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Abstract

We present an investigation of the structure of the 12C, 16O, and 20Ne nuclei employing a
newly developed configuration-mixing method. Our method is composed of the following
steps. We first generate a number of Slater-determinants with various correlated structures
using the imaginary-time algorithm. We then diagonalize a many-body Hamiltonian of the
Skyrme interaction in the space spanned by the Slater-determinants with parity and angular
momentum projections. These calculations are carried out in the grid representation of
the three-dimensional Cartesian coordinate. This method allow us to get almost converged
solution for the ground and low-lying excited states once the many-body Hamiltonian is given.

Our calculations reasonably describe the ground and excited states of 12C nucleus, both
shell-model-like and cluster-like states. The excitation energies and transition strengths of
the ground-state rotational band are well described. Negative-parity excited states, 1−1 , 2−1 ,
and 3−1 are also reasonably described. The second and third 0+ states, 0+2 and 0+3 , appear
at around 8.8 and 15 MeV in our calculations, respectively. The 0+2 state shows a structure
consistent with a picture of α-condensation which has been proposed recently. However, the
calculated radius of the 0+2 state is smaller than previous calculations. The three α-linear-
chain configuration is found to dominate in the 0+3 state.

For the 16O nucleus, we show that the α+12C cluster structure dominates in the 0+2 state,
though calculated excitation energy of this state is too high about 3 MeV compared with the
measured value. For negative-parity excited states, the parity-doublet partner of Kπ = 0+2
band appears as Jπ = 1−3 and 3−3 states. Negative parity excited states of 1−1 , 2−1 , and 3−1 ,
which are known to be particle-hole excited states, are reasonably described.

For the 20Ne nucleus, the ground band is described by our method as states which shows
α+16O configuration. The calculated E2 transition strengths between states belonging to
ground-state rotational band is well reproduced, although moment of inertia for these states
is too large compared with the measurements. In the negative parity, our calculation describes
Kπ = 2− band reasonably which is known as 1p-1h excitations. The parity-doublet partner
of Kπ = 0+1 band appears in our calculations. However, we cannot obtain converged solutions
for this band.

In addition to Skyrme interaction, we perform calculations using Gogny interaction. We
have found that results are almost the same, showing that our calculated results do not
depend on the choice of the effective Hamiltonian.
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Chapter 1

Introduction

1.1 Structures of light nuclei

Atomic nuclei are finite quantum many-body systems composed of a number of nucleons.
There are two kind of nucleons; neutron and proton. Less than 300 stable nuclei are found
in nature, and about 3,000 nuclei have been produced and investigated in experiments. It is
considered that a mean-field picture of nuclei — nucleons constituting a nucleus make a mean
field potential self-consistently and nucleons move independently in the potential — applies
for most nuclei. In the shell-model (SM), a picture that relatively weak interactions among
nucleons which move in the mean-field potential is assumed. SM has been very successful in
explaining the basic nuclear properties. Recently, the tensor-optimized shell model has been
developed to take into account the tensor correlations which originate dominantly from pion
exchange [1].

In spite of successful descriptions of nuclear properties, SM cannot provide satisfactory
description of cluster structures. In light nuclei, cluster structures are widely observed in
excited states. In most light nuclei, ground states are described by the SM. There are only a
few cases where cluster structures appear in the ground state. On the other hand, a variety
of cluster structures appear in excited states. Due to the saturation property of the nuclear
binding energy, it costs only small energy to break light nuclei into clusters. In stable nuclei,
cluster structures appear in excitation energy regions close to the threshold energy into a
few clusters. This is called the threshold energy rule and has been described by the so-called
Ikeda diagram [2] which is shown in Fig. 1.1. In the diagram, possible cluster structures are
plotted at positions where a vertical distance from the top indicates the threshold into clusters
measured from the threshold energy into α-particles. Ground states of nuclei appear along a
diagonal line. They are thought to be shell-model like states except for 8Be. In each cluster
structure, measured threshold energy is indicated in the parenthesis in unit of MeV. We
consider 12C, for example. The threshold energy into three α-particles is 7.27 MeV. A cluster
structure composed of three α-particles structure is expected at around this excitation energy.
Indeed, the 0+2 excited state exists whose excitation energy is 7.66 MeV in measurement. This
state is considered to have the three α-cluster structure. It is quite interesting that a variety
of cluster structures appear in excited states which have very different structures from the
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CHAPTER 1. INTRODUCTION

Figure 1.1: Ikeda diagram. Possible cluster structures are shown according to the threshold
rule. Threshold energy for each decay mode is indicated in the parenthesis in MeV. Ground
states of nuclei appear along a diagonal line. They are shell-model like states except for 8Be.
(From [2])

ground state.

1.2 Cluster models and ab-initio calculations

For theoretical descriptions of cluster states, microscopic and semi-microscopic cluster models
have been extensively developed in the past [3–5]. The resonating group method (RGM) [6, 7]
assumes a product form for the wave function composed of the internal wave functions of
clusters and the inter-cluster wave function, taking full account of the anti-symmetrization.
The generator coordinate method (GCM) has been also successfully applied to various cluster
motions assuming harmonic oscillator shell-model wave functions for clusters [8]. One of semi-
microscopic cluster models is the orthogonality condition model (OCM) which is considered
to be an approximation of the RGM [9, 10]. In these microscopic and semi-microscopic
models, the existence of clusters is assumed from the beginning. To understand mechanisms
of emergence and disappearance of cluster structures, one should start with a model which
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1.2. CLUSTER MODELS AND AB-INITIO CALCULATIONS

Figure 1.2: Contours of constant density, plotted in cylindrical coordinates, for the ground
state of 8Be. The left side is in the laboratory frame while the right side is in the intrinsic
frame. (From [15])

does not assume any existence of clusters. Studies with the anti-symmetrized molecular
dynamics (AMD) method [11–13] have contributed to substantial advances in this direction.
In most calculations with microscopic cluster models and AMD, effective nucleon-nucleon
forces are used. In the fermionic molecular dynamics (FMD) method, which is closely related
to the AMD, a more realistic force produced by the unitary correlation operator method has
been employed [14].

In last two decades, there have been significant advances in theoretical descriptions of light
nuclei starting with realistic nucleon-nucleon force: the so-called ab initio approaches. The
Green function Monte Carlo (GFMC) approach has been successful in describing the ground
and some low-lying excited states of light nuclei [16]. The GFMC calculation describes the
two α-cluster structure of 8Be in the ground state [15]. Figure 1.2 shows the contour plot of
density plotted in cylindrical coordinates, while the left side of the figure is in the laboratory
frame. The right side of the figure is in the intrinsic frame. The intrinsic density exhibits
two α-cluster. However, in spite of the success of description of cluster structure for 8Be, the
application of the GFMC method has been limited to nuclei whose mass number is less than
or equal to 12, because the computational cost rapidly increases as the mass number increases.
The no-core shell model (NCSM) has also been successful for the description of ground and
low-lying excited states [17, 18]. However, descriptions of cluster states in the NCSM have
not yet been satisfactory. For example, the calculated first excitation energy (Jπ = 0+2 ) of 16O
by no-core full configuration (NCFC) approach, which is a similar approach to the NCSM, is
about two times larger than that of measurement [19]. Recently there have been a number
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CHAPTER 1. INTRODUCTION

of attempts at the ab initio description of cluster structures in excited states. For example,
a lattice calculation for the second 0+ state of 12C has been reported [20]. The no-core shell
model combined with Monte Carlos basis generation method has also been developed [21].

1.3 Mean field theory

The nuclear self-consistent mean-field (SCMF) theory is one of the successful theoretical ap-
proaches for describing and predicting properties of nuclear ground states in a wide mass
region of nuclear chart. It is known that calculated bare nucleon-nucleon force may not be
used in the SCMF theory because of strong short range repulsion. Instead an empirical ef-
fective nucleon-nucleon force has been used. The use of the effective force is theoretically
validated by Brückner G-matrix [22]. The Skyrme and Gogny interactions are often used in
the SCMF theory [23–26]. The nuclear SCMF theory with these interactions is in many re-
spects analogous to density functional theory, which has been developed in condensed matter
theory and has been giving very successful descriptions of various many-electron systems. It
has been known that the pairing correlations play an important role in nuclei. In order to
take account pairing correlations, the Hartree-Fock-Bogoliubov theory has been developed
[27]. The SCMF theory has been quite successful in describing ground state properties such
as the binding energies, radii, and so on for a wide mass region of nuclear chart.

The SCMF model has been also applied for the descriptions of excited states. The random-
phase approximation (RPA) is the small amplitude limit of time-dependent mean field ap-
proach [28]. The RPA is used to describe collective vibrations which represent a coherent
motion of many nucleons. To take into account pairing correlations, quasi-particle RPA has
been developed. Besides RPA, to describe properties of ground and excited states in a uni-
fied way, Generator Coordinate Method (GCM) superposing a number of Slater-determinants
(SDs) has been developed [29]. The GCM is a fully variational method and has been suc-
cessfully applied for various properties of nuclei. In order to perform the GCM calculations,
however, we have to choose a few generator coordinates by physical intuition, as in the GCM
of the cluster model. This is a disadvantage of the GCM.

1.4 Outline

There are two important ingredients in the ab initio descriptions of nuclear structures. One
is to start with a Hamiltonian with a realistic nucleon-nucleon force that has a short-range
repulsive core. The other is to obtain fully converged solutions for a given many-body Hamil-
tonian. Since cluster structures are characterized by long-range spatial correlations, simul-
taneous descriptions of both long- and short-range correlations are required for the ab-initio
description of cluster states. This makes the problem computationally very challenging. In
this thesis, we focus on the latter aspect of the above-mentioned problem; namely, on ob-
taining fully convergent solutions for a given many-body Hamiltonian, taking into accounts
a variety of long-range correlations. We start not with a realistic nucleon-nucleon force but
with an empirical effective interaction, the Skyrme force. We use a method developed by
our group which was reported previously [30, 31]. We apply the method to the 12C, 16O,
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1.4. OUTLINE

and 20Ne nuclei and examine cluster structures in these nuclei. Since the Skyrme interaction
is determined so as to reproduce nuclear properties of wide mass region, our calculations
contain no empirical parameter specific to 12C, 16O, and 20Ne nuclei.

As seen from Fig. 1.1, 12C, 16O, and 20Ne nuclei are expected to show cluster structures
in excited states. The 0+2 state of 12C is known as three α-cluster state. In recent year, it has
been proposed that the 0+2 state can be regard as a gas-like state of three α-particles with
Bose condensation [32, 33]. The 0+2 state of 16O nucleus is known as α+12C cluster state.
Although many theoretical approaches has been applied to calculate the 0+2 state of 16O
nucleus, only the OCM and SM, which include parameters to fit the energy levels, succeed
to reasonably reproduce the 0+2 state. The ground band of 20Ne nucleus shows transitional
behavior between mean-filed and α+16O cluster structures. Thus a comprehensive and simul-
taneous descriptions of the ground and excited states of 12C, 16O, and 20Ne nuclei are very
interesting. In this thesis, we will get converged solutions for a given many-body Hamiltonian
for these nuclei and discuss the properties of the ground and excited states of these nuclei.

This paper is organized as follows. In chapter 2, we explain our method. We show the
results of 12C, 16O, and 20Ne nuclei in chapters 3, 4, and 5, respectively. In chapter 6, a
summary is presented and discussed future problems.
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Chapter 2

Formulation

We would like to describe structures of light nuclei by employing approach which gives fully
convergent solutions for Skyrme Hamiltonian. For this purpose, we use newly developed
configuration mixing approach, foundations of which were established in Ref. [30]. In Ref. [30],
they use a simplified interaction, BKN. We apply this approach with more realistic Skyrme
interaction and try to describe nuclear structures. In this approach, we take sufficiently
model space which include cluster wave-functions and diagonalize the effective Hamiltonian
in this model space. In the diagonalization of Hamiltonian, we employ projection technique
in order to restore broken symmetry. In the following, we explain this approach to divide it
into three steps: We first generate a number of Slater-determinants (SDs) in a stochastic way.
These SDs are expected to span a sufficiently large model space to describe excited states
with various cluster structures as well as low-lying states with shell-model-like structures. We
then perform parity and angular momentum projections for the SDs. Finally we superpose
them to diagonalize the Skyrme or Gogny Hamiltonian. First, we explain the first step which
is to generate and select a sufficient number of SDs. Before presenting this step, we explain
the SCMF model which is starting point of our approach.

2.1 Self-consistent mean-filed

2.1.1 Hartree-Fock method

The Hartree-Fock (HF) theory is based on approximation to the many-body wave-function:
the wave function is represented by a single SD which is composed of single-particle wave
functions ψi (i = 1, · · · , A),

Ψ(x1, · · · , xA) =
1√
N !

det{ψi(xj)}, (2.1.1)

where A in number of nucleons and x stand for space, spin, and iso-spin coordinates. This
wave-function is satisfied anti-symmetric with regard to interchange of the position of two
protons or neutrons. The determinant in Eq. (2.1.1) does not change to replace ψi for ψi+cψj
(c is arbitrary number). In order to remove this uncertainty of single-particle wave-function,
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CHAPTER 2. FORMULATION

we choose the single-particle wave-functions ψi to be orthonormal set;⟨
ψi
∣∣ψj⟩ = δij . (2.1.2)

We now introduce Lagrange multiplier eij for conserving orthonormality of single-particle
wave-function and minimize expectation value of Hamiltonian with respect to single-particle
wave-function,

δ

δψ∗
i (x)

⟨Ψ∣∣Ĥ∣∣Ψ⟩
⟨Φ|Φ⟩

−
∑
ij

eij(
⟨
ψi
∣∣ψj⟩− δij)

 = 0. (2.1.3)

From this equation, we can be obtained the HF ground state, which corresponds to the lowest
energy state in the model space represented by a single SD.

The Bonche et al. were developed numerical method for HF with representation of the
three-dimensional (3D) Cartesian grid, where the spatial coordinates are discretized. We
employ same representation. This representation allows us a flexible description of single-
particle orbitals in arbitrary nuclear shapes. The grid spacing is taken to be ∆x = ∆y =
∆z = 0.8 fm, and the entire grid points inside a sphere of radius Rmax = 8.0 fm are adopted.

2.1.2 Imaginary time method

In order to obtain the HF ground state by numerical calculation, we often use imaginary time
method. This method relate to the numerical technique for time-dependent HF equation,

ih̄
∂ψi
∂t

= ĥ(t)ψi(t), (i = 1, · · · , A) (2.1.4)

where ĥ(t) is single-particle Hamiltonian. In numerical calculation of time-dependent HF

equation, if we write the state at a certain time t = n∆t as {ψ(n)
i }, the state, {ψ(n+1)

i }, which
is evolved infinitesimal time ∆t from t = n∆t is written as∣∣ψ(n+1)

i

⟩
= exp

[
i

h̄
∆tĥ

] ∣∣ψ(n)
i

⟩
. (2.1.5)

In imaginary time method, we replace ∆t for i∆τ , where ∆τ is infinitesimal positive value,
in Eq. (2.1.5). Thus, the energy of system is gradually decrease as the time τ is evolved. This
procedure is called imaginary time method.

We show the example of imaginary time method for HF method. We prepare two SDs,
Ψ composed of single-particle wave-functions ψi (i = 1, · · · , A) and Ψ + δΨ composed of
ψi + δψi. The expectation value of energy with respect to the SD Ψ + δΨ can be expressed
by

E[Ψ + δΨ] = E[Ψ] +

A∑
i=1

∫
dx

δE

δψi(x)
δψi(x) +

A∑
i=1

∫
dx

δE

δψ∗
i (x)

δψ∗
i (x) +O[δψ2

i ], (2.1.6)

where E[Ψ] =
⟨
Ψ
∣∣Ĥ∣∣Ψ⟩. If we take

δψi ≡ −∆τ
δE

δψ∗
i (x)

, (2.1.7)
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2.1. SELF-CONSISTENT MEAN-FILED

Eq. (2.1.6) is expressed as

E[Ψ + δΨ] ≈ E[Ψ]− 2∆τ

A∑
i=1

∫
dx

∣∣∣∣ δE

δψi(x)

∣∣∣∣2 < E[Ψ]. (2.1.8)

The Eq. (2.1.8) indicate that the expectation value of Hamiltonian is decreased as iteration of
Eq. (2.1.7) is evolved. We note that the δE

δψ∗
i (x)

in Eq. (2.1.7) is a definition for single-particle

Hamiltonian ĥ.

2.1.3 Skyrme and Gogny interactions

In the SCMF, zero-range Skyrme interaction and the Gogny interaction are widely used. The
Skyrme interaction is composed by the density- and momentum-dependent two-body terms:

V̂Skyrme(r⃗1, r⃗2) = t0 (1 + x0Pσ) δ (r⃗1 − r⃗2) +
1

6
t3ρ

α
(

1 + x3P̂σ

)
δ (r⃗1 − r⃗2)

+
1

2
t1

(
1 + x1P̂σ

)(
k⃗2 − k⃗2

)
δ (r⃗1 − r⃗2) + t2

(
1 + x2P̂σ

)←−
k · δ (r⃗1 − r⃗2)

−→
k

+ iW0 (σ⃗1 + σ⃗2) ·
←−
k × δ (r⃗1 − r⃗2)

−→
k , (2.1.9)

where P̂ σ is the spin exchange operator, and
←−
k and

−→
k are defined as

−→
k =

−→∇1 −
−→∇2

2i
,
←−
k = −

←−∇1 −
←−∇2

2i
. (2.1.10)

Here,
−→
k acts on ket state and

←−
k acts on bra state. The some parameter sets of Skyrme

interaction are given in Table A.1. The matrix element of V̂Skyrme is shown in Sec. A.1

and the off-diagonal matrix element of V̂Skyrme is shown in Sec. A.3.1. We use the Skyrme
interaction to generate and prepare SDs and diagonalize of Hamiltonian. For the energy
functional, we employ the SLy4 parameter set for the Skyrme interaction unless otherwise
specified.

The Gogny interaction is constructed by a sum of two Gaussians with spin-isospin mix-
tures:

V̂Gogny(r⃗1, r⃗2) =

2∑
i=1

exp
[
−(r⃗1 − r⃗2)2/µ2i

] (
Wi +BiP̂

σ −HiP̂
τ −MiP̂

σP̂ τ
)

+iW0(σ⃗1 + σ⃗2) ·
←−
k × δ(r⃗1 − r⃗2)

−→
k

+t3ρ
1/3
(

1 + P̂ σ
)
δ (r⃗1 − r⃗2) , (2.1.11)

where P̂ τ is the isospin exchange operator. The some parameter sets of Gogny interaction
are given in Table A.2. The matrix element of V̂Gogny is shown in App. A.2. We use Gogny
interaction to perform diagonalization of Hamiltonian.
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CHAPTER 2. FORMULATION

2.2 Generation of Slater-determinants

The first step is generation and selection of sufficient number of SDs, {Ψi} (i = 1. · · · ,M),
which are expected to span a sufficiently large model span to describe various kinds of long-
range correlations. For this purpose, we use imaginary-time method which is usually used to
obtain a ground-state solution in the SCMF calculation. Here, we apply it for generation of
many kinds of collective surfaces.

We start with initial SDs whose single-particle orbitals are described by Gaussian wave
packets,

ϕi(r⃗, σ) = e−|r⃗−R⃗i(σ)|2/a2 . (2.2.1)

The width parameter a is taken to be 2 fm and the center of the Gaussian wave packets,
R⃗i(σ), are set by random numbers generated on the condition∣∣∣R⃗i(σ)

∣∣∣ < Rmax − 1 fm. (2.2.2)

Then, we start the imaginary-time iterations with these initial SDs. During the imaginary-
time iterations, we employ constraints to place the center of mass at the origin and to make the
principal axes of nuclei parallel to the Cartesian axes. After sufficient number of iterations, the
calculation reaches the self-consistent HF ground-state. Before reaching HF solution, many
SDs which show various cluster structures and other important configurations for low-lying
dynamics appear. We pick up and store these SDs, which will be used for the configuration
mixing calculation. We repeat the imaginary-time calculation starting with different initial
SDs until we obtain a sufficient number of SDs. We typically generate 50 SDs.

In order to span a wide model space by the limited number of SDs, the actual calculation
is achieved as follows: The first SD adopted in the basis set {Ψi} is the HF state, Φ1 = ΦHF .
The second and following SDs are generated as follows: We examine the energy expectation
value in a regular interval, typically every a hundred iterations. We do not adopt the SD until
the energy expectation value is less than 30 MeV above the HF ground-state energy. Once
the excitation energy fall below the threshold, we examine the overlap between a current SD
Φc and previously selected ones Φi (i = 1, · · · , N). We calculate the overlap∣∣⟨Φi

∣∣P̂ πR̂n∣∣Φc

⟩∣∣√∣∣⟨Φi

∣∣P̂ π∣∣Φi

⟩∣∣√∣∣Φc

∣∣P̂ π∣∣Φc

⟩∣∣ (i = 1, · · · , N), (2.2.3)

where P̂ π is parity projection operator π = ± and R̂n (n = 1, · · · , 24) are operators of
rotations and inversions which may be easily achieved by changes of the coordinate axes. If
the largest overlap value between Φc and Φi (i = 1, · · · , N) is less than 0.7, we adopt the
SD Φc as a new member, ΦN+1 = Φc. When the imaginary-time iteration reaches the HF
solution, we generate a new initial SD whose single particle wave function are described by
Gaussian wave packets (2.2.1) and perform the imaginary-time iterations again. We repeat
the procedure until a sufficient number of SDs is adopted. A few SDs are adopted during an
imaginary-time iteration in the beginning. However, it is more and more difficult to obtain
the new SD as a number of stored SDs are increases. We sometime cannot obtain any SDs.

12



2.2. GENERATION OF SLATER-DETERMINANTS

Figure 2.1: Color plots of nuclear densities of the stored SDs for 12C. Lengths of a side are
16 fm.

In this way, we can store SDs which are linearly independent to each other and which are

13



CHAPTER 2. FORMULATION

important to describe low-lying excitation states.
We show density distributions of 50 SDs generated in this procedure in Fig. 2.1. The HF

solution for the ground state, which shows a spherical shape, is shown in upper-left corner.
Other SDs in Fig. 2.1 show a variety of cluster structures. For example, some SDs show an
equilateral triangular three-α structure, some show a three-α linear-chain, and some show a
8Be + α-like structure. We thus observe that the present procedure efficiently produces SDs
with various cluster structures in an automatic manner.

14



2.3. PARITY AND ANGULAR MOMENTUM PROJECTIONS

2.3 Parity and angular momentum projections

The exact many-body Hamiltonian is invariant under some symmetry operations such as the
particle number, the linear momentum, the space inversion, the angular momentum operators,
and so on: [

Ĥ, Ŝ
]

= 0, (2.3.1)

where Ŝ is symmetry operator. Therefore, the eigenvectors of Ĥ are simultaneously eigenstate
of Ŝ. Since the SDs prepared by the method in Sec. 2.2 are not usually eigenstate of parity
and angular momentum, we should restore this broken symmetries. For this purpose, we use
projection methods. We explain parity projection and angular momentum projection.

2.3.1 Parity projection

In order to restore the space inversion symmetry of Hamiltonian, from the wave function Φ,
we produce the wave function Φ(±) which the parity, positive + or negative −, is determined:

Φ(+) ≡ P̂+Φ =
1

2
(1 + P̂r)Φ, Φ(−) ≡ P̂−Φ =

1

2
(1− P̂r)Φ, (2.3.2)

where P̂r is space inversion operator. The Φ(±) has space inversion symmetry.

2.3.2 Angular momentum projection

We can get eigenstate of squared and z-component of total angular momentum, J2 and Jz,
is constructed by operating following projection operator,

P̂ JMK =
2J + 1

8π2

∫
dΩDJ∗

MK(Ω)R̂(Ω), (2.3.3)

where R̂(Ω) is the rotation operator for the Euler angels Ω = (α, β, γ), and DJ
MK is the

Wigner’s D-function defined by

R̂(Ω) = e−iαĴze−iβĴye−iγĴz , (2.3.4)

DJ
MK(Ω) = e−iαMdJMK(β)e−iγK , (2.3.5)

where J,M , and K are the total angular momentum, its projection onto the laboratory z-axis,
and its projection onto the body-fixed z-axis, respectively.

We define the norm and Hamiltonian matrix elements between the projected SDs, |Φi⟩
and |Φj⟩ as

n̂JπiK,j,K′ ≡
2J + 1

8π2

∫
dΩDJ∗

KK′(Ω)
⟨

Φi

∣∣∣e−iαĴz P̂ πe−iβĴye−iγĴz ∣∣∣Φj

⟩
(2.3.6)

ĥJπiK,j,K′ ≡
2J + 1

8π2

∫
dΩDJ∗

KK′(Ω)
⟨

Φi

∣∣∣e−iαĴzĤP̂ πe−iβĴye−iγĴz ∣∣∣Φj

⟩
. (2.3.7)

Here, we use the formula
P̂ J†MK P̂

J
MK′ = P̂ JKK′ . (2.3.8)
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In Eqs. (2.3.6) and (2.3.7), we need the rotation of wave functions. It is achieved by successive
operations of small angle rotations. For example, the rotation of a wave function ϕ over an
angle γ around z-axis is archived by successive rotations of a small angle, ∆γ = γ/Nγ , Nγ

times.

e−i∆γĵz |ϕ⟩ =
[
e−i∆γĵz

]Nγ

|ϕ⟩ . (2.3.9)

To achieve the small-angle rotation, we employ the Taylor expansion method:

e−i∆γĵz |ϕ⟩ ≈
Nmax∑
k=1

(−i∆γĵz)k

k!
|ϕ⟩ . (2.3.10)

Typically, we take Nmax = 4 and ∆γ = π/90.

In Eqs. (2.3.6) and (2.3.7), the e−iαĴz is operated on bra ⟨Φi|. The e−iβĴy and e−iγĴz is
operated on ket |Φj⟩. The integrals over Euler angles are evaluated as follows: Those over α,
β, and γ are archived by the trapezoidal rule, taking 18 uniform grid points for [0, 2π]. The
integral β is achieved with the Gauss-Legendre quadrature, taking 30 grid points for [0, π].

2.4 Configuration mixing

The final procedure is diagonalization of the many-body Hamiltonian in the space spanned
by the selected SDs. The SDs have been screened by their linear independence. However,
calculating eigenvalues of the norm matrix for the SDs after the parity and angular momen-
tum projections, we find a number of eigenvalues very close to zero or even slightly negative.
The norm matrix is positive definite by definition. However, since we make numerical ap-
proximations in evaluating the norm matrix, it could contain negative eigenvalues. The
approximations include use of the formula for the product of the projection operators, which
is no longer exact if the integral over Euler angles is evaluated by the numerical quadrature.
We also employ the three-dimensional Cartesian grid representation for the orbitals in which
the rotational symmetry holds only approximately.

Inclusion of those configurations of very small norm eigenvalues would lead to numerical
difficulties. Therefore, we reproduce the number of configurations according to the following
procedures. First, we perform diagonalization in the (2J + 1)-multiplet with different K
quantum numbers: ∑

K′

nJπiK,iK′v
Jπ,i,ν
K′ = eJπiν v

Jπ,iν
K , (ν = 1, · · · , 2J + 1), (2.4.1)

where eJπiν and vJπ,iνK are eigenvalues and eigenvalues of the norm matrix, nJπiK,iK′ . Then we

construct a space spanned by the eigenvectors with the eigenvalue eJπiν > 10−2, and define
the normalized basis functions∣∣ΦJπ

iν

⟩
≡ 1√

eJπiν

∑
K

vJπ,i,νK P̂ JMK P̂
π |Φi⟩ . (2.4.2)
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After achieving the above procedure for all SDs, we define the following norm matrix between
basis functions belonging to the different SDs:

n̂Jπiν,jν′ ≡
⟨
ΦJπ
inu

∣∣ ΦJπ
jν′
⟩
. (2.4.3)

Using this matrix, we examine the linear independence of the basis functions and reduce the
number of bases as follows.

1. Calculate eigenvalues of 2×2 matrices composed of every possible pair of basis functions,
(i1ν1) and (i2ν2). If the smaller eigenvalue is less than 10−3. we remove the basis
function with a smaller eJπiν .

2. Calculate the eigenvalues of 3 × 3 matrices composed of three basis functions (i1ν1),
(i2ν2), and (i3ν3). If the smallest eigenvalue is less than 10−3, we remove one of the
three basis functions in the following procedure. We calculate eigenvalues of three 2×2
submatrices composed of all possible pairs of these three states, to find the pair whose
smaller eigenvalue is the largest among the three. Then we remove one of the basis
function of (i1ν1), (i2ν2), and (i3ν3) which does not belong to that pair. We repeat the
procedure for all possible combinations of three basis functions.

3. Finally we calculate eigenvalues of the norm matrix n̂Jπiν,jν′ with basis functions which
survived in the previous two screening steps. If we find the eigenvalue smaller than
10−3, we remove one basis function in the following way. Denoting the number of basis
functions as N , we construct the (N − 1) × (N − 1) submatrices removing one basis
function ΦJπ

iν from the N basis. Apparently, N different choices of (iν) are possible.

We then calculate the smallest eigenvalue of the (N − 1) × (N − 1) submatrix, λ
(iν)
min.

Among λ
(iν)
min with different (iν), we find the largest one, λ

(j,ν′)
min , and remove the basis

function ΦJπ
jν′ is reduced by one, from N to N − 1. We repeat this process until the

smallest eigenvalue of the norm matrix becomes larger than 10−3.

After removing the overcomplete basis functions in this procedure, we achieve the configura-
tion mixing calculation. Denoting the nth energy eigenvalues as∣∣ΦJπ

n

⟩
≡
∑
iν

fJπ,niν

∣∣ΦJπ
iν

⟩
, (2.4.4)

the generalized eigenvalue equation for the energy eigenvalues EJπn and the coefficients fJπ,nn

is given by ∑
jν

[
ĥJπiν,jν′ − EJπn n̂Jπiν,jµ

]
fJπ,njµ = 0, (2.4.5)

where ĥJπiν,jµ is defined by

ĥJπiν,jµ ≡
⟨
ΦJπ
iν

∣∣ Ĥ ∣∣ΦJπ
jµ

⟩
. (2.4.6)
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2.5 Matrix elements of nuclear interactions

In the last of this chapter, we show the matrix element of Hamiltonian
⟨
Φ
∣∣Ĥ∣∣Φ⟩, which is

need to perform imaginary time evolution and get ĥJπiν,jµ.

2.5.1 Skyrme interaction

First, we present the matrix elements of Skyrme interaction. The energy expectation value
of a SD is written as

EHF [Φ] =
⟨

Φ
∣∣∣ĤSkyrme

∣∣∣Φ⟩ =

∫
dr⃗HSkyrme(r⃗), (2.5.1)

where the local energy functional HSkyrme is given by

HSkyrme =
h̄2

2m
τ +B1ρ

2 +B2

∑
τ

ρ(τ)2

+B3

(
τρ− j⃗2

)
+B4

∑
τ

(
τ (τ)ρ(τ) − j⃗(τ)2

)
+B5ρ∇2ρ+B6

∑
τ

(
ρ(τ)∆ρ(τ)

)
+B7ρ

αρ2 +B8ρ
α
∑
τ

ρ(τ)2

+B9

[
ρ∇⃗ · J⃗ + j⃗ · ∇⃗ × ρ⃗+

∑
τ

(
ρ(τ)∇⃗ · J⃗ (τ) + j⃗(τ) · ∇⃗ × ρ⃗(τ)

)]
+B10ρ⃗

2 +B11

∑
τ

ρ⃗(τ)2 +B12ρ
αρ⃗2 +B13ρ

α
∑
τ

ρ⃗(τ)2

+B14

(
T⃗ · ρ⃗− J⃗2

)
+B16

∑
τ

(
T⃗ (τ) · ρ⃗(τ) − J⃗ (τ)2

)
+B15ρ⃗ ·∆ρ⃗+B17

∑
τ

ρ⃗(τ) ·∆ρ⃗(τ), (2.5.2)

where τ denote neutron or proton. The coefficients Bi(i = 1, · · · , 17) are defined as

B1 =
1

2
t0

(
1 +

1

2
x0

)
, B2 = −1

2
t0

(
1

2
+ x0

)
,

B3 =
1

4

[
t1

(
1 +

1

2
x1

)
+ t2

(
1 +

1

2
x2

)]
, B4 = −1

4

[
t1

(
1

2
+ x1

)
− t2

(
1

2
+ x2

)]
,

B5 = − 1

16

[
3t1

(
1 +

1

2
x1

)
− t2

(
1 +

1

2
x2

)]
, B6 =

1

16

[
3t1

(
1

2
+ x1

)
+ t2

(
1

2
+ x2

)]
,

B7 =
1

12
t3

(
1 +

1

2
x3

)
, B8 = − 1

12
t3

(
1

2
+ x3

)
,

B9 = −1

2
W0,

B10 =
1

4
t0x0, B11 = −1

4
t0,
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B12 =
1

24
t3x3, B13 = − 1

24
t3,

B14 =
1

8
(t1x1 + t2x2) , B15 = − 1

32
(3t1x1 − t2x2) ,

B16 = −1

8
(t1 − t2) , B17 =

1

32
(3t1 + t2) .

The energy functional Eq. (2.5.2) is composed of several densities, which are written by using
single-particle wave function as

ρ(r⃗) =
∑
i

∑
σ

|ϕi(r⃗, σ)|2, (2.5.3a)

ρ(τ)(r⃗) =
∑
i∈τ

∑
σ

|ϕi(r⃗, σ)|2, (2.5.3b)

τ(r⃗) =
∑
i

∑
σ

|∇⃗ϕi(r⃗, σ)|2, (2.5.3c)

τ (τ)(r⃗) =
∑
i∈τ

∑
σ

|∇⃗ϕi(r⃗, σ)|2, (2.5.3d)

Jµ(r⃗) =
∑
λµν

ϵλµνJµν(r⃗), (2.5.3e)

Jµν(r⃗) =
1

2i

∑
i

∑
σσ′

[
ϕ∗i (r⃗, σ)∂µϕi(r⃗, σ

′)− ∂µϕ∗i (r⃗, σ)ϕi(r⃗, σ
′)
] ⟨
σ|σν |σ′

⟩
, (2.5.3f)

J (τ)
µ (r⃗) =

∑
λµν

ϵλµνJ
τ
µν(r⃗), (2.5.3g)

J (τ)
µν (r⃗) =

1

2i

∑
i∈τ

∑
σσ′

[
ϕ∗i (r⃗, σ)∂µϕi(r⃗, σ

′)− ∂µϕ∗i (r⃗, σ)ϕi(r⃗, σ
′)
] ⟨
σ|σν |σ′

⟩
, (2.5.3h)

ρ⃗(r⃗) =
∑
i

∑
σσ′

ϕ∗i (r⃗, σ)ϕi(r⃗, σ
′)
⟨
σ|σ⃗|σ′

⟩
, (2.5.3i)

ρ⃗(τ)(r⃗) =
∑
i∈τ

∑
σσ′

ϕ∗i (r⃗, σ)ϕi(r⃗, σ
′)
⟨
σ|σ⃗|σ′

⟩
, (2.5.3j)

j⃗(r⃗) =
1

2i

∑
i

∑
σ

[
ϕ∗i (r⃗, σ)∇⃗ϕi(r⃗, σ)− ∇⃗ϕ∗i (r⃗, σ)ϕi(r⃗, σ)

]
, (2.5.3k)

j⃗(τ)(r⃗) =
1

2i

∑
i∈τ

∑
σ

[
ϕ∗i (r⃗, σ)∇⃗ϕi(r⃗, σ)− ∇⃗ϕ∗i (r⃗, σ)ϕi(r⃗, σ)

]
, (2.5.3l)

T⃗ (r⃗) =
∑
i

∑
σσ′

∇⃗ϕ∗i (r⃗, σ) · ∇⃗ϕi(r⃗, σ′)
⟨
σ|σ⃗|σ′

⟩
, (2.5.3m)

T⃗ (τ)(r⃗) =
∑
i∈τ

∑
σσ′

∇⃗ϕ∗i (r⃗, σ) · ∇⃗ϕi(r⃗, σ′)
⟨
σ|σ⃗|σ′

⟩
. (2.5.3n)
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2.5.2 Gogny interaction

We show the matrix element of Gogny Hamiltonian, which has finite range Gaussians. Since
numerical calculation with three-dimensional mesh representation is not suitable for finite
range interaction, the performing calculation of this matrix element in our method has trou-
ble. We discuss how to reduce computational cost.

In the following discussion, we neglect the degree of freedom of spin for simplicity. The
expectation value of Hartree term for V̂ is given by

VH =

∫
dr⃗

∫
dr⃗′ρ(r⃗)ρ(r⃗′)v(

∣∣r⃗ − r⃗′∣∣), (2.5.4)

where

ρ(r⃗) =
∑
i

ϕ∗i (r⃗)ϕi(r⃗). (2.5.5)

Here, i is orbital number and the integral of r⃗ and r⃗′ is performed to all of the space. Similarly,
the expectation value of Fock term for V̂ is given by

VF =

∫
dr⃗

∫
dr⃗′ρ(r⃗, r⃗′)ρ(r⃗′, r⃗)v(

∣∣r⃗ − r⃗′∣∣), (2.5.6)

where

ρ(r⃗, r⃗′) ≡
∑
i

ϕ∗i (r⃗)ϕ(r⃗′). (2.5.7)

The numerical calculation of expectation values demand higher calculation cost, because both
expectation values (Eqs. 2.5.4 and 2.5.6) include sextuple integral; three dimensions of r⃗ and
r⃗′. Above two, the expectation value of Fock term is more difficult than that of Hartree term,
because we have to calculate ρ(r⃗, r⃗′) (Eq. (2.5.7)) to the number of mesh points for r⃗ and r⃗′.
In order to reduce computational cost, we develop two methods: Finite spherical lattice and
Fourier transform. Below we describe these two methods in order.

Finite spherical lattice

Since the potential v is finite range interaction, the strength of potential become smaller as
|r⃗ − r⃗′| is larger. Namely, in Eq. (2.5.6), we can neglect some integration points of r⃗′ which is
far from the point r⃗. In actual calculation, the integral for r⃗ is performed on all mesh points,
and the integral for r⃗′ is performed on the points inside a sphere, the center of which locate
at r⃗ and the radius of which is Rf . The schematic picture of this method is shown in Fig. 2.2.
The mesh points inside circle is integral points for r⃗′.

In the Gogny force, the VF converges if the Rf takes about 3 fm (see Appendix B.1).
Numerical cost of this method is proportion to number of mesh points for r⃗, mesh points
inside the sphere for r⃗′, and orbital numbers, A.
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Figure 2.2: Schematic picture for Finite spherical lattice

Fourier transform

We rewrite the Eq. (2.5.6) as

VF =
∑
i,j

∫
dk⃗v(k⃗)

×
∫
dr⃗ρij(r⃗)exp[ik⃗ · r⃗]

∫
dr⃗′ρji(r⃗

′)exp[−ik⃗r⃗′], (2.5.8)

where
ρij(r⃗) ≡ ϕ∗i (r⃗)ϕj(r⃗). (2.5.9)

Here, we use the Fourier transform of the potential v

v(r⃗ − r⃗′) =

∫
dr⃗v(k⃗)exp[−ik⃗ · (r⃗ − r⃗′)]. (2.5.10)

From the Eq. (2.5.8), we perform Fourier transform square of number of orbits times. There-
fore, numerical cost of this method is proportion to the square of number of orbit, A2. As
shown in Appendix B.1, the numerical cost of Fourier transform method is higher than that of
Finite spherical lattice method for nuclei whose mass number is at least 12 or more. In present
paper, we adopt Finite spherical lattice method, because numerical cost of this method is
lower than that of Fourier transform method.
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Chapter 3

Results: 12C

3.1 Structure of 12C

Among light nuclei, the 12C nucleus is one of interesting systems for the reasons described
below. In the jj coupling shell-model picture, the ground state wave function should be
dominated by the p3/2 closed shell configuration. Indeed, the self-consistent Hartree-Fock
(HF) solutions with most Skyrme interactions show a spherical shape with the p3/2 closed
shell configuration. However, the 12C nucleus is known to show a rotational band structure
built on the ground state, indicating a deformed intrinsic shape in the ground state. In
excited states, a variety of cluster structures are known to appear. The 0+2 state just above
the three-α decay threshold is an important resonant state for the triple-α fusion reaction.
The existence of the Hoyle state is essential for the nuclear synthesis of carbon in helium-
burning red giant stars. The state was originally predicted by Fred Hoyle in the 1950s to
address of question as to on the observed abundances of heavier element in universe [34].
After that Dunbar and co-workers found the state in experiment of nuclear reaction, and
they found that the excitation energy is almost same as predicted value by Fred Hoyle [35].
The state was named Hoyle state after Fred Hoyle. It has been found recently that Hoyle
state is well described by a Bose condensed wave function of three-α particles which is called
the THSR wave function [32, 33]. Namely, they suggest that the 0+2 state of 12C has a gas-like
structure of three-α clusters with Bose condensation. The appearance of three-α linear-chain
structure in excited states was suggested by Morinaga in 1966 [36]. Recent microscopic cluster
models predict that the 0+3 state is a candidate for the linear-chain like structure [13, 14].

3.2 Convergence of results: Statistical treatment

In principle, the configuration-mixing calculation with a sufficient number of SDs provides
unique and convergent solution. However, superposing a great number of non-orthogonal
SDs causes numerical difficulties.

In the present calculation, we adopt 50 SDs for the configuration mixing calculation. It is
difficult to increase the number of SDs. Further increase of the number of SDs may produce
unphysical solutions whose energies are few tens MeV lower than the ground-state energy of
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Figure 3.1: Energy levels of the 12C nucleus for Jπ = 0+, 1+, 2+, 3+, 4+, 5+, 6+, 1−, 2−,
3−, 4−, and 5−. Calculations employing ten different sets of SDs are shown. See the text for
details.

the HF solution. This is possibly due to accumulations of numerical errors by the violation
of rotational symmetries in the three dimensional grid representation, insufficient accuracy
in numerical quadrature, and so on.

Because of the difficulty, we will not attempt to examine the convergence of the energy
levels by increasing the number of SDs. Instead, we prepare several sets of the SDs and
calculate energy levels for each set. If the calculated energy levels are close to each other
among the different sets of SDs, one may conclude that the calculated energy levels are
reliable. In practice, we prepare ten sets, each of which is composed of 50 SDs. The ten sets
of SDs are prepared in the procedure explained in Sec. 2.2. Different seeds for the random
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3.3. ENERGY LEVELS

numbers, which are used to prepare initial state in Eq. (2.2.1), are employed to generate the
different sets.

In Fig. 3.1, we show the energy levels of the 12C nucleus for the ten sets calculated in the
procedure explained in Chap. 2. The energy levels are shown for Jπ = 0+, 1+, 2+, 3+, 4+,
5+, 6+, 1−, 2−, 3−, 4−, and 5−.

Let us examine the calculated energy levels of Jπ = 0+ [Fig. 3.1 (a)]. The lowest level
is located around -95 MeV. The difference of energies among the ten sets is smaller than 1
MeV. The second excited state appears again around -86 MeV. The difference among the ten
sets is again around 1 MeV. The third excited state appears around -81 MeV. We may state
that the energies of these three lowest states are calculated reliably, since the variation is
rather small. However, energies of the fourth excited state do not show a good convergence.
For example, the energy levels of the second set give the energy around -79 MeV, close to the
third state. However, the energy in the seventh set is substantially high, approximately -76
MeV. We thus conclude that we can obtain reliable excitation energies and wave functions
for the lowest three levels for Jπ = 0+.

The energy levels of Jπ = 2+ in Fig. 3.1(c) indicate that the energies of the lowest four
states are reliable with a small variation. For Jπ = 3+ and 4+ states [Figs. 3.1(d) and 3.1(e)],
the lowest two states may be reliable. For Jπ = 5+ and 6+ states [Figs. 3.1(f) and 3.1(g)],
the lowest state may be reliable. However, the calculated energies of Jπ = 1+ states show
strong variation among the ten sets even for the lowest state, 3.1(b). This may be due to the
fact that the Jπ components of the wave function disappear in early stages of the imaginary-
time iterations, since components of high-lying levels quickly decay by the imaginary-time
propagation. For the negative-parity levels, only the lowest level for each Jπ may be reliable.
The energies of second lowest levels show a large variation among the ten sets for Jπ = 1−,
2−, 3−, 4−, and 5− [Figs. 3.1(h)-3.1(l)].

For physical quantities such as energies, transition strengths, and radii, we calculate
statistical averages and standard deviations among the ten sets. The average energy for the
nth level of the Jπ state is defined by

E
Jπ
n =

1

Ns

Ns∑
i=1

EJπn,i , (3.2.1)

where i specifies a set among the ten sets, Ns = 10. The average excitation energies are

calculated as E
Jπ
n −E

Jπ
0 , which will be shown in Figs. 3.2 and 3.3. We also calculate standard

deviation of the energies which will be shown by the error bars in the figure. The standard
deviation is defined by

σJπn =

√√√√ 1

Ns

Ns∑
i=1

(
EJπn,i − E

Jπ
n

)2
. (3.2.2)

The average values and the standard deviations for the transition strength and radii are
evaluated in the same way.
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Figure 3.2: Excitation energies of positive-parity for 12C are shown. The energies are obtained
by averaging over ten configurations. The standard deviations of the energies are also shown
by error bars. We also show the results of AMD [13], GCM [37], RGM [38], and NCSM [39].
Experimental data are taken from Refs. [40–46]. See the text for details.

3.3 Energy levels

We show calculated excitation spectra of positive- and negative-parities in Figs. 3.2 and 3.3,
respectively. In the figures, averaged energies over ten sets are shown with error bars as
the standard deviation. Our calculated results are compared with measurements and other
theories, AMD, GCM, RGM, and NCSM.

In the Skyrme HF calculation, the binding energy of 12C is 90.6 MeV, in reasonable
agreement with the measured value, 92.2 MeV. In our configuration-mixing calculation, the
correlation energy is 4.7 ± 0.2 MeV. The ground-state energy including the correlation is
95.3± 0.2 MeV, slightly lower than the measured value.

Calculated excitation energies of 0+1 , 2+1 , and 4+1 , which are known as ground rotational
band, are in good agreement with measurements. For the reproduction of the ground-state
band, the configuration-mixing is essential since the ground-state solution in the HF calcu-
lation is spherical for 12C with the Skyrme SLy4 interaction. The excitation energy of 2+1
state is well reproduced by the present calculation, AMD, and NCSM. However, microscopic
α-cluster models (GCM and RGM) provide too low excitation energies. The former models
(present, AMD, and NCSM) take into account the spin-orbit interaction, while it is not in-
cluded in the latter models (GCM and RGM) in which existence of the three α-clusters is
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Figure 3.3: Excitation energies of negative-parity for 12C are shown. The same explanation
as that in Fig. 3.2 applies to others.

assumed. This indicates that a proper inclusion of the spin-orbit interaction is important for
a good description of the ground rotational band.

The 0+2 state, which is known as the Hoyle state, has been attracting much attention
recently since it has been shown that this state can be understood as the Bose condensed
state of three α-particles [33]. Our calculation gives a reasonable description of this state,
though the excitation energy is slightly overestimated by about 1 MeV. Although recent ab-
initio approaches have been successful for the ground-state band, a satisfactory description
for the 0+2 state adequately. Recently, attempts of ab-initio description of for this state have
been undertaken by several groups.

Recently, a new 2+ state has been found experimentally at about 10 MeV excitation
energy [41–44]. This state was interrupted as the excited state built on the 0+2 state. In
[43, 44], a possible splitting of the 2+ states was suggested. In our calculation, these two
state, 2+2 and 2+3 , appear just above the 0+2 state. However, as we will discuss in Sec. 3.4,
these two states 2+2 and 2+3 in our calculation seem not to correspond to a rotational excited
state of the Hoyle state.

In Fig. 3.2, three states, 0+3 , 2+4 , and 4+2 , follow a rotational energy sequence. The
calculated ration of [E(4+) − E(2+)]/[E(2+) − E(0+)] is 3.22, close to the rotational limit
of 3.33. Small standard deviations of the energies of these states indicate the reliability of
the calculation. As will be discussed in Sec. 3.4, these states are connected by strong B(E2)
transition. In Sec. 3.7, we will show that this band corresponds to a three α-linear-chain
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Figure 3.4: Energy levels of positive-parity for 12C employing different parameter sets of
Skyrme force, SLy4, SkM* and SIII. The number in parentheses is the correlation energy
in the ground state, EHF − Egs, in unit of MeV. In the calculation, the same set of SDs is
employed.

state.

For the negative-parity states, we have obtained solid results only for the lowest energy
state for each Jπ (Sec. 3.2). Our calculation reproduces the measurements by 2-3 MeV.

Finally we mention how the calculated energy levels depend on interactions. In Figs. 3.4
and 3.5 we show the excitation energies of positive- and negative-parity states with different
sets of the Skyrme interaction, SLy4, SkM∗, and SGII. The same set of SDs is employed in
all calculations. The correlation energies in the ground states are shown as well inside the
parentheses. The comparison shows that basic features of the spectra do not depend much
on the choice of the Skyrme parameters. We conclude that the excitation energies are not
sensitive to choice of interaction for almost all the states below 15 MeV.

3.4 Transition strength

CalculatedB(E2), B(E3), andM(E0) values, the average values and the standard deviations,
are shown in Table 3.1. In our calculated values, we do not employ any effective charges. The
B(E2) transition strength between 2+1 and 0+1 states is well reproduced by our calculation.
It is consistent with results of other theories. The standard deviation is small, about 3%
indicating that our calculated value is well converged.

The B(E2) transition between 0+2 and 2+1 is calculated as 13.6 ± 1.2e2fm4, which is in
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Figure 3.5: Energy levels of negative-parity for 12C employing different parameter sets of
Skyrme force, SLy4, SkM* and SIII. In the calculation, the same set of SDs is employed.

excellent agreement with the measured value, 13±2e2fm4, while the rate is strikingly different
from the measured value by other theories. In Ref. [13], it is argued that this transition
strength is sensitive to the α-breaking effect. A good representation of this transition strength
by our calculation indicates that our calculation reasonably takes account of the α-cluster
components in the states.

As mentioned in Sec. 3.3, there appear two 2+ states, 2+2 and 2+3 , above the 0+2 state in
our calculation. These states might correspond to the 2+ state at approximately 10 MeV
which was discovered recently [41–44]. It was suggested to be a candidate of a rotationally
excited state built on the 0+2 state. In the present calculation, however, the B(E2) transition
strength between 2+2 and 0+2 is small as seen in Table 3.1. The rate between 0+2 and 2+2
states is also small. The B(E2) rate from the 0+2 state is the largest for the 2+4 state, which
is regarded as a rotationally excited state built on the 0+3 sate, as will be mentioned in the
following paragraph. These observations suggest that the 2+3 and 2+4 states in the present
calculation do not correspond to a rotationally excited state on the 0+2 state.

As we discussed in Sec. 3.3, the states of 0+3 , 2+4 , and 4+2 follow the rotational energy
sequence. The calculated transition strengths of B(E2; 2+4 → 0+3 ) and B(E2; 4+2 → 2+4 )
are very large. The calculated ratio of B(E2; 4+1 → 2+)/B(E2; 2+1 → 0+) is 1.44 ± 0.38,
close to the rotational limit of 1.43. These results strongly support that these states indeed
constitute a rotational band. In Sec. 3.7, we will show that this band is dominated by the
three α-linear-chain structure. In the AMD calculation [13], strong B(E2) values are reported
in the transition among 0+3 , 2+2 , and 4+2 states. Since the states corresponding to 2+2 and 2+3
in our calculation seem not to be present in the AMD calculation, we put these B(E2) values
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Transitions Expt. Calc. AMD GCM RGM NCSM THSR

B(E2; 2+1 → 0+1 ) 7.6±0.4 8.6 ±0.2 8.5 8.0 9.3 4.146　 9.06
B(E2; 4+1 → 2+1 ) 13.4±0.5 16 10.73
B(E2; 0+2 → 2+1 ) 13±2 13.6±1.2 25.5 3.5 5.5 4.71
B(E2; 2+2 → 0+2 ) 0.17±0.23
B(E2; 2+3 → 0+2 ) 5.9±0.7
B(E2; 2+4 → 0+2 ) 10±1 100∗ 391
B(E2; 2+4 → 0+3 ) 91±13 310∗

B(E2; 4+2 → 2+4 ) 131±22 600∗

B(E3; 3−1 → 0+1 ) 107±14 77±4 99 124
M(E0; 0+1 → 0+2 ) 5.4±0.2 4.5±0.2 6.7 6.6 6.7 6.50

Table 3.1: B(E2), B(E3) and M(E0) values of 12C in units of e2fm4, e2fm6 and efm2

respectively. Experimental and calculated values are shown in the first and second column,
respectively. For comparison, results of the AMD[13], GCM[37], RGM [38], NCSM [39], and
THSR are shown. Values in THSR are calculated with the same model as Ref. [33]. The
values indicated by * correspond to B(E2; 2+2 → 0+2 ), B(E2; 2+2 → 0+3 ) and B(E2; 4+2 → 2+2 )
in Ref. [13]. See text for details. Experimental data are taken from Refs. [40].

by AMD at the places of B(E2; 2+4 → 0+3 ) and B(E2; 4+2 → 2+4 ) in Table 3.1. In the Ref. [13],
these states are considered as the three α-linear-chain states. The large B(E2) values are
qualitatively consistent of the transition strengths are much smaller in the present calculation.

For negative-parity states, experimental data for B(E3; 3−1 → 0+1 ) are available. The
present calculation gives 77 ± 4e2fm6, which is slightly smaller than the measured value,
107± 14e2fm6.

Finally, we discuss the M(E0) transition strength between 0+2 and 0+1 states. In the
studies by cluster models, it has been argued that the magnitude of this transition strength
reflects the spatial extension of the 0+2 state [47]. Our calculated value, 4.5 ± 0.2efm2, is
slightly smaller than the measured value, 5.4 ± 0.2efm2. In contrast, microscopic cluster
models and AMD have reported an opposite feature, slightly larger values, 6.6 − 6.7efm2,
than measurements [13, 37, 38]. The THSR model also predicts a similar value, 6.5efm2.
The measured value, 5.4± 0.2efm2 [40], is located between our result and those of the other
calculations.

3.5 Radii

We next examine root-mean-square (rms) radii of the ground and excited states. Since our
wave function does not allow an exact separation of the center-of-mass motion from the
internal one, we estimate an approximate correction for the radius due to the center-of-mass
motion, and subtract it from the calculated values. We assume a harmonic oscillator motion
for the center-of-mass (see Appendix. B.2). The value of the correction in this model is
estimated to be 0.07 fm in the harmonic oscillator shell model. The calculated radii after the
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Jπ Expt. Calc. AMD FMD GCM RGM THSR

0+1 2.31(2) 2.52±0.01 2.53 2.39 2.40 2.40 2.39
0+2 2.73±0.02 3.27 3.38 3.40 3.47 3.80
0+3 3.20±0.05 3.98 4.62 3.52
2+1 2.60±0.01 2.66 2.50 2.36 2.38 2.36
2+2 2.55±0.01
2+3 2.64±0.01
2+4 3.21±0.05 3.99* 4.43* 3.52* 4.0* 5.4*

Table 3.2: Mass rms radii of the ground and excited states of 12C. The experimental data is
taken from Ref. [48]. For comparison, we show the results of AMD [13], FMD [49], GCM
[37] , RGM [38], and THSR. The values indicated by * are radii reported for the Jπ = 2+2 in
the references. See text for details.

correction are shown in Table 3.2.

Our calculated value in the ground state is 2.52± 0.01 fm. This value is somewhat larger
than the measured value, 2.31 ± 0.02 fm. In the HF calculation, the radius is given by 2.24
fm. Our configuration-mixing calculation, therefore, slightly increases the radius. Comparing
with other theories, our value is larger than those of GCM and FMD, and is comparable to
the value of AMD.

For the 0+2 state, we find a significant different between the radius of the present calcula-
tion and the others. Our calculated radius is 2.73± 0.02 fm, which is larger than the radius
in the ground state. However, this is much smaller than the other calculations which give
more than 3 fm [13, 33, 37, 38, 49]. In the recent AMD+GCM calculation [50], a radius
of 2.9 fm was reported, similar to ours. It has been found that the interaction used in the
AMD calculation [51]. The radius of the 0+2 state decreases as the strength of the spin-orbit
interaction increases. This dependence is understood as follows [51]. If the strength of the
spin-orbit interaction is weak, the ground-state wave function contains a substantial amount
of the three α-cluster component. Then, 0+2 wave function, which is dominated by dilute
three α components, spatially expands to ensure the orthogonalization to the ground state.
As the spin-orbit interaction increases, the three α component decreases in the ground state,
which allows the 0+2 wave function to include a more compact three α structure. This results
in decrease of the radius in 0+2 state, which may explain the discrepancy in the 0+2 radius be-
tween our calculation and other theories. It should be noted again that our calculated value
for the M(E0) transition strength is smaller than those predicted by other theories. We
also note that an indirect measurement of radius for the 0+2 state using diffraction inelastic
scattering [52] was reported, giving 2.89± 0.04 fm.

For the 0+3 state, our calculated radius is 3.20 ± 0.05 fm, which is much larger than the
radii of 0+1 and 0+2 states. This is again smaller than those by other theories listed in Table 3.2,
while it is similar to the value (3.26 fm) in Ref. [50].

For the 2+1 state, our calculated radius is slightly larger than that of the ground state.
Other theories report almost the same or a slightly larger radius for this state.
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Figure 3.6: Squared elastic form factors for the ground state (left) and 0+1 → 0+2 inelastic
form factor (right) are shown. Our calculated results are compared with the HF calculation
with a single SD, measurements [53–56], and the AMD calculation [57]. Here, the results
using the first set of SDs in Fig. 3.1 are used.

For the 2+2 and 2+3 states, our calculated radii are slightly larger than that of the ground
state, and are slightly smaller than that of the 0+2 state. The radius of the 2+4 state is large
and almost the same that of 0+3 . This is consistent with a picture that they belong to the
same rotational band as discussed in Sec. 3.4. As we mentioned in Sec. 3.4, there is no level
corresponding to our 2+2 and 2+3 states in the AMD calculation. Therefore we put the radius
of 2+2 state in Table 3.1. We also put those in other cluster model calculations at the place
of the 2+4 state.

3.6 Charge form factors

A charge form factor from the initial state |Ji,Mi⟩ to the final state |Jf ,Mf ⟩ is defined as
follows:

∣∣FJi→Jf (q2)
∣∣2 =

1

Z

1

2Ji + 1

∑
Mi,Mf

∣∣∣∣∣
⟨
JfMf

∣∣∣∣∣∑
k

1 + τz(k)

2
eiq⃗·r⃗k

∣∣∣∣∣ JiMi

⟩∣∣∣∣∣
2

F 2
p (q2)F 2

cm(q2)

(3.6.1)
where Z is the proton number and q⃗ is the transferred moment. Fp(q

2) is a correction factor for
the proton size for which we employ Fp(q

2) = exp[−a2pq2/6] with ap = 0.813 fm. To correct
the center-of-mass motion, we simply assume that the center-of-mass motion is separated
and described by the harmonic oscillator wave function of the same oscillator constant,h̄ω =
41A−1/3 MeV, for both initial and final states. Thus, this lead to Fcm(q2) = exp[q2b2/2A]
with b = 1.66 fm.

32



3.7. ANALYSIS OF WAVE FUNCTIONS

In Fig. 3.6, we show charge form factors for the elastic (a) and inelastic 0+1 → 0+2 (b)
processes. Red solid curves show our results, blue dashed curves show the results of AMD
calculation [58], and crosses with error bars show experimental date [53–56]. For the elastic
form factor we also show that of Skyrme HF solution in the ground state.

In the small momentum transfer region q2 < 2fm−2, the elastic form factor is well repro-
duced by the calculation. For q2 > 2fm−2, our calculation underestimates the form factor,
though the position of the dip at around 3fm−2 is reproduced well. The inelastic form factor
for the 0+1 → 0+2 transition is underestimated for a whole momentum transfer region. The
position of the dip at around 4fm−2 is reproduced well.

We show results by the AMD calculation in Fig. 3.6. They are in good agreement with
measured values, although the dip position in elastic form factor is located at a somewhat
smaller q2 value. Microscopic cluster calculations also reproduce the form factors well [37, 38].

The underestimation of the elastic form factor at large q2 value indicates that the density
in our calculation lacks a high-momentum component. Since the HF solution gives a better
description for the form factor at high momentum, the superposition of a number of SDs
turns out to increase the diffuseness in the nuclear surface, making the density distribution
function ρ(r⃗) smoother. As for the underestimation in the inelastic form factor of the 0+1 → 0+2
transition, a possible reason is the difference in the character of the wave function between
the 0+1 and 0+2 states. As we discussed with the radii, a rather small radius of 0+2 state in
our calculation may indicate a small fraction of three α component in the ground state. The
inelastic form factor may be reduced if the correlation structures are different between two
states. It has been argued that the magnitude of this form factor at small q2 is quite sensitive
to the radius of the 0+2 state [59]: the magnitude of the form factor at small q2 reduces as the
radius of the 0+2 state increases. Our result here is opposite, however. The radius of 0+2 state
in our calculation is smaller than those by cluster models, and the magnitude of the inelastic
form factor is also small. The reasons for these discrepancies are apparently not well settled.
This certainly requires further investigation.

3.7 Analysis of wave functions

In order to clarify what kind of correlations are included in the wave function after configuration-
mixing, ΨJπ

n , we calculate the overlap between the energy eigenstate and the projected single
SD state,

P Jπ,iKn =

∣∣∣∣∣∣∣∣
⟨

Φi

∣∣∣P̂ J†MK P̂
π
∣∣∣ΨJπ

n

⟩
√⟨

Φi

∣∣∣P̂ J†KK P̂ π∣∣∣Φi

⟩
∣∣∣∣∣∣∣∣
2

(3.7.1)

and find the SDs which have large overlap values with ΨJπ
n . We show density distributions

of the SDs visualize the correlations included.

In the following, we use the sequential number of the SDs which we assigned in Sec. 2.2,
using the result of the first set of SDs in Fig. 3.1. We also show the K quantum number of
the SD and the value of the overlap, P Jπ,iKn , in Eq. (3.7.1).
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0+1 2+1 4+1

SD K P SD K P SD K P

15 0 0.90 4 0 89.36 4 0 0.89
7 0 0.87 15 0 88.51 15 0 0.81
8 0 0.85 29 0 82.44 29 0 0.77
31 0 0.85 2 0 76.47 7 0 0.77
2 0 0.82 7 0 75.21 29 1 0.73
42 0 0.80 48 0 72.63 15 1 0.71
24 0 0.80 47 0 65.76 3 0 0.70
4 0 0.79 8 0 64.22 47 0 0.70
16 0 0.79 10 1 63.85 48 0 0.70
35 0 0.77 44 1 63.63 2 0 0.70

Table 3.3: The sequential number, the K-value, and the squared overlap value are shown for
the SDs which dominate in the wave function of the ground rotational band.

3.7.1 The ground rotational band

In Table 3.3, we show the sequential number of the SDs which have large overlap values with
the wave function of the ground rotational band, 0+1 , 2+1 , and 4+1 . The overlap values P Jπ,iKn

defined by Eq, (3.7.1) and K values are shown as well. Since the SDs are nonorthogonal, the
sum of the overlap values is not equal but much larger than unity.

In the ground state 0+1 , the 15th SD has the largest overlap, showing 0.90 for the overlap
value. In 2+1 and 4+1 states, the 4th SD is the largest component and the 15th SD is the
second largest. To illustrate the nuclear distributions of the SDs in the yz, zx, and xy planes
in Fig. 3.7. As seen from the figure, they both show oblate deformed shapes.

The self-consistent HF solution is assigned to the first SD (number 1). We should note
that it does not appear in the top ten components of the ground state. Its overlap value
with 0+1 is about 0.7. For 12C, the self-consistent HF solution with the SLy4 interaction
is spherical with p3/2 closed shell configuration. The spherical solution cannot describe the
rotational band observed in the measurement. As shown in Fig. 3.2 and Table 3.1, our
calculation accurately reproduces the energy levels and the B(E2) transitions among the
states of the ground rotational band. This good reproduction is achieved by a superposition
of SDs of deformed shapes.

3.7.2 Negative-parity states

In Table 3.4, we show sequential numbers of the SDs which have large overlap values with
the wave function of the negative-parity states 3−1 , 1−1 , and 2−1 . We find the 4th SD, which
appears in the ground rotational band, also dominates in the negative-parity states. Other
SDs which dominate in the negative-parity states are 21, 29, and 47th.

We show the density distributions of these three SDs in Fig. 3.8. All of these SDs have
similar oblate shapes with three-α-like structure. A close look at the densities reveals that

34



3.7. ANALYSIS OF WAVE FUNCTIONS

-8 -4  0  4  8
y

-8
-4
 0
 4
 8

z

-8 -4  0  4  8
y

-8
-4
 0
 4
 8

z

-8 -4  0  4  8
y

-8
-4
 0
 4
 8

z
(a) 15th

-8 -4  0  4  8
z

-8
-4
 0
 4
 8

x
(b) 4th

-8 -4  0  4  8
z

-8
-4
 0
 4
 8

x

(c) 7th

-8 -4  0  4  8
z

-8
-4
 0
 4
 8

x

-8 -4  0  4  8
x

-8
-4
 0
 4
 8

y
-8 -4  0  4  8

x

-8
-4
 0
 4
 8

y

-8 -4  0  4  8
x

-8
-4
 0
 4
 8

y

Figure 3.7: Contour plots of the density distributions of the 15th, 4th, and 7th SDs, which
are the major components of the ground state rotational band.

the 4th and the 29th SDs have a compact configuration, while the 21th and the 47th SDs
show spatially more extended three-α configuration forming an obtuse-angled triangle.

3.7.3 0+2 , 2
+
2 , and 2+3 states

In Table. 3.5, we show sequential numbers of the SDs which have large overlap values with
the wave function of the state 0+2 , 2+2 , and 2+3 .

We first examine the Hoyle state, 0+2 . Compared with the cases of the ground rotational
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1−1 2−1 3−1 4−1

SD K P SD K P SD K P SD K P

4 1 0.77 21 1 0.77 29 3 0.81 29 3 0.79
47 1 0.76 4 1 0.75 4 3 0.81 47 3 0.77
18 1 0.75 47 1 0.72 47 3 0.76 4 3 0.76
21 1 0.75 22 1 0.70 15 3 0.67 25 2 0.66
22 1 0.74 18 1 0.70 21 3 0.64 41 3 0.64
29 1 0.68 29 1 0.70 3 1 0.64 3 3 0.61
11 1 0.67 11 1 0.62 48 3 0.62 5 2 0.60
25 1 0.60 48 1 0.55 9 3 0.61 9 3 0.59
46 1 0.58 46 1 0.54 41 1 0.56 48 3 0.57
33 1 0.57 33 1 0.54 33 3 0.55 21 1 0.55

Table 3.4: The sequential number, the K-value, and the squared overlap value P are shown
for the SDs which dominate in the wave function of the negative-parity states 1−1 , 2−1 , 3−1 and
4−1 .

band and the negative-parity states, the maximum value of the overlap is rather small, less
than 0.5. This indicates that the superposition of a large number of SDs is essential to
describe the 0+2 state. This is consistent with the cluster-model calculations [37, 38] and the
picture of the α-condensed state for the 0+2 [33].

We show in Fig. 3.9 the density distributions of the SDs which have the largest and second
largest overlaps with the 0+2 state, namely, the 9th and the 28th SDs. These SDs have well
developed cluster structures of three-α-particles.

Regarding the 2+2 and the 2+3 states, we find that a number of configurations contribute
to these states, as in the case of 0+2 state. These SDs in 2+2 and 2+3 states are more or less
similar. However, they are very different from those in the 0+2 state. This is consistent with
our observation that the B(E2) transition strengths between 0+2 and 2+2 states and between
0+2 and 2+3 states are rather small (see Sec. 3.4).

3.7.4 Linear-chain states

As seen in Sec. 3.4, 0+3 , 2+4 , and 4+2 states are connected by the intense B(E2) values. In
Table 3.6, the sequential numbers of the SD which have large overlap values with the wave
function of these states are shown. The 30th, the 40th and the 19th SDs are commonly
included in the three states. We show in Fig. 3.10 the density distributions of the 30th and
the 40th SDs. They clearly show a bent linear-chain structure of three-α-parities.

3.8 Mixing of three-alpha configurations

Some of the present results in Sec.3.3, 3.4, and 3.5 are found to be qualitatively different from
those of AMD and microscopic cluster models. For example, the radius of the 0+2 state is much
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Figure 3.8: Contour plots of the density distributions of the 21th, 29th, and 47th SDs, which
are the major components of the negative-parity states 11−, 2−1 , 3−1 , and 4−1 .

smaller in our calculation. The charge form factor at large momentum transfer is described
much better by other theories than ours. These facts may indicate that the imaginary-time
propagation may not sufficiently produce a certain class of α-cluster wave functions.

In order to check whether explicit inclusion of α-cluster configurations brings big changes
in the current results, we perform configuration-mixing calculations including the wave func-
tions similar to those employed in the microscopic-cluster-model of Ref. [37].
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0+2 2+2 2+3

SD K P SD K P SD K P

9 0 0.46 16 2 0.74 15 2 0.50
28 0 0.45 35 0 0.58 7 2 0.41
3 0 0.41 43 0 0.56 8 2 0.40
5 0 0.39 42 0 0.56 31 0 0.39
33 0 0.39 31 2 0.56 16 0 0.31
11 0 0.36 7 1 0.54 32 0 0.23
47 0 0.35 32 2 0.52 43 2 0.22
26 0 0.34 49 0 0.41 10 2 0.20
45 0 0.33 36 2 0.41 35 2 0.19
41 0 0.32 43 1 0.36 4 2 0.19

Table 3.5: The sequential number, the K-value, and the squared overlap value are shown for
the SDs which dominate in the wave function of the 0+2 , 2+2 and 2+3 .

The 31 SDs of the α-cluster wave functions are used in the GCM calculation in Ref. [37].
We place the α-particle wave functions at the same positions as those of Ref. [37]. In Ref. [37],
the single-particle wave functions of the SDs are Gaussian wave packets. Instead of the
Gaussian wave packets, we employ the HF orbitals of the α-particles. In Fig. 3.11, we show
density distributions of selected SDs among those 31 SDs.

In Fig. 3.13, we show excitation spectra from configuration mixing calculations using the
31 SDs. The left panel shows our calculation using the SLy4 interaction [Fig. 3.13(a)]. The
middle panel shows the GCM calculation using Volkov No.I force [37] [Fig. 3.13(b)]. The
results for the ground rotational bands are similar to each other. In fact, in both calculations,
the moment of inertia is too large. The 0+2 state appears at around 7 MeV in our calculation,
slightly lower than that of Ref. [37].

In the parentheses in Fig. 3.13, we show the calculated binding energies in the ground
state. The absolute values of the binding energies are very different between the result of
our calculation and that of Ref. [37]. In our calculation using SLy4 interaction, the binding
energy is 75.1 MeV and is much smaller than the value shown in Fig. 3.1. A major part of
the difference comes from the spin-orbit interaction which makes a small contribution in the
calculation using the α-cluster wave function only.

We next perform a configuration mixing calculation employing both the 50 SDs prepared
by the imaginary-time method and the 31 SDs of three-α configuration. In Fig. 3.13, we
compare the three calculations: the configuration mixing calculation using 50 SDs prepared
by the imaginary time method (IT), the configuration-mixing calculation using 31 SDs three-
α configuration (3α), and the configuration-mixing calculation using both (IT+3α). The
calculation labelled by three-α is the same as that shown in the left part of Fig. 3.13, except
that the total energies are plotted here.

After mixing, both configurations of the imaginary-time and the three-α, we find the
results are very close to the calculation using the imaginary-time configurations only. Namely,
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Figure 3.9: Contour plots of the density distributions of the 9th, 28th, and 3rd SDs, which
are major components in the 0+2 state.

31 SDs of the three-α wave functions do not mix with those prepared by the imaginary-time
method. This is due to the large energy difference between those two sets of configurations.

In the calculation using configurations generated by the imaginary-time method, the
contribution of the spin-orbit interaction to the binding energy is as large as 17 MeV with
SLy4. This large energy gain is missing in the pure three-α configurations.

In Table 3.7, we show the calculated radii and M(E0) transition strengths. Using the 31
SDs of three-α wave functions, our calculation gives large values for both the 0+1 and 0+2 states.
The radius of the 0+2 state is 3.31 fm, close to the value by the GCM calculation, 3.4 fm.
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0+3 2+4 4+2
SD K P SD K P SD K P

30 0 0.70 40 0 0.78 40 0 0.75
40 0 0.67 30 0 0.72 30 0 0.75
19 0 0.65 19 0 0.71 18 0 0.66
20 0 0.42 18 0 0.68 19 0 0.62
23 0 0.38 11 0 0.59 34 0 0.43
18 0 0.38 23 0 0.58 20 0 0.43
14 0 0.38 12 0 0.48 11 1 0.42
12 0 0.37 34 0 0.47 23 0 0.41
11 0 0.25 22 0 0.39 14 0 0.40
22 0 0.17 20 0 0.39 11 0 0.39

Table 3.6: The sequential number, the K-value, and the squared overlap value P are shown
for the SDs which dominate in the wave function of the 0+3 , 2+4 and 4+2 .

Expt. IT IT + 3α 3α 3α(Uegaki)

radius(0+1 ) 2.31±0.02 2.53 2.54 2.80 2.40
radius(0+2 ) 2.76 2.73 3.31 3.40

M(E0; 0+2 → 0+1 ) 5.4± 0.2 4.57 4.13 8.72 6.6

Table 3.7: Radii (fm) and M(E0) (efm2) calculated in various model spaces. Results of GCM
calculation [37] is also shown. See text for details.

The M(E0) value is also large, 8.72 efm2, even larger than the three-α GCM calculation [37].
However, in the configuration-mixing calculation using both configurations, our calculated
values are very close to the calculation using the 50 SDs prepared by the imaginary-time
method. This result is consistent with the fact that the energy spectra is very little affected
by adding the three-α wave functions.
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Figure 3.10: Contour plots of the density distributions of the 30th, 40th, and 19th SDs,
which are the major components of the 0+3 , 2+4 , and 4+2 states.
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Figure 3.11: Density distributions of some SDs out of 31 SDs which are used in Ref. [37].
Units of vertical and horizontal axes are fm.
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Figure 3.12: Energy levels of 12C employing 3α SDs with Skyrme SLy4 interaction (a), the
results of GCM calculation of Ref. [37] (b), and experiments (c).
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Figure 3.13: Energy levels of 12C in the configuration mixing calculation with the SDs
constructed by the imaginary-time evolution (IT), and 3α, and all of these configurations
(IT+3α). See text for details.
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Chapter 4

Results: 16O

4.1 Structure of 16O

The 16O nucleus is a double magic nucleus and the ground state has a double-closed shell
structure. Because of the double-closed shell structure, it is expected that shell model (SM)
is appropriate to describe 16O. However, though the lowest excited state is the 0+2 state in
measurements, SM expects that the lowest excited state is a 1p-1h negative-parity state.
Since the excitation energy of the first positive-parity in SM should be at around 2h̄ω ≈ 30
MeV if mean-field does not change drastically, 0+2 state cannot be understood by the mean-
field picture. Because of this reason, the 0+2 state has been called ‘the mysterious 0+ state’. In
the weak coupling model which assumes that holes and four particles interact weakly, it was
argued that the α-particle correlation is important to describe the 0+2 state [60]. The model
space of SM had been expanded in advanced studies of 16O and (0 + 2 + 4)h̄ω shell model
calculation using all p−sd orbitals was performed [61]. This shell model well reproduced many
excited states in 16O. However the gap between 0p3/2 and 0p1/2 was adjusted to reproduce the
energy spectrum of 16O. In recent year, the shell model calculation for 16O in the full p− sd
model space was performed [62]. They argue that shell gap become small due to correlation
energy.

Cluster models has been extensively applied to 16O. The OCM has been successful in
describing the ground and excited state of 16O [63–65]. However, OCM is not completely
microscopic but includes empirical parameters. The RGM and GCM calculations have been
achieved as well, though failed to reproduce excitation energy of 0+2 state; They estimate the
excitation energy about two times higher than the experimental value [66, 67]. Although the
OCM, RGM, and GCM assume existence of clusters in advance, the AMD calculation does
not assume any clusters [68]. The AMD well reproduces the excitation energies of negative-
parity states. However, AMD calculation fails to reproduce the excitation energy of 0+2 state
at correct position; The calculated excitation energy is about 13 MeV, which is larger than
the measured value, 6.05 MeV. In recent years, Funaki and others [69–71] performed the 4-α
OCM calculation. They show that 0+6 is 4-α particle condensed state which are up to around
the four α-cluster threshold at 14.4 MeV.

In the last ten years, the ab-initio calculation was performed for 16O. There are NCSM,

45



CHAPTER 4. RESULTS: 16O

NCFC, and Coupled-Cluster (CC) calculations [18, 19, 72–79]. However, the most calcula-
tions are only applied to the ground state of 16O; only a few model calculations are performed
for the excited states of 16O. These calculations cannot reproduce the excitation energy of
0+2 state. In the NCFC calculation [19] with JISP-16, the excitation energy of 0+2 is about 13
MeV, which is two times larger than the measured value, 6.05 MeV. In the CC calculation
[75], the excitation energy of 0+2 is also two times larger than the measured value.

4.2 Convergence of results: Statistical treatment
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Figure 4.1: Energy levels of the 16O nucleus for Jπ = 0+, 1+, 2+, 3+, 4+, 5+, 6+, 1−, 2−,
3−, 4− and 5−. Calculations employing ten different sets of SDs are shown. See the text for
details.
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In this section, we examine the convergence of the energy levels for 16O in the same
method as Sec. 3.2. We prepare ten sets of the SDs and calculate energy levels for each set.
If the calculated energy levels are close to each other among the ten different sets of SDs,
one may conclude that the calculated energy levels are reliable. These ten sets of SDs are
composed of 50 SDs, which are prepared in the procedure explained in Sec. 2.2. Different
seeds for the random numbers, which are used to prepare initial states in Eq. (2.2.1), are
employed to generate the different sets.

In Fig. 4.1, we show the energy levels of the 16O nucleus for the ten sets calculated in the
procedure explained in Sec. 2.2. The energy levels are shown for Jπ = 0+, 1+, 2+, 3+, 4+,
5+, 6+, 1−, 2−, 3−, 4−, and 5−.

First, we examine the calculated energy levels of Jπ = 0+ in Fig. 4.1(a). The lowest
energy level is located around -132 MeV. The variation of energy levels among ten sets is
less than 0.5 MeV. The second excited state appears around -123 MeV. The difference of
energies among ten sets is again less than 0.5 MeV. Since the variation is rather small, we
may state that the energies of these two lowest states are calculated reliably. However, the
energies of third excited state do not show a good converge. The third excited state of the
third set appears around -117 MeV, although the energy levels of the others sets give the
energy at -119 MeV. We thus conclude that we can obtain reliable excitation energies and
wave functions for the lowest two levels for Jπ = 0+ and the third level might be located
around -119 MeV.

The energy levels of Jπ = 2+ and 4+ in Figs. 4.1(c) and 4.1(e) indicate that the energies
of the lowest two states are reliable with a small deviation. The third energy level of Jπ = 2+

and 4+ of the third set is located above that of the other sets. This situation is same as
the Jπ = 0+ case. For Jπ = 3+, 5+, and 6+ states [Figs. 4.1(d), 4.1(f), and 4.1(g)], the
lowest state may be reliable. However, the calculated energies of Jπ = 1+ states show strong
variation among the ten sets even for the lowest states [Fig. 4.1(b)]. The same circumstance
can be seen the energy levels of 12C in Fig. 3.1.

For Jπ = 1−, 2−, and 3− states, the lowest two states are small variation among ten sets
[Figs. 4.1(h)-(j)]. For the Jπ = 4− and 5− states, only the lowest state is small variation
[Figs. 4.1 (k) and (l)]. We then conclude that, for the negative-parity levels, the lowest two
states may be reliable for Jπ = 1−, 2−, and 3− states [Figs. 4.1(h) and 4.1(i)], and only the
lowest state is reliable for Jπ = 4− and 5− states [Figs. 4.1(k) and 4.1(l)]. As in the results for
12C, we calculate statistical averages and standard deviations among the ten sets for physical
quantities for 16O.

4.3 Energy levels

We show calculated excitation spectra of positive- and negative-parities in Figs. 4.2 and 4.3,
respectively. In the figures, average value of energies over ten sets are shown with error bars
as the standard deviation. The error bars only show the lowest four states to make it easier
to look. Our calculated results are compare with measurement [80] and other theories, AMD
[68], OCM [63], and SM [61]. The basis of AMD calculation is generated by energy variation
constrained to matter quadrupole deformation parameter β. The OCM is α+12C cluster
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Figure 4.2: Excitation energies of positive-parity for 16O are shown. The energies are obtained
by averaging over ten configurations. The standard deviations of the energies are also shown
by error bars. The error bars only show the lowest four states. We also show the results of
AMD [68], α+12C OCM [63], and SM [61] from left to right. Experimental data are taken
from Refs. [80]. See the text for details.

coupling model, in which 0+, 2+, and 4+ states of 12C are coupled with the relative motion
between α and 12C. The SM is full non-spurious (0 + 2 + 4)h̄ω shell model.

In the Skyrme-HF calculation, the binding energy of 16O is 128.49 MeV, which is good
agreement with the measured value, 131.86±0.20 MeV. In our configuration mixing calcula-
tion, the correlation energy is 4.7±0.2 MeV. The ground-state energy including the correlation
is 131.86±0.20 MeV. The difference between the ground-state energy after configuration-
mixing and that of measured value may be improved by readjustment of the Skyrme param-
eter set.

In Fig. 4.2, four states 0+2 , 2+1 , 4+2 , and 6+2 , follow a rotational energy sequence. Small
standard deviations of the energies of these states indicate the reliability of the calculation.
As will be discussed in Sec. 4.4, these states are connected by strong B(E2) transitions.
In Sec. 4.7, we will show that this band corresponds to α+12C cluster state. Unlike present
results, the 0+2 , 2+1 , 4+1 , 6+1 states follow a rotational energy sequence by OCM. The difference
in order of levels in OCM and present calculations can be also seen in AMD; the 4+2 state
belong to the rotational band in AMD.

The calculated excitation energy of 0+2 state is about 9 MeV, which is about 3 MeV larger
than the experimental value, 6.0494±0.0010 MeV. The excitation energy of 0+2 stat is well
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Figure 4.3: Excitation energies of negative-parity for 16O are shown. The same explanation
as that in Fig. 4.2 applies to others.

reproduced by the OCM and SM. However, the OCM and SM contains empirical parameters
specific to 16O. Namely in the OCM a potential strength is determined to adjust to fit the
energy levels, and in the SM, four single-particle energy splittings are determined by a direct
fitting to the energy levels. Although the present and AMD is no empirical parameters
specific to 16O, the present and AMD provide too high excitation energies. However, our
calculated excitation energy of 0+2 state is much better than that of AMD.

In recent years, Funaki and others [69–71] performed the 4-α OCM calculation, and
indicate that 0+6 is α-particle condensed state which are up to around the four α-cluster
threshold at 14.4 MeV. However, the present calculation do not give a converged solution for
the 0+6 .

For the negative-parity state, we have obtained solid results for the lowest energy state
for each Jπ sector (Sec. 4.2). The excitation energies of lowest 1−, 2−, 3−, and 4− states
overestimate the experimental data. On the contrary, 5− state underestimate the experi-
mental data. The excitation energies for lowest states are more reasonable than the AMD
calculations.

Finally we mention how the calculated energy levels depend on interactions. In Figs. 4.4
and 4.5 we show the excitation energies of positive- and negative-parity states with different
sets of the Skyrme interaction, SLy4, SGII, SIII, and SkM∗, and Gogny D1S interaction. The
same set of SDs is employed in all calculations. The correlation energies in the ground states
are shown as well inside the parentheses. The comparison shows that the excitation energies
of Skyrme SkM∗ is different from that of the other forces; The energy levels of Skyrme SkM∗
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Figure 4.4: Energy levels of positive-parity for 16O employing different parameter sets of
Skyrme forces, SLy4, SkM* and SIII, and Gogny D1S force. The number in parentheses is
the correlation energy in the ground state, EHF−Egs, in unit of MeV. In the calculation, the
same set of SDs is employed.

is much higher than that of any other forces, although the level spaces between each levels in
excited states are almost the same when comparing the excitation spectra of all forces. The
reasons for the difference outcome between Skyrme SkM∗ and the other forces are not clear.
We conclude that the level spaces in excited states do not sensitive to choice of interaction
for almost all, although excitation energies from the ground state may change to choice of
interaction.

4.4 Transition strength

Calculated B(E2), B(E3), and M(E0) values for 16O, the average values and the standard
deviations, are shown in Table 4.1. We do not employ any effective charges in our calculated
values. The order of magnitude of B(E2) transition strength between 2+1 and 0+1 is good
agreement with the measured value by our approach, AMD, and SM, although the magnitude
of transition strength between 2+1 and 0+1 is underestimated.

The calculated transition strength of B(E2; 2+1 → 0+2 ) and B(E2; 4+1 → 2+1 ) which have
the α+12C structure is lower than the measured value. This underestimation of transi-
tion strengths is also seen AMD and OCM calculations, although the values of the OCM
calculation is more reasonable. In the AMD calculation, 41 and 4+3 correspond to 42 and
4+1 in experiment data. The 4+2 state did not identify the state of measured value. The
underestimation of the AMD calculation is primarily due to fragment of E2 transition
strengths for B(E2; 4+2 → 2+1 ), B(E2; 4+3 → 2+2 ), and B(E2; 2+2 → 0+2 ). The values cal-
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Figure 4.5: Energy levels of negative-parity for 16O employing different parameter sets of
Skyrme force, SLy4, SkM* and SIII, and Gogny D1S force. In the calculation, the same set
of SDs is employed.

culated by the AMD are B(E2; 4+2 → 2+1 ) = 21e2fm4, B(E2; 4+3 → 2+2 ) = 49e2fm4, and
B(E2; 2+2 → 0+2 ) = 21e2fm4. This fragmentation can also see in the present calculation. The
B(E2; 2+2 → 0+2 ), B(E2; 4+2 → 2+2 ), and B(E2; 4+3 → 2+1 ) have large values in our calculation.
As will be mentioned at Sec. 4.7, the calculated 6+2 also have the α+12C structure. In fact, the
transition strength of B(E2; 6+2 → 4+2 ) is very large. The B(E2; 2+2 → 0+1 ), B(E2; 2+3 → 0+1 ),
and B(E2; 2+3 → 0+2 ) is well reproduced the measurements.

The calculated B(E2; 1−1 → 3−1 ), B(E2; 2−1 → 3−1 ), and B(E2; 2−1 → 1−1 ) underestimate
the measurements in all of the methods. The present values are larger than the values of
the AMD, and smaller than the values of the OCM. The 1−3 and 3−3 states are considered a
parity-doublet partner of the ground state as we will discuss later in Sec. 4.7. The transition
strengths between these states are rather large. The E3 transition between 3−1 and 0+1 is in
good agreement with the experimental data. However, the OCM provide too small transition
strength.

Calculated M(E0) values, the average values and the standard deviations, are shown in
Table 4.2. Calculated M(E0; 0+1 → 0+2 ) is slightly larger than the measured value. On the
other hand, this value is slightly underestimated by the 4-α OCM and α+12C. The measured
value is between the two. The M(E0; 0+1 → 0+3 ) is rather small, although the standard
deviation is rather large. All calculated M(E0; 0+1 → 0+3 ) is smaller than the measured value.
As mentioned in Sec. 4.3, it is argue that 0+6 state is candidate for α-particles condensed state
in [69–71]. In the Refs. [69–71], calculated M(E0; 0+1 → 0+6 ) is rather small, about 1 efm2.
However, our calculation does not provide solid solution for 0+6 (Sec. 4.2).
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Transitions Expt. Calc. AMD α+12C OCM

B(E2; 2+1 → 0+1 ) 7.4± 0.2 3.4±0.3 4.2 2.20
B(E2; 2+1 → 0+2 ) 65± 7 50±8 40 60.2
B(E2; 2+2 → 0+1 ) 0.074±0.007 0.072±0.14 1.0 0.247
B(E2; 2+2 → 0+2 ) 2.9±0.7 7.0±0.8 21 9.68
B(E2; 4+1 → 2+1 ) 156±14 5.7±3.3 9.1 102
B(E2; 4+2 → 2+1 ) 2.4± 0.7 45±11 21
B(E2; 4+1 → 2+2 ) 14.5±2.8
B(E2; 4+3 → 2+1 ) 25±5 29
B(E2; 2+3 → 0+1 ) 3.6± 1.2 1.9±0.6 0.65 1.21
B(E2; 2+3 → 0+2 ) 7.4± 1.2 7.3±2.4 1.6 1.20
B(E2; 6+1 → 4+1 ) 14±5 67.1
B(E2; 6+1 → 4+2 ) 7.5±2.7 45.1
B(E2; 6+2 → 4+1 ) 3.9±3.9 80.8
B(E2; 6+2 → 4+2 ) 53±21 14.3
B(E2; 1−1 → 3−1 ) 50± 12 31±1 20 25.5
B(E2; 2−1 → 3−1 ) 19.6± 1.7 8.5±1.3 4.2 13.8
B(E2; 2−1 → 1−1 ) 24.7±3.6 6.6±2.0 3.1 15.1
B(E2; 3−3 → 1−3 ) 34±11

B(E3; 3−1 → 0+1 ) 205± 11 175±9 29.6

Table 4.1: The B(E2) and B(E3) values of 16O in units of e2fm4 e2fm6 respectively. Ex-
perimental and calculated values are shown in first and second column, respectively. For
comparison, we show the results of AMD [68] and α+12C OCM [63]. Our 4+1 and 4+2 states
correspond with 4+2 and 4+1 states in the measurement. The same can be said of 6+1 and 6+2
states. The 4+3 and 4+1 states in AMD correspond with 4+1 and 4+2 states in the experimental
data. Experimental data are taken from [80].

4.5 Radii

We next examine rms radii of the ground and excited states for 16O. For comparison, results
of 4-α OCM [69], THSR [70], and α+12C OCM [63] are shown. As mentioned in Sec. 3.5,
our wave function does not allow an exact separation of the center-of-mass motion from the
internal one. We therefore estimate an approximate correction for the radius due to the
center-of-mass motion, and subtract it from the calculated values. In addition to correction
of center-of-mass motion, we take into account proton size effect. The corrections of center-
of-mass motion and proton size effect cancel each other for the opposite sign. The calculated
radii after the corrections are shown in Table 4.3.

Our calculated value in the ground state is 2.84 ± 0.007 fm. This value is somewhat
larger than that of the measured value, 2.710 ± 0.015 fm. In the HF calculation, the radius
is given by 2.74 fm, which is in good agreement with measured value. Our configuration-
mixing calculation, therefore, slightly increases the radius. The 4-α OCM reproduces the
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transitions Expt. Calc. 4-α OCM THSR α+12C OCM

M(E0; 0+1 → 0+2 ) 3.55± 0.21 2.97± 0.15 3.9 9.8 3.88

M(E0; 0+1 → 0+3 ) 4.03± 0.09 2.59± 1.77 2.4 3.50

Table 4.2: The M(E0) values of 16O in units of efm2. Experimental and calculated are in
shown in the first and second column, respectively. For comparison, we show the 4-α OCM
[69], THSR [70], and α+12C OCM [63].

Jπ Calc. 4-α OCM THSR α+12C OCM

0+1 2.91± 0.005 2.7 2.5 2.5
0+2 3.14± 0.03 3.0 3.1 2.9

0+3 3.10± 0.02 3.1 2.8

Table 4.3: The charge radii of the ground and excited state of 16O. For comparison, we show
the results of 4-α OCM [69], THSR [70], and α+12C OCM [63]. The experimental radius of
ground state is 2.710±0.015 fm [81].

measurements. The radius of the ground-state is somewhat smaller than the measured value
by THSR and α+12C OCM.

For the 0+2 state, our calculated radius is 3.14± 0.03 fm, which is slightly larger than the
radius of the ground state. The other theories also predict small expansion of radius from
ground state. For the 0+3 state, our calculated radius is 3.10± 0.02 fm, which is almost same
as the radius of 0+2 states. Comparing with other theories, our value is larger than those of
α+12C OCM, and is comparable to the value of 4-α OCM.

As mentioned in Secs. 4.3 and 4.4, the 0+6 state is thought to composed of a gas of weakly
interacting α-particles of the condensate type [69–71]. In the Refs. [69–71], the radius of 0+6
is more than 5 fm, which is the largest in radii of 0+4 , 0+5 , and 0+6 . However, our approach
does not give a converged solution of 0+6 state as shown in the Sec. 4.2.

4.6 Charge form factors

We show the charge form factors for elastic and inelastic 0+1 → 0+2 processes of 16O in Fig. 4.6.
We correct the center-of-mass and proton size effect in the same evaluation of charge factor
for 12C in Sec. 3.6. Both effects cancel each other. We also show that of Skyrme HF solution
in the ground state.

In the small momentum transfer region q < 2fm−1, the elastic form factor is nearly well
reproduced by the calculation. In the high momentum transfer region q > 2fm−1, the elastic
form factor is underestimated. This underestimation is also seen in the 12C [31]. However,
the form factor for the HF state is larger than that for the 50 SDs in 12C, which do not
same as the present result for 16O. The reason of the discrepancy of charge form factor in
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Figure 4.6: Squared elastic form factor for the ground state and 0+1 → 0+2 inelastic form
factor are shown. Our calculated results are compared with the HF calculation with a single
SD and measurements [53]. Here, the results using the first set of SDs in Fig. 4.1 are used.

q > 2fm−1 is not clear. The interaction might not be good. The inelastic 0+1 → 0+2 form
factor has two peak around q = 0.7 and 1.8 fm. The dip position around q = 1.5 fm of
inelastic form factor is slightly smaller than that of elastic form factor.

4.7 Analysis of wave functions

We discussed what kinds of correlations include in the wave function after configuration
mixing. We calculate overlaps between the energy eigenstate and projected SDs as Eq. (3.7.1).
We show the density distributions of the SDs to see the correlations included mainly. In the
following, we use the sequential number of the SDs which indicates the adopted ordering in
Sec. 2.2. The 1st SD is the HF ground state.

4.7.1 The ground state and Kπ = 0± bands

In Table 4.4, we show the sequential number of the SDs which have large overlap values with
the wave function of the states, 0+1 , 2

+
1 , 4

+
2 , 6

+
2 , 1

−
3 , and 3−3 . The overlap values P Jπ,iKn which

is defined as Eq. (3.7.1) and K values are shown. Since the SDs are nonorthogonal, the sum
of the overlap is not unity.
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0+2 2+1 4+2 6+2
SD K P SD K P SD K P SD K P

31 0 0.66 4 0 0.69 14 0 0.70 31 0 0.78
14 0 0.64 14 0 0.69 13 0 0.69 14 0 0.72
4 0 0.63 42 0 0.68 42 0 0.66 42 0 0.68
42 0 0.63 46 0 0.66 45 0 0.53 4 0 0.63
46 0 0.56 45 0 0.61 46 0 0.50 46 0 0.52
37 0 0.55 31 0 0.60 31 0 0.45 32 0 0.48
32 0 0.43 13 0 0.59 4 0 0.39 45 0 0.45
15 0 0.39 3 0 0.57 15 0 0.37 15 0 0.42
5 0 0.39 37 0 0.57 6 4 0.36 34 0 0.41
24 0 0.38 24 0 0.56 20 0 0.35 5 0 0.34

1−3 3−3 0+1
SD K P SD K P SD K P

31 0 0.67 4 0 0.49 8 0 0.94
4 0 0.62 31 1 0.45 50 0 0.94
37 0 0.59 31 0 0.44 6 0 0.93
46 0 0.56 37 0 0.44 26 0 0.93
32 0 0.46 42 1 0.39 11 0 0.93
14 0 0.41 4 1 0.38 18 0 0.92
24 0 0.40 14 1 0.37 20 0 0.91
5 0 0.40 46 1 0.35 17 0 0.91
42 0 0.37 42 0 0.31 47 0 0.90
13 0 0.29 5 0 0.29 30 0 0.90

Table 4.4: The SDs which dominate in the ground and Kπ = 0+ and 0− bands, the K value,
and the squared overlap between each SD and the wave function after configuration mixing
are shown.

In 0+1 state, many SDs have large overlap. The HF state, which corresponds to first
SD, has 0.81 for the overlap value in this state. As will be noted from the Table 4.4, many
SDs have rather large overlap more than 0.9, and the HF state is not in the top 10 of the
component of 0+1 . In order to illustrate the nuclear shape of SDs which are large components
of 0+1 state, we show the contour plots of the density distributions of these SDs in yz, zx
and xy planes in Fig. 4.7. As seen from the figure, the ground state 0+1 show the slightly
deformed shapes. The 0+1 state has different structure from the Skyrme HF state which show
a spherical structure.

In Sec. 4.4, we showed that 0+2 , 2+1 , 4+2 , and 6+2 are connected by the strong B(E2) values.
We find the 31th SD has the largest overlap in 0+2 and 6+2 states and 14th SD is the second
largest. In 2+1 state, 4th SD is the largest component and the 14th SD is the second largest.
In 4+2 state, 14th SD is the largest component. As we show in Table 4.1, the B(E2; 3−3 → 1−3 )
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1−1 2−1 3−1
SD K P SD K P SD K P

8 0 0.81 2 1 0.87 6 3 0.90
6 0 0.81 6 2 0.72 6 2 0.90
20 1 0.77 18 1 0.66 6 0 0.88
26 1 0.74 6 0 0.65 2 1 0.87
18 1 0.73 20 1 0.65 26 0 0.87
2 1 0.73 11 0 0.63 2 0 0.86
6 1 0.71 26 1 0.62 50 0 0.83
50 0 0.71 26 0 0.61 26 1 0.81
17 1 0.70 8 0 0.61 33 0 0.81
26 0 0.70 3 1 0.61 20 1 0.81

Table 4.5: The SDs which dominate in the lowest negative-parity states, the K value, and
the squared overlap between each SD and the wave function after configuration mixing are
shown.

value is strong. The 1−3 and 3−3 states also have large overlap with 31th and 4th SDs which
are also large component with 0+2 , 2

+
1 , 4

+
2 , and 6+2 states. We show the contour plots of the

density distributions of 31th, 4th, and 14th SDs in Fig. 4.8. All of these SDs have the α+12C
structure. The 31th and 4th SDs show a prominent cluster structure and 14th SD show a
slightly broken cluster structure. The 14th SD have large overlap over 0.6 to positive-states,
0+2 , 2+1 , 4+2 , and 6+2 , though the 14th SD have small overlap about 0.4 to negative-parity
state, 1−3 and 3−3 .

4.7.2 The particle-hole excitation states

In Table 4.5, we show the sequential numbers of the SDs which have large overlap values
with the wave function of the negative-parity states 1−1 , 2−1 , and 3−1 , which are known to be
particle-hole excitations. We find the 6th SD dominates in the negative-parity. The 6th and
8th are large component in the ground state. The 2nd SD is the largest component in the
2−1 state. We show the density distributions of these three SDs in Figs. 4.7 and 4.9. All of
these SDs have similar deformed shape.
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Figure 4.7: Contour plots of the density distribution of the 8th, 50th, 6th, and 26th SDs,
which are major components of the ground state 0+1 for 16O.
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Figure 4.8: Contour plots of the density distribution of the 31th, 14th, 4th, and 42th SDs,
which are major components of 0+2 , 2+1 , 4+2 , 6+2 , 1−3 , and 3−3 for 16O.
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Figure 4.9: Contour plots of the density distribution of the 2nd, 20th, and 18th SDs, which
are major components of the negative-parity states 1−1 , 2−1 , and 3−1 for 16O.
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Chapter 5

Results: 20Ne

5.1 Structure of 20Ne

Based on understanding of cluster models, 20Ne nucleus shows transitional character between
mean-field like and α+16O cluster-like structures. The T = 0 states of 20Ne below about 10
MeV excitation can be classified into Kπ = 0+1 , 0+2 , 0+3 , 0+4 , 0− and 2− bands. The Kπ = 0+1
and Kπ = 0− bands are regarded as inversion doublet partner [82]. The Kπ = 0− states
show the well-developed α+16O cluster structure. On the other hand, Kπ = 0+1 rotational
band show transitional character between mean-field like and α+16O cluster structure. This
is because the difference of ground state energy and the α+16O breakup threshold is 4.7 MeV,
which is smaller than other nuclei like 7.2 MeV between the ground state of 16O and α+12C
threshold energy.

Many theoretical approaches have been applied to the structures of 20Ne. Results by
SM calculations are in good agreement with measured values for the low-lying states [83–85].
However, the SM calculation employs some effective charge to calculate transitional strengths.
The MF calculation is applied only to the Kπ = 0+ rotational band. The excitation energies
of the rotational band states are in good agreement with measurement. The microscopic and
semi-microscopic cluster models, RGM, OCM, and GCM well reproduce the experimental
data [86–92]. The microscopic and semi-microscopic cluster models assume the existence of
some clusters. The AMD calculation, which does not assume any clusters, was applied to
20Ne [93–95]. In Ref. [95], deformed-basis AMD was applied to ground and excited states
of 20Ne and reproduces the Kπ = 0+1 , 0+4 , 0−, and 2− bands. The ab-initio UCOM+FMD
calculation well reproduced the Kπ = 0+1 rotational band [96].

5.2 Convergence of results: Statistical treatment

In this section, we examine the convergence of the energy levels of 20Ne. As in 12C (Sec. 3.2)
and 16O (Sec. 4.2), we discuss convergence by using ten different sets of SDs. We prepare ten
sets of the SDs and calculate energy levels for each set. If the calculated energy levels are
close to each other among the ten different sets of SDs, one may conclude that the calculated
energy levels are reliable. These ten set of SDs are composed of 50 SDs, which are prepared
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Figure 5.1: Energy levels of the 20Ne nucleus for Jπ = 0+, 1+, 2+, 3+, 4+, 5+, 6+, 1−, 2−,
3−, 4− and 5−. Calculations employing ten different sets of SDs are shown. See the text for
details.

by the procedure explained in Sec. 2.2. Different seeds for the random numbers, which are
used to prepare initial states in Eq. (2.2.1), are employed to generate the different sets.

In Fig. 5.1, we show the energy levels of the 20Ne nucleus for the ten sets calculated in
the procedure explained in Sec. 2.2. The energy levels are shown for Jπ = 0+, 1+, 2+, 3+,
4+, 5+, 6+, 1−, 2−, 3−, 4−, and 5−.

We examine the calculated energy levels of Jπ = 0+ in Fig. 5.1(a). The lowest energy
level is located around -163 MeV. The difference among the ten sets is less than 1 MeV. The
second energy level appears around -157 MeV. The difference of energies among ten sets is
again less than 1 MeV. The third excite state is located around -155 MeV. The difference
among the ten sets is about 1.5 MeV, which is a little larger than that of the lowest and
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second lowest energy levels. We then may state that the energies of these three lowest states
are calculated reliably, although the energies of the third excited state is inferior reliability
than that of the lowest and second lowest excited states.

The energy levels of Jπ = 2+ in Fig. 5.1(c) indicate that the energies of lowest two or
three states are reliable with a small variation. For Jπ = 3+ and 4+ states [5.1(d) and 5.1(e)],
the lowest two states are reliable. The energy levels of 5+ and 6+ in Figs. 5.1(f) and 5.1(g)
indicate that only the lowest energy level is reliable. However, the calculated energies of
Jπ = 1+ states vary greatly according to the set of SDs even for the lowest states [Fig. 5.1
(b)]. This may be same reason as the energy levels of Jπ = 1+ for 12C in Fig. 3.1 and for
16O in Fig. 4.1.

For the Jπ = 1− state [Fig. 5.1 (h)], the lowest energy level may be located around -156
MeV, although there is no corresponding the lowest energy level of some set of SDs like
second, third, seventh, and tenth. The energy levels of Jπ = 2−, 3−, 4−, 5−, and 6− indicate
that lowest state for each Jπ may be reliable. The energies of the second lowest state show
a large variation among the ten sets [Figs. 5.1(i)-5.1(l)].

For physical quantities like energies, transition strengths, and radii, we calculate statistical
averages and standard deviation among the ten sets as with the physical quantities of 20Ne.
We show the physical quantities as average values and the standard deviation as errors.

5.3 Energy levels

We show calculated excitation spectra of positive- and negative-parities in Figs. 5.2 and 5.3.
In the figures, the average values are shown with the error bars. The error bars only show
the lowest four states. For comparison, we also show the results of AMD [95], RGM [86],　
and SM [85]. Although not specified in the figure, the SM provide six energy levels between
4+2 and 8+1 .　 The AMD is employed localized triaxially deformed Gaussian as the single-
particle wave packet and is performed superposition of many different deformed SDs. The
RGM is one-channel resonating group method for α+16O system. The SM is taken in full sd
configurations.

First, we discuss the ground-state band of 0+1 , 2
+
1 , 4

+
1 , and 6+1 . These states are connected

by strong E2 transition strengths showed in next section [Sec. 5.4]. In Sec. 5.7, we will
show that this band corresponds to a α+16O state. In the Skyrme HF, the binding energy
is 157.2 MeV, which is smaller than measurement, 160.65 MeV. The ground state energy
after configuration mixing is −162.9 ± 0.2 MeV, which is larger than measurement. The
correlation energy is 5.7± 0.2 MeV. The readjustment of the Skyrme parameter set is might
be resolved the difference between the ground-state energy after configuration-mixing and
that of the measured value. Such refinement of the force will be an important issue in our
future studies. The moment of inertia of the ground band is overestimated the measurements.
These tendencies are also found the results of AMD and RGM calculations. On the other
hand, the SM calculation well reproduces the excitation energy of these states. If we take
account of the paring correlation, the overestimation of moment of inertia might be improved.

For the negative-parity states, we have obtained reliable results only for the lowest energy
state for each Jπ [Sec. 5.2] except Jπ = 1− state. For the 1−1 and 3−2 states, the states are
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Figure 5.2: Excitation energies of positive-parity are shown. The energies are obtained by
averaging over ten configurations. The standard deviations of the energies are also shown by
error bars. The error bars only show the four lowest states. We also show the results of AMD
[95], RGM [86], and SM [85]. Experimental data are taken from Refs. [80]. See the text for
details.

considered as parity-doublet partner of the ground-state band. However, our calculation does
not give a converged solution for these states.

For the 2−1 , 3−1 , 4−1 , 5−1 , and 6−1 states, the states are considered to show (0p)−1(sd)−5

structure. The error bars for these states are smaller than those of other levels. The excita-
tion energies are in good agreement with measurements. The AMD calculation gives higher
excitation energies for the states.

We mention how the calculated energy levels depend on interactions. In Figs. 5.4 and
5.5 we show the excitation energies of positive- and negative-parity states with different sets
of the Skyrme interaction, SLy4, SGII, SIII, and SkM∗, and Gogny D1S interaction. The
same set of SDs is employed in all calculations. The correlation energies in the ground states
are shown as well inside the parentheses. The comparison shows that basic features of the
spectra do not depend much on the choice of the Skyrme parameters. However the second
lowest states for Jπ = 0+, 2+, 4+, and 6+ of Gogny D1S interaction are higher than that of
Skyrme interactions. We conclude that the excitation energies for the ground-state band and

64



5.4. TRANSITION STRENGTH

-2

 0

 2

 4

 6

 8

 10

 12

 14

E
xc

ita
tio

n 
E

ne
rg

y 
[M

eV
]

EXP
1- 2- 3- 4- 5- 6-

AMD

1-

2-

3-3-4-
5-
5-6-

RGM

1-

3-

5-

CAL
1- 2- 3- 4- 5- 6-

Figure 5.3: Excitation energies of negative-parity are shown. The same explanation as that
in Fig. 5.2 applies to others.

negative-parity are not sensitive to choice of interaction. However, the excitation energies of
second or higher states is depend on choice of interaction.

5.4 Transition strength

We show the average values and the standard deviations of B(E2) and B(E3) values are
shown in Table. 5.1. The units of B(E2) and B(E3) are e2fm4 and e2fm6, respectively. For
comparison, we also show the values of PPSHF [97], AMD [95], 5α GCM [92], α+16O OCM
[87], RGM [86], and shell Model [98]. The RGM and SM are introduced effective charge.

As we discussed in Sec. 5.3, states of 0+1 , 2+1 , 4+1 , and 6+1 follow the ground-state band
sequence. The B(E2; 21+ → 0+1 ), B(E2; 4+1 → 2+1 ) and B(E2; 6+1 → 4+1 ) are reproduced by
all model.

The Kπ = 2− band which starts from the 2− state show a rotational spectrum. This
band is known to have a (0p)−1(sd)5 structure. These states correspond to 2−1 , 3−1 , 4−1 , and
5−1 . The errors of measured transition strength between these states are rather large. The
transition strengths between these states are well described by the present, PPSHF, AMD,
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Figure 5.4: Energy levels of positive-parity for 20Ne employing different parameter sets of
Skyrme forces, SLy4, SGII, SIII, and SkM*, and Gogny D1S force. The number in parentheses
is the correlation energy in the ground state, EHF − Egs, in unit of MeV. In the calculation,
the same set of SDs is employed.

GCM, OCM, RGM, and SM. Our results are somewhat larger than the other theoretical one.

The calculated B(E2; 3−2 → 1−1 ) is smaller than the measured value. However, the stan-
dard deviation of the value is very large, be cause the excitation energies of 3−2 and 1−1 states
fluctuate large as shown in Sec. 5.2. The E2 strength for the seventh set of SDs is 128e2fm4,
which is very similar as the measurement. Same thing can be seen as B(E2; 5−2 → 3−2 ). The
value of seventh set of SDs is 140e2fm4.

TheB(E3; 2−1 → 2+1 ) is reproduced by our approach and OCM calculation. The calculated
B(E3; 3−1 → 0+1 ) underestimate the measurement in our calculation and OCM. Our result is
larger than value of OCM and closes the measured value.

5.5 Radii

We next examine rms radii of the ground and excited states for 20Ne. For comparison, results
of mean-field calculation with variation after projection (MF(VAP)) [100], MF with variation
before projection (MF(VBP)) [101], 5α GCM [92], and α+16O RGM [86] are shown. As
mentioned in Sec. 3.5 and Sec. 4.5, our wave function does not allow an exact separation
of the center-of-mass motion from the internal one. We therefore subtract an approximate
correction for the radius due to the center-of-mass motion from the calculated values. In
addition to correction of center-of-mass motion, we take into account proton size effect. The
corrections of center-of-mass motion and of proton size effect cancel each other for the opposite
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Skyrme force, SLy4, SGII, SIII, and SkM∗, and Gogny D1S force. In the calculation, the
same set of SDs is employed.

sign. The calculated radii after the corrections are shown in Table 5.2.

Our calculated value in the ground state is 3.16± 0.01 fm. This value is somewhat larger
than that of the measured value, 2.91 fm. In the HF calculation, the radius is given by 2.99
fm, which is in good agreement with measured value. Our configuration-mixing calculation,
therefore, slightly increases the radius. The MF(VBP) reproduces the radius of ground state.
The other theoretical calculations predict a smaller value than measured value. Our radius
diminishes as the angular momentum is increased. This feature is similar to mean-field
calculations.

5.6 Charge form factors

We next examine charge form factor for elastic process of 20Ne. We correct the center-of-mass
and proton size effect in the same evaluation of charge factor for 12C in Sec. 3.6 and 16O in
Sec. 4.6. Both effects cancel each other. In Fig. 5.6, we show the charge form factor for elastic
process of 20Ne. Red solid curve shows our results, blue dashed curve shows the results of
α+16O-core model [102], and crosses with error bars show experimental data [103]. We also
show that of Skyrme HF solution in the ground state [Fig. 5.6(yellow dotted curve)].

In the small momentum transfer region q2 < 1.5fm−2, the elastic form factor is well
reproduced by the calculation. For q2 > 1.5fm−2, our calculation slightly underestimates the
form factor. The position of the dip at around 1.5fm−2 is reproduced well. On the other
hand, the Skyrme HF calculation well reproduces the elastic form factor in whole momentum
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transitions Expt. Calc. PPSHF AMD GCM OCM RGM SM

B(E2; 2+1 → 0+1 ) 65.5± 3.3 55.1± 3.5 41.6 70.3 50.0 57.0 36.2 57.0
B(E2; 4+1 → 2+1 ) 71± 6 66.6± 4.5 59.9 83.7 64.4 70.9 45.2 69.9
B(E2; 4+2 → 2+1 ) 19± 2 0.36± 0.17
B(E2; 0+2 → 2+1 ) 12 12.2± 3.2
B(E2; 0+3 → 2+1 ) 0.99± 0.19 0.70± 0.76
B(E2; 2+3 → 0+1 ) 2.4± 0.3 0.25± 0.20
B(E2; 6+1 → 4+1 ) 64± 10 53.9± 6.6 67.5 52.7 55.3 57.1 36.5 57.9

B(E2; 3−1 → 2−1 ) 113± 29 127± 8 97.6 102.8 107.5 97
B(E2; 4−1 → 3−1 ) 77± 16 90± 5 73.5 77.8 77.0 75
B(E2; 4−1 → 2−1 ) 34± 6 42± 5 32.9 38.5 34.0 36
B(E2; 5−1 → 4−1 ) < 808 57± 3 52.6 84.5 33.9 44
B(E2; 5−1 → 3−1 ) 84± 19 62± 3 53.1 56.5 66.7 48
B(E2; 6−1 → 5−1 ) 32± 13 36± 2 39.7 29.9 49.4 32

B(E2; 6−1 → 4−1 ) 55+23
−13 67± 7 67.0 64.0 45.1 51

B(E2; 3−2 → 1−1 ) 161± 26 59.8± 48.7 151.2 155 121
B(E2; 5−2 → 3+2 ) 77± 42 182.4 206 133

B(E3; 2−1 → 2+1 ) 143± 119 182± 24 117
B(E3; 3−1 → 0+1 ) 261± 95 98± 12 29.9

Table 5.1: Observed and calculated B(E2) and B(E3) values of 20Ne in units of e2fm4 and
e2fm6. Observed and calculated results are shown in first and second column. The values
of parity projected Hartree-Fock (PPHF) [97], AMD [95], 5α GCM [92], α+16O OCM [87],
RGM [86], and SM [98] are also shown for comparison. Experimental data are taken from
Ref. [80].

region. The α+16O-core model show small magnitude of charge form factor for q > 1fm−2.

5.7 Analysis of wave functions

5.7.1 Kπ = 0+ and 0− bands

In Table 5.3, we show the number of the SDs which have large overlap values with the wave
function of the states, 0+1 , 2+1 , 4+1 , 6+1 , 1−1 , and 3−2 .

The 0+1 and 2+1 states have the largest overlap between 2nd SD. In the 4+1 state, the 1st
SD, which is HF state, is the largest component and 2nd SD is the second largest. The 6+1
state have the largest overlap with 33th SD. The HF state is included more than 0.7 in states
of Kπ = 0+ band. The parity-doublet partner of Kπ = 0+ states, 1−1 and 3−2 states have large
overlap with 15th SD, which have about 0.8 overlap value to 0+1 and 2+1 . We show the counter
plots of densities distributions of the SDs which are large components of Kπ = 0± band in
Fig. 5.7. As seen from the figure, 2nd, 1st and 33th SDs show deformed prolate shape. On
the other hand, the 15th show well developed α+12C structure. This is consistent with the
transitional character between mean-field like and α+12C cluster structure of Kπ = 0+ band
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Jπ Expt. Calc. MF(VAP) MF(VBP) 5α GCM α+16O RGM

0+1 2.91 3.16± 0.01 2.72 2.95 2.65 2.87
2+1 3.10± 0.01 2.71 2.94
4+1 3.07± 0.01 2.70 2.92
6+1 3.03± 0.01 2.68 2.89

Table 5.2: Charge radii of the ground and excited states of 20Ne. The experimental data
is taken from Ref. [99]. For comparison, we show the results of mean-field calculation with
variation after projection (MF(VAP)) [100], MF with variation before projection (MF(VBP))
[101], 5α GCM [92], and α+16O RGM [86]. See text for details.
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Figure 5.6: Squared elastic form factor for the ground state are shown. Our calculated
results are compared with the HF calculation with a single SD, α+16O-core model [102], and
measurements [103]. Here, the results using the first set of SDs in Fig. 5.1 are used.

and well developed cluster structure of Kπ = 0− band.

5.7.2 Kπ = 2− band

In the negative-parity of 20Ne, the Kπ = 2− band which is considered to be (0p)−1(sd)5

structure in the deformed mean filed appear in present calculation. As Table. 5.1 illustrates,

69



CHAPTER 5. RESULTS: 20NE

0+1 2+1 4+1 6+1
SD K P SD K P SD K P SD K P

2 0 0.86 2 0 0.84 1 0 0.82 33 0 0.80
5 0 0.84 5 0 0.84 2 1 0.80 30 1 0.79
15 0 0.80 1 0 0.81 41 0 0.79 2 1 0.77
1 0 0.78 45 0 0.76 5 1 0.75 5 1 0.77
13 0 0.77 15 0 0.76 33 0 0.75 20 1 0.75
9 0 0.72 13 0 0.75 2 0 0.75 1 0 0.74
45 0 0.72 41 0 0.75 45 0 0.75 41 0 0.74
41 0 0.70 9 0 0.74 20 0 0.74 9 0 0.74
20 0 0.68 20 0 0.71 9 0 0.74 30 0 0.73
10 0 0.64 33 0 0.67 5 0 0.74 20 0 0.71

1−1 3−2
SD K P SD K P

15 0 0.60 15 1 0.60
10 0 0.58 9 1 0.48
5 0 0.54 41 1 0.38
16 0 0.52 22 0 0.36
9 0 0.50 22 2 0.34
22 1 0.45 36 0 0.32
50 0 0.44 30 1 0.31
18 0 0.44 27 1 0.30
36 1 0.41 16 1 0.26
30 0 0.40 36 2 0.25

Table 5.3: The SDs which dominate in the ground rotational Kπ = 0+ and Kπ = 0−, the K
value, and the squared overlap between each SD and the wave function after configuration
mixing are shown.

these states are connected by strong E2 value. In the 2−1 state, the 13th SD is the largest
component and 15th is the second largest. In the 3−1 , 4−1 , 5−1 , and 6−1 states, the 1st SD has
the largest overlap. We show in the Fig. 5.8 the density distribution of the 13th and the 5th
SDs. They show prolate shapes.
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2−1 3−1 4−1 5−1 6−1
SD K P SD K P SD K P SD K P SD K P

13 2 0.93 5 2 0.87 5 2 0.88 5 2 0.78 5 2 0.77
5 2 0.91 13 2 0.87 13 2 0.87 15 2 0.76 13 2 0.71
15 2 0.86 15 2 0.83 15 2 0.82 9 2 0.73 2 2 0.67
6 2 0.82 6 2 0.74 9 2 0.71 13 2 0.72 15 2 0.64
9 2 0.68 9 2 0.69 6 2 0.70 33 2 0.64 9 2 0.63
18 2 0.63 33 2 0.59 33 2 0.62 2 2 0.59 33 2 0.62
45 2 0.62 45 2 0.59 45 2 0.60 45 2 0.57 45 2 0.59
16 2 0.61 10 2 0.57 2 2 0.57 30 2 0.54 22 5 0.55
10 2 0.61 2 2 0.54 22 2 0.52 6 2 0.54 30 2 0.55
33 2 0.59 18 2 0.54 20 2 0.50 20 2 0.51 5 2 0.51

Table 5.4: The SDs which dominate in the Kπ = 2− band, the K value, and the squared
overlap between each SD and the wave function after configuration mixing are shown.
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Figure 5.7: Contour plots of the density distribution of the 2nd, 1st, 33th, and 15th SDs in
20Ne, which are major components of the Kπ = 2− bands, 2−1 , 3−1 , 4−1 , 5−1 and 6−1 .
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Figure 5.8: Contour plots of the density distribution of the 13th, 5th, and 15th SDs in 20Ne,
which are major components of the Kπ = 0± bands, 0+1 , 2+1 , 4+1 , 1−1 , and 3−2 .
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Chapter 6

Summary and future problems

In light nuclei, structures with various correlations appear in ground and excited states.
While ground states of most light nuclei may be understood by the shell model, there appear
a number of cluster structures in excited states. To understand these structures of light
nuclei, we apply a new configuration mixing approach to investigate the structure of 12C,
16O, and 20Ne nuclei. Our method is the configuration-mixing approach using Skyrme and
Gogny interactions. This approach enables us to obtain reliable descriptions of ground and
low-lying excited states, taking both configurations of shell-model and cluster states.

In our approach, we aim to obtain converged solutions of ground and excited states once
many-body Hamiltonian is specified. We first generate a number of Slater-determinants using
the imaginary-time method starting from initial Slater-determinants which are prepared in a
stochastic way. These Slater-determinants are found to show various shapes and clustering.
In the next step, the Slater-determinants are projected into eigenstates of parity and angular
momentum. Finally they are superposed to diagonalize the many-body Hamiltonian. In
practice, we have generated several sets of Slater-determinants and compare the results with
difference sets, to quantify the reliability of the calculation. Calculated results of a few low-
lying states for each parity and angular momentum coincide accurately, indicating they are
well converged with small variance among the different sets of the Slater-determinants. This
fact shows that the present calculation provides unique and converged results for the ground
and a few low-lying excited states, once the effective nucleon-nucleon force, the Skyrme
interaction in the present calculation, is given.

Our calculations reasonably reproduce the overall features of the structure of 12C. The
energies and the B(E2) transition strength of the ground state rotational band are well
described. The lowest excited states of negative parity, 1−, 2−, and 3−, are also reasonably
described, although the excitation energies are slightly too high. The Slater-determinants
which dominate in these states show three-α structure. Our calculations also reproduce the
excitation energy of the Hoyle (0+2 ) state reasonably. This state is found to be described
by a superposition of many Slater-determinants, consistent with the former cluster-model
calculations. However, the radius of the 0+2 state is calculated to be significantly smaller
than those. The spin-orbit interaction which contributes much to the energy in the present
method seems to be responsible for this difference. The three-α linear-chain structure appears
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at around 15 MeV excitation, forming a rotational band. We find two 2+ states, 2+2 and 2+3 , to
appear at excitation energies over 10 MeV in our calculations. Recent measurements report
excitation of a 2+ excited state in a similar energy region. There have been arguments that
the measure 2+ state is a member of the rotational excitation built on the 0+2 . However,
our calculation provides rather small B(E2) values for the transitions of both 2+2 → 0+2 and
2+3 → 0+2 . This fact suggests that neither 2+2 nor 2+3 state may be regarded as the rotationally
excited Hoyle state.

We next apply the present method to 16O nucleus. Experimentally, the lowest excitation
state is 0+2 state whose excitation energy is 6.0 MeV. Microscopic cluster models failed to
reproduce this state. Although OCM and shell model reported reasonable descriptions, these
theories include some empirical parameters. Our calculated excitation energy of the 0+2 state
is about 9 MeV. Although this value is 3 MeV higher than the measured value, it is much
better than those of cluster models: AMD, RGM, and GCM reported about 13 MeV or more
excitation energies for this state. The 0+2 , 2+1 , 4+2 , and 6+2 states are connected by the strong
B(E2) strength in our calculation. The Slater-determinants which dominate in these states
show α+12C cluster structure. For the negative parity, the 1−3 and 3−3 states are found to have
large overlap with Slater-determinants which have α+12C configuration. The particle-hole
excitation states, 1−1 , 2−1 , and 3−1 , are reasonably reproduced by our method.

We next apply our method to 20Ne nucleus. States of 0+1 , 2+1 , 4+1 , and 6+1 follow the
ground-state band sequence. Calculated E2 transition strength between these states are in
good agreement with measurements. However, calculated moment of inertia for this band
is larger than the measured value. The Slater-determinants which dominate in these states
show α+16O cluster structure. We also get the parity-doublet partner of the ground band, 1−1
and 3−2 , which show α+16O cluster structure. The 2−1 , 3−1 , 4−1 , and 5−1 states are connected
by strong E2 strength. The calculated excitation energies of these states and B(E2) values
between these states are in good agreement with measurements. The calculated radius of the
ground state and charge form factor is also in good agreement with measurements.

The success for the description of 12C, 16O, and 20Ne nuclei reported in this thesis shows
that the present approach is promising for systematic descriptions of various many-body
correlations including clustering in light nuclei. Since the present approach does not assume
anything regarding nuclear shape and single-particle wave functions, it will be useful for
unstable nuclei for which experiments are proceeding rapidly .

In recent years, ab-initio approaches starting with realistic nucleon-nucleon force have
been shown significant advances. These approaches have been successful in describing the
ground and some low-lying excited states of light nuclei. In the present study, we used
empirical forces; Skyrme and Gogny forces. It is certainly an interesting extension to use
realistic nucleon-nucleon interaction in our approach. Since our approach may take into
account a variety of long-range correlations, extension of our approach to use realistic nucleon-
nucleon interactions will enable us to achieve fully satisfactory descriptions of ground and
low-lying states with various correlations simultaneously.

The present approach does not include tensor correlations explicitly. It is known that
tensor correlation helps development of α-particle cluster structures, because the tensor force
is very important to reproduce the binding energy of the α-particle. It will be very interesting
to examine the effect of the tensor correlation in our approach.
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Appendix A

Energy functional

A.1 Skyrme interaction

Skyrme interaction is composed of the density- and momentum-dependent two-body terms:

V̂Skyrme(r⃗1, r⃗2) = t0 (1 + x0Pσ) δ (r⃗1 − r⃗2) +
1

6
t3ρ

α
(

1 + x3P̂σ

)
δ (r⃗1 − r⃗2)

+
1

2
t1

(
1 + x1P̂σ

)(
k⃗2 − k⃗2

)
δ (r⃗1 − r⃗2) + t2

(
1 + x2P̂σ

)←−
k · δ (r⃗1 − r⃗2)

−→
k

+ iW0 (σ⃗1 + σ⃗2) ·
←−
k × δ (r⃗1 − r⃗2)

−→
k , (A.1.1)

where P̂ σ is the spin exchange operator, and
←−
k and

−→
k are defined as

−→
k =

−→
∇1 −

−→
∇2

2i
,
←−
k = −

←−
∇1 −

←−
∇2

2i
. (A.1.2)

Here,
−→
k acts on ket state and

←−
k acts on bra state. Some parameter sets of Skyrme interaction

are given in Table A.1.

A.2 Gogny interaction

The Gogny interaction is given by

V̂Gogny(r⃗1, r⃗2) =
2∑
i=1

exp
[
−(r⃗1 − r⃗2)2/µ2i

] (
Wi +BiP̂

σ −HiP̂
τ −MiP̂

σP̂ τ
)

+iW0(σ⃗1 + σ⃗2) ·
←−
k × δ(r⃗1 − r⃗2)

−→
k

+t3ρ
1/3
(

1 + P̂ σ
)
δ (r⃗1 − r⃗2) , (A.2.1)

where P̂ τ is the isospin exchange operator. Some parameter sets of Gogny interaction are
given in Table A.2.
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t0 t1 t2 t3 W0

SI -1057.3 235.9 -100. 14463.5 120.
SII -1169.9 585.6 -27.1 9331.1 105.
SIII -1128.75 395. -95. 14000. 120.
SGI -1603. 515.9 84.5 8000. 115.
SGII -2645. 340. -41.9 15595. 105.
SLy4 -2488.91 486.82 -546.39 13777. 123.
SLy5 -2484.88 483.13 -549.40 13763. 126.
SkM -2645. 385. -120. 15595. 120.
SkM∗ -2645. 410. -135. 15595. 130.
SLy4d -2479.662 473.216 -333.654 13487. 128.

x0 x1 x2 x3 α Ref.

SI 0.56 0. 0. 1. 1 [25]
SII 0.34 0. 0. 1. 1 [25]
SIII 0.45 0. 0. 1. 1 [104]
SGI -0.02 -0.5 -1.731 0.1381 1/3 [105]
SGII 0.09 -0.0588 1.425 0.06044 1/6 [105]
SLy4 0.834 -0.344 -1.000 1.354 1/6 [106]
SLy5 0.778 -0.328 -1.000 1.267 1/6 [106]
SkM 0.09 0. 0. 0. 1/6 [107]
SkM∗ 0.09 0. 0. 0. 1/6 [108]
SLy4d 0.8122 -0.7228 -1. 1.3980 1/6 [109]

Table A.1: Parameter sets of Skyrme interaction. Units of t0, t1, t2, t3, and W0 are MeV
fm3, MeV fm5, MeV fm5, MeV fm6, and MeV fm5, respectively. References are shown in last
column.

80



A.2. GOGNY INTERACTION

D1 D1S D1N D1M

µ1 0.7 0.7 0.8 0.5
W1 -402.4 -1720.3 -2047.61 -12797.57
B1 -100. 1300. 1700. 14048.85
H1 -496.2 -1815.53 -2414.93 -15144.43
M1 -23.56 1397.6 1519.35 11963.89

µ2 1.2 1.2 1.2 1.
Wi -21.30 103.639 293.02 490.95
B2 -11.77 -163.483 -300.78 -752.27
H2 37.27 162.812 414.59 675.12
M2 -68.81 -223.933 -316.84 -693.57

t3 1350 1390.60 1609.46 1562.22
W0 115 130 115 115.36

Ref. [110] [111] [112] [113]

Table A.2: Parameter sets of Gogny interaction. µi, t3, and W0 are in units of fm, MeV fm4,
and MeV fm5, respectively. Wi, Bi, Hi, and Mi are in unit of MeV. We also show references
in the last row.

The expectation value of Gogny interaction (A.2.1) for a SD Φ composed of ϕi(r⃗) (i =
1, · · · , A) is represented by⟨

Φ
∣∣∣V̂Gogny∣∣∣Φ⟩

=
1

2

2∑
i=1

Wi

∫
dr⃗ρ(r⃗)

∫
dr⃗′ρ(r⃗′) +Bi

∑
σ,σ′

∫
dr⃗ρσσ′(r⃗)

∫
dr⃗′ρσ′σ(r⃗′)

−Hi

∑
τ

∫
dr⃗ρτ (r⃗)

∫
dr⃗′ρτ (r⃗′)−Mi

∑
τ

∑
σσ′

∫
dr⃗ρτσσ′(r⃗)

∫
dr⃗′ρτσσ′(r⃗′)

]

× exp

[
−
(
r⃗ − r⃗′

µi

)2
]

− 1

2

2∑
i

[
Wi

∑
σσ′

∫
dr⃗

∫
dr⃗′ρσσ′(r⃗, r⃗′)ρσ′σ(r⃗′, r⃗) +Bi

∫
dr⃗

∫
dr⃗′ρ(r⃗, r⃗′)ρ(r⃗′, r⃗)

−Hi

∑
τ

∑
σσ′

∫
dr⃗

∫
dr⃗′ρτσσ′(r⃗, r⃗′)ρτσ′σ(r⃗′, r⃗)−Mi

∑
τ

∫
dr⃗

∫
dr⃗′ρτ (r⃗, r⃗′)ρτ (r⃗′, r⃗)

]

× exp

[
−
(
r⃗ − r⃗′

µi

)2
]

+ [other terms], (A.2.2)

where other terms are the same as the expectation value of Skyrme interaction Eq. (2.5.2).
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Here the densities are written by using single particle wave functions ϕi(r⃗, σ) as

ρ(r⃗) =
∑
i

∑
σ

|ϕi(r⃗, σ)|2 , (A.2.3a)

ρτ (r⃗) =
∑
i∈τ

∑
σ

|ϕi(r⃗, σ)|2 , (A.2.3b)

ρσσ′(r⃗) =
∑
i

ϕ∗i (r⃗, σ)ϕi(r⃗, σ
′), (A.2.3c)

ρτσσ′(r⃗) =
∑
i∈τ

ϕ∗i (r⃗, σ)ϕi(r⃗, σ
′), (A.2.3d)

ρ(r⃗, r⃗′) =
∑
i

∑
σ

ϕ∗i (r⃗, σ)ϕi(r⃗
′, σ), (A.2.3e)

ρτ (r⃗, r⃗′) =
∑
i∈τ

∑
σ

ϕ∗i (r⃗, σ)ϕi(r⃗
′, σ), (A.2.3f)

ρσσ′(r⃗, r⃗′) =
∑
i

ϕ∗i (r⃗, σ)ϕi(r⃗
′, σ′), (A.2.3g)

ρτσσ′(r⃗, r⃗′) =
∑
i∈τ

ϕ∗i (r⃗, σ)ϕi(r⃗
′, σ′), (A.2.3h)

where τ denote neutron or proton.

A.3 Off-diagonal matrix elements of Hamiltonian

In this section, we show how to calculate matrix elements of many-body operators between
different Slater-determinants Φ and Ψ composed of ϕi(x) and ψi(x) (i = 1, · · · , A), respec-
tively. This procedure is used need to perform projection calculation.

Bi-orthogonal system

We introduce the bi-orthogonal single-particle wave functions,

ϕ̃i(x) ≡
A∑
j=1

ψj(x)
{
B−1

}
ji
, (A.3.1)

where we define Bij ≡ ⟨ϕi|ψj⟩. Here ϕ̃j and ϕi is bi-orthogonal, ⟨ϕi|ϕ̃j⟩ = δij . The Slater-
determinant Ψ̃ composed single-particle wave function ϕ̃i(x) can be written as Ψ̃ = Φ · detB.
Then the matrix element of an operator Ô becomes

⟨Φ|Ô|Ψ⟩ = ⟨Φ|Ô|Φ̃⟩ · detB. (A.3.2)

Here, ⟨Φ|Ô|Ψ⟩ can be calculated in the same manner as ⟨Φ|Ô|Φ̃⟩.
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A.3.1 Off-diagonal matrix elements for Skyrme Hamiltonian

We calculate transitional matrix elements of Skyrme Hamiltonian. We define Ṽ by Ṽ =⟨
Φ
∣∣V̂ ∣∣Ψ⟩/detB and the following transitional densities,

ρ(r⃗) =
∑
i∈p,n

∑
σ

ϕi(r⃗, σ)∗ψ̃i(r⃗, σ), (A.3.3a)

ρ(τ)(r⃗) =
∑
i∈q

∑
σ

ϕi(r⃗, σ)ψ̃i(r⃗, σ), (A.3.3b)

τ(r⃗) =
∑
i∈p,n

∑
σ

∇⃗ϕi(r⃗, σ) · ∇⃗ψ̃i(r⃗, σ), (A.3.3c)

τ (τ)(r⃗) =
∑
i∈q

∑
σ

∇⃗ϕi(r⃗, σ) · ∇⃗ψ̃i(r⃗, σ), (A.3.3d)

Jλ(r⃗) =
∑
µν

ϵλµνJµν(r⃗), (A.3.3e)

Jµν(r⃗) =
1

2i

∑
i∈p,n

∑
σσ′

{ϕ∗i (r⃗σ)∂µψ̃i(r⃗, σ
′)− (∂µϕ

∗
i (r⃗, σ))ψ̃i(r⃗, σ

′)}
⟨
σ|σν |σ′

⟩
,(A.3.3f)

J
(τ)
λ (r⃗) =

∑
µν

ϵλµνJqµν(r⃗), (A.3.3g)

J (τ)
µν (r⃗) =

1

2i

∑
i∈q

∑
σσ′

{ϕ∗i (r⃗, σ)∂µψ̃i(r⃗, σ
′)− (∂µϕ

∗
i (r⃗, σ))ψ̃i(r⃗, σ

′)}
⟨
σ|σν |σ′

⟩
,(A.3.3h)

ρ⃗(r⃗) =
∑
i∈p,n

∑
σσ′

ϕ∗i (r⃗, σ)ψ̃i(r⃗, σ
′)
⟨
σ|σ⃗|σ′

⟩
, (A.3.3i)

ρ⃗(τ)(r⃗) =
∑
i∈q

∑
σσ′

ϕ∗i (r⃗, σ)ψ̃i(r⃗, σ
′)
⟨
σ|σ⃗|σ′

⟩
, (A.3.3j)

j⃗(r⃗) =
1

2i

∑
i∈p,n

∑
σ

{ϕ∗i (r⃗, σ)∇⃗ψ̃i(r⃗, σ)− (∇⃗ϕ∗i (r⃗, σ))ψ̃i(r⃗, σ)}, (A.3.3k)

j⃗(τ)(r⃗) =
1

2i

∑
i∈q

∑
σ

{ϕ∗i (r⃗, σ)∇⃗ψ̃i(r⃗, σ)− (∇⃗ϕ∗i (r⃗, σ))ψ̃i(r⃗, σ)}, (A.3.3l)

T⃗ (r⃗) =
∑
i∈p,n

∑
σσ′

∇⃗ϕ∗i (r⃗, σ) · ∇⃗ψ̃i(r⃗, σ′)
⟨
σ|σ⃗|σ′

⟩
, (A.3.3m)

T⃗ (τ)(r⃗) =
∑
i∈q

∑
σσ′

∇⃗ϕ∗i (r⃗, σ) · ∇⃗ψ̃i(r⃗, σ′)
⟨
σ|σ⃗|σ′

⟩
. (A.3.3n)

In the following, we show a formula to calculate transitional matrix element of Skyrme in-
teraction, ⟨Φ|V̂Skyrme|Ψ⟩, for each term. Note that the following Ṽ is equal to

⟨
Φ
∣∣V̂ ∣∣Φ⟩ if

Ψ = Φ(detB = 1).
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t0 term

We introduce the space inversion operator P̂r, the spin exchange operator P̂σ, and the isospin
exchange operator P̂τ . Since the Skyrme interaction is δ-type and has no charge mixing,
P̂r = 1, P̂τ = δσ1σ2 . The t0 term is calculated as follows:

Ṽ0 =
t0
2

∑
ij

⟨ϕiϕj
∣∣δ(r⃗1 − r⃗2)(1 + x0P̂σ

)(
1− P̂rP̂τ P̂σ

) ∣∣ψ̃iψ̃j⟩
=

t0
2

∑
ij

⟨ϕiϕj
∣∣δ(r⃗1 − r⃗2) [(1 +

x0
2

)
−
(

1

2
+ x0

)
P̂τ +

1

2

(
x0 − P̂τ

)
σ⃗1 · σ⃗2

] ∣∣ψ̃iψ̃j⟩
=

t0
2

∫
dr⃗

[(
1 +

x0
2

)∑
i,σ

ϕ∗i (r⃗, σ)ψ̃i(r⃗, σ)
∑
jσ′

ϕ∗j (r⃗, σ
′)ψ̃j(r⃗, σ

′)

+
x0
2

∑
ν

∑
iσ1σ′

1

ϕ∗i (r⃗, σ1)ψ̃i(r⃗, σ
′
1)⟨σ1|σν |σ′1⟩

∑
jσ2σ′

2

ϕ∗j (r⃗, σ2)ψ̃j(r⃗, σ
′
2)⟨σ2|σν |σ′2⟩

−
(

1

2
+ x0

)∑
τ

∑
i∈τ,σ

ϕ∗i (r⃗, σ)ψ̃i(r⃗, σ)
∑
j∈τσ′

ϕ∗j (r⃗, σ
′)ψ̃j(r⃗, σ

′)

−1

2

∑
ν

∑
τ

∑
i∈τσ1σ′

1

ϕ∗i (r⃗, σ1)ψ̃i(r⃗, σ
′
1)⟨σ1|σν |σ′1⟩

∑
j∈τ ′σ2σ′

2

ϕ∗j (r⃗, σ2)ψ̃j(r⃗, σ
′
2)⟨σ2|σν |σ′2⟩

]

=
t0
2

∫
dr⃗

[(
1 +

x0
2

)
ρ(r⃗)2 +

x0
2
ρ⃗(r⃗)2 −

∑
τ

{(1

2
+ x0

)
ρ(τ)(r⃗)2 − 1

2
ρ⃗(τ)(r⃗)2

}]
,

(A.3.4)

where we use Pσ = 1
2(1 + σ⃗1 · σ⃗2).

t3 term

Similar to the t0 term, t3 term is calculated as follows:

Ṽ3 =
t3
12

∑
ij

⟨ϕiϕj
∣∣ρ(r⃗)αδ(r⃗1 − r⃗2)

(
1 + x3P̂σ

)(
1− P̂rP̂τ P̂σ

) ∣∣ψ̃iψ̃j⟩
=

t3
12

∑
ij

∫
dr⃗⟨ϕiϕj

∣∣ρ( r⃗1 + r⃗2
2

)α
δ(r⃗ − r⃗1)δ(r⃗ − r⃗2)

(
1 + x3P̂σ

)(
1− P̂rP̂τ P̂σ

) ∣∣ψ̃iψ̃j⟩
=

t3
12

∑
ij

∫
dr⃗ρ(r⃗)α⟨ϕiϕj

∣∣δ(r⃗ − r⃗1)δ(r⃗ − r⃗2)(1 + x3P̂σ

)(
1− P̂rP̂τ P̂σ

) ∣∣ψ̃iψ̃j⟩
=

t3
12

∫
dr⃗ρ(r⃗)α

[(
1 +

x3
2

)
ρ(r⃗)2 +

x3
2
ρ⃗(r⃗)2 −

∑
τ

{(
1

2
+ x3

)
ρ(τ)(r⃗)2 − 1

2
ρ⃗(τ)(r⃗)2

}]
(A.3.5)
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t1 term

We prepare the following equations: ∑
iσ

ϕ∗i (r⃗σ)∇⃗ψ̃i(r⃗σ) =
1

2
∇⃗ρ(r⃗) + i · j⃗(r⃗), (A.3.6a)

∑
iσ

(
∇⃗ϕ∗i (r⃗σ)

)
ψ̃i(r⃗σ) =

1

2
∇⃗ρ(r⃗)− i · j⃗(r⃗), (A.3.6b)∑

iσ

[
ϕ∗i (r⃗σ)∇2ψ̃i(r⃗σ) +

(
∇2ϕ∗i (r⃗σ)

)
ψ̃i(r⃗σ)

]
= ∇2ρ(r⃗)− 2τ(r⃗), (A.3.6c)

∑
iσσ′

ϕ∗i (r⃗σ)∂µψ̃i(r⃗σ)⟨σ|σν |σ′⟩ =
1

2
∂µρν(r⃗) + iJµν(r⃗), (A.3.6d)

∑
iσσ′

(∂µϕ
∗
i (r⃗σ)) ψ̃i(r⃗σ)⟨σ|σν |σ′⟩ =

1

2
∂µρν(r⃗)− iJµν(r⃗), (A.3.6e)

∑
iσ

[
ϕ∗i (r⃗σ)∇2ψ̃i(r⃗σ) +

(
∇2ϕ∗i (r⃗σ)

)
ψ̃i(r⃗σ)

]
⟨σ|σν |σ′⟩ = ∇2ρν(r⃗)− 2Tν(r⃗). (A.3.6f)

The matrix element which contains t1 term can be written as

Ṽ1 = − t1
16

∑
ij

⟨ϕiϕj
∣∣ (1 + x1P̂σ

)[(←−∇2
1 +
←−∇2

2 − 2
←−∇1 ·

←−∇2

)
δ(r⃗1 − r⃗2)

+δ(r⃗1 − r⃗2)
(−→∇2

1 +
−→∇2

2 − 2
−→∇1 ·

−→∇2

)](
1− P̂rP̂σP̂τ

) ∣∣ψ̃iψ̃j⟩
= V

(1)
1 + V

(2)
1 + V

(3)
1 + V

(4)
1 , (A.3.7)

where

Ṽ
(1)
1 = − t1

16

(
1 +

x1
2

)∑
ij

⟨ϕiϕj
∣∣[ (←−∇2

1 +
←−
∇2

2 − 2
←−
∇1 ·

←−
∇2

)
δ(r⃗1 − r⃗2)

+δ(r⃗1 − r⃗2)
(−→
∇2

1 +
−→
∇2

2 − 2
−→
∇1 ·

−→
∇2

)]∣∣ψ̃iψ̃j⟩, (A.3.8)

Ṽ
(2)
1 = − t1

16

x1
2

∑
ij

⟨ϕiϕj
∣∣[ (←−∇2

1 +
←−∇2

2 − 2
←−∇1 ·

←−∇2

)
δ(r⃗1 − r⃗2)

+δ(r⃗1 − r⃗2)
(−→∇2

1 +
−→∇2

2 − 2
−→∇1 ·

−→∇2

)]
σ⃗1 · σ⃗2

∣∣ψ̃iψ̃j⟩, (A.3.9)

Ṽ
(3)
1 =

t1
16

(
1

2
+ x1

)∑
ij

⟨ϕiϕj
∣∣[ (←−∇2

1 +
←−∇2

2 − 2
←−∇1 ·

←−∇2

)
δ(r⃗1 − r⃗2)

+δ(r⃗1 − r⃗2)
(−→∇2

1 +
−→∇2

2 − 2
−→∇1 ·

−→∇2

)]
P̂rP̂τ

∣∣ψ̃iψ̃j⟩, (A.3.10)

Ṽ
(4)
1 =

t1
16

1

2

∑
ij

⟨ϕiϕj
∣∣{(
←−∇2

1 +
←−∇2

2 − 2
←−∇1 ·

←−∇2)δ(r⃗1 − r⃗2)
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+δ(r⃗1 − r⃗2)(
−→∇2

1 +
−→∇2

2 − 2
−→∇1 ·

−→∇2)
}
σ⃗1 · σ⃗2P̂rP̂τ

∣∣ψ̃iψ̃j⟩. (A.3.11)

The V
(1)
1 , V

(2)
1 , V

(3)
1 , and V

(4)
1 are calculated as follows

Ṽ
(1)
1 = − t1

16

(
1 +

x1
2

)∫
dr⃗[∑

iσ1

{(
∇2ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ1) + ϕ∗i (r⃗σ1)

(
∇2ψ̃i(r⃗σ1)

)}∑
jσ2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ2)

+
∑
iσ1

ϕ∗i (r⃗σ1)ψ̃j(r⃗σ1)
∑
jσ2

{(
∇2ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ2) + ϕ∗j (r⃗σ2)

(
∇2ψ̃j(r⃗σ2)

)}
−2
{∑
iσ1

(
∇⃗ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ1)

∑
jσ2

(
∇⃗ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ2)

+
∑
iσ1

ϕ∗i (r⃗σ1)
(
∇⃗ψ̃i(r⃗σ1)

)∑
jσ2

ϕ∗j (r⃗σ2)
(
∇⃗ψ̃j(r⃗σ2)

)}]

= − t1
16

(
1 +

x1
2

)∫
dr⃗

[ (
∇2ρ(r⃗)− 2τ(r⃗)

)
ρ(r⃗) + ρ(r⃗)

(
∇2ρ(r⃗)− 2τ(r⃗)

)
−2

(
1

2
∇⃗ρ(r⃗)− i⃗j(r⃗)

)2

− 2

(
1

2
∇⃗ρ(r⃗) + i⃗j(r⃗)

)2 ]
=
t1
16

(
1 +

x1
2

)∫
dr⃗

[
4
(
ρ(r⃗)τ(r⃗)− j⃗(r⃗)2

)
− 3ρ(r⃗)∇2ρ(r⃗)

]
. (A.3.12)

V
(2)
1 =

t1
32

∫
dr⃗

[
∑
iσ1σ′

1

{(
∇2ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ1) + ϕ∗i (r⃗σ1)

(
∇2ψ̃i(r⃗σ1)

)}
⟨σ1
∣∣σ⃗∣∣σ′1⟩ ·∑

jσ2σ′
2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ2)⟨σ2
∣∣σ⃗∣∣σ′2⟩

+
∑
iσ1σ′

1

ϕ∗i (r⃗σ1)ψ̃j(r⃗σ1)⟨σ1
∣∣σ⃗∣∣σ′1⟩ ·∑

jσ2σ′
2

{(
∇2ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ2) + ϕ∗j (r⃗σ2)(∇2ψ̃j(r⃗σ2))

}
⟨σ2
∣∣σ∣∣σ′2⟩

−2
{∑
iσ1σ′

1

(
∇⃗ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ1)⟨σ1

∣∣σ∣∣σ′1⟩ ·∑
jσ2σ′

2

(
∇⃗ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ2)⟨σ2

∣∣σ⃗∣∣σ′2⟩
+
∑
iσ1σ′

1

ϕ∗i (r⃗σ1)
(
∇⃗ψ̃i(r⃗σ1)

)
⟨σ1
∣∣σ⃗∣∣σ′1⟩ ·∑

jσ2σ′
2

ϕ∗j (r⃗σ2)(∇⃗ψ̃j(r⃗σ2))
}
⟨σ2
∣∣σ⃗∣∣σ′2⟩

]

= − t1
32
x1

∫
dr⃗

[(
∇2ρ⃗(r⃗)− 2T⃗ (r⃗)

)
· ρ⃗(r⃗) + ρ⃗(r⃗) ·

(
∇2ρ⃗(r⃗)− 2T⃗ (r⃗)

)
−2

{{∑
µν

(
1

2
∂µρν(r⃗)− iJµν(r⃗)

)}2
+
{∑

µν

(
1

2
∂µρν(r⃗) + iJµν(r⃗))

}2}]

=
t1
32
x1

∫
dr⃗

[
4

(
ρ⃗(r⃗) · T⃗ (r⃗)−

∑
µν

Jµν(r⃗)2

)
− 3ρ⃗(r⃗) · ∇2ρ⃗(r⃗)

]
(A.3.13)
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Ṽ
(3)
1 = − t1

16

(
1

2
+ x1

)∑
τ

∫
dr⃗

[
∑
i∈τσ1

{(
∇2ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ1) + ϕ∗i (r⃗σ1)

(
∇2ψ̃i(r⃗σ1)

)} ∑
j∈τσ2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ2)

+
∑
i∈τσ1

ϕ∗i (r⃗σ1)ψ̃j(r⃗σ1)
∑
j∈τσ2

{ (
∇2ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ2) + ϕ∗j (r⃗σ2)

(
∇2ψ̃j(r⃗σ2)

)}
−2
{ ∑
i∈τσ1

(
∇⃗ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ1)

∑
j∈τσ2

(
∇⃗ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ2)

+
∑
i∈τσ1

ϕ∗i (r⃗σ1)
(
∇⃗ψ̃i(r⃗σ1)

) ∑
j∈τσ2

ϕ∗j (r⃗σ2)
(
∇⃗ψ̃j(r⃗σ2)

)}]

= − t1
16

(
1

2
+ x1)

∫
dr⃗

[ (
∇2ρ(r⃗)− 2τ(r⃗)

)
ρ(r⃗) + ρ(r⃗)

(
∇2ρ(r⃗)− 2τ(r⃗)

)
−2

(
1

2
∇⃗ρ(r⃗)− i⃗j(r⃗)

)2

− 2

(
1

2
∇⃗ρ(r⃗) + i⃗j(r⃗)

)2 ]
=

t1
16

(
1

2
+ x1

)∫
dr⃗

[
4
(
ρ(τ)(r⃗)τ (τ)(r⃗)− j⃗(τ)(r⃗)2

)
− 3ρ(τ)(r⃗)∇2ρ(τ)(r⃗)

]
(A.3.14)

Ṽ
(4)
1 = − t1

32
x1
∑
τ

∫
dr⃗

[
∑

i∈τσ1σ′
1

{(
∇2ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ1) + ϕ∗i (r⃗σ1)

(
∇2ψ̃i(r⃗σ1)

)}
⟨σ1
∣∣σ⃗∣∣σ′1⟩ ·∑

j∈τσ2σ′
2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ2)⟨σ2
∣∣σ⃗∣∣σ′2⟩

+
∑

i∈τσ1σ′
1

ϕ∗i (r⃗σ1)ψ̃j(r⃗σ1)⟨σ1
∣∣σ⃗∣∣σ′1⟩ ·∑

j∈τσ2σ′
2

{
(∇2ϕ∗j (r⃗σ2))ψ̃j(r⃗σ2) + ϕ∗j (r⃗σ2)(∇2ψ̃j(r⃗σ2))

}
⟨σ2
∣∣σ∣∣σ′2⟩

−2
{ ∑
i∈τσ1σ′

1

(∇⃗ϕ∗i (r⃗σ1))ψ̃i(r⃗σ1)⟨σ1
∣∣σ∣∣σ′1⟩ ·∑

j∈τσ2σ′
2

(∇⃗ϕ∗j (r⃗σ2))ψ̃j(r⃗σ2)⟨σ2
∣∣σ⃗∣∣σ′2⟩

+
∑

i∈τσ1σ′
1

ϕ∗i (r⃗σ1)
(
∇⃗ψ̃i(r⃗σ1)

)
⟨σ1
∣∣σ⃗∣∣σ′1⟩ ·∑

j∈τσ2σ′
2

ϕ∗j (r⃗σ2)
(
∇ψ̃j(r⃗σ2)

)}
⟨σ2
∣∣σ⃗∣∣σ′2⟩]

= − t1
32
x1
∑
τ

∫
dr⃗

[(
∇2ρ⃗(r⃗)− 2T⃗ (r⃗)

)
· ρ⃗(r⃗) + ρ⃗(r⃗) ·

(
∇2ρ⃗(r⃗)− 2T⃗ (r⃗)

)
−2

{{∑
µν

(
1

2
∂µρν(r⃗)− iJµν(r⃗)

)}2
+
{∑

µν

(
1

2
∂µρν(r⃗) + iJµν(r⃗)

)}2
}]

=
t1
32
x1
∑
τ

∫
dr⃗

[
4

(
ρ⃗(τ)(r⃗) · T⃗ (τ)(r⃗)−

∑
µν

J (τ)
µν (r⃗)2

)
− 3ρ⃗(τ)(r⃗) · ∇2ρ⃗(τ)(r⃗)

]
, (A.3.15)

Ṽ1 =
t1
4

∫
dr⃗

[
(1 +

x1
2

)
(
ρ(r⃗)τ(r⃗)− j⃗(r⃗)2

)
− 3

4

(
1 +

x1
2

)
ρ(r⃗)∇2ρ(r⃗)
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+
x1
2

(
ρ⃗(r⃗) · T⃗ (r⃗)−

∑
µν

Jµν(r⃗)2

)
− 3

8
x1ρ⃗(r⃗) · ∇2ρ⃗(r⃗)

]
− t1

4

∑
τ

∫
dr⃗

[(
1

2
+ x1

)(
ρ(τ)(r⃗)τ (τ)(r⃗)− j⃗(τ)(r⃗)2

)
− 3

4

(
1

2
+ x1

)
ρ(τ)(r⃗)∇2ρ(τ)(r⃗)

+
1

2

(
ρ⃗(τ)(r⃗) · T⃗ (τ)(r⃗)−

∑
µν

J (τ)
µν (r⃗)2

)
− 3

8
ρ⃗(τ)(r⃗) · ∇2ρ⃗(τ)(r⃗)

]
(A.3.16)

t2 term

Ṽ2 = − t2
8

∑
ij

⟨ϕiϕj
∣∣(1 + x1P̂σ)(

←−
∇1 −

←−
∇2)δ(r⃗1 − r⃗2) · (

−→
∇1 −

−→
∇2)(1− P̂rP̂σP̂τ )

∣∣ψ̃iψ̃j⟩
= Ṽ

(1)
2 + Ṽ

(2)
2 + Ṽ

(3)
2 + Ṽ

(4)
2 , (A.3.17)

where

Ṽ
(1)
2 = − t2

8

(
1 +

x2
2

)∑
ij

⟨ϕiϕj
∣∣ (←−∇1 −

←−∇2

)
δ(r⃗1 − r⃗2) ·

(−→∇1 −
−→∇2

) ∣∣ψ̃iψ̃j⟩ (A.3.18a)

Ṽ
(2)
2 =

t2
8

x2
2

∑
ij

⟨ϕiϕj
∣∣ (←−∇1 −

←−∇2

)
δ(r⃗1 − r⃗2) ·

(−→∇1 −
−→∇2

)
σ⃗1 · σ⃗2

∣∣ψ̃iψ̃j⟩ (A.3.18b)

Ṽ
(3)
2 = − t2

8

(
1

2
+ x2

)∑
ij

⟨ϕiϕj
∣∣ (←−∇1 −

←−∇2

)
δ(r⃗1 − r⃗2) ·

(−→∇1 −
−→∇2

)
P̂rP̂τ

∣∣ψ̃iψ̃j⟩, (A.3.18c)

Ṽ
(4)
2 = − t2

8

1

2

∑
ij

⟨ϕiϕj
∣∣ (←−∇1 −

←−
∇2

)
δ(r⃗1 − r⃗2) ·

(−→
∇1 −

−→
∇2

)
σ⃗1 · σ⃗2P̂rP̂τ

∣∣ψ̃iψ̃j⟩. (A.3.18d)

Ṽ
(1)
2 =

t2
8

(
1 +

x2
2

)∫
dr⃗

[∑
iσ1

(
∇⃗ϕ∗i (r⃗σ1)

)
·
(
∇⃗ψ̃i(r⃗σ1)

)∑
jσ2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ2)

−
∑
iσ1

(
∇⃗ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ1) ·

∑
jσ2

ϕ∗j (r⃗σ2)
(
∇⃗ψ̃j(r⃗σ2)

)
−
∑
iσ1

ϕ∗i (r⃗σ1)
(
∇⃗ψ̃j(r⃗σ1)

)
·
∑
jσ2

(
∇⃗ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ2)

+
∑
iσ1

ϕ∗i (r⃗σ1)ψ̃i(r⃗σ1)
∑
jσ2

(
∇⃗ϕ∗j (r⃗σ2)

)
·
(
∇⃗ψ̃j(r⃗σ2)

)]

=
t2
8

(1 +
x2
2

)

∫
dr⃗

[
τ(r⃗)ρ(r⃗)− (

1

2
∇⃗ρ(r⃗)− i⃗j(r⃗))(1

2
∇⃗ρ(r⃗) + i⃗j(r⃗))

−
(

1

2
∇⃗ρ(r⃗) + i⃗j(r⃗)

)(
1

2
∇⃗ρ(r⃗)− i⃗j(r⃗)

)
+ ρ(r⃗)τ(r⃗)

]
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=
t2
4

(1 +
x2
2

)

∫
dr⃗

[(
ρ(r⃗)τ(r⃗)− j⃗(r⃗)2

)
+

1

4
ρ(r⃗)∇2ρ(r⃗)

]
(A.3.19)

Ṽ
(2)
2

=
t2
16
x2

∫
dr⃗

[ ∑
iσ1σ′

1

(
∇⃗ϕ∗i (r⃗σ1)

)
·
(
∇⃗ψ̃i(r⃗σ′1)

)
⟨σ1
∣∣σ⃗∣∣σ′1⟩∑

jσ2σ′
2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ
′
2)⟨σ2

∣∣σ⃗∣∣σ′2⟩
−
∑
iσ1σ′

1

(
∇⃗ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ

′
1)⟨σ1

∣∣σ⃗∣∣σ′1⟩ ·∑
jσ2σ′

2

ϕ∗j (r⃗σ2)
(
∇⃗ψ̃j(r⃗σ′2)

)
⟨σ2
∣∣σ⃗∣∣σ′2⟩

−
∑
iσ1σ′

1

ϕ∗i (r⃗σ1)
(
∇⃗ψ̃i(r⃗σ′1)

)
⟨σ1
∣∣σ⃗∣∣σ′1⟩ ·∑

jσ2σ′
2

(
∇⃗ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ

′
2)⟨σ2

∣∣σ⃗∣∣σ′2⟩
+
∑
iσ1σ′

1

ϕ∗i (r⃗σ1)ψ̃i(r⃗σ
′
1)⟨σ1

∣∣σ⃗∣∣σ′1⟩∑
jσ2σ′

2

(∇⃗ϕ∗j (r⃗σ2)) ·
(
∇⃗ψ̃j(r⃗σ′2)

)
⟨σ2
∣∣σ⃗∣∣σ′2⟩

]

=
t2
16
x2

∫
dr⃗

[
T⃗ (r⃗) · ρ⃗(r⃗)−

∑
µν

(
1

2
∂µρν − iJµν(r⃗)

)(
1

2
∂µρν + iJµν(r⃗)

)

−
∑
µν

(
1

2
∂µρν + iJµν(r⃗)

)(
1

2
∂µρν − iJµν(r⃗)

)
+ ρ⃗(r⃗) · T⃗ (r⃗)

]

=
t2
8
x2

∫
dr⃗

[(
ρ⃗(r⃗) · T⃗ (r⃗)−

∑
µν

J2
µν

)
+

1

4
ρ⃗(r⃗) · ∇2ρ⃗(r⃗)

]
,

(A.3.20)

Ṽ
(3)
2 =

t2
8

(
1

2
+ x2)

∫
dr⃗

[ ∑
iσ1σ′

1

(
∇⃗ϕ∗i (r⃗σ1)

)
·
(
∇⃗ψ̃i(r⃗σ′1)

)∑
jσ2σ′

2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ
′
2)

−
∑
iσ1σ′

1

(
∇⃗ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ

′
1) ·
∑
jσ2σ′

2

ϕ∗j (r⃗σ2)
(
∇⃗ψ̃j(r⃗σ′2)

)
−
∑
iσ1σ′

1

ϕ∗i (r⃗σ1)
(
∇⃗ψ̃i(r⃗σ′1)

)
·
∑
jσ2σ′

2

(
∇⃗ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ

′
2)

+
∑
iσ1σ′

1

ϕ∗i (r⃗σ1)ψ̃i(r⃗σ
′
1)
∑
jσ2σ′

2

(
∇⃗ϕ∗j (r⃗σ2)

)
·
(
∇⃗ψ̃j(r⃗σ′2)

)]

=
t2
8

(
1

2
+ x2

)∑
τ

∫
dr⃗

[
τ (τ)(r⃗)ρ(τ)(r⃗)−

(
1

2
∇⃗ρ(τ)(r⃗)− i⃗j(τ)(r⃗)

)(
1

2
∇⃗ρ(τ)(r⃗) + i⃗j(τ)(r⃗)

)
−(

1

2
∇⃗ρ(τ)(r⃗) + i⃗j(τ)(r⃗))(

1

2
∇⃗ρ(τ)(r⃗)− i⃗j(τ)(r⃗)) + ρ(τ)(r⃗)τ (τ)(r⃗))

]
=
t2
4

(1 +
x2
2

)
∑
τ

∫
dr⃗

[
(ρ(τ)(r⃗)τ (τ)(r⃗)− j⃗(τ)(r⃗)2) +

1

4
ρ(τ)(r⃗)∇2ρ(τ)(r⃗)

]
, (A.3.21)
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Ṽ
(4)
2 = − t2

16

∫
dr⃗1dr⃗2

[ ∑
iσ1σ′

1

{(
∇⃗ϕ∗i (r⃗1σ1)

)
ψ̃i(r⃗σ2)− ϕ∗i (r⃗σ1)

(
∇⃗ψ̃i(r⃗σ2)

)}
⟨σ1
∣∣σ⃗∣∣σ′1⟩

∑
jσ2σ′

2

{
(∇⃗ϕ∗i (r⃗1σ1))ψ̃i(r⃗σ2)− ϕ∗i (r⃗σ1)(∇⃗ψ̃i(r⃗σ2))

}
⟨σ2
∣∣σ⃗∣∣σ′2⟩

]

=
t2
16

∫
dr⃗

[ ∑
iσ1σ′

1

(
∇⃗ϕ∗i (r⃗σ1)

)
·
(
∇⃗ψ̃i(r⃗σ′1)

)
⟨σ1
∣∣σ⃗∣∣σ′1⟩∑

jσ2σ′
2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ
′
2)⟨σ2

∣∣σ⃗∣∣σ′2⟩
−
∑
iσ1σ′

1

(
∇⃗ϕ∗i (r⃗σ1)

)
ψ̃i(r⃗σ

′
1)⟨σ1

∣∣σ⃗∣∣σ′1⟩ ·∑
jσ2σ′

2

ϕ∗j (r⃗σ2)
(
∇⃗ψ̃j(r⃗σ′2)

)
⟨σ2
∣∣σ⃗∣∣σ′2⟩

−
∑
iσ1σ′

1

ϕ∗i (r⃗σ1)
(
∇⃗ψ̃i(r⃗σ′1)

)
⟨σ1
∣∣σ⃗∣∣σ′1⟩ ·∑

jσ2σ′
2

(
∇⃗ϕ∗j (r⃗σ2)

)
ψ̃j(r⃗σ

′
2)⟨σ2

∣∣σ⃗∣∣σ′2⟩
+
∑
iσ1σ′

1

ϕ∗i (r⃗σ1)ψ̃i(r⃗σ
′
1)⟨σ1

∣∣σ⃗∣∣σ′1⟩∑
jσ2σ′

2

(
∇⃗ϕ∗j (r⃗σ2)

)
·
(
∇⃗ψ̃j(r⃗σ′2)

)
⟨σ2
∣∣σ⃗∣∣σ′2⟩]

=
t2
16

∑
τ

∫
dr⃗

[
T⃗ (τ)(r⃗) · ρ⃗(τ)(r⃗)−

∑
µν

(
1

2
∂µρ

(τ)
ν − iJ (τ)

µν (r⃗))(
1

2
∂µρ

(τ)
ν + iJ (τ)

µν (r⃗))

−
∑
µν

(
1

2
∂µρ

(τ)
ν + iJ (τ)

µν (r⃗))(
1

2
∂µρ

(τ)
ν − iJ (τ)

µν (r⃗)) + ρ⃗(τ)(r⃗) · T⃗ (τ)(r⃗)

]

=
t2
8

∑
τ

∫
dr⃗

[(
ρ⃗(τ)(r⃗) · T⃗ (τ)(r⃗)−

∑
µν

J (τ)2
µν

)
+

1

4
ρ⃗(τ)(r⃗) · ∇2ρ⃗(τ)(r⃗)

]
(A.3.22)

Finally we can write t2 term as

Ṽ2 =
t2
4

∫
dr⃗

[
1

4

(
1 +

x2
2

)
ρ∇2ρ+

x2
2

(
ρ⃗ · T⃗ −

∑
µν

J2
µν

)

+
(

1 +
x2
2

)(
ρτ − j⃗2

)
+
x2
8
ρ⃗ · ∇2ρ⃗

]

+
t2
4

∑
τ

∫
dr⃗

[
1

4
(
1

2
+ x2)ρ

(τ)∇2ρ(τ) +
1

2

(
ρ⃗(τ) · T⃗ (τ) −

∑
µν

J (τ)2
µν

)

+

(
1

2
+ x2

)(
ρ(τ)τ (τ) − j⃗(τ)2

)
+

1

8
ρ⃗(τ) · ∇2ρ⃗(τ)

]
. (A.3.23)

W0 term

We use following equations:

i∇⃗ × j⃗ =
1

2

∑
iσ

{(
∇⃗ϕ∗i (r⃗σ)

)
×
(
∇⃗ψ̃i(r⃗σ)

)
+
(
∇⃗ϕ∗i (r⃗σ)

)
×
(
∇⃗ψ̃i(r⃗σ)

)
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+ϕ∗i (r⃗σ)
(
∇⃗ × ∇⃗ψ̃i(r⃗σ)

)
+
(
∇⃗ × ∇⃗ϕ∗i (r⃗σ)

)
ψ̃i(r⃗σ))

}
=

∑
iσ

(
∇⃗ϕ∗i (r⃗σ)

)
×
(
∇⃗ψ̃i(r⃗σ)

)
(A.3.24)

∑
σσ′

{
(
∑
i

ϕ∗i (r⃗σ)(∇⃗ψ̃j(r⃗σ′))× ⟨σ
∣∣σ⃗∣∣σ⟩}

λ

=
∑
iσσ′

∑
µν

ϵλµνϕ
∗
i (r⃗σ)(∂µψ̃j(r⃗σ

′))× ⟨σ
∣∣σν∣∣σ⟩

=
∑
µν

ϵλµν(
1

2
∂µρν + iJµν) (A.3.25)

∑
σσ′

{
(
∑
i

(∇⃗ϕ∗i (r⃗σ))ψ̃j(r⃗σ
′))× ⟨σ

∣∣σ⃗∣∣σ⟩}
λ

=
∑
iσσ′

∑
µν

ϵλµν(∂µϕ
∗
i (r⃗σ))ψ̃j(r⃗σ

′)× ⟨σ
∣∣σν∣∣σ⟩

=
∑
µν

ϵλµν(
1

2
∂µρν − iJµν) (A.3.26)

i∇⃗ · J⃗(r⃗) = i
∑
λµν

ϵλµν∂λJµν

=
∑
λµν

ϵλµν∂λ
{∑
iσσ′

ϕ∗i (r⃗σ)(∂µψ̃i(r⃗σ))⟨σ|σν |σ′⟩ −
1

2
∂µρν(r⃗)

}
=

∑
iσσ′

∑
ν

{∑
λµ

ϵλµν(∂λϕ
∗
i (r⃗σ))(∂µψ̃i(r⃗σ))

}
⟨σ|σν |σ′⟩

+
∑
iσσ′

ϕ∗i (r⃗σ)
∑
ν

{∑
λµ

ϵλµν(∂λ∂µψ̃i(r⃗σ))
}
⟨σ|σν |σ′⟩ −

1

2

∑
λµν

ϵλµν(∂λ∂µρν(r⃗))

=
∑
iσσ′

{
(∇⃗ϕ∗i (r⃗σ))× (∇⃗ψ̃i(r⃗σ))

}
· ⟨σ|σ⃗|σ′⟩ (A.3.27)

ṼW0 =
iW0

8

∑
ij

⟨ϕiϕj
∣∣(σ⃗1 + σ⃗2) · (

←−
∇1 −

←−
∇2)× δ(r⃗1 − r⃗2)(

−→
∇1 −

−→
∇2)(1− P̂rP̂σP̂τ )

∣∣ψ̃iψ̃j⟩
(A.3.28)

Only when the resultant spin S = (σ⃗1 + σ⃗2) is 1, the ṼW0 is non-zero; P̂σ = 1. Then ṼW0 can
be written as follows

ṼW0 = Ṽ
(1)
W0

+ Ṽ
(2)
W0

91



APPENDIX A. ENERGY FUNCTIONAL


Ṽ

(1)
W0

=
iW0

8

∑
ij

⟨ϕiϕj
∣∣(σ⃗1 + σ⃗2) · (

←−∇1 −
←−∇2)× δ(r⃗1 − r⃗2)(

−→∇1 −
−→∇2)

∣∣ψ̃iψ̃j⟩
Ṽ

(2)
W0

= − iW0

8

∑
ij

⟨ϕiϕj
∣∣(σ⃗1 + σ⃗2) · (

←−∇1 −
←−∇2)× δ(r⃗1 − r⃗2)(

−→∇1 −
−→∇2)P̂rP̂τ )

∣∣ψ̃iψ̃j⟩

Ṽ
(1)
W0

=
iW0

8

∫
dr⃗1dr⃗2δ(r⃗1 − r⃗2)

∑
ij

(⟨σ1
∣∣σ⃗∣∣σ2⟩+ ⟨σ′1

∣∣σ⃗∣∣σ′2⟩)
·
[{

(∇⃗ϕ∗i (r⃗1σ1)ϕ∗j (r⃗2σ2)− ϕ∗i (r⃗1σ⃗2)(∇⃗ϕ∗j (r⃗2σ2))
}

×
{

(∇⃗ψ̃∗
i (r⃗1σ1)ψ̃

∗
j (r⃗2σ2)− ψ̃∗

i (r⃗1σ⃗2)(∇⃗ψ̃∗
j (r⃗2σ2))

}]
=

iW0

8

∫
dr⃗
[ ∑
iσ1σ′

1

(∇⃗ϕ∗i (r⃗σ⃗1))× (∇⃗ψ̃i(r⃗σ′1)) · ⟨σ1
∣∣σ⃗∣∣σ′1⟩ ∑

jσ2σ′
2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ
′
2)

+
∑
iσ1σ′

1

ϕ∗i (r⃗σ⃗1)ψ̃i(r⃗σ
′
1)
∑
jσ2σ′

2

(∇⃗ϕ∗j (r⃗σ2))× (∇⃗ψ̃j(r⃗σ′2)) · ⟨σ2
∣∣σ⃗∣∣σ′2⟩

+
∑
iσ1σ′

1

(∇⃗ϕ∗i (r⃗σ⃗1))× (∇⃗ψ̃i(r⃗σ′1)) ·
∑
jσ2σ′

2

ϕ∗j (r⃗σ2)ψ̃j(r⃗σ
′
2)⟨σ2

∣∣σ⃗∣∣σ′2⟩
+
∑
iσ1σ′

1

ϕ∗i (r⃗σ⃗1)ψ̃i(r⃗σ
′
1)⟨σ2

∣∣σ⃗∣∣σ′2⟩ · ∑
jσ2σ′

2

(∇⃗ϕ∗j (r⃗σ2))× (∇⃗ψ̃j(r⃗σ′2))

+
∑
iσ1σ′

1

ϕ∗i (r⃗σ⃗1)(∇⃗ψ̃i(r⃗σ′1)) ·
∑
jσ2σ′

2

(∇⃗ϕ∗j (r⃗σ2))ψ̃j(r⃗σ′2)× ⟨σ2
∣∣σ⃗∣∣σ′2⟩

+
∑
iσ1σ′

1

(∇⃗ϕ∗i (r⃗σ⃗1))ψ̃i(r⃗σ′1)× ⟨σ1
∣∣σ⃗∣∣σ′1⟩ · ∑

jσ2σ′
2

ϕ∗j (r⃗σ2)(∇⃗ψ̃j(r⃗σ′2))

−
∑
iσ1σ′

1

(∇⃗ϕ∗i (r⃗σ⃗1))ψ̃i(r⃗σ′1) ·
∑
jσ2σ′

2

ϕ∗j (r⃗σ2)(∇⃗ψ̃j(r⃗σ′2))× ⟨σ2
∣∣σ⃗∣∣σ′2⟩

−
∑
iσ1σ′

1

ϕ∗i (r⃗σ⃗1)(∇⃗ψ̃i(r⃗σ′1))× ⟨σ1
∣∣σ⃗∣∣σ′1⟩ · ∑

jσ2σ′
2

(∇⃗ϕ∗j (r⃗σ2))ψ̃j(r⃗σ′2)
]

=
iW0

4

∫
dr⃗
[
i(∇⃗ × j⃗(r⃗)) · ρ⃗(r⃗) + iρ(r⃗)∇⃗ · J⃗(r⃗)

+
∑
λµν

(
1

2
∇⃗ρ(r⃗) + i⃗j(r⃗))λϵλµν(

1

2
∂µρν − iJµν)

−
∑
λµν

(
1

2
∇⃗ρ(r⃗)− i⃗j(r⃗))λϵλµν(

1

2
∂µρν + iJµν)

]
= −W0

4

∫
dr⃗
[
(∇⃗ × j⃗(r⃗)) · ρ⃗(r⃗) + ρ(r⃗)∇⃗ · J⃗(r⃗) +

∑
λµν

ϵλµν
{⃗
j(r⃗)λ∂µρν − (∂λρ(r⃗))Jµν)

]
= −W0

2

∫
dr⃗
[
(∇⃗ × j⃗(r⃗)) · ρ⃗(r⃗) + ρ(r⃗)∇⃗ · J⃗(r⃗)

]
(A.3.29)
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Finally we can write W0 term as

Ṽ
(2)
W0

=
iW0

8

∫
dr⃗1dr⃗2δ(r⃗1 − r⃗2)

∑
τ

∑
ij∈τ

(⟨σ1
∣∣σ⃗∣∣σ2⟩+ ⟨σ′1

∣∣σ⃗∣∣σ′2⟩)
·
[{

(∇⃗ϕ∗i (r⃗1σ1)ϕ∗j (r⃗2σ2)− ϕ∗i (r⃗1σ⃗2)(∇⃗ϕ∗j (r⃗2σ2))
}

×
{
ψ̃i(r⃗2σ⃗2)(∇⃗ψ̃j(r⃗1σ2))− (∇⃗ψ̃i(r⃗2σ1))ψ̃j(r⃗1σ2)

}]
= − iW0

8

∫
dr⃗
∑
τ

∑
ij∈τ

(⟨σ1
∣∣σ⃗∣∣σ2⟩+ ⟨σ′1

∣∣σ⃗∣∣σ′2⟩)
·
[{

(∇⃗ϕ∗i (r⃗σ1)ϕ∗j (r⃗σ2)− ϕ∗i (r⃗σ⃗2)(∇⃗ϕ∗j (r⃗σ2))
}

×
{

(∇⃗ψ̃i(r⃗σ1))ψ̃j(r⃗σ2)− ψ̃i(r⃗σ⃗2)(∇⃗ψ̃j(r⃗σ2))
}]

=
W0

2

∑
τ

∫
dr⃗
[
(∇⃗ × j⃗(τ)(r⃗)) · ρ⃗(τ)(r⃗) + ρ(τ)(r⃗)∇⃗ · J⃗ (τ)(r⃗)

]
. (A.3.30)
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Appendix B

Numerical methods

B.1 Finite lattice method and Fourier transform method for
Gogny interaction

We examine a convergence of calculated matrix element of Gogny Hamiltonian ĤGogny with
respect to the radius Rf which was mentioned in Sec. 2.5.2. We calculate the matrix element

⟨Ψ| ĤGogny |Ψ⟩ by changing Rf . We chose |Ψ⟩ as Skyrme HF state with SLy4 parameter and
employ D1S parameter for Gogny interaction.

In Fig. B.1, the vertical axis shows the calculated value of the expectation value, while
the horizontal axis shows the radius Rf . The calculated value by using all mesh points

is shown as dots line at -130.5 MeV. The value of the expectation value ⟨Ψ| ĤGogny |Ψ⟩
gradually approaches to 130.5 MeV as Rf gets larger. Once Rf is larger than about 3 fm,
the value is almost equal to -130.5 MeV. We thus conclude that the value of the expectation
value of Gogny Hamiltonian is converged, if Rf is more than about 3 fm. We next discuss
computational costs to calculate the expectation value of Gogny Hamiltonian.

Before showing the result, we estimate computational costs for ”Finite spherical lattice”
and ”Fourier transform”. First, we estimate the computational cost for ”Finite spherical
lattice”. The computational cost to calculate the integration in Eq. (2.5.6) is proportion to
the product of Nbox and Nsphere, where the Nbox is the number of mesh points for r⃗ and
the Nsphere is the number of mesh points r⃗′. On the other hand, the computational cost to
calculate the densities of Eq. (2.5.7) is proportional to Nbox × Nsphere and to the nucleon
number, A. Because the calculations of the densities need to be performed A times, it is
the main part of the numerical calculation. The computational costs to calculate the matrix
element by ”Finite spherical lattice” is proportion to about Nbox × Nsphere × A. Next, we
estimate the computational cost for ”Fourier transform”. Since the computational cost is
proportion to the number of times to perform Fourier transform, the computational cost
for ”Fourier transform” is proportion to A2. Finally we estimate the computational cost of
”Skyrme” for comparison. The energy functional is composed of several densities having r⃗
as variable. Integration of the density over space yields the number of nucleons. Because the
calculation of densities is the main part of the numerical calculation, the computational cost
of ”Skyrme” is proportion to Nbox × A. Typical, Nbox is about 4,000 and Nsphere is about
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Figure B.1: Calculated expectation value of Gogny Hamiltonian for 16O as a function of Rf .
The horizontal line is the calculated value using all mesh points.

500 for Rf = 3.2 fm.

We show CPU time for numerical methods of matrix element of Gogny and Skyrme
Hamiltonians by changing nucleon number in Fig. B.2. The horizontal axis shows the number
of nucleon A. The CPU times are normalized to the CPU time to calculate matrix elements
of Skyrme Hamiltonian. Namely, CPU time for ”Skyrme” is 1 for all number of nucleons
in the Figure. In the Fig. B.2, the normalized CPU time for ”Finite spherical lattice”　 is
about 15 and does not change by varying the number of nucleon A. This result indicates
that calculation of matrix element for Gogny Hamiltonian by ”Finite spherical lattice” takes
15 times longer than that of ”Skyrme” for all nuclei. These results are consistent with
the estimation in the previous paragraph: The CPU time for ”Finite spherical lattice” is
proportion to about Nbox ×Nsphere × A, while the CPU time for ”Skyrme” is proportion to
about Nbox × A. The normalized CPU time by the CPU time of ”Skyrme” is constant to
change of A.

In the Fig. B.2, the normalized CPU time for ”Fourier transform”　 scales linearly with
the number of nucleon. This result is consistent with the estimation: The normalized CPU
time is proportionate A, since the CPU time for ”Fourier transform” is proportion to the
squared A. As seen from the Fig. B.2, the normalized CPU time for ”Fourier transform” is
larger than that for ”Finite spherical lattice” for all nucleon (A < 12). We conclude that
”Finite spherical lattice” is more effective than ”Fourier transform” at least A = 12 or more
nucleus.

Finally we discuss numerical cost for ”All lattice”, which is almost the same method as
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GOGNY INTERACTION
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Figure B.2: CPU times for matrix element VF which is normalized by CPU time for matrix
element of Skyrme force. The ”All lattice” is CPU time employed all mesh points. The
”All lattice (Density)” is CPU time for calculation of density of ”All lattice”. The ”Finite
spherical lattice” and ”Fourier transform” is CPU time by methods of Finite spherical lattice
and Fourier transform, respectively. In the Finite spherical lattice, we chose Rf = 3.2 fm.

”Finite spherical method” while the all mesh points of r⃗′ are employed. We expect that the
numerical cost is proportion to the squared Nsphere and proportion to the number of nucleon
A. From the simple estimation, the numerical cost for ”All lattice” is Nsphere/Nbox ≈ 8 times
more expensive than that for ”Finite spherical lattice”. However, since the mesh points of r⃗
for ”Finite spherical lattice” dose not suite for numerical calculation, it became smaller than
8 times. In the Fig. B.2, the normalized CPU time for ”All lattice” is about 15 times larger
than that for ”Finite spherical lattice” at A = 12 and is gradually decreased as the number
of nucleon increased. Examining the details, the numerical cost to calculate integration in
Eq. (2.5.6) is expected to be constant with A. The normalized CPU time of this integration is
decreased linearly [Fig. B.2 All lattice (Integration)]. The numerical cost to calculate densities
in Eq. (2.5.7) is decreased as A increased [Fig. B.2 All lattice (Densities)], although we expect
that the cost for the densities is proportion to A. This may be because the optimization of
numerical calculation become easier as the size of array ρ become larger.
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B.2 Center of mass correction

We assume that N -body wave function can be written as product of wave functions of center
of mass ϕ(R⃗G) and internal coordinate Φint(r⃗1, · · · , r⃗N ):

Φ(r⃗1, · · · r⃗N ) = ϕ(R⃗G)Φint(r⃗1, · · · , r⃗N ), (B.2.1)

where R⃗G is position vector of center-of-mass. The internal wave function satisfies the fol-
lowing equation:

Φint(r⃗1 − a⃗, · · · , r⃗N − a⃗) = Φint(r⃗1, · · · , r⃗N ), (B.2.2)

where a⃗ is arbitrary vector. The wave function of internal coordinate in Jacobi coordinate
{ξ⃗1, · · · , ξ⃗N−1} is written as

Φint(r⃗1, · · · , r⃗N ) = Φ′
int(ξ⃗1, · · · , ξ⃗N−1). (B.2.3)

We assume that the center-of-mass and internal wave-function is normalized, respectively:∫
dR⃗G|ϕG(R⃗G)|2 = 1 (B.2.4)∫

dξ⃗1 · · · dξ⃗N−1|Φ′
int(ξ⃗1, · · · , ξ⃗N−1)|2 = 1. (B.2.5)

The rms radius corrected for center-of-mass is given by

⟨
r2
⟩
int

=

∫
dξ1 · · · ξN−1|Φ′

int(ξ⃗1, · · · , ξ⃗N−1)|2
1

N

N∑
i=1

(r⃗i − R⃗G)2

=

∫
R⃗G|ϕG(R⃗G)|2

∫
dξ⃗1 · · · ξ⃗N−1|Φ′

int(ξ⃗1, · · · , ξ⃗N−1)|2
N∑
i=1

1

N
(r⃗i − R⃗G)2

=

∫
dr⃗1 · · · r⃗N |Φ(r⃗1, · · · , r⃗N )|2

N∑
i=1

1

N
(r⃗i − R⃗G)2

=

∫
dr⃗1 · · · r⃗N |Φ(r⃗1, · · · , r⃗N )|2

( N∑
i=1

1

N
r⃗2i − R⃗2

G

)
=

⟨
r2
⟩
−
∫
dR⃗GR⃗

2
G|ϕG(R⃗G)|2, (B.2.6)

where ⟨
r2
⟩

=

∫
dr⃗1 · · · r⃗N |Φ(r⃗1, · · · , r⃗N )|2 1

N

N∑
i=1

r⃗2i . (B.2.7)

⟨
r2
⟩

is radius before correction of center-of-mass effect, and can be calculated by present
calculation numerically. We evaluate second term in Eq. (B.2.6) by using harmonic-oscillator
shell-model: ∫

dR⃗GR⃗
2
G|ϕG(R⃗G)|2 =

3

4Nν
. (B.2.8)
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Here, we use the wave function of center-of-mass by harmonic-oscillator shell-model:

ϕG(R⃗G) =

(
2Nν

π

) 3
4

exp[−NνR⃗2
G], (B.2.9)

where we used shell-model single-particle wave functions:

ϕi(r⃗) = pi(r⃗)e
−νr2 (pi(r⃗) : polynomial of r⃗). (B.2.10)

We use the width parameter of harmonic-oscillator 1/(2ν) = h̄/(mω) = 0.90A1/3+0.07fm2 in
Ref. [114]. We note that the evaluation of center-of-mass correction in this section is accurate
only for the ground state. However, we use this evaluation for excited states.

B.3 Lagrange mesh

In Eqs. (2.3.6), (2.3.7), (2.3.9), and (2.3.10), we operate on ĵy and ĵz many times. In order to
perform these operations of ĵy and ĵz as exactly as possible, we use Lagrange mesh method
for first derivative contained in the operators ĵy and ĵz. In this section, we show the Lagrange
mesh method for a first derivative of a function ψ(x).

We expand the function ψ(x) as basis function ϕk (k = 1, · · · , Np):

ψ(x) =

Np∑
i=1

λ
1/2
i ψ(xi)fi(x), (B.3.1)

where

λi =

 Np∑
k=1

|ϕk(xi)|2
−1

(B.3.2)

fi(x) = λ
1/2
i

Np∑
k=1

ϕ∗k(xi)ϕk(x). (B.3.3)

If ϕk(xi) is first sin basis

ϕk(xi) =
√

2sin

[
πk

xi
Np

]
(k = 1, · · · , Np), (B.3.4)

where xi = i (i = 0, · · · , Np),

λ−1
i = Np −

cos [(N − 1)πxi] sin [Nπxi]

2sin[xi]
= Np (B.3.5)

fi(x) = 2N−1/2
p

Np∑
k=1

sin

[
π

Np
kx

]
sin

[
π

Np
kxi

]
. (B.3.6)
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Finally, we get the derivative of the function ψ(x)

ψ′(x) =

Np∑
i=1

λ
1/2
i ψ(xi)f

′
i(x), (B.3.7)

where

f ′i(x) = 2N−1/2
p

π

Np

Np∑
k=1

kcos

[
π

Np
kx

]
sin

[
π

Np
kxi

]
. (B.3.8)

B.4 Matrix elements of tensor operator

To calculate transition strengths, we need to estimate matrix elements of tensor operator. The
matrix elements of the given tensor operator T̂λµ (rank k) between two angular momentum
projected states are calculated as follows:

8π2

2J2 + 1

8π2

2J1 + 1

⟨
P J2M2K2

Φ2

∣∣T̂λµ∣∣P̂ J1M1K1
Φ1

⟩
=

∫∫
dΩ2dΩ1D

J2∗
M2K2

(Ω2)D
J1
M1K1

(Ω1)
⟨
Φ2

∣∣R̂†(Ω2)Q̂2µR̂(Ω1)
∣∣Φ1

⟩
=

∫∫
dΩ2dΩ1D

J2∗
M2K2

(Ω2)D
J1
M1K1

(Ω1)
⟨
Φ2

∣∣{R̂†(Ω2)T̂λµR̂(Ω2)}R̂†(Ω2)R̂(Ω1)
∣∣Φ1

⟩
=

∫∫
dΩ2dΩ1D

J2∗
M2K2

(Ω2)D
J1
M1K1

(Ω1)
⟨
Φ2

∣∣ λ∑
δ=−λ

Dλ
µδ(Ω2)T̂λδR̂

†(Ω2)R̂(Ω1)
∣∣Φ1

⟩
=

∫∫
dΩ2dΩDJ2∗

M2K2
(Ω2)

J1∑
K=−J1

DJ1
M1K

(Ω2)D
J1
KK1

(Ω)
⟨
Φ2

∣∣ λ∑
δ=−λ

Dλ
µδ(Ω2)T̂λδR̂(Ω)

∣∣Φ1

⟩
=

8π2

2J2 + 1

⟨
J1λM1µ

∣∣J2M2

⟩ J1∑
K=−J1

λ∑
δ=−λ

⟨
J1λKδ

∣∣J2K2

⟩ ∫
dΩDJ1

KK1
(Ω)
⟨
Φ2

∣∣T̂λδR̂(Ω)
∣∣Φ1

⟩
=

8π2

2J2 + 1

⟨
J1λM1µ

∣∣J2M2

⟩ J1∑
K=−J1

λ∑
δ=−λ

⟨
J1λKδ

∣∣J2K2

⟩
×
∫
dΩeiαδDJ1

KK1
(Ω)
⟨
Φ2

∣∣e−iαĴz T̂λδe−iβĴye−iγĴz ∣∣Φ1

⟩
Using Wigner-Eckart theorem

⟨
P J2M2K2

Φ2

∣∣T̂λµ∣∣P̂ J1M1K1
Φ1

⟩
= (2J2 + 1)−1/2

⟨
J1λM1µ

∣∣J2M2

⟩⟨
J2
∥∥T̂λ∥∥J1⟩, (B.4.1)
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we can calculate B(Eλ) as

B(Eλ;Ji → Jf ) ≡ 1

2Ji + 1

∣∣∣⟨Jf∥∥T̂λ∥∥Ji⟩∣∣∣2
=

(
2Jf + 1

8π2

)(
2Ji + 1

8π2

) ∣∣∣∣∣∣
J1∑

K=−J1

λ∑
δ=−λ

⟨
J1λKδ

∣∣J2K2

⟩
(B.4.2)

∫
dΩeiαδDJ1

KK1
(Ω)
⟨
Φ2

∣∣e−iαĴz T̂λδe−iβĴye−iγĴz ∣∣Φ1

⟩∣∣∣∣ . (B.4.3)

This equation is only true if
⟨
J1λM1µ

∣∣J2M2

⟩
̸= 0.

B.5 Single-particle Hamiltonian

The single-particle Hamiltonian hHF is defined as

ĥ
(τ)
HF (r⃗) = − h̄2

2m
∇2 + ĥ(τ)e (r⃗) + ĥ(τ)o (r⃗), (B.5.1)

where 
ĥ(τ)e = −∇⃗ ·M (τ)(r⃗)∇⃗+ U (τ)(r⃗) +

1

2i

(←→
∇σ ·

←→
B (τ)(r⃗) +

←→
B (τ)(r⃗) ·

←→
∇σ
)

(B.5.2)

ĥ(τ)o = −∇⃗ ·
(
σ⃗ · C⃗(τ)(r⃗)

)
∇+ σ⃗ · V⃗ (τ)(r⃗) +

1

2i

(
∇⃗ · I⃗(τ)(r⃗) + I⃗(τ) · ∇⃗

)
. (B.5.3)

Here, M (τ), U (τ),
←→
B (τ), I⃗(τ), C⃗(τ), and V⃗ (τ) are defined as

M (τ)(r⃗) = B3ρ(r⃗) +B4ρ
(τ)(r⃗) (B.5.4a)

U (τ)(r⃗) = 2B1ρ(r⃗) + 2B2ρ
(τ)(r⃗) +B3τ(r⃗) +B4τ

(τ)(r⃗)

+ 2B5∇2ρ(r⃗) + 2B6∇2ρ(τ)(r⃗)

+B7(α+ 2)ρ(r⃗)α+1 +B8

[
αρ(r⃗)α−1

∑
τ ′

ρ(τ
′)(r⃗)2 + 2ρ(r⃗)α−1ρ⃗(r⃗)

]
+B9

(←→∇ ·←→J (r⃗) +
←→∇ ·←→J (τ)(r⃗)

)
+B12αρ(r⃗)α−1ρ⃗(r⃗)2 +B13αρ(r⃗)α−1

∑
τ

ρ⃗(τ)(r⃗)2

+ e2

[∫
dr⃗′

ρ(r⃗′)

|r⃗ − r⃗′|
−
(

3

π

)1/3

ρp(r⃗)
1/3

]
δτ ′,p (B.5.4b)

←→
B (τ)(r⃗) = −2B14

←→
J (r⃗)− 2B16

←→
J (τ)(r⃗)−B9

(←→∇ ρ(r⃗) +
←→∇ ρ(τ)(r⃗)

)
(B.5.4c)

I⃗(τ)(r⃗) = −2B3j⃗(r⃗)− 2B4j⃗
(τ)(r⃗)−B9

(←→∇ ρ(r⃗) +
←→∇ ρ(τ)(r⃗)

)
(B.5.4d)

C⃗(τ) = B14ρ⃗(r⃗) +B16ρ
(τ)(r⃗) (B.5.4e)
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V⃗ (τ) = B9

(
∇⃗ × j⃗(r⃗) + ∇⃗ × j⃗(τ)(r⃗)

)
+ 2B10ρ⃗(r⃗) + 2B11ρ⃗

(τ)(r⃗)

+ 2B12ρ(r⃗)αρ⃗(r⃗) + 2B13ρ(r⃗)αρ⃗(τ)(r⃗) + 2B15∇2ρ⃗(r⃗) + 2B17∇2ρ⃗(τ)(r⃗) (B.5.4f)

In the following, we show formulae to calculate single-particle Hamiltonian of Skyrme
interaction for each term.

Kinetic term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗τ(r⃗) = ∇2ϕ(r⃗′, σ′) (B.5.5)

B1 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗ρ(r⃗)2 = 2

∫
dr⃗ρ(r⃗)

δρ(r⃗)

δϕ∗i (r⃗
′σ′)

= 2ρ(r⃗′)ϕi(r⃗
′σ′) (B.5.6)

B2 term

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗
∑
τ

ρ(τ)(r⃗)2 = 2

∫
dr⃗ρ(τ

′)(r⃗)
δρ(τ

′)(r⃗)

δϕ∗i (r⃗
′σ′)

= 2ρ(τ
′)(r⃗′)ϕi(r⃗

′σ′) (B.5.7)

B3 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗
[
τ(r⃗)ρ(r⃗)− j⃗2

]
=

[
−ρ(r⃗′)∇2 −

(
∇⃗ρ(r⃗′)

)
· ∇⃗+ τ(r⃗′) + 2i⃗j(r⃗′) · ∇⃗+ i

(
∇⃗ · j⃗(r⃗′)

)]
ϕi(r⃗

′σ′)

(B.5.8)

B4 term

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗
∑
τ

[
τ (τ)(r⃗)ρ(τ)(r⃗)−

(⃗
j(τ)(r⃗)

)2]
=

[
−ρ(τ ′)(r⃗′)∇2 −

(
∇⃗ρ(τ ′)(r⃗′)

)
· ∇⃗+ τ (τ

′)(r⃗′) + 2i⃗j(τ
′)(r⃗′) · ∇⃗+ i

(
∇⃗ · j⃗(τ ′)(r⃗′)

)]
ϕi(r⃗

′σ′)

(B.5.9)
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B5 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗ρ(r⃗)∇2ρ(r⃗) = 2(∇2ρ(r⃗′))ϕi(r⃗

′σ′) (B.5.10)

B6 term

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗
∑
τ

ρ(τ)(r⃗)∇2ρ(τ)(r⃗) = 2(∇2ρ(τ
′)(r⃗′))ϕi(r⃗

′σ′) (B.5.11)

B7 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗ρ(r⃗)αρ(r⃗)2 = (α+ 2)ρ(r⃗′)α+1ϕi(r⃗

′σ′) (B.5.12)

B8 term

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗ρ(τ)(r⃗)αρ(τ)(r⃗)2 = (α+ 2)ρ(τ

′)(r⃗′)α+1ϕi(r⃗
′σ′) (B.5.13)

B9 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗ρ(r⃗)∇⃗ · J⃗(r⃗) =

(
∇⃗ · J⃗(r⃗′)

)
ϕi(r⃗

′σ′) +

∫
dr⃗ρ(r⃗)

(
δ

δϕ∗i (r⃗
′, σ′)

∇⃗ · J⃗(r⃗)

)
(B.5.14)

The second term in this equation can be written as∫
dr⃗ρ(r⃗)

[
δ

δϕ∗i (r⃗
′, σ′)

∇⃗ · J⃗(r⃗)

]

=

∫
dr⃗ρ(r⃗)

 δ

δϕ∗i (r⃗
′, σ′)

∑
λµν

ϵλµν∂λJµν


= −i

∫
dr⃗ρ(r⃗)

 δ

δϕ∗i (r⃗
′, σ′)

∑
λµν

ϵλµν
∑
j

∑
σ1σ2

(
∂λϕ

∗
j (r⃗, σ1)

)
(∂µϕj(r⃗, σ2)) ⟨σ1 |σν |σ2⟩


= i

∑
λµν

ϵλµν(∂λρ(r⃗′))
∑
σ2

(
∂µϕi(r⃗

′, σ2)
) ⟨
σ′ |σν |σ2

⟩
= −i∇⃗ρ(r⃗′) ·

(∑
σ

⟨
σ′ |σ⃗|σ

⟩
× ∇⃗ϕi(r⃗′, σ)

)
, (B.5.15)

where we use a relation ∇⃗ × ∇⃗ϕ =
∑

λµν ϵλµν∂λ∂µϕ = 0⃗.
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δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗ρ(τ)(r⃗)∇⃗ · J⃗ (τ)(r⃗)

=
(
∇⃗ · J⃗ (τ ′)(r⃗′)

)
ϕi(r⃗

′σ′)− i∇⃗ρ(τ ′)(r⃗′) ·

(∑
σ

⟨
σ′ |σ⃗|σ

⟩
× ∇⃗ϕi(r⃗′, σ)

)
(B.5.16)

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗j⃗(r⃗) · (∇⃗ × ρ⃗)

=
∑
λµν

ϵλµν
δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗jλ(r⃗)∂µρν(r⃗)

=
∑
λµν

ϵλµν

[
−i(∂λϕ(r⃗′, σ′))(∂µρν(r⃗))− (∂µjλ(r⃗′))

∑
σ

ϕ(r⃗′, σ)
⟨
σ′ |σν |σ

⟩]

= −i(∇⃗ × ρ⃗(r⃗′)) · ∇ϕ(r⃗′, σ′) +
∑
σ

(
∇⃗ × j⃗(r⃗′)

)
·
⟨
σ′ |σ⃗|σ

⟩
ϕ(r⃗′, σ) (B.5.17)

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗j⃗(τ)(r⃗) · (∇⃗ × ρ⃗(τ))

= −i(∇⃗ × ρ⃗(τ ′)(r⃗′)) · ∇ϕ(r⃗′, σ′) +
∑
σ

(
∇⃗ × j⃗(τ ′)(r⃗′)

)
·
⟨
σ′ |σ⃗|σ

⟩
ϕ(r⃗′, σ)

(B.5.18)

B10 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗ρ⃗(r⃗)2

= 2ρ⃗(r⃗′) ·
∑
σ

⟨
σ′ |σ⃗|σ

⟩
ϕi(r⃗

′, σ) (B.5.19)

B11 term

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗
∑
τ

ρ⃗(τ)(r⃗)2

= 2ρ⃗(τ
′)(r⃗′) ·

∑
σ

⟨
σ′ |σ⃗|σ

⟩
ϕi(r⃗

′, σ) (B.5.20)
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B12 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗ρ⃗(r⃗)αρ⃗(r⃗)2

= αρ(r⃗′)α−1ρ⃗(r⃗)2ϕi(r⃗
′, σ′) + 2ρ(r⃗′)αρ⃗(r⃗′)

∑
σ

⟨
σ′ |σ⃗|σ

⟩
ϕi(r⃗

′, σ) (B.5.21)

B13 term

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗ρ⃗(τ)(r⃗)αρ⃗(τ)(r⃗)2

= αρ(τ
′)(r⃗′)α−1ρ⃗(τ

′)(r⃗)2ϕi(r⃗
′, σ′) + 2ρ(τ

′)(r⃗′)αρ⃗(τ
′)(r⃗′)

∑
σ

⟨
σ′ |σ⃗|σ

⟩
ϕi(r⃗

′, σ)

(B.5.22)

B14 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗
[
T⃗ (r⃗) · ρ⃗(r⃗)−

←→
J 2
]

=
∑
σ

(
T⃗ (r⃗′) ·

⟨
σ′ |σ⃗|σ

⟩)
ϕ(r⃗′, σ) +

∫
dr⃗ρ⃗(r⃗) ·

(
δ

δϕ∗i
T⃗ (r⃗)

)
− 2

∫
dr⃗
∑
µν

Jµν(r⃗) ·
(

δ

δϕ∗i
Jµν(r⃗)

)
(B.5.23)

The second term in Eq. (B.5.23) can be written as

∫
dr⃗ρ⃗(r⃗) ·

(
δ

δϕ∗i
T⃗ (r⃗)

)
= −

∑
σ

⟨
σ′ |σ⃗|σ

⟩
·
[
ρ⃗(r⃗′)∇2ϕ(r⃗′, σ) + ∇⃗ρ(r⃗′) · ∇⃗ϕi(r⃗, σ)

]
.

(B.5.24)

The third term in Eq. (B.5.23) can be written as

−2

∫
dr⃗
∑
µν

Jµν(r⃗) ·
(

δ

δϕ∗i
Jµν(r⃗)

)
= i

∑
µν

∑
σ

[
2Jµν(r⃗)(∂µϕi(r⃗

′, σ)) + (∂µJµν(r⃗))ϕi(r⃗
′, σ)

] ⟨
σ′ |σν |σ

⟩
.

(B.5.25)
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B16 term

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗
∑
τ

[
T⃗ (τ)(r⃗) · ρ⃗(r⃗)− (

←→
J (τ)(r⃗′))2

]
=

∑
σ

(
T⃗ (τ ′)(r⃗′) ·

⟨
σ′ |σ⃗|σ

⟩)
ϕi(r⃗

′, σ)

+
∑
τ

[∫
dr⃗ρ⃗(τ)(r⃗) ·

(
δ

δϕ∗i
T⃗ (τ)(r⃗)

)
− 2

∫
dr⃗
∑
µν

J (τ)
µν (r⃗) ·

(
δ

δϕ∗i
J (τ)
µν (r⃗)

)]
=

∑
σ

(
T⃗ (τ ′)(r⃗′) ·

⟨
σ′ |σ⃗|σ

⟩)
ϕi(r⃗

′, σ)

−
∑
σ

⟨
σ′ |σ⃗|σ

⟩
·
[
ρ⃗(τ

′)(r⃗′)∇2ϕi(r⃗
′, σ) + ∇⃗ρ(τ ′)(r⃗′) · ∇⃗ϕi(r⃗, σ)

]
+i
∑
µν

∑
σ

[
2J (τ ′)

µν (r⃗)(∂µϕi(r⃗
′, σ)) + (∂µJ

(τ ′)
µν (r⃗))ϕi(r⃗

′, σ)
] ⟨
σ′ |σν |σ

⟩
(B.5.26)

B15 term

δ

δϕ∗i (r⃗
′, σ′)

∫
dr⃗ρ⃗(r⃗) · ∇2ρ⃗(r⃗)

= 2
∑
σ

⟨
σ′ |σ⃗|σ

⟩
· ∇2ρ⃗(r⃗′)ϕ(r⃗′, σ) (B.5.27)

B17 term

δ

δϕ∗i∈τ ′(r⃗
′, σ′)

∫
dr⃗
∑
τ

ρ⃗(τ)(r⃗) · ∇2ρ⃗(τ)(r⃗)

= 2
∑
σ

⟨
σ′ |σ⃗|σ

⟩
· ∇2ρ⃗(τ

′)(r⃗′)ϕ(r⃗′, σ) (B.5.28)

Coulomb term

δ

δϕ∗i∈τ ′(r⃗”, σ
′)

[
e2

2

∫
dr⃗dr⃗′

ρp(r⃗)ρp(r⃗
′)

|r⃗ − r⃗′|
− 3

4

(
3

π

)1/3

e2ρ4/3p (r⃗)

]

= e2

[∫
dr⃗

ρ(r⃗)

|r⃗ − r⃗′|
−
(

3

π

)1/3

ρp(r⃗)
1/3

]
ϕi(r⃗”, σ

′)δτ ′,p (B.5.29)
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072501 (2011), URL http://link.aps.org/doi/10.1103/PhysRevLett.107.072501.

[75] M. W loch, D. J. Dean, J. R. Gour, M. Hjorth-Jensen, K. Kowalski, T. Papenbrock,
and P. Piecuch, Phys. Rev. Lett. 94, 212501 (2005), URL http://link.aps.org/doi/

10.1103/PhysRevLett.94.212501.

[76] G. Hagen, D. J. Dean, M. Hjorth-Jensen, T. Papenbrock, and A. Schwenk, Phys. Rev. C
76, 044305 (2007), URL http://link.aps.org/doi/10.1103/PhysRevC.76.044305.

[77] G. Hagen, T. Papenbrock, D. J. Dean, M. Hjorth-Jensen, and B. V. Asokan, Phys.
Rev. C 80, 021306 (2009), URL http://link.aps.org/doi/10.1103/PhysRevC.80.

021306.

[78] S. Binder, J. Langhammer, A. Calci, P. Navrátil, and R. Roth, Phys. Rev. C 87, 021303
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