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Preface

I have studied Algebraic Number Theory. This dissertation is devoted to the study of a method

for finding a minimal point of the reduced lattice in a cubic algebraic number field of negative

discriminant and the study of two families of cubic number fields. One of the algorithms that

find the fundamental units of the order of cubic number fields is Voronoi’s algorithm. Voronoi’s

algorithm determines a chain of minimal point in such a lattice. It is known that to find all the

minimal points of a reduced lattice, it is sufficient to know how to find a minimal point adjacent

to 1 in any reduced lattice. Two versions are familiar as such a method: one version is by Delone

(1940) and the other is by Williams, Cormack and Seah (1980). Williams, Cormack and Seah

utilized the two-dimensional lattice obtained from a reduced lattice R to find a minimal point

adjacent to 1 in R. Subsequently, Adam(1995) utilized an isotropic vector of the quadratic form

obtained from a basis of a reduced lattice R. Later, Lahlou and Farhane(2005) generalise the

Adam’s method.

First, we give a method for finding a minimal point adjacent to 1 of the reduced lattice R in

cubic number fields using an isotropic vector of the quadratic form and the two-dimensional

lattice. Second, we consider a one-parameter family of cubic fields introduced by Ishida (1988).

His family has a lot of interesting characteristics. For instance, each field of this family has

an unramified cyclic extension of degree 9 under certain conditions. And finally, we consider a

two-parameter family of cubic fields.

In chapter 1, firstly, we shall consider a Q-linear map τ from reduced lattice R to R2 and

investigate two-dimensional lattice L = Rτ . In that case we define terminology for F -point as a

special element of R. We also define terminology for normalized basis of R. Secondly, we shall

show the existence of a basis of R that contains an F -point and that satisfies some conditions.

Next, we shall prove a theorem about the relationship between this basis and the normalized

basis of R. Then, we shall divide all the occurring cases for the basis of R into six cases. Then,

we refine candidates of a minimal point adjacent to 1 in a reduced lattice R. To narrow the

candidates, we use three tools: the theorem of Williams, Cormack and Seah (1980) in which the

candidates are described by the normalized basis , the relationship mentioned above and the

isotropic vector of the quadratic form obtained from a basis of reduced lattice. Finally, we shall

give several numerical examples. The result of this chapter is contained in my paper [21].
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In chapter 2, we shall consider the cubic number fields Q(θ) defined by θ3 − 3θ − b3 =

0 (0,±1 ̸= b ∈ Z), which is introduced by Ishida as mentioned above.

In section 1, we shall find Voronoi-algorithm expansion of the order Z[θ].

In section 2, we shall find an integral basis of Q(θ) using Voronoi’s theorem on integral basis.

In section 3, we shall prove a theorem which gives sufficient conditions so that ϵ (the fundamental

unit of Z[θ]) is the fundamenatal unit of Q(θ), using Artin’s lemma on a unit of cubic number

field. To prove the theorem, we also need a lemma about a diophantine system, which Lee and

Spearman(2011) proved using theories including Algebraic Curves. Using the theorem, we shall

show that there exist infinitely many cubic fields Q(θ) such that ϵ is the fundamenatal unit of

Q(θ).

In section 4, we shall consider a family of biquadratic fields Fb := Q(
√
−3,

√
b6 − 4) (0,±3 ̸=

b ∈ Z, b ≡ 0 mod 3). Given the property of ϵ, we can show that the length of the 3-class tower

of Fb is greater than one using a theorem due to Yoshida(2003). The result of this chapter is

contained in my paper [18,20,22].

In chapter 3, we shall consider a family of orders of complex cubic fields which depend on

two parameters. Using the similar method in chaper 1, we shall obtain the Voronoi-algorithm

expansions of orders and the fundamental units of orders. The result of this chapter is contained

in my paper [19].

I would like to express my deep gratitude to Professor Shigeki Akiyama and Professor Shin-ichi

Yasutomi for their helpful suggestions and constant encouragements.
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1 A method for finding a minimal point of the lattice in cubic

number fields

Let K be a cubic algebraic number field of negative discriminant. It is known that to find all

the minimal points of a reduced lattice R of K, it is sufficient to know how to find a minimal

point adjacent to 1 in any reduced lattice of K (refer to Definition 1.1 for a rigorous definition).

Williams, Cormack and Seah [34] utilized the two-dimensional lattice obtained from a reduced

lattice R to find a minimal point adjacent to 1 in R (the definition of such a two-dimensional

lattice is forthcoming in Section 1). Moreover, Adam [1] utilized an isotropic vector of the

quadratic form obtained from a basis of reduced lattice R (the definition of such a quadratic

form is forthcoming in Section 3). Later, Lahlou and Farhane [24] generalise the Adam’s method.

In this chapter, we shall prove six theorems which give candidates of a minimal point adjacent

to 1 in a reduced lattice R. In each case of the theorems, the maximum number of candidates

ϕ ∈ R such that we must check whether F (ϕ) < 1 or not is at most four. Also, such six theorems

contain all the occuring cases.

Definition 1.1. (1) Let 1, β, γ ∈ K be independent over Q. We say that R = 〈1, β, γ〉 =

Z + Z.β + Z.γ is a lattice of K with basis {1, β, γ}.

(2) For α ∈ R we define F (α) =
NK(α)

α
= α′α′′, where NK denotes the norm of K over Q,

and α′ and α′′ the conjugates of α.

(3) Let R be a lattice of K, and let ϕ(> 0) ∈ R. We say that ϕ is a minimal point of R if for

all α in R such that 0 < α < ϕ we have F (α) > F (ϕ).

(4) Let R be a lattice of K and ϕ, ψ ∈ R be a minimal point. We say that ψ is a minimal

point adjacent to ϕ in R if ψ = min{α ∈ R; ϕ < α,F (ϕ) > F (α)}.

(5) If R is a lattice of K in which 1 is a minimal point, we call R a reduced lattice.

1.1. Basis of reduced lattice (I)

Definition 1.2. Let α ∈ K. We define Yα := Re α′, Zα := Im α′, Xα := α − Yα. Let

λ ∈ K,µ ∈ K\Q. We define ω1(λ, µ) := −(Zλ/Zµ), ω2(λ, µ) := −Yλ − ω1(λ, µ)Yµ.

Remark. In [34] Yα = Im α′, Zα = Re α′.
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Proposition 1.1. Let α ∈ K, c ∈ Z. Then

(1) F (α) = Y 2
α + Z2

α.

(2) α ̸∈ Q ⇒ Yα, Xα ∈ K − Q, Zα ̸∈ Q.

(3) K ∋ 1, λ, µ are independent over Q ⇒ ω1(λ, µ) ̸∈ Q.

(4) K ∋ 1, λ, µ are independent over Q

⇒ 1, Xλ, Xµ are independent over Q.

(5) K ∋ 1, λ, µ are independent over Q ⇒ det

 Xλ Xµ

Zλ Zµ

 ̸= 0.

(6) Let α ̸∈ Q. Then

(i) −1 < Yα+c < 1 ⇔ c = [−Yα] or [−Yα] + 1,

(ii) Y[−Yα]+α < 0, Y[−Yα]+1+α > 0,

(iii) |Y[−Yα]+α| < 1/2 or |Y[−Yα]+1+α| < 1/2.

Proof. (3) Let K = Q(θ) and λ = a0 + a1θ + a2θ
2(ai ∈ Q),

µ = b0 + b1θ + b2θ
2(bi ∈ Q). Then we have

Zλ =
1
2i

(λ′ − λ′′) =
1
2i
{a1(θ′ − θ′′) + a2(θ′2 − θ′′2)}

=
1
2i

(θ′ − θ′′){a1 + a2(θ′ + θ′′)} = Zθ{a1 + (TK/Qθ)a2 − a2θ} (i2 = −1).

Similarly we have Zµ = Zθ{b1 + (TK/Qθ)b2 − b2θ}. Suppose that

ω1(λ, µ) = −Zλ

Zµ
= −a1 + pa2 − a2θ

b1 + pb2 − b2θ
= r ∈ Q (p = TK/Qθ). Then we have

r(b1 + pb2 − b2θ) = −(a1 + pa2 − a2θ), rb1 + rpb2 + a1 + pa2 − (rb2 + a2)θ = 0.

Hence rb2 + a2 = 0, rb1 + a1 = 0, so a0 + rb0 − λ − rµ = 0.

Since 1, λ, µ are independent over Q, we have reached a contradiction.

Therefore we have ω1(λ, µ) ̸∈ Q．

(5) Since 1, λ, µ are independent over Q, by algebraic number theory

det


1 λ µ

1 λ′ µ′

1 λ′′ µ′′

 ̸= 0. Moreover, det


1 λ µ

1 λ′ µ′

1 λ′′ µ′′

 = 2i(XλZµ − XµZλ).

Therefore we have XλZµ − XµZλ ̸= 0.

　Otheres are easily deduced from definitions. ¤

Definition 1.3. Let R be a reduced lattice of K. For R ∋ α we define

α(1) := [−Yα] + α, α(2) := [−Yα] + 1 + α, α(3) :=

 α(1) if |Yα(1)
| < 1/2

α(2) if |Yα(2)
| < 1/2

,

α(0) := α − [α], where [...] is the greatest integer function.
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Note that |Zα| <
√

3/2 ⇒ F (α(3)) < 1.

Let R = 〈1, β, γ〉 be a reduced lattice of K. Let τ : K → R2 be the Q-linear map defined

by ατ = (Xα, Zα). Note that for α1, α2 ∈ R, ατ
1 = ατ

2 ⇔ there exists some c ∈ Z such

that α2 = c+α1. Let L := Rτ = 〈βτ , γτ 〉. By Proposition 1.1,(5) L is a two-dimensional lattice.

Moreover, by Proposition 1.1,(3)(4) L has the following property (∆):

(∆) L ∩ ({0} × R) = L ∩ (R × {0}) = {(0, 0)}.

Now we prepare two lemmas about the two-dimensional lattice which has property (∆) from

Delone’s supplement I in [9].

Definition 1.4. Let L(⊂ R2) be a two-dimensional lattice which has property (∆).

(1) For R2 ∋ S = (Su, Sv) ̸= (0, 0) we define C(S) := {(u, v) ∈ R2; |u| < |Su|, |v| < |Sv|}.

Then we say that S ∈ L is a minimal point of L if L ∩ C(S) = {(0, 0)}. The system of all the

minimal points of L we denote by M(L). We put M(L)>0 := {P ∈ M(L); Pu > 0}.

(2) Let S(Su > 0), Q(Qu > 0) ∈ L be a minimal point of L. We say that Q is a minimal point

adjacent to S in L if Qu = min{Pu; P ∈ L, Su < Pu, |Sv| > |Pv|}.

Lemma 1.1. Let L(⊂ R2) be a two-dimensional lattice which has property (∆). Let L ∋

S,Q (Su > 0, Qu > 0). Then Q is a minimal point adjacent to S in L if and only if L =

〈S,Q〉, Su < Qu, |Sv| > |Qv|, SvQv < 0.

Proof. From Theorem XI,XII,XIII in [9,p.467-469]. (cf. Theorem 4.1 in [37]). ¤

Lemma 1.2. Let L(⊂ R2) be a two-dimensional lattice which has property (∆) and let

E,G,H ∈ L. We assume that G is a minimal point adjacent to E and that H is a minimal

point adjacent to G. Then we have H = E + [−Ev/Gv]G.

Proof. From supplement I,Section 3,34 in [9,p.470]. ¤

Proposition 1.2. Let R be a reduced lattice of K, and let L := Rτ . Then there exists a

basis {1, λ, µ} of R such that λτ is a minimal point adjacent to µτ in L, 0 < Xλ, F (λ(3)) <

1, F (µ(3)) > 1.

Proof. Let R = 〈1, β, γ〉. For ε > 0, we shall consider a rectangular neighbourhood of (0, 0),

i.e. W (ε,
√

3/2) = {(u, v) ∈ R2; |u| < ε, |v| <
√

3/2}. By Minkowski’s convex body theorem,
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there exists ε > 0 such that L ∩ W (ε,
√

3/2) ̸= {(0, 0)}. We take such a ε > 0 and fix it. We

put W = W (ε,
√

3/2). Then there exists Q = (Qu, Qv) ∈ L ∩ W such that Qu = min{Pu; P ∈

L ∩W, 0 < Pu}. Note that such a Q ∈ L is uniquely-determined. We have L ∩C(Q) = {(0, 0)}.

Hence Q is a minimal point of L. There exists S ∈ L such that Q is a minimal point adjacent

to S in L. By Lemma 1.1, {S,Q} is a basis of L. Since both {S,Q} and {βτ , γτ} are a

basis of L, there exists

 p q

r s

 ∈ GL2(Z) such that (Q S) = (βτ γτ )

 p q

r s

. We have

Q = pβτ + rγτ = (pβ + rγ)τ . Similarly, we have S = (qβ + sγ)τ . We define λ, µ ∈ K by

(λ µ) = (β γ)

 p q

r s

. Then we have R = 〈1, λ, µ〉, Q = λτ , S = µτ . Since Q = (Qu, Qv) =

λτ = (Xλ, Zλ), from |Zλ| <
√

3/2, we have F (λ(3)) < 1. From this, if we put RF := {α ∈

R; ατ ∈ M(L)>0, F (α(3)) < 1}, then RF ̸= ∅. Let W (ε, 1) := {(u, v) ∈ R2; |u| < ε, |v| < 1}. As

W (ε,
√

3/2) ⊂ W (ε, 1), we have 1 < |Rτ
F ∩W (ε, 1)| < ∞. Hence there exists λτ ∈ Rτ

F ∩W (ε, 1)

such that Xλ = min{Xα; ατ ∈ Rτ
F ∩ W (ε, 1)}. Since F (α(3)) < 1 ⇒ |Zα| < 1, it is easily seen

that Xλ = min{Xα; ατ ∈ Rτ
F ∩ W (ε, 1)} = min{Xα; ατ ∈ Rτ

F } = min{Xα; α ∈ RF }. For this

λ, there exists µ ∈ R such that λτ is a minimal point adjacent to µτ in L. Moreover, for such a

µ we have F (µ(3)) > 1. ¤

Remark. Such a basis in Proposition 1.2 is easily found by modified version of Algorithm (A) in

[34,p.581].

Definition 1.5. Let R be a reduced lattice of K, and let L := Rτ . We say that λ ∈ R is a

F -point of M(L)>0 if λ ∈ RF , Xλ = min{Xα; α ∈ RF }.

Lemma 1.3. Let R be a reduced lattice of K. If 0 < Xλ, F (λ(3)) < 1, then we have 0 < λ(1).

Proof. We assume that 0 < Xλ, F (λ(3)) < 1. From 0 < Xλ = Xλ(2)
= λ(2) − Yλ(2)

, we have

λ(2) > Yλ(2)
> 0. Hence we have λ(2) > 0. Suppose that λ(1) < 0. We have 0 < λ(2) = λ(1) + 1 <

1, so −1 < λ(1) < 0. Since R is a reduced lattice of K, we have F (λ(2)) > 1. Hence we have

λ(3) = λ(1), so F (λ(1)) < 1. From this, F (−λ(1)) < 1. Since R is a reduced lattice of K, we have

reached a contradiction. Therefore, we have λ(1) > 0. ¤
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Theorem 1.1. Let R be a reduced lattice of K. Then there exists a basis {1, λ, µ} of R such

that

(a) 0 < λ < 1,−1/2 < µ,F (µ) > 1, 2|Yµ| < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1,

(b) ω2(λ, µ) > 0,

(c) F ([ω2] + λ) < 1 or F ([ω2] + 1 + λ) < 1.

Proof. By Proposition 1.2, we can take a basis {1, λ, µ} of R such that λτ is a minimal point

adjacent to µτ in L, 0 < Xλ, F (λ(3)) < 1, F (µ(3)) > 1, λ is a F -point of M(L)>0. Clearly,

R = 〈1, λ(0), µ(3)〉.

(a) Clearly we have 0 < λ(0) < 1, F (µ(3)) > 1, 2|Yµ(3)
| < 1, 0 < Xµ(3)

= Xµ < Xλ(0)
= Xλ.

From 0 < Xµ = Xµ(3)
= µ(3) − Yµ(3)

, we have −1/2 < µ(3). From Remark 1.1 bellow, we

have 0 < ω1(λ, µ) < 1. Since ω1(λ(0), µ(3)) = −(Zλ(0)
/Zµ(3)

) = −(Zλ/Zµ) = ω1(λ, µ), we have

0 < ω1(λ(0), µ(3)) < 1.

(b) Proof of “ω2(λ(0), µ(3)) > 0”.

(i) The case λ(1) = [−Yλ] + λ > 1. λ(1) = [−Yλ] + λ = [−Yλ(0)
] + λ(0) > 1.

Hence −Yλ(0)
> 1. From this and from 0 < ω1 < 1, |Yµ(3)

| < 1/2 we have ω2(λ(0), µ(3)) =

−Yλ(0)
− ω1(λ(0), µ(3))Yµ(3)

> 0.

(ii) The case λ(1) = [−Yλ] + λ < 1. By Lemma 1.3, we have λ(1) > 0. From 0 < λ(1) < 1,

we have F (λ(1)) > 1 because R is a reduced lattice of K. Therefore we have F (λ(2)) < 1. Since

F (λ(1)) > 1, we have Yλ(1)
< −1/2. Note that λ(1) = λ(0). Hence from Yλ(0)

= Yλ(1)
< −1/2 and

from 0 < ω1 < 1, |Yµ(3)
| < 1/2 we have ω2(λ(0), µ(3)) = −Yλ(0)

− ω1(λ(0), µ(3))Yµ(3)
> 0.

(c) Proof of “F ([ω2] + λ(0)) < 1 or F ([ω2] + 1 + λ(0)) < 1”.

(i) The case Yµ(3)
< 0. Since ω2 − (−Yλ(0)

) = −ω1Yµ(3)
> 0, we have −Yλ(0)

< ω2. From this

and | − ω1Yµ(3)
| < 1/2, we have [ω2] = [−Yλ(0)

] or [−Yλ(0)
] + 1. Note that [ω2] = [−Yλ(0)

] + 1 ⇒

0 < [−Yλ(0)
] + 1 − (−Yλ(0)

) < 1/2 ⇒ 0 < Yλ(2)
= [−Yλ(0)

] + 1 + Yλ(0)
< 1/2. Hence if

[ω2] = [−Yλ(0)
] + 1, then we have λ(3) = λ(2). Therefore, we have “[ω2] + λ(0) = [−Yλ(0)

] + λ(0) =

λ(1), [ω2] + 1 + λ(0) = λ(2)” or “[ω2] + λ(0) = [−Yλ(0)
] + 1 + λ(0) = λ(2), F (λ(2)) < 1”.

(ii) The case Yµ(3)
> 0. Since ω2 − (−Yλ(0)

) = −ω1Yµ(3)
< 0, we have −Yλ(0)

> ω2. From this

and | − ω1Yµ(3)
| < 1/2, we have [ω2] = [−Yλ(0)

] or [−Yλ(0)
]− 1. Note that [ω2] = [−Yλ(0)

]− 1 ⇒

0 < −Yλ(0)
− [−Yλ(0)

] < 1/2 ⇒ −1/2 < Yλ(1)
= [−Yλ(0)

]+Yλ(0)
< 0. Hence if [ω2] = [−Yλ(0)

]−1,

then we have λ(3) = λ(1). Therefore we have “[ω2]+λ(0) = [−Yλ(0)
]+λ(0) = λ(1), [ω2]+1+λ(0) =

λ(2)” or “[ω2] + 1 + λ(0) = λ(1), F (λ(1)) < 1”. ¤
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Remark 1.1. Let R = 〈1, β, γ〉, 0 < Xγ < Xβ . Then γτ is a minimal point adjacent to βτ in

L ⇔ 0 < ω1(β, γ) < 1.

1.2. Basis of reduced lattice (II)

Definition 1.6. Let R be a lattice of K, and let {1, N,M} be a basis of R. We say that

{1, N,M} is normalized provided that

0 < XM < XN , |ZM | > 1/2, |ZN | < 1/2, ZM · ZN < 0.

We quote Williams [37],Theorem 8.1 as Theorem 1.2 for our convenience.

Theorem 1.2(Williams [37],Theorem 8.1). Let R be a reduced lattice with the normalized

basis {1, N,M}. If θg = x + yN + zM (x, y, z ∈ Z) is the minimal point adjacent to 1,

then (y, z) ∈ {(1, 0), (0, 1), (1, 1), (1,−1), (2, 1)}.

In this paper, θg denotes the minimal point adjacent to 1 of any reduced lattice R. We shall

consider the relationship between F -point and the normalized basis.

Theorem 1.3. Let R be a reduced lattice with the normalized basis {1, N,M}. If R =

〈1, λ, µ〉, λτ is adjacent to µτ , λ is a F -point of M(L)>0 (L = Rτ ), then λτ must be one of

N τ , (N − M)τ , M τ . Moreover,

(1) The case λτ = (N − M)τ： N τ = (d + 1)λτ + µτ , M τ = dλτ + µτ ,

(2) The case λτ = M τ : N τ = dλτ + µτ ,

where d = d(λ, µ) = [1/ω1(λ, µ)].

Proof. Recall that RF = {α ∈ R; ατ ∈ M(L)>0, F (α(3)) < 1}, Xλ = min{Xα; α ∈ RF }.

By Lemma 1.1 and Definition 1.6, we have N ∈ RF . Hence, we have Xλ ≤ XN . Since

L = 〈N τ ,M τ 〉 = 〈λτ , µτ 〉, there exists a, b ∈ Z such that λτ = aN τ + bM τ .

(i) The case a < 0. Since Xλ > 0, we have b > 0. Moreover, since |Zλ| = |aZN + bZM | =

|a| · |ZN | + b · |ZM | < 1 and 1/2 < |ZM |, we have b ≤ 1. Therefore b = 1. Hence Xλ =

aXN + bXM = aXN + XM = XM − |a| · XN < 0. Therefore the case (i) is impossible.

(ii) The case a = 0. Since Xλ = aXN + bXM = bXM , we have b > 0. Since |Zλ| = b|ZM |, we

have b = 1. [i.e. (a, b) = (0, 1)]

(iii) The case a ≥ 1, b ≤ 0. Since |Zλ| = a|ZN | + |b| · |ZM | < 1, we have |b| ≤ 1.

1) The case b = −1. Since Xλ = aXN − XM = (a − 1)XN + (XN − XM ), if a ≥ 2, then we
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have Xλ > XN , which is impossible. Therefore, we have a = 1. [i.e. (a, b) = (1,−1)]

2) The case b = 0. Since Xλ = aXN = (a − 1)XN + XN , if a ≥ 2, then we have Xλ > XN ,

which is impossible. Therefore, we have a = 1. [i.e. (a, b) = (1, 0)]

(iv) The case a ≥ 1, b ≥ 1. We have Xλ = aXN + bXM > XN , which is impossible. Therefore,

the case (iv) is impossible.

By (i) to (iv), we conclude that λτ = aN τ + bM τ = M τ or (N − M)τ or N τ .

(a) The case |Zλ| < 1/2. Since |Zµ| >
√

3/2 > 1/2, we have λτ = N τ , µτ = M τ .

(b) The case |Zλ| > 1/2. Since λτ ̸= N τ , we have 0 < Xλ < XN . Hence we have

λτ = (N − M)τ or M τ .

(b-1) The case λτ = (N − M)τ . We have

(1.1) Xλ = XN−M < XM < XN .

Because if XM < Xλ = XN−M < XN , then from XM < XN−M , |ZM | < |ZN−M |, we have

L ∩ C((N − M)τ ) = L ∩ {(u, v) ∈ R2; |u| < XN−M , |v| < |ZN−M |} ∋ M τ ̸= (0, 0). Since

λτ = (N − M)τ ∈ L is a minimal point, we have reached a contradiction. Therefore we have

Xλ = XN−M < XM < XN . By Remark 1.1 we have 0 < ω1(N,M) < 1. Since ω1(M,N −M) =
1

ω1(N,M) + 1
, we have 0 < ω1(M,N − M) < 1. From this, if XN−M < XM , then M τ is

adjacent to (N − M)τ . Note that R = 〈1, M,N − M〉. Hence we have

(1.2) XN−M < XM ⇔ M τ is adjacent to (N − M)τ .

Since M τ is a minimal point adjacent to λτ , and λτ is a minimal point adjacent to µτ , by

Lemma 1.2 we have M τ = µτ +[−(Zµ/Zλ)]λτ . We put d = [−(Zµ/Zλ)] = [1/ω1(λ, µ)]. We have

M τ = µτ + dλτ . From λτ = N τ − M τ , we have N τ = µτ + (d + 1)λτ . Therefore we obtain

formulas： M τ = dλτ + µτ , N τ = (d + 1)λτ + µτ .

(b-2) The case λτ = M τ .

Since N τ is a minimal point adjacent to λτ , and λτ is a minimal point adjacent to µτ , by

Lemma 1.2 we have N τ = µτ + [−(Zµ/Zλ)]λτ = µτ + dλτ . Therefore we obtain formulas：

M τ = λτ , N τ = dλτ + µτ . ¤
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Corollary 1.1. Let R be a reduced lattice with basis {1, λ, µ} such that λτ is adjacent to µτ , λ

is a F -point of M(L)>0 (L = Rτ ). If θg = x + yλ + zµ (x, y, z ∈ Z), then

the case λτ = N τ : (y, z) ∈ {(1, 0), (1, 1), (1,−1), (2, 1)},

the case λτ = (N − M)τ : (y, z) ∈ {(1, 0), (d, 1), (d + 1, 1), (2d + 1, 2), (3d + 2, 3)},

the case λτ = M τ : (y, z) ∈ {(1, 0), (d, 1), (d + 1, 1), (2d + 1, 2), (d − 1, 1)},

where d = [1/ω1(λ, µ)] ≥ 1.

Proof. From Theorem 1.2. ¤

Remark 1.2. Since 1/(d + 1) < ω1 < 1/d, we have

[dω1] = [(d − 1)ω1] = 0, [(d + 1)ω1] = 1, 1 ≤ [(2d + 1)ω1] ≤ 2, 2 ≤ [(3d + 2)ω1] ≤ 4.

Theorem 1.4. Let R be a reduced lattice with basis {1, λ, µ} such that F (µ) > 1, 2|Yµ| <

1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, F (λ(3)) < 1.

Then λτ must be one of N τ , (N − M)τ , M τ . Moreover, if λτ = (N − M)τ or M τ , then λ is a

F -point of M(L)>0 (L = Rτ ).

Proof. At first, we note that λτ is adjacent to µτ . Also λ ∈ RF . From 2|Yµ| < 1, µ = µ(3).

(a) The case |Zλ| < 1/2. Since F (µ(3)) = F (µ) > 1, we have |Zµ| >
√

3/2 > 1/2. Hence we

have λτ = N τ , µτ = M τ .

(b) The case |Zλ| > 1/2. Let λ∗ be a F -point of M(L)>0. So we have Xλ∗ ≤ Xλ. We shall

show that λ∗τ = λτ . Suppose that λ∗τ ̸= λτ .

(i) The case λτ ̸= M τ . We have

(i-1) Xλ∗ < Xµ < Xλ < XM < XN .

Since |Zλ∗ | > 1/2, by Theorem 1.3, we have λ∗τ = M τ or (N − M)τ . Hence λ∗τ = (N − M)τ .

By (1.1) in the proof of Theorem 1.3, we have Xλ∗ = XN−M < XM . From (i-1), we have

Xλ∗ = XN−M < Xµ < Xλ < XM < XN . Since M τ is adjacent to (N −M)τ , we have reached a

contradiction.

(ii) The case λτ = M τ . Since λ∗τ ̸= λτ , by Theorem 1.3, we have λ∗τ = (N −M)τ . By (1.1)

in the proof of Theorem 1.3, we have Xλ∗ = XN−M < XM . Hence we have Xλ∗ = XN−M <

Xµ < Xλ = XM < XN . Since M τ is adjacent to (N − M)τ , we have reached a contradiction.

By (i)(ii), an assumption λ∗τ ̸= λτ lead to a contradiction. Therefore we have λ∗τ = λτ .

Finally, if λτ = (N − M)τ or M τ , then we must have only the case (b), so λ is a F -point of

M(L)>0. ¤

11



Remark. F (λ(3)) < 1 ⇔ ∃c ∈ Z; F (c + λ) < 1.

Corollary 1.2. Let R be a reduced lattice with basis {1, λ, µ} such that F (µ) > 1, 2|Yµ| < 1,

0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, F (λ(3)) < 1. If θg = x + yλ + zµ (x, y, z ∈ Z), then (y, z)

∈ {(1, 0), (1, 1), (1,−1), (2, 1), (d, 1), (d + 1, 1), (2d + 1, 2), (d − 1, 1), (3d + 2, 3)}, where d =

[1/ω1(λ, µ)] ≥ 1.

1.3. Preliminaries (I)

Definition 1.7. Let R be a lattice of K. For a basis {1, λ, µ} of R, we define a mapping

Fλ,µ : R3 → R by Fλ,µ(x, y, z) = x2+(λ′+λ′′)xy+(µ′+µ′′)xz+(λ′µ′′+λ′′µ′)yz+λ′λ′′y2+µ′µ′′z2.

For any (x, y, z) ∈ Z3, we have Fλ,µ(x, y, z) = F (x + yλ + zµ).

Remark. Fλ,µ is a positive quadratic form with real coefficients of rank 2. (ω2, 1, ω1) is an

isotropic vector of Fλ,µ.

We quote Lahlou and Farhane [24],Lemma 2.2 as Lemma 1.4 for our convenience. (cf.

[1],Lemma 2.2)

Lemma 1.4(Lahlou and Farhane [24],Lemma 2.2). Let R be a lattice of K and let {1, λ, µ} be

a basis of R. Then we can write

(1) Fλ,µ(x, y, z) = a(z − ω1y)2 + 2b(z − ω1y)(x − ω2y) + (x − ω2y)2

(2) Fλ,µ(x, y, z) =
1
2
(x − ω2y)2 +

1
2
(x − ω2y + 2b(z − ω1y))2 + (a − 2b2)(z − ω1y)2

(3) Fλ,µ(x, y, z) =
a

2
(z − ω1y)2 +

a

2
(z − ω1y +

2b

a
(x − ω2y))2 + (1 − 2b2

a
)(x − ω2y)2

with a = F (µ), b = Yµ.

Definition 1.8. Let R be a reduced lattice with basis {1, λ, µ}

such that µ > −1/2, ω2(λ, µ) > 0, 0 < ω1(λ, µ) < 1. Let y ∈ Z. Then

we define

12



ψ1,y = [ω2y] − 1 + yλ + [ω1y]µ ψ7,y = [ω2y] + 1 + yλ + ([ω1y] − 1)µ

ψ2,y = [ω2y] − 1 + yλ + ([ω1y] + 1)µ ψ8,y = [ω2y] + 1 + yλ + [ω1y]µ

ψ3,y = [ω2y] + yλ + ([ω1y] − 1)µ ψ9,y = [ω2y] + 1 + yλ + ([ω1y] + 1)µ

ψ4,y = [ω2y] + yλ + [ω1y]µ ψ10,y = [ω2y] + 1 + yλ + ([ω1y] + 2)µ

ψ5,y = [ω2y] + yλ + ([ω1y] + 1)µ ψ11,y = [ω2y] + 2 + yλ + [ω1y]µ

ψ6,y = [ω2y] + yλ + ([ω1y] + 2)µ ψ12,y = [ω2y] + 2 + yλ + ([ω1y] + 1)µ

φ1 = ψ4,1 = [ω2] + λ φ5 = ψ2,1 = [ω2] − 1 + λ + µ φ9 = 2λ + µ

φ2 = ψ5,1 = [ω2] + λ + µ φ6 = ψ8,1 = [ω2] + 1 + λ φ10 = 3λ + 2µ

φ3 = ψ3,1 = [ω2] + λ − µ φ7 = ψ7,1 = [ω2] + 1 + λ − µ

φ4 = ψ1,1 = [ω2] − 1 + λ φ8 = ψ9,1 = [ω2] + 1 + λ + µ

Remark 1.3. (1) If 0 < µ < 1, then we have

ψ1,y < ψ2,y < ψ4,y; ψ1,y < ψ3,y < ψ4,y; ψ4,y < ψ5,y < ψ6,y < ψ9,y

ψ4,y < ψ5,y < ψ8,y < ψ9,y; ψ4,y < ψ7,y < ψ8,y < ψ9,y

ψ9,y < ψ10,y < ψ12,y; ψ9,y < ψ11,y < ψ12,y

(2) If µ > 1, then we have

ψ3,y < ψ1,y < ψ4,y; ψ3,y < ψ7,y < ψ4,y; ψ4,y < ψ2,y < ψ5,y < ψ9,y

ψ4,y < ψ8,y < ψ5,y < ψ9,y; ψ4,y < ψ8,y < ψ11,y < ψ9,y

ψ9,y < ψ6,y < ψ10,y; ψ9,y < ψ12,y < ψ10,y

Lemma 1.5. Let R be a reduced lattice with basis {1, λ, µ}

such that µ > −1/2, ω2(λ, µ) > 0 and 0 < ω1(λ, µ) < 1.

Let a > max(1, 2b2, 2|b|), where a = F (µ), b = Yµ. Then

(1) θg ∈ {ψi,y; y( ̸= 0) ∈ Z, 1 ≤ i ≤ 12}.

(2) λ, µ > 0 ⇒ ψi,1 ≤ ψi,y (y ≥ 1).

(3) (i) b < 0 ⇒ F (ψ2,y) > 1, F (ψ6,y) > 1, F (ψ7,y) > 1, F (ψ11,y) > 1.

(ii) b > 0 ⇒ F (ψ1,y) > 1, F (ψ3,y) > 1, F (ψ10,y) > 1, F (ψ12,y) > 1.

(4) F (ψ3,1) > F (ψ4,1).

(5) (0 <)b < 1/2 ⇒ F (ψ7,1) > F (ψ4,1).

(6) F (ψ5,1) < F (ψ4,1), 0 < b < 1 ⇒ F (ψ7,1) > F (ψ4,1).

(7) b > 1 ⇒ F (ψ7,1) > 1.
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(8) b > 0 or −1/2 < b < 0 ⇒ F (ψ1,1) > F (ψ4,1).

(9) F (ψ5,1) > F (ψ8,1), (0 <)b < 1 ⇒ F (ψ2,1) > F (ψ4,1).

(10) F (ψ4,1) > F (ψ8,1), b < 0 ⇒ c2 = [ω2] − ω2 < −1/2.

(11) c1 = [ω1] − ω1 < −1/2, b < 0 ⇒ F (ψ8,1) > F (ψ9,1).

(12) [2α] =

 2 [α] if 0 ≤ α − [α] < 1/2

2 [α] + 1 if 1/2 ≤ α − [α]
.

Proof. We put c1 = [ω1] − ω1, c2 = [ω2] − ω2. Then −1 < c1, c2 < 0.

(1) was proved in Lahlou and Farhane [24],Theorem 2.1.

(2) obvious

(3) by Lemma 1.4,(1)

(4) By Lemma 1.4,(1), F (ψ3,1) − F (ψ4,1) = −2ac1 + a − 2bc2 = −2ac1 + a(1 − 2b

a
c2) > 0.

(5) By Lemma 1.4,(1), F (ψ7,1)−F (ψ4,1) = −2ac1 +a+2bc1 − 2bc2 − 2b+2c2 +1 = (1− 2b)(1+

c2) + a + c2 − 2(a − b)c1 > 0.

(6) By Lemma 1.4,(1) since F (ψ5,1) < F (ψ4,1), F (ψ4,1) − F (ψ5,1) = −2ac1 − a − 2bc2 > 0.

So −2bc2 > a(1 + 2c1). From this and a > 2b, we have −2bc2 > 2b(1 + 2c1),−c2 > 1 + 2c1.

Hence −2c1 > 1 + c2. By this, F (ψ7,1) − F (ψ4,1) = −2ac1 + a + 2bc1 − 2bc2 − 2b + 2c2 + 1 =

(1− 2b)(1 + c2) + a + c2 − 2c1(a− b) > (1− 2b)(1 + c2) + a + c2 + (1 + c2)(a− b) = (1− 2b)(1 +

c2) + a − 1 + 1 + c2 + (1 + c2)(a − b) = (2 − 2b)(1 + c2) + a − 1 + (1 + c2)(a − b) > 0.

(7) If b > 1, then we have a > 2 because a > 2|b|. From this and by Lemma 1.4,(3), we have

F (ψ7,1) > 1.

(8) By Lemma 1.4,(1), F (ψ1,1) − F (ψ4,1) = −2bc1 − 2c2 + 1 > 0.

(9) Since F (ψ5,1) > F (ψ8,1), we have F (ψ5,1) − F (ψ8,1) = 2ac1 + a + 2bc2 − 2bc1 − 2c2 − 1 > 0.

From this, F (ψ2,1)−F (ψ4,1) = 2ac1 + a− 2bc1 + 2bc2 − 2b− 2c2 + 1 = (2ac1 + a + 2bc2 − 2bc1 −

2c2 − 1) + 2 − 2b > 0.

(10) Since F (ψ4,1) − F (ψ8,1) > 0, we have bc1 + c2 < −1/2. From this and b < 0, c1 < 0, we

have c2 < −1/2.

(11) By Lemma 1.4,(1), F (ψ9,1)−F (ψ8,1) = 2ac1 + a + 2b(c2 + 1) = a(2c1 + 1) + 2b(c2 + 1) < 0.

(12) is easily deduced from the definitions. ¤

Some of Lemma 1.5 were proved in Lahlou and Farhane [24],Theorem 2.1.

Remark. a > 1, 2|b| < 1 ⇒ a > max(1, 4b2) ⇒ a > max(1, 2b2, 2|b|).
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1.4. Preliminaries (II)

In this section, we make the following assumption;

Assumption 1.1. Let R = 〈1, λ, µ〉 be a reduced lattice of K such that

(a) 0 < λ < 1,−1/2 < µ,F (µ) > 1, 2|Yµ| < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1

(b) ω2(λ, µ) > 0 (c) F (φ1) < 1 or F (φ6) < 1.

By Theorem 1.1, we can take such the basis. So in next section,

we shall consider six cases:

(1A) 0 < µ < 1, φ1 > 1 (2A) µ > 1, φ1 > 1 (3A) µ < 0, φ1 > 1

(1B) 0 < µ < 1, φ1 < 1, F (φ6) < 1 (2B) µ > 1, φ1 < 1, F (φ6) < 1

(3B) µ < 0, φ1 < 1, F (φ6) < 1

We note that

(A) φ1 = [ω2] + λ > 1 ⇔ [ω2] ≥ 1 ⇔ ω2 > 1,

(B) φ1 = [ω2] + λ < 1 ⇔ [ω2] = 0 ⇔ ω2 < 1.

Lemma 1.6. If φ1 < 1, then (1) Yλ < −1/2 (2) ω2(λ, µ) > 1/2 − ω1Yµ.

Proof. (1) From φ1 = [ω2] + λ < 1, we have [ω2] = 0.

By definition λ(1) = [−Yλ] + λ, λ(2) = [−Yλ] + 1 + λ.

Since R is a reduced lattice, from φ1 < 1, we have F (φ1) > 1.

Hence, by Assumpsion 1.1,(c), we have F (φ6) < 1.

From F (φ6) = F ([ω2] + 1 + λ) = F (1 + λ) < 1, we have 1 + λ = λ(1) or λ(2).

(i) The case 1 + λ = λ(1). Since −1 < Yλ + 1 = Yλ(1)
< 0,

we have −2 < Yλ < −1.

(ii) The case 1 + λ = λ(2). We have λ = λ(1). Since F (λ(2)) < 1,

we have 0 < Yλ(2)
< 1/2. From this, 0 < Yλ + 1 = Yλ(2)

< 1/2, so −1 < Yλ < −1/2.

Finally, from (i)(ii), we have Yλ < −1/2.

(2) From (1), we have −Yλ > 1/2. Hence, ω2(λ, µ) = −Yλ − ω1Yµ > 1/2 − ω1Yµ. ¤

Corollary 1.3. Yµ < 0 ⇒ ω2(λ, µ) > 1/2.

By Corollary 1.2 if θg = x+yλ+zµ (x, y, z ∈ Z), then (y, z) ∈ {(1, 0), (1, 1), (1,−1), (2, 1), (d, 1),

(d + 1, 1), (2d + 1, 2), (d − 1, 1), (3d + 2, 3)}, where d = [1/ω1(λ, µ)] ≥ 1.
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From Remark 1.2 and Corollary 1.3, we make the following tables in which we deside whether

the possibility that θg = ψi,y (1 ≤ i ≤ 10, i = 12) exists. Note that y ≥ 1 ⇒ [yω2] ≥ y[ω2].

Table 1

(y, z) ψ1,y = [ω2y] − 1 + yλ + [ω1y]µ
µ > 0

ω2 > 1

µ < 0

ω2 > 1

µ > 0

ω2 < 1

µ < 0

ω2 < 1
No.

(1, 0) [ω2] − 1 + λ < 1 < 1 (1-1)

(1, 1) [ω2] − 1 + λ impossible impossible impossible impossible

(1,−1) [ω2] − 1 + λ impossible impossible impossible impossible

(2, 1) [2ω2] − 1 + 2λ + [2ω1]µ (1-2)

(d, 1) [dω2] − 1 + dλ impossible impossible impossible impossible

(d + 1, 1) [(d + 1)ω2] − 1 + (d + 1)λ + µ (1-3)

(2d + 1, 2) [(2d + 1)ω2] − 1 + (2d + 1)λ + [(2d + 1)ω1]µ > φ6 (1-4)

(d − 1, 1) [(d − 1)ω2] − 1 + (d − 1)λ impossible impossible impossible impossible

(3d + 2, 3) [(3d + 2)ω2] − 1 + (3d + 2)λ + [(3d + 2)ω1]µ > φ6 > φ6 (1-5)

Table 2 (µ > 0)

(y, z) ψ2,y = [ω2y] − 1 + yλ + ([ω1y] + 1)µ
µ > 0

ω2 > 1

µ > 0

ω2 < 1
No.

(1, 0) [ω2] − 1 + λ + µ impossible impossible

(1, 1) [ω2] − 1 + λ + µ (2-1)

(1,−1) [ω2] − 1 + λ + µ impossible impossible

(2, 1) [2ω2] − 1 + 2λ + ([2ω1] + 1)µ (2-2)

(d, 1) [dω2] − 1 + dλ + µ (2-3)

(d + 1, 1) [(d + 1)ω2] − 1 + (d + 1)λ + 2µ impossible impossible

(2d + 1, 2) [(2d + 1)ω2] − 1 + (2d + 1)λ + ([(2d + 1)ω1] + 1)µ > φ6 (2-4)

(d − 1, 1) [(d − 1)ω2] − 1 + (d − 1)λ + µ (2-5)

(3d + 2, 3) [(3d + 2)ω2] − 1 + (3d + 2)λ + ([(3d + 2)ω1] + 1)µ > φ6 (2-6)
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Table 3

(y, z) ψ3,y = [ω2y] + yλ + ([ω1y] − 1)µ
µ > 0

ω2 > 1

µ < 0

ω2 > 1

µ > 0

ω2 < 1

µ < 0

ω2 < 1
No.

(1, 0) [ω2] + λ − µ impossible impossible impossible impossible

(1, 1) [ω2] + λ − µ impossible impossible impossible impossible

(1,−1) [ω2] + λ − µ < 1 (3-1)

(2, 1) [2ω2] + 2λ + ([2ω1] − 1)µ impossible impossible impossible impossible

(d, 1) [dω2] + dλ − µ impossible impossible impossible impossible

(d + 1, 1) [(d + 1)ω2] + (d + 1)λ impossible impossible impossible impossible

(2d + 1, 2) [(2d + 1)ω2] + (2d + 1)λ + ([(2d + 1)ω1] − 1)µ impossible impossible impossible impossible

(d − 1, 1) [(d − 1)ω2] + (d − 1)λ − µ impossible impossible impossible impossible

(3d + 2, 3) [(3d + 2)ω2] + (3d + 2)λ + ([(3d + 2)ω1] − 1)µ > φ6 > φ6 (3-2)

Table 4

(y, z) ψ4,y = [ω2y] + yλ + [ω1y]µ
µ > 0

ω2 > 1

µ < 0

ω2 > 1

µ > 0

ω2 < 1

µ < 0

ω2 < 1
No.

(1, 0) [ω2] + λ < 1 < 1 (4-1)

(1, 1) [ω2] + λ impossible impossible impossible impossible

(1,−1) [ω2] + λ impossible impossible impossible impossible

(2, 1) [2ω2] + 2λ + [2ω1]µ > φ6 (4-2)

(d, 1) [dω2] + dλ impossible impossible impossible impossible

(d + 1, 1) [(d + 1)ω2] + (d + 1)λ + µ > φ6 (4-3)

(2d + 1, 2) [(2d + 1)ω2] + (2d + 1)λ + [(2d + 1)ω1]µ > φ6 > φ6 (4-4)

(d − 1, 1) [(d − 1)ω2] + (d − 1)λ impossible impossible impossible impossible

(3d + 2, 3) [(3d + 2)ω2] + (3d + 2)λ + [(3d + 2)ω1]µ > φ6 > φ6 (4-5)

Table 5

(y, z) ψ5,y = [ω2y] + yλ + ([ω1y] + 1)µ
µ > 0

ω2 > 1

µ < 0

ω2 > 1

µ > 0

ω2 < 1

µ < 0

ω2 < 1
No.

(1, 0) [ω2] + λ + µ impossible impossible impossible impossible

(1, 1) [ω2] + λ + µ < 1 (5-1)

(1,−1) [ω2] + λ + µ impossible impossible impossible impossible

(2, 1) [2ω2] + 2λ + ([2ω1] + 1)µ > φ6 (5-2)

(d, 1) [dω2] + dλ + µ > φ6(d ≥ 2) (5-3)

(d + 1, 1) [(d + 1)ω2] + (d + 1)λ + 2µ impossible impossible impossible impossible

(2d + 1, 2) [(2d + 1)ω2] + (2d + 1)λ + ([(2d + 1)ω1] + 1)µ > φ6 > φ6 (5-4)

(d − 1, 1) [(d − 1)ω2] + (d − 1)λ + µ > φ6(d ≥ 3) (5-5)

(3d + 2, 3) [(3d + 2)ω2] + (3d + 2)λ + ([(3d + 2)ω1] + 1)µ > φ6 > φ6 (5-6)
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Table 6 (µ > 0)

(y, z) ψ6,y = [ω2y] + yλ + ([ω1y] + 2)µ
µ > 0

ω2 ≶ 1
No.

(1, 0) [ω2] + λ + 2µ impossible

(1, 1) [ω2] + λ + 2µ impossible

(1,−1) [ω2] + λ + 2µ impossible

(2, 1) [2ω2] + 2λ + ([2ω1] + 2)µ impossible

(d, 1) [dω2] + dλ + 2µ impossible

(d + 1, 1) [(d + 1)ω2] + (d + 1)λ + 3µ impossible

(2d + 1, 2) [(2d + 1)ω2] + (2d + 1)λ + ([(2d + 1)ω1] + 2)µ impossible

(d − 1, 1) [(d − 1)ω2] + (d − 1)λ + 2µ impossible

(3d + 2, 3) [(3d + 2)ω2] + (3d + 2)λ + ([(3d + 2)ω1] + 2)µ impossible

Table 7 (µ > 0)

(y, z) ψ7,y = [ω2y] + 1 + yλ + ([ω1y] − 1)µ
µ > 0

ω2 ≶ 1
No.

(1, 0) [ω2] + 1 + λ − µ impossible

(1, 1) [ω2] + 1 + λ − µ impossible

(1,−1) [ω2] + 1 + λ − µ (7-1)

(2, 1) [2ω2] + 1 + 2λ + ([2ω1] − 1)µ impossible

(d, 1) [dω2] + 1 + dλ − µ impossible

(d + 1, 1) [(d + 1)ω2] + 1 + (d + 1)λ impossible

(2d + 1, 2) [(2d + 1)ω2] + 1 + (2d + 1)λ + ([(2d + 1)ω1] − 1)µ impossible

(d − 1, 1) [(d − 1)ω2] + 1 + (d − 1)λ − µ impossible

(3d + 2, 3) [(3d + 2)ω2] + 1 + (3d + 2)λ + ([(3d + 2)ω1] − 1)µ > φ6

Table 8

(y, z) ψ8,y = [ω2y] + 1 + yλ + [ω1y]µ
µ ≶ 0

ω2 ≶ 1
No.

(1, 0) [ω2] + 1 + λ (8-1)

(1, 1) [ω2] + 1 + λ impossible

(1,−1) [ω2] + 1 + λ impossible

(2, 1) [2ω2] + 1 + 2λ + [2ω1]µ > φ6

(d, 1) [dω2] + 1 + dλ impossible

(d + 1, 1) [(d + 1)ω2] + 1 + (d + 1)λ + µ > φ6

(2d + 1, 2) [(2d + 1)ω2] + 1 + (2d + 1)λ + [(2d + 1)ω1]µ > φ6

(d − 1, 1) [(d − 1)ω2] + 1 + (d − 1)λ impossible

(3d + 2, 3) [(3d + 2)ω2] + 1 + (3d + 2)λ + [(3d + 2)ω1]µ > φ6
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Table 9 (µ < 0)

(y, z) ψ9,y = [ω2y] + 1 + yλ + ([ω1y] + 1)µ
µ < 0

ω2 ≶ 1
No.

(1, 0) [ω2] + 1 + λ + µ impossible

(1, 1) [ω2] + 1 + λ + µ (9-1)

(1,−1) [ω2] + 1 + λ + µ impossible

(2, 1) [2ω2] + 1 + 2λ + ([2ω1] + 1)µ > φ6

(d, 1) [dω2] + 1 + dλ + µ > φ6(d ≥ 2)

(d + 1, 1) [(d + 1)ω2] + 1 + (d + 1)λ + 2µ impossible

(2d + 1, 2) [(2d + 1)ω2] + 1 + (2d + 1)λ + ([(2d + 1)ω1] + 1)µ > φ6

(d − 1, 1) [(d − 1)ω2] + 1 + (d − 1)λ + µ > φ6(d ≥ 3)

(3d + 2, 3) [(3d + 2)ω2] + 1 + (3d + 2)λ + ([(3d + 2)ω1] + 1)µ > φ6

Table 10 (µ < 0)

(y, z) ψ10,y = [ω2y] + 1 + yλ + ([ω1y] + 2)µ
µ < 0

ω2 ≶ 1
No.

(1, 0) [ω2] + 1 + λ + 2µ impossible

(1, 1) [ω2] + 1 + λ + 2µ impossible

(1,−1) [ω2] + 1 + λ + 2µ impossible

(2, 1) [2ω2] + 1 + 2λ + ([2ω1] + 2)µ impossible

(d, 1) [dω2] + 1 + dλ + 2µ impossible

(d + 1, 1) [(d + 1)ω2] + 1 + (d + 1)λ + 3µ impossible

(2d + 1, 2) [(2d + 1)ω2] + 1 + (2d + 1)λ + ([(2d + 1)ω1] + 2)µ impossible

(d − 1, 1) [(d − 1)ω2] + 1 + (d − 1)λ + 2µ impossible

(3d + 2, 3) [(3d + 2)ω2] + 1 + (3d + 2)λ + ([(3d + 2)ω1] + 2)µ impossible

(y, z) ψ12,y = [ω2y] + 2 + yλ + ([ω1y] + 1)µ
µ < 0

ω2 ≶ 1
No.

(1, 0) [ω2] + 2 + λ + µ impossible

(1, 1) [ω2] + 2 + λ + µ > φ6

(1,−1) [ω2] + 2 + λ + µ impossible

(2, 1) [2ω2] + 2 + 2λ + ([2ω1] + 1)µ > φ6

(d, 1) [dω2] + 2 + dλ + µ > φ6

(d + 1, 1) [(d + 1)ω2] + 2 + (d + 1)λ + 2µ impossible

(2d + 1, 2) [(2d + 1)ω2] + 2 + (2d + 1)λ + ([(2d + 1)ω1] + 1)µ > φ6

(d − 1, 1) [(d − 1)ω2] + 2 + (d − 1)λ + µ > φ6(d ≥ 2)

(3d + 2, 3) [(3d + 2)ω2] + 2 + (3d + 2)λ + ([(3d + 2)ω1] + 1)µ > φ6
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1.5. Main theorems

Theorem 1.5A. Let R = 〈1, λ, µ〉 be a reduced lattice of K such that

0 < λ < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, ω2(λ, µ) > 0, a > 1, 2|b| < 1,

0 < µ < 1, φ1 > 1, where a = F (µ), b = Yµ. Then

(1) If F (φ1) < 1:

(i) if b < 0, then the minimal point adjacent to 1 is φ1, φ3 or φ4;

(ii) if b > 0, then the minimal point adjacent to 1 is φ1 or φ5.

(2) If F (φ1) > 1, F (φ2) < 1:

(i) if b < 0, then the minimal point adjacent to 1 is φ2;

(ii) if b > 0, then the minimal point adjacent to 1 is φ2 or φ5.

(3) If F (φ1) > 1, F (φ2) > 1, F (φ6) < 1,

then the minimal point adjacent to 1 is φ6.

Proof. Since φ1 = [ω2] + λ > 1, we have [ω2] ≥ 1.

(1) was proved in [24],Theorem 2.1.

(2) We assume that F (ψ4,1) > 1, F (ψ5,1) < 1.

(i) the case b < 0,by Lemma 1.5,(4), we have φ3 = ψ3,1 ̸= θg. By Lemma 1.5,(8), we have

φ4 = ψ1,1 ̸= θg. The others were proved in [24],Theorem 2.1;

(ii) The case b > 0. The case were all proved in [24],Theorem 2.1.

(3) We assume that F (ψ4,1) > 1, F (ψ5,1) > 1, F (ψ8,1) < 1.

By Lemma 1.5,(1)(2) and Remark 1.3,(1), we have θg ∈ {ψ1,y, ψ2,y, ψ3,y, ψ4,y, ψ5,y, ψ6,y, ψ7,y, ψ8,1}.

(i) The case b < 0. By Lemma 1.5,(3), we have θg ∈ {ψ1,y, ψ3,y, ψ4,y, ψ5,y, ψ8,1}. Also by

Lemma 1.5,(10) we have c2 = [ω2] − ω2 < −1/2.

(a) In the case of ψ1,y, based on Table 1,

(1-1) from ψ1,1 = ψ8,1 − 2 and F (ψ8,1) < 1, we have F (ψ1,1) > 1.

(1-2) by Lemma 1.5,(12), ψ1,2 = [2ω2] − 1 + 2λ + µ = 2[ω2] + 2λ + µ or 2[ω2] − 1 + 2λ + µ.

Since c2 < −1/2, ψ1,2 ̸= 2[ω2] − 1 + 2λ + µ. Hence ψ1,2 = 2[ω2] + 2λ + µ > ψ8,1.

(1-3) d ≥ 2 ⇒ ψ1,d+1 > ψ8,1. If d = 1, then ψ1,d+1 = ψ1,2 = [2ω2] − 1 + 2λ + µ. This case

is just the same as (1-2).

(b) In the case of ψ3,y, based on Table 3,

(3-1) by Lemma 1.5,(4) φ3 = ψ3,1 ̸= θg.

(c) In the case of ψ4,y, based on Table 4,
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(4-1) by the assumption ψ4,1 ̸= θg.

(d) In the case of ψ5,y, based on Table 5,

(5-1) by the assumption ψ5,1 ̸= θg.

As a result, ψ8,1 remains.

(ii) The case b > 0. By Lemma 1.5,(3), we have θg ∈ {ψ2,y, ψ4,y, ψ5,y, ψ6,y, ψ7,y, ψ8,1}.

(a) In the case of ψ2,y, based on Table 2,

(2-1) by Lemma 1.5,(9), ψ2,1 ̸= θg.

(2-2) by Lemma 1.5,(12), ψ2,2 = [2ω2] − 1 + 2λ + µ = 2[ω2] + 2λ + µ(> ψ8,1)

or 2[ω2] − 1 + 2λ + µ. The case ψ2,2 = 2[ω2] − 1 + 2λ + µ. If [ω2] ≥ 2, then we have 2[ω2] −

1 + 2λ + µ > ψ8,1. If [ω2] = 1, then ψ2,2 = 1 + 2λ + µ. We shall show that F (1 + 2λ + µ) > 1.

Since F (φ6) = F (2 + λ) < 1, we have −1 < Y2+λ < 1, so −3 < Yλ < −1. Suppose that

Yλ > −3/2. Then Y2+λ = 2 + Yλ > 1/2. From this, we have 1/4 + Z2
2+λ < Y 2

2+λ + Z2
2+λ < 1.

Hence, |Z2+λ| <
√

3/2. Since Yλ > −3/2 and Yλ < −1, we have −1/2 < Y1+λ < 0. Hence,

F (1 + λ) = Y 2
1+λ + Z2

1+λ = Y 2
1+λ + Z2

2+λ < 1/4 + 3/4 = 1. Since F (φ1) = F (1 + λ) > 1, we

have reached a contradiction. Therefore, we have Yλ < −3/2. From this, we have Y1+2λ+µ =

1 + 2Yλ + Yµ < 1 − 3 + Yµ < −3/2. Hence, F (1 + 2λ + µ) > 1.

(2-3) d ≥ 3 ⇒ ψ2,d = [dω2] − 1 + dλ + µ > ψ8,1.

The case d = 1, 2 are just the same as (2-1) or (2-2).

(2-5) Similar to (2-3).

(b) In the case of ψ4,y, based on Table 4,

(4-1) by the assumption, ψ4,1 ̸= θg.

(c) In the case of ψ5,y, based on Table 5,

(5-1) by the assumption ψ5,1 ̸= θg.

(d) In the case of ψ6,y, based on Table 6,

no case is included

(e) In the case of ψ7,y, based on Table 7,

(7-1) by Lemma 1.5,(5), ψ7,1 ̸= θg.

As a result, ψ8,1 remains. ¤

Remark 1.4. From the proof in [24,Theorem 2.1], (1) and (2) don’t require the assumption

0 < Xµ < Xλ. Moreover, in (1) and (2) (except for the part of φ4), we can weaken the condition

from a > 1, 2|b| < 1 to a > max(1, 2b2, 2|b|).
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Theorem 1.6A. Let R = 〈1, λ, µ〉 be a reduced lattice of K such that

0 < λ < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, ω2(λ, µ) > 0, a > 1, 2|b| < 1,

µ > 1, φ1 > 1, where a = F (µ), b = Yµ. Then

(1) If F (φ1) < 1:

(i) if b < 0, then the minimal point adjacent to 1 is φ1, φ3 or φ4;

(ii) if b > 0, then the minimal point adjacent to 1 is φ1 or φ7.

(2) If F (φ1) > 1, F (φ6) < 1:

(i) if b < 0, then the minimal point adjacent to 1 is φ6;

(ii) if b > 0, then the minimal point adjacent to 1 is φ5 or φ6.

Proof. Since φ1 = ψ4,1 = [ω2] + λ > 1, we have [ω2] ≥ 1.

(1) We assume that F (ψ4,1) < 1.

By Lemma 1.5,(1)(2) and Remark 1.3,(2), we have θg ∈ {ψ1,y, ψ3,y, ψ7,y, ψ4,1}.

(i) The case b < 0. By Lemma 1.5,(3), we have θg ∈ {ψ1,y, ψ3,y, ψ4,1}.

(a) In the case of ψ1,y, based on Table 1,

(1-1) ψ1,1.

(1-2) ψ1,2 = [2ω2] − 1 + 2λ + µ > ψ8,1.

(1-3) ψ1,d+1 > ψ8,1 > ψ4,1.

(b) In the case of ψ3,y, based on Table 3,

(3-1) ψ3,1.

As a result, ψ4,1, ψ3,1 and ψ1,1 remain.

(ii) The case b > 0. By Lemma 1.5,(3), we have θg ∈ {ψ7,y, ψ4,1}.

(a) In the case of ψ7,y, based on Table 7,

(7-1) ψ7,1.

As a result, ψ4,1 and ψ7,1 remain.

(2) We assume that F (ψ4,1) > 1, F (ψ8,1) < 1.

By Lemma 1.5,(1)(2) and Remark 1.3,(2), we have θg ∈ {ψ1,y, ψ2,y, ψ3,y, ψ4,y, ψ7,y, ψ8,1}.

(i) The case b < 0. By Lemma 1.5,(3), we have θg ∈ {ψ1,y, ψ3,y, ψ4,y, ψ8,1}.

(a) In the case of ψ1,y, based on Table 1,

(1-1) from ψ1,1 = ψ8,1 − 2 and F (ψ8,1) < 1, we have F (ψ1,1) > 1.

(1-2) ψ1,2 = [2ω2] − 1 + 2λ + µ > ψ8,1.

(1-3) ψ1,d+1 > ψ8,1.

(b) In the case of ψ3,y, based on Table 3,
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(3-1) by Lemma 1.5,(4) φ3 = ψ3,1 ̸= θg.

(c) In the case of ψ4,y, based on Table 4,

(4-1) by the assumption ψ4,1 ̸= θg.

As a result, ψ8,1 remains.

(ii) The case b > 0. By Lemma 1.5,(3), we have θg ∈ {ψ2,y, ψ4,y, ψ7,y, ψ8,1}.

(a) In the case of ψ2,y, based on Table 2,

(2-1) ψ2,1 = [ω2] − 1 + λ + µ(> ψ4,1).

(2-2) ψ2,2 = [2ω2] − 1 + 2λ + µ > ψ8,1.

(2-3) d ≥ 3 ⇒ ψ2,d = [dω2] − 1 + dλ + µ > ψ8,1.

The cases d = 1, 2 are just the same as (2-1) or (2-2).

(2-5) Similar to (2-3).

(b) In the case of ψ4,y, based on Table 4,

(4-1) by the assumption ψ4,1 ̸= θg.

(c) In the case of ψ7,y, based on Table 7,

(7-1) by Lemma 4.5,(5) ψ7,1 ̸= θg.

As a result, ψ8,1 and ψ2,1 remain. ¤

Remark 1.5. By [24,Theorem 2.1], if φ1 > µ , then in (1) we can weaken the condition from

0 < λ < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, ω2(λ, µ) > 0, a > 1, 2|b| < 1 to 0 < ω1(λ, µ) <

1, ω2(λ, µ) > 0, a > max(1, 2b2, 2|b|).

Theorem 1.7A. Let R = 〈1, λ, µ〉 be a reduced lattice of K such that

0 < λ < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, ω2(λ, µ) > 0, a > 1, 2|b| < 1,

µ < 0, φ1 > 1, where a = F (µ), b = Yµ. Then

(1) If F (φ1) < 1:

(i) if [ω2] ≥ 2, then the minimal point adjacent to 1 is φ1, φ2 or φ4;

(ii-a) if [ω2] = 1, λ + µ < 0, then the minimal point adjacent to 1 is φ1 or 1 + φ9,

(ii-b) if [ω2] = 1, λ + µ > 0, then the minimal point adjacent to 1 is φ1 or φ2.

(2) If F (φ1) > 1, F (φ6) < 1, then the minimal point adjacent to 1 is φ2, φ6 or φ8.

Proof. Since µ < 0 and 0 < Xµ, we have b < 0 and −1/2 < µ.

From Table 10 and Lemma 1.5,(3), we have θg ∈ {ψ1,y, ψ3,y, ψ4,y, ψ5,y, ψ8,y, ψ9,y}.

(1) We assume that F (ψ4,1) < 1.
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(a) In the case of ψ1,y, based on Table 1,

(1-1) ψ1,1.

(1-2) by Lemma 1.5,(12) ψ1,2 = [2ω2] − 1 + 2λ + µ = 2[ω2] + 2λ + µ(> ψ4,1)

or 2[ω2] − 1 + 2λ + µ. The case ψ1,2 = 2[ω2] − 1 + 2λ + µ. If [ω2] ≥ 2, then we have ψ1,2 > ψ4,1.

If [ω2] = 1, ψ1,2 = 1 + 2λ + µ.

(1-3) d ≥ 2 ⇒ ψ1,d+1 ≥ [3ω2]− 1 + 3λ + µ > ψ4,1. The case d = 1 is just the same as (1-2).

(1-4) ψ1,2d+1 > ψ4,1.

(b) In the case of ψ3,y, based on Table 3,

(3-1) ψ3,1 = [ω2] + λ − µ > [ω2] + λ = ψ4,1.

(c) In the case of ψ4,y, based on Table 4,

(4-1) ψ4,1.

(4-2) ψ4,2 = [2ω2] + 2λ + µ > ψ4,1.

(4-3) ψ4,d+1 > ψ4,1.

(d) In the case of ψ5,y, based on Table 5,

(5-1) ψ5,1 = [ω2] + λ + µ.

(5-2) ψ5,2 = [2ω2] + 2λ + µ > ψ4,1.

(5-3) d ≥ 2 ⇒ ψ5,d ≥ [2ω2] + 2λ + µ > ψ4,1.

The case d = 1 is just the same as (5-1).

(5-5) Similar to (5-3).

(e) In the case of ψ8,y, based on Table 8,

(8-1) ψ8,1 > ψ4,1.

(f) In the case of ψ9,y, based on Table 9,

(9-1) ψ9,1 = [ω2] + 1 + λ + µ > ψ4,1.

As a result, ψ4,1, ψ5,1, ψ1,1 and 1 + 2λ + µ remain. Moreover, If [ω2] ≥ 2, then we have θg ̸=

1 + 2λ + µ. The case [ω2] = 1. Since φ4 = ψ1,1 = [ω2] − 1 + λ = λ < 1, we have θg ̸= ψ1,1. If

λ+µ < 0, then we have φ2 = 1+λ+µ < 1. If λ+µ > 0, then we have 1+2λ+µ ̸= θg, because

1 + 2λ + µ = 1 + λ + (λ + µ) > 1 + λ = ψ4,1.

(2) We assume that F (φ1) > 1, F (φ6) < 1.

We note that by Lemma 1.5,(10), we have c2 = [ω2] − ω2 < −1/2. So by Lemma 1.5,(12), we

have [2ω2] = 2[ω2] + 1.

(a) In the case of ψ1,y, based on Table 1,

(1-1) from ψ1,1 = ψ8,1 − 2 and F (ψ8,1) < 1, we have F (ψ1,1) > 1.
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(1-2) ψ1,2 = [2ω2] − 1 + 2λ + µ = 2[ω2] + 2λ + µ. If such a ψ1,2 exist, then by [2ω1] = 1,

we have c1 < −1/2 (⇔ [2ω1] = 1).

(i) The case [ω2] ≥ 2. We have ψ1,2 > ψ8,1.

(ii) The case [ω2] = 1. ψ1,2 = 2 + 2λ + µ > 2 + λ + µ = ψ9,1.

From Lemma 1.5,(11), we have F (ψ9,1) < F (ψ8,1). So we have F (ψ9,1) < 1. Therefore, ψ1,2 =

2 + 2λ + µ ̸= θg.

(1-3) (i) The case d ≥ 2. We have ψ1,d+1 ≥ [3ω2] − 1 + 3λ + µ ≥ [2ω2] + [ω2] − 1 + 3λ + µ

= 3[ω2] + 3λ + µ > ψ8,1.

(ii) The case d = 1. Since d = 1 ⇔ [2ω1] = 1, this case is just the same as (1-2).

(1-4) ψ1,2d+1 ≥ [3ω2] − 1 + 3λ + 2µ ≥ [2ω2] + [ω2] − 1 + 3λ + 2µ = 3[ω2] + 3λ + 2µ > ψ8,1.

(b) In the case of ψ3,y, based on Table 3,

(3-1) by Lemma 1.5,(4) φ3 = ψ3,1 ̸= θg.

(c) In the case of ψ4,y, based on Table 4,

(4-1) F (ψ4,1) > 1.

(4-2) ψ4,2 = [2ω2] + 2λ + µ = 2[ω2] + 1 + 2λ + µ > ψ8,1.

(4-3) ψ4,d+1 ≥ [2ω2] + 2λ + µ > ψ8,1.

(d) In the case of ψ5,y, based on Table 5,

(5-1) ψ5,1 = [ω2] + λ + µ.

(5-2) ψ5,2 = [2ω2] + 2λ + µ = 2[ω2] + 1 + 2λ + µ > ψ8,1.

(5-3) d ≥ 2 ⇒ ψ5,d ≥ [2ω2] + 2λ + µ > ψ8,1.

The case d = 1 is just the same as (5-1).

(5-5) Similar to (5-3).

(e) In the case of ψ8,y, based on Table 8,

(8-1) F (ψ8,1) < 1.

(f) In the case of ψ9,y, based on Table 9,

(9-1) ψ9,1 = [ω2] + 1 + λ + µ.

As a result, ψ8,1, ψ5,1 and ψ9,1 remain. ¤
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Theorem 1.5B. Let R = 〈1, λ, µ〉 be a reduced lattice of K such that

0 < λ < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, ω2(λ, µ) > 0, a > 1, 2|b| < 1,

0 < µ < 1, φ1 < 1, F (φ6) < 1, where a = F (µ), b = Yµ. Then

(1) If F (φ2) < 1, then the minimal point adjacent to 1 is φ2.

(2) If φ2 > 1, F (φ2) > 1, then the minimal point adjacent to 1 is φ6.

(3) If φ2 < 1:

(i) if b < 0, then the minimal point adjacent to 1 is φ6;

(ii-a) if b > 0, 2λ + µ < 1, then the minimal point adjacent to 1 is φ6 or φ10,

(ii-b) if b > 0, 2λ + µ > 1, then the minimal point adjacent to 1 is φ6 or φ9.

Proof. From the assumption φ1 < 1, by Lemma 1.6,(1), we have Yλ < −1/2. By Corollary 1.3,

if b < 0, then we have 1 > ω2 > 1/2.

(1) We assume that F (ψ5,1) < 1. Since R is a reduced lattice, we have ψ5,1 = [ω2] + λ + ([ω1] +

1)µ = λ + µ > 1.

By Lemma 1.5,(1)(2) and Remark 1.3,(1) we have θg ∈ {ψ1,y, ψ2,y, ψ3,y, ψ4,y, ψ7,y, ψ5,1}.

(i) The case b < 0. By Lemma 1.5,(3), we have θg ∈ {ψ1,y, ψ3,y, ψ4,y, ψ5,1}.

(a) In the case of ψ1,y, based on Table 1,

(1-2) since [2ω2] = 1, we have ψ1,2 = 2λ + µ > ψ8,1 > ψ5,1.

(1-3) [(d + 1)ω2] ≥ 2 ⇒ ψ1,d+1 > ψ8,1 > ψ5,1. [(d + 1)ω2] = 1 ⇒ ψ1,d+1 = (d + 1)λ + µ

⇒ Yψ1,d+1
= (d + 1)Yλ + Yµ < −1.

(1-4) [(2d + 1)ω2] ≥ 2 ⇒ ψ1,2d+1 > ψ8,1 > ψ5,1. [(2d + 1)ω2] = 1 ⇒ ψ1,2d+1 = (2d + 1)λ

+2µ > ψ8,1 > ψ5,1.

(1-5) from [(3d + 2)ω2] ≥ 2, we have ψ1,3d+2 ≥ 1 + (3d + 2)λ + 3µ > ψ8,1 > ψ5,1.

(b) In the case of ψ3,y, based on Table 3,

(3-2) ψ3,3d+2 > ψ8,1 > ψ5,1.

(c) In the case of ψ4,y, based on Table 4,

(4-2) since [2ω2] = 1, we have ψ4,2 = 1 + 2λ + µ > ψ8,1 > ψ5,1.

(4-3) ψ4,d+1 > ψ8,1 > ψ5,1.

(4-4) ψ4,2d+1 > ψ8,1 > ψ5,1.

(4-5) ψ4,3d+2 > ψ8,1 > ψ5,1.

(ii) The case b > 0. By Lemma 1.5,(3), we have θg ∈ {ψ2,y, ψ4,y, ψ7,y, ψ5,1}.

(a) In the case of ψ2,y, based on Table 2,

(2-1) ψ2,1 = −1 + λ + µ < 1.
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(2-2) [2ω2] = 0 ⇒ ψ2,2 = −1 + 2λ + µ ⇒ Yψ2,2 = −1 + 2Yλ + Yµ < −1. [2ω2] = 1

⇒ ψ2,2 = 2λ + µ > ψ8,1 > ψ5,1.

(2-3) [dω2] ≥ 2 ⇒ ψ2,d > ψ8,1 > ψ5,1. [dω2] = 1 ⇒ Since d ≥ 2, ψ2,d = dλ + µ > ψ8,1

> ψ5,1. [dω2] = 0 ⇒ ψ2,d = −1 + dλ + µ ⇒ Yψ2,d
= −1 + dYλ + Yµ < −1.

(2-4) [(2d + 1)ω2] ≥ 2 ⇒ ψ2,2d+1 > ψ8,1 > ψ5,1. [(2d + 1)ω2] = 1 ⇒ ψ2,2d+1

= (2d + 1)λ + 2µ > ψ8,1 > ψ5,1. [(2d + 1)ω2] = 0 ⇒ ψ2,2d+1 = −1 + (2d + 1)λ + 2µ ⇒ Yψ2,2d+1

= −1 + (2d + 1)Yλ + 2Yµ < −1.

(2-5) Similar to (2-3).

(2-6) [(3d + 2)ω2] ≥ 2 ⇒ ψ2,3d+2 > ψ8,1 > ψ5,1. [(3d + 2)ω2] = 1 ⇒ ψ2,3d+2

= (3d+2)λ+3µ > ψ8,1 > ψ5,1. [(3d+2)ω2] = 0 ⇒ ψ2,3d+2 = −1+(3d+2)λ+3µ ⇒ Yψ2,3d+2
=

−1 + (3d + 2)Yλ + 3Yµ < −1.

(b) In the case of ψ4,y, based on Table 4,

(4-2) [2ω2] = 0 ⇒ ψ4,2 = 2λ + µ > ψ8,1 > ψ5,1. [2ω2] = 1 ⇒ ψ4,2 = 1 + 2λ + µ > ψ8,1

> ψ5,1.

(4-3) ψ4,d+1 > ψ8,1 > ψ5,1.

(4-4) ψ4,2d+1 > ψ8,1 > ψ5,1.

(4-5) ψ4,3d+2 > ψ8,1 > ψ5,1.

(c) In the case of ψ7,y, based on Table 7,

(7-1) by Lemma 1.5,(5) ψ7,1 ̸= θg.

As a result, ψ5,1 remains.

(2) We assume that ψ5,1 = λ + µ > 1, F (ψ5,1) > 1.

By Lemma 1.5,(1)(2) and Remark 1.3,(1) we have θg ∈ {ψ1,y, ψ2,y, ψ3,y, ψ4,y, ψ5,y, ψ6,y, ψ7,y, ψ8,1}.

(i) The case b < 0. By Lemma 1.5,(3), we have θg ∈ {ψ1,y, ψ3,y, ψ4,y, ψ5,y, ψ8,1}.

(a) In the case of ψ1,y, based on Table 1,

similar to (1).

(b) In the case of ψ3,y, based on Table 3,

similar to (1).

(c) In the case of ψ4,y, based on Table 4,

similar to (1).

(d) In the case of ψ5,y, based on Table 5,

(5-1) from the assumption, F (ψ5,1) > 1.

(5-2) ψ5,2 > φ6. (5-3) ψ5,d > φ6(d ≥ 2).
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(5-4) ψ5,2d+1 > φ6. (5-5) ψ5,d−1 > φ6(d ≥ 3).

As a result, ψ8,1 remains.

(ii) The case b > 0. By Lemma 1.5,(3), we have θg ∈ {ψ2,y, ψ4,y, ψ5,y, ψ6,y, ψ7,y, ψ8,1}.

(a) In the case of ψ2,y, based on Table 2,

similar to (1).

(b) In the case of ψ4,y, based on Table 4,

similar to (1).

(c) In the case of ψ5,y, based on Table 5,

(5-1) from the assumption, F (ψ5,1) > 1.

(5-2) ψ5,2 > φ6. (5-3) ψ5,d > φ6(d ≥ 2).

(5-4) ψ5,2d+1 > φ6. (5-5) ψ5,d−1 > φ6(d ≥ 3).

(d) In the case of ψ6,y, based on Table 6,

no case included

(e) In the case of ψ7,y. based on Table 7,

similar to (1).

As a result, ψ8,1 remains.

(3) We assume that ψ5,1 < 1.

By Lemma 1.5,(1)(2) and Remark 1.3,(1) we have θg ∈ {ψ1,y, ψ2,y, ψ3,y, ψ4,y, ψ5,y, ψ6,y, ψ7,y, ψ8,1}.

(i) The case b < 0. By Lemma 1.5,(3), we have θg ∈ {ψ1,y, ψ3,y, ψ4,y, ψ5,y, ψ8,1}.

(a) In the case of ψ1,y, based on Table 1,

(1-2) ψ1,2 = 2λ + µ, Yψ1,2 = 2Yλ + Yµ < −1.

(1-3) The case d ≥ 3. ψ1,d+1 > 1 + 4λ + µ > φ6. The case d = 2. ψ1,d+1 = [3ω2] − 1 + 3λ +

µ. [3ω2] = 2 ⇒ ψ1,d+1 = 1+3λ+µ > φ6. [3ω2] = 1 ⇒ ψ1,d+1 = 3λ+µ. Yψ1,d+1
= 3Yλ+Yµ < −1.

(1-4) The case d ≥ 2. ψ1,2d+1 > φ6.

The case d = 1. ψ1,2d+1 = [3ω2]− 1 + 3λ + 2µ.[3ω2] = 2 ⇒ ψ1,2d+1 = 1 + 3λ + 2µ > φ6. [3ω2] =

1 ⇒ ψ1,2d+1 = 3λ + 2µ. Yψ1,2d+1
= 3Yλ + 2Yµ < −1.

(1-5) ψ1,3d+2 > φ6.

(b) In the case of ψ3,y, based on Table 3,

(3-2) ψ3,3d+2 > φ6.

(c) In the case of ψ4,y, based on Table 4,

(4-2) ψ4,2 > φ6. (4-3) ψ4,d+1 > φ6. (4-4) ψ4,2d+1 > φ6. (4-5) ψ4,3d+2 > φ6.

(d) In the case of ψ5,y, based on Table 5,
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(5-1) from the assumption, ψ5,1 < 1. (5-2) ψ5,2 > φ6.

(5-3) ψ5,d > φ6(d ≥ 2). (5-4) ψ5,2d+1 > φ6. (5-5) ψ5,d−1 > φ6(d ≥ 3).

As a result, ψ8,1 remains.

(ii) The case b > 0. by Lemma 1.5,(3), we have θg ∈ {ψ2,y, ψ4,y, ψ5,y, ψ6,y, ψ7,y, ψ8,1}.

(a) In the case of ψ2,y, based on Table 2,

(2-1) ψ2,1 = −1 + λ + µ < 1.

(2-2) [2ω2] = 0 ⇒ ψ2,2 = −1 + 2λ + µ < λ < 1.[2ω2] = 1 ⇒ ψ2,2 = 2λ + µ.

(2-3) The case [dω2] ≥ 2. ψ2,d > ψ8,1 > ψ5,1.

The case [dω2] = 1. We have d ≥ 2 ⇒ ψ2,d = dλ + µ. If d ≥ 3, then we have Yψ2,d
=

dYλ + Yµ < −1. Hence, only when d = 2, it is possible to have θg = ψ2,d = ψ2,2 = 2λ + µ. The

case [dω2] = 0. ψ2,d = −1 + dλ + µ. Yψ2,d
= −1 + dYλ + Yµ < −1.

(2-4) The case [(2d + 1)ω2] ≥ 2. ψ2,2d+1 > ψ8,1. The case [(2d + 1)ω2] = 1. ψ2,2d+1

= (2d + 1)λ + 2µ. If d ≥ 2, then we have Yψ2,2d+1
= (2d + 1)Yλ + 2Yµ < −1. Hence, only

when d = 1, it is possible to have θg = ψ2,3 = 3λ + 2µ. The case [(2d + 1)ω2] = 0. ψ2,2d+1 =

−1 + (2d + 1)λ + 2µ. Yψ2,2d+1
= −1 + (2d + 1)Yλ + 2Yµ < −1.

(2-5) Similar to (2-3).

(2-6) The case [(3d + 2)ω2] ≥ 2. ψ2,3d+2 > ψ8,1. The case [(3d + 2)ω2] = 1. ψ2,3d+2

= (3d + 2)λ + 3µ. Yψ2,3d+2
= (3d + 2)Yλ + 3Yµ < −1. The case [(3d + 2)ω2] = 0. ψ2,3d+2 =

−1 + (3d + 2)λ + 3µ. Yψ2,3d+2
= −1 + (3d + 2)Yλ + 3Yµ < −1.

(b) In the case of ψ4,y, based on Table 4,

(4-2) [2ω2] = 0 ⇒ ψ4,2 = 2λ + µ.[2ω2] = 1 ⇒ ψ4,2 = 1 + 2λ + µ > ψ8,1.

(4-3) The case [(d + 1)ω2] ≥ 1. ψ4,d+1 > ψ8,1. The case [(d + 1)ω2] = 0. ψ4,d+1 = (d + 1)λ

+µ. If d ≥ 2, then we have Yψ4,d+1
= (d+1)Yλ +Yµ < −1. Hence, only when d = 1, it is possible

to have θg = ψ4,2 = 2λ + µ.

(4-4) The case [(2d + 1)ω2] ≥ 1. ψ4,2d+1 > ψ8,1. The case [(2d + 1)ω2] = 0. ψ4,2d+1

= (2d + 1)λ + 2µ. If d ≥ 2, then we have Yψ4,2d+1
= (2d + 1)Yλ + 2Yµ < −1. Hence, only when

d = 1, it is possible to have θg = ψ4,3 = 3λ + 2µ.

(4-5) [(3d + 2)ω2] ≥ 1 ⇒ ψ4,3d+2 > ψ8,1.[(3d + 2)ω2] = 0 ⇒ ψ4,3d+2 = (3d + 2)λ

+3µ. Yψ4,3d+2
= (3d + 2)Yλ + 3Yµ < −1.

(c) In the case of ψ5,y, based on Table 5,

(5-1) from the assumption, F (ψ5,1) > 1.

(5-2) [2ω2] = 0 ⇒ ψ5,2 = 2λ + µ.[2ω2] = 1 ⇒ ψ5,2 = 1 + 2λ + µ > ψ8,1.
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(5-3) The case [dω2] ≥ 1. ψ5,d > ψ8,1.

The case [dω2] = 0. ψ5,d = dλ + µ. If d ≥ 3, then we have Yψ5,d
= dYλ + Yµ < −1. Hence, only

when d = 2, it is possible to have θg = ψ5,2 = 2λ + µ.

(5-4) The case [(2d + 1)ω2] ≥ 1. ψ5,2d+1 > ψ8,1. The case [(2d + 1)ω2] = 0. ψ5,2d+1

= (2d + 1)λ + 2µ. If d ≥ 2, then we have Yψ5,2d+1
= (2d + 1)Yλ + 2Yµ < −1. Hence, only when

d = 1, it is possible to have θg = ψ5,3 = 3λ + 2µ.

(5-5) The case [(d − 1)ω2] ≥ 1. ψ5,d−1 > ψ8,1. The case [(d − 1)ω2] = 0. ψ5,d−1 = (d − 1)λ

+µ. If d ≥ 4, then we have Yψ5,d−1
= (d−1)Yλ +Yµ < −1. Hence, only when d = 3, it is possible

to have θg = ψ5,2 = 2λ + µ.

(d) In the case of ψ6,y. based on Table 6,

no case included

(e) In the case of ψ7,y, based on Table 7,

(7-1) By Lemma 1.5,(5) ψ7,1 ̸= θg.

As a result, 2λ + µ, 3λ + 2µ and ψ8,1 remain. If 2λ + µ < 1, then we have 2λ + µ ̸= θg. If

2λ + µ > 1, then we have 3λ + 2µ ̸= θg, because 3λ + 2µ = (2λ + µ) + λ + µ > 1 + λ = ψ8,1. ¤

Theorem 1.6B. Let R = 〈1, λ, µ〉 be a reduced lattice of K such that

0 < λ < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, ω2(λ, µ) > 0, a > 1, 2|b| < 1,

µ > 1, φ1 < 1, F (φ6) < 1, where a = F (µ), b = Yµ. Then

the minimal point adjacent to 1 is φ6.

Proof. From the assumption φ1 < 1, by Lemma 1.6,(1), we have Yλ < −1/2. By Corollary 1.3,

if b < 0, then we have ω2 > 1/2.

By Lemma 1.5,(1)(2) and Remark 1.3,(2) we have θg ∈ {ψ1,y, ψ2,y, ψ3,y, ψ4,y, ψ7,y, ψ8,1}.

(i) The case b < 0. By Lemma 1.5,(3), we have θg ∈ {ψ1,y, ψ3,y, ψ4,y, ψ8,1}.

(a) In the case of ψ1,y, based on Table 1,

(1-1) from ψ1,1 = ψ8,1 − 2 and F (ψ8,1) < 1, we have F (ψ1,1) > 1.

(1-2) ψ1,2 = 2λ + µ > ψ8,1. (1-3) ψ1,d+1 > ψ8,1.

(1-4) ψ1,2d+1 > ψ8,1. (1-5) ψ1,3d+2 > ψ8,1.

(b) In the case of ψ3,y, based on Table 3,

(3-2) ψ3,3d+2 > ψ8,1.

(c) In the case of ψ4,y, based on Table 4,

(4-2) ψ4,2 > ψ8,1. (4-3) ψ4,3 > ψ8,1.
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(4-4) ψ4,2d+1 > ψ8,1. (4-5) ψ4,3d+2 > ψ8,1.

As a result ψ8,1 remains.

(ii) The case b > 0. By Lemma 1.5,(3), we have θg ∈ {ψ2,y, ψ4,y, ψ7,y, ψ8,1}.

(a) In the case of ψ2,y, based on Table 2,

(2-1) ψ2,1 = −1 + λ + µ. Yψ2,1 = −1 + Yλ + Yµ < −1.

(2-2) ψ2,2 = [2ω2] − 1 + 2λ + µ. [2ω2] = 0 ⇒ ψ2,2 = −1 + 2λ + µ. Yψ2,2 = −1 + 2Yλ + Yµ

< −1. [2ω2] = 1 ⇒ ψ2,2 = 2λ + µ > ψ8,1.

(2-3) [dω2] ≥ 1 ⇒ ψ2,d = [dω2] − 1 + dλ + µ > ψ8,1. [dω2] = 0 ⇒ ψ2,d = −1 + dλ + µ.

Yψ2,d
= −1 + dYλ + Yµ < −1.

(2-4) ψ2,2d+1 > ψ8,1. (2-5) Similar to (2-3).

(2-6) ψ2,3d+2 > ψ8,1.

(b) In the case of ψ4,y, based on Table 4,

(4-2) ψ4,2 > ψ8,1. (4-3) ψ4,d+1 > ψ8,1.

(4-4) ψ4,2d+1 > ψ8,1. (4-5) ψ4,3d+2 > ψ8,1.

(c) In the case of ψ7,y, based on Table 7,

ψ7,1 = 1 + λ − µ < λ < 1.

As a result, ψ8,1 remains. ¤

Theorem 1.7B. Let R = 〈1, λ, µ〉 be a reduced lattice of K such that

0 < λ < 1, 0 < Xµ < Xλ, 0 < ω1(λ, µ) < 1, ω2(λ, µ) > 0, a > 1, 2|b| < 1,

µ < 0, φ1 < 1, F (φ6) < 1, where a = F (µ), b = Yµ. Then

(1) If F (φ8) < 1, then the minimal point adjacent to 1 is φ8.

(2) If F (φ8) > 1:

(i) if 2λ + µ < 0, then the minimal point adjacent to 1 is φ6 or φ6 + φ9;

(ii) if 2λ + µ > 0, then the minimal point adjacent to 1 is φ6 or 1 + φ9.

Proof. From the assumption φ1 < 1, by Lemma 1.6,(1), we have Yλ < −1/2. Since µ < 0 and

0 < Xµ, we have b < 0. By Corollary 1.3, we have ω2 > 1/2. From Table 10 and Lemma 1.5,(3),

we have θg ∈ {ψ1,y, ψ3,y, ψ4,y, ψ5,y, ψ8,y, ψ9,y}.

(a) In the case of ψ1,y, based on Table 1,

(1-2) ψ1,2 = 2λ + µ. Yψ1,2 = 2Yλ + Yµ < −1.

*(1-3) d ≥ 5 ⇒ ψ1,d+1 ≥ [6ω2] − 1 + 6λ + µ ≥ 2 + 6λ + µ > ψ8,1.
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d = 1 ⇒ ψ1,d+1 = 2λ + µ. Yψ1,d+1
= 2Yλ + Yµ < −1.

Hence, only when 2 ≤ d ≤ 4, it is possible to have θg = ψ1,d+1.

*(1-4) d ≥ 3 ⇒ ψ1,2d+1 ≥ [7ω2] − 1 + 7λ + 2µ ≥ 2 + 7λ + 2µ > ψ8,1.

Hence, only when 1 ≤ d ≤ 2, it is possible to have θg = ψ1,2d+1.

*(1-5) d ≥ 2 ⇒ ψ1,3d+2 ≥ [8ω2] − 1 + 8λ + 3µ ≥ 3 + 8λ + 3µ > ψ8,1.

Hence, only when d = 1, it is possible to have θg = ψ1,2d+1 = ψ1,5.

(b) In the case of ψ3,y, based on Table 3,

(3-1) By Lemma 1.5,(4), φ3 = ψ3,1 ̸= θg.

*(3-2) d ≥ 2 ⇒ ψ3,3d+2 > ψ8,1. Hence, only when d = 1, it is possible to have θg = ψ3,3d+2

= ψ3,5.

(c) In the case of ψ4,y, based on Table 4,

*(4-2) ψ4,2 = 1 + 2λ + µ.

*(4-3) d ≥ 3 ⇒ ψ4,d+1 ≥ [4ω2] + 4λ + µ ≥ 2 + 4λ + µ > ψ8,1.

Hence, only when 1 ≤ d ≤ 2, it is possible to have θg = ψ4,d+1.

*(4-4) d ≥ 2 ⇒ ψ4,2d+1 ≥ [5ω2] + 5λ + 2µ ≥ 2 + 5λ + 2µ > ψ8,1.

Hence, only when d = 1, it is possible to have θg = ψ4,2d+1.

*(4-5) d ≥ 2 ⇒ ψ4,3d+2 ≥ [8ω2] + 8λ + 3µ ≥ 4 + 8λ + 3µ > ψ8,1.

Hence, only when d = 1, it is possible to have θg = ψ4,3d+2.

(d) In the case of ψ5,y, based on Table 5,

*(5-2) ψ5,2 = 1 + 2λ + µ.

*(5-3) d ≥ 4 ⇒ ψ5,d ≥ [4ω2] + 4λ + µ ≥ 2 + 4λ + µ > ψ8,1.

d = 1 ⇒ ψ5,d = λ + µ < 1.

Hence, only when 2 ≤ d ≤ 3, it is possible to have θg = ψ5,d.

*(5-4) d ≥ 2 ⇒ ψ5,2d+1 ≥ [5ω2] + 5λ + 2µ ≥ 2 + 5λ + 2µ > ψ8,1.

Hence, only when d = 1, it is possible to have θg = ψ5,2d+1.

*(5-5) d ≥ 5 ⇒ ψ5,d−1 ≥ [4ω2] + 4λ + µ ≥ 2 + 4λ + µ > ψ8,1.

d = 2 ⇒ ψ5,d = λ + µ < 1.

Hence, only when 3 ≤ d ≤ 4, it is possible to have θg = ψ5,d−1.

*(5-6) d ≥ 2 ⇒ ψ5,3d+2 ≥ [8ω2] + 8λ + 3µ ≥ 4 + 8λ + 3µ > ψ8,1.

Hence, only when d = 1, it is possible to have θg = ψ5,3d+2.

(e) In the case of ψ8,y, based on Table 8,

*(8-1) From the assumption, F (ψ8,1) < 1.
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(f) In the case of ψ9,y, based on Table 9,

*(9-1) ψ9,1 = [ω2] + 1 + λ + µ.

From described above, we shall select all the elements

in each part with asterisk (*), using 1 ≤ [3ω2] ≤ 2, 2 ≤ [4ω2] ≤ 3, 2 ≤ [5ω2] ≤ 4.

Then we have the following set

{1 + λ, 1 + λ + µ, 1 + 2λ + µ, j + 3λ + µ(0 ≤ j ≤ 2),

j + 3λ + 2µ(0 ≤ j ≤ 2), j + 4λ + µ(1 ≤ j ≤ 2), j + 5λ + µ(1 ≤ j ≤ 3),

j + 5λ + 2µ(1 ≤ j ≤ 3), j + 5λ + 3µ(1 ≤ j ≤ 4)} = Σ.

Here, we eliminate elements ψ ∈ Σ such that ψ > φ6 or Yψ < −1.

Then we have

Σ′ = {1 + λ, 1 + λ + µ, 1 + 2λ + µ, 1 + 3λ + µ, 1 + 3λ + 2µ, 2 + 5λ + 3µ}.

(1) We assume that F (φ8) < 1. Since R is a reduced lattice,

we have φ8 = ψ9,1 = 1 + λ + µ > 1. Hence, we have λ + µ > 0.

From this, we have 1 + λ + µ < 1 + 2λ + µ, 1 + 3λ + µ, 1 + 3λ + 2µ, 2 + 5λ + 3µ.

Therefore we conclude that θg = φ8 = 1 + λ + µ because φ8 < φ6 = 1 + λ.

(2) We assume that F (φ8) > 1. We note that d(λ, µ) = 1 ⇔ 1/2 < ω1.

Hence, if d = 1, then by Lemma 1.5,(11), we have F (φ8) < 1. Therefore

we have d ≥ 2. So we have θg ̸= 1 + 3λ + 2µ, 2 + 5λ + 3µ.

(i) The case 2λ + µ < 0. We have θg = 1 + λ or 1 + 3λ + µ.

(ii) The case 2λ + µ > 0. We have θg = 1 + λ or 1 + 2λ + µ. ¤

1.6. Examples

Voronoi-algorithm :

Let K be a cubic algebraic number field of negative discriminant

and let R be a reduced lattice of K. We define the increasing chain

of the minimal points of R by :

　 θ0 = 1, θk+1 = min{γ ∈ R; θk < γ, F (θk) > F (γ)} if k ≥ 0.

Then θk+1 is the minimal point adjacent to θk in R.

Let OK be the ring of integers in K and R = OK . By Voronoi we know that

the previous chain is of purely periodic form :

　 1 = θ0, θ1,..., θℓ−1, ϵ, ϵθ1,..., ϵθℓ−1,...,
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where ℓ denotes the period length and ϵ(> 1) is the fundamental unit of OK .

To calculate such a sequence, it is sufficient to know how to find the

minimal point adjacent to 1 in a lattice R.

Indeed, let θ
(1)
g be the minimal point adjacent to 1 in R1 = OK = 〈1, β, γ〉

and θ1 = θ
(1)
g .

(i) We choose an appropriate point θ
(1)
h so that {1, θ

(1)
g , θ

(1)
h }

is a basis of R1.

(ii) Let R2 =
1

θ
(1)
g

R1, then R2 is a reduced lattice. θ
(2)
g is

the minimal point adjacent to 1 in R2 =
1

θ
(1)
g

R1 = 〈1, 1/θ(1)
g , θ

(1)
h /θ(1)

g 〉,

is equivalent to θ2 = θ1θ
(2)
g = θ

(1)
g θ

(2)
g being the minimal point

adjacent to θ1 in R1.

This process can be continued by induction.

Example 1.1. Let K = Q(θ) be a cubic number field defined by θ3 − 7θ − 12 = 0

(θ = 3.2669). Then R8 = 〈1,−2 +
1
6
θ +

1
6
θ2, 2 +

2
3
θ − 1

3
θ2〉 = 〈1, λ, µ〉.

It is easily seen that 0 < λ < 1, 0 < µ < 1.

Since R8 is a reduced lattice, we have a = F (µ) > 1.

Yθ =
1
2
(TK/Qθ − θ) = −1

2
θ, Yθ2 =

1
2
(TK/Qθ2 − θ2) =

1
2
(14 − θ2).

Xθ =
1
2
(3θ − TK/Qθ) =

3
2
θ, Xθ2 =

1
2
(3θ2 − TK/Qθ2) =

1
2
(3θ2 − 14).

Xµ = X2+ 2
3
θ− 1

3
θ2 =

2
3
Xθ −

1
3
Xθ2 =

7
3

+ θ − 1
2
θ2 > 0,

Xλ − Xµ = −7
2
− 3

4
θ +

3
4
θ2 > 0.

Yµ = Y2+ 2
3
θ− 1

3
θ2 = 2 +

2
3
Yθ −

1
3
Yθ2 =

1
6
(−2 − 2θ + θ2), 0 < Yµ <

1
2
.

Yλ =
1
12

(−10 − θ − θ2). ω1(λ, µ) =
θ − 1

2(θ + 2)
, 0 < ω1 < 1.

ω2(λ, µ) = − 1
12

(−10 − θ − θ2) − θ − 1
2(θ + 2)

× 1
6
(−2 − 2θ + θ2) =

1
4
(θ2 − 3), [ω2] = 1.

F ([ω2] + λ) = F (1 + λ) = 1 +
1
2
(θ − 3) > 1.

F ([ω2] + λ + µ) = F (1 + λ + µ) = 2 − 5θ + θ2 +
50
θ

> 1.

F ([ω2] + 1 + λ) = F (2 + λ) = F (
1
6
θ +

1
6
θ2) =

1
3θ2

(12 + θ − θ2) < 1.

Therefore, by Theorem 1.5A,(3), we have θg = [ω2] + 1 + λ = 2 + λ.

Example 1.2. Let K = Q(θ) be a cubic number field defined by

θ3 − 2θ − 111 = 0 (θ = 4.9445). Then
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R7 = 〈1, (−71 + 15θ + θ2)/98, (−61 − 23θ + 5θ2)/196〉 = 〈1, λ, µ〉.

It is easily seen that 0 < λ < 1, µ < 0.

Since R7 is a reduced lattice, we have a = F (µ) > 1.

Xθ =
3
2
θ, Xθ2 =

1
2
(3θ2 − 4).

Xµ =
1
2c

(15θ2 − 69θ − 20) = 0.0141 > 0 (c = 196).

Xλ − Xµ =
1
2c

(−9θ2 + 159θ + 12) = 1.4748 > 0.

Yµ =
1
2c

(−5θ2 + 23θ − 102) = −0.2819, 0 < |Yµ| <
1
2
.

Yλ =
1

2 × 98
(−θ2−15θ−138) =

1
c
(−θ2−15θ−138) = −1.2072. ω1(λ, µ) =

−2θ + 30
5θ + 23

= 0.4214,

0 < ω1 < 1. ω2(λ, µ) = −Yλ − ω1Yµ = 1.2072 − 0.4214 ×−0.2819, [ω2] = 1.

(1) NK/Q(x + yθ + zθ2) =

x3 + 2 × 2x2z − 2xy2 − 3 × 111xyz + 22xz2 + 111y3 − 2 × 111yz2 + 1112z3.

(a) By (1), F (φ1) = F ([ω2] + λ) = F (
1
98

(27 + 15θ + θ2))

=
1

982
F (27 + 15θ + θ2) =

1
982

NK/Q(27 + 15θ + θ2)
27 + 15θ + θ2

=
1

982

259308
27 + 15θ + θ2

= 0.2149 < 1.

(b) λ + µ =
1
c
(7θ2 + 7θ − 203) =

1
c
× 2.7480 > 0.

(c) By (1), F (φ2) = F ([ω2] + λ + µ) = F (
1
c
(−7 + 7θ + 7θ2))

=
1
c2

F (−7 + 7θ + 7θ2) =
1
c2

NK/Q(−7 + 7θ + 7θ2)
−7 + 7θ + 7θ2

=
1
c2

4302592
−7 + 7θ + 7θ2

= 0.5635 < 1.

Therefore, by Theorem 1.7A,(1),(ii-b), we have θg = φ2.

Example 1.3. Let K = Q(θ) be a cubic number field defined by

θ3 − 77θ − 513 = 0 (θ = 11.1002). Then

R39 = 〈1, (−674 − 28θ + 9θ2)/613, (1205 + 121θ − 17θ2)/613〉 = 〈1, λ, µ〉.

It is easily seen that 0 < λ < 1, 0 < µ < 1.

Since R39 is a reduced lattice, we have a = F (µ) > 1.

Xθ =
3
2
θ, Xθ2 =

1
2
(3θ2 − 154).

Xµ =
1
2c

(−51θ2 + 363θ + 2618) =
1
2c

× 363.4361 > 0 (c = 613).

Xλ − Xµ =
1
2c

(78θ2 − 457θ − 4004) =
1
2c

× 533.9349 > 0.

Yµ =
1
2c

(17θ2 − 121θ − 208) = 0.4433, 0 < Yµ <
1
2
.

Yλ =
1
2c

(−9θ2 + 28θ + 38) = −0.6200. ω1(λ, µ) =
9θ + 28

17θ + 121
= 0.4129,
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0 < ω1 < 1. ω2(λ, µ) = −Yλ − ω1Yµ = 0.6200 − 0.4129 × 0.4433, [ω2] = 0.

(a) φ2 = λ + µ =
1
c
(−8θ2 + 93θ + 521) = 0.9259 < 1.

(b) 2λ + µ =
1
c
(θ2 + 65θ − 143) = 1.1447 > 1.

(1) NK/Q(x + yθ + zθ2) =

x3 + 2 × 77x2z − 77xy2 − 3 × 513xyz + 772xz2 + 513y3 − 77 × 513yz2 + 5132z3.

(c) By (1), F (φ6) = F ([ω2] + 1 + λ) = F (
1
c
(−61 − 28θ + 9θ2))

=
1
c2

F (−61 − 28θ + 9θ2) =
1
c2

NK/Q(−61 − 28θ + 9θ2)
−61 − 28θ + 9θ2

=
1
c2

225837169
−61 − 28θ + 9θ2

= 0.8153 < 1.

(d) By (1), F (2λ + µ) =
1
c2

F (θ2 + 65θ − 143)

=
1
c2

NK/Q(θ2 + 65θ − 143)
θ2 + 65θ − 143

=
1
c2

198781801
θ2 + 65θ − 143

= 0.7538 < 1.

Therefore, by Theorem 1.5B,(3),(ii-b), we have θg = 2λ + µ.

Example 1.4. (Williams and Dueck [35,p.690])

Let K = Q(θ) be a cubic number field defined by θ3 − 68781 = 0

(θ = 40.97221992). Then R2307 = 〈1, φ, ψ〉

= 〈1, (−72036 + 1809θ + 2θ2)/126539, (117574 − 2668θ + 67θ2)/126539〉

= 〈1, φ, ψ − 1〉 = 〈1, (−72036 + 1809θ + 2θ2)/126539, (−8965 − 2668θ + 67θ2)/126539〉

= 〈1, λ, µ〉. 0 < λ < 1, µ < 0. 0 < Xµ < Xλ.

Since R2307 is a reduced lattice, we have a = F (µ) > 1.

ω1(λ, µ) =
−2θ + 1809
67θ + 2668

. Yλ = − 1
2c

(2θ2 + 1809θ + 144072) (c = 126539).

Yµ = − 1
2c

(67θ2 − 2668θ + 17930).

ω1 = 0.31904891. Yλ = −0.87541450. Yµ = −0.08333592.

ω2 = 0.90200274. Hence [ω2] = 0, φ1 = [ω2] + λ = λ < 1.

(1) NK/Q(x + yθ + zθ2) = x3 − 3 × 68781xyz + 68781y3 + 687812z3.

(a) By (1), F (φ6) = F ([ω2] + 1 + λ) = F (1 + λ) = F (
1
c
(54503 + 1809θ + 2θ2))

=
1
c2

F (54503 + 1809θ + 2θ2) =
1
c2

NK/Q(54503 + 1809θ + 2θ2)
54503 + 1809θ + 2θ2

=
1
c2

528431935430042
54503 + 1809θ + 2θ2

= 0.25005464 < 1.

(b) By (1), F (1 + 2λ + µ) = F (
−26498 + 950θ + 71θ2

c
)

=
1
c2

F (−26498 + 950θ + 71θ2) =
1
c2

NK/Q(−26498 + 950θ + 71θ2)
−26498 + 950θ + 71θ2

=
1
c2

2102375149688779
−26498 + 950θ + 71θ2

= 0.99760062 < 1.
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(c) By (1), F (φ8) = F (1 + λ + µ) = F (
45538 − 859θ + 69θ2

c
)

=
1
c2

F (45538 − 859θ + 69θ2) =
1
c2

NK/Q(45538 − 859θ + 69θ2)
45538 − 859θ + 69θ2

=
1
c2

2161892194231336
45538 − 859θ + 69θ2

= 1.07007239 > 1.

(d) Since −153037 + 950θ + 71θ2 > 0, 2λ + µ =
−153037 + 950θ + 71θ2

c
> 0.

(e) Since λ + µ =
−81001 − 859θ + 69θ2

c
< 0, we have 1 + 2λ + µ < 1 + λ.

Therefore, by Theorem 1.7B,(2),(ii), we have θg = 1 + 2λ + µ.
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2 A one-parameter family of cubic fields

Let Z be the set of rational integers,and let θ be the real root of

the irreducible cubic polynomial

f(X) = X3 − 3X − b3 , b(̸= 0) ∈ Z.

The discriminant of f(X) is Df = −33(b3 − 2)(b3 + 2) and Df < 0 provided b ̸= ±1.

Let K = Q(θ) be the cubic field formed by adjoining θ to the rationals Q, and let ZK be the

ring of algebraic integers in K. The family of cubic fields were introduced by Ishida [17]. Ishida

constructed an unramified cyclic extension, of degree 32, of K provided b ≡ −1(mod 32).

In this chapter we shall consider this family from various points of view.

Remark 2.1. ”f(X) = X3 − 3X + b3” in [17] is replaced by　”f(X) = X3 − 3X − b3”.

Remark 2.2. If b ≡ ±1(mod 3), then K is of Eisenstein type with respect to 3 (cf. [17]).

2.1. Voronoi-algorithm expansion of the order Z[θ]

In this section we shall find Voronoi-algorithm expansion of the order Z[θ] using the method

in chapter 1. We need the following easily proved facts:

Proposition 2.1. For α = x + yθ + zθ2(x, y, z ∈ Q), we have

(i) NK(x + yθ) = x3 − 3xy2 + b3y3,

(ii) x + yθ + zθ2 =
−xy + b3z2 + (−y2 + xz + 3z2)θ

−y + zθ
(z ̸= 0),

(iii) Yα =
1
2
(2x + 6z − yθ − zθ2), Xα =

3
2
(−2z + yθ + zθ2).

(iv) For λ = a1 + a2θ + a3θ
2(ai ∈ Q), µ = b1 + b2θ + b3θ

2(bi ∈ Q), we obtain

ω1(λ, µ) = −Zλ

Zµ
= −a2 − a3θ

b2 − b3θ
, ω2(λ, µ) = −a1 − 3a3 + a2θ + ω1(−b1 − 3b3 + b2θ).

Since θ3 − 3θ − b3 = 0 ⇒ (−θ)3 − 3(−θ) − (−b)3 = 0, we may assume that b > 1.

Since f(b +
1
b2

) = 3(1 − b) +
3(1 − b)

b3
+

1
b6

< 0 and f(b +
1
b
) =

1
b3

> 0, we get

b +
1
b2

< θ < b +
1
b
. (1.1)

We consider the defining polynomial g(X) = X3 − 6X2 + 9X − b6 of θ2.

Since g(b2 + 2) = −3b2 + 2 < 0 and g(b2 + 3) = 3b4 > 0, we have
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b2 + 2 < θ2 < b2 + 3. (1.2)

(V-1) Let R1 := Z[θ] = 〈1,−3 + bθ + θ2, θ〉 = 〈1, λ1, µ1〉. From (1.1), we have

(a) µ1 = θ > 1.

Since a(µ1) = F (θ) = θ′θ′′ = θ2 − 3 > b2 − 3 ≥ 1, we obtain

(b) a(µ1) > 1.

By Proposition 2.1,(iii), we get

(c) b(µ1) = Yµ1 = −1
2
θ < 0.

From (1.1), we have

(d) a(µ1) = θ2 − 3 >
1
2
θ2 = 2(b(µ1))2.

Since |b(µ1)| > 1, we have

(e) (b(µ1))2 > |b(µ1)|.

From (b),(d),(e), we obtain

(f) a(µ1) > max(1, 2(b(µ1))2, 2|b(µ1)|).

Since ω1(λ1, µ1) = θ−b, we have 0 < ω1 < 1. By Proposition 2.1,(iii), we get Yλ1 = −1
2
(θ2 +bθ).

Hence, ω2(λ1, µ1) = −Yλ1 − ω1Yµ1 =
1
2
(θ2 + bθ) − (θ − b)(−1

2
θ) = θ2. From (1.2), we obtain

[ω2] = [θ] = b2 + 2.

Since φ1 = [ω2] + λ = b2 + 2 + (−3 + bθ + θ2) = b2 − 1 + bθ + θ2 > θ = µ1, we get

(g) φ1 > µ1.

By Proposition 2.1,(ii), we have φ1 = b2 − 1+ bθ + θ2 =
b + 2θ
−b + θ

. By Proposition 2.1,(i), we have

F (φ1) = (NK
b + 2θ

−b + θ
)/

b + 2θ

−b + θ
=

NK(b + 2θ)
NK(−b + θ)

× −b + θ

b + 2θ

=
b3 − 3 · b · 22 + b3 · 23

(−b)3 − 3(−b) · 12 + b3 · 13
× −b + θ

b + 2θ
=

9b3 − 12b

3b
× −b + θ

b + 2θ

= (3b2 − 4) × −b + θ

b + 2θ
= (−b + θ) × 3b2 − 4

b + 2θ
< 1. Hence,

(h) F (φ1) < 1.

Therefore, by Theorem 1.6A,(1),(i) and Remark 1.5, we obtain θ
(1)
g = φ1, φ3 or φ4, where θ

(1)
g is

the minimal point adjacent to 1 of R1.

φ4 = [ω2] − 1 + λ1 = b2 + 2 − 1 + (−3 + bθ + θ2) = b2 − 2 + bθ + θ2 =
2b + θ

−b + θ
.

F (φ4) = (NK
2b + θ

−b + θ
)/

2b + θ

−b + θ
=

NK(2b + θ)
NK(−b + θ)

× −b + θ

2b + θ

=
(2b)3 − 3 · 2b · 12 + b3 · 13

(−b)3 − 3(−b) · 12 + b3 · 13
× −b + θ

2b + θ
=

9b3 − 6b

3b
× −b + θ

2b + θ

= (3b2 − 2) × −b + θ

2b + θ
= (−b + θ) × 3b2 − 2

2b + θ
< 1.
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φ3 = [ω2] + λ1 − µ1 = b2 + 2 + (−3 + bθ + θ2) − θ2 = b2 − 1 + bθ.

F (φ3) = F (b2 − 1 + bθ) =
NK(b2 − 1 + bθ)

b2 − 1 + bθ
=

(b2 − 1)3 − 3 · (b2 − 1) · b2 + b3 · b3

b2 − 1 + bθ

=
(b2 − 1)3 − 3 · (b2 − 1) · b2 + b3 · b3

b2 − 1 + bθ
=

2b6 − 6b4 + 6b2 − 1
b2 − 1 + bθ

=
A

B
.

Since A − B = 2b4(b2 − 3) + b(5b − θ) > 0, we have A > B. Hence, F (φ3) > 1.

Therefore, we have

(i) θ
(1)
g = φ4. NK/Qθ

(1)
g = 3b2 − 2 ̸= 1.

(V-2) Let R2 :=
1

θ
(1)
g

R1 =
1

b2 − 2 + bθ + θ2
〈1,−3 + bθ + θ2, θ〉

=
1

b2 − 2 + bθ + θ2
〈1, b2 − 2 + bθ + θ2, θ〉 = 〈1,

1
b2 − 2 + bθ + θ2

,
θ

b2 − 2 + bθ + θ2
〉

= 〈1,
1

3b2 − 2
(−b2 + 1 + 2bθ − θ2),

1
3b2 − 2

{−b3 − (b2 + 2)θ + 2bθ2}〉

= 〈1, λ2, ν2〉 = 〈1, λ2, µ2 = ν2 − (b − 1)λ2〉

= 〈1,
1

3b2 − 2
(−b2 + 1 + 2bθ − θ2),

1
3b2 − 2

{−b2 − b + 1 − (3b2 − 2b + 2)θ + (3b − 1)θ2}〉.

0 < λ2 = 1/θ
(1)
g < 1. From (1.1), (1.2),we get λ2 =

1
3b2 − 2

A,A = −b2 + 1 + 2bθ − θ2

< −b2 + 1 + 2b(b +
1
b
) − (b2 + 2) = 1. From this, we have λ2 =

1
3b2 − 2

A <
1

3b2 − 2
≤ 1

10
.

From (1.1), (1.2),we have B = −b2 − b + 1 − (3b2 − 2b + 2)θ + (3b − 1)θ2

> −b2 − b + 1 − (3b2 − 2b + 2)(b +
1
b2

) + (3b − 1)(b2 + 2) = 5b − 6 +
2
b
− 2

b2
> 0.

From (1.1), (1.2),we obtain B < −b2−b+1− (3b2−2b+2)(b+
1
b
)+(3b−1)(b2 +3) = 3b+2− 2

b
.

Hence, 0 < µ2 =
1

3b2 − 2
× B < (3b + 2 − 2

b
)/(3b2 − 2) ≤ 7/10 < 1. Therefore, we see that

(a) 0 < λ2 < 1/10, 0 < µ2 < 7/10.

b(µ2) = Yµ2 =
1

2(3b2 − 2)
{−2b2 + 16b − 4 + (3b2 − 2b + 2)θ − (3b − 1)θ2}

=
1

2(3b2 − 2)
C. From (1.1), (1.2),we see that

(b) C = −2b2 + 16b − 4 + (3b2 − 2b + 2)θ − (3b − 1)θ2

> −2b2 + 16b − 4 + (3b2 − 2b + 2)(b +
1
b2

) − (3b − 1)(b2 + 3)

= −3b2 + 9b + 2 − 2
b

+
2
b2

,

(c) C = −2b2 + 16b − 4 + (3b2 − 2b + 2)θ − (3b − 1)θ2

< −2b2 + 16b − 4 + (3b2 − 2b + 2)(b +
1
b
) − (3b − 1)(b2 + 2)

= −3b2 + 16b − 4 +
2
b

< 0 (b ≥ 5).

Hence, from (b),(c), we obtain −3b2 + 9b + 2 − 2
b

+
2
b2

< C < −3b2 + 16b − 4 +
2
b

< 0 (b ≥ 5).

From this, we have | − 3b2 + 9b + 2 − 2
b

+
2
b2
| = 3b2 − 9b − 2 +

2
b
− 2

b2
< 3b2 − 2.
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Hence, |C| < 3b2 − 2. So we have −1/2 < b(µ2) = Yµ2 =
1

2(3b2 − 2)
C < 0. Therefore, we see

that

(d) −1/2 < b(µ2) = Yµ2 < 0.

For b = 2, 3, 4 we can easily check (d). By Proposition 2.1,(iv), we obtain

ω1 = − 2b + θ

−(3b2 − 2b + 2) − (3b − 1)θ
=

2b + θ

3b2 − 2b + 2 + (3b − 1)θ
. It is easily seen that 0 < ω1 < 1.

From (1.1), (1.2),we have

(e) ω1 =
2b + θ

3b2 − 2b + 2 + (3b − 1)θ
>

2b + b + 1/b2

3b2 − 2b + 2 + (3b − 1)(b + 1/b)
=

3b + 1/b2

6b2 − 3b + 5 − 1/b

>
1
2b

.

Yλ2 =
1

2(3b2 − 2)
(−2b2 − 4− 2bθ + θ2). It is easily seen that Yλ2 < 0. From Yλ2 < 0 and Yµ2 < 0,

we have ω2 > 0. By Proposition 2.1,(iv), we get

ω2 =
1

3b2 − 2
{b2+2+2bθ+

2b + θ

3b2 − 2b + 2 + (3b − 1)θ
(b2−8b+2−(3b2−2b+2)θ)} =

1
3b2 − 2

×D.

From (1.1), (1.2) and (e), we obtain

D = b2 + 2 + 2bθ + ω1(b2 − 8b + 2 − (3b2 − 2b + 2)θ)

< b2 + 2 + 2b(b +
1
b
) + ω1(b2 − 8b + 2 − (3b2 − 2b + 2)θ)

< b2 + 2 + 2b(b +
1
b
) +

1
2b

(b2 − 8b + 2 − (3b2 − 2b + 2)θ)

< b2 + 2 + 2b(b +
1
b
) +

1
2b

(b2 − 8b + 2 − (3b2 − 2b + 2)(b +
1
b2

))

= 3b2 + 4 +
1
2b

(−3b3 + 3b2 − 10b − 1 + 2/b − 2/b2)

= 3b2 + 4 − 1
2b

(3b3 − 3b2 + 10b + 1 − 2/b + 2/b2)

< 3b2 + 4 − 1
2b

(3b3 − 3b2 + 10b) = 3b2 + 4 − 3
2
b2 +

3
2
b − 5 =

3
2
b2 +

3
2
b − 1

< 3b2 − 2. Hence, D < 3b2 − 2. From this, we get ω2 =
1

3b2 − 2
×D < 1. Therefore, we see that

(f) [ω2] = 0.

φ6 = [ω2] + 1 + λ2 = 1 + λ2 =
1

3b2 − 2
(2b2 − 1 + 2bθ − θ2)

=
1

3b2 − 2
−3b3 + 2b + (−6b2 + 4)θ

−2b − θ
=

1
3b2 − 2

b(3b2 − 2) + 2(3b2 − 2)θ
2b + θ

=
b + 2θ

2b + θ
.

F (φ6) = (NK
b + 2θ
2b + θ

)/
b + 2θ

2b + θ
= (NK

b + 2θ

2b + θ
) × 2b + θ

b + 2θ

=
9b3 − 12b

9b3 − 6b
× 2b + θ

b + 2θ
=

3b2 − 4
3b2 − 2

× 2b + θ

b + 2θ
<

3b2 − 4
3b2 − 2

× 2b + b + 1/b

b + 2(b + 1/b2)

=
3b2 − 4
3b2 − 2

× 3b + 1/b

3b + 2/b2
< 1. By Proposition 2.1,(iii), we get Xµ2 =

3
2(3b2 − 2)

{−2(3b − 1) −

(3b2 − 2b + 2)θ + (3b − 1)θ2}.

From (1.1), (1.2), we see that

−2(3b− 1)− (3b2 − 2b + 2)θ + (3b− 1)θ2 > −2(3b− 1)− (3b2 − 2b + 2)(b +
1
b
) + (3b− 1)(b2 + 2)
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= b2 − 5b + 2 − 2
b

> 0 (b ≥ 5). Hence, Xµ2 > 0.

For b = 2, 3, 4 we can easily checked Xµ2 > 0. We have

Xλ2 =
3

2(3b2 − 2)
{2+2bθ−θ2} > 0, Xλ2 −Xµ2 =

3
2(3b2 − 2)

{6b+(3b2 +2)θ+3bθ2} > 0. Hence,

(g) 0 < Xµ2 < Xλ2 .

From (a) and (f), we get φ2 = [ω2] + λ2 + µ2 = λ2 + µ2 <
1
10

+
7
10

< 1. Therefore, by Theorem

1.5B,(3),(i), we have θ(2)
g = φ6. NK/Qθ(1)

g θ(2)
g = (3b2 − 2) × 3b2 − 4

3b2 − 2
= 3b2 − 4 ̸= 1.

Since the follwing procedures ((V-3) to (V-5)) are similar to (V-1),(V-2), we will present only

these final results.

(V-3) R3 =
1

θ
(2)
g

R2 = 〈1, λ3, µ3〉

= 〈1,
1

3b2 − 4
{−2b3 + b2 + 4 + (b2 + b − 2)θ + (b − 2)θ2}, 1

3b2 − 4
(2b2 − 8 − bθ + 2θ2)〉.

(a) 0 < µ3 < 1, 0 < b(µ3) = Yµ3 =
1

2(3b2 − 4)
(4b2 − 4 + bθ − 2θ2) < 1/2.

(b) 0 < ω1 =
b2 + b − 2 − (b − 2)θ

b + 2θ
< 1.

(c) [ω2] = b − 1.

(d) φ1 = [ω2] + λ3 =
(b − 2)2 + 2(b − 1)θ
b2 + b − 2 − (b − 2)θ

> 1.

(e) F (φ1) = NK(
−(b − 2)2 − 2(b − 1)θ
−b2 − b + 2 + (b − 2)θ

) × b2 + b − 2 − (b − 2)θ
(b − 2)2 + 2(b − 1)θ

=
3b3 − 6b2 + 6b − 4

3b2 − 4
× b2 + b − 2 − (b − 2)θ

(b − 2)2 + 2(b − 1)θ
< 1.

By Theorem 1.5A,(1),(ii), we obtain θ
(3)
g = φ1 or φ5.

(f) φ5 = [ω2] − 1 + λ3 − µ3 =
−b2 + 12b − 10 − (5b − 9)θ
−b2 − 2b + 2 + (b − 4)θ

.

(g) F (φ5) = NK(
−b2 + 12b − 10 − (5b − 9)θ
−b2 − 2b + 2 + (b − 4)θ

) × −b2 − 2b + 2 + (b − 4)θ
−b2 + 12b − 10 − (5b − 9)θ

=
21b3 − 66b2 − 3b + 65

3b2 − 4
× b2 + 2b − 2 − (b − 4)θ

b2 − 12b + 10 + (5b − 9)θ
> 1 (b ≥ 3).

φ5 =
1
4
(−4 + 3θ − θ2) < 0 (b = 2).

Therefore, we see that θ(3)
g = φ1. NK/Qθ(1)

g θ(2)
g θ(3)

g = (3b2−4)× 3b3 − 6b2 + 6b − 4
3b2 − 4

= 3b3−6b2 +

6b − 4 ̸= 1.

(V-4) R4 =
1

θ
(3)
g

R3 = 〈1, λ4, µ4〉 = 〈1,
1

3b3 − 6b2 + 6b − 4
{−b3 + b2 − 2b + 2 − (b2 − 4b + 4)θ +

(2b − 2)θ2}, 1
3b3 − 6b2 + 6b − 4

{−b3 + 3b2 − 2b + 2 + (2b2 − 3b + 2)θ − bθ2}〉.

(a) µ4 < 0.
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(b) −1/2 < Yµ4 =
1

2(3b3 − 6b2 + 6b − 4)
{−2b3 + 6b2 − 10b + 4 − (2b2 − 3b + 2)θ + bθ2} < 0.

(c) Xµ4 =
3
2
· 1
3b3 − 6b2 + 6b − 4

{2b + (2b2 − 3b + 2)θ − bθ2} > 0,

Xλ4 =
3
2
· 1
3b3 − 6b2 + 6b − 4

{−4b + 4 − (b2 − 4b + 4)θ + (2b − 2)θ2} > 0,

Xλ4 − Xµ4 =
3
2
· 1
3b3 − 6b2 + 6b − 4

{−6b + 4 + (−3b2 + 7b − 6)θ + (3b − 2)θ2} > 0.

(d) 0 < Xµ4 < Xλ4 .

(e) 0 < ω1 =
b2 − 4b + 4 + (2b − 2)θ

2b2 − 3b + 2 + bθ
< 1.

(f) 0 < ω2 < 1, [ω2] = 0.

(g) φ6 = 1 + λ4 =
2b2 − 3b + 2 + bθ

b2 − 4b + 4 + (2b − 2)θ
.

(h) F (φ6) = NK(
2b2 − 3b + 2 + bθ

b2 − 4b + 4 + (2b − 2)θ
) × b2 − 4b + 4 + (2b − 2)θ

2b2 − 3b + 2 + bθ

=
3b3 − 6b2 + 6b − 2
3b3 − 6b2 + 6b − 4

× b2 − 4b + 4 + (2b − 2)θ
2b2 − 3b + 2 + bθ

< 1.

(i) φ8 = [ω2] + 1 + λ4 + µ4 =
−b − 2θ

−b2 − b + 2 + (b − 2)θ
.

(j) F (φ8) = NK(
−b − 2θ

−b2 − b + 2 + (b − 2)θ
) × −b2 − b + 2 + (b − 2)θ

−b − 2θ

=
3b

3b3 − 6b2 + 6b − 4
× b2 + b − 2 − (b − 2)θ

b + 2θ
< 1.

Therefore, by Theorem 1.7B,(1), we obtain θ(4)
g = φ8. NK(θ(1)

g θ(2)
g θ(3)

g θ(4)
g ) = (3b3 − 6b2 + 6b −

4) × 3b

3b3 − 6b2 + 6b − 4
= 3b ̸= 1.

(V-5) R5 =
1

θ
(4)
g

R4 = 〈1, λ5, µ5〉 = 〈1,
1
3b

(−2b2 + 3b − 3 + bθ + θ2),
1
3b

(−b2 + 3 + 2bθ − θ2)〉.

(a) 0 < µ5 < 1, λ5 > 0, 0 < ω1 =
−b + θ

2b + θ
< 1.

(b) µ5 =
−b2 + 2 + bθ

2b + θ
, a(µ5) = F (µ5) = NK(

−b2 + 2 + bθ

2b + θ
) × 2b + θ

−b2 + 2 + bθ

= (3b2 − 4) × 2b + θ

−b2 + 2 + bθ
> 1.

(c) b(µ5) = Yµ5 =
1
2b

× −b3 − (2b2 − 1)θ
2b + θ

< 0.

(d) a(µ5) > max(1, 2(b(µ5))2, 2|b(µ5)|).

(e) [ω2] = b − 1.

(f) φ1 = [ω2] + λ5 = b − 1 + λ5 =
1

−b + θ
.

(g) F (φ1) = NK(
1

−b + θ
) × (−b + θ) =

1
3b

× (−b + θ) < 1.

Therefore, by Theorem 1.5A,(1),(i) and Remark 1.4, we have θ
(5)
g = φ1, φ3 or φ4.

(h) φ3 = [ω2] + λ5 − µ5 =
2b2 − 2 + bθ

b + 2θ
.

(i) F (φ3) = NK(
2b2 − 2 + bθ

b + 2θ
) × b + 2θ

2b2 − 2 + bθ
=

3b4 − 6b2 + 2
3b

× b + 2θ

2b2 − 2 + bθ
> 1.
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(j) φ4 = [ω2] − 1 + λ5 =
b + 1 − θ

−b + θ
.

(k) F (φ4) = NK(
b + 1 − θ

−b + θ
) × −b + θ

b + 1 − θ
=

3b2 − 2
3b

× −b + θ

b + 1 − θ
> 1.

Therefore, we have θ(5)
g = φ1. NK(θ(1)

g θ(2)
g θ(3)

g θ(4)
g θ(5)

g ) = 3b × 1
3b

= 1.

ϵ = θ
(1)
g θ

(2)
g θ

(3)
g θ

(4)
g θ

(5)
g

=
2b + θ

−b + θ
× b + 2θ

2b + θ
× (b − 2)2 + 2(b − 1)θ

b2 + b − 2 − (b − 2)θ
× b + 2θ

b2 + b − 2 − (b − 2)θ
× 1

−b + θ

= b4 − b2 + 1 + (b3 + b)θ + b2θ2 =
1

b2 + 1 − bθ
=

1
1 − b(θ − b)

.

Therefore, we obtained the following Theorem:

Theorem 2.1. Let θ be the real root of the polynomial f(X), K = Q(θ), and O = Z[θ]. Then

ϵ = b4 − b2 + 1 + (b3 + b)θ + b2θ2 =
1

1 − b(θ − b)
(> 1)

is the fundamental unit of O and Voronoi-algorithm expansion period length is ℓ = 5.

2.2. Integral bases

In this section we refer to Voronoi’s Theorem and Llorente and Nart [27](cf. [13]) to find

integral bases. For our convenience we quote a part of Voronoi’s Theorem which is well known

as Theorem 2.2.

Theorem 2.2(cf. Section 17 in [9]). If δ is a primitive integer in a

cubic field satisfying the equation F (δ) = δ3 − qδ − n = 0, and if there

is no integer τ whose square divides q and whose cube divides n,

then an integral basis of the field Q(δ)can be found as follows:

If the congruences 3 − q ≡ 0(mod 9), n + q − 1 ≡ 0(mod 27),

n − q + 1 ≡ 0(mod 27) are not satisfied and if the integer a is

the greatest square factor of the discriminant Dδ(= DF ) of δ

for which the congruences

 F ′(X) ≡ 0(mod a)

F (X) ≡ 0(mod a2)
have a solution t,

then {1, δ,
t2 − q + tδ + δ2

a
} is an integral basis of Q(δ) and Dδ/a2 is the

discriminant of Q(δ).
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Theorem 2.3. Let b(̸= 0) ∈ Z and f(θ) = θ3 − 3θ − b3 = 0. Let K = Q(θ)

and DK be the discriminant of K.

Let b3 − 2 = 2e · 3g1 · k2
1ℓ1, b

3 + 2 = 2e · 3g2 · k2
2ℓ2, where ℓ1, ℓ2 are

squarefree, GCD(k1ℓ1, k2ℓ2) = GCD(k1ℓ1k2ℓ2, 2 · 3) = 1 and e, g1, g2 = 0 or 1.

(i) If b ≡ ±1(mod 3), then {1, θ,
t2 − 3 + tθ + θ2

k1k2
}is an integral basis of K,

where t is a solution of the following congruences

 X ≡ 1(mod k2)

X ≡ −1(mod k1)
.

(ii) If b ≡ 0(mod 3), then {1, θ,
t2 − 3 + tθ + θ2

3k1k2
}is an integral basis of K,

where t is a solution of the following congruences


X ≡ 1(mod k2)

X ≡ −1(mod k1)

X ≡ 0(mod 3)

.

Proof . At first, we note that GCD(b3 − 2, b3 + 2) = 1 or 2. Next, e = 1

if and only if b is even. If b is even, then Dθ/22 ≡ 3(mod 4).

Therefore, by Theorem 2(or 1) in [27], if e = 1, then 22|DK .

According to Theorem 2.2, we must find the greatest square factor a

of 3gk2
1k

2
2(g = 3 or 4) such that the congruences

　　　　

 f ′(X) = 3(X − 1)(X + 1) ≡ 0(mod a)

f(X) = X3 − 3X − b3 ≡ 0(mod a2)
have a solution t.

(i) The case b ≡ ±1(mod 3) :

By Remark 2.2 and Theorem 2 in [27] we have GCD(3, a) = 1.

Let t be a solution of

the following congruences 　　

 X ≡ 1(mod k2)

X ≡ −1(mod k1)
.

Then it is easily seen that the integer t satisfies the following

congruences f ′(X) = 3(X − 1)(X + 1) ≡ 0(mod k1k2)

f(X) = X3 − 3X − b3 ≡ 0(mod k2
1k

2
2)

. Therefore, we have that a = k1k2.

(ii) The case b ≡ 0(mod 3) :
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From Theorem 2 in [27] we have that 3||DK .

Let t be a solution of the following congruences
X ≡ 1(mod k2)

X ≡ −1(mod k1)

X ≡ 0(mod 3)

. Then it is easily seen that the integer t satisfies

the following congruences f ′(X) = 3(X − 1)(X + 1) ≡ 0(mod 3k1k2)

f(X) = X3 − 3X − b3 ≡ 0(mod 32k2
1k

2
2)

. Therefore, we have that a = 3k1k2. ¤

2.3. Fundamental units

Lee and Spearman [25] proved the following Lemma 2.1. Here, we shall give another proof.

Lemma 2.1([25,Theorem 1.1]). The integer solutions (A,B, b) of the following diophantine

system are (0,−3,±1), (−1,−1, 0), (3, 3, 0) and (8, 17,±3): A2 − 2B = 3(b2 + 1) (1.1)

B2 − 2A = 3(b4 + b2 + 1). (1.2)

Proof. Without loss of generality, we may suppose b ≥ 0.

Since b2 + 1 ≡ ±1 mod 3, from (1.1) we have B ̸= 0 .

From (1.1), (1.2), we have

B2 − 2(2A2 − 3)B + A4 − 3A2 + 6A + 9 = 0. (1.3)

If b = 0, then from (1.1), (1.2) we have only the following integer

solusions :

(A,B, b) = (−1,−1, 0), (3, 3, 0).

If A = −1, 0 or 2, then from (1.3), (1.1), (1.2) we have only the following

integer solusions :

(A, B, b) = (0,−3,±1), (−1,−1, 0).

Hence, we shall suppose A ̸= −1, 0, 2 and b ̸= 0.

The discriminant DB of the quadratic equation (1.3) is

DB = 3A(A + 1)2(A − 2). (1.4)

Hence, we have
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DB > 0 ⇔ A < 0 or 2 < A. (1.5)

Under the condition (1.5), we have

B ∈ Z ⇔
√

DB = |A + 1|
√

3A(A − 2) ∈ Z

⇔ A(A − 2) = 3C2
1 for some C1(> 0) ∈ Z

⇔ A2 − 2A − 3C2
1 = 0 for some C1(> 0) ∈ Z.

From this and (1.1) we have B = 2A2 − 3 − 3C1|A + 1|.

Next, we consider the quadratic equation

A2 − 2A − 3C2
1 = 0. (1.6)

Since the discriminant DA of (1.6) is DA = 1 + 3C2
1 , we have

A ∈ Z ⇔ 1 + 3C2
1 = C2

2 for some C2(> 0) ∈ Z

⇔ C2
2 − 3C2

1 = 1 for some C2(> 0) ∈ Z.

From this we have A = 1 ± C2. Note that the equation C2
2 − 3C2

1 = 1 has

infinitely many integer solutions. Therefore, as a necessary condition,

the integer solusion (A,B) of (1.3) is

(I)


A = 1 + C2(C2 > 0)

B = 2A2 − 3C1A − 3C1 − 3(C1 > 0)

C2
2 − 3C2

1 = 1
or

(II)


A = 1 − C2(C2 > 0)

B = 2A2 + 3C1A + 3C1 − 3(C1 > 0)

C2
2 − 3C2

1 = 1

.

Now we shall consider the equation (1.1).

The case (I): (1.1) become

b2 + (C2 − C1 + 1)2 = (C1 + 1)2. (1.7)

We may consider positive integer solutions of (1.7).

Hence, we can put

(Ia) b = (u2 − v2)t, C2 − C1 + 1 = 2uvt, C1 + 1 = (u2 + v2)t,

or

(Ib) b = 2uvt, C2 − C1 + 1 = (u2 − v2)t, C1 + 1 = (u2 + v2)t,

where u, v and t are positive integers such that u > v,GCD(u, v) = 1, u ̸≡ v(mod 2).
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The case (Ia): From C1 = (u2 + v2)t − 1, C2 = t(u + v)2 − 2 and C2
2 − 3C2

1 = 1,

we have

t(u + v)4 − (u + v)2 − 6tuv(u + v)2 + 6tu2v2 + 6uv = 0. (1.8)

We put u + v = X,uv = Y , then (1.8) become

(X2 − 6Y )(tX2 − 1) = −6tY 2. (1.9)

Since GCD(X,Y ) = 1, we have GCD(X2 − 6Y, Y 2) = GCD(tX2 − 1, t) = 1.

From this and (1.9) we have X2 − 6Y = −pt

tX2 − 1 = qY 2
(1.10)

where p and q are positive integers such that pq = 6.

From (1.10) we have

X4 − 6X2Y + 6Y 2 = −p. (1.11)

From (1.11) we have

u4 + v4 − 2uv(u2 + v2) = −p. (1.12)

It is well known that the diophantine equation (1.12) has only finite solutions.

The case (Ib): From C1 = (u2 + v2)t − 1, C2 = 2u2t − 2 and C2
2 − 3C2

1 = 1,

we have

(u2 − 3v2){(u2 − 3v2)t − 2} = 12v4t. (1.13)

Since GCD(u2 − 3v2, v) = 1, GCD((u2 − 3v2)t − 2, t) = 1 or 2, we have

(i) t:even(t = 2t′)

 u2 − 3v2 = p′t′

(u2 − 3v2)t − 2 = q′v4
,

(ii) t:odd

 u2 − 3v2 = pt

(u2 − 3v2)t − 2 = qv4
,

where p, q, p′ and q′are positive integers such that pq = 12, p′q′ = 24.

From (i),(ii) we have

u4 − 6u2v2 − 3v4 = p′(t:even), u4 − 6u2v2 − 3v4 = 2p (t:odd). (1.14)

These diophantine equations have only finite solutions.

The case (II): As the process is almost the same as in the case (I),

we only mention the corresponding equations.
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b2 + (C2 − C1 − 1)2 = (C1 − 1)2. (1.7)′

(IIa) b = (u2 − v2)t, C2 − C1 − 1 = 2uvt, C1 − 1 = (u2 + v2)t,

u4 + v4 − 2uv(u2 + v2) = p. (1.12)′

(IIb) b = 2uvt, C2 − C1 − 1 = (u2 − v2)t, C1 − 1 = (u2 + v2)t,

u4 − 6u2v2 − 3v4 = −p′(t:even), u4 − 6u2v2 − 3v4 = −2p(t:odd) (1.14)′

At this stage, all we have to do is to solve the following diophantine equations:

u4 + v4 − 2uv(u2 + v2) = −p, (1.12)

u4 − 6u2v2 − 3v4 = q, (1.14)

u4 + v4 − 2uv(u2 + v2) = p, (1.12)′

u4 − 6u2v2 − 3v4 = −q, (1.14)′

where p ∈ {1, 2, 3, 6}, q ∈ {1, 2, 3, 4, 6, 8, 12, 24}, u > v > 0, GCD(u, v) = 1, u ̸≡ v(mod 2).

From the condition u ̸≡ v(mod 2), we obtain that p, q ∈ {1, 3}.

Using the KASH 2.5 command ThueSolve,

(1.12) has the solution (u, v) = (2, 1) for p = 3,

(1.14), (1.12)′ and (1.14)′ all have no solution.

For (1.12), we shall find (A,B, b) from the following relation:

(1) b = (u2 − v2)t, C2 − C1 + 1 = 2uvt, C1 + 1 = (u2 + v2)t,

(2) A = 1 + C2(C2 > 0), B = 2A2 − 3C1A − 3C1 − 3(C1 > 0), C2
2 − 3C2

1 = 1.

From (1) we have b = 3t, C2 = 9t − 2, C1 = 5t − 1.

From this and C2
2 − 3C2

1 = 1, we have t(t − 1) = 0. Since t is a positive integer, we have

t = 1. Hence, from b = 3t and (2), we have (A,B, b) = (8, 17, 3). Therefore, the integer solusions

(A,B, b) such that b ̸= 0, A ̸= −1, 0, 2 are (A,B, b) = (8, 17,±3). ¤

Lemma 2.2. The integer solutions (A,B, b) of the following diophantine system are

(0, 0, 0), (3, 3, 0) and (−3, 6,±3): A3 − 3AB + 3 = 3(b2 + 1)

B3 − 3AB + 3 = 3(b4 + b2 + 1)
.

Proof. We have

A3 − 3AB = 3b2, (2.1)

B3 − 3AB = 3(b4 + b2). (2.2)
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(i) The case b = 0: If A = 0, then we have B = 0. If A ̸= 0, then we have B ̸= 0. And easily we

have A = B = 3. Therefore, in this case, we have (A,B, b) = (0, 0, 0), (3, 3, 0).

(ii) The case b ̸= 0: We obviously see A ̸= 0, B ̸= 0 and 3|A,B, b. We put A = 3A0, B = 3B0, b =

3b0. From (2.1), (2.2) we have

A3
0 − A0B0 = b2

0, (2.3)

B3
0 − A0B0 = 9b4

0 + b2
0. (2.4)

From (2.3), (2.4) we have

B3
0 − A3

0 = 9b4
0. (2.5)

From (2.3), (2.5) we have B3
0 − A3

0 = 9(A3
0 − A0B0)2. From this we have

B3
0 = A2

0(9(A2
0 − B0)2 + A0). (2.6)

We put A0 = A1m,B0 = B1m, where m = GCD(A0, B0)(≥ 1), GCD(A1, B1) = 1. Hence, from

(2.6) we have B3
1m3 = A2

1m
2(9(A2

1m
2 − B1m)2 + A1m). From this we have

B3
1 = A2

1(9m(A2
1m − B1)2 + A1). (2.7)

Since GCD(A1, B1) = 1, we have A1 = ±1. Hence, from (2.7) we have

B3
1 = 9m(m − B1)2 ± 1. (2.8)

From (2.8) we have

B3
1 − 9B2

1m + 18B1m
2 − 9m3 = ±1. (2.9)

Using the KASH 2.5 command ThueSolve, the solutions of (2.9) are

(B1,m) = (∓2,∓1), (±1, 0), (±1,±1). (2.10)

Since m ≥ 1, we have (B1,m) = (2, 1), (1, 1).

Hence, we have (A1, B1, m) = (−1, 2, 1), (1, 1, 1).

Since A0 = A1m,B0 = B1m, we have (A0, B0) = (−1, 2), (1, 1).

By (2.3), b2
0 = A3

0 − A0B0 = 1 or 0.

Since b0 ̸= 0, we have (A0, B0, b0) = (−1, 2,±1).

Hence, we have (A, B, b) = (3A0, 3B0, 3b0) = (−3, 6,±3). ¤

Theorem 2.4. Let b(̸= 0,±1,±3) ∈ Z and let θ3 − 3θ − b3 = 0.

Then, if 4(4b4)
3
5 + 24 < |DK |, ϵ =

1
1 − b(θ − b)

(> 1) is the fundamental unit of Q(θ).

Proof. First, we note that

　　　　　　　 F (ϵ) = ϵ3 − 3(b4 + b2 + 1)ϵ2 + 3(b2 + 1)ϵ − 1 = 0.

If ϵ is not a fundamental unit of Q(θ), there exists a unit ϵ0(> 1) of

Q(θ) such that ϵ = ϵn
0 , with some n ∈ Z, n > 1.
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The case n = 2(i.e. ϵ = ϵ20): Let ϵ0 be a root of the equation

　　　　　　　 ϵ30 − Bϵ20 + Aϵ0 − 1 = 0(A,B ∈ Z) .

Then we have the relation A2 − 2B = 3(b2 + 1)

B2 − 2A = 3(b4 + b2 + 1).
(2.11)

By Lemma 2.1, the diophantine system (2.11) has the integer solutions (A,B, b) = (0,−3,±1),

(−1,−1, 0), (3, 3, 0) and (8, 17,±3).

The case n = 3(i.e. ϵ = ϵ30): Let ϵ0 be a root of the equation

　　　　　　　 ϵ30 − Bϵ20 + Aϵ0 − 1 = 0(A,B ∈ Z) .

Then we have the relation A3 − 3AB + 3 = 3(b2 + 1)

B3 − 3AB + 3 = 3(b4 + b2 + 1).
(2.12)

By Lemma 2.2, the diophantine system (2.12) has the integer solutions (A,B, b) = (0, 0, 0), (3, 3, 0)

and (−3, 6,±3). Therefore, we obtained the fact that there exist no units ϵ0(> 1) such that

ϵ = ϵ20, ϵ
3
0 or ϵ40. Next we shall show that, for any unit ϵ0(> 1), if 4(4b4)

3
5 +24 < |DK |, then ϵ < ϵ5

0.

Since F (4b4) > 0, we have ϵ < 4b4. From Artin’s Lemma ([15], Lemma 2), if 4(4b4)
3
5 +24 < |DK |,

then we have (4b4)
1
5 < ϵ0, where ϵ0(> 1) is any unit of Q(θ). Hence, we have that for any unit

ϵ0(> 1) if 4(4b4)
3
5 + 24 < |DK |, then ϵ < ϵ50. Therefore, if 4(4b4)

3
5 + 24 < |DK |, then ϵ(> 1) is

the fundamental unit of Q(θ). ¤

Remark 2.3. Lee and Spearman [25] point out that ϵ is the sixth power of the fundamental unit

of Q(θ) for the case b = ±3.

Corollary 2.1.　 Let b(̸= 0,±1,±3) ∈ Z and let θ3 − 3θ − b3 = 0.

Then, if b3 − 2 or b3 + 2 is squarefree,

ϵ =
1

1 − b(θ − b)
(> 1) is the fundamental unit of Q(θ).

Proof. Suppose b3 − 2 is squarefree. Then by Theorem 2.3 we have

|DK | = 27(b3 − 2) × 2e · 3g2 · ℓ2 > 27(b3 − 2). It is easilly seen that 4(4b4)
3
5 + 24 < 27(b3 − 2).

Therefore, from Theorem 2.4 ϵ is the fundamental unit of Q(θ).

The case that b3 + 2 is squarefree is similar to the case that b3 − 2 is squarefree. ¤
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Corollary 2.2.　 Let b(̸= 0,±1,±3) ∈ Z and let θ3 − 3θ − b3 = 0.

Then, there exist infinitely many cubic fields Q(θ) such that

ϵ =
1

1 − b(θ − b)
(> 1) is the fundamental unit of Q(θ).

Proof. By Erdös [10], there are infinitely many natural numbers b for which b3 − 2 is squarefree.

The Corollary 2.2 is obtained from this and Corollary 2.1. ¤

2.4. A family of biquadratic fields

We need two lemmas. As for class field tower, refer to Yoshida [39].

Let K be a non-Galois cubic extension of Q; let L be the normal closure of K; and let k be

the quadratic field containd in L. Note that no primes are totally ramified in the cubic field

K ⇔ L/k is an unramified extension.

Assume that 3|Dk(Dk is the discriminant of k) and that L/k is an unramified extension. By

[13,§1,(1)] (or [27,Theorem 3]), DK = Dkf
2(∃f ∈ Z). From this and 3|Dk, the decomposition of

3 at K is 3 = p1p
2
2, where p1, p2 are distinct prime ideals lying above 3.

Lemma 2.3([13,Lemma 8]). Let K, k be as above. If there exists a unit ϵ in K such that

1. ϵ is not a cube of any unit of K and

2. ϵ2 ≡ 1 (mod p2
1p

3
2),

then the length of the 3-class field tower of k(
√
−3) is greater than 1.

Lemma 2.4([40,p134]). Let K, k be as Lemma 3.1. Let X3 + AX2 + BX − 1 be the minimal

polynomial of a unit η in K. Then

η ≡ 1 (mod p2
1p

3
2) ⇔ 27|A + 3, 35|A + B.

Let b( ̸= 0,±3) ∈ Z, 3|b and let θ be the real root of the irreducible cubic polynomial

f(X) = X3 − 3X − b3 ∈ Z[X].

The discriminant of f(X) is Df = −33(b6 − 4) = −33(b3 − 2)(b3 + 2) and Df < 0.

Let K := Q(θ), k := Q(
√

Df ) = Q(
√

−3(b6 − 4)). We shall consider a family of biquadratic

fields Fb := Q(
√

−3(b6 − 4),
√
−3) = Q(

√
b6 − 4,

√
−3). We can show that #{Fb; b(̸= 0,±3) ∈

Z, 3|b} = ∞. In fact, let S be a finite set of primes. By Dirichlet’s theorem on arithmetical

progressions, we can find a prime p such that p(̸= 2) ̸∈ S and p ≡ 2(mod 3). For such p, we

can find c ∈ Z such that p||c3 − 2. Then, for b ∈ Z with b ≡ 0(mod 3) and b ≡ c(mod p2), we
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have p||b3 − 2 and 3|b. Since GCD(b3 − 2, b3 + 2) = 1 or 2, we have p||Df . Hence, we have p|Dk.

Therefore, p is ramified in Fb. (cf. [32,Hilfssatz 1]).

Theorem 2.5. Assume that b( ̸= 0,±3) ∈ Z, 3|b. Then the length of the 3-class field tower of

Fb = Q(
√

b6 − 4,
√
−3) is greater than 1.

Proof. (a) Since 3 - b6 − 4, we have 3|Dk.

(b) We shall consider the minimal splitting field Kk of f(X).

By [27,Theorem 1] no primes are totally ramified in the cubic field K.

From this, Kk/k is an unramified cyclic cubic extension.

(c) From (a),(b), the decomposition of 3 at K is 3 = p1p
2
2, where p1, p2 are distinct prime ideals

lying above 3.

(d) By the proof of Theorem 2.4, ϵ =
1

1 − b(θ − b)
is not a cube of any unit of K.

(e) Let F (X) = X3+AX2+BX−1 be the minimal polynomial of ϵ. Then A = −3(b4+b2+1), B =

3(b2 + 1). Hence, we have 27| − 3(b4 + b2) = A + 3, 35| − 3b4 = A + B. By Lemma 2.4, we have

ϵ ≡ 1 (mod p2
1p

3
2).

Therefore, from (d),(e) and Lemma 2.3, the length of the 3-class field tower of k(
√
−3) = Fb is

greater than 1. ¤

Remark 2.4. By the same reason as [40,p.334,example], the 3-rank of the ideal class group of

Fb is greater than 1.
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3 A two-parameter family of cubic fields

Levesque and Rhin [26] introduced two families of complex cubic fields Q(α), each of which

depends on two parameters. Adam [1] obtained the Voronoi-algorithm expansions of the order

Z[α] for these two families, for one of which Kühner [23] also found the Voronoi-algorithm

expansions.

In this chapter we shall consider a new family of complex cubic fields, similar but different

from those families above i.e. Q(α), where α is the real root of the irreducible cubic polynomial

f(X) in Proposition 3.1.

Using the similar method in chapter 1, we obtain the following results :

the Voronoi-algorithm expansions of the order Z[α],

the period length of these expansions goes to infinity,

the fundamental units of the order Z[α].

The precise proof of the Theorem 3.1 is given in [19].

Proposition 3.1. Let f(X) = X3 − cmX2 + (c + 1)X − cm, where m, c are intergers

such that m ≥ 1 and c ≥ 2. Then f(X) has only one real root α and f(X) is irreducible

except the case m = 1, c = 2.

Moreover, if m ≥ 2, then α satisfies

cm − 1
cm−1

− 1
cm+2

< α < cm − 1
cm−1

.

Proof. Since the discriminant of f(X) is

Df = −{4c4m − (c2 + 20c − 8)c2m + 4(c + 1)3} < 0,

f(X) has only one real root α.

Since

f(cm − 2
cm−1

) = −cm+1 +
6

cm−2
− 2

cm−1
− 8

c3m−3
< 0 and

f(cm − 1
cm−1

) =
c − 1
cm−1

− 1
c3m−3

> 0 ((m, c) ̸= (1, 2)),

cm − 2
cm−1

< α < cm − 1
cm−1

((m, c) ̸= (1, 2)).

Therefore, if (m, c) ̸= (1, 2), then f(X) is irreducible.

Furthermore, we have
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f(cm − 1
cm−1

− 1
cm+2

)

= −cm−2 +
1

cm−2
− 1

cm−1
+

3
cm+1

− 1
cm+2

+
2

cm+4
− 1

c3m−3
− 3

c3m
− 3

c3m+3
− 1

c3m+6
< 0 (m ≥ 2).

Hence, if m ≥ 2, then

cm − 1
cm−1

− 1
cm+2

< α < cm − 1
cm−1

. ¤

Let f(X) = X3 − cmX2 + (c + 1)X − cm, where m, c are intergers such that

m ≥ 2 and c ≥ 2. By Proposition 3.1 f(X) is irreducible and has only one real root.

Theorem 3.1. Let α be the real root of the polynomial f(X), K = Q(α)

and O = Z[α]. Then

(i) The chain of the minimal points of O is : for 1 ≤ s ≤ m − 1

θ0 = 1, θ3s−2 = (cs + α − cm)
(

α
cm−α

)s
, θ3s−1 =

(
cα

cm−α

)s
, θ3s = α

(
α

cm−α

)s
,

θ3m−2 = α(1 + α − cm)
(

α
cm−α

)m
and θ3m−1 = α

(
α

cm−α

)m
.

(ii) ε = α
(

α
cm−α

)m
is the fundamental unit of O and Voronoi-algorithm

expansion period length is ℓ = 3m − 1.

Remark 3.1. The following relation holds among the minimal points of O :

θ2 = αθ0 + θ1, θ3s−1 = θ3s−3 + θ3s−2 for 2 ≤ s ≤ m − 1, θ3m−1 = αθ3m−3 + θ3m−2.

Remark 3.2. In fact, (ii) in Theorem 3.1 is valid for m = 1 provided c ≥ 4.
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