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Chapter 1

Introduction

In this chapter, we review research background of this thesis : silicene, edge states
in graphene ribbons, and hydrogen termination in graphene and silicene ribbons.
After that, we mention the objective of this thesis.

1.1 Background of silicene

1.1.1 Prediction of silicene and its lattice structures on several substrates

Silicene is a quasi-two dimensional material that is a honeycomb lattice formed by
silicon atoms, and was predicted firstly by a theoretical first principle total-energy
calculation[1][Fig.1.1(a)]. This study also show that a buckled honeycomb struc-
ture is energetically stable and a linear dispersion is emerged at K and K ′ points in
the energy band structure[Fig.1.1(b)]. Recently, stable and metastable structures
of a free-standing silicene were further investigated using a first-principle calcula-
tion based on the density functional theory. Cahangirov et. al. conducted struc-
tural optimization numerically, and calculated phonon dispersion of silicene [2]. In
the energy versus lattice constant plot, they found multiple energy minima corre-
sponding to two different buckled structures and a planer structure [Fig.1.2(a)].
Two buckled structures have different degrees of buckling, namely, one has ∆ ∼ 2Å
and the other has ∆ ∼ 0.44Å. They are named as high and low buckled struc-
tures, respectively. From the obtained phonon dispersions, Cahangirov et. al. also
showed that planer and high buckled structures have imaginary phonon frequen-
cies, and are energetically unstable. Therefore, they concluded that low-buckled
structure is energetically stable.

Recently, monolayer silicene sheets have been synthesized on Ag(111)[3, 4, 5,
6, 7] , ZrB2[8], and Ir(111)[9] substrates, and have been payed much attention in
several research fields. Here, we introduce studies related to the lattice structures
of silicene sheet on several substrates. Lin et. al. synthesized a silicene sheet using
epitaxial growth on an Ag(111) substrate and investigated a structure of this sil-
icene sheet by scanning tunneling microscopy (STM), low-energy electron diffrac-
tion (LEED), and angular-resolved photoelectron spectroscopy(ARPES) measure-
ments combined with density functional theory (DFT) calculation. Fig.1.4(a)
shows topographic STM images of silicene sheets on Ag(111) substrates. In this
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Fig. 1.1 (a): A schematic description of a lattice structure of silicene. Left
and right panel show side and top views of silicene, respectively. ∆ denotes
buckling distance. Right panel shows top view of silicene. (b): Energy band
structure of silicene obtained by first principle calculations with optimized
lattice structure [1](left panel). In this figure, Γ, X, and S correspond to
symmetric points in Brillouin zone(right panel).

figure, two types of atomic arrangements α and β are observed. An unit vector of
α is aligned along the direction of symmetry axes of Ag(111) substrate, while an
unit vector of β is rotated by 14◦ with respect to the symmetry axis. Figs. 1.4(a)
and (b) show the high-resolution STM images of α and β, respectively. The length
of the unit vector of α(β) is 11.5Å(10.4Å). From LEED measurements and DFT
calculations, they show that α and β have the 4×4 and

√
13×

√
13 superstructures

on Ag(111) substrate. Lalmi et. al. also synthesized a silicene sheet on Ag(111)
substrate and performed STM and LEED measurements combined with DFT cal-
culation [3]. They obtained silicene sheet with the 2

√
3 × 2

√
3 superstructure.

It is argued that these variations of structures of silicene sheet on Ag substrate
originated from temperature difference of substrates[3].

Fleurence et. al. synthesized a silicene sheet on ZrB2 thin film and investigated
its lattice structure via the STM measurements and its electronic structures by
the angle-resolved ultraviolet photoelectron spectroscopy (ARUPS) measurements
combined with DFT calculations. It is shown that silicene forms spontaneously
through surface segregation on zirconium diboride thin films grown on Si wafers
and has

√
3 ×

√
3 superstructure[8]. Meng et. al. synthesized a silicene sheet on

Ir(111) substrate and also investigated its lattice structure by STM and LEED
measurements combined with DFT calculations. A silicene sheet on Ir(111) has
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Fig. 1.2 (a) Energy versus hexagonal lattice constant of 2D Si and Ge cal-
culated for various honeycomb structures. Black and dashed green curves of
energy are calculated by local density approximation (LDA) using projector
augmented wave (PAW) potential and ultrasoft pseudopotentials, respectively.
(b): Phonon dispersion curves obtained by force-constant and linear response
theory are presented by black and dashed green curves, respectively. [2]

√
3 ×

√
3 superstructure, as the one found in the case of silicene on ZrB2[9].

Silicene ribbon, which is silicene with finite width , was also synthesized on
Ag(110) substrate[10, 11, 12, 13, 14, 15]. Aufray et. al. synthesized a silicene
ribbon on Ag(110) substrates and investigated its lattice structure by STM com-
bined with DFT calculations[14]. According to the high resolution STM image of
silicene ribbon in Fig.1.7(a), it was shown that silicene synthesized on Ag substrate
forms a hexagonal structure. Furthermore, a detailed structure of silicene ribbon
on Ag substrate was investigated by DFT calculations, and Aufray and co-worker
showed that silicene ribbon tend to form a honeycomb structure [Fig.1.7(b)] and
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Fig. 1.3 (a) STM images of a silicene sheet on Ag(111) surface. In this figure,
there exist two structures α and β[4].

Fig. 1.4 (Color online).(a) STM images of a silicene sheet on Ag(111) surface. [3].
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Fig. 1.5 (a):STM images of silicene sheet on Zr2B substrate with different
length scales 20nm×9.5nm(upper panel) and 4.2nm ×2nm(lower panel). (b):
Ball model of silicene on ZrB2 substrate [8].

Fig. 1.6 (a)STM image of silicene sheet on Ir substrate. (b)Simulated STM
image calculated by DFT calculations. (c) Top view of atomic models of
silicene on Ir substrate[9].
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Fig. 1.7 (a) High resolution filled state STM images of a silicene ribbon.
(b) Ball model for a calculated atomic structure of (a). Light green and red
spheres represent bottom and top silicon atoms, respectively, while dark blue
and light blue spheres represent top most and other silver atoms. (c) Side
view of a calculated atomic structure of a silicene ribbon on a Ag substrate.
Red spheres represent silicon atoms. [14]

an asymmetric buckling structure like an arch shape[Fig.1.7(c)]. These results of
DFT calculations are consistent with a previous work[16].

Not only monolayer silicene ribbon and sheet, multilayer silicene ribbon
[Fig.1.8(a)] and sheet [Fig.1.8(b)] have been also synthesized. Padova et. al.
synthesized multilayer silicene ribbon on Ag(110) substrates and multi-layer
silicene sheet on Ag(111) substrate using epitaxial growth technique[17, 18].
They also investigated its lattice structure by LEED, STM, reflection high-energy
electron diffraction (RHEED), Auger electron spectroscopy (AES) measurements,
and its electronic structures by ARPES measurements.

1.1.2 Electronic structures of silicene on several substrates

Next, we review electronic structures of these silicene sheet and ribbon on several
substrates. In the seminal paper predicting the existence of silicene, the exis-
tence of the Dirac cone at the Fermi level is also predicted. However, as mention
in previous subsection, silicene ribbons and sheets synthesized so far, have su-
perstructures due to the strong interactions with substrates. This suggests that
electronic structures of silicene ribbons and sheets are probably modulated by its
super structures and the strong interactions with substrates. Here, we introduce
some theoretical and experimental studies related to the existence of the Dirac
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Fig. 1.8 STM images of multilayer silicene ribbon (a) and sheet (b) on Ag
substrates [17, 18].

cone in silicene synthesized on Ag and ZrB2 substrates.

Silicene sheets and ribbons on Ag substrates
It was reported in many theoretical and experimental studies that the Dirac cone
is absent for silicene sheets with super lattice structures on Ag(111) substrates.
Avila and coworkers carried out ARPES and LEED measurements against 4 × 4
silicene on Ag(111) substrate, and showed that an energy gap exists near the
Fermi level at the Γ̄00 point where the K point in the original Brillouin zone(BZ)
of silicene without super structure is folded[Fig.1.9(a)]. Guo and his coworkers
worked on the first principle calculations of 4 × 4 and

√
13 ×

√
13 silicene on

Ag(111) substrate, and showed that energy band around the Γ̄00 point observed
by Avila et. al., is originated from Ag substrates[19]. They also noticed that
π and π∗ states that form the Dirac cone disappear from neighborhood of the
Fermi level and appear in valence bands. They pointed out that these results
are caused by the electron transfer from Ag substrate to silicene due to the strong
interactions between silicene and Ag substrates[Fig.1.9(b)]. They also investigated
electronic structures of silicene sheets with superstructures, which are peeled from
silver substrate, and showed that sizable energy gap exists for 4× 4 silicene, while
energy gap for

√
13×

√
13 silicene is negligibly small. In the case of 4× 4 silicene,

Cahangirov et. al. also obtained same results[20]. Furthermore the absence of the
Dirac fermion in silicene on Ag substrate near the Fermi level was also suggested
from an absence of n = 0 Landau level via STS measurements[21]. Similarly
electronic structures of a silicene ribbon on Ag(110) was also investigated via
ARPES measurements by Padova et. al., and they found energy gap near the
Fermi level in the electronic structures[12].

Silicene on a ZrB2 substrate
As mentioned earlier, electronic structures of silicene sheet on ZrB2 substrate, was
investigated through the ARUPS measurements combined with DFT calculations
by Fleurence and his coworkers[8]. Figure.1.12(b) shows ARUPS spectra along
high symmetry directions. Features Sn and Xn in Fig.1.12(b) correspond to sur-
face electronic states of diboride and those of epitaxial silicon layer, respectively.
According to the analysis of Fleurence et. al., a feature X2 corresponds to a π
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Fig. 1.9 (a)Left panel shows the Brillouin zones of Ag (blue), 1 × 1 silicene
and 4 × 4 silicene. The green arrows indicate the directions on which the
ARPES measurements have been carried out at each symmetry point[22].
Right panel shows that ARPES spectrum measured at the Γ̄00 point, along
the K − Γ − K direction. (b) Calculated energy bands of 4 × 4 (left panel)

and
√

13×
√

13 (right panel) silicene on Ag(111) substrates[19]. Blue squares
indicate the region in which π and π∗ states exist. Blue dashed line represents
energy band observed by ARPES measurements.

Fig. 1.10 (Color online) Calculated energy bands of 4 × 4(left panel) and√
13 ×

√
13(right panel) silicene peeled from silver substrate. [19].
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Fig. 1.11 ARPES spectrum of silicene ribbon on Ag(110) substrate[12].

Fig. 1.12 (a) BZs of ZrB2(0001) surface with 2×2 superstructure (black line)
and (1 × 1)silicene (red line). The KSi point in the BZ of (1 × 1) silicene is
folded on Γ̄ point in the BZ of ZrB2. (b) ARUPS spectra along the M̄ −K̄− Γ̄
and Γ̄ − M̄ − Γ̄ directions. (c) Calculated energy bands of silicene with a√

3 ×
√

3 superlattice structure peeled from ZrB2 substrate. [8]

band and there is an energy gap of 0.25eV at the Γ̄ point. They also calculated a
stable structures of silicene on ZrB2 substrate and energy band of silicene peeled
from its substrate through the first-principle methods, and showed that energy
gap opening occurs at Γ points and a π1 band in Fig.1.12(c) corresponds to a X2

bands observed in ARUPS spectra.
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Fig. 1.13 (a) ARPES spectrum of multilayer silicene ribbon on Ag(110)
substrate[17]. (b) Schematic description of BZs. (c) ARPES spectra of mul-

tilayer
√

3 ×
√

3 silicene sheet. (d) The line profiles of (c)[18].

Multi-layer silicene
As monolayer silicene on Ag substrates, electronic structures of multilayer silicene
on the same substrates were also investigated. Padova et. al. carried out ARPES
measurements against multilayer silicene ribbons, and showed that energy gap
opening occurs near the Fermi level[Fig.1.13(a)] and this gap narrows as the num-
ber of silicene layers increase [17]. Furthermore Padova et. al. performed ARPES
measurements against multilayer silicene sheets where a

√
3×

√
3 silicene sheet on

a 3 × 3 silicene sheet, and observed the Dirac cone[Fig.1.13(c) and (d)][18].

Energy gap due to the spin-orbit interaction
Previously, we reviewed studies on energy gaps of silicene on several substrates.
Here, we brief energy gap opening due to the spin-orbit interaction in ideal silicene
and related studies. Since it is expected that a free-standing silicene has the Dirac
cone at K and K ′ points, the spin-orbit coupling in silicene was investigated by
DFT calculations in terms of quantum spin Hall effects. Liu et. al. performed
first-principle calculations of energy bands of silicene as a function of bond angles,
and showed that the spin-orbit band gap is 1.55meV for a low-buckled silicene that
is an energetically stable structure (θ = 101.73◦)[23]. Based on this result, Liu et.
al. also derived a low-energy effective hamiltonian involving spin-orbit coupling
that is estimated as 3.9meV[24]. Using this hamiltonian, many theoretical works
have been conducted in order to elucidate exotic features of silicene, such as a
silicene under an electric field[25], zigzag and armchair nano-ribbons[26], quantum
Hall effects[27], silicene nanotube[28], bilayer silicene[29], edge states of silicene
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nanodisk[30]. In this thesis, we do not take into account the spin-orbit interaction
because we consider the physics of silicene in the energy scale of eV order.

1.1.3 Theoretical proposal of several substrates for an emergence of the

Dirac cone

As mentioned above, an ideal silicene as a Dirac fermion system has not yet syn-
thesized experimentally. However, hexagonal boron nitride (h-BN) and hydrogen
processed Si(111) surface were theoretically proposed as candidates of substrates
on which the Dirac cone emerges in silicene by Guo et. al.[19]. They showed that
energetically stable structures of silicene on h-BN and H-Si(111) are hexagonal
structure with

√
3 ×

√
3 super-periodicity and without super-periodicity, respec-

tively[Fig.1.14]. Figures.1.14(a) and (b) show calculated energy bands of silicene
sheets on h-BN and hydrogen processed Si(111) substrates. We can see that the
Dirac cone is realized at the Fermi level. These results indicate that an appropri-
ate choice of substrates is crucial for experimental realization of ideal silicene and
for enabling us to regard silicene as a Dirac fermion system.

1.2 Physics of edge states and its topological origin for

graphene
In this thesis, we focus on physics of edge states in silicene ribbons. Then, it
is natural to make a comparison between silicene and graphene, which is a close
relative of silicene and is known to host novel edge states. In this section, we will
review edge states in graphene ribbons and its topological origin.

1.2.1 Edge states in graphene ribbons

Analysis of graphene ribbons using a single orbital tight-binding model[31, 32, 33]
revealed that they have characteristic flat bands in energy spectra. The flat bands
are originated from edge states, whose wave functions are localized to the edge.
Interestingly, the edge states depend crucially on the edge geometries. For a
graphene ribbon with zigzag edge, flat band emerges in regions of a wave number
space −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π at the Fermi level[Fig.1.15(a)], and its
wavefunctions localize near the both edges (edges state). Similarly, for the case of
Klein edge, flat bands also emerges in a region of a wave number space −2π/3 ≤
k ≤ 2π/3[Fig.1.15(b)] and its wave functions are edge states localized to edges.
On the other hand, for the case of the armchair edge there are no flat bands and
edge states[Fig.1.15(c)]. The edge state for a graphene ribbon with zigzag edge, is
also confirmed by a first principle calculation based on DFT[Fig.1.16(a)][34], and
is experimentally observed by STM measurements[Fig.1.16(b)][35].
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Fig. 1.14 Calculated energy bands of silicene on h-BN(a) and hydrogen pro-
cessed Si(111) surface(b)[19]. Enlarged views of energy bands near the Fermi
energy are shown in the insets, respectively. In (a), top view of optimized lat-
tice structure is shown in another inset where blue, green and white spheres
indicate Si, B and N atoms, respectively. Similarly, in (b), side view of opti-
mized lattice structure is shown in another inset where blue and purple spheres
indicate Si and H atoms, respectively.

1.2.2 Topological aspects of edge states

Emergence of edge states are not specific phenomena not only for graphene ribbons
but also for edge currents of quantum Hall system[37], and degrees of freedom of
edge spins in one-dimensional quantum spin systems[38]. Furthermore, existence
of these edge states are not accidental and its properties reflect bulk features. This
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Fig. 1.15 Lattice geometries of graphene ribbons with several edge
shapes(upper panels). Green, red and brown dashed squares indicate edge
geometries of zigzag, Klein and armchair edges, respectively. Squares with
solid line indicate the unit cells. Energy spectra for graphene ribbons with
zigzag(a)[31], Klein(b)[32, 36] and armchair(c)[31] edges as functions of wave
number k calculated from reciprocal lattice vector given by translational vec-
tors(red arrow)(lower panels). Red circles indicate edge states.

Fig. 1.16 (a):Calculated contour plots of spin density on a plane perpendic-
ular to a zigzag graphene ribbon(upper panel) and a plane including a zigzag
graphene ribbon(lower panel)[34]. (b):a STM image of graphene flakes with
zigzag and armchair edges[35]. Red circles indicate edge states at zigzag edges.
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idea is known as Bulk-Edge correspondence[39]. Based on this idea, it is expected
that edge states can be detected by topological quantities which are calculated
from bulk wave functions. Typical examples of these topological quantities are
the Chern number as the Hall conductivity in quantum Hall systems[40, 41] and
Z2 Berry phase for a detection of edge states in Dirac fermion systems[42, 43, 36,
44]. Here, we explain topological aspects of the existence of flat-bands discussed
through the Z2 Berry phase[42, 43, 36] in graphene ribbons with several edge
geometries.

Ryu et. al. established a criterion to determine the existence of zero-
energy edge states of graphene ribbons with several edge geometries in
terms of bulk properties[36]. For discussion of zero energy edge states of
the graphene ribbons with several edge geometries, Ryu et. al. consid-
ered the Fourier transformed hamiltonians for several types of unit cells[left
panels of Fig.1.18(a), (b) and (c)]. These hamiltonians formally given as
H =

∑
kx,ky

HZ
1D(kx, ky) =

∑
kx,ky

HK
1D(kx, ky) =

∑
kx,ky

HA
1D(kx, ky), where

HZ
1D(kx, ky), HK

1D(kx, ky) and HA
1D(kx, ky) are 2 × 2 Hermitian matrices. Gen-

erally, tuning constants of diagonal elements 2 × 2 Hermitian matrices can be
expand using the Pauli matrices σx, σy and σz with real constants[45, 42] *1.
Thus, excepting constants of diagonal elements[Rz(kx, ky)] = 0, hamiltonian
H(kx, ky) can be expressed as H(kx, ky) = R(kx, ky) · σ and described explicitly
as follows:

H(kx, ky) = Rx(kx, ky)σx +Ry(kx, ky)σy. (1.1)

This hamiltonian possesses the chiral symmetry *2. In addition, Ryu et. al.
considered a loop L : (kx, ky) → R(kx, ky) ∈ R3 in a parameter space R, and
showed three conditions for a system for H1D to support zero-energy edge states
as follows:

1. L is on a 2D plane (Rz = 0) that contains the origin O of a parameter space
R[Fig.1.17(a)].

2. L is continuously deformed to Lc without crossing O[Fig.1.17(a)].

*1

H = R · σ

= Rxσx +Ryσy +Rzσz =

„

Rz Rx − iRy

Rx + iRy −Rz

«

.

Eigen energies of H are given as E = ±R, where R =
q

R2
x +R2

y +R2
z . For R = O, eigen

energies degenerate.
*2 The system possesses the chiral symmetry when a hamiltonian H satisfies the anti-

commutation relation {H,Γ} = 0, where the chiral operator Γ is defined as follows:

Γ =

„

1 0
0 −1

«
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Fig. 1.17 Schematic illustrations of a loop L of a parameter space R(a) and
energy spectra as function of ky. Shade regions and red lines indicate energy
spectra of bulk and zero energy edge states, respectively.

3. Edges of one-dimensional system possess the chiral symmetry.

In the second condition, parameters kx and ky Lc corresponds to the gap closing
point in Fig.1.17(b). Ryu et. al. evaluated these conditions in HZ

1D(kx, ky),
HK

1D(kx, ky) and HA
1D(kx, ky), and showed that regions of k-space that emerges

zero energy edge states and that satisfies these conditions, are coincident[middle
panels of Fig.1.18(a), (b) and (c)].

Based on this criterion, Hatsugai calculated the Berry phase in k-space (Zak
phase)[46] for several types of one dimensional periodic systems[43, 47]. Zak phase
is the Berry phase calculated from the integration with respect to a direction of
the wave number space. Using these expressions, the Berry phase γ(ky) is defined
as follows:

γ(ky) = −i
∫ π

−π

dkx〈R(kx, ky)| ∂
∂kx

|R(kx, ky)〉, (1.2)

where |R(kx, ky)〉 is one particle state of H(kx, ky). Generally, it was showed that
this Berry phase is quantized as 0 or π modulo 2π for the system possessing the
chiral symmetry [43, 48]. Reflecting the first condition of this criterion, if the
zero energy edge states exist, then the Berry phase should be π modulo 2π[49,
47, 36]. On the other hand, if the zero energy edge states absent, then the Berry
phase should be 0 modulo 2π. The Berry phases of HZ

1D(kx, ky), HK
1D(kx, ky) and

HA
1D(kx, ky) are calculated as follows:

γZ(ky) =

{
π |ky| > 2π

3

0 otherwise

γK(ky) =

{
π − 2π

3 < ky <
2π
3

0 otherwise

γA(ky) = 0 (ky 6= 0), (1.3)

where ky = ± 2π
3 for γZ and γK , and ky = 0 for γA correspond to the gap closing

points, respectively. Thus, the existence of edge states can be also discussed via
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Fig. 1.18 Lattice geometries, loops in R space, and the energy spectrum of
graphene ribbons with zigzag (a), Klein (b), and armchair (c) edges. Dotted
squares indicate unit cell for the graphene ribbons with each edge geometries.
[36]

the Berry phase, which is calculated from the wave functions of bulk, and can be
correlated to the bulk features.

1.3 Hydrogen termination in silicene and graphene ribbons
In the previous section, we mentioned about physics of edge states of graphene
ribbons with several edge geometries. In electronic structures of graphene ribbons,
results calculated by a single orbital tight-binding model and a DFT calculation
are unexpectedly similar. Because graphene prefer constructing sp2 hybridized or-
bitals, π and σ orbitals are orthogonal[Fig.1.19(a)]. A binding energy of σ bond is
larger than that of π bond. σ orbitals of carbon atoms on edges, which called dan-
gling bonds, bond hydrogen atoms, in other words, dangling bonds are terminated
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Fig. 1.19 Schematic illustrations of single orbital approach for graphene (a)
and multi orbital approach for silicene (c), respectively. Schematic illustra-
tions of hydrogen terminations for graphene (b) and for silicene (d), respec-
tively.

by hydrogen atoms[Fig.1.19(b)]. Thus, π electrons contribute mainly edge states
near the Fermi level. However, it is thinkable that four orbital of carbon atoms
on the edges construct sp3-like hybridized orbitals then bond hydrogen atoms.
Then that influences crucially edge states of graphene ribbons. By contrast, sil-
icene prefer constructing sp3-like hybridized orbitals rather than sp2, then these
four orbitals are almost equivalent and its binding energies are almost the same.
Hence, for the case of an investigation of edge states in electronic structures, a multi
orbital treatment is needed different from the case of graphene[Fig.1.19(c)]. Be-
sides, when the silicene is synthesized experimentally, it is expected that dangling
bonds of silicene in edge and bulk region are terminated by hydrogen atoms. If we
consider the desorption of these hydrogen atoms, several types of edge termination
can be possible due to the construction of sp3-like hybridized orbitals[Fig.1.19(d)].
Therefore, for the consideration of edge states in silicene ribbons, it is significant
to take into account variations of the hydrogen termination at edge atoms. In this
section, we introduce some theoretical and experimental studies of graphene and
silicene ribbons as examples that hydrogen termination affects edge states.

1.3.1 graphene ribbons

Kusakabe et. al. investigated electronic structures of a graphene ribbon ,whose
each carbon atom at one side is terminated by single hydrogen atom like the sp2

orbitals and each one at another side is terminated by two hydrogen atoms like
the sp3 orbitals, by DFT calculations, and showed that flat bands emerge near the
Fermi level in the whole space of the wave number[Fig.1.20(b)] and wave functions
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of these flat bands localize mainly at carbon atoms α and γ in Fig.1.20(a) [50].
Simultaneously, amplitude of wave functions at a carbon atom β disappears due
to the sp3-like hydrogen termination. From these results, they indicated that the
Klein edge fictitiously realized in the side of the edge with the sp3-like hydrogen
termination. Besides, Ziatdinov et. al. also investigated effects of hydrogen termi-
nation to edge states by STM measurements against edge of nanoholes in graphene
combined with DFT calculation[51]. They observed experimentally that localized
states at portion of carbon atoms on zigzag edges disappear via STM images, and
show that this result is caused by the di-hydrogenation of carbon atoms at zigzag
edges[Fig.1.20(c)]. These results were also obtained by other groups[52, 53]. These
studies of the termination with two hydrogen atoms indicated that edge states
could be modified by hydrogen terminations.

1.3.2 silicene ribbons

Kang et. al. investigated electronic structure of a free-standing zigzag silicene
ribbon with sp2 like hydrogen termination[Fig.1.21(b)] using DFT calculations and
obtained energy band that is similar to that of a zigzag graphene ribbons with sp2

like hydrogen termination[Fig.1.21(b)][54]. Besides, Ding et. al. also investigated
electronic structure of a silicene ribbon with asymmetrical hydrogen terminations
sp2 and sp3 [Fig.1.21(c)] using DFT calculations and show that flat bands emerge
near the Fermi level in the whole space of the wave number[Fig.1.21(d)] and wave
functions of flat bands in the region indicated open red circles in Fig.1.21(d) mainly
localize at the silicon site Si2 indicated in Fig.1.21(c), and wave functions of flat
bands in the region indicated open blue circles in Fig.1.21(d) mainly localize at
the silicon site Si12 indicated in Fig.1.21(c). From these results, they pointed out
that the Klein edge is fictitiously realized at the edge with the sp3 like hydrogen
termination similar to the case of a graphene ribbon.

1.4 Objective of this thesis
Up to here, we reviewed background of this thesis, silicene, edge states in graphene
ribbons with several edge geometries, and effects of hydrogen termination on edge
states in graphene and silicene ribbons. For an investigation of electronic prop-
erties of silicene, multi orbital treatments are essentially significant because of
the buckling structure. These treatments are also important for the comparison
between graphene and silicene in terms of the Dirac fermion systems. Addition-
ally, realization of several types of the hydrogen termination on the edges can be
possible, and these affects edge states in hydrogen terminated silicene ribbons.
Consequently, it is thinkable that characteristic features of edge states emerge in
hydrogen terminated silicene ribbons. In this thesis, we investigate a relation be-
tween several types of hydrogen terminations and edge states of zigzag silicene
ribbons, and its physical origin of these edge states. To understand this funda-
mentally, we consider multi-orbital tight-binding model on a honeycomb lattice.
There are two reasons to adapt the multi-orbital approach. First is that sp3 and



1.4 Objective of this thesis 23

Fig. 1.20 (a) The optimized structure of a graphene ribbon with monohydro-
genated and dihydrogenated zigzag edges. Black and white circles represent
carbon and hydrogen atoms, respectively. Bright and dark surface represent
spin-up and spin-down densities of flat bands, respectively. α, β and γ denote
carbon atoms near the zigzag edges. Red circles indicate two types of hydro-
gen terminations.[50] (b) Calculated energy bands of a zigzag graphene ribbon
with with monohydrogenated and dihydrogenated zigzag edges. Red circle
indicates flat bands.[50] (c) Experimental(left panel) and theoretically calcu-
lated(right panel) STM images of graphene with monohydrogenated and di-
hydrogenated zigzag edge. Red and blue filled circles represent carbon atoms,
and bright and dark green filled circles represent hydrogen atoms. [51]

sp2 orbitals hybridize due to the buckled honeycomb structure. Second is to tak-
ing into account the effect of hydrogen termination. For the case of single orbital
treatment, comparison between graphene and silicene, and effects of hydrogen
termination can not be discussed.
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Fig. 1.21 (a) and (c) show lattice geometries of a zigzag silicene ribbon with
sp2 like hydrogen terminations in the both edges and with asymmetrical hy-
drogen terminations sp2 and sp3, respectively. Upper and lower panel show
the top and side views of these silicene ribbons. In (a), green and blue spheres
represent silicon and hydrogen atoms. On the other hand, in (b), blue and
white spheres represent silicon and hydrogen atoms. (b) Calculated energy
bands of a silicene ribbon with sp2 like hydrogen termination[54]. (d) Cal-
culated energy bands of a silicene ribbon with sp2 and sp3 like hydrogen
terminations[55]. In (b), red circles indicate flat band edge states.



25

Chapter 2

Models and methods

2.1 Lattice geometry of silicene
A buckled structure of silicene is described by the angle θ [Fig. 2.1 (a)]. For
the energetically stable structure of silicene calculated from DFT calculations, θ
is θ = 101.73◦[23]. Moreover the three position vectors ~d1, ~d2, and ~d3 from a B
sublattice to three nearest neighbor A sublattices are

~d1 = a(sin θ, 0, cos θ) (2.1)

~d2 = a(
− sin θ

2
,

√
3 sin θ
2

, cos θ) (2.2)

~d3 = a(
− sin θ

2
,
−
√

3 sin θ
2

, cos θ), (2.3)

where a is the lattice constant. The lattice geometries of zigzag silicene ribbons
are buckled honeycomb lattices [Fig. 2.1 (b)]. In this study, we assume that the
system has left and right edges with a spacing L1 along a unit vector ~e1[Fig.2.1
(b)], and is imposed a periodic boundary condition along a unit vector ~e2 with a
spacing L2. In Fig. 2.1 (c) and (d), we show schematic figures of two types of
hydrogen terminated silicene ribbons. In Fig. 2.1 (d), position vectors from B
sites to two hydrogen sites ~dH1 and ~dH2 are given by

~dH1 = aH(sin θ, 0, cos θ), (2.4)

~dH2 = aH(0, 0, 1), (2.5)

where, aH are the distance between hydrogen atoms and Si atoms. On the other
hand, position vectors from A sites to two hydrogen sites ~dH3 and ~dH4 are also
given by ~dH3 = − ~dH1 and ~dH4 = − ~dH2, respectively. Figs.2.2 and 2.3 show silicene
ribbons with several types of edge terminations. Figs.2.2(a), (c) and (f) show the
lattice geometries of silicene ribbons without termination(0H/0H ribbon), with a
termination by single hydrogen atom at both edges(1H/1H ribbon) and by two
hydrogen atoms at both edges, respectively(2H/2H ribbon). On the other hand,
Figs.2.2(b), (d) and (e) show lattice geometries of silicene ribbons, terminated by
single hydrogen atom at only one side edge(1H/0H ribbon), by two hydrogen atoms
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Fig. 2.1 (a) Green spheres show silicon atoms, and a bond angle θ is defined
as being between the direction from a B site to a A site and the z-axes normal
to the plane. Lattice geometries of silicene ribbons (b) without or (c),(d)
with hydrogen terminations. In Fig.(b), above and bottom figures shows side
and top of views of zigzag silicene ribbons without hydrogen termination,
respectively. In this figure, a black frame represents a unit cell. In Fig.(c),
above and bottom figures shows top and side of views of monohydrogenated
zigzag silicene ribbons, respectively. Therefore in Fig.(d), above and bottom
figures shows top and side of views of dihydrogenated zigzag silicene ribbons,
respectively.

at only one side edge (2H/0H ribbon), and by two hydrogen atoms at one side edge
and single hydrogen atom at another side edge (2H/1H ribbon), respectively. In
addition, Figs.2.3 also show zigzag silicene ribbons with other types of hydrogen
terminations.

2.2 Multi-orbital tight binding model on a honeycomb

lattice
As the theoretical model of silicene, we consider a four orbitals tight binding
model. These four orbitals are outer shell orbitals, and for a silicene case are
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Fig. 2.2 Lattice geometries of silicene ribbons with or without several types
of hydrogen terminations. In these figures, upper figures show side views of
silicene ribbons, on the other hand bottom figures show top views of silicene
ribbons. (a) a silicene ribbon without hydrogen termination (0H/0H ribbon).
(b) a ribbon with a termination by single hydrogen atom only one side edge
(1H/0H ribbon). (c) a ribbon terminated by single hydrogen atom with both
edges (1H/1H ribbon). (d) a ribbon with a termination by two hydrogen
atoms only one side edge (2H/0H ribbon). (e) a ribbon terminated by single
hydrogen atom with one side edge and two hydrogen atoms with another side
(2H/1H ribbon). (f) a ribbon terminated by two hydrogen atoms with both
edges (2H/2H ribbon).

{3s, 3px, 3py, 3pz} orbitals. The Hamiltonian Htot is given by

Htot = H + HH (2.6)

H =
∑

<i,j>

∑
α,β

(tαβ
ij c

†
iαcjβ + H.c.) +

∑
i

∑
α

εαc
†
iαciα,

HH =
∑

<<i,j>>

∑
α

tsα
ij c

H†
is cjα + H.c.) +

∑
i

εHc
H†
is c

H
is,
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Fig. 2.3 Lattice geometries of silicene ribbons with or without several types
of hydrogen terminations. In these figures, upper figures show side views of
silicene ribbons, on the other hand bottom figures show top views of silicene
ribbons. (a) a silicene ribbon without hydrogen termination (1H’/0H ribbon).
(b) a ribbon with a termination by single hydrogen atom only one side edge
(1H/1H’ ribbon). (c) a ribbon terminated by single hydrogen atom with both
edges (1H’/1H’ ribbon). (d) a ribbon with a termination by two hydrogen
atoms only one side edge (2H/1H’ ribbon).

where c†iα and cH†
is create an electron with atomic orbital α and an electron of a

hydrogen at site i respectively, < i, j > run over all the nearest neighbor hopping
sites, tαβ

ij is transfer energy between orbitals α and β, εα is an on-site energy of
an orbital α, << i, j >> run over all the sites of interactions between hydrogen
atoms and silicon sites at edges, and εH is on-site energy of hydrogen atoms.
The transfer energies are given by the Slater-Koster formula [56][Table.2.1]. In
Table.2.1, Vssσ, Vspσ, Vppσ, and Vppπ are the bond parameters which are given by
Table. 2.2[23], and lij ,mij , and nij are x, y, and z components of direction cosines
from a site i to a site j, respectively [24]. In Fig.2.4, we show schematic illustration
of examples of the Slator-Koster formula. As shown this figure, transfer energies
tαβ
ij can be expressed as linear combinations of bond parameters. Moreover, the

bond parameters of interactions with hydrogen atoms are given by Table. 2.3[57,
58, 59]. As mentioned above, we apply the periodic boundary condition along the
direction ~e2 with a spacing L2, and can then make a Fourier transform in that
direction, ciα = cα(~i) = L

−1/2
2

∑
~k e

i~k·~icα(~k, ~i′), where ~i is a position vector at site
i and ~i′ is also a position vector of a unit cell. For a case of A sites, we assume
that a vector ~i is ~i = i1~e1 + i2~e2, for i1 = 1, 2, · · · , L1 and i2 = 1, 2, · · · , L2. On
the other hand for a case of B sites, a vector ~i is ~i = i1~e1 + i2~e2 − ~d3. Similarly,
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Table. 2.1 Slater-Koster formula

tss
ij Vssσ

tsx
ij lijVspσ

txs
ij −lijVspσ

txx
ij l2ijVppσ + (1 − l2ij)Vppπ

txy
ij lijmij(Vppσ − Vppπ)
txz
ij mijnij(Vppσ − Vppπ)

Table. 2.2 Numerical values for computation of four orbitals tight-binding model

System a(Å) θ(degree) Vssσ(eV) Vspσ Vppσ Vppπ εs − εp
Graphene 1.42 90◦ −6.769 5.580 5.037 −3.033 −8.868
Silicene 2.28 101.73◦ −1.93 2.54 4.47 −1.12 −7.03

Silicene(sp3) 2.24 109.47◦ −2.052 2.697 4.749 −1.187 −6.61

Table. 2.3 Numerical values of bond parameters of Si-H and C-H bonds

System aH(Å) Vssσ(eV) Vspσ εH
Graphene 1.01 −10.457 13.744 −13.65
Silicene 1.50 −4.741 6.231 −13.65

position vectors ~i′ of A and B sites can be written as ~i′ = i1 ~e1 and ~i′ = i1 ~e1 −
~d3, respectively. These expressions yield a ~k dependent series of one-dimensional
Hamiltonian, H =

∑
~k H

1D(~k). Similarly in Eqs.(2.6), the term of interactions
of hydrogen termination HH can be rewritten as HH =

∑
~i′(H

1D
HL + H1D

HR), where
indexes L and R denote left and right edges respectively. The resultant eigenvalue
reduces to (H1D(~k) + H1D

HL + H1D
HR)|ψ(~k,E〉) = E|ψ(~k,E)〉 with corresponding

eigenstates |ψ(~k,E)〉. We calculate this eigenvalue problem numerically and show
energy spectra as function of wave number k.

2.3 Z2 Berry phase as a topological quantities for a

detection of edge states
As mentioned before section in Sec.1.2, topological quantities are useful for a de-
tection and characterization of edge states. In this study, to investigate properties
of edge states, we adopt not only energy spectra of silicene ribbons and its wave
function but also the non-Abelian Berry phase (Zak phase) which is calculated
from wave functions of bulk hamiltonian as function of a wave number k which
corresponds to the translation vector of silicene ribbons. In this section, we define
the non-Abelian Berry phase for a calculation of the Berry phase in multi-band
systems[48, 43, 60].
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Fig. 2.4 Schematic illustration of the Slator-Koster formula for tSS (a), tsz

(b), tzx (c), and tzz (d). Green and purple circles indicated two atomic sites

that difference between the two sites are described by a vector ~d (dashed ar-
rows). Red filled circles and blue ellipses indicate s and p orbitals, respectively.
l and n represent x and z components of a direction cosine.

2.3.1 Definition of the Berry phase and its quantization for a single band

The Berry phase γ for a single band is defined as follows:

γ = −i
∮

C

A(φ)dC, (2.7)

where A(φ) is an Abelian Berry connection, which is given by A(φ) =
〈ψ(φ)|∂φ|ψ(φ)〉 where |ψ(φ)〉 is an eigen state of a parameter dependent hamilto-
nian H(φ), and C is a closed loop in the parameter space. Here, we consider a
change of a Berry phase for applying a gauge transformation g = eiΩ(φ) to |ψ(φ)〉,
then the gauge transformed Berry connection Ag can be written as follows:

Ag = 〈ψ(φ)|g−1∂φ(g|ψ(φ)〉)
= 〈ψ(φ)|∂φ|ψ(φ)〉 + 〈ψ(φ)|g−1∂φ(g)|ψ(φ)〉

= A+ i
∂

∂φ
Ω. (2.8)

Then, we are led to,

iγg = iγ + i

∮
L

dΩ. (2.9)

In Eq.(2.9), we assume that the phase factor eiΩ is single-valued function in the
whole parameter space, then the integration

∫
L
dΩ is proportional to 2π. Therefore
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a gauge transformed Berry phase γg is congruent to γ modulo 2π. Here we expand
|ψ(φ)〉 in an orthonormal system |j〉 as |ψ(φ)〉 =

∑
j Cj(φ)|j〉 and operate an anti-

unitary operator Θ = KU to this state, where K and U are a complex conjugate
and a unitary operators, respectively. Thus, we obtain Θ|ψ(φ)〉 =

∑
j C

∗
j (φ)|jΘ〉.

Moreover, Berry connections A(φ) and AΘ(φ) = 〈ψ(φ)|Θ−1∂φΘ|ψ(φ)〉 are rewrit-
ten using this expressions as follows:

A(φ) = (
∑
j′

〈j′|C∗
j′(φ))∂φ(

∑
j

Cj(φ)|j〉) =
∑

j

C∗
j

∂

∂φ
Cj (2.10)

AΘ(φ) = (
∑
j′

〈j′Θ|Θ−1Cj′(φ))∂φ(
∑

j

C∗
j (φ)|jΘ〉) =

∑
j

Cj
∂

∂φ
C∗

j (2.11)

Since,
∑

j |Cj |2 = 1, then we obtain
∑

j
∂

∂φ |Cj |2 =
∑

j(
∂

∂φC
∗
jCj + C∗

j
∂

∂φCJ ) = 0.
As the result,

∑
j C

∗
j

∂
∂φCJ = −

∑
j Cj

∂
∂φC

∗
J → A(φ) = −AΘ(φ) satisfies. If a

parameter dependent hamiltonian H(φ) is invariant under a gauge transformation
Θ and |ψ(φ)〉 is non-degenerate, then a Berry phase is real and quantized as 0
and π modulo 2π. Because of A(φ) = −AΘ(φ), Berry phases are calculated as
γ = −γΘ(mod 2π). In this case, this Berry phase called Z2 Berry phase and this
quantization is topologically protected unless a gap closing. In the next part, we
mention about non-Abelian Berry phase and its quantization.

2.3.2 Definition of non-Abelian Berry phase and its quantization for

multi-band systems

Here, we define the non-Abelian Berry phase for a calculation of the Berry phase
in a multi-band systems. In this section we consider a non-interacting spinless
fermion system with m particles as an example for the definition of non-Abelian
Berry phase.

Ground state of a non-interacting spinless fermion system
Before defining a non-Abelian Berry phase, we consider the ground state of a
non-interacting spinless fermion system. In this case, the ground state can be
constructed by occupying energy eigen states from the lowest energy level up
to an energy level. Here, we assume a single orbital tight-binding model as a
hamiltonian.

H =
∑

<i,j>

tijc
†
i cj + h.c (2.12)

where c†i (cj) are creation(annihilation) operators at i(j) cites, which satisfy an
anti-commutation relation {ci, c†j} = δij , tij are the hopping energies between i
and j sites, and < i, j > mean the nearest neighbor hopping. This hamiltonian can
be rewritten using an expression of matrix elements h asH = c†hc where h ism×m
matrix, hij = tij and c† = (c†1, c

†
2, · · · , c†m). Moreover we assume eigen states of
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this hamiltonian as ψl which satisfy hψl = εlψl where εl are eigen energies. Using
this eigen states ψl, we construct m-dimensional multiplet ΨN = (ψ1, ψ2, · · · , ψN )
and assume ε1 < ε2 < · · · < εN < EF < εN+1 < · < εm where EF is a Fermi
energy. Therefore ΨN satisfies as follows:

hΨN = h(ψ1, ψ2, · · · , ψN ) = (ψ1, ψ2, · · · , ψN )

ε1 . . .
εN

 = ΨNE . (2.13)

Since ψl are orthonormal then

Ψ†
NΨN =


ψ†

1

ψ†
2
...
ψ†

N

 (ψ1, ψ2, · · · , ψN ) =


ψ†

1ψ1 ψ†
1ψ2 · · · ψ†

1ψN

ψ†
2ψ1 ψ†

2ψ2 · · · ψ†
2ψN

...
...

. . .
...

ψ†
Nψ1 ψ†

Nψ2 · · · ψ†
NψN

 = EN ,

(2.14)

⇒ ΨNΨ†
N = EN

where EN is an N × N identity matrix. From Eqs.(2.13) and (2.15), we can
obtain h = ΨNEΨ†

N and H = c†hc = c†ΨNEΨ†
Nc = d†Ed =

∑N
l d†εldl, where

d† = c†ΨN and dl = c†ψl. d†l (dl) are creation (annihilation) operators of eigen
states with energy εl and satisfy anti-commutation relation{di, d

†
j} = δij *1. Then

we can rewrite anN -dimensional multiplet ΨN using d†l as |ΨN 〉 = d†1d
†
2 · · · d

†
N |0〉 =∏N

l=1 d
†
l |0〉

Definition of non-Abelian Berry phase
Using N -dimensional multiplet |ΨN 〉 derived in previous section, we define the
Berry phase γ as follows:

γ = −i
∮

L

〈ΨN |dΨN 〉. (2.15)

〈ΨN |dΨN 〉 can be expand as follow:

〈ΨN |dΨN 〉 = 〈0|dN · · · d2d1(c†dψ1)d
†
2 · · · d

†
N |0〉 + 〈0|dN · · · d2d1d

†
1(c

†dψ2) · · · d†N |0〉 + · · · .
(2.16)

*1

{di, d
†
j} = {ψ†

i c, c
†ψj} = {ψ†

i1c1, c
†ψj} + {ψ†

i2c2, c
†ψj} + · · · + {ψ†

iN cN , c
†ψj}

= ψ†
i1{c1, c

†ψj} + ψ†
i2{c2, c

†ψj} + · · · + ψ†
iN{cN , c†ψj}

= ψ†
i1ψj1{c1, c†1} + ψ†

i2ψj2{c2, c†2} + · · · + ψ†
iNψjN{cN , c†N}

= ψ†
i1ψj1 + ψ†

i2ψj2 + · · · + ψ†
iNψjN = ψ†

iψj = δij
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d1(c†dψ1) in the first term of the right hand side of Eq.(2.16), can be leads to

d1(c†dψ1) = (ψ†
1c)(c

†dψ1) =
N∑

a,b=1

ψ1adψ
†
1bcac

†
b =

N∑
a,b=1

ψ1adψ
†
1b(δab − c†acb)

= ψ1dψ
†
1 − d†1(dψ

†
1c). (2.17)

Thus, we obtain 〈0|dN · · · d2d1(c†dψ1)d
†
2 · · · d

†
N |0〉 = ψ1dψ

†
1〈0|dN · · · d2d

†
2 · · · d

†
N |0〉−

〈0|dN · · · d2d
†
1(dψ

†
1c)d

†
2 · · · d

†
N |0〉 = ψ1dψ

†
1. Moreover we can obtain similar terms

for other terms of the right hand side of Eq.(2.16). Then we obtain

〈ΨN |dΨN 〉 = ψ1dψ
†
1 + ψ2dψ

†
2 + · · · + ψNdψ

†
N . (2.18)

Here, we consider m-dimensional multiplet Ψ = (ψ1, ψ2, · · · , ψm) where Ψ satisfies
Ψ†Ψ = Em. Then we define non-Abelian Berry connection A as follows:

A = Ψ†dΨ =


ψ†

1dψ1 ψ†
1dψ2 · · · ψ†

1dψm

ψ†
2dψ1 ψ†

2dψ2 · · · ψ†
2dψm

...
...

. . .
...

ψ†
mdψ1 ψ†

mdψ2 · · · ψ†
mdψm

 . (2.19)

If we take a diagonal sum of this Berry connection, then this is identical to
〈ΨN |dΨN 〉, thus we obtain

γ = −i
∮

L

〈ΨN |dΨN 〉 = −i
∮

L

TrA (2.20)

Gauge transformation of the non-Abelian Berry connection
Next, we consider a gauge transformation of the non-Abelian Berry connection and
the Berry phase. Here we assume that a gauge transformation ω ∈ U(m) relates
to Ψ as Ψ = Ψ′ω and is a single-valued in U(m). Since ω is unitary (ω† = ω−1),
and Berry connection can be rewritten as follows:

A = Ψ†dΨ = (ω†(Ψ†′))d(Ψ′ω) = ω−1(Ψ†′)(dΨ′ω + Ψ′dω) = ω−1Ψ†′dΨ′ω + ω−1dω.
(2.21)

From Eq.(2.21), we are led to.

TrA = Tr(ω−1Ψ†′dΨ′ω) + Tr(ω−1dω) = Tr(Ψ†′dΨ′) + Tr(ω−1dω) = TrA′ + Tr(ω−1dω),
(2.22)

where we substitute A′ for Ψ†′dΨ′. Then the Berry phase γ is rewritten as follows:

γ = −i
∮

L

TrA = −i
∮

L

A′ − i

∮
L

Tr(ω−1dω) = γ − i

∮
L

Tr(ω−1dω), (2.23)

where
∮

L
Tr(ω−1dω) is proportional to the integral multiple of 2π *2.

*2 Since ω is a unitary matrix, ω can be diagonalized. Then we assume a diagonal matrix
Ω which is digonalized from ω by a transformation matrix U as Ω = U−1ωU . Thus, Ω
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Quantization of the non-Abelian Berry phase
Here we show that the non-Abelian Berry phase quantizes for the hamiltonian
which possess the time reversal symmetry which contains the complex conjugate
operator. We define the anti-unitary operator Θ = KU where K and U are
a complex conjugate and a unitary operator, respectively. Next, we assume M -
dimensional multiplet Ψ = (|ψ1〉, |ψ2〉, · · · , |ψM 〉) and ΨΘ which Θ operated. Then
the Berry connection AΘ calculated form ΨΘ is led to

AΘ = (ΨΘ)†dΨΘ = (Ψ†)∗(U†U)∗(dΨ)∗ = (Ψ†dΨ)∗ = A∗. (2.24)

Since Ψ†Ψ = EM ⇒ (dΨ†)Ψ + Ψ†dΨ = 0, then we obtain

TrA∗ = TrA† = Tr(Ψ†dΨ)† = Tr(dΨ†Ψ) = −TrA. (2.25)

Therefore, Berry phase γΘ is γΘ = −γ. If the multiplet Ψ is gapped, and ΨΘ

and Ψ are linked by a gauge transformation ω then ΨΘ can be expressed as ΨΘ =
Ψω. In this case, the Berry phase has ambiguities of 2π and quantizes as γ =
0, π (mod 2π).

2.3.3 Discretized non-Abelian Berry phase for numerical calculations

In this subsection, we mention about the discretized non-Abelian Berry
phase for numerical calculations. Firstly we discretize a closed loop L(L =
{x(t)|t ∈ [0, 1], x(0) = x(1)}) in the parameter space as xn = x(n∆t)(n =
{1, 2, · · · , NL}∆t = 1/NL) where NL is a number of this discretization. Here we
define non-Abelian Berry phase in this discretized parameter space as follows:

γL = arg det[(Ψ†
1Ψ2)(Ψ

†
2Ψ3) · · · (Ψ†

NL−1ΨNL
)]. (2.26)

satisfies following equation.

0

B

@

dlogλ1

. . .

dlogλm

1

C

A

=

0

B

B

@

dλ1
λ1

. . .
dλm
λm

1

C

C

A

= Ω−1dΩ.

Besides, Tr(ω−1dω) can be led to

Tr(ω−1dω) = Tr((U−1ΩU)−1d(U−1ΩU)) = Tr(UΩ−1U−1{dU−1ΩU + U−1dΩU + U−1ΩdU})

= Tr(Ω−1dΩ) + Tr(UdU−1 + U−1dU).

In this equation, because of U−1U = Em and dU−1U + U−1dU = 0, the second term is
0. Finally we obtain Trω−1dω = TrΩ−1dΩ = TrdlogΩ = dTrlogΩ. On the other hand,
because of Tr logΩ = logλ1 + logλ2 + · · · = logλm = log(λ1λ2 · · ·λm) = log detΩ then we
obtain Trω−1dω = dlog detΩ. Since ω is a unitary matrix, detω satisfies |detω| = 1. Thus
we assume detω = eiθ then −i

H

L Trω−1dω = −i
H

L idθ =
H

L dθ. Furthermore, the Berry

phase can be γ = γ′ + 2πn(n ∈ Z) = γ′(mod 2π).



2.3 Z2 Berry phase as a topological quantities for a detection of edge states 35

This expression of the Berry phase is obviously invariant under the gauge trans-
formation in the term of previous sections. In the following part, we show that
Eq.(2.26) is identical to γ = −i

∮
L

TrΨ†dΨ in the continuous limit NL → ∞. γL

can be rewritten as follows:

γL = arg det[(Ψ†
1Ψ2)(Ψ

†
2Ψ3) · · · (Ψ†

NL−1ΨNL
)] = Im log det[(Ψ†

1Ψ2)(Ψ
†
2Ψ3) · · · (Ψ†

NL−1ΨNL
)]

= Im log[ det(Ψ†
1Ψ2)det(Ψ†

2Ψ3) · · ·det(Ψ†
NL−1ΨNL

)]

= Im[log det(Ψ†
1Ψ2) + log det(Ψ†

2Ψ3) + · · · + log det(Ψ†
NL−1ΨNL

)]. (2.27)

Here we assume ∆t << 1 then, Ψ†
l Ψl+1 can be expanded as Ψ†

l Ψl+1 ∼ Ψ†
l (Ψl +

∆t∂tΨl) = EM + ∆tΨ†
l ∂tΨl. Generally, Ψl is not a diagonalizable matrix but a

norm of this matrix satisfies a following equation:

||Ψ†
l Ψl+1 − EM || ∼ ||EM + ∆tΨ†

l ∂tΨl − EM || = ||∆tΨ†
l ∂tΨl|| = ∆t||Ψ†

l ∂tΨl|| << 1.
(2.28)

Thus we can use the relation log detΨ†
l Ψl+1 = Tr logΨ†

l Ψl+1
*3. Besides, the

definition of exponential of matrix A is given by eA = E+A+(1/2)A2+(1/3!)A3+
· · · , then we obtain

Ψ†
l Ψl+1 ∼ EM + ∆tΨ†

l ∂tΨl ∼ e∆tΨ†
l ∂tΨl . (2.29)

*3 If a n × nmatrix M is a diagonalizable matrix then log detM = Tr logM obviously
satisfies. However, when M is not a diagonalizable matrix, then we have to consider from
a definition of logM using the Taylor expansion. Definitions of logM and eM are given

by logM =
P∞

m=0
(−1)m−1

m
(M −E)m and eM =

P∞
m=1

Mm

m!
where E is an n× nidentity

matrix. Generally, the infinite series of eM converges, but one of logM does not converge
unless a norm of matrix ||M −E|| satisfies ||M −E|| < 1 in other words the eigen values of
M −E are smaller than one. In this case, logM can not be defined. Here we assume that

logM can be defined. Thus we obtain eMxi =
P∞

m=0
Mm

m!
xm

i = eλxi where λi and xi are

eigen values and vectors of M(i = 1, 2, · · · , n), respectively. If U is U = (x1, x2, · · · , xn),
then we obtain,

eMU = U

0

B

B

B

@

eλ1

eλ2

. . .

eλn

1

C

C

C

A

⇒ eM = U

0

B

B

B

@

eλ1

eλ2

. . .

eλn

1

C

C

C

A

U−1

. Moreover,det(eM ) and M are det(eM ) = (detU)eλ1+λ2+···+λn(detU−1) and M =
Udiag(λ1 + λ2 + · · · + λn)U−1. Therefore, we can get TrM = λ1 + λ2 + · · · + λn and

deteM = (detU)eλ1+λ2+···+λn(detU−1)=eTrM
where we use (detU)(detU−1) = 1, respec-

tively. Furthermore, we consider as eMM ′ and M → logM ′, then detM ′ = eTr logM′
.

Taking the logarithim of this equation, we can get

log detM ′ = Tr logM ′
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Summarizing the above,

γL = Im[log det(Ψ†
1Ψ2) + log det(Ψ†

2Ψ3) + · · · + log det(Ψ†
NL−1ΨNL)]

= Im[Tr log e∆tΨ†
1∂tΨ1 + Tr log e∆tΨ†

2∂tΨ2 + · · · + Tr log e∆tΨ†
NL−1∂tΨNL−1 ]

= Im
∑

l

Tr ∆tΨ†
l ∂tΨl. (2.30)

In the limit of NL → ∞, the summation of this equation becomes an integral, then

lim
∆t→0

γL = Im lim
∆t→0

∑
l

Tr ∆tΨ†
l ∂tΨl = Im

∫
dtTr Ψ†∂tΨ = Im

∮
L

Tr Ψ†∂tΨ = Im(iγ) = γ.

(2.31)

Moreover, we can also show the quantization of this Berry phase and a Berry phase
γΘ calculated from a multiplet ΨΘ which is operated by an anti-unitary operator
Θ = KU , is given by as follows:

γΘ = arg det[(Ψ†
Θ1ΨΘ2) · · · (Ψ†

ΘNL−1ΨΘNL
)] = arg det[(Ψ†

1Ψ2)∗ · · · (Ψ†
NL−1ΨNL

)∗]

= arg det[(Ψ†
1Ψ2) · · · (Ψ†

NL−1ΨNL
)]∗ = −arg det[(Ψ†

1Ψ2) · · · (Ψ†
NL−1ΨNL

) = −γL.
(2.32)

Because of the ambiguity of argument of 2π, the Berry phase γL is quantized as
γL = 0, π(mod 2π).

2.3.4 Z2 Berry phase and the chiral symmetry

In this subsection, we consider about a relation between the chiral symmetry and
Z2 Berry phase.

The chiral symmetry
In a tight-binding model, if we only consider nearest neighbor hopping, then this
hamiltonian possess the chiral symmetry. In this case, we assume that a system
is divided into two sublattices A and B. Then the chiral operator Γ is defined as
{H,Γ} = 0, Γ2 = 1, (ΓcAΓ−1 = cA, Γc†AΓ−1 = c†A, ΓcBΓ−1 = −cB , Γc†BΓ−1 =
−c†B) , that is, this means that wave functions at B sublattices is multipled by
−1. Here we consider that a chairal operator Γ operates to an eigen value problem
Hψl = εlψl from left side as follows:

ΓHΓ−1Γψl = εlΓψl ⇒ HΓψl = −εlΓψl, (2.33)

where ψl and εl are eigen function and value of H, respectively, and we use an
anti-commutation relation {H,Γ} = 0. Therefore, for a system with the chiral
symmetry, −εl and Γψl are also eigen value and function.
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Particle-hole symmetry
To consider the quantization of non-Abelian Berry phase, we consider the tight-
binding model for a free fermion system and its hamiltonian H is given as H =
−

∑
<i,j> tijc

†
i cj + h.c.. Next we introduce the periodic parameter φ for a calcu-

lation of Berry phase as follows:

tij =

{
teiφ (i = I, j = J)
t (i 6= I, j 6= J),

(2.34)

where t is real , and I(J) corresponds to a specific site. This parametrization
means that a phase factor eiφ is introduced to a specific link of hopping. Addi-
tionally, when parametrized hamiltonian H(φ) possess the chiral symmetry, then
it is possible to prove that H(φ) is anti-unitary invariant by ΘP , which is the
operator of particle-hole transformation [43]. ΘP is defined as follows

ΘP = KUP , UP =
N∏

j=1

, ξj =

{
ξj+ = cj + c†j (∀j ∈ A)
ξj− = −i(cj − c†j) (∀j ∈ B),

(2.35)

where, K is the complex conjugate operator (K2 = 1), A and B indicate two kinds
of sublattices, and N is the number of whole states. Additionally, ξj = ξ†j . Using
the anti-commutation relation, it can be proved that ξ2j = 1 *4. Therefore, it leads
to Θ2

P = 1. In order to show that H(φ) is commutative with Θp, we consider the
transformation of creation and annihilation operators c†j and cj by Up. To do this,
we consider anti-commutation relations of c†j and cj with ξj . These relations can
be obtained as follows:

{ξi, cj} = {ξ†i , cj} =

{
{(ci + c†i ), cj} = {c†i , cj} = δij (∀i ∈ A)
{−i(ci − c†i ), cj} = i{c†i , cj} = iδij (∀i ∈ B),

{ξi, c†j} = {ξ†i , c
†
j} =

{
δij (∀i ∈ A)
−iδij (∀i ∈ B)

. (2.36)

*4

ξ2j =

(

(cj + c†j)(cj + c†j) = cjc
†
j + c†jcj = 1 (∀j ∈ A)

−(cj − c†j)(cj − c†j) = −(−cjc†j − c†jcj = 1 (∀j ∈ B)
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Using relations, we can get

ξicjξ
†
i =


(−cjξi)ξ†i = −cj (i 6= j)
(1 − cjξi)ξ

†
i = ξ†i − cj = c†j (i = j, ∀i ∈ A)

(i− cjξi)ξ
†
i = iξ†i − cj = −c†j (i = j, ∀i ∈ B)

ξic
†
jξ

†
i =


(−c†jξi)ξ

†
i = −c†j (i 6= j)

(1 − c†jξi)ξ
†
i = ξ†i − c†j = cj (i = j, ∀i ∈ A)

(i− c†jξi)ξ
†
i = iξ†i − c†j = −cj (i = j, ∀i ∈ B).

(2.37)

Thus, we are led to

UpcjU
†
p = ξ1 · · · ξNcjξ†N · · · ξ†1 = ξ1 · · · ξN−1(−cj)ξ†N−1 · · · ξ

†
1

= (−1)N−jξ1 · · · ξjcjξ†j · · · ξ
†
1

=

{
(−1)N−jξ1 · · · ξj−1c

†
jξ

†
j−1 · · · ξ

†
1 = (−1)N−1c†j (i = j, ∀i ∈ A)

(−1)N−jξ1 · · · ξj−1(−c†j)ξ
†
j−1 · · · ξ

†
1 = (−1)Nc†j (i = j, ∀i ∈ B)

.

(2.38)

Similarly,

Upc
†
jU

†
p =

{
(−1)N−1cj (i = j, ∀i ∈ A)
(−1)Ncj (i = j, ∀i ∈ B)

. (2.39)

For the chiral symmetric system, its hamiltonian is only consisted of hopping
terms between A and B sublattices. Then hamiltonian can be transformed by Up

as follows:

UpHU
†
p = −

∑
<i,j>

tijUpc
†
iU

†
pUpcjU

†
p −

∑
<i,j>

t∗ijUpc
†
jU

†
pUpciU

†
p

= −
∑

<i,j>

tij(−1)2N−1cic
†
j −

∑
ij

t∗ij(−1)2N−1cjc
†
i

= −
∑

<i,j>

tijc
†
jci −

∑
ij

t∗ijc
†
i cj (2.40)

Taking the complex conjugation on this equation, we can calculate ΘPHΘ−1
p as

follows:

ΘPHΘ−1
p = −

∑
<i,j>

tijc
†
i cj −

∑
<i,j>

t∗ijc
†
jci = H. (2.41)

Thus, this hamiltonian is invariant against the anti-unitary transformation. When
we apply the particle-hole transformation against the M -particle ground state
|GM 〉, which is occupied from low energy, then this state is transformed to the
(N −M)-particle unoccupied state |GN−M 〉. For the cases of M 6= N/2, |GM 〉
and |GN−M 〉 degenerate. For the case of M = N/2(half-filled), |GM 〉 does not
degenerate. Moreover, when the excited energy is finite, then the Berry phase
calculated from the chiral symmetric model quantizes as 0 and π modulo 2π.
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Z2 Berry phase in a system with the chiral symmetry
For a hamiltonian H = c†′hc′ with the chiral symmetry, h can be written as follows:

h =
(
O q
q† O

)
(2.42)

where, h is a 2n×2n matrix, O is a n×n zero matrix, q is an arbitrary matrix, and
c′† = (c†A1, c

†
A2, · · · , c

†
An, c

†
B1, · · · , c

†
Bn). Taking a simple form of the chiral operator

Γ = diag(I,−I) where I is an n-dimensional identity matrix, h satisfies {h,Γ} = 0.
Here, we consider the Berry phase calculated from an N -dimensional multiplet
which is constructed by occupying N states from lower energy. In particular,
using N -dimensional multiplet Ψ = (ψ1, · · · , ψN ) constructed from normalized
eigen states ψi of h (hψi = εiψi, εi < 0, i = 1, · · · , N), the Berry phase γ is
defined as follows:

γ = −i
∫

TrA, A =


ψ†

1dψ1 ψ†
1dψ2 · · · ψ†

1dψN

ψ†
2dψ1 ψ†

2dψ2 · · · ψ†
2dψN

...
...

. . .
...

ψ†
Ndψ1 ψ†

Ndψ2 · · · ψ†
NdψN

 . (2.43)

Moreover, Ψ can be expressed using n×n matrices ψA and ψB as Ψ =
(
ψA

ψB

)
/
√

2.

Using this expression, the Schrödinger equation hΨ = ΨE (E = diag(ε1, · · · , εN ))

is rewritten as
(
O q
q† O

)(
ψA

ψB

)
=

(
ψA

ψB

)
E . Therefore, we obtain qψA = ψBE and

q†ψB = ψAE . Since the eigen energies of Γψi is −εi, ψ†
jΓψi = 0, (i, j = 1, · · · , N).

Thus, we can get

Ψ†ΓΨ =


ψ†

1

ψ†
2
...
ψ†

N

 (Γψ1,Γψ2, · · · ,ΓψN ) =


ψ†

1Γψ1 ψ†
1Γψ2 · · · ψ†

1ΓψN

ψ†
2Γψ1 ψ†

2Γψ2 · · · ψ†
2ΓψN

...
...

. . .
...

ψ†
NΓψ1 ψ†

NΓψ2 · · · ψ†
NΓψN

 = O

(2.44)

For the expressions of ψA and ψB, we can get

Ψ†ΓΨ =
1
2
(ψ†

A, ψ
†
B)

(
I O
O −I

)(
ψA

ψB

)
=

1
2
(ψ†

AψA − ψ†
BψB) = O (2.45)

⇒ ψ†
AψA = ψ†

BψB (2.46)

Because of Ψ†Ψ = I, then we obtain 1
2 (ψ†

A, ψ
†
B)

(
ψA

ψB

)
= 1

2 (ψ†
AψA+ψ†

BψB) = I ⇒

ψ†
AψA = I, ψ†

BψB = I. To calculate the Berry phase, we use the gauge fixing with
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an arbitrary multiplet Φ, and assume Φ as Φ =
(
I
O

)
. The gauge fixing is making

a new state ΨΦ calculated from a gauge invariant projection operator P = Ψ†Ψ
and Φ and ΨΦ is calculated from ΦΨ = 1

CPΦ/ where C is a normalized coefficient.
Then, we can get,

ΨΦ =
1
C
PΦ =

1
C

Ψ†ΨΦ =
1
C

(
ψA

ψB

)
(ψ†

A, ψ
†
B)

(
I
O

)
=

1
2C

(
I

ψBψ
†
A.

)
(2.47)

Since q†ψA = ψBE , then we can get ψBψ
†
A = ψBEE−1ψ†

A = q†ψAE−1ψ†
A. Moreover

a normalized constant C2 is given by C2 = |(Φ†P )PΦ|, then we obtain,

C2 =
1
2

∣∣∣∣(I,O)
(
ψA

ψB

)
(ψ†

A, ψ
†

B)
(
I
O

)∣∣∣∣ =
1
2
|I| =

1
2
. (2.48)

Therefore, we can get

ΨΦ =
1

2C

(
I

ψBψ
†
A

)
=

1√
2

(
I

q†ψAE−1ψ†
A

)
≡ 1√

2

(
I
q†g

)
, (2.49)

where g = ψAE−1ψ†
A. Using ΨΦ, we can calculate the Berry phase. Firstly,

the Berry connection A is given as A = Ψ†
ΦdΨΦ = 1

2 (I, ξ†)
(
O
dξ

)
= 1

2ξ
†dξ,

where ξ is defined as ξ ≡ q†g. Moreover we can get, ξξ† = q†gg†q = q†ggq =
q†ψAE−1ψ†

AψAE−1ψ†
Aq = q†ψAE−1E−1ψ†

Aq = (ψBE)E−1E−1(Eψ†
B) = ψBψ

†
B = I,

where we use the relations g† = (ψAE−1ψ†
A)† = ψAE−1ψ†

A = g, and q†ψA = ψB .
Therefore, we obtain E† = E−1 and A is A = 1

2ξ
−1dξ. Since ξ is a unitary ma-

trix and can be diagonalized. Generally, a diagonalizable matrix satisfies Trξdξ =
Trdlogξ = dlog det ξ. Thus the Berry phase calculated as

γ = −i
∫

TrA = − i

2

∫
dlog det ξ = − i

2

∫
dlog det q†g

= − i

2

∫
d{Re(log det q†g) + iIm(log det q†g)}. (2.50)

In addition, the Berry phase is quantized and real number when a multiplet Ψ
is gapped. Then Re(log det q†g) in Eq.2.50, has to be 0. Moreover detg =
det(ψA[E−1ψ†

A) = detψAdetE−1detψ†
A = (detE)−1 ∈ R, then we obtain

γ =
1
2

∫
dIm(log det q† + log det g) = −1

2
arg detq (2.51)



41

Chapter 3

Energy spectra of silicene and

graphene ribbons

3.1 Comparison of silicene ribbons with graphene ribbons
We now show the numerical results of energy spectra of graphene and silicene
ribbons without hydrogen terminations or terminated by single hydrogen atom at
both edges. In Fig.3.1(a), we show an energy spectrum of a graphene ribbon with-
out a hydrogen termination as function of a wave number k. There are two types
of the in-gap states (i) and (ii) in this figure, and these in-gap states are doubly
degenerated. Here we denote these degenerated states by

∑
α

∑
i ψ

1
α(k, xi) and∑

α

∑
i ψ

2
α(k, xi), where α and xi denote orbitals of an electron and x-coordinates

of silicon atoms in the unit cell, respectively. Fig.3.2(a) and (b) show numerical
values of coefficients of averaged in-gap states of graphene ribbons as a function of
x-coordinates of carbon atoms in the unit cell, respectively. These averaged in-gap
states (i) and (ii) are summed up in a ranges of k = ±π

2 (1−n/L2) for L2 = 400 and
n = 0, 1, · · · , 24, 25 and a ranges of k = π

2 (n/L2) for n = −25,−24, · · · , 24, 25,
respectively. In these figures, we assume a position of a carbon atom at the left
edge as the origin of the graph [Fig.2.1(b)]. In Fig.3.1(a), the in-gap states (i) are
identical to a result of a single orbital tight-binding model, which is only taken
into account π-electrons [31], and as a corollary to this result, coefficients of a wave
function of this in-gap state have only pz components at edge sites [Fig.3.2(a)],
which are vertical to the plane. On the other hand, in-gap states (ii) are revealed
by taking into account a multi-orbital tight-binding model, and these components
of wave function of in-gap states have only s, px and py components [Fig.3.2(b)].
In the case of an sp2 hybridized orbital (graphene), these results of components of
the wave function of in-gap states are trivial because of the orthogonality between
the σ and π orbitals. In an experimental situation, a zigzag graphene ribbon is
terminated by single hydrogen atom, since interactions of σ bonds are relatively
larger than that of π bonds. Therefore an energy spectrum like Fig.3.1(b), is
emerged.

Fig.3.1(c) and (d) show energy spectra of silicene ribbons without hydrogen
termination and terminated by single hydrogen atom at both edges, respectively.
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In these figures, there are six kinds of in-gap states (iii)-(viii), and they are doubly
degenerated. In Fig.3.3(a), (b) and (c), we show coefficients of wave functions
of in-gap states (iii), (iv) and (vii) for silicene ribbons. Similarly for the cases
of graphene ribbons, we plot these figures as function of x-coordinates of the
positions of silicon atoms, and averaged in-gap states (iii) and (vii) are summed
up in a ranges of k = ±π

2 (1−n/L2) for L2 = 400 and n = 0, 1, · · · , 24, 25. On the
other hand the averaged in-gap states is also summed up a ranges of k = π

2 (n/L2)
for n = −25,−24, · · · , 24, 25, respectively. In Fig3.3(a), at sites of left and right
edges, coefficients of s and px orbitals are relatively large than py and pz ones.
On the other hand at inner sites adjacent to the edge sites, coefficients of the
py orbital are relatively large. Thus, components which are parallel to the plane
near the edges, contribute mainly to these in-gap states. Furthermore, the in-gap
states (iv) are emerged in a region which is different from that of in-gap states
(iii) [Fig.3.1(c)]. The in-gap states (iv) consist mainly of px orbitals at the edge
sites, and pz orbitals at inner sites adjacent to the edge sites. Additionally, it
is found that these in-gap states of a silicene ribbon are different from one of a
graphene ribbon in the coefficients of wave functions. These results are caused
by a buckled structure. Moreover for an energy spectra of a hydrogen terminated
silicene ribbon [Fig.3.1(d)], we obtain in-gap states (vii) like the in-gap states (i)
of a graphene ribbon [Fig.3.1(a)]. Besides in the wave function of the in-gap states
(vii), the coefficients of the pz orbitals at the edge sites are large like the case of
the in-gap states (i) of the graphene ribbon [Fig.3.3(c)].

In higher energy regions above the Fermi energy, we also obtain in-gap states (v),
(vi) and (viii) in energy spectra of 0H/0H and 1H/1H silicene ribbons[Fig.3.1(c)
and (d)]. These in-gap states are doubly degenerate and its localization lengths are
larger than that of near the Fermi level due to the band gap narrowing. Compo-
nents of the wave functions of the in-gap state (v) as function of the x-coordinates
of silicon sites, are shown in Fig.3.4(a). In this figure, px and pz orbitals are
dominant at silicon sites on the both edges. Additionally, s orbitals are dominant
at inner sites adjacent to the edge sites. Similarly, Fig.3.4(b) shows components
of the wave functions of the in-gap state (vi) as function of the x-coordinates of
silicon sites. At the sites on the edges pz orbitals are dominant, on the other
hand at the silicon sites around x = 4 and x = 114 pz and s orbitals contribute
mainly. Furthermore, Figure.3.4(c) shows of components of edge states (viii). In
this figure, pz orbitals at the silicon sites on the edge mainly contribute.

3.2 Several edge terminations at left and right edges
In the previous subsection, we discuss a comparison between graphene and silicene
ribbons without or with a hydrogen termination. Here, we discuss influences of
several types of edge terminations at each left and right edges, and consider eight
kinds of edge geometries, which are expressed as Figs.2.2(b), (d)-(f), and Fig.2.3.
In Fig.3.5(a), we show an energy spectrum of a silicene ribbon whose left and right
edges are terminated by two hydrogen atoms [Fig.2.2(f)]. In this figure, there are
doubly degenerate in-gap states which like one of graphene ribbon with the Klein
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Fig. 3.1 Energy spectra of zigzag graphene and silicene ribbons as a function
of a wave number k. (a), (b) : Energy spectra of graphene ribbons without
or with a hydrogen termination at each edges. i and ii indicate two in-gap
states. (c), (d) : Energy spectra of silicene ribbons without or with a hydrogen
termination at each edges. As well as the case of graphene ribbons, (iii)−(viii)
indicate two in-gap states.

edges [32, 33], and we name these states in-gap states (ix). Moreover in Fig.3.6(a),
we show coefficients of wave function of an averaged in-gap states (ix). As well as
previous subsection, these averaged in-gap states (ix) are summed up in the ranges
of k = π

2 (n/L2) for L2 = 400 and n = −25,−24, · · · , 24, 25. From the result of
Fig.3.6(a), these wave functions are constructed mainly by pz orbitals at inner
sites adjacent to edge sites in Fig.2.1(b). Therefore, it can be interpreted that the
Klein edge of a graphene ribbon, is effectively realized due to a termination by
two hydrogen atoms.

In Fig.3.5(b), we show an energy spectrum of a silicene ribbon whose left edge
is terminated by two hydrogen atoms and right edge is terminated by a hydro-
gen atom [Fig.2.2(e)]. In this figure, there are non-degenerate in-gap states, and
we call these states in-gap states (x) < (|φ1(k)|2 + |φ2(k)|2)/2 >. Moreover in
Fig.3.6(b), we show coefficients of wave function of an averaged in-gap states (v)
which resemble a flat-band in a graphene ribbon whose left edge is the zigzag edge
and right edge is the Klein edge, and these averaged in-gap states (x) are summed
up in the ranges of k = π

2 (n/L2) for L2 = 400 and n = −400,−399, · · · , 399, 400.
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Fig. 3.2 Coefficients of edge states of a graphene ribbon without hydrogen
termination. x-axis corresponds to the x-coordinates of silicon sites. (a): For
the case of in-gap state (i) in Fig.3.1(a). (b): For the case of in-gap state (ii)
in Fig.3.1(a).

From the result of Fig.3.6(b), these wave functions are constructed mainly by
pz orbitals at inner site adjacent to the left edge site and the right edge site in
Fig.2.1(b). Therefore, it can be interpreted that the Klein and the graphene edges
are effectively realized due to hydrogen terminations. Additionally, we consider
silicene ribbons whose left edges are terminated by one or two hydrogen atoms and
a right edge is no termination. Fig.3.5(c) shows an energy spectrum of a silicene
ribbon whose left edges are terminated by a hydrogen atom and a right edge has
no termination[Fig.2.2(b)]. In this figure, we obtain an energy spectrum like an
intermediate spectrum between Fig.3.1(c) and (d). On the other hand, Fig.3.5(d)
shows an energy spectrum of a silicene ribbon whose left edges are terminated by
two hydrogen atoms and a right edge has no termination[Fig.2.2(d)]. In this figure,
we obtain an energy spectrum like an intermediate spectrum between Fig.3.1(c)
and Fig.3.5(a). These intermediate energy spectra result from assuming width of
ribbons enough to consider that interactions between both edges are negligible.
Next we show the energy spectra of 1H’/0H, 1H’/1H, 1H’/1H’ and 2H/1H’ sil-

icene ribbons[Fig.2.3]. Figure.3.7(c) shows an energy spectrum of 1H’/1H’ silicene
ribbons and we obtain three kinds of in-gap states (xi), (xii) and (xiii). Similar
to the above, the localization lengths of wave functions of these in-gap states in
the higher energy region are larger than that of the wave functions near the Fermi
level[Fig.3.8]. Fig.3.8(a) shows components of the wave function of in-gap states
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Fig. 3.3 Coefficients of edge states of silicene ribbons with or without hydro-
gen termination. (a): For the case of in-gap state (iii) in Fig.3.1(c). (b): For
the case of in-gap state (iv) in Fig.3.1(c). (c): For the case of in-gap state
(vii) in Fig.3.1(d).

(xi) as function of x-coordinates of silicon atoms. As shown in this figure, four
orbitals at edge sites almost equivalently contribute to these in-gap states. Addi-
tionally, s and px orbitals at inner sites from edge sites also contribute to these
edge states. Besides, Fig.3.8(b) shows components of the wave function of in-gap
states (xii) in the same manner as Fig.3.8(a). Although, as shown in Fig.3.7(c)
and 3.5(a), these in-gap states are similar to the edge states (ix) for the 2H/2H
silicene ribbon, s orbitals at neighbor sites from edge sites mainly contribute to
these in-gap states. Moreover, we show components of the wave function of in-gap
states (xiii) in Fig.3.8. As shown in this figure, s orbitals at inner sites around
x = 3.5 and x = 74.75 contribute mainly and contributions of px orbitals around
x = 0 ∼ 6.75 and x = 71.5 ∼ 78 can not be negligible. As shown in Figs.3.7(a),
(b), and (d), we obtain intermediate energy spectra between the 1H’/1H’ silicene
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Fig. 3.4 Coefficients of edge states of silicene ribbons with or without hydro-
gen termination in the higher energy region. (a): For the case of in-gap state
(v) in Fig.3.1(c). (b): For the case of in-gap state (vi) in Fig.3.1(c). (c): For
the case of in-gap state (viii) in Fig.3.1(d).

ribbon and other hydrogen terminated silicene ribbons. Thus, we find that in-gap
states can be partially controlled by hydrogen terminations.
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Fig. 3.5 Energy spectra of silicene ribbons as a function of a wave number k
with 2H/2H(a), 2H/1H(b), 1H/0H(c) 2H/0H(d) edge terminations. (ix) and
(x) indicate two in-gap states.
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Fig. 3.6 Coefficients of edge states of silicene ribbons with several types of
hydrogen termination. (a): For the case of in-gap state (ix) in Fig.3.5(a). (b):
For the case of in-gap state (x) in Fig.3.5(b).

Fig. 3.7 Energy spectra of silicene ribbons as a function of a wave number k
with 1H’/0H(a), 1H’/1H(b), 1H’/1H’(c) 2H/1H’(d) edge terminations.
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Fig. 3.8 Coefficients of edge states of silicene ribbons with or without hydro-
gen termination. (a): For the case of in-gap state (xi) in Fig.3.7(c). (b): For
the case of in-gap state (xii) in Fig.3.7(c). (c): For the case of in-gap state
(xiii) in Fig.3.7(c).
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Chapter 4

Physical origin of edge states

4.1 Physical origin of edge states in hydrogen terminated

zigzag silicene ribbons
In this section, we discuss the physical origin of edge states which are obtained in
the previous sections. To do this, we consider a continuous deformation of on-site
energies εs, εp and εH in the model, from realistic parameters which are εs =
−14.69eV, εp = −8.08eV and εH = −13.55eV to a chiral symmetric parameters
which are εs = εp = εH = −14.69eV. Firstly, we explain the reason why the model
is chiral symmetric for parameters which are εs = εp = εH = −14.69eV. After
that, we show numerical results of energy spectra of silicene ribbons with several
types of hydrogen terminations.

4.1.1 Transformation of a hamiltonian of on-site energies from realistic

to chiral symmetric models

To discuss the continuous deformation of the models, we consider a change of
bases of hamiltonian from {s, px, py, pz} to {|1〉, |2〉, |3〉, |4〉}, where |1〉 is a hybrid
orbital direct to the direction which is perpendicular to the plane of silicene, |2〉,
|3〉, and |4〉 are also the hybrid orbitals direct to the directions which are parallel
to the Si-Si bonds of silicene[Fig.4.1]. Here, we assume states of these orbitals
for B sublattice. Hybrid orbitals |i〉 (i = 1, 2, 3, 4) can be expressed as |i〉 =
csi |s〉 + cxi |px〉 + cyi |py〉 + czi |pz〉 using wavefunctions of s, px, py, and pz orbitals.
Using these expressions, a hamiltonian Hon−site (Hon−site = diag(εs, εp, εp, εp)) of
a single atom can be transformed as follows;

Hon−site =


εs + (εs − εp)|cs1|2 (εs − εp)cs1c

s∗
2 (εs − εp)cs1c

s∗
3 (εs − εp)cs1c

s∗
4

(εs − εp)cs2c
s∗
1 εs + (εs − εp)|cs2|2 (εs − εp)cs2c

s∗
3 (εs − εp)cs2c

s∗
4

(εs − εp)cs3c
s∗
1 (εs − εp)cs3c

s∗
2 εs + (εs − εp)|cs3|2 (εs − εp)cs3c

s∗
4

(εs − εp)cs4c
s∗
1 (εs − εp)cs4c

s∗
2 (εs − εp)cs4c

s∗
3 εs + (εs − εp)|cs4|2

 .

(4.1)

For εs 6= εp, this hamiltonian is not diagonal matrix and does not possess chiral
symmetry. However, if εs = εp, this hamiltonian possess chiral symmetry then
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Fig. 4.1 Schematic description of hybrid orbitals of A(Figure.(a)) and
B(Figure.(b)) sublattices. Red and blue ellipsoids mean hybrid orbitals. Up-
per(bottom) figure shows top(side) view of four orbitals.

discussions of flat bands due to the chiral symmetry are available similar to the case
of graphene. This consideration is also applied to cases of hydrogen terminated
silicene ribbons.

4.1.2 Continuous deformation of on-site energies from realistic to chiral

symmetric models

Here, we show numerical results of energy spectra of several systems for applying
continuous deformation of on-site energies to the models from realistic to chiral
symmetric models. To consider continuous deformations of on-site energies for
hydrogen terminated silicene ribbons, we introduce a parameter α(0 ≤ α ≤ 1)
which changes on-site energies εp and εH as follows ε′p = αεp + (1 − α)εs and
ε′H = αεH + (1 − α)εs. When α = 1, these on-site energies correspond to realistic
ones. On the other hand when α = 0, this model corresponds to a chiral symmetric
model.

Bulk silicene
Firstly, we consider numerical results of energy spectra of bulk silicene deforming
on-site energies. Fig.4.2 shows energy spectra for several cases of an on-site energy
difference between s and p orbitals. In this figure, for the case whose an on-site
energy differences is εs − εp = −6.61eV which correspond to realistic silicene, the
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Fig. 4.2 Energy spectra of bulk silicene with several variations of on-site energies.

behaviors of energy bands are consistent with energy bands calculated by DFT
calculations [1, 23, 2] in points of view of a linear dispersion near the Fermi level
and a shape of energy bands in a region of low-energy. As deforming energy
differences between on-site energies, energy bands in low energy region below the
Fermi level change significantly and shift to higher energy regions. On the other
hand, in the higher energy region above the Fermi level, the width of these energy
bands narrow as deforming the energy differences. For α = 0 that the model has
the chiral symmetry, the shape of energy bands are symmetric up and down with
respect to the Fermi level (E = 0).
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Fig. 4.3 Energy spectra of a 0H/0H zigzag silicene ribbon with several vari-
ations of on-site energies.

0H/0H silicene ribbon
Next, we show energy spectra of a 0H/0H zigzag silicene ribbons with several
on-site energies[Fig.4.3]. For α = 1, as mentioned Sec.3.1, we obtain two types
of edge states near the Fermi level. As deforming energy differences, edge states
in the region of a wave number space −2π/3 ≤ k ≤ 2π/3 come close to the
Fermi level. On the other hand, edge states in the regions of a wave number
space −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π around E ∼ −2eV also come close
to the Fermi level. Furthermore, other edge states, which are indistinguishable
from energy bands of bulk around E ∼ 2eV for α = 1 in the regions of a wave
number space −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π, come down to the Fermi
level and doubly degenerate. Eventually for α = 0, these edge states degenerate
at the Fermi level. In the regions of a wave number space −π ≤ k ≤ −2π/3 and
2π/3 ≤ k ≤ π, edge states fourfold degenerate. Besides, in the region of a wave
number space −2π/3 ≤ k ≤ 2π/3, edge states doubly degenerate.



54 Chapter 4 Physical origin of edge states

Fig. 4.4 Energy spectra of 1H/1H silicene ribbon with several variations of
on-site energies.

1H/1H silicene ribbon
Fig.4.4 shows energy spectra of a 1H/1H zigzag silicene ribbon. As deforming
energy differences, edge states in the regions of a wave number space −π ≤ k ≤
−2π/3 and 2π/3 ≤ k ≤ π, which similar to that of zigzag graphene ribbon are
stable. This results indicated that edge states for the realistic 1H/1H silicene
ribbon are adiabatically connected to the edge states for the chiral symmetric
1H/1H ribbon. On the other hand, in-gap states that emerge around E ∼ 4eV
in the regions of a wave number space −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π for
α = 1, become indistinguishable from energy bands of bulk as deforming energy
differences.
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Fig. 4.5 Energy spectra of 2H/2H silicene ribbon with several variations of
on-site energies.

2H/2H silicene ribbon
Fig.4.5 shows energy spectra of a 2H/2H zigzag silicene ribbon. Similar to the case
of 1H/1H silicene ribbon, edge states in the region of a wave number space −2π/3 ≤
k ≤ 2π/3 are stable against deforming differences between on-site energies. Thus,
these edge states are also adiabatically connected to the edge states of the chiral
symmetric model. Moreover, for α = 0, these energies of edge states are zero
rigorously.

1H/0H silicene ribbon
Fig.4.6 shows energy spectra of a 1H/0H zigzag silicene ribbon. As deforming
difference between on-site energies from α = 1 to α = 0, flat bands at the Fermi
level are stable. In addition, energy bands of edge states around E ∼ −2eV and
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Fig. 4.6 Energy spectra of 1H/0H silicene ribbon with several variations of
on-site energies.

E ∼ 2eV in the regions of k-space −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π, come close
to the Fermi level. Simultaneously, energy bands of edge states in the regions of k-
space −2π/3 ≤ k ≤ 2π/3 also come close to the Fermi level. For α = 0, these edge
states threefold degenerate in the regions of −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π,
and non-degenerate in the regions of −2π/3 ≤ k ≤ 2π/3.

2H/1H silicene ribbon
Fig.4.7 shows energy spectra of a 2H/1H zigzag silicene ribbon. An energy band
at the Fermi level is stable against the continuous deformation of α and non-
degenerate. For α 6= 0, this energy band is slightly dispersive, by contrast for
α = 0 an energy of this band is rigorously at the Fermi level (E = 0). In the after
section, we show that this edge states originates from the chiral symmerty.
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Fig. 4.7 Energy spectra of 2H/1H silicene ribbon with several variations of
on-site energies.

2H/0H silicene ribbon
Fig.4.8 shows energy spectra of a 2H/0H zigzag silicene ribbon. As deforming
difference between on-site energies from α = 1 to α = 0, flat bands in the region
of of k-space −2π/3 ≤ k ≤ 2π/3 at the Fermi level are stable. In addition,
energy bands of edge states around E ∼ −2eV and E ∼ 2eV in the regions of
k-space −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π, come close to the Fermi level.
Simultaneously, energy bands of edge states in the region of k-space −2π/3 ≤ k ≤
2π/3 also come close to the Fermi level. For α = 0, these edge states twofold
degenerate in the whole region of k-space,
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Fig. 4.8 Energy spectra of 2H/0H silicene ribbon with several variations of
on-site energies.

1H’/0H silicene ribbon
Fig.4.9 shows energy spectra of a 1H’/0H zigzag silicene ribbon. As deforming
difference between on-site energies from α = 1 to α = 0, flat bands in the region
of of k-space −2π/3 ≤ k ≤ 2π/3 at the Fermi level is shifted to the high energy
region. In addition, energy bands of edge states around E ∼ −2eV and E ∼ 2eV
in the regions of k-space −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π, comes close to the
Fermi level. Simultaneously, energy bands of edge states in the region of k-space
−2π/3 ≤ k ≤ 2π/3 also come close to the Fermi level. For α = 0, the edge state
in the region of k-space −2π/3 ≤ k ≤ 2π/3 non-degenerate, by contrast the edge
states in the regions of −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π threefold degenerate.
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Fig. 4.9 Energy spectra of 1H’/0H silicene ribbon with several variations of
on-site energies.

1H’/1H silicene ribbon
Fig.4.10 shows energy spectra of a 1H’/1H zigzag silicene ribbon. As deforming
difference between on-site energies from α = 1 to α = 0, flat bands in the region
of k-space −2π/3 ≤ k ≤ 2π/3 at the Fermi level is shifted to the high energy
region, on the other hand flat bands in the regions of −π ≤ k ≤ −2π/3 and
−2π/3 ≤ k ≤ π are stable. In addition, an energy band of an edge state around
E ∼ −2eV in the regions of −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π, comes close to
the Fermi level. For α = 0, the edge states in the regions of −π ≤ k ≤ −2π/3 and
2π/3 ≤ k ≤ π twofold degenerate.

1H’/1H’ silicene ribbon
Fig.4.11 shows energy spectra of a 1H’/1H’ zigzag silicene ribbon. As deforming
difference between on-site energies from α = 1 to α = 0, flat bands in the region
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Fig. 4.10 Energy spectra of 1H’/1H silicene ribbon with several variations of
on-site energies.

of k-space −2π/3 ≤ k ≤ 2π/3 at the Fermi level is shifted to the high energy
region. In addition, energy bands of edge states around E ∼ −1eV in the regions
of −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π, come close to the Fermi level. For α = 0,
the edge states in the regions of −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π twofold
degenerate.

2H/1H’ silicene ribbon
Fig.4.12 shows energy spectra of a 2H/1H’ zigzag silicene ribbon. As deforming
difference between on-site energies from α = 1 to α = 0, one of doubly degenerated
flat bands in the region of k-space −2π/3 ≤ k ≤ 2π/3 at the Fermi level is shifted to
the high energy region. In addition, energy bands of edge states around E ∼ −1eV
in the regions of −π ≤ k ≤ −2π/3 and 2π/3 ≤ k ≤ π, come close to the Fermi
level. For α = 0, the flat band edge state in the whole region of k-space emerges
and non-degenerate.
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Fig. 4.11 Energy spectra of 1H’/1H’ silicene ribbon with several variations
of on-site energies.

4.2 Discussion of flat bands in hydrogen terminated

silicene ribbons

4.2.1 zero energy flat bands in the chiral symmetric models

Before the consideration of edge states of hydrogen terminated silicene ribbons, we
review the zero energy flat bands protected the chiral symmetry following Hatsugai
et. al.’s discussion[48]. To do this, we consider the eigen value problem of the
chiral symmetric hamiltonian H. This hamiltonian can be written H = c†Hc

where c† = (c†A1, c
†
A2, · · · , c

†
AM , c†B1, c

†
B2, · · · , c

†
BN ), c†Ai(c

†
Bj) is a creation operator

at the i(j)-th site in A(B) sublattice and H is (M +N) × (M +N) matrix. H is
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Fig. 4.12 Energy spectra of 2H/1H’ silicene ribbon with several variations of
on-site energies.

given as follows:

H =
(
OM D
D† ON

)
, (4.2)

where D is M ×N matrix and OM and ON are M ×M and N ×N matrices. This
H satisfies the anti commutation relation {H,Γ} = 0, where Γ = diag(IM ,−IN ).
Here, we assume that M > N , and consider eigenvalue problem of this H as
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follows:

HΨ = λΨ
⇒

det|λI −H| = det
∣∣∣∣λIM −D
−D† λIN

∣∣∣∣ = 0

⇒

det
∣∣∣∣λIM −D
−D† λIN

∣∣∣∣ =det
∣∣∣∣ λIM −D
−D† +D†IM λIN −D†D/λ

∣∣∣∣
= det

∣∣∣∣ λIM −D
ONM λIN −D†D/λ

∣∣∣∣
= λM−Ndet|λ2IN −D†D|. (4.3)

Thus, the minimum number of zero energies is obtained from M − N . In this
case, the amplitude of wave functions of this zero energy only has A sublattices.
Furthermore, zero energy flat bands that emerge in the whole region in k-space,
originate from these wave functions. This discussion is also applicable for multi
orbital treatment[Fig.4.13(a)].

Based on these discussions, we consider the hydrogen terminated silicene rib-
bons. Figs.4.13(b) and (c) show hydrogen terminated silicene ribbons whose
atomic sites are distinguished between A and B sublattices. The number of orbitals
belonging to A(B) sublattice, NA(B), can be given as NA(B) = 4NA(B)

Si + N
A(B)
H

where NA(B)
Si is the number of silicon sites of A(B) sublattice, 4 means four orbitals

of a silicon atom, and N
A(B)
H is the number of hydrogen sites of A(B) sublattice.

For |NA − NB | = 1 as described in Fig.4.13(b), edge states near the Fermi level
that have pretty well flat bands in the whole region of k-space, energy bands are
continuously connected to the flat bands originated from the chiral symmetry.
As the numerical result of edge states (x)[Fig.3.6(b)], an edge state at one side
edge does not influence one at another side edge. Thus, for the discussion of edge
states, edge states at each edges can be consider separately. Consequently, for
|NA − NB| = 0 as described Fig.4.13(c), edge states also continuously connected
to the flat bands in the chiral symmetric models. However, for the edge state
without hydrogen terminations, this consideration is inapplicable, because an en-
ergy band of this edge state changes shape significantly as continuous deforming
of difference between on-site energies. Nevertheless, the edge states of the 0H/0H
silicene ribbon is continuously connected to that of the chiral symmetric silicene
ribbon. Therefore, in the next section we will consider this edge state in terms of
topological aspects using the Berry phase.

4.3 Non-Abelian Berry phase in silicene
In the previous section, we have showed that edge states of silicene ribbons with
several hydrogen terminations can be continuously connected to zero energy edge



64 Chapter 4 Physical origin of edge states

Fig. 4.13 (a) Schematic illustration of silicene distinguished A and B sub-
lattice. Red ellipses and blue circles indicate the hybidized orbitals directed
to the another sublattices and normal to the plane of silicene, respectively.
Schematic illustration of 2H/1H(b) and 1H/1H(c) hydrogen terminated sil-
icene ribbons distinguished A and B sublattice.

states due to the chiral symmetry. However, the physical origin of edge states of
a 0H/0H silicene ribbon is unclear yet. Here, we discuss edge states of a silicene
ribbons without hydrogen termination in the point of view of topological aspects
using the Berry phase that is calculated from energy eigen states in the wave
number space.

4.3.1 Definition of the Berry phase for numerical calculation

To calculate Berry phase numerically, firstly we define the Berry phase γ(k) in the
wave number space as γ(k) = −i

∮
k1

TrA(k1, k) where k corresponds to the wave
number calculated from the translation vector ~e2[ Fig.2.1(b)]. A(k1, k) is given as
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follows

A(k1, k) =


ψ†

1(k1, k)dψ1(k1, k) ψ†
1(k1, k)dψ2(k1, k) · · · ψ†

1(k1, k)dψN (k1, k)
ψ†

2(k1, k)dψ1(k1, k) ψ†
2(k1, k)dψ2(k1, k) · · · ψ†

2(k1, k)dψN (k1, k)
...

...
. . .

...
ψ†

N (k1, k)dψ1(k1, k) ψ†
N (k1, k)dψ2(k1, k) · · · ψ†

N (k1, k)dψN (k1, k)

 ,

(4.4)

where ψi(k1, k) are energy eigen states of the Fourier transformed hamiltonian
H(k1, k) with eigen energy εi(i = 1, · · · , N = 4, 5, · · · , 8). Furthermore, we assume
that ε1 < ε2 < · · · < εN=4 < ε5 < · · · < ε8 for the definition of the Berry phase.
When εN=4 = ε5, the Berry phase is undefined. For the numerical calculation,
we discretize the wave number k1 as k1 = 2πj

NB
(NB = 40, j = −NB/2,−NB/2 +

1, · · · , NB/2−1). According to Eq.2.26, the Berry phase γ(k) is written as follows:

γ(k) = arg det[(Ψ†(
2π(−NB/2)

NB
, k)Ψ(

2π(−NB/2 + 1)
NB

, k))

× (Ψ†(
2π(−NB/2 + 1)

NB
, k)Ψ(

2π(−NB/2 + 2)
NB

, k))

× · · · (Ψ†(
2π(j)
NB

, k)Ψ(
2π(j + 1)
NB

, k)) · · · (Ψ†(
2π(NB/2 − 1)

NB
, k)Ψ(

2π(−NB/2)
NB

, k))],

(4.5)

where (Ψ†( 2π(j)
NB

, k)Ψ( 2π(j+1)
NB

, k)) is written as follows:

(Ψ†(
2π(j)
NB

, k)Ψ(
2π(j + 1)
NB

, k)) =
ψ†

1(
2π(j)
NB

, k)dψ1(
2π(j+1)

NB
, k) ψ†

1(
2π(j)
NB

, k)dψ2(
2π(j+1)

NB
, k) · · · ψ†

1(
2π(j)
NB

, k)dψN ( 2π(j+1)
NB

, k)
ψ†

2(
2π(j)
NB

, k)dψ1(
2π(j+1)

NB
, k) ψ†

2(
2π(j)
NB

, k)dψ2(
2π(j+1)

NB
, k) · · · ψ†

2(
2π(j)
NB

, k)dψN ( 2π(j+1)
NB

, k)
...

...
. . .

...
ψ†

N ( 2π(j)
NB

, k)dψ1(
2π(j+1)

NB
, k) ψ†

N ( 2π(j)
NB

, k)dψ2(
2π(j+1)

NB
, k) · · · ψ†

N ( 2π(j)
NB

, k)dψN ( 2π(j+1)
NB

, k)

 .

(4.6)

4.3.2 Numerical results of the Berry phase

Fig.4.14 shows the numerical results of the Berry phase. In these figures, Berry
phase changed around k = −2π

3 and k = 2π
3 reflecting energy gap closing for bulk.

For k = −2π
3 and k = 2π

3 , the Berry phase is undefined because of a degeneracy.
As mentioned in Sec.2.3, the Berry phase quantizes as 0 or π modulo 2π for the
chiral symmetric silicene. For α = 0 that corresponds to the chiral symmetric
silicene, the Berry phase is π in −2π

3 < k < 2π
3 , on the other hand the Berry phase

is 0 in −π < k < −2π
3 and 2π

3 < k < π. As continuous deforming of difference
between on-site energies, Berry phases are stable in each regions of π and 0. Thus
this result means that edge states of 0H/0H silicene ribbon exist in the region of
−2π

3 < k < 2π
3 .
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Fig. 4.14 Numerical calculation results of Berry phase as deforming on-site
energies from a realistic silicene ribbon to a chiral symmetric silicene ribbons
as function of k. Berry phases are normalized by π.
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Chapter 5

Conclusion

In this thesis, we have investigated edge states in hydrogen terminated zigzag
silicene ribbons as a Dirac fermion system and its physical origin via a multi orbital
tight binding model on a honeycomb lattice. To do this, we have numerically
calculated energy spectra of zigzag silicene ribbons with several types of hydrogen
terminations and the Berry phase. In such cases, we have also took into account
the continuous deformation of on-site energies of s and p orbitals that means to a
continuous deformation from realistic models of silicene to chiral symmetric models
of silicene.

Firstly, we have compare energy spectra of 0H/0H and 1H/1H zigzag silicene
ribbons to zigzag graphene ribbons with or without hydrogen terminations. In
the energy spectrum of zigzag graphene ribbons with hydrogen termination, we
have obtained energy spectrum near the Fermi level consistent with one calculated
from single orbital tight binding model. Besides, for the case of silicene ribbon,
we have obtained an energy spectrum similar to ones of a zigzag graphene ribbon
with hydrogen termination near the Fermi level. Additionally, we found that
main components of the wave functions of these edge states of silicene are pZ

components at the edges similar to the edge states of zigzag graphene ribbons. On
the other hand, in the numerical result of energy spectra of zigzag graphene ribbons
without hydrogen termination, edge states originated from σ orbitals as dangling
bonds emerge near the Fermi level. These edge states have been also obtained
by DFT calculations. In a silicene ribbon without a hydrogen termination, we
find new edge states different from one of a graphene ribbon. If an ideal zigzag
silicene ribbon without hydrogen termination can be synthesized experimentally,
then these edge states may be observed.

Next, we have investigated effects of hydrogen terminations to edge states of
zigzag silicene ribbons through the consideration of several types of hydrogen
terminations. For the energy spectrum of silicene ribbon with 2H/2H hydrogen
termination, we have obtained that edge states in the region of wave number
−2π/3 < k < 2π/3 like ones of a graphene ribbon with the Klien edge and wave
functions of edge states localize at the inner sites from edge sites. This results
imply that the Klein edge fictitiously realized at both edges due to a termination
of two dangling bonds at both edge sites. In addition, for the energy spectrum of
silicene ribbon with 2H/1H hydrogen termination, we have obtained an edge state
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consistent with one calculated by DFT calculation. This edge state is pretty well
flat band and emerges in the whole region of wave number.

In order to clarify physical origin of edge states obtained from energy spectra, we
have investigated behaviors of energy spectra of silicene ribbons with several types
of termination as deforming on-site energies of s and p orbitals and have found that
flat bands emerging in energy spectra in realistic models of hydrogen terminated
silicene ribbons, is continuously connected to flat bands of hydrogen terminated
silicene ribbons with chiral symmetry. However, for a silicene ribbon without
hydrogen termination near the Fermi level, its edge states cannot be interpreted
based on the chiral symmetry.

Thus, we have changed one’s perception of edge states and focused on the topo-
logical aspects of edge states in terms of bulk properties. To do this, we have
calculated the Berry phase that called the Zak phase numerically, which calcu-
lated from eigen energy states in the wave number space. As deforming difference
of on-site energies between s and p orbitals, Berry phase stably quantized as 0
or π modulo 2π. For the chiral symmetric model, Berry phase quantized ana-
lytically reflecting degeneracy of zero-energy edge states. In the region of wave
number −2π/3 < k < 2π/3, Berry phase is π, on the other hand in the regions of
−π < k < −2π/3 and 2π/3 < k < π, Berry phase is 0. Similar to the case of the
chiral symmetric silicene, for the realistic silicene, numerical results of Berry phase
are 0 in the regions of −π < k < −2π/3 and 2π/3 < k < π, and are π in the region
of the wave number −2π/3 < k < 2π/3. This means that edge states of a 0H/0H
zigzag silicene ribbon exist in the region of wave number −2π/3 < k < 2π/3 and
the Berry phase is quantized due to the other symmetry different from the chiral
symmetry.

In conclusion, we would like to emphasizes the possibility of realization of exotic
edge states in silicene due to the buckled structures and considerations of several
types of edge termination.
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