the exploitation of a novel 

field of chemical reaction in solution [10-12], as well as under dry conditions. For example, the 

recent pioneering applications of LTAPP include the development of plasma medicines [13, 14] for 

cancer [15-18], Parkinson’s disease [19], blood coagulation [20], disruption of the human hepatocyte 

cytoskeleton [21],
 
and sterilization [22-29].  

 The sterilization of bacteria in solution is one of the most in-demand applications of plasma 

medicine because the organism is also present in aqueous conditions, typically involving root canal 

therapy in dentistry [30] and the prevention of surgical site infection [31]. For sterilization of bacteria 

in solution, our research group has presented a new concept for plasma application in solution, called 

“plasma-induced chemical processing” [32]
 
and a new method of plasma sterilization, named “the 

reduced pH method” [8]. Briefly, in plasma-induced chemical processing, LTAPP generates 

chemically reactive species in the gas phase, which diffuse into the liquid phase and thus react with 
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substances in solution. Plasma sterilization in solution under acidic conditions (pH <4.8) occurs 

much more efficiently than under neutral conditions (pH 6.5) when plasma-induced chemical 

processing and the reduced pH method are used [8].  

 The mechanism of plasma sterilization in solution using plasma-induced chemical 

processing and the reduced pH method is shown in Figure 2.1.1 by K. Kitano et al. [31]. The 

plasma-generated O2
-
• in air diffuses into solution. O2

-
• in the solution is known to be in equilibrium 

with HOO•, as shown by the following reaction [33, 34]: 

 

  O2-• + H+    HOO•                  pKa = 4.8        (1)  

 

Here, pKa means acid dissociation constant. This reaction shows that O2
-
• converts into HOO• at 

lower pH conditions (<4.8). Unlike charged (anion) molecular O2
-•, non-charged (neutral) HOO• 

easily permeates into the cell membrane, of which the lipid bilayer has a permselective property. The 

HOO• can then react with biomolecules inside the cell and cause various molecular changes such as 

conformational changes in DNA [34-37], DNA damage [38],
 
and inactivation of enzymes [39], to 

induce bacterial inactivation. 

 Generally, the death rate of the bacteria is known to be proportional to the concentration of 

the bactericidal factor [40]. If the sterilization mechanism of the reduced pH method is actually 

 

Figure. 2.1.1. Schematic mechanism of plasma sterilization in solution by using plasma-induced chemical 

processing and the reduced pH method. The “target” of the plasma sterilization corresponds to the test bacteria 

or the dye-included micelle as a bacterial model. The yellow layer of the target is the cell membrane or 

surfactant micelle, both of which are semi-permeable.  
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involved in the neutralization of O2
-
• to HOO•, the death rates should be proportional to the 

concentration of HOO• at various pH values. To evaluate this hypothesis, we investigated the 

experimental results by using 3 kinds of bacteria and a bacterial model of a micelle system and 

examined the chemical reactions of active species in solution. 

 

 

Materials and methods  

Materials  

Streptococcus mutans JCM 5705 and Campylobacter rectus JCM 6301 were obtained from the 

RIKEN BioResource Center, Japan Collection of Microorganisms. Escherichia coli NBRC 3301 was 

obtained from Biological Resource Center, NITE. The soybean-casein digest (SCD) agar and sheep 

blood agar (SBA) plates were obtained from Nissui Pharmaceutical (Tokyo, Japan). The LB 

(Luria-Bertan) broth Miller and LB agar Miller plates were obtained from Becton, Dickinson and 

Company (Franklin Lakes, NJ, USA). Nile red was obtained from Sigma Chemical Co. (St. Louis, 

MO, USA). Tween 20 was obtained from Tokyo Kasei Kogyo Co. Ltd. (Tokyo, Japan). Sodium 

citrate, potassium chloride, glycine, citric acid, sodium phosphate, and sodium bicarbonate were 

obtained from Wako Pure Chemical Industries Ltd. (Osaka, Japan).  

 

Plasma jet generation 

A low-frequency (LF) plasma jet was used in a manner similar to that described in a previous study 

[8]. The plasma shape is elongated from the end of a quartz glass tube, in which helium gas flows, by 

the application of an alternating current high voltage (ranging from -3.5 to +5.0 kV at a frequency of 

13.9 kHz) to a single-sided electrode. The electrode consists of a small copper sheet wound around 

the glass tube (Fig. 2.1.2a). Helium plasma with a low gas temperature was generated in an 

elongated shape (Fig. 2.1.2b).  

 

Bacterial inactivation assay 

S. mutans was cultivated on an SCD agar plate for 48 h at 37 °C. C. rectus was cultivated on an SBA 

plate for 48 h at 37 °C under anaerobic conditions. Both these cultivated bacteria samples were 

harvested from the surfaces of the plates. E. coli was cultivated in LB broth for 18 h at 30 °C with 

110 rpm reciprocal shaking and was subsequently harvested by centrifugation. All harvested bacteria 

were suspended in an appropriate volume of distilled water (DW). The bacterial suspension was 

diluted with DW to OD600 = 0.1, which contained approximately 7 × 10
7
 cells·mL

-1
 of bacteria.  
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 Bacterial inactivation assays were performed in the following manner using LF plasma jets. 

The prepared bacterial suspension (OD600 = 0.1) was diluted 10-fold with a 2.0 mM sodium citrate 

buffer (pH range of 6.5–3.7) and subsequently, 500 µL of this diluted solution was distributed into 

24-well microplates. The plasma jet was applied to the surface of the bacteria suspension in each 

well for predetermined time intervals in ambient air. The tip of the tube that produces the plasma jets 

was located approximately 17 mm above the solution surface. The helium gas flow rate was 2.0 slm.  

 The number of living bacteria after plasma application was determined by a colony forming 

unit (CFU) assay performed as follows. After plasma exposure, the suspensions were recovered from 

the wells and DW was added to each recovered solution to replenish water lost by evaporation during 

the process. Subsequently, the solutions were serially diluted further with DW, and 100 µL of each 

dilution was spread on the SCD agar, blood agar, and LB agar plates used for S. mutans, C. rectus, 

and E. coli, respectively. These plates were incubated for 48 h at 37 °C (only C. rectus was incubated 

under anaerobic conditions), thereby enabling the development and subsequent counting of the 

bacterial colonies. The minimum detection value of the CFU assay in this study was 10 CFU·mL
-1

. 

The operations to plating for CFU assay from suspension of bacteria were terminated within 30 min. 

 

Dye decoloration assay of surfactant micelles 

Surfactant micelles that included a dyeing agent were prepared by agitating a solution containing 116 

 

 

Figure. 2.1.2. Plasma jet system. (a) Schematic representation of the plasma jet system with a sample 

solution. The plume-like structure of the plasma extends toward the surface of a solution containing a bacterial 

suspension or surfactant micelles. (b) Photograph of the plasma jet. The plasma of helium gas flows through 

the glass tube. The discharge power of the plasma was 3 W. 
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µM Nile red and 20% v/v Tween 20 at 25 °C for 24 h. In the plasma exposure experiments, a 300-µL 

micelle sample containing 5.8 µM Nile red, 1% v/v Tween 20, and 100 mM buffer was applied to the 

vessel as the target solution. The buffers of the target solutions were potassium chloride at pH 1, 

glycine at pH 2, 3, 9, and 10, citric acid at pH 4–6, phosphate at pH 7 and 8, and bicarbonate at pH 

11. 

 The decoloration assay measurements were obtained as follows. The plasma jet was 

generated within an airtight chamber (at its center) using the plasma generation device described 

above. The ambient gas in the chamber was controlled via an oxygen (O2) gas supply port connected 

to the side of the plasma jet port to avoid the generation of nitrogen species that could affect the pH 

value. The flow rates of He and O2 gas were 0.50 and 0.15 slm, respectively. To enable the exchange 

of ambient gas, He and O2 gases were initially made to flow into the chamber for 5 min. The various 

reactive-oxygen species produced from O2 gas by the helium plasma were supplied to the solution in 

the chamber.  

 

 

Results 

Calculation of the concentration of radicals 

Radical species are generally unstable with short lifetimes; hence, it is impossible to determine the 

concentration of radicals in aqueous solution after plasma treatment. Here, we introduce the 

theoretical calculation of the concentration of HOO• and O2
-
•. The detail was cited in Reference 31. 

 The concentration of HOO• and O2
-
• as a function of pH was calculated considering not 

only acid dissociation equilibrium (eq (1)) but also dismutation of radicals (eq (2)–(4)). First, O2
-
• 

radials related to HOO•, as determined by eq (1), contribute to bacterial inactivation in aqueous 

solution [41]
 
because of a long lifetime of O2

-
• (5 s at 1.0 × 10

-6
 M) [42]. O2

-
• and HOO• are 

consumed in solution in the proportions indicated by equations (2)–(4) [33, 34]. 

 

O2
-
• + HOO• + H

+
 → H2O2 + O2       k1 = 9.7 × 10

7
 M

-1
s

-1
       (2) 

HOO• + HOO• → H2O2 + O2      k2 = 8.3 × 10
5
 M

-1
s

-1
       (3) 

O2
-
• + O2

-
• + 2 H

+
 → H2O2 + O2        k3 = 0.3 M

-1
s

-1
         

 
  (4) 

 

Here, k1, k2, and k3 denote the respective reaction rates. The supply of O2
-
• generated by plasma in 

the gas phase to the solution balances the consumption of O2
-
• and HOO• in solution. Consequently, 

using equations (1)–(4), the overall reaction can be written as below. 
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Vs = Vd = k1[O2
-
•][HOO•] + k2[HOO•]

2
 + k3[O2

-
•]

2
 

  = k1 × 10
(pH - 4.8)

 [HOO•]
2
 + k2[HOO•]

2
 + k3×10

2(pH - 4.8)
 [HOO•]

2
       (5) 

= k1 ×10
(1- 4.8)

 ([HOO•] pH=1)
2
 + k2 ([HOO•] pH=1)

2
 + k3×10

2(1- 4.8)
 ([HOO•] pH=1)

2  
 

 

Here, Vs and Vd denote the supply rate of the O2
-
• from gas phase to solution by plasma treatment and 

the consumption rate of O2
-
• and HOO•, respectively. Because Vs is constant at any pH, the fraction 

of HOO• concentration at each pH value can be described using the following equation, derived from 

equation (5). 

 

[HOO•]/[HOO•]pH = 1 = (9.2 × 10
2
) × (k1 ×10

(pH-4.8)
 + k2 + k3 × 10

2(pH-4.8)
)
-1/2         

(6) 

 

 Consequently, using equations (1) and (6), the fraction of O2
-
• concentration at each pH can 

be written as below. 

 

[O2
-
•]/[HOO•]pH=1 = 9.2 × 10

2
 ×10

(pH-4.8)
×(k1 ×10

(pH-4.8)
 + k2 + k3 × 10

2(pH-4.8)
)
-1/2       

(7) 

 

The corresponding rate curve for equations (6) and (7) was plotted in Figure  2.1.3; the obtained 

curve was in good agreement with the results of the previous paper for spectrophotometric analysis 

of spontaneous disproportionation of radicals [42]. Therefore, the result indicates that the 

 

Figure. 2.1.3. The relative concentration of HOO• and O2
-
•. The HOO• concentration is described by equation 

(6) (with respect to the left axis, closed circle) and the O2
-
• concentration is described by equation (6) (with 

respect to the right axis, open square) for a pH range of 1.0–11.0. (Inset) The relative concentration of HOO•, 

O2
-
• and (HOO• + O2

-
•) at pH 3.7–6.5. The (HOO• + O2

-
•) concentration is shown by an asterisk. In the inset 

figure, the left and right axes show the same range. 
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concentration of HOO• and O2
-
• can be arbitrarily controlled by the pH of the solution.  

  

Bacterial inactivation 

If Figure 1 describes the mechanism of plasma sterilization, the bacterial inactivation rate should be 

proportional to the concentration of HOO• in solution. Here, we investigated the inactivation of 3 

kinds of bacteria at various pH values. The efficiency of bacterial inactivation was evaluated using 

the decimal reduction value (D value), which refers to the time required to inactivate 90% of bacteria 

in a given sample. The reciprocal of the D value is also the death rate of the bacteria, which implies 

the sterilizing power. 

 The death rate of bacteria was examined at pH 3.7–6.5 for typical types of bacteria using 3 

 

 

Figure. 2.1.4. Bacterial inactivation at various pH values as a function of plasma exposure time. Suspensions 

of (a) S. mutans, (b) C. rectus, and (c) E. coli were exposed to the plasma jet for 0–5 min. All data are obtained 

from triplicate experiments. The number of living cells after the plasma application was determined by a 

colony-forming unit (CFU) assay. The corresponding decimal reduction values (D values) are shown for each 

species of bacteria. The minimum detection value of the CFU assay was 10 CFU· mL
-1

.  
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different species: S. mutans, a gram-positive acid-resistant bacterium causing human dental caries 

[43], C. rectus, a gram-negative anaerobic bacterium causing periodontal diseases [44], and E. coli, a 

gram-negative facultative anaerobic bacterium. These bacteria were not sterilized by the treatment in 

acid solution for several hours. Pseudomonas aeruginosa, which is an opportunistic human pathogen, 

was not used because of its high sensitivity to acidic solution. Although S. mutans was partially 

inactivated by the plasma treatment of a target solution at pH 6.5 for 5 min, the inactivation rate 

increased as the pH decreased from 5.0 to 3.7 (Fig. 2.1.4a). The D values of S. mutans obtained at pH 

values of 6.5, 5.0, 4.7, 4.5, and 3.7 were 17.9, 0.86, 0.50, 0.39, and 0.15 min, respectively (Fig. 

2.1.4a). C. rectus was inactivated slowly at pH 6.5, and the inactivation rate increased with 

decreasing pH (Fig. 2.1.4b). The D values of C. rectus obtained at pH values of 6.5, 5.8, 5.5, 5.2, 5.0, 

4.7, and 3.7 were 2.1, 2.4, 1.1, 0.94, 0.76, 0.41, and 0.16 min, respectively. E. coli was not 

inactivated at pH 6.5 after an interval of 5 min; however, the inactivation rate gradually increased 

with decreasing pH (Fig. 2.1.4c). In the case of E. coli, the D values obtained were 1.9, 0.96, 0.59, 

and 0.21 min at pH values of 5.2, 4.7, 4.2, and 3.7, respectively. The deactivation curves of E. coli at 

pH 7 using Na-phosphate buffer was obtained similar date at pH 6.5. It is noteworthy that the lag 

time for the curve of S. mutans before inactivation was greater than that for C. rectus or E. coli. This 

lag may be because the bacteria’s tolerance to oxidative stress depends on the bacterial species. 

 The inactivation curves of S. mutans, C. rectus, and E. coli were consistent with the 

theoretical calculation of HOO• concentration (Fig. 2.1.5a). As shown in Figure 2.1.5a, the 

 
Figure. 2.1.5. Assessment of the bacterial inactivation. (a) Bacterial inactivation rate (reciprocal of the D value) 

for plasma treatment at various pH values. The inactivation rates were calculated from each corresponding D 

value. The red line (with respect to the right axis) indicates the relative concentration of HOO• in the pH range 

of 3.7–6.5. The HOO• concentration is expressed by equation (6). (b) Correlation between the inactivation rate 

of S. mutans, C. rectus, and E. coli and the HOO• concentration.  
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inactivation rates of all bacteria decreased with increasing pH values. Figure 2.1.5b shows the 

inactivation rates of 3 bacteria as a function of HOO• concentration. As expected, the bacterial 

inactivation rates increased with an increasing concentration of HOO•, which is in consistent with 

the basic principle of microbiology that bacterial inactivation is proportional to the concentration of 

the bactericidal factor [40]. It should be noted that the difference in the slopes in Figure 2.1.5b 

resulted from differences in sensitivity to the radicals; the correlation coefficients were 0.999, 0.991, 

and 0.950 for S. mutans, C. rectus, and E. coli, respectively. This result indicates that the plasma 

sterilization of bacteria can be attributed to the presence of HOO•. 

  

Decoloration of surfactant micelles 

 We further investigated the relationship between radical species and bacterial inactivation. A 

simple bacterial model was constructed using a surfactant and a hydrophobic dye (Fig. 2.1.6a). This 

dye-included micelle was used for the cell membrane model that cannot be permeated by the O2
-
• 

charged radical, but can be permeated by the non-charged (neutral) HOO• radical. After penetration, 

the radicals react with the dye in the core of the micelle and result in decoloration, indicating the 

plasma effect for the bacterial model. 

 The dye-included micelle was constructed using a surfactant and a hydrophobic dye (Fig. 

2.1.6a). The Nile red hydrophobic dye is known to have high stability against UV irradiation, acidic 

conditions, and heat treatment [45-48]. For example, Nile red is not affected by UV irradiation, 

acidic conditions, or heat from LTAPP. Nile red is also insoluble in aqueous solution owing to its 

hydrophobic property [49] (Fig. 2.1.6a). Tween 20 is an amphipathic surfactant with a hydrophilic 

 

 

Figure. 2.1.6. Dye-included micelle. (a) Schematic representation of the dye-included micelle. The legends and 

chemical structures of Nile red and Tween 20 are shown. (b) Particle size distribution of the 1% v/v Tween 20 

micelle was prepared without (black line) or with (red line) Nile red after 0 (solid line) and 20 (broken line) min 

of plasma exposure time, as monitored by dynamic light scattering.  
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head and hydrophobic tail (Fig. 2.1.6a), and it forms a spherical structure in an aqueous solution. The 

hydrophobic region of the micelle has permselectivity equivalent to that of a cell membrane. 

Moreover, unlike live bacterial cells, the surfactant micelle does not undergo metabolic reactions or 

show homeostatic responses to pH changes. Radical penetration into surfactant micelles leads to 

decoloration of Nile red, thereby resulting in a decrease in the absorbance of the solution at 552 nm. 

In fact, the use of a system involving the decoloration of a dye has previously been reported for 

quantitative analyses for plasma treatment [50-52]. Thus, a surfactant micelle consisting of a Nile red 

core is an appropriate model to validate that the key factor in bacterial sterilization is the 

permeability of radicals into the bacterial membrane. 

 The size and homogeneity of the dye-included micelles were characterized by dynamic light 

scattering (Fig. 2.1.6b). The hydrodynamic diameter of the micelle with Tween 20 alone was 9.3 nm, 

whereas that of the dye-included micelles was 20.6 nm. It is noted that these hydrodynamic 

diameters of the micelles with/without dye did not change during plasma application for 20 min. 

These results suggest that dye-included nondestructive micelles are suitable as a model of the 

cytoplasm and biomembrane to evaluate the chemical effects of atmospheric-pressure plasma in 

solution. 

 The decoloration of the dye-included micelles over a pH range of 1.0–11.0 was measured 

after plasma treatment. Figure 2.1.7a shows representative photographs of the samples at pH 2.0 and 

pH 10.0. The samples at pH 2 were decolorized after plasma treatment for 20 min, whereas those at 

pH 10.0 were only partly decolorized even after 20 min. Control experiments that included the use of 

helium flow only, UV irradiation, and hydrogen peroxide did not cause decoloration of the 

dye-included micelles (data not shown). The monitoring of the absorbance of the target solution at 

552 nm, which corresponds to the maximum absorbance of Nile red, yielded a quantitative 

evaluation of the decoloration of the dye-included micelle by plasma. At pH 2.0, the dye-included 

micelle was decolorized rapidly in the interval of 0–10 min. At pH values of 4.0–10.0, the rates of 

decoloration of the dye-included micelles decreased as the pH increased. The longer duration of 

plasma treatment for the decoloration of the included dye than that for the sterilization of bacterium 

shown in Figure 2.1.4 may result from the detection sensitivity of the radical reaction. The curves in 

Figure 2.1.7b were fit to the following equation: 

 

F = F0 exp (-at)          (7) 

 

Where F denotes the fraction of the dye-included micelles, F0 denotes the fraction of dye-included 

micelles at 0 min, t represents the time of plasma application, and a denotes the rate constant of 

decoloration.  
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 The decoloration rate (a t = 0-5) for the pH range of 1.0–11.0 is shown in Figure 2.1.7c. The 

decoloration rate (a t = 0-5) was calculated from the data for intervals of 0 and 5 min of plasma 

application as an approximation of the rate constant of decoloration to avoid the influence of solution 

evaporation with long plasma treatment times. The decoloration rates of the dye-included micelles at 

pH 1.0–4.0 increased with decreasing pH, whereas they remained constant for the pH range of 

5.0–11.0. The experimental results show that the decoloration rate of dye-included micelles subject 

to plasma treatment increases under acidic conditions, in a manner similar to the bacterial 

 

Figure. 2.1.7. Decoloration in dye-included micelles. (a) Photograph of the sample solution for pH values of 2.0 

and 10.0 after plasma application for the indicated times. (b) Fraction of residual Nile red calculated from the 

absorbance at 552 nm after plasma application to the solution at pH values of 2.0, 4.0, 7.0, and 10.0. The 

absorbance values at 552 nm along the vertical axis are normalized. Error bars are based on the results of 

triplicate experiments. The decrease in the absorbance is fitted to equation (7). (c) Decoloration rate (at = 0-5) after 

plasma application for various pH values of the Nile red solution (indicated by open circles with respect to the 

left axis). Error bars are based on the results of triplicate experiments. The red line (with respect to the right axis) 

indicates the relative concentration of HOO• for the pH range of 1.0–11.0. The HOO• concentration is 

described by equation (6). (d) Assessment of decoloration in dye-included micelles. A correlation was shown 

between the decoloration rate and HOO• concentration.  
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inactivation rates shown in Figures 2.1.4 and 2.1.5. The boundary region between pH values of 4.0 

and 5.0 showed good agreement with that described in a previous study reporting that plasma 

application inactivates bacteria effectively at pH levels below 4.8 [8]. Figure 7d shows the theoretical 

calculation curve of HOO• concentration (eq. 6). It is significant that the decoloration rates strongly 

correlate with the concentration of HOO• for the pH range of 1.0–11.0. Figure 6d shows the 

correlation between the decoloration rate and the amount of HOO• for a correlation coefficient of 

0.991. This result indicates that decoloration in surfactant micelles can also be attributed to the 

presence of HOO•; the different permeability of radicals into the cell membrane is a key factor in 

plasma sterilization in solution. 

 

 

Discussion 

Molecular mechanism of bacterial sterilization 

 In this study, we demonstrated the mechanism of bacterial sterilization by using 

plasma-induced chemical processing with the reduced pH method, as illustrated in Figure 2.1.1. 

Molecular mechanisms of plasma sterilization achieved using the reduced pH method are discussed 

below. We can assume that bacterial sterilization results from O2
-
• and/or HOO• in solution, which 

are generated by LTAPP. As shown in Figure 2.1.3, comparison of pH-dependence on the 

concentration of O2
-
•, HOO•, and (HOO• + O2

-
•) revealed that the profile of only HOO• was similar 

to that of the inactivation rates for the 3 bacteria tested (Fig. 2.1.5a). Furthermore, the concentration 

of HOO• correlated well with all the inactivation rates of all bacteria (Fig. 2.1.5b). These results 

indicate that HOO• predominantly contributes to the plasma sterilization achieved using the reduced 

pH method.  

 These data raise the question as to why HOO• rather than O2
-
• plays a key role in plasma 

sterilization achieved using the reduced pH method. It is known that charged substances possess a 

low level of permeability across the cell membrane. Indeed, it has reported that O2
-
• has an electric 

charge of -1, which hinders its ability to permeate the cell membrane [53]. On the other hand, HOO• 

is not charged, which allows it to easily cross the cell membrane. Therefore, bacterial sterilization by 

radicals may depend on differences in permeability into the biomembrane.  

 To more clearly define the relationship between bacterial sterilization and permeability of 

radicals into the biomembrane, we constructed the dye-included micelle bacterial model (Fig. 2.1.6a). 

The decoloration system using dye-included micelles allowed us to detect only the chemical 

reactions of radicals in the micelle. Consequently, clear results were obtained; pH-dependence of the 

decoloration rate was similar to that of the concentration of HOO• (Fig. 2.1.7c), and the 
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concentration of HOO• was well correlated with the decoloration rates (Fig. 2.1.7d). Taken together, 

we successfully demonstrated that plasma sterilization achieved using the reduced pH method results 

only from HOO• due to its permeability into the biomembrane. We have reported that plasma 

treatment induced inactivation of protein in solution, although the protein was dispersed in the 

solution, and it did not remain in the micelle or cell membrane [39]. Furthermore, we have showed 

that the sterilization of bacteria by the plasma was not related the visible destruction of bacteria [8]. 

Thus, we concluded that the mechanism of sterilization using the reduced pH method is as follows: 

(Step 1) penetration of HOO• into the cell (Fig. 1); (Step 2) penetrated radicals react with and 

inactivate proteins in the cell; and (Step 3) sterilization is induced by inactivation of protein/s that are 

important for bacteria. We will try the challenge to control experiment using the radical species 

generated by other means but treatment of acidic solution with the jet in future. 

 

Assay of plasma sterilization 

Several assays for plasma sterilization have been reported by other researchers, such as number of 

surviving CFUs plotted against dissipated power [27]. However, it is well known that bacterial 

inactivation is proportional to the concentration of the bactericidal factor [40]. This study shows a 

new assessment for plasma sterilization (Fig. 5b, 7d). It is of interest that a different gradient was 

found for each bacterium, which results from the different sensitivity of the bacteria to plasma 

treatment in solution. This result indicates that the gradient shows the sterilizing power of the plasma 

system for each bacterium. Consequently, the assay of plasma sterilization in solution is appropriate 

to plot the death rate of bacterial inactivation with the concentration of key species. In the feature, it 

is expected to elucidate the various situation of sterilization under medical applications by 

determination and quantitative measurement of other possible radicals which may cause similar 

effects. 

 Various plasma systems have been reported for sterilization [54, 55] and medicines [56], 

although these systems have not assessed the relationship between plasma treatment and radical 

behavior. Among them, our dye-included micelle successfully evaluated bacterial inactivation, which 

has simple components of abundant detergent and Nile red, which is known to have high stability 

against UV irradiation, acidic conditions, and heat treatment. Thus, we propose that the dye-included 

micelle system can be widely used as an assay of plasma systems for plasma sterilization in solution.  

 

Contribution to plasma medicines 

We believe that our research contributes to plasma medicine. The inactivation rates of all bacteria 

tested increased with a decreasing pH (Fig. 2.1.5). Other researchers have also reported that plasma 

treatment effectively sterilizes bacteria under acidic conditions. For example, S. aureus was 
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effectively inactivated at pH 3.7–4.5 compared to pH 4.5–7.5 [57], Bacillus subtilis spores were 

inactivated only in acidic solution [58], and the eukaryotic microbe, Neurospora crassa, showed a 

rapid decrease in spore germination in acidic water [59]. Thus, we conclude that plasma treatment 

generally effectively sterilizes bacteria under acidic conditions.  

We assume that the sterilization in solution by using plasma-induced chemical processing may be 

applicable to plasma medicine. However, human lymph and blood are at neutral pH with a buffering 

capacity. Therefore, the reduced pH method is necessary for the plasma sterilization. Actually, 

plasma treatment for 5 min had no effect at pH 6.5 but sterilized S. mutans, which is a model oral 

microorganism in dental plaques in biofilms at pH 4.5 [30]. Thus, the reduced pH method may be 

applicable to plasma medicine, such as for burn injury and bedsore. 

 There has been a growing interest in plasma medicine for its application in removing cancer 

cells [60]. For example, the permeability of radicals into the biomembrane can be controlled by pore 

formation by using Magainin 2 peptide [61], and the electroporation of cell membranes can be 

accomplished using electric pulses [62]. The combination of modifying cell membranes and using 

atmospheric-pressure plasma [63, 64] can increase the efficiency of plasma therapy for cancerous 

tumors by increasing the permeability of radicals into the membranes of cancer cells. Although it has 

been proposed that plasma treatment is toxic because of the generation of neutral reactive species, 

instead of ozone [65], the controversy is solved by our data. Our results can significantly contribute 

toward an increasingly efficient and safer application of plasma sterilization for medicinal purposes. 

The effective permeation of radicals into the cell membrane implies the possibility of using plasma 

therapy for the removal of cancer cells. 

 

 

Conclusion 

 In this study, we demonstrated the mechanism of efficient bactericidal inactivation with the 

reduced pH method illustrated in Figure 1, by using 3 kinds of living bacteria and a simple bacterial 

model. Our data showed that the death rate of the bacteria tested was proportional to the 

concentration of hydroperoxy radicals in the solution (Fig. 2.1.5b and 2.1.7d). These results indicate 

that the key species for the plasma sterilization with the reduced pH method is hydroperoxy radicals, 

and its key role is to bring about high permeation of radicals into the cell membrane in order to 

achieve efficient bactericidal activity of plasma treatment in solution. Our data contribute to the 

development of not only plasma sterilization but also plasma medicine.  
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2.2 Effects of alkyl chain length of gallate on self-association 

and membrane-binding 

 

 

Introduction 

Gallate is a general term used to describe salts and esters of gallic acid with the galloyl group. Some 

gallate compounds, typically catechin and proanthocyanidin gallates, have been developed for 

pharmacological applications [1–7]. Among them, alkyl gallates have recently been regarded as 

affecting microbial cell viability [8–18], virus activity [19–25], and human leukemia cell 

proliferation [26]. The alkyl gallates’ pharmacological activity increases concomitantly with their 

alkyl chain length. Therefore their activity has been attributed to their surfactant-like effects, which 

can induce lipid membrane disruption and membrane protein inactivation [11–13]. In fact, alkyl 

gallates have both a hydrophilic galloyl group and hydrophobic alkyl chain. More hydrophobic 

species with longer alkyl chains, e.g. dodecyl gallate [8,9] and stearyl gallate [10,11], do not function 

as antibacterial agents, suggesting an unknown factor that determines the cutoff point for activity [9]. 

 Fluorescence spectra have been used often for analyses of interactions of various aromatic 

compounds with lipid membranes because fluorescence spectra depend greatly on the solution 

environment [27]. For example, membrane binding of peptides and low-molecular-weight 

compounds has been observed through changes in fluorescence intensity [28–34]. Furthermore, 

fluorescence analyses present the advantage of being quantitative. For that reason, the 

thermodynamic parameters of the interactions, such as partition constants, can be determined. The 

membrane binding affinity for catechin derivatives has been measured to investigate their 

pharmacological activities [35]. 

 Although partition constants of alkyl gallates with lipid membranes might be related to their 

pharmacological activity, partition constants have not been examined aside from qualitative 

observations [36]. This study revealed that the partition constant depends on the alkyl chain length of 

gallate. The constant of the alkyl gallates increased concomitantly with increasing hydrophobicity, 

except for longer alkyl chain species such as cetyl and stearyl gallates. These two alkyl gallates are 

exceptional probably because of their self-association detected by dynamic light scattering 

measurements. Moreover, the membrane-binding of alkyl gallates was found to be correlated with 

the pharmacological activity of a series of alkyl gallates. Consequently, our findings are useful for 
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understanding not only the physicochemical properties of alkyl gallates, but also for elucidating their 

pharmacological activity. 

 

 

Materials and methods 

Chemicals 

All alkyl gallates were obtained from Tokyo Kasei Kogyo Co. Ltd. (Tokyo, Japan). 

Dioleoylphosphatidylcholine (DOPC), dipalmitoylphosphatidylcholine (DPPC), 

dioleoylphosphatidylglycerol (DOPG), and cholesterol were obtained from NOF Corp. (Tokyo, 

Japan) along with sodium dihydrogen phosphate (Nacalai Tesque Inc., Kyoto, Japan) and ethanol 

(Kanto Chemical Co. Inc., Tokyo, Japan). All compounds were of the highest commercially available 

grade. 

 

Solubility measurement of alkyl gallates 

The respective solubilities of alkyl gallates in 10 mM phosphate buffer (pH 7.4) were measured as 

follows [38]. An appropriate amount of alkyl gallate powder was transferred into a test tube, to 

which 1.5 ml of 10 mM phosphate buffer (pH 7.4) was added. The suspension was heated at 40 °C 

for 1 h with frequent vortexing for complete dissolution of alkyl gallate powders. The solution was 

then incubated at 25 °C for 3 days with frequent vortexing. Subsequently, the suspension was 

centrifuged at 25 °C and 16,000 × g for 20 min to obtain a supernatant saturated with the alkyl 

gallates. After appropriate dilution of the supernatant with water, the supernatant absorbance was 

determined spectrophotometrically at 271 nm using a UV–VIS spectrophotometer (ND-1000; 

NanoDrop Technologies, Inc.., Wilmington, DE, USA). The absorbance value was converted to the 

concentration based on the standard curve determined for methyl gallate. Solubility was determined 

in triplicate, from which the averages and standard errors were obtained. 

 

Observation of self-association of alkyl gallates 

To verify the self-association of the alkyl gallates, dynamic light scattering (DLS) measurements of 

them at 3 M were conducted at 25 °C using a light-scattering spectrometer (DLS-7000; Ostuka 

Electronics Co., Ltd. Osaka, Japan) equipped with an argon ion laser at scattering angles of 90° [46]. 

Samples that did not pass the instrument’s internal quality criteria were omitted. 

 

Preparation of lipid membranes 

Large unilamellar vesicles (LUV) composed of DOPC, DOPG, DPPC, and cholesterol (Chol) were 
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used as model lipid membranes, prepared using the extrusion method with 200 nm pore size 

polycarbonate membranes. The appropriate amounts of 5 mM lipids were mixed in chloroform. 

Subsequently, the solvent was removed completely in a vacuum desiccator connected to a rotary 

vacuum pump for 12 h. To this dry lipid film, 1 ml of 10 mM phosphate buffer (pH 7.4) was added; 

then the 1.5 mM lipid suspension was vortexed for several seconds above the phase-transition 

temperature (25 °C for DOPC and DOPG, and 40 °C for DPPC). Subsequently, the solutions were 

extruded through 200-nm-pore-size polycarbonate membranes (Avanti Mini-Extruder; Avanti Polar 

Lipids, Inc., Alabaster, AL) at a temperature higher than the phase-transition temperature. 

 

Fluorescence analysis of the binding of alkyl gallates to phospholipid membranes 

Fluorescence spectra of 3 M alkyl gallate in 10 M lipids with 10 mM phosphate buffer (pH 7.4) 

were recorded at 25 °C. Only for C8–18 were they presolubilized in ethanol before mixing with the 

lipid solution to determine the alkyl gallate concentration. Thereby, the final component of the 

solution was 3 M alkyl gallate, 10 M lipids, 0.6% ethanol, and 10 mM phosphate buffer (pH 7.4), 

where the residual ethanol did not affect their fluorescence spectra. Finally, the fluorescence 

intensity of each reference solution without the alkyl gallate was subtracted from the intensity of the 

sample solutions. The determined intensities were averages of triplicate experiments. Thereby, the 

average and standard error were obtained. These spectra were measured using a spectrofluorometer 

(FP6500; Jasco Corp., Tokyo, Japan). The emission fluorescence spectra were recorded for 200–500 

nm, using the excitation wavelength of 271 nm. 

 

Measurement of the partition constant of alkyl gallates to the membranes 

To determine the partition constant of the alkyl gallates (C8–C16) to the membranes, the changes in 

fluorescence intensity of the alkyl gallate on the membrane-binding were monitored using a 

spectrofluorometer. The prepared sample solutions contained various concentrations of the lipids 

comprising DOPC, DPPC/DOPC or DPPC/Chol, 60 nM alkyl gallates, 0.6% ethanol, and 10 mM 

phosphate buffer (pH 7.4). The fluorescence intensity of each reference solution without the alkyl 

gallates was subtracted from the intensity of the sample solutions. The determined intensities were 

averages of triplicate experiments: the average and standard error were obtained. 

 

 

Results  

Solubility and hydrodynamic radius of alkyl gallates 
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The alkyl gallates used for this study are shown in Scheme 2.2.1, where they are termed C1–C18 

according to the carbon number of the alkyl chain. The solubility of the alkyl gallates in 10 mM 

phosphate buffer solution was measured for physicochemical characterization of the alkyl gallates. 

As shown in Table 2.2.1, the solubility of C2 is higher than that of C1, which is consistent with our 

previous study [37, 38]. The solubility of C12 is lower than that of C16, which is not surprising 

when considering the dynamic light scattering measurements as follows. Results show that C16 and 

C18 tend to self-associate in the solution (Fig. 2.2.1). The solutions of C16 and C18 respectively 

exhibit a unimodal size distribution with mean diameters of 84.6 ± 4.6 nm and 130.6 ± 17.6 nm. In 

contrast, C8 and C12 were not detected using the same apparatus. It can be concluded that the 

self-association of C16 and C18 increases their apparent solubilities. 

 

 

Table 2.2.1. Solubility of the alkyl gallates in 10 

mM phosphate buffer (pH 7.4) at 25 °C 

Gallate Solubility (M) 

Metyl (C1) 6.46 ± 0.11×10
-2
 

Ethyl (C2) 8.19 ± 0.05×10
-2
 

Propyl (C3) 1.92 ± 0.01×10
-2
 

Butyl (C4) 1.21 ± 0.02×10
-2
 

Octyl (C8) 5.7 ± 0.6×10
-4

 

Dodecyl (C12) 6.4 ± 0.8×10
-5

 

Cetyl (C16) 9.1 ± 0.7×10
-5

 

Stearyl (C18) 3.9 ± 0.7×10
-5

 

 

 

Scheme 1. Chemical structures of the alkyl gallates. 

 

 

Figure 2.2.1. DLS measurements for 3 M cetyl gallate 

(C16) (solid line) and stearyl gallate (C18) (broken line) 

in water. 
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Binding of alkyl gallates to phospholipid membranes 

Binding of the alkyl gallates to the membranes was observed through the change of fluorescent 

intensities of their aromatic moiety. Figure 2.2.2 presents fluorescence spectra of C4 in the presence 

or absence of DOPG or DOPC. As expected, the fluorescence spectrum of C4 differed in the 

presence of positively charged DOPG or amphoteric DOPC. Accordingly, results suggest that the 

binding of C4 to the membranes is mainly attributable to the hydrophobic interaction between DOPC 

and the alkyl chains of the alkyl gallates. Similar data were obtained for C1, C2, and C3. To support 

 

Figure 2.2.2. Fluorescence spectra of 3 M butyl gallate (C4) in the presence and absence of 10 M DOPC or 

DOPG: no lipid, solid line; DOPC, broken line; DOPG, dotted line. The excitation wavelength of the 

fluorescence spectra is 271 nm. 

 

 

Figure 2.2.3. Ratios of the fluorescence intensity of the respective 3 M alkyl gallates (A) C1–C4 and (B) 

C4–C18 in the presence of 10 M DOPC to those in the buffer solution.  
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the suggestion presented above, we investigated the dependence of the alkyl chain length of the 

binding to DOPC. Ratios of the fluorescence intensity in the presence of DOPC to that in the absence 

of DOPC increased with elongation of the alkyl chain length (Fig. 2.2.3A). The ratios for C1–C12 

increased with the alkyl chain length (Fig. 2.2.3). The changes in fluorescence intensities of their 

aromatic moiety are caused by the polarity of the solution environment [31]. In contrast, the 

fluorescence intensity of C16, despite its longer alkyl chain, was weaker than that of C12. 

Additionally, the intensity of C18 did not change according to the presence of the lipid membrane. 

 

Estimation of the partition constant of alkyl gallates to phospholipid 

membranes 

Partition constants of the alkyl gallates to the membranes were estimated from the binding isotherms 

as follows. Figure 2.2.4A shows representative data for the peak intensity of the fluorescence spectra 

of C8 in various concentrations of DOPC, as normalized by the maximum value. The normalized 

intensity in Fig. 2.2.4A increased by the addition of DOPC and subsequently reached a plateau at 

which all C8 molecules bind to the membrane. Here, a two-state transition was presumed: binding or 

non-binding states of the alkyl gallates to the membrane. Additionally, it was assumed that the alkyl 

gallates bind to both the internal and external monolayer. Consequently, the equilibrium 

concentration of the alkyl gallate in the bulk solutions, as denoted by Ceq, was obtained as [28] 

 

Ceq = CT - CM = CT (1- FN),      (1) 

 

Figure 2.2.4. (A) Normalized fluorescent intensity of 60 nM octyl gallate (C8) at 350 nm in various 

concentrations of DOPC, normalized by the maximum value. (B) Binding isotherms of octyl gallate (C8) to the 

lipid membrane of DOPC at 25 °C. 



32 

 

where CT and CM respectively denote the total concentration of the alkyl gallate in solution and its 

concentration in the lipid membranes. Therein, FN denotes the normalized fluorescence intensity 

corresponding to the vertical axis in Fig. 2.2.4A. The molar ratio of the alkyl gallate molecules in the 

membranes to total lipid molecules, denoted by Xb, is given as 

 

Xb= CT FN / CL ,      (2) 

 

where CL is the lipid concentration in solution. Finally, because the ratio of the concentration of the 

alkyl gallate to that of the lipid membrane in the solution is low, Xb can be expressed as [29] 

 

Xb= Kint Ceq ,       (3) 

 

where Kint is the intrinsic partition constant of the alkyl gallate to the lipid membrane. According to 

these analyses, Xb and Ceq are actually mutually proportional (Fig. 2.2.4B). These calculations are 

applicable to the other alkyl gallates, except for C1–C4 and C18: because of their weak binding 

affinity to the membrane, their binding curves were not obtained. The partition constants for C8, C12 

and C16 are presented in Table 2.2.2; the partition constants for C12 and C16 were of the same order 

and an order of magnitude higher than that for C8. These results reflect that the partition constant for 

C16 might be affected by self-association of C16, as described above (Fig. 2.2.1). 

 

Effect of membrane components on the binding of alkyl gallate to 

phospholipid membranes 

Table 2.2.2. Intrinsic partition constant (Kint) of octyl (C8), dodecyl (C12) and cetyl (C16) gallates to the lipid 

membrane of DOPC 

Gallate  Kint (1/M) 

Octyl (C8) 1.5 ± 0.1×10
5
 

Dodecyl (C12) 8.2 ± 0.7×10
5
 

Cetyl (C16) 8.4 ± 0.6×10
5
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The membrane liquid–solid phase differs according to its components [39]. They can be expected to 

affect the binding affinity of the alkyl gallates. Figure 2.2.5A exhibits the partition constants for C8, 

C12, and C16 to the lipid membranes composed of various ratios of DPPC/DOPC. The partition 

constants for these alkyl gallates increased concomitantly with the increasing ratio of DOPC to 

DPPC; the value for DOPC was twice that for DPPC. Figure 2.2.5B shows alteration of the partition 

constants for these alkyl gallates to the membranes containing cholesterol. The partition constants for 

C8 and C12 decreased concomitantly with increasing concentration of cholesterol, although that for 

C16 was maintained.  

 

 

Discussion 

Alkyl gallates are anticipated for use as antibacterial and antiviral agents because various studies 

have already shown their pharmacological activity in vitro [8–25]. Therefore, their biophysical 

properties should be clarified in advance of their application. Nevertheless, quantitative studies such 

as thermodynamic studies of the binding interaction of the alkyl gallates to lipid membranes have not 

been reported. Additionally, it has not been established why highly hydrophobic alkyl gallates with a 

longer alkyl chain did not function as antibacterial agents [8–11]. Regarding the binding interaction 

of the alkyl gallates to lipid membranes, only qualitative observations have been performed [36]. In 

this study, we quantitatively examined the binding ability of alkyl gallates with different alkyl chain 

lengths to various lipid membranes. It is worth mentioning that this is the first report of a partition 

 

Figure 2.2.5. Binding constants (Kint) of 60 nM octyl gallate (C8) (closed circles, left axes), dodecyl gallate 

(C12) (open circles, right axes) and cetyl gallate (C16) (open squares, right axes) in the presence of 

DPPC/DOPC (A) and DPPC/Chol (B). 
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constant between the alkyl gallates and phospholipid membrane. Ratios of fluorescence intensity of 

C1–C12 have increased concomitantly with increasing alkyl chain length (Fig. 2.2.3). The ratios for 

C1–C12 increased with the logarithm of the octanol–water partition coefficient (log P) of the alkyl 

gallates. Therefore, it was suggested that the membrane-binding ability of C1–C12 depends on their 

hydrophobicity derived from the alkyl chain. However, for more hydrophobic species with a longer 

alkyl chain (C16, C18), the intensity decreased. Here, recall that DLS measurements for C8–C18 

indicated self-association of C16 and C18, even at concentrations below solubility (Fig. 2.2.1, Table 

2.2.1). Assuming that the self-associated forms have no ability to interact with the lipid membrane, 

the observed reduction of the membrane-binding ability for C16 and C18 can be ascribed to the 

promotion of self-association with increasing alkyl chain length. The result, that C16 but not C18 

Table 2.2.3. Calculated correlation coefficients between ratios of the fluorescence intensity (F/F0) and the 

pharmacological activity of the alkyl gallates against bacteria and viruses 

Targets r
[a]

 Ref. 

Propionibacterium acnes 0.949 [13] 

Brevibacterium ammoniagenes 0.892 [13] 

Staphylococcus aureus (MRSA) 0.892 [13] 

Micrococcus luteus 0.824 [13] 

Bacillus subtilis 0.824 [13] 

Streptococcus mutans 0.593 [13] 

Trichophyton mentagrophytes 0.409 [16] 

Trichophyton rubrum 0.135 [16] 

Microsporum gypseum 0.129 [16] 

Targets r
[b] 

Ref 

Herpes simplex virus type-1 0.745 [19] 

Lenzites betulina 0.785 [14] 

Gloeophyllum trabeum 0.729 [14] 

Chaetomium globosum 0.716 [14] 

Trametes versicolor 0.683 [14] 

[a]: Correlation coefficients between ratios of the fluorescence intensity (F/F0) determined in this paper and 

antibacterial activities of the alkyl gallates (log(1/MIC)), where MIC is the minimum inhibitory concentration, as 

described in reports of previous studies [13,16]. [b]: Correlation coefficients between F/F0 and the yield of 

antiviral effects [19] and antifungal fractions [14]. The calculated correlation coefficients are the Pearson 

product-moment correlation coefficients [45].  
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interacted with the membranes (Fig. 2.2.3B), presents the possibility that the self-association state of 

C16 is an equilibrium, with the soluble monomeric state binding to the lipid membranes. 

 Reportedly, antibacterial and antiviral activities of the alkyl gallates decrease as their alkyl 

chain length increases beyond a certain length [8–11], indicating a cutoff point for the activity of the 

alkyl gallates [9]. Reduction of the activity will be reasonable according to our observations. The 

reduction can be attributed to the promotion of the self-association with increasing alkyl chain length. 

In other words, such self-associated species cannot interact with the bacterial cell membranes or 

envelopes of viruses. Therefore, their activities would be reduced. Consequently, the 

pharmacological activity of the alkyl gallates can be expected to be associated closely with their 

physicochemical properties such as hydrophobicity and the monomeric solubility. To assess the 

relation between the physicochemical properties and the pharmacological activity, we investigated 

the correlation between the membrane binding ability and pharmacological activity (Table 2.2.3), 

where the binding ability was evaluated using the ratios of the fluorescence intensity of the alkyl 

gallates (F/F0). Most correlation coefficients were positive and greater than 0.7. Therefore, the 

membrane-binding ability of the alkyl gallates will probably account for the results obtained for the 

pharmacological activity. It is noteworthy that the correlation coefficients for Trichophyton rubrum 

and Microsporum gypseum were lower than the others. Consequently, the pharmacological activity 

of the alkyl gallates might be partly accounted for by other functions including disruption of lipid 

membranes, inactivation of membrane proteins and their downstream activities. 

 The alkyl gallate‘s interaction with cholesterol and with phospholipids also constitutes 

important information. Lipid membranes composed of DPPC, DOPC, and cholesterol are often used 

as cell membrane models with phase changes depending on the composition ratio [39–44]. The 

results presented in Fig. 2.2.5 indicate that the alkyl gallates are more stable in the liquid phase of 

DPPC/DOPC than in the solid phase, although they are less stable in the liquid phase of DPPC/Chol 

than in the solid phase. Consequently, the stability of alkyl gallates in lipid membranes depends 

substantially on the membrane components rather than the membrane phase. The direct interaction of 

the alkyl gallates with the lipid components might be related with various pharmacological effects 

toward bacterial cells [12,14] and viruses [19,21]. 

 Finally, the stability of the alkyl gallate in aqueous solution depends on the co-existing 

solutes, as shown in our previous study [37,38]. Alteration of the stability in the solution by the 

solutes can affect the partition constants and thereby affect their activity toward bacterial cells and 

viruses. Such effects of solutes are potentially applicable to prevent self-association and to enhance 

their bioavailability as drugs and food additives. We are carrying out systematic investigations of the 

solute effects to elucidate their potential benefits. 
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Chapter 3 

Chemical Modification of Amino Acids 

 

3.1 Chemical Modification of Amino Acids by Atmospheric- 

Pressure Cold Plasma in Aqueous Solution 

 

Introduction 

Atmospheric-pressure cold plasma (APCP) has been used for various applications and has many 

advantages: (i) inexpensive operation costs in vacuum-free systems; (ii) use of a moderate gas 

temperature; (iii) facilitation of delicate and flexible operations; and (iv) generation of reactive 

oxygen species (ROS)[1], typically hydroxyl radicals (OH•)[2-6], superoxide anion radicals (O2
-
•)[7], 

hydroperoxy radicals (HOO•)[8], singlet oxygen (
1
O2), and atomic oxygen (O)[9]. These features of 

APCP enable the exploitation of a novel field of chemical reactions both in solution [10-12] and 

under dry conditions. Recent pioneering applications of APCP include ionisation for use in mass 

spectrometry[13, 14], elimination of organic materials[15], tooth bleaching[16], and plasma 

medicines [17-19] for cancer[20-24], glioma[25], dental applications[26], blood coagulation[27], 

disruption of the human hepatocyte cytoskeleton[28], sterilisation[29-38], Parkinson’s disease[39], 

and Alzheimer's disease[40]. 

 The mechanism of action of plasma medicine involving the chemical reactions that occur in 

solution with the ROS may proceed as follows: (Step 1) the ROS generated by APCP diffuses in 

solution (body fluid); (Step 2) the ROS reacts with and inactivates biologically functional 

biomolecules, such as proteins; (Step 3) this inactivation induces some medically relevant 

physiological response through cell death or activation. To elucidate the mechanism of action of 

plasma medicine, studies of the effect of APCP on biologically functional biomolecules, i.e., 

biomacromolecules, in aqueous solution are necessary. Atmospheric-pressure plasma destroys the 

tertiary structure of DNA[41, 42] and inactivates infectious prion protein[43], recombinant green 

fluorescent protein[44], and the enzyme lysozyme[45] in aqueous solution. 

 Proteins are the most abundant compound and are composed of 20 naturally occurring 

amino acids joined by peptide bonds. Proteins dominate biological functions in the body. We 

previously reported that APCP inactivates lysozyme in aqueous solution accompanied by a 

conformational change, bleaching of the intrinsic tryptophan fluorescence, and increased the 

molecular weight, indicating that the amino acid side chains of the protein were chemically modified 
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by APCP[45]. However, the details of the reaction of each amino acid during plasma application 

remain unclear. Hydroxylation of phenylalanine[46] and the formation of disulphide linkages 

between the thiol groups of cysteines[47, 48] by plasma treatment have been reported. The 

elucidation of the chemical reaction of each amino acid with the ROS generated by APCP would 

help establish the mechanism of action of plasma medicine, particularly Step 2. 

 In this study, we report the chemical modification of 20 amino acids in solution by 

low-frequency (LF) plasma jet, an APCP system. The side chains of 14 amino acids were oxidised 

and sulphur-containing and aromatic amino acids were preferentially modified in the amino acids. 

This paper provides fundamental data on the effects of plasma medicine on protein structure and 

function. 

 

 

Materials and methods 

Materials 

Ultra-pure water was obtained from a Milli-Q SP TOC system water purifier (Millipore Corp., 

Bedford, Mass., USA). Acetonitrile was from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). 

L-alanine (Ala), L-asparagine (Asn), L-aspartic acid (Asp), L-arginine hydrochloride (Arg), 

L-cysteine (Cys), L-glutamic acid (Glu), L-glutamine (Gln), glycine (Gly), L-histidine (His), 

L-isoleucine (Ile), L-leucine (Leu), L-lysine hydrochloride (Lys), L-methionine (Met), 

L-phenylalanine (Phe), L-proline (Pro), L-threonine (Thr), L-tryptophan (Trp), L-tyrosine (Tyr), 

L-serine (Ser), and L-valine (Val) were from Sigma-Aldrich Corp. (St. Louis, Mo., USA). 

 

System of low-frequency (LF) plasma jet 

The LF plasma jet was used in a manner similar to that described previously[8, 37, 40, 45]. The 

experimental system comprising the plasma generator and amino acid solution in the vessel is shown 

in Fig. 3.1.1. The LF plasma jet was ejected from the end of a quartz glass tube in which helium (He) 

gas was flowed by the application of a high-voltage alternating current (AC) (from -3.5 kV to +5.0 

kV with a frequency of 13.9 kHz) to the electrode, which was a small metal sheet wound around the 

tube. The He plasma with low gas temperature was generated as an elongated shape. The flow rate of 

the He gas was 2.0 l/min. The various ROS produced by the He plasma were supplied to the solution. 

A 1.0 ml sample of 1.0 mM amino acid solution was applied to the solution in the vessel. The 

distance between the end of the glass tube and the surface of the amino acid solution was 20 mm. 
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High-resolution mass spectrometry 

Mass spectra were obtained in the electrospray ionisation (ESI) positive-ion mode using an Orbitrap 

mass spectrometer (Exactive, Thermo Fisher Scientific, CA). The ESI-MS operating conditions were 

as follows: electrospray potential 4.80 kV, capillary voltage 25 V, capillary temperature 250°C, tube 

lens voltage 140 V, skimmer voltage 38V, and m/z scan range 50–500. The plasma-exposed amino 

acid solutions were diluted with water (50-fold by volume) followed by acetonitrile (2-fold by 

volume), and the diluted solutions were electrosprayed at a flow rate of 30 μl/min. 

 

Amino acid analysis 

The amino acid analysis was performed on an amino acid analyser (JLC-500/V2, Japan Electron 

Optics Laboratory). High-pressure liquid chromatography was performed on a cation ion-exchange 

column. The amino acids were detected by reaction with ninhydrin. 

 

Results and Discussion 

Plasma treatment of amino acids 

 

Figure. 3.1.1. Schematic diagram of the plasma generation system. (a) LF/HV pulses are applied to the 

electrode, which is wound around the glass tube. The distance between end of the quartz glass tube and surface 

of the amino acid solution is 20 mm. Plasma is generated in He gas flowing (2.0 l/min) in the glass tube. A 

plume-like structure of the plasma (‘plasma jet’) is extended toward the surface of a liquid. The discharge power 

of the plasma is 3 W. The volume of amino acid solution is 1 ml. (b) Photograph of the plasma jet.  
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The chemical modification of 20 naturally occurring amino acids by plasma treatment in aqueous 

solution was investigated by high-resolution mass spectrometry[49]. Table 3.1.1 summarises the 

results of the oxidation of 14 amino acids after the plasma treatment. No oxidation of Gly, Ala, Ser, 

Thr, Asn, and Asp was observed. The data were consistent with a previous report that the molecular 

weights of proteins are increased by plasma treatment[45] due to the oxidation of free radicals on the 

side chains of the amino acids[50]. These results indicate that electron-rich groups in amino acids 

were modified by the free radicals generated by the plasma treatment. 

 

 

Aromatic amino acids: Tyr, Phe, and Trp 

Figure 3.1.2 shows the mass spectra of Tyr, Phe, and Trp after plasma treatment for 0-10 min. Before 

plasma treatment, (Tyr)H
+
 of m/z 182.08 was detected in a solution of Tyr (Fig. 3.1.2a). After plasma 

treatment, four oxidation products corresponding to (Tyr+O)H
+
 at m/z 198.08, (Tyr+2O)H

+
 at m/z 

214.07, (Tyr-H+2O+N)H
+
 at m/z 227.07, and (Tyr-H+3O+N)H

+
 at m/z 243.06 (Fig. 3.1.2b,c) were 

observed in the mass spectrum of Tyr. The aromatic ring of Tyr has been reported to be easily 

hydroxylated[50-53] and nitrated[54-56]. Thus, these oxidations likely occurred in the aromatic ring 

 Table 3.1.1. Oxidation of 14 amino acids by plasma treatment. 
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of Tyr and correspond to DOPA at m/z 198.08, hydroxyl DOPA at m/z 214.07, nitro Tyr at m/z 227.07, 

and nitro DOPA at m/z 243.06 (as shown in Fig. 3.1.2b).   

 (Phe)H
+
 was detected at m/z 166.09 from a solution of Phe before the plasma treatment (Fig. 

3.1.2d). After plasma treatment, the mass spectrum of Phe revealed five oxidation products 

corresponding to (Phe+O)H
+
 at m/z 182.08, (Phe+2O)H

+
 at m/z 198.08, (Phe-H+2O+N)H

+
 at m/z 

211.07, (Phe-H+3O+N)H
+
 at m/z 227.07, and (Phe-H+4O+N)H

+
 at m/z 243.06 (Fig. 3.1.2e,f). These 

products likely correspond to oxidation of the aromatic ring of Phe and (Phe+O)H
+
 at m/z 182.08, 

likely due to Tyr. The peak intensity ratios (Tyr+X)H
+
/(Tyr)H

+
 and (Phe+X)H

+
/(Phe)H

+
 increased 

monotonously with increasing plasma treatment time. These results suggest that (Tyr-H+3O+N)H
+ 

 

Figure. 3.1.2. Mass spectra of Tyr (a-c), Phe (d-f), and Trp (g-i) treated with plasma for 0 min (a,d,g), 5 min 

(b,e,h), and 10 min (c,f,i). A molecular structure of the proposed product is shown for each peak. 

 



45 

 

and (Phe-H+4O+N)H
+
 were the final products in the respective chemical processes. 

 (Trp)H
+
 was detected at m/z 205.10 from a solution of Trp before the plasma treatment (Fig. 

3.1.2g). The mass spectrum of the plasma-treated Trp showed two oxidation products corresponding 

to (Trp+O)H
+
 at m/z 221.09 and (Trp+2O)H

+
 at m/z 237.09 (Fig. 3.1.2h,i). In contrast to the other 

aromatic amino acids (Tyr and Phe), nitration of Trp was not observed. This result suggests that Trp 

has low reactivity to reactive nitrogen species, such as NO, NO2, and ONOO
-
.  

 

 

Sulphur-containing amino acids: Cys and Met 

(Cys)H
+
 was detected at m/z 122.03 from a solution of Cys before the plasma treatment (Fig. 3.1.3a). 

The mass spectrum of the plasma-treated Cys showed two oxidation products corresponding to 

(Cys+3O)H
+
 at m/z 170.01 and (2Cys-2H)H

+
 at m/z 241.03 (Fig. 3.1.3b,c). (Cys+3O)H

+
 at m/z 

170.01 and (2Cys-2H)H
+
 at m/z 241.03 likely correspond to sulphonated Cys and the 

disulphide-bonded Cys dimer cystine, respectively, because the thiol group of the Cys side chain is 

highly reactive[57-59]. The peak intensity ratio (Cys+3O)H
+
/(Cys)H

+
 increased with plasma 

treatment time, while the (2Cys-2H)H
+
/(Cys)H

+ 
ratio increased at 5 min of plasma treatment and 

then decreased at 10 min. These results suggest that sulphonated Cys is the final product of the 

plasma treatment, consistent with a previous report that disulphide-bonded Cys in glutathione (a 

tripeptide containing Cys) was irreversibly sulphonated by exposure to ROS[59].  

 From a solution of Met before plasma treatment, (Met)H
+
 at m/z 150.06 and other peaks of 

m/z 104.05 and 133.03 were detected (Fig. 3.1.3d). Considering the transformation of Met during 

ESI-MS analysis[52], the peaks at m/z 104.05 and 133.03 are (Met-CO-H2O)H
+
 and (Met-NH3)H

+
, 

respectively. The mass spectrum of Met after plasma treatment for 5 min showed three products of 

m/z 74.02, 102.03, and 166.05 (Fig. 3.1.3e). The mass spectrum of Met after plasma treatment for 10 

min showed seven products of m/z 184.03, 136.06, 134.04, 118.05, 122.55, 102.03, and 74.02 (Fig. 

3.1.3f). Considering the transformation of oxidised Met during ESI-MS analysis[52], it is plausible 

that three oxidation compounds, (Met+O), (Met+2O), and (Met-2H+3O-C),
 
were produced by 

plasma treatment: [i] Met sulphoxide[60, 61] (Met+O)H
+
 at m/z 166.05 and some (Met+O)H

+
 

transformed into (Met+O-CH3SOH)H
+
 at m/z 102.03 and (Met+O-C3H8SO)H

+
 at m/z 74.02 during 

ESI-MS analysis; [ii] MetO2[57], which transforms into (Met+2O-CO-H2O)H
+
 at m/z 136.06 and 

(Met+2O-CH3SOH)H
+
 at m/z 118.05 during ESI-MS analysis; and [iii] (Met-2H+3O-C)H

+
 at m/z 

184.03. The products at m/z 122.55 and 134.04 could not be assigned. Intriguingly, the original Met 

peaks at m/z 150.06, 133.03, and 104.05 were not observed in the mass spectrum after plasma 

treatment for 5 min (Fig. 3.1.3e). This result indicates that Met is rapidly oxidised by plasma 

treatment. This feature of Met was also evident in the competitive plasma treatment experiment 

discussed later. 
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Pyrrolidine- and imidazole-containing amino acids: Pro and His 

(Pro)H
+
 was detected at m/z 116.07 from a solution of Pro before the plasma treatment (Fig. 3.1.4a). 

The mass spectrum of Pro after plasma treatment showed three oxidation products corresponding to 

(Pro-2H+O)H
+
 at m/z 130.05, (Pro+O)H

+
 at m/z 132.07, and (Pro+2O)H

+
 at m/z 148.06 (Fig. 

3.1.4b,c). These oxidation reactions likely occurred in the pyrrolidine ring of Pro and were assigned 

as pyrrolidone carboxylic acid[50, 62] at m/z 130.05, hydroxyl aminovaleric acid[63] at m/z 132.07, 

and glutamic acid at m/z 148.06 (as shown in Fig. 3.1.4b,c). The conversion of Pro into glutamic acid 

via pyrrolidone carboxylic acid occurs during proline metabolism[64].  

 (His)H
+
 was detected at m/z 156.08 from a solution of His before the plasma treatment (Fig. 

3.1.4d). The mass spectrum of His after the plasma treatment showed two products, (His+2O)H
+
 at 

m/z 188.07 and (His+3O)H
+
 at m/z 204.06 (Fig. 3.1.4e,f). Oxidised His has been reported to 

transform during ESI-MS analysis[52], and thus some of the (His+3O)H
+
 may transform to 

(His+3O-NHCO)H
+ 

at m/z 161.06 during ESI-MS analysis. (His+O)H
+
 was not observed in 

plasma-treated His (Fig. 3.1.4e,f), but 2-oxohistidine (His+O) is known to occur during oxidation of 

His[50, 51, 65]. Therefore, it is plausible that (His+O) was formed by plasma treatment and then 

further oxidised to (His+2O)H
+
 at m/z 188.07. (His+3O)H

+
 at m/z 204.06 could be assigned to a 

ring-opened structure (as shown in Fig. 3.1.4f). Ring-opened His was previously reported to be 

formed as an oxidation product of His reacted with ozone[52]. 

 

Figure. 3.1.3. Mass spectra of Cys (a-c) and Met (d-f) treated with plasma for 0 min (a,d), 5 min (b,e), and 10 

min (c,f). A molecular structure of the proposed product is shown for each peak. 
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Basic amino acids: Lys and Arg 

(Lys)H
+
 was detected at m/z 147.11 from a solution of Lys before plasma treatment (Fig. 3.1.5a). The 

mass spectrum of Lys after plasma treatment showed three oxidation products corresponding to 

(Lys-4H)H
+
 at m/z 143.08, (Lys-5H+O-N)H

+
 at m/z 144.07, and (Lys-2H+O)H

+
 at m/z 161.09 (Fig. 

3.1.4b,c). As shown in Fig. 5b, the proposed structures of (Lys-4H), (Lys-5H+O-N), and (Lys-2H+O) 

are an imine with conjugated olefin, aldehyde, and amide, respectively. The major final product is 

likely the aldehyde (Lys-5H+O-N), which forms from the imine with conjugated olefin (Lys-4H) by 

hydrolysis. The peak intensity ratio (Lys-2H+O)H
+
/(Lys)H

+
 was lower than that of (Lys-4H)H

+
 and 

(Lys-5H+O-N)H
+
, indicating that the amide (Lys-2H+O) is a minor product. 

 (Arg)H
+
 was detected at m/z 175.12 from a solution of Arg before plasma treatment (Fig. 

3.1.5d). The mass spectrum of Arg after plasma treatment showed two oxidation products 

corresponding to (Arg-4H)H
+
 at m/z 171.09 and (Arg+2O)H

+
 at m/z 207.11 (Fig. 3.1.5e,f). As shown 

in Fig. 3.1.5e, the proposed structures of (Arg-4H)H
+
 and (Arg+2O)H

+
 are conjugated diene and 

di-hydroxylated Arg, respectively. Hydroxylation of Arg was previously reported in metal-catalysed 

oxidation reactions[63]. 

 

Figure. 3.1.4. Mass spectra of Pro (a-c) and His (d-f) treated with plasma for 0 min (a,d), 5 min (b,e), and 10 

min (c,f). A molecular structure of the proposed product is shown for each peak. 
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Amido- and carboxyl-containing amino acids: Gln and Glu 

(Gln)H
+
 and (Glu)H+ were detected at m/z 147.08 and m/z 148.06, respectively (Fig. 3.1.6a,d). The 

mass spectrum of the plasma-treated Gln showed one oxidation product corresponding to 

(Gln-2H+O)H
+
 at m/z 161.06 (Fig. 3.1.6b,c). The mass spectrum of the plasma-treated Glu showed 

two oxidation products corresponding to (Glu+O)H
+
 of m/z 164.06 and (Glu+2O)H

+
 of m/z 180.05 

 

Figure. 3.1.5. Mass spectra of Lys (a-c) and Arg (d-f) treated with plasma for 0 min (a,d), 5 min (b,e), and 10 

min (c,f). A molecular structure of the proposed product is shown for each peak. 

 

Figure. 3.1.6. Mass spectra of Gln (a-c) and Glu (d-f) treated with plasma for 0 min (a,d), 5 min (b,e), and 10 

min (c,f). A molecular structure of the proposed product is shown for each peak. 
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(Fig. 3.1.6e,f). By contrast, oxidation of Asn and Asp by plasma treatment was not observed (data not 

shown). Compared to Glu and Asp, Gln and Asn contain an additional methylene group, respectively. 

The hydroxylations of Gln and Asn likely occurred at these methylene groups, yielding ketonised 

Gln at m/z 161.06 and hydroxylated Glu at m/z 164.06 as products, respectively (as shown in Fig. 

3.1.6b,e). The chemical structure of (Glu+2O)H
+
 at m/z 180.05 is proposed to be the diol (as shown 

in Fig. 3.1.6e) formed from the hydroxylated Glu.  

 

 

Branched-chain amino acids: Val, Leu, and Ile 

(Val)H
+
 was detected at m/z 118.09 from a solution of Val before plasma treatment (Fig. 3.1.7a). The 

mass spectrum of Val after plasma treatment showed seven oxidation products corresponding to 

(Val-2H)H
+
 at m/z 116.07, (Val-2H+O)H

+
 at m/z 132.07, (Val+O)H

+
 at m/z 134.08, (Val-2H+2O)H

+
 

at m/z 148.06, (Val+2O)H
+
 at m/z 150.08, (Val+3O)H

+
 at m/z 166.07, and (Val-H+3O+N)H

+
 at m/z 

179.07 (Fig. 3.1.7b,c). As shown in Fig. 3.1.7b,c, the proposed structures of (Val-2H), (Val-2H+O), 

(Val+O), (Val-2H+2O), (Val+2O), (Val+3O), and (Val-H+3O+N) are dehydroxylated, formylated, 

hydroxylated, carboxylated, dihydroxylated, hydroxylated/carboxylated, and hydroxylated/nitrated 

Val, respectively.  

 (Leu)H
+
 was detected at m/z 132.10 from a solution of Leu before plasma treatment (Fig. 

3.1.7d). The mass spectrum of Leu after plasma treatment showed nine oxidation products 

corresponding to (Leu-4H)H
+
 at m/z 128.07, (Leu-2H)H

+
 at m/z 130.09, (Leu-2H+O)H

+
 at m/z 

146.08, (Leu+O)H
+
 at m/z 148.10, (Leu-2H+2O)H

+
 at m/z 162.08, (Leu+2O)H

+
 at m/z 164.09, 

(Leu-2H+3O)H
+
 at m/z 178.07, (Leu+3O)H

+
 at m/z 180.09, and (Leu-H+3O+N)H

+
 at m/z 193.08 

(Fig. 3.1.7e,f). As shown in Fig. 3.1.7e,f, the proposed structures of (Leu-4H), (Leu-2H), 

(Leu-2H+O), (Leu+O), (Leu-2H+2O), (Leu+2O), (Leu+3O), and (Leu-H+3O+N) are 

didehydroxylated, dehydroxylated, formylated, hydroxylated, carboxylated, di-hydroxylated, 

hydroxylated/carboxylated, tri-hydroxylated, and hydroxylated/nitrated Leu, respectively. 

  (Ile)H
+
 was detected at m/z 132.10 from a solution of Ile before plasma treatment (Fig. 

3.1.7g). The mass spectrum of Ile after plasma treatment showed eight oxidation products 

corresponding to (Ile-4H)H
+
 at m/z 128.07, (Ile-2H)H

+
 at m/z 130.09, (Ile-2H+O)H

+
 at m/z 146.08, 

(Ile+O)H
+
 at m/z 148.10, (Ile-2H+2O)H

+
 at m/z 162.08, (Ile+2O)H

+
 at m/z 164.09, (Ile-2H+3O)H

+
 at 

m/z 178.07, and (Ile-H+3O+N)H
+
 at m/z 193.08 (Fig. 3.1.7h,i). As shown in Fig. 3.1.7h,i, the 

proposed structures of (Leu-4H), (Leu-2H), (Leu-2H+O), (Leu+O), (Leu-2H+2O), (Leu+2O), 

(Ile-2H+3O), and (Leu-H+3O+N) are didehydroxylated, dehydroxylated, formylated, hydroxylated, 

carboxylated, di-hydroxylated, hydroxylated/carboxylated, and hydroxylated/nitrated Ile, 

respectively. 

 Various products were observed after plasma treatment of branched-chain amino acids (Fig. 

3.1.7). Unsaturated Val, Leu, and Ile were detected (Fig. 3.1.7c,e,h). Unsaturated fatty acids have 
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been reported to form a variety of oxidised products[66]. Therefore, the various products observed 

upon plasma treatment may be due to amino acids with unsaturated side chains. 

 

 

Relative reactivity of amino acids to plasma treatment 

The relative reactivity of the 20 amino acids was estimated from a competitive plasma treatment 

experiment (Fig. 3.1.8). A solution containing the 20 amino acids was subjected to plasma treatment 

for the indicated time, and then the concentration of the amino acids was measured by conventional 

amino-acid analysis. Figure 8 shows that the reactivity of the 20 amino acids was Met > Cys > Trp > 

Phe > Tyr > His > others. Notably, Met was completely degraded by plasma treatment for 10 min. 

This result is consistent with the MS data, in which the original Met peaks were not observed in the 

 

Figure. 3.1.7. Mass spectra of Val (a-c), Leu (d-f), and Ile (g-i) treated with plasma for 0 min (a,d,g), 5 min 

(b,e,h), and 10 min (c,f,i). A molecular structure of the proposed product is shown for each peak. 
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mass spectra after plasma treatment for 10 min (Fig. 3.1.3f). These results indicate that the Met 

residues in a protein are most readily modified by plasma treatment.  

 The concentration of the disulphide-bonded Cys dimer cystine was also measured by the 

amino acid analyser (Fig. 3.1.8). Cystine and sulphonated Cys were the products of plasma-treated 

Cys (Fig. 3.1.3b and 3.1.3c). Therefore, the concentration of sulphonated Cys was calculated from 

those of Cys and cystine (as shown in Fig. 3.1.8). The concentrations of cystine and sulphonated Cys 

increased with plasma treatment time. These results indicate that disulphide-bond formation and 

sulphonation occur simultaneously. Cys plays an important role in protein folding and stability[67]. 

Thus, degradation of Cys is a key aspect of protein inactivation by plasma treatment. 

 Interestingly, plasma treatment decreased Trp more rapidly than Phe and Tyr (Fig. 3.1.8), 

but in contrast to Tyr and Phe, Trp was hydroxylated but not nitrated (Fig. 3.1.2). These results 

indicate that hydroxylation of Trp residues in proteins is a major reaction during plasma treatment. 

These data are supported by our previous report that the intrinsic fluorescence of Tyr residues in a 

protein decreases rapidly upon plasma treatment[45].  

 Finally, sulphur-containing and aromatic amino acids were preferentially decreased by 

plasma treatment of the 20 amino acids under competitive conditions (Fig. 3.1.8). We previously 

reported that hen egg-white lysozyme, a model enzyme with active-site Glu and Asp residues[68], 

was slowly inactivated by the same plasma treatment[45]. Taken together, these results lead us to 

predict that an enzyme will be rapidly inactivated by plasma treatment if the enzyme has 

sulphur-containing and aromatic amino acids in its active site. This information is important for 

understanding the mechanism of action of plasma medicine. 

 

 

 

Figure. 3.1.8. Competitive plasma treatment of 20 amino acids. The prepared concentration of the amino acids 

was 0.5 mM; the concentration of amino acids in the plasma-treated sample was determined by amino-acid 

analysis. The concentration of cystine was also measured, and the concentration of sulphonated Cys was 

calculated from those of Cys and cystine. 
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Conclusion 

In summary, we examined the chemical effects of plasma treatment in aqueous solution of 20 amino 

acids that comprise proteins. The side chains of 14 amino acids were oxidised to form various 

products, and sulphur-containing and aromatic amino acids were preferentially decreased in a 

competitive plasma treatment experiment. The oxidation reactions of amino acid side chains are 

well-known in organic chemistry[69]. Cysteine residues of proteins often play critical roles in 

enzyme catalysis as part of metabolism and signalling[70]. Proteins are a major target of ROS
 
[71]. 

Therefore, this study is of fundamental importance for elucidating the mechanism of protein 

inactivation to facilitate the development of biomedical plasma applications.  

 An LF plasma jet was used as the APCP system to examine the chemical effects of plasma 

treatment on 20 amino acids. The LF plasma jet is a simple APCP system. Threfore, some of the 

chemical reactions reported in this study may occur when other APCP systems are used. The 

information presented in this paper represents a crucial first step for understanding the mechanism of 

action of plasma medicine. 
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Chapter 4 

Chemical Effects on Enzyme 

 

4.1 Protein Inactivation by Low-Temperature Atmospheric 

Pressure Plasma in Aqueous Solution 

 

 

Introduction 

Plasma processing at atmospheric pressure has attracted a great deal of attention because of its 

advantageous features, such as its obviation of complicated and expensive vacuum systems, its 

capacity for adequate and controllable gas temperature, its high concentrations of chemically reactive 

species, and its flexible operation [1]. Such attributes of atmospheric pressure plasma have been 

applied as ionization for use in mass spectrometry [2,3], elimination of organic materials [4], tooth 

bleaching [5], and sterilization [6–23].  

 Although various biomedical applications of the atmospheric pressure plasma have been 

developed over the past decade, fundamental understanding of interaction between plasma and 

biomacromoledules has remained insufficient. Few experiments have examined the atmospheric 

pressure plasma destructed the tertiary structure of DNA in aqueous solution [24,25] and degradation 

of protein in dry conditions [26,27]. Recently, it has been reported that the LTAP plasma degrades 

proteins in aqueous solution. For example, LTAP plasma inactivates infectious prion protein [28], 

activates lipase in solution after treated within one minute [29] , and inactivates recombinant green 

fluorescent protein (GFP) in E. coli cells [14] . Although these effects of plasma on protein have 

been reported, molecular mechanisms of the plasma on enzymatic activity have remained unclear. 

 Our plasma system, using a low-frequency (LF) high-voltage (HV) power supply and a 

single-HV electrode, which is designated as a LF plasma jet, can easily generate LTAP plasma at low 

cost. The advantage of the LF plasma jet is the sterilization of bacteria in acidic solution without heat 

load, current, and ultraviolet rays (UV) [8]. To apply our LF plasma jet to biology and medical 

applications, this paper investigated enzymatic activity, secondary structure, intrinsic tryptophan 

fluorescence, and molecular weight. This report is the first of inactivation protein in aqueous solution 

by the plasma.  
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Materials and methods  

Materials 

Hen egg white lysozyme was obtained from Sigma Chemical Co. (St. Louis, MO). Sodium 

dihydrogen phosphate, glycine, and Micrococcus lysodeikticus were obtained from Wako Pure 

Chemical Industries Ltd. (Osaka, Japan). All compounds were of the highest commercially available 

grade. 

 

System of LF plasma jet 

The experimental system, comprising the plasma generator and sample chamber, is shown in Fig. 

4.1.1. The LF plasma jet was ejected from the end of the quartz glass tube, in which helium (He) gas 

flowed, by the application of a alternating current (AC) high voltage (from -3.5 to +5.0 kV with the 

frequency of 13.9 kHz) to the electrode, which was a small metal sheet wound around the tube [8] . 

The He plasma with low gas temperature was generated as an elongated shape. This LF plasma jet 

was generated inside the airtight chamber from its center port. The ambient gas of the chamber can 

 

Figure 4.1.1. Schematic diagram of the plasma generation system. LF/HV pulses are applied to the electrode, 

which is wound around the quartz glass tube. The device is He-based low-temperature atmospheric plasma. 

Plasma is generated in He gas flowing (500 ml/min) in the quartz glass tube. A plume-like structure of the 

plasma (’plasma jet’) is extended toward the surface of a liquid. Flow of O2 gas of 150 ml/min to the chamber 

maintains the O2 concentration in the chamber atmosphere. 
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be controlled with the other oxygen (O2) gas supply port connected to the side of the plasma jet port. 

The flow rates of He and O2 gas were, respectively, 0.50 and 0.15 l/min. Various active oxygen 

species produced from O2 gas by He plasma were supplied to the solution in the chamber. The 

sample of 0.3 ml containing 0.1 mg/ml lysozyme in 10 mM phosphate buffer (pH 7.4) was applied to 

the solution in the vessel. To exchange the ambient gas, He and O2 gas were preflowed in the 

chamber for 3 min. After the plasma treatment, samples were corrected with pure water to 

compensate for evaporation . 

 

Enzyme assay 

Enzymatic activity of lysozyme was determined as follows. In all, 1.5 ml of 0.5 mg/ml M. 

lysodeikticus solution in 10 mM sodium -phosphate buffer (pH 7.4) was mixed with 15 µl of the 

protein solution. The decrease in the light-scattering intensity of the solution was monitored by 

measuring the absorbance at 600 nm for 100 s at 25 °C using a spectrophotometer (V-630; Japan 

Spectroscopic Co. Ltd., Tokyo). The decreasing absorbance between 40 to 90 s was fitted to a linear 

extrapolation; then the enzymatic activity was estimated from the slope of the line, as described 

previously [30]. 

 

Circular dichroism 

Circular dichroism (CD) spectroscopy was performed in a 1 mm pathlength quartz cuvette using a 

spectropolarimeter (J-720 W; Jasco Corp.). The CD spectra were recorded for 195–260 nm at 25 °C. 

The Far-UV CD spectra of the samples were corrected by subtracting the corresponding spectra of 

buffers in the absence of lysozyme. 

 

Fluorescence measurement 

Fluorescence spectra of intrinsic Trp residues of lysozyme were recorded using a spectrofluorometer 

(FP6500; Jasco Corp., Tokyo, Japan) with excitation wavelength of 295 nm recorded for 315–400 

nm at 25 °C. The fluorescence spectra of respective reference solutions with the absence of lysozyme 

were subtracted from the intensity of the sample solutions. The determined intensities were averages 

of triplicate experiments. 

 

Molecular weight measurement 

Mass spectra were obtained using MALDI–TOF MS (UltrafleXtreme MALDI-TOF/TOF; Bruker 

Daltonics Inc., Billerica, USA). Samples were prepared using the uniform submicrometer crystal 

formation method [31]. The -cyano-4-hydroxycinnamic acid (CHCA) was saturated in methanol. 
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The CHCA solution of 1.0 l was applied to the polished steel probe. The matrix solution used for 

these measurements was the saturated CHCA solution in water/acetonitrile 1:1 (v/v), diluted by a 

factor of 2 in the same solvent mixture. The sample, loaded on MALDI–TOF MS, was prepared by 

mixing 1.0 l of the protein solution with 1.0 l of the matrix solution directly on the sample probe 

and allowing the solution to dry at room temperature. 

 

SDS–PAGE 

After exposure of the plasma jet, the sample was resolved in loading buffer containing 2% (w/v) 

SDS, 10% glycerol, 0.04 M DTT, 0.01% (w/v) bromophenol blue, and 62.5 mM Tris–HCl (pH 6.8). 

Samples were boiled for 5 min; then the samples and the standard ladder marker were loaded on 15% 

polyacrylamide gel. Gel electrophoresis and staining were described previously.
 
The standard marker 

for SDS–PAGE was obtained from Apro Life Science Institute Inc. (Tokushima, Japan). 

 

 

Results 

To elucidate the fundamental reactions between atmospheric pressure plasmas and 

biomacromolecules, protein in aqueous solutions treated by LF plasma jet (Fig. 4.1.1) was studied 

using lysozyme as a model. The bacteriolysis activity of lysozyme was monitored by the decreasing 

in absorbance at 600 nm as described previously [32]. Figure 4.1.2 presents the time course of 

residual activity of lysozyme after treatment of the LF plasma jet for the respective periods. The 

residual activity decreased with time, about one-third after the plasma treatment for 30 min. To 

 

Figure 4.1.2. Residual activity of lysozyme in 10 mM phosphate buffer (pH 7) treated by a LF plasma jet in 

respective periods (open circles), hot air treatment with heat (closed circles), and plasma treatment through a 

quartz glass plate with UV (open squares). 
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confirm the cause of inactivation, two control experiments were performed: hot-air treatment and 

plasma jet treatment through the quartz glass plate [25]. Briefly, hot-air treatment was performed as 

the control experiment with air at 80 °C instead of LF plasma jet blown on the samples. The plasma 

treatment through a quartz glass plate was performed as the control experiment that LF plasma jet 

irradiated on the samples through a UV-permeability glass vial to confirm the effect of UV alone. As 

expected, the enzymatic activity of lysozyme did not change in these control experiments (Fig. 4.1.2). 

Moreover, the concentration of lysozyme did not change (data not shown). These data indicate that 

the decrease in the residual activity results from chemical modification and/or unfavorable 

denaturation of the enzymes by treatment of LF plasma jet. This report is the first describing that 

atmospheric plasma decreases the enzymatic activity of protein. 

 To clarify the mechanism of the inactivation of lysozyme by a LF plasma jet, circular 

dichroism (CD) and fluorescence spectroscopy were conducted, which yielded information about the 

protein molecular structures. Far-UV CD spectrum is a well-used technique to determine the 

secondary structure of proteins in solution [33]. Figure 4.1.3 presents far-UV CD spectra of 

lysozyme. The secondary structure of lysozyme changed slightly upon treatment with the LF plasma 

jet. The CD spectrum of lysozyme treated of LF plasma jet for 30 min was similar to that of the 

random coil structure in 6.0 M Guanidine HCl (Fig. 4.1.3a). The far-UV ellipticity of lysozyme 

decreased steeply with time for the plasma treatment and then reached a plateau for 10 min (Fig. 

4.1.3b). It is noteworthy that the far-UV CD spectra did not change in the control experiments of hot 

air (heat) and plasma jet treated through the quartz glass plate (UV) (data not shown). The results 

indicate that lysozyme is denatured by the plasma treatment. Consequently, the inactivation of 

 

Figure 4.1.3. (a) Circular dichroism spectra of lysozyme treated in 10 mM phosphate buffer (pH 7) by LF 

plasma jet at the respective periods and in 6.0 M Guanidine HCl 10 mM phosphate buffer (pH 7) (untreated by 

LF plasma jet). (b) Changes in the molar ellipticity at 209 nm (open circles, left axes) and 220 nm (closed 

circles, right axes) as a function of the plasma exposure time. 



62 

 

lysozyme by LF plasma jet results from the structural change of lysozyme. 

 Figure 4.1.4 shows the intrinsic tryptophan fluorescence of lysozyme after the plasma 

treatment. Lysozyme from hen egg white shows an intrinsic fluorescence by tryptophan residues with 

excitation at 295 nm. The fluorescence intensity of lysozyme at 340 nm decreased with the plasma 

treatment, although the maximum wavelength of the fluorescence spectra did not change. It was also 

confirmed that the control experiments of both hot air (heat) and plasma treated through quartz glass 

plate (UV) did not affect the fluorescence spectra (data not shown). It should be noted that the 

fluorescence intensity at 340 nm with the plasma treatment decreased more than at 80 °C, which is 

denaturation temperature of lysozyme (Fig. 4.1.4). Because the fluorescence intensity of tryptophan 

is unaltered in the range of 25-95 °C [34], the decrease in the fluorescence intensity may result from 

the change of chemical structure of tryptophan by the LF plasma jet. 

 To investigate the change of chemical structure of lysozyme, mass spectroscopy was 

performed. Figure 4.1.5a shows data of MALDI–TOF MS of the samples after plasma treatment for 

0 or 30 min. The most abundant peak of native lysozyme was m/z 7153, which corresponds to the 

doubly protonated molecule; the singly protonated molecule shows a peak at a maximum of m/z 

14306. A minor species at m/z 28612 was detected, which corresponds to the dimer with one 

protonation. These MS spectra of lysozyme were coincident with those reported previously [35]. 

However, the peaks of the MS spectrum after the plasma treatment for 30 min were shifted to high 

molecular weight (Fig. 4.1.5); plasma-treated lysozyme increased the mass of about 90. These results 

indicate that the LF plasma jet modifies some amino acid side chains in lysozyme. Further analyses, 

such as identification of the modified sites, will be performed in future studies. 

 Reportedly, E. coli and L. citreum are disinfected effectively by the LF plasma jet in acidic 

 

Figure 4.1.4. (a) Fluorescence spectra of lysozyme in 10 mM phosphate buffer (pH 7) treated by LF plasma jet 

at the respective periods and at 80 °C (untreated by LF plasma jet). (b) Changes in the fluorescence intensity at 

340 nm in the fluorescence spectra of lysozyme as a function of exposure time. 
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conditions [8]. Consequently, it is interesting to know whether LF plasma jet can inactivate lysozyme 

at different pH. We investigated the effect of LF jet plasma on the activity and structure of lysozyme 

as a function of pH. Figure 4.1.6a presents the pH dependence of the inactivation of lysozyme by LF 

plasma jet for the respective periods in glycine–phosphate buffer at pH 2, 7, and 10. Inactivation was 

observed while the rates of the inactivation varied with the order of pH 10 > pH 2 > pH 7. Figure 

6b,c,d portrays far-UV CD spectra of lysozyme after plasma treatment at pH 2, 7, and 10. As the 

figures show, the secondary structure was decreased immediately at high pH. It is noteworthy that 

the isoelectric point of lysozyme is at around pH 10; the condition at pH 10 is prone to aggregate 

lysozyme[36]. Consequently, the inactivation of the alkaline condition might be related to the 

aggregation. However, the rate of inactivation and structural change at pH 2 was higher than that at 

pH 7. The results indicate that the inactivation in acidic conditions might be predominantly 

attributable to chemical modification of the amino acid side chains of lysozyme. 

 

 

Discussion 

As described in this paper, LF plasma jet, an LTAP plasma, was applied to lysozyme as a model 

enzyme in aqueous solution (Fig. 4.1.1). The following experimentally obtained results were 

 

Figure 4.1.5. MALDI–TOF MS spectrum of lysozyme treated by a LF plasma jet for 0, 30 min between m/z (a) 

5000–35000, (b) 7000–7500, and (c) 14000–15000. 

 



64 

 

observed from plasma treatment: (i) decreased enzymatic activity (Fig. 4.1.2), (ii) change in the 

secondary structure (Fig. 4.1.3), (iii) decrease of the tryptophan fluorescence intensity (Fig. 4.1.4), 

and (iv) increased molecular weight (Fig. 4.1.5). Inactivation and structural change of lysozyme were 

affected by the pH value of the solution (Fig. 4.1.6). These effects of LF plasma jet on lysozyme are 

caused neither by UV light nor heat from plasma, suggesting that the reactive species generated by 

LF plasma jet affect lysozyme. One possible mechanism of LF plasma jet on protein is that hydroxyl 

radicals (OH･), superoxide anion radicals (O2-･), hydroperoxy radicals (HOO･), and nitric oxide 

(NO･) result in the chemical modifications of chemically-reactive side-chain of the amino acids, 

such as cysteine, aromatic rings of phenylalanine, tyrosine, and tryptophan. Further experiments 

should be performed to clarify the chemical and physiological influences of LF plasma jet on 

biological molecules.  

 Inactivation of lysozyme by LF plasma jet was observed in this paper. It is noteworthy that 

these data apparently differ from those obtained by He-Ping and co-workers using lipase; the 

enzymatic activity of lipase increased by LTAP plasma within one minute[29]. This is not surprising 

because the activity of lipase is enhanced in the presence of low concentrations of organic solvents; 

 

Figure 4.1.6. (a) Residual activities of lysozyme treated by a LF plasma jet in 10 mM glycine-phosphate buffer 

at pH 2 (closed circles), pH 7 (open circles), or pH 10 (open squares). Circular dichroism spectra of lysozyme 

treated by a LF plasma jet for 0 min (continuous line), 10 min (dotted line), 20 min (broken line), or 30 min 

(dot-broken line) at pH 2 (b), pH 7 (c), or pH 10 (d). 
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the percentages of activity are 150 % in 1.25 % butanol and 130 % in 0.25 % butyric acid[37]. 

Consequently, the structural artifacts affect the enzymatic activity of lipase by the plasma. We 

believe that LTAP plasma generally decreases the enzymatic activity of soluble proteins because 

lysozyme is a typical enzyme with a small and monomeric structure in water-soluble form. The 

hypothesis is consistent with the other two facts that LTAP plasma inactivates infectious prion 

proteins [28] and recombinant GFP without affecting peptide bonds [14].  

 The molecular mechanism of the lysozyme inactivation can be described as follows. It is 

noteworthy that enzymatic activity and denaturation depend on pH (Fig. 4.1.6). Inactivation at pH 10 

results from aggregation at around net charges of lysozyme in the solution [35]. However, the cause 

of inactivation at acidic pH is not elusive: it is not intermolecular aggregation, but chemical 

modification of lysozyme. Ikawa et al. recently reported that LF plasma jet sterilizes bacteria 

effectively at pH less than 4.8, resulting from hydroperoxy radical and superoxide anion radical[8]. 

This is true because pKa of the equilibrium reaction between the superoxide anion radical and 

hydroperoxy radicals is known to occur at approximately pH 4.8 [38]. Consequently, inactivation at 

acidic pH might be different from that at alkaline pHs because of their radical species. 

 In summary, this paper revealed that LTAP plasma decreases the enzymatic activity of 

lysozyme and increases the molecular weight of the protein. This study is a first report to elucidating 

chemical reaction and structural change of protein by the plasma in aqueous solution. These data 

imply the interesting application that LF plasma jet solubilizes aggregates of protein, typically 

amyloid fibrils. Actually, it was recently reported that atmospheric pressure plasma dissolved 

amyloid fibrils in dry condition [39,40]. It is noteworthy that LF plasma jet dissolved amyloid fibrils 

of lysozyme (data not shown); details of this effect will be described in future reports. 
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4.2 Synergistic Solubilization of Porcine Myosin in 

Physiological Salt Solution by Arginine 

 

 

Introduction 

Meat is rich in high-quality proteins and contains all of the essential amino acids for humans [1]. 

However, meat has not been fully utilized as a protein supplement to the same extent that milk or 

soybean products have been utilized because of the low solubility of myosin, which constitutes 

approximately 50 % of myofibrillar proteins. The low solubility of myosin results from the 

spontaneous formation of filaments that occur in vivo [2–4]. Myosin is practically insoluble in 

aqueous solution at low ionic strength but is increasingly soluble at high salt concentrations [5–9]. 

 Solubilization of insoluble myosin has been achieved by adding 5 mM histidine in low 

ionic strength solutions (1-5 mM KCl, pH 7.5) [10–12]. The mechanism by which histidine 

solubilizes myosin appears to involve structural changes in monomeric myosin and the resulting 

inhibition of native myosin
 
filament formation [11]. When the salt concentration is increased to a 

physiological level (0.15 M), 5 mM histidine no longer shows such effects [12]. Considering the 

observed structural changes caused by histidine, which may limit myosin application, it would be 

advantageous to achieve high myosin solubility without structural changes even in physiological 

salt solutions. We have investigated several additives, including histidine and arginine, for their 

effects on myosin solubility as a function of salt concentration and on the myosin structure. 

 Arginine is one of the most common solvent additive that suppress protein aggregation 

without altering or destabilizing the tertiary structure of the proteins
 
[13,14]. Arginine has been used 

in various applications, including suppression of reductant- or heat-induced aggregation [15–18], 

enhancement of protein refolding [17–22], crystallization [23], and improved performance of 

column chromatography [24–27].  The molecular mechanisms by which arginine suppresses 

protein aggregation have been proposed: (i) the guanidinium group of arginine interacts with 

aromatic residues by cation-π interactions [28–31], which has been observed in the enhanced 

solubility of aromatic compounds [32,33], and (ii) weak preferential exclusion of arginine from the 

protein surface, which is associated with its weak binding to the proteins and increases the 

activation energy toward aggregation [34,35]. Thus, we have focused on the solubilization effects of 

arginine and its influence on myosin structure. 
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Materials and methods 

Materials 

Sodium chloride (NaCl) and sodium phosphate were obtained from Nacalai Tesque Inc. (Tokyo, 

Japan). L-arginine hydrochloride (Arg), glycine (Gly), L-histidine (His), L-lysine hydrochloride 

(Lys) and guanidine hydrochloride (Gdn) were obtained from Wako Pure Chemical Ind., Ltd. 

(Osaka, Japan). All chemicals used were of reagent grade and were used as received. 

 

Purification of myosin 

Porcine myosin extract was prepared as follows: myosin was extracted from 120 g of lean porcine 

meat from the inner thigh (semitendinosus) with 450 ml of buffer containing 100 mM 

pyrophosphate and 5.0 mM MgCl2 (pH 7.0) using a homogenizer at 5 °C for 60 min. The myosin 

extract was stored at -25 °C. After thawing at room temperature, the myosin extract was dialyzed 

against 1.0 mM KCl and 2.0 mM Na-phosphate buffer (pH 7.0). The precipitates of the dialyzed 

solution were washed with 1.0 mM KCl and 2.0 mM Na-phosphate buffer (pH 7.0) and were used 

as the source of myosin. SDS-PAGE analysis of the prepared myosin was shown in Figure 4.2.1. 

 

Preparation of myosin solution 

The frozen myosin extract (72 mg) was dissolved with 20 mM sodium phosphate buffer containing 

1 M NaCl (pH 7.5). After incubation for 1 hour at 25 °C, the myosin solution was centrifuged at 

18,800 ×g for 20 min. After centrifugation, the supernatant containing 1 M NaCl was used as the 

stock myosin solution. As previously reported, myosin was highly soluble and stable in this solvent, 

     

Figure. 4.2.1. SDS-PAGE analysis of the prepared myosin. Lane 1: The standard 

ladder. Lane 2: The myosin dissolved with 50 mM NaCl and 20 mM sodium 

phosphate buffer (pH 7.5). The filament formed and monomeric myosin is 

indicated by the red and black arrows, respectively. 
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which was largely in the monomeric structure [5,6]. 

 

Measurement of myosin solubility 

The stock myosin solution was diluted from 20 mM sodium phosphate buffer and 1 M NaCl (pH 

7.5) into the test solvents for a final concentration of 50 mM additives (Arg, Lys, NaCl, His, Gly 

and Gdn) in the presence of 0.05-0.3 M NaCl in the same buffer. The sample solution was incubated 

for 1 hour at 25 °C and centrifuged at 18,800 ×g for 20 min. The supernatant was diluted 10-fold 

with the respective buffer to reduce the myosin concentration for the fluorescence measurements. 

The myosin concentration in the supernatant, which corresponds to the solubility, was measured 

using a fluorescence spectrofluorometer (FP-6500, Jasco Corp.; Tokyo, Japan) with a 1-cm 

path-length quartz cuvette. The solution was excited at 280 nm (3 nm slit-width), and the emission 

spectrum (5 nm slit-width) was collected at 25 °C.  

 

Circular dichroism (CD) spectra 

Far-UV circular dichroism (CD) measurements were performed on a spectropolarimeter (J-720W; 

Jasco Corp.) using a 1-mm path-length quartz cuvette. The CD spectra of the sample myosin 

solutions were measured at 25 °C. The CD spectra of the samples were corrected by subtracting 

the spectra of the respective solvents. 

 

SDS–PAGE  

The prepared myosin sample was resolved in loading buffer containing 2% (w/v) SDS, 10% (w/v) 

glycerol, 0.04 M DTT, 0.01% (w/v) bromophenol blue, and 62.5 mM Tris–HCl (pH 6.8). The 

samples were boiled for 5 min; then the samples and the standard ladder marker were loaded on 

15% polyacrylamide gel. The standard marker for SDS–PAGE was obtained from Apro Life 

Science Institute Inc. (Tokushima, Japan). 

 

 

Results 

Measurement of myosin concentration by fluorescence intensity 

The concentration of myosin in the test solvents was determined by the intrinsic tryptophan 

fluorescence of myosin as opposed to the absorbance at 280 nm. This approach was used because 

the formation of filamentous structures causes significant light scattering and makes UV absorbance 

unreliable for concentration determination. Figure 4.2.2 demonstrates the reliability of fluorescence 
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for myosin concentration measurements. Figure 4.2.2A shows the fluorescence emission spectra of a 

serially diluted myosin stock solution of known protein concentration. The spectral shape was 

independent of dilution with a peak at 334 nm, which indicated no effects of dilution and protein 

concentration on the tryptophan environments of myosin; note that this fluorescence peak position 

indicates that the fluorescent tryptophans are at least partially buried inside the tertiary structure of 

myosin. The fluorescence intensity at 334 nm of these myosin samples were plotted against the 

concentration of myosin. As shown in Fig. 4.2.2B, the fluorescence intensity linearly increased with 

the sample concentration. The straight line corresponds to a linear regression with a correlation 

coefficient of 0.999. Thus, the myosin concentration can be reliably determined from the 

fluorescence intensity at 334 nm. Furthermore, the fluorescence spectra of myosin were not affected 

by the additives tested and NaCl concentrations (date not shown). 

 

 

Effect of arginine on myosin solubility 

Figure 4.2.2 shows the effects of 50 mM Arg, Lys, NaCl, His, Gly and Gdn on the solubility of 

myosin in the presence of NaCl concentrations (50, 100, 150, 200, 250 and 300 mM); note that an 

additional 50 mM NaCl was present over the basal NaCl concentration (a total of 100 mM NaCl for 

the first column, which corresponds to the 50 mM basal NaCl concentration). The myosin solubility 

in the absence of an additional 50 mM NaCl (at the basal salt concentration) is shown as “none” in 

 

Figure. 4.2.2. (A) The intrinsic emission fluorescence spectra of myosin at different protein concentrations. The 

stock sample solution was serially diluted (1- to 16-fold) with 20 mM sodium phosphate (pH 7.5). The 

fluorescence emission spectra were collected at 25 °C with an excitation wavelength of 280 nm. (B) The 

fluorescence intensity at 334 nm against myosin concentrations. Data are taken from Fig. 1A. The plot was fit by 

linear regression with a correlation coefficient of 0.999. The measurements were performed three times, and the 

error bars depict the standard deviation of the mean. 



73 

 

Fig. 4.2.3. As described in the methods section, the myosin solubility was determined in the test 

solvents by diluting the stock myosin solution in 1 M NaCl, where myosin is largely monomeric, 

into the test solvents. Thus, myosin filament formation may vary depending on the salt 

concentration, which suggests that more filaments may be present at lower salt concentrations. The 

solubility shown in Fig. 4.2.3 is the value at 1 hour after dilution and may not be the final 

equilibrium value, particularly in the presence of 50 mM Arg (for reasons described later). 

 At the 50 mM basal NaCl concentration (first column in Fig. 4.2.3), 50 mM Arg and Lys 

showed insignificant effects on myosin solubility compared with 50 mM NaCl (total 100 mM NaCl), 

whereas 50 mM His and Gly slightly reduced myosin solubility compared with the three additives. 

It is interesting that 50 mM Gdn showed reduced myosin solubility, although only slightly. Thus, the 

effects of these five additives (i.e., Arg, Lys, His, Gly and Gdn) were marginal at this low basal salt 

concentration. A small but significant effect of 50 mM Arg was observed at a 100 mM NaCl 

concentration (second column in Fig. 4.2.3). Arg and Lys increased the myosin solubility compared 

to NaCl alone, and Arg was more effective; 50 mM NaCl was slightly effective when compared 

with its absence (see “none”). At this NaCl concentration (second column in Fig. 4.2.3), 50 mM His, 

Gly and Gdn were essentially ineffective as myosin solubility in these solvents was nearly identical 

to the solubility in 100 mM NaCl alone (“none”). At a 150 mM NaCl concentration (third column in 

 

Figure. 4.2.3. Myosin solubility in 50 mM additives or “None” indicated in the figure as a function of  basal 

NaCl concentration. A stock myosin solution in 1 M NaCl was diluted into the test solvents and incubated for 1 

h. The concentration of myosin in 50 mM additives or “None” in the presence of 50-300 mM NaCl was 

determined by measuring the intrinsic fluorescence intensity at 334 nm. The myosin solubility in test solvents 

was normalized to the value in 50 mM Arg and 300 mM NaCl, which was set as 100 %. The measurements were 

performed three times, and the error bars depict the standard deviation of the mean. 
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Fig. 4.2.3), a much stronger effect of Arg was observed. At this NaCl concentration, 50 mM Arg 

increased the myosin solubility by more than twofold over the level achieved by 50 mM NaCl (200 

mM total NaCl) and almost threefold over the value at 150 mM NaCl (see first black bar, “none”). 

Lys was also effective; however, its effect was greatly reduced when compared to Arg. At 150 mM 

NaCl, 50 mM His, Gly and Gdn were much weaker than NaCl in solubilizing myosin and nearly 

identical to the value in the absence of 50 mM salt (but in the presence of 150 mM salt). The lack of 

solubilization effects of His at 150 mM NaCl is consistent with previous reports [12]. When the 

basal salt concentration was increased to 200 mM (fourth column in Fig. 4.2.3), the solubilization 

effect of 50 mM NaCl (total 250 mM NaCl) overwhelmed the additive effects, which is seen as the 

large difference between 200 mM salt (first black bar, “none”) and 250 mM salt (fourth dotted bar). 

The solubility of myosin at 250 mM total NaCl was only slightly less than Arg and Lys. At 200 mM 

NaCl, 50 mM His was as effective as 50 mM NaCl, whereas Gly and Gdn were significantly less 

effective. At 250 and 300 mM NaCl (fifth and sixth column in Fig. 4.2.3), the high salt 

concentration essentially determined the myosin solubility, which became independent of the 

additives tested.    

 The solubility experiments were performed by diluting a myosin stock solution in 1 M 

NaCl. Upon dilution into the test solvents, the myosin should spontaneously form filaments 

depending on the NaCl concentration and presence of additives until reaching a monomer/filament 

equilibrium, i.e., equilibrium solubility. Immediately after dilution, the myosin solubility may be 

much higher in the test solvents than the final equilibrium solubility. Namely, the initial myosin 

solution is supersaturated with myosin monomer. Thus, the time course of myosin solubility was 

followed immediately after dilution of the stock solution. Figure 4.2.4 shows the myosin solubility 

 

Figure. 4.2.4. Time course of concentration changes of myosin. The concentration of myosin in 50 mM 

additives in the presence of 150 mM NaCl was followed with incubation for 1 hour after dilution into the test 

solvents. The continuous line though the data points is a fit with a double exponential with offset. 
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changes with time in the presence of 50 mM additive and a NaCl concentration of 150 mM. There 

appeared to be no significant differences in myosin solubility at 1 hour or 45 hours after dilution in 

the presence of 50 mM Gly and Gdn, which indicates the establishment of solubility equilibrium 

within 1 hour. Thus, myosin filaments were rapidly formed in these solvents. There appeared to be a 

slight time dependence of myosin solubility in 50 mM His, which reached equilibrium 

approximately 5 hours after dilution. The initial solubility of ~35 % reached a plateau value of 

~30 % at approximately 5 hours. Although the solubility was greater in 50 mM NaCl (total 200 

mM) than in 50 mM His, the time to reach equilibrium was similar, which was determined to be 5 

hours by double exponential fitting (initial solubility of 60 % to ~55 % after 5 hours). Compared to 

the above test solvents, an increased delay in reaching equilibrium was observed in 50 mM Arg and 

Lys. The myosin solubility in 50 mM Arg decreased after 9 hours of incubation from 85 % to a 

plateau value of 78 %. It appeared that the solubility equilibrium was attained after approximately 

24 hours, which was determined by curve fitting. Because of large data scattering for 50 mM Lys, 

there was ambiguity in the data fitting, and approximately 10 hours was estimated for the solution to 

reach equilibrium.  

 

Effect of arginine on myosin structure 

Previously, His has been shown to increase the myosin solubility in low ionic strength solutions by 

altering the structure of myosin 
 
[11]. Thus, we examined whether such structural changes occur in 

 

Figure. 4.2.5. Far-UV CD spectra of myosin in the presence of Arg or Lys as a function of NaCl concentration. 

The far-UV CD spectra were measured in 50 mM additives (Arg, Lys and NaCl) in the presence of 150-300 mM 

NaCl. Each CD spectrum was shifted downward by 2 mdeg for visual comparison. a: 50 mM Arg/150 mM 

NaCl; b: 50 mM Arg/200 mM NaCl; c: 50 mM Lys/200 mM NaCl; d: 50 mM Arg/300 mM NaCl; e: 50 mM 

Lys/300 mM NaCl; f: 350 mM NaCl. 
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Arg and Lys, which clearly enhanced the myosin solubility at 150 mM NaCl. We examined the 

secondary structure of myosin in 50 mM Arg or Lys at 150-300 mM NaCl. Figure 5 shows the CD 

spectra of myosin solubilized in 50 mM Arg or Lys at 0.15-0.30 M NaCl. As a control, the CD 

spectrum was collected in 350 mM NaCl. All CD spectra of myosin were identical within 

experimental errors, which indicate that an identical myosin structure in the presence of 50 mM Arg 

or Lys with 50-300 mM NaCl or in the presence of 350 mM NaCl was present, and suggests a 

different solubilization mechanism for Arg and Lys compared to His.  

 

 

Discussion 

Myosin forms filamentous structures at low salt concentrations, which makes it practically insoluble 

in water or dilute salt solutions [5]. His at 5 mM has been shown to increase myosin solubility in 

low salt solutions and is accompanied by structural changes  [11]. Here, we tested the effects of 50 

mM Arg, Lys, NaCl, His, Gly and Gdn on myosin solubility in the presence of NaCl at different 

concentrations (50 to 300 mM). The solubility experiments were performed by diluting a stock 

myosin solution in 1 M NaCl, in which myosin is largely monomeric [5,6], which we confirmed. 

Assuming that the monomeric myosin is soluble at low and high salt concentrations, it is the 

formation of filaments that determine the myosin solubility; thus, the protein precipitates are 

composed wholly of filaments and not the monomers. This finding indicates that the effects of the 

test solvents on myosin solubility are the results of their effects on the monomer-filament 

equilibrium. Marginal solubilization effects of all additives tested were observed in the presence of 

50 and 100 mM NaCl, unlike the observed solubilization of His in dilute salt solutions, which 

suggest that the effects of Arg, Lys and other additives are mechanistically different from those of 

His. Marginal solubilization effects of Arg and Lys at 50-100 mM NaCl may be because of the 

strong tendency of myosin to self-associate into the filaments at low salt concentrations. When the 

tendency for self-association becomes weaker at increasing salt concentrations (150-200 mM), the 

solubilization effects of Arg and Lys are more apparent. Further increases in the salt concentration 

(250-300 mM) highly favor monomeric myosin, and the effects of the additives are overwhelmed by 

salt effects on self-association. Thus, the interaction of these additives with myosin (most likely 

monomeric myosin) that affects myosin solubility may be altered by the presence of salt and may 

depend on the salt concentration.  

 Regardless of the solubilization mechanism, two basic amino acids, Arg and Lys, are more 

effective than His and Gly. As His and Gly are neutral in net charge at the experimental pH of 7.5, a 

net positive charge (or positively charged side chain) appears to play a role in their interaction with 

myosin and effects myosin solubility. Electrostatic interactions have been shown to be involved in 

myosin-myosin interactions in the formation of the filamentous structures [36]. It is expected that 

high salt concentrations disrupt electrostatic interactions and prevents filament formation, which is 
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observed by the high myosin solubility. A specific interaction of the Arg or Lys cation with myosin 

may also disrupt the electrostatic interactions more effectively than NaCl, which increases the 

myosin solubility over the solubility achieved by salt alone. Arg was always more effective than Lys, 

which indicates that the positive charge and structure of the side chain play a role. The critical role 

of the guanidinium group has been implicated in the effectiveness of Arg in the suppression of 

protein aggregation [17,18]. The guanidinium group alone was insufficient in myosin solubilization, 

which was shown by the lack of increased solubilization effects because of Gdn. Under the 

experimental conditions, His displayed no or marginal solubilization effects, which differed from 

previously reported results [10–12]
 
. Such His effects were attributed to the structural changes of 

myosin conferred by His [11], which indicates that His has no effect on myosin structure under the 

present experimental conditions. Further, the effects of Arg and Lys are mediated by their interaction 

with native myosin, which was indicated by the lack of structural changes. 

 Interestingly, the equilibrium solubility was attained extremely slowly in the presence of 50 

mM Arg with 150 mM NaCl, which took more than 20 hours after dilution of the stock myosin 

solution in this solvent. Namely, self-association of the myosin monomer to the filaments was slow 

in this solvent system. The rate of this transition from monomer to filament becomes faster in Lys 

and further in NaCl. In Gly and Gdn, the transition appeared to occur within one hour. Myosin is in 

a monomeric structure in 1 M NaCl [5,6]. Upon dilution into 50 mM Gly or Gdn in 150 mM NaCl, 

the solubility of myosin rapidly reaches equilibrium, which means a low activation energy of the 

monomer-filament transition. In the presence of 50 mM Arg, the initial solubility is much higher 

than the equilibrium solubility (~100 % vs. < 80 %). Arg increases the activation energy. Because of 

this high energy barrier, the supersaturated myosin solution is kinetically stabilized by Arg. The 

binding of Arg to monomeric myosin may be involved in the stabilization of the monomer as the 

free energy to dissociate the bound Arg should increase the energy barrier. 

 In conclusion, Arg increased the equilibrium solubility and activation energy of 

self-association of monomeric myosin in a physiological salt solution (Fig. 4.2.6). This stabilization 

 

Figure. 4.2.6. Schematic representation of the energy sates of solubilized and aggregates of myosin. 
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of the myosin monomer by Arg occurred without altering the structure of myosin. It would be of 

great interest to test the utility of arginine in processing meat products containing myosin based on 

its ability to increase the solubility of monomeric myosin.    
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Chapter 5 

Degeneration of Amyloid Fibrils 

 

5.1 Degeneration of Amyloid-ß Fibrils Caused by Exposure to 

Low-Temperature Atmospheric-Pressure Plasma in Aqueous 

Solution 

 

 

Introduction 

Low-temperature atmospheric-pressure plasma (LTAPP) generates reactive oxygen species 

(ROS)[1], typically hydroxyl radicals (OH•) [2-6], superoxide anion radicals (O2
-
•) [7], 

hydroperoxyl radicals (HOO•) [8], singlet oxygen (
1
O

2
), and atomic oxygen (O) [9] in the gas phase. 

It has been reported that the plasma processing of solids is useful in producing surface coatings for 

biomedical materials [10-12]. In contrast, once LTAPP is exposed to a solution, advanced reaction 

fields are induced inside the liquid because some of the plasma-induced ROS diffuse into the 

solution. This feature of LTAPP processing allows the exploitation of a type of chemical reactions in 

solution [13-15]. Because organisms also present aqueous conditions, this phenomenon is expected 

to inform the development of plasma medicines [16, 17] for cancer [18-21], glioma [22], dentistry 

[23], blood coagulation [24], disruption of the human hepatocyte cytoskeleton [25], sterilization 

[26-35], and Parkinson’s disease[36]. In this letter, we examine the application possibilities of 

LTAPP for the treatment of Alzheimer’s disease (AD), which is a progressive neurodegenerative 

disorder characterized by memory loss and dementia that was reported by Alois Alzheimer in 1906; 

it is the most common cause of dementia in elderly people, accounting for more than 15 million 

cases worldwide. 

 AD is characterized pathologically by proteinaceous deposits in various areas of the brain, 

particularly in the hippocampus and cerebral cortex [37]. Such deposits and neurofibrillary tangles 

in the brain, accompanied by neuronal and synaptic loss, are pathological hallmarks of AD. The 

plaques mainly consist of fibrils of amyloid-ß (Aß) peptides . A fibrils are linear β-sheet-rich 

aggregates of protein that form spontaneously in solution. A fibrils have cytotoxicity and high 

structural stability that is not easily degraded by protease; thus, they are considered to be protease 

resistant, and this resistance means that they constitute a major component of neuritic plaque in the 



82 

 

brain of an AD patient. Therefore, techniques for destabilizing or breaking down Aß fibrils will be 

valuable in AD therapy. In this study, using an in vitro system, we demonstrated that LTAPP 

processing changed the protease resistance, ß-sheet structure, and surface properties of Aß fibrils in 

solution, although the morphology, length, and cytotoxicity of a plasma-exposed fibril remained 

unchanged.  

 

Materials and methods 

Materials 

Lyophilized human amyloid- 1–40 (A) was acquired from Peptide Institute Inc. (Osaka, Japan). 

Sodium chloride (NaCl) and sodium phosphate were obtained from Nacalai Tesque Inc. (Kyoto, 

Japan). Thioflavin-T (ThT) was obtained from Wako Pure Chemical Industries, Ltd. (Osaka, Japan). 

8-Anilino-1-naphthalenesulfonic acid (ANS) was acquired from Sigma Chemical Co. (St. Louis, 

MO, USA). An HMW native marker kit (GE Healthcare) comprising thyroglobulin (669 kDa), 

ferritin (440 kDa), catalase (232 kDa), lactate dehydrogenase (140 kDa), and albumin (66 kDa) was 

used as a molecular-weight marker. 

 

Plasma-jet generation 

A low-frequency (LF) plasma jet was used in a similar manner as described previously[1-3]. The 

plasma shape was elongated from the end of a quartz glass tube, in which helium gas flowed, by the 

application of an alternating-current high voltage (ranging from -3.5 to +5.0 kV at a frequency of 

 

Figure. 5.1.1. Plasma jet generated using helium gas flowing through quartz glass tube. (a) Schematic 

representation of the plasma-jet system with sample solution. The plume-like structure of the plasma extends 

toward the surface of the sample solution. (b) Photograph of the plasma jet.  
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13.9 kHz) to a single-sided electrode. The electrode consisted of a small copper sheet wound around 

the glass tube (Fig. 5.1.1a). This LF plasma jet was generated inside an airtight chamber from its 

center port. The ambient gas of the chamber could be controlled using the other oxygen (O2) gas 

supply port connected to the side of the plasma-jet port. The flow rates of He and O2 gas were 0.50 

and 0.15 l/min, respectively. Helium plasma with a low gas temperature was generated in an 

elongated shape (Fig. 5.1.1b). Various active oxygen species produced from the O2 gas by the He 

plasma were supplied to the solution in the chamber. A sample of 0.3 ml containing 5 M Aβ fibrils 

and 100 mM NaCl in 50 mM Na-phosphate buffer (pH 7.4) was applied to the solution in the vessel. 

To exchange the ambient gas, He and O2 gas were pre-flowed in the chamber for 5 min. 

 

Preparation of amyloid- ß fibrils 

Amyloid-β fibrils were formed as follows. A stock solution of Aβ was prepared by dissolving 1 mM 

of Aβ in 0.1% ammonia solution. The fibrillization solutions contained 25 M Aβ, 100 mM NaCl, 

and 50 mM Na-phosphate buffer (pH 7.4). After incubation for 5 days at 37°C, the solution was 

diluted with PBS (100 mM NaCl and 50 mM Na-phosphate buffer at pH 7.4) and used as a sample. 

 

Proteolysis of amyloid fibrils  

Aβ fibrils with/without plasma exposure were subjected to proteolysis using protease from Sigma 

Chemical Co. (St. Louis, MO) at a protease/Aβ ratio of 2:1(w/w). The aliquots were incubated for 

24 h at 25°C. The samples were analyzed via light scattering and AFM. 

 

TEM and AFM imaging of amyloid fibrils 

Transmission electron microscopy (TEM) images of the amyloid fibrils were obtained using stain 

(silicon tungstate) and a transmission microscope (JEM-1400; JEOL, Tokyo, Japan) with an 

acceleration voltage of 200 keV. The sample solution was diluted 100-fold with pure water. A 

volume of 2 l of the solution was negatively stained with 2 l of a 2% (w/v) silicon tungstate 

solution. A volume of 2 l of the stained solution was placed on a 150-mesh copper grid covered 

with a carbon-coated hydrophilic film and dried for a few minutes.  

 Atomic force microscopy (AFM) images of the amyloid fibrils were obtained using an 

S-image system (SII NanoTechnology Inc., Chiba, Japan) operating in taping mode and 

a silicon cantilever (SI-DF20, SII Nanotechnology). The sample solution was diluted 10-fold with 

pure water. Subsequently, 3 μL of the diluted sample was placed on freshly cleaved mica coated 

with poly-lysine (Mw 1,000-5,000) and dried in air. 

 

Circular dichroism 

http://www.chemspider.com/22393
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Circular dichroism (CD) spectroscopy was performed in a 1 mm path-length quartz cuvette using a 

spectropolarimeter (J-720 W; Japan Spectroscopic Co., Ltd., Tokyo, Japan). The CD spectra were 

recorded for 195–260 nm at 25°C. The far-UV CD spectra of the samples were corrected by 

subtracting the corresponding spectra of the buffers in the absence of Aβ fibrils. 

 

ThT and ANS fluorescence and light-scattering assay 

An Aβ fibril solution of 30 l was mixed with 1,470 l of 5 M ThT in 50 mM Gly buffer (pH 8.5). 

The ThT fluorescence was monitored using a spectrofluorometer (FP-6500; Japan Spectroscopic 

Co., Ltd.) with a 1 cm path-length quartz cell. The sample was excited at 440 nm (5 nm slit width), 

and the fluorescence intensity at 480 nm (5 nm slit width) was monitored at 25°C; the temperature 

was controlled using a temperature controller (Jasco Corp.).  

 For the ANS fluorescence measurements, Aβ samples (10 μM) were prepared in a PBS 

buffer containing 50 μM ANS. The samples were excited at 370 nm (bandwidth of 10 nm), and the 

emission spectra were recorded at 470–580 nm.  

 Light scattering was measured using a spectrophotometer (V-630; Japan Spectroscopic Co., 

Ltd). The samples were assayed in triplicate, and the average of the three spectra was presented.  

 

Toxicity assay 

Cell viability was determined with the use of a cell proliferation kit (Roche, Basel, Switzerland), 

which was based on the conversion of tetrazolium salt by mitochondrial dehydrogenase to a 

formazan product that is spectrophotometrically measurable at 550 nm, according to the 

manufacturer's instructions. 

 PC12 cells (a clonal line of rat pheochromocytoma) were maintained in RPMI1640 

medium with 10% horse serum, 5% fetal bovine serum, penicillin (100 U/mL), and streptomycin 

(100 μg/mL) in 5% CO2 at 37°C. 

 The viability of the PC12 cells was measured using Cell Proliferation Kit I (MTT) from 

Roche (Indianapolis, IN). The PC12 cells (40,000 cells/well in 80 μL of medium) were cultured in 

PDL-coated 96-well plates overnight. Aβ samples (20 L), aliquoted from the plasma-exposed Aβ 

samples with the addition of catalase after plasma exposure and diluted with PBS to the desired Aβ 

concentrations, were added to the wells and incubated for 16 h for PC12 cells or 24 h for primary 

cortical neurons. For the control samples, the same volume of PBS was added to the wells. For the 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reaction and measurements, 

the adsorption values at 550 nm were determined using a Tecan (Männedorf, Switzerland) 

microplate reader. The viability for cells exposed to PBS was used as the 100% viability control. 
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Results and discussion 

For the present study, a low-frequency (LF) plasma jet was used for the LTAPP processing in a 

manner similar to that described in our previous study[8, 34, 39]. The plasma shape was elongated 

from the end of a quartz glass tube, in which helium gas flowed, by the application of an 

alternating-current high voltage (ranging from -3.5 to +5.0 kV at a frequency of 13.9 kHz) to a 

single-sided electrode (Fig. 5.1.1a). Helium plasma with a low gas temperature was generated in an 

elongated shape (Fig. 5.1.1b). The discharge power of the plasma was 3 W. The LF plasma jet was 

generated inside an airtight chamber from its center port. The ambient gas of the chamber could be 

controlled using the other oxygen (O2) gas supply port connected to the side of the plasma-jet port. 

The flow rates of He and O2 gas were 0.50 and 0.15 l/min, respectively. Various active oxygen 

species produced from the O2 gas by the plasma were supplied to the solution. 

 Amyloid fibrils of human protein Aß were prepared in vitro. Briefly, lyophilized Aß1–40 

from Peptide Institute Inc. (Osaka, Japan) was dissolved in phosphate-buffered saline (PBS; 100 

mM NaCl, 50 mM Na-phosphate buffer at pH 7.4), and then the sample was incubated at 37°C for 5 

days. As expected, typical mature Aß fibrils were formed, which are characterized by (i) a sigmoidal 

evolution of the Thioflavine T (ThT) fluorescent intensity with a lag time of 1-2 days (Fig. 5.1.2a), 

(ii) linear protein aggregates visualized via transmission electron microscopy (TEM) with stain (Fig. 

5.1.2a inset), and (iii) a ß-sheet structure identified by a negative peak at 218 nm in the far-UV 

circular dichroism (CD) spectra (Fig. 5.1.2b). The Aß fibril solution was treated with an LF plasma 

jet (Fig. 5.1.1). Then, the plasma-exposed Aß fibrils were analyzed using several biochemical and 

biophysical methods to detect changes in physiological activity. These experimental procedures and 

systems are described in detail in the supplemental information
48

.  

 

Figure 5.1.2. Preparation of Aβ fibrils. (a) Growth of Aβ fibrils detected via ThT fluorescence. The continuous 

line though the data points is the result of fitting with a sigmoidal curve. (Inset) TEM image of Aβ fibrils after 

incubation for 5 days. (b) Circular dichroism spectra of Aβ fibrils after incubation for 0 days (continuous line) 

and 5 days (broken line). The line corresponding to PBS represents the buffer without Aβ. 
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 The morphology, length, aggregation extent, and molecular weight of the plasma-exposed 

fibrils were investigated. Figures 5.1.3a and 3b show TEM images of fibrils that were exposed to 

the plasma for 0 and 30 min, respectively. The Aß fibrils that were exposed for 30 min were 

observed to be non-branched fibrils of more than 1 m in length, similar to the untreated fibrils (0 

min). The length distributions of the plasma-exposed fibrils for 0 and 30 min were almost identical, 

indicating that the Aß fibrils were not fragmented by plasma exposure in solution (Fig. 5.1.3c and 

5.1.3d). This result was supported by a native PAGE/Western-blotting analysis, which showed that 

there were no soluble oligomeric species in the plasma-exposed fibril samples (Fig. 5.1.3e). The 

aggregation extent of the Aß fibrils was monitored via light scattering at 350 nm, which is sensitive 

to the number and size of aggregates present in a solution, as reported previously[40, 41]. The 

light-scattering intensity was proportional to the concentration of Aß, but it was unchanged by the 

plasma exposure (Fig. 5.1.3f). These results demonstrated that the morphology, length, molecular 

weight, and aggregation extent of the Aß fibrils were unchanged by plasma exposure for a duration 

of several minutes. In contrast, it has been reported that amyloid fibrils of -synuclein were 

 

Figure. 5.1.3. Characterization of Aβ fibrils exposed to an LF plasma jet. (a, b) Morphology of Aβ fibrils (a) 

before and (b) after the plasma exposure (30 min) as imaged via TEM. The scale bars represent 200 nm. (c, d) 

Contour-length distribution of Aβ fibrils (c) before and (d) after the plasma exposure, calculated from TEM 

images. The sampling numbers were 150 in (c) and 171 in (d). (e) Native PAGE/Western-blotting analysis of Aβ 

fibrils exposed to an LF plasma jet using mouse monoclonal anti-Aβ (6E10). Unincubated Aβ monomers were 

used as a control. (f) Light scattering at 350 nm as a function of the Aβ concentration (closed circles, top axis) 

and the plasma-exposure time (open circles, bottom axis).  
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fragmented by 6 min of exposure to a low-temperature plasma jet in solution [36]. These differing 

results may be attributable to the difference in the structural stability of the amyloid fibrils [42]. 

 The cytotoxicity of the plasma-exposed Aß fibrils on a rat pheochromocytoma PC12 cell 

was examined using an MTT assay, as previously described [43]. First, we demonstrated that the 

plasma-exposed PBS without Aß also exhibited cytotoxicity (Fig. 5.1.4a) because of the hydrogen 

peroxide generated by a plasma-inactivated culture cell [18]. To overcome this problem, catalase, 

which is an enzyme that catalyzes the decomposition of hydrogen peroxide to water and oxygen, 

was added to the sample solution to avoid the confounding influence of hydrogen peroxide in the 

cytotoxicity assay (Fig. 5.1.4a). Figure 5.1.4b shows the cytotoxicity of plasma-exposed Aß fibrils 

with the inclusion of catalase, which was added after plasma exposure. The Aß fibrils without 

plasma exposure exhibited high cytotoxicity. The Aß fibrils that were exposed to plasma for 5-20 

min also exhibited high cytotoxicity. Thus, it could be concluded that the cytotoxicity of the Aß 

fibrils was not changed by plasma exposure for a duration of several minutes.  

 The protease-resistant property of the plasma-exposed fibrils was examined using trypsin, 

which is a serine protease that cleaves peptide chains at the carboxyl end of the amino acids lysine 

and arginine [44]. Figure 5.1.5a shows the light-scattering intensity of the plasma-exposed fibrils 

after the trypsin treatment. The light-scattering intensity of the Aß fibrils decreased with increasing 

plasma-exposure time, indicating that the protease resistance of the Aß fibrils was decreased by the 

plasma treatment. The degradation of the plasma-exposed fibrils by trypsin was confirmed via 

atomic force microscopy (AFM) (Fig. 5.1.5b and 5.1.5c). The degraded Aß fibrils were primarily 

observed as spherical aggregates (Fig. 5.1.5b), which may consist of insoluble peptides of Aß 

formed via proteolysis. In contrast, the Aß fibrils that were not exposed to the plasma remained as 

fibrillar aggregates even after the trypsin treatment (Fig. 5.1.5c). No aggregates of the Aß peptides 

before incubation were observed (Fig. 5.1.5d). These results demonstrated that the protease 

 

Figure. 5.1.4. Cytotoxicity assays of the plasma-treated samples with PC12 cells using an MTT assay. (a) 

Cytotoxicity assays of plasma-treated PBS without Aβ in the absence (open circles) or presence (closed circles) 

of 2 g/ml of catalase. The catalase was added after plasma exposure and before the cytotoxicity assays. (b) 

Cytotoxicity assays of Aβ as a function of the exposure time with the addition of 2 g/ml of catalase after 

plasma exposure.  
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resistance of the Aß fibrils was degraded by plasma exposure. 

 To elucidate the mechanism of the loss of the protease resistance of the Aß fibrils caused by 

plasma exposure, we examined the structural properties of the plasma-exposed Aß fibrils via far-UV 

CD spectroscopy to determine the ß-sheet content and via fluorescence assay with thioflavin T 

(ThT) to determine the amount of accumulated cross-ß structure and 

8-anilino-1-naphthalenesulfonic acid (ANS) to understand the surface hydrophobicity (Fig. 5.1.6). 

 

Figure. 5.1.5. Evaluation of the protease resistance of Aβ fibrils exposed to an LF plasma jet. (a) 

Light-scattering intensity at 350 nm of Aβ fibrils incubated with trypsin for 24 h as a function of the 

plasma-exposure time. The light-scattering intensity of 100% was defined by the measurement of a sample of 

unexposed Aβ fibrils without trypsin digestion. (b, c) AFM images of the Aβ fibrils that were exposed to the 

plasma for (b) 30 min and (c) 0 min and incubated with trypsin for 24 h. (d) AFM image of the Aβ before 

incubation. The scale bars represent 200 nm.  

 

 

 

Figure. 5.1.6. (a) Circular dichroism spectra of Aβ fibrils exposed to an LF plasma jet for various durations. 

(Inset) The intensity at 218 nm of the Aβ fibrils incubated at 37°C after the plasma exposure. (b) ThT 

fluorescence intensity of Aβ fibrils as a function of the plasma-exposure time. The fluorescence emission at 480 

nm was measured for excitation at 420 nm. (c) ANS fluorescence spectra of the Aβ fibrils before and after 

plasma exposure for 30 min. The samples were excited at 370 nm.  



89 

 

The peak at 218 nm in the CD spectrum decreased in intensity with increasing plasma-exposure 

time, indicating that the regular cross-ß structure of the Aß fibrils [45] was destroyed by plasma 

exposure. The intensity at 218 nm of the plasma exposed Aβ fibrils was unchanged even after 

incubation at 37°C for 24-72 hours (Fig. 5.1.6a inset), indicating that there is no recovery of Aβ 

fibrils from the damages unlike living cells. The ThT fluorescence intensity decreased with 

increasing plasma-exposure time (Fig. 5.1.6b), which is consistent with the results from the CD 

spectra (Fig. 5.1.6a), indicating the unfolding of the ß-sheet core in the Aß fibrils as a result of the 

plasma exposure. The ANS fluorescence of the plasma-exposed Aß fibrils was quenched (Fig. 

5.1.6c), which indicates that the surface hydrophobicity of the Aß fibrils was decreased by the 

plasma exposure. These results suggest that the degeneration of Aß fibrils induced by plasma 

exposure might cause the loss of their protease-resistant property.  

 Plasma exposure in solution induces chemical reaction fields not only on the surface of the 

liquid but also inside the liquid itself because of the diffusion of ROS generated in the gas phase. 

These species should react with Aß fibrils. In fact, some amino-acid residues of Aß peptides, such as 

methionine, tyrosine, and histidine, are oxidized by the ROS generated via laser irradiation in 

solution [46]. We have previously reported that chemical modifications of amino-acid residues 

induced the denaturation and inactivation of proteins via plasma exposure in solution [39]. 

Therefore, it is plausible that chemical reactions of the amino-acid residues with the ROS generated 

by plasma may result in the degeneration of Aß fibrils and the loss of their protein-resistant 

property.  

 It was demonstrated that the protease resistance, ß-sheet structure, and surface properties of 

Aß fibrils were changed by LTAPP processing in aqueous solution, while the morphology, length, 

and cytotoxicity remained unchanged. In a previous study, the degradation of Aß fibrils induced by 

direct LTAPP treatment on a solid surface has been reported [47]. Any species can act in direct 

LTAPP treatment; on the other hand, only soluble and long-lived species, such as HOO•, can attack 

in LTAPP processing in aqueous solution [34]. Therefore, the seemingly contradictory results of the 

two studies might be attributable to the difference in the amount and type of ROS attacking the Aß 

fibrils. 

 

Conclusion 

 In conclusion, we demonstrated that LTAPP treatment caused the degeneration of Aß fibrils, 

which are a major component of the neuritic plaque associated with AD, in terms of accumulated 

ß-sheet content and protease resistance, while the morphology, contour length, and cytotoxicity of 

the Aß fibrils remained unchanged. The loss of the protease resistance of the Aß fibrils caused by 

plasma exposure suggests prospects for utilizing LTAPP for the elimination of neuritic plaque 

associated with AD by accelerating the proteolysis of Aß fibrils.  
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5.2 Scanning Electron Microscope Imaging of Amyloid Fibrils  

 

 

Introduction 

Amyloid fibrils are linear β-sheet-rich aggregates of protein that form spontaneously both in vivo and in vitro. 

Amyloid fibrils are of considerable interest because amyloidogenesis has often been linked to fatal 

degenerative disorders, such as Alzheimer’s and Parkinson’s diseases. However, the well-defined structure 

and biocompatibility of amyloid fibrils have also suggested new functional materials [4], such as amyloid 

fibrils attached to yellow fluorescent protein[5], insulin amyloids as a biomaterial for cell culture surfaces[6], 

and templates of peptide fibres for metal nanowire[7].  

 Various measurement methods for amyloid fibrils have been developed, including (i) spectroscopic 

analysis by specific dyes, such as Congo red and thioflavin T, which are selectively adsorbed on the amyloid 

fibrils, (ii) spectroscopic determination of the-sheet structure in amyloid fibrils, such as circular dichroism 

and infrared spectra, (iii) binding and elongation analyses of fibrils by calorimetry [8-10], and (iv) light, 

neutron, and x-ray scattering to detect the solution structure of amyloid fibrils. These methods provide an 

average ensemble picture of amyloid fibrils [11]. By contrast, atomic force microscopy (AFM) and 

transmission electron microscopy (TEM) can probe amyloid fibrils at the molecular level [12-19]. To our 

knowledge, scanning electron microscopy (SEM) has rarely been used for imaging amyloid fibrils, although 

it possesses a relatively high resolution of several nanometres and high usability through the detection of 

secondary electron emissions from specimen samples.  

 In this study, we demonstrated the imaging of amyloid fibrils by SEM. The results were compared 

with those of the well-used methods of TEM and AFM. Two types of amyloid fibrils were produced from hen 

egg white lysozyme (HEWL) [20] with different shapes and chemical compositions. As expected, the 

apparent fibril width in the SEM image was broadened compared with the height in the AFM image. This 

broadening, however, provides a high detectability of amyloid fibrils with diameters as thin as 3.5 nm. The 

chemical differences in the amyloid fibril are also reflected in the broadening of the image, which can thus be 

utilised for chemical-sensitive measurements. 

 

Materials and methods 

Materials 

HEWL, sodium chloride (NaCl), potassium chloride (KCl), and sodium phosphate were from Nacalai Tesque 

Inc. (Tokyo, Japan). Thioflavin-T (ThT), sodium hydroxide (NaOH), and hydrochloric acid (HCl) were from 

Wako Pure Chemical Industries, Ltd. (Osaka, Japan).  
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 S-amyloid was formed as follows. A stock solution containing 2.0 mg/mL HEWL, 137 mM NaCl, 

and 1.34 mM KCl was prepared and adjusted to pH 2.0 using HCl. Then, the solution was incubated at 50°C 

for 4 h with continuous agitation by a stirrer.  

 A-amyloid was formed as follows. A stock solution containing 5.0 mg/mL HEWL was prepared and 

adjusted to pH 1.0 using HCl. The solution was then incubated at 90°C for 9 h with continuous agitation by a 

stirrer.  

The protein concentration was determined photometrically at 280 nm with an appropriate blank using a 

UV-vis spectrophotometer (ND-1000; NanoDrop Technologies Inc., Wilmington, DE). The extinction 

coefficient of 2.63 ml/mg cm was used for HEWL.  

 

Thioflavin T (ThT) fluorescence assay 

The growth of amyloid fibrils was monitored by fluorescence analysis with ThT. After fibril formation, 15 l 

of the sample solution was mixed with 1,485 l of 5 M ThT in 50 mM Gly NaOH buffer (pH 8.5). The ThT 

fluorescence was monitored using a spectrofluorimeter (FP-6500; Japan Spectroscopic Co., Ltd., Tokyo, Japan) 

with a 1-cm path-length quartz cell. The sample was excited at 440 nm (5 nm slit-width), and the 

fluorescence intensity at 480 nm (5 nm slit-width) was monitored at 25°C; the temperature was controlled 

using a temperature controller (Japan Spectroscopic Co., Ltd.).  

 

Mass spectra measurement 

The mass spectra were obtained using matrix-assisted laser desorption/ionisation time of flight mass 

spectrometry (MALDI–TOF MS) (UltrafleXtreme MALDI–TOF/TOF; Bruker Daltonics Inc., Billerica, 

USA). The amyloid was centrifuged from the sample solution and dissolved in pure water for the 

MALDI-TOF MS measurements. The matrix solution used for these measurements was a saturated 

α-cyano-4-hydroxycinnamic acid (CHCA) solution in water/acetonitrile 1:1 v/v, diluted by a factor of 2 in the 

same solvent mixture. The sample was prepared by mixing 1.0 μl of the protein solution with 1.0 μl of the 

matrix solution directly on the sample probe and allowing the solution to dry at room temperature. S-amyloid 

and A-amyloid were analysed by MALDI-TOF-MS in the positive-ion liner and reflect modes, respectively. 

Native HEWL was also analysed by MALDI-TOF-MS in the positive-ion reflect mode.  

 

Imaging of amyloid fibrils by TEM, AFM, and SEM 

Transmission electron microscopy (TEM) images of the amyloid fibrils were examined using stain (silicon 

tungstate) and a transmission microscope (JEM-1400; JEOL, Tokyo, Japan) with an acceleration voltage of 

200 keV. The sample solution was diluted 100-fold with pure water. Then, 2 l of the solution was negatively 

stained with 2 l of 2% (w/v) silicon tungstate solution. Next, 2 µL of the stained solution was placed on a 

150-mesh copper grid covered with a carbon-coated hydrophilic film. The solution on the grid was dried for a 
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few minutes.  

 Atomic force microscopy (AFM) images of amyloid fibrils were examined using S-image (SII 

NanoTechnology Inc., Chiba, Japan) operating in taping mode and a silicon cantilever (SI-DF20, SII 

Nanotechnology) with a tip curvature radius of 10 nm [25]. The sample solution was diluted 100-fold with 

pure water. Subsequently, 1 μL of the diluted samples was placed on freshly cleaved mica and dried in air for 

10 min.  

 The scanning electron microscopy (SEM) images of amyloid fibrils were examined using an SEM 

system (Hitachi S4800) with an acceleration voltage of 15 keV. The sample solution was diluted 100-fold 

with pure water. Subsequently, 1 μL of the diluted samples was placed on silicone and dried in air for 10 min.  

The fibril width values in the TEM and SEM images were measured by comparison with each scale bar. The 

fibril width values in the AFM image were measured from the transversal profiles of AFM topology. The fibril 

height values were also determined by the transversal profiles of AFM topology. 

 

 

 

Figure. 6.2.1.  Preparation and characterisation of S-amyloid and A-amyloid. (A) Growth of S-amyloid 

detected by thioflavin T (ThT) fluorescence. The continuous line though the data points was fitted with a 

sigmoidal curve. (B) AFM images of S-amyloid. The white line indicates the transversal profile of surface 

topology shown in C. (C) AFM topography image of S-amyloid, from which amyloid height was measured. (D) 

Histogram of S-amyloid AFM height (fibril diameter). (E-H) Figures for A-amyloid corresponding to the ones 

shown in Figs (A)-(D). In E, the continuous line though the data points was fitted with a linear curve. 

 

http://www.chemspider.com/22393
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Results and discussion 

Preparation of amyloid fibril from self-assembled lysozyme 

(S-amyloid) and acid-hydrolysis lysozyme (A-amyloid) 

 For the present study, we prepared two types of amyloid fibrils (S-amyloid and A-amyloid) from 

HEWL. S-amyloid is generated from HEWL incubated under acidic conditions (pH 2) with saline under 

continuous agitation by a stirrer, as reported previously [21]. Under this condition, amyloid fibrils are mainly 

formed from nonfragmented monomers of HEWL without hydrolysis. As expected, S-amyloid was 

characterised by a typical sigmoidal evolution of the thioflavin T (ThT) fluorescent intensity with a lag time 

of 2-3 hours (Fig. 6.2.1A). S-amyloid is a non-branched straight fibril with a height of approximately 5 nm 

and a length of approximately 500 nm, with a helical structure (Fig. 6.2.1B, C). Figure 6.2.1D shows the 

histogram of the height of S-amyloid determined from an AFM image; the average diameter of the S-amyloid 

was 8.1 ± 2.4 nm, which is similar to the value previously reported for non-hydrolysed lysozyme fibril [13]. 

Notably, the histogram appears to exhibit two maxima centred at approximately 5 and 10 nm, corresponding 

to the inner-fibril corrugation due to the helical structure of amyloid fibrils [19]. 

 A-amyloid was similarly generated by incubation under more acidic conditions (pH 1) at a higher 

 

Figure. 6.2.2. MALDI–TOF MS spectra of S-amyloid (A), A-amyloid (B) and native HEWL as a control (C). 
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temperature (90°C), without saline but with continuous agitation by a stirrer. HEWL was hydrolysed under 

this condition [22]. The peptide fragment of hydrolysed HEWL was immediately assembled into longer 

fibrils, characterised by the linear increase in ThT intensity with increasing incubation, without any lag time 

(Fig. 1E). In the AFM measurements, long and non-branched fibrils of much greater than 1 m were 

observed with a height of approximately 2 nm (Fig. 6.2.1F, G). Figure 1H shows the histogram of the height 

of A-amyloid, with an average diameter of 3.5 ± 0.8 nm. The histogram also shows two maxima, at 2 and 4 

nm, corresponding to the helical shape of the fibril. The structure and dimensions agree with previously 

reported values [22].  

 Although they are generated from the same protein, S- and A-amyloid have different structural 

dimensions and chemical compositions. The MALDI–TOF MS spectra of S-amyloid showed two abundant 

peaks at m/z 7153, which corresponds to the doubly protonated HEWL, and at m/z 14306, which corresponds 

to the singly protonated HEWL (Fig. 6.2.2A). By contrast, the MALDI–TOF MS spectra of A-amyloid had 

many peaks below m/z 4000 (Fig. 6.2.2B). The MALDI–TOF MS spectra of native HEWL also had two 

abundant peaks at m/z 7153 and 14306 (Fig. 6.2.2C). These results show that S-amyloid was formed by 

nonfragmented monomers of HEWL without hydrolysis and A-amyloid was formed by aggregating peptide 

fragments of hydrolysed HEWL. Analysis using an amino acid analyser (JLC-500/V2, Japan Electron 

Optics Laboratory Ltd, Tokyo, Japan) revealed that A-amyloid contains fewer residues of Arg (pKa 12.5
 
[23]), 

Lys (pKa 10.2
 
[23]) and His (pKa 6.0

 
[24]) and more residues of Leu, Ile and Pro than native HEWL (data 

not shown), indicating that A-amyloid has less electrical capacity than S-amyloid. As described above, these 

two amyloid fibrils exhibited rather well-defined structures. Therefore, S-amyloid and A-amyloid are useful 

model fibrils for characterising the utility of SEM.  

  

 

Figure. 6.2.3.  Comparison of TEM, AFM, and SEM. S-amyloid was monitored by TEM (A), AFM (B) and 

SEM (C). A-amyloid was monitored by TEM (D), AFM (E) and SEM (F).  
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Comparison with fibril-width values in TEM, AFM, and SEM images 

 Figure 6.2.3 displays large views of S-amyloid and A-amyloid imaged using TEM, AFM and SEM. 

In the TEM, AFM and SEM images, S-amyloid was consistently observed to form straight mature fibrils with 

lengths less than 1 m (Fig. 6.2.3A-C). However, considering the scale of the A-amyloid images, the fibrils 

shown by SEM were clearly different from those shown by TEM and AFM. Thus, we further analysed the 

differences in the images of S-amyloid and A-amyloid by TEM, AFM and SEM.  

 Figure 6.2.4 A-C shows magnified images of a single S-amyloid. The histogram of the apparent 

width of the fibrils in each image is presented in Fig. 6.2.4D-F. The TEM images of S-amyloid show clear 

edges of the fibrils, and the centred value of the width was determined to be 12.5 ± 7.0 nm (Fig. 6.2.4A and 

6.2.4D). The width determined from the TEM images, 12.5 ± 7.0 nm, was similar to the height of the fibril 

determined from the AFM images, 8.1 ± 2.4 nm. By contrast, the AFM images of S-amyloid had fine edges 

and exhibited wider widths of 38.0 ± 7.6 nm (Fig. 6.2.4B and 6.2.4E). This phenomenon is a well-known 

broadening that reflects the finite curvature of the cantilever, approximately 10 nm [25]. By contrast, the 

images of S-amyloid by SEM showed fuzzy edges due to its intrinsic lower resolution compared with TEM 

and AFM (Fig. 6.2.4C and 6.2.4F). The average width in the SEM images was as large as 21.9 ± 5.4 nm. 

During the SEM measurement, secondary electron emission from the amyloid fibril, which is an insulator, is 

less likely than that from the silicone plate, which is a semiconducting substrate, resulting in the dark 

appearance of the amyloid fibril in the SEM image. Thus, there are multiple possible causes of the fuzzy 

appearance of the edge of the S-amyloid, including (i) the charging of S-amyloid induced by its lower 

secondary electron emission and (ii) the influence of counter ions (Na
+
), which produce large secondary 

electron emissions.  

 

 

Figure. 6.2.4.  Width of S-amyloid. Microscopic images of S-amyloid by TEM (A), AFM (B) and SEM (C). 

Histogram of width of S-amyloid by TEM (D), AFM (E), and SEM (F).  
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 A-amyloid was similarly characterised by TEM, AFM, and SEM (Fig. 6.2.5). The results for 

A-amyloid were found to be similar to the results for S-amyloid; the TEM image provides an apparent width 

of 5.4 ± 1.8 nm, which is close to the fibril height determined by AFM. The apparent width in the AFM 

image was again found to be as large as 33.1 ± 3.8 nm, reflecting the tip effect. A huge broadening of the 

apparent width, as large as 57.3 ± 13.6 nm, was observed in the SEM image of A-amyloid, although the 

original width of A-amyloid was much thinner than that of S-amyloid. This huge broadening of A-amyloid is 

probably due to the chemical nature of A-amyloid, which differs from the chemical nature of S-amyloid. 

A-amyloid should be more insulating than S-amyloid. A-amyloid consists of peptide fragments of hydrolysed 

HEWL and has fewer positively charged residues but more hydrophobic residues, whereas S-amyloid can 

contain plenty of non-beta-sheet side chains from non-fragmented HEWL, which can potentially be 

conducting. Thus, considering the different chemical natures of A-amyloid and S-amyloid, some possible 

causes of the huge broadening of A-amyloid in the SEM image include (i) more charging of A-amyloid and 

(ii) more influence from counterions (Na
+
).  

  

    Table 6.2.1. Diameter and width of amyloid fibrils measured by TEM, AFM, and SEM. 

 
S-amyloid 

 
A-amyloid 

 

  
Sampling number Average (nm) a Sampling number Average (nm) a 

Height AFM 99 8  ±2 
 

129 4  ±1  

Width 

TEM 102 13  ±7 
 

96 5  ±2 
 

AFM 100 38  ±8 
 

101 33  ±4 
 

SEM 125 22  ±5 
 

123 57  ±14 
 

    
a 
The average and standard deviation of the sampled fibril width and height are shown.

 

 

Figure. 6.2.5.  Width of A-amyloid. Microscopic images of A-amyloid by TEM (A), AFM (B), and SEM (C). 

Histogram of the width of A-amyloid by TEM (D), AFM (E), and SEM (F).  
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Advantages of SEM for imaging of amyloid fibrils 

 The apparent width of amyloid fibrils by SEM was shown to be 7 to 10 times broader than the 

original value (Table 6.2.1). This broadening is not desirable for the detailed characterisation of the fibril 

structure, but the broadening of the apparent contrast can be utilised to increase the detectability of small 

fibrils. Indeed, in a large view, A-amyloid with diameters as small as 3.5 nm can be detected, as well as 

thicker fibrils (Fig. 6.2.6A). Although further characterisation of the relationship between the SEM 

appearance and the structure and composition of the amyloid fibrils is required, the high detectability of the 

small fibrils is useful for the screening of amyloid fibrils formed in vivo and in vitro. 

 A-amyloid and small crystals of NaCl were clearly distinguished in the SEM image (Fig. 6.2.6B). 

Amyloid fibrils are usually dispersed in the solution with other solutes, such as inorganic salts and 

low-molecular-weight compounds for pH buffering. These other solutes often disturb microscopic 

measurements in AFM and TEM. However, SEM clearly distinguishes amyloids from these contaminants 

because the secondary electron emission is sensitive to chemical natures (Fig. 6.2.6B). The easy distinction 

from contaminants indicates that SEM should be the first choice of microscopic measurement for amyloid 

fibril imaging. 

 

Conclusion 

 This study examined SEM images of two types of amyloid fibrils compared with well-characterised 

AFM and TEM images. Although the resolution of SEM was found to be poor for insulating amyloid fibrils, 

even conventional SEM was able to detect amyloid fibrils as thin as 3.5 nm in width through broadening in 

the image. The broadening effect was also found to be dependent on the chemical composition of the fibril, 

 

Figure. 6.2.6.  (A) SEM image of A-amyloid. The scale bar is 3 m. (B) SEM image of S-amyloid and a salt 

microcrystal (black arrow). The scale bar is 1 m. 
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which can be further utilised in chemical discrimination. Although further characterisation of the dependence 

of the chemical properties on the apparent broadening will be required, the several advantages of SEM, in 

combination with other observations in solution, such as the TIRFM system [26-29], cryo-TEM [30, 31], 

and in-liquid AFM [32], contribute to the investigation of amyloid fibrils. 
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Chapter 6 

General Discussion 

 

The molecular mechanisms underlying plasma sterilization in solution was demonstrated. 

Low-temperature atmospheric-pressure plasma has attracted considerable attention for its use in 

medical applications involving the sterilization of biological tissue. With the use of plasma, a high 

level of bactericidal activity can be achieved in acidic solutions by means of the reduced pH method. 

Thus, the data indicate that the pH dependence of sterilization results from the difference in the 

semipermeability of radicals that penetrate the biomembrane. The reduced pH method involves the 

permeation of chemically reactive non-charged radicals (·OOH) into the cell membrane. The 

effective permeation of radicals into the cell membrane, in combination with the modification of the 

cell membrane, implies the possibility of using plasma therapy to remove cancer cells.  

 Alkyl gallates have pharmacological activity, such as antibacterial and antiviral activities, 

which are affected by the alkyl chain length of the alkyl gallates. However, physicochemical 

mechanisms for the effects of the alkyl chain length have not been clarified. Assuming that the 

membrane-binding affinity of the alkyl gallates is related with their activity, we investigated the 

effects of the alkyl chain length on the affinity. Consequently, results reported herein for the first 

time show that the alkyl chain length dependence on the membrane- binding affinity occurs 

according to three mechanisms: (1) Short alkyl chain species does not bind into the membrane. (No 

Membrane-binding), (2) Middle alkyl chain species bind into the membranes because of their 

hydrophobic alkyl chain. (Membrane-binding), (3) Long alkyl chain species self-associate rather 

than bind to the membrane. (Self-association). Actually, results show that the above 

membrane-binding affinity correlated with their pharmacological activity, suggesting the validity of 

the assumption presented above. This finding will be useful to enhance the bioavailability of the 

alkyl gallates by preventing the self-association using co-existing solutes. 

 To provide fundamental insights into the mechanism of action of plasma medicine, we 

reports the chemical effects of atmospheric-pressure cold plasma on 20 naturally occurring amino 

acids (the basic building blocks of proteins) in aqueous solution. A competitive reaction experiment 

with the 20 amino acids demonstrated that sulfur-containing (such as cysteine) and aromatic amino 

acids were preferentially decreased by the plasma treatment. These data are fundamental 

information for elucidating the mechanism of protein inactivation for biomedical applications of 

plasma and represent a crucial first step for understanding the mechanism of action of plasma 

medicine.  

 In this thesis, we investigate the chemical effects of APCP on protein in aqueous solution 

using lysozyme as a model protein. Plasma medicine as a plasma process is one of the new 

attractive research areas. Our APCP can sterilize bacteria in aqueous solution because the 
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bactericidal effect of the plasma is caused free radicals. To our knowledge, it is the first report that 

atmospheric plasma decreases the enzymatic activity of protein to provide fundamental insights into 

the mechanism of action of plasma medicine.  

 One of the amino acids, arginine (Arg), synergistically solubilized myosin at physiological 

salt concentrations without altering the tertiary structure. Myosin, an important protein resource for 

food industries, is practically insoluble in aqueous solutions at low ionic strength. The solubilization 

of insoluble myosin in physiological salt concentrations is required for the food industry. Therefore, 

a new function of Arg as a solution additive was found in which Arg stabilizes the supersaturated 

state of myosin in saline. This finding of Arg can be applied not only in the food industry but also in 

pharmaceutical applications of various proteins.  

 As a plasma-medicine application, APCP was applied to degenerate amyloid-ß (Aß) fibrils, 

which are a major component of neuritic plaque associated with Alzheimer’s disease, in aqueous 

solution. We showed that the protease resistance of the Aß fibrils was lost as a result of the APCP 

processing, while the fibril length remained unchanged. These results suggest that APCP could be 

utilized for the treatment of Alzheimer’s disease to eliminate neuritic plaque by accelerating the 

proteolysis of Aß fibrils.  

 For the further development of biological technique for the observation of amyloid fibrils, 

this thesis demonstrates the utility of scanning electron microscopy (SEM) without staining. The 

apparent fibril widths in the SEM images were considerably larger than the original diameters 

reported based on the conventional techniques of transmission electron microscopy (TEM) and 

atomic force microscopy (AFM). Although the broadening is undesirable for detailed imaging, it 

makes SEM sensitive to fibrils several micrometres in length and as thin as 3.5 nm. Note that the 

sensitivity also contributed to clearly distinguishing amyloid fibrils from salt microcrystals in the 

SEM images. These results suggest the high applicability of SEM for the imaging of amyloid fibrils, 

even in the presence of contamination.  
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Chapter 7 

General Conclusion 

 

In this thesis, we investigated the chemical effects of atmospheric-pressure cold plasma on an 

enzyme hen egg white lysozyme, 20 naturally occurring amino acids, and amyloid-ß fibrils in 

aqueous solution and the mechanism of plasma sterilization in solution using the reduced pH 

method. Chapter II describes demonstration of the mechanism of efficient bactericidal inactivation 

with the reduced pH method, by using 3 kinds of living bacteria and a simple bacterial model. In 

chapter III, the chemical modification of 20 amino acids in solution by low-frequency (LF) plasma 

jet, an APCP system was described. The side chains of 14 amino acids were oxidized and 

sulfur-containing and aromatic amino acids were preferentially modified in the amino acids. 

Chapter IV presented an investigation that APCP decreases the enzymatic activity of lysozyme and 

increases the molecular weight of the protein. This study is a first report to elucidating chemical 

reaction and structural change of protein by the plasma in aqueous solution. Chapter V showed that, 

using an in vitro system, APCP processing changed the protease resistance, ß-sheet structure, and 

surface properties of Aß fibrils in solution, although the morphology, length, and cytotoxicity of a 

plasma-exposed fibril remained unchanged.  

 LF plasma jet was used as an APCP system to examine the chemical effects of 

atmospheric-pressure cold plasma on an enzyme, hen egg white lysozyme, 20 naturally occurring 

amino acids, and amyloid-ß fibrils in aqueous solution and the mechanism of plasma sterilization in 

solution using the reduced pH method. This is the fundamental step for elucidating chemical 

reactions by plasma and essential for understanding the effect of plasma to human body. The LF 

plasma jet is a simple APCP system. Therefore, the reported findings in this study may occur when 

other APCP systems are used. Furthermore, for fundamental understanding of plasma medicine, 

discussions must be based on not the parameter of plasma generation but that of active species. The 

showed degeneration of Aß fibrils in solution can be achieved by plasma treatment and the fact 

suggests prospects for utilizing APCP for the elimination of neuritic plaque associated with AD by 

accelerating the proteolysis of Aß fibrils.  
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