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Introduction

Throughout this thesis, all spaces are Hausdorff and all maps are continuous, but functions are not
necessarily continuous. We use often cardinals itself as a set. Given a space E, an E-manifold is a
topological manifold modeled on E, that is, a paracompact space such that each point has an open
neighborhood homeomorphic to an open subset of E, where E is called a model space. An E-manifold is
an infinite-dimensional manifold if the model space E is infinite-dimensional. The Hilbert space of weight
τ is denoted by ℓ2(τ), that is,

ℓ2(τ) =

{
x = (x(γ))γ<τ ∈ Rτ

∣∣∣∣∣ ∑
γ<τ

x(γ)2 <∞

}
,

where τ is an infinite cardinal. We denote the Hilbert cube by Q = [−1, 1]N. They are the most typical
model spaces of infinite-dimensional manifolds. The study of infinite-dimensional manifolds, which had
risen in the late 1960s, reached the celebrated topological characterizations of ℓ2(τ)-manifolds and Q-
manifolds by H. Toruńczyk [58, 59] in the early 1980s.

In this thesis, we study on characterizations of infinite-dimensional manifolds and their pairs modeled
on Hilbert spaces, the Hilbert cube and the subspaces, and as applications, we detect infinite-dimensional
manifolds among convex sets in topological linear spaces and function spaces.

In recent years, many researchers eagerly study infinite-dimensional manifolds modeled on incomplete
metrizable spaces being universal for absolute Borel classes. The following concept plays a central role in
topological characterizations of such infinite-dimensional manifolds. A space X is strongly universal for
a class C if the following condition is satisfied:

(su) For each space A ∈ C and each closed subset B of A, every map f : A → X, whose image f(B) of
B is a Z-set, is arbitrarily closely approximated by an embedding g : A → X such that g(A) is a
Z-set and the restriction g|B = f |B.

A closed subset A of a space X is said to be a Z-set (or a strong Z-set) in X if the identity map of X is

arbitrarily closely approximated by a map f : X → X (the closure of) whose image misses A. Let ℓf2(τ)
be the linear span of the canonical orthonormal basis of the Hilbert space ℓ2(τ), that is,

ℓf2(τ) = {x = (x(γ))γ<τ ∈ ℓ2(τ) | x(γ) = 0 except for finitely many γ < τ}.

In the case τ = ℵ0, the linear spaces ℓ2(ℵ0) and ℓf2(ℵ0) are simply denoted by ℓ2 and ℓf2 , respectively.

It is known that the spaces ℓf2(τ) ×Q and ℓf2(τ) are strongly universal for the absolute Fσ class and its

subclass, respectively. J. Mogilski [45] characterized ℓf2 -manifolds and (ℓf2 ×Q)-manifolds. His result was
extended to the non-separable case by K. Sakai and M. Yaguchi [52]. In Chapter 2, we shall improve their
characterizations. It is difficult to adopt Sakai and Yaguchi’s characterizations for detecting these mani-
folds because they use the strong universality for big and complicated classes in their characterizations.
To give more useful characterizations, we shall introduce the τ -discrete n-cells property, that is defined
as follows: For cardinals τ > 1 and n ≤ ℵ0, a space X has the τ -discrete n-cells property if the following
condition holds:
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(dcp) Every map f :
⊕

γ<τ Dγ → X of a discrete union of the n-cubes is arbitrarily closely approximated
by a map g :

⊕
γ<τ Dγ → X such that the family {g(Dγ) | γ < τ} is discrete in X.

Using this property, we can obtain a characterization of ℓf2(τ)-manifolds as follows:

Theorem A (K. Koshino [37]). For every infinite cardinal τ , a connected space X is an ℓf2(τ)-manifold
if and only if the following conditions hold:

(1) X is a strongly countable-dimensional, σ-locally compact ANR of weight τ ;

(2) X has the τ -discrete n-cells property for every non-negative integer n;

(3) X is strongly universal for the class of finite-dimensional compact metrizable spaces;

(4) Every finite-dimensional compact subset of X is a strong Z-set in X.

We say that a space is strongly countable-dimensional if it can be written as a countable union of finite-
dimensional closed subsets, and a space is σ-(locally )compact if it can be written as a countable union

of (locally) compact subsets. By the same argument, a characterization of (ℓf2(τ) ×Q)-manifolds can be
also obtained.

For spaces X and Y , writing (X,Y ), we understand Y is a subspace of X. A pair (X,Y ) of spaces is
homeomorphic to (X ′, Y ′) if there exists a homeomorphism f : X → X ′ such that f(Y ) = Y ′. Considering
how a subspace Y is embedded in a space X, we often investigate whether the pair (X,Y ) is homeomorphic
to a well-known pair of spaces. Given a pair (E,F ), a pair (X,Y ) of paracompact spaces is an (E,F )-
manifold pair if each point ofX has an open neighborhood U such that the pair (U,U∩Y ) is homeomorphic

to (V, V ∩F ) for some open subset V of E. R.D. Anderson [3] gave characterizations to the pairs (ℓ2, ℓ
f
2)

and (ℓ2×Q, ℓf2 ×Q) by using the notions of f.d. cap sets and cap sets, respectively. These was generalized

for (ℓ2, ℓ
f
2)-manifold pairs and (ℓ2 ×Q, ℓf2 ×Q)-manifold pairs by T.A. Chapman in [17, 18]. J.E. West

[61] characterized non-separable (ℓ2(τ), ℓf2(τ))-manifold pairs. Moreover, M. Bestvina and J. Mogilski
[13] introduced the conception of absorbing sets in ℓ2-manifolds and Q-manifolds, which leads to the
conception of absorbing pairs, see [5, 10]. Since these manifold pairs have certain topological uniqueness,
the study of infinite-dimensional manifold pairs is a central role in infinite-dimensional topology. In
Chapter 3, in order to use the later chapters, we modify West’s characterization. In general, for pairs
(X,Y ) and (E,F ), even if X is an E-manifold and Y is an F -manifold, the pair (X,Y ) is not necessarily
an (E,F )-manifold pair.

Probrem 1. Given a pair (X,Y ) of an E-manifold and an F -manifold, when (X,Y ) is an (E,F )-manifold
pair?

Combining the modified West’s characterization with the result in Chapter 2, we can establish the fol-
lowing theorem:

Theorem B (K. Koshino [37]). Let τ be an infinite cardinal. A pair (X,Y ) of spaces is an (ℓ2(τ), ℓf2(τ))-

manifold pair if and only if X is an ℓ2(τ)-manifold, Y is an ℓf2(τ)-manifold and Y is homotopy dense in
X.

A subspace Y is homotopy dense in X if there exists a homotopy h : X× [0, 1] → X such that h(x, 0) = x
and h(x, t) ∈ Y for every x ∈ X and t ∈ (0, 1]. We can also establish the similar characterization of

(ℓ2(τ) ×Q, ℓf2(τ) ×Q)-manifold pairs.
The theory of infinite-dimensional manifolds goes back to the topological classification of convex sets

in linear spaces, that has been an important problem of infinite-dimensional topology. A Fréchet space is
a locally convex completely metrizable linear space. The combined efforts of V. Klee [35], T. Dobrowolski
[23], H. Toruńczyk [25, 26], T. Banakh and R. Cauty [9] gives the complete classification to closed convex
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sets in Fréchet spaces. D. Curtis, T. Dobrowolski and J. Mogilski [22] studied topological types of σ-
compact convex sets in a topological linear space. The aim of Chapter 4 is to extend their result to
the non-separable case. Using West’s characterizations modified in Chapter 3, we will give sufficient and
necessary conditions for a pair (clC,C) of a σ-locally compact convex set and the closure in a Fréchet

space to be homeomorphic to (ℓ2(τ), ℓf2(τ)) or (ℓ2(τ) ×Q, ℓf2(τ) ×Q) as follows:

Theorem C (I. Banakh, T. Banakh and K. Koshino [6, 38]). Let C be a σ-locally compact convex set of

weight τ > ℵ0 in a Fréchet space. Then the pair (clC,C) is homeomorphic to (ℓ2(τ), ℓf2(τ)) if and only if

C is strongly countable-dimensional, and (clC,C) is homeomorphic to (ℓ2(τ)×Q, ℓf2(τ)×Q) if and only
if C contains a topological copy of the Hilbert cube Q.

The study of topologies of function spaces plays an important role in functional analysis. Since
function spaces are frequently infinite-dimensional, the theory of infinite-dimensional topology has made
meaningful contributions to it. Chapters 5 and 6 are devoted to determining topological types of certain
function spaces. For spaces X and Y , we denote by C(X,Y ) the set of all maps from X to Y endowed
with the compact-open topology. Let s = (−1, 1)N be the pseudo-interior of the Hilbert cube Q. In the
paper [36], it was shown that if X is an infinite, locally compact, locally connected, separable metrizable
space, then the function space C(X,R) from X to the real line R has a natural compactification C(X,R)
such that the pair (C(X,R),C(X,R)) is homeomorphic to (Q, s) (cf. the compact case was proved in
[51]). In Chapter 5, we shall generalize this result by replacing R with a 1-dimensional locally compact
AR as follows:

Theorem D (K. Koshino and K. Sakai [39]). Let X be an infinite, locally compact, locally connected,
separable metrizable space, and let Y be a 1-dimensional locally compact AR. Suppose that X is non-
discrete or Y is non-compact. Then the function space C(X,Y ) has a natural compactification C(X,Y )
such that the pair (C(X,Y ),C(X,Y )) is homeomorphic to (Q, s).

For a space X, let CldV (X) be the hyperspace of non-empty closed sets in X endowed with the
Vietoris topology. A dendrite is a Peano continuum containing no simple closed curves. It is well known
that any two distinct points of a dendrite is connected by the unique arc. Then we denote the unique
arc between two points x and y in a dendrite by [x, y], where it is the constant path if x = y. For each
function f : X → Y into a dendrite Y and each point v ∈ Y , we can define the hypo-graph ↓vf of f with
respect to v as follows:

↓vf =
∪
x∈X

{x} × [v, f(x)] ⊂ X × Y.

When f is continuous, the hypo-graph ↓vf is a closed subset of the product space X × Y . Hence we can
regard

↓v C(X,Y ) = {↓vf | f : X → Y is continuous}
as the subspace of the hyperspace CldV (X×Y ). Let ↓v C(X,Y ) be the closure of ↓v C(X,Y ) in CldV (X×
Y ). In the case that Y = [0, 1] and v = 0, Z. Yang and X. Zhou [63, 64] showed that for a compact
metrizable space X whose set of isolated points is not dense, the pair (↓0 C(X, [0, 1]), ↓0 C(X, [0, 1])) is
homeomorphic to (Q, c0), where

c0 =
{
x = (x(n))n∈N ∈ Q

∣∣∣ lim
n→∞

x(n) = 0
}
.

An end point of a space has an arbitrarily small open neighborhood whose boundary is a singleton. The
aim of Chapter 6 is to generalize their result as follows:

Theorem E (K. Koshino, K. Sakai and H. Yang [40]). Let X be an infinite, locally connected, compact
metrizable space, Y a dendrite and v ∈ Y an end point. Then the pair (↓v C(X,Y ), ↓ v C(X,Y )) is
homeomorphic to (Q, c0).

3



Chapter 1

Preliminaries

In this chapter, we introduce some terminology and notation. We give several basic results on the ANR
theory and the infinite-dimensional manifold theory for later use. In addition, we present some elementary
information on hyperspaces and some properties of dendrites which are used in Chapters 5 and 6.

1.1 Terminology and notation

For the standard sets, we use the following notation:

• N is the set of positive integers;

• ω = N ∪ {0} is the set of non-negative integers;

• R = (−∞,∞) is the real line;

• I = [0, 1] is the closed unit interval.

We shall use the following symbols for subclasses of all metrizable spaces M:

• M0 is the class of compact metrizable spaces;

• Mf
0 is the class of finite-dimensional compact metrizable spaces.

Let X be a space, x ∈ X, A,B ⊂ X, and A,B collections of subsets of X. The weight, the cardinality
and the dimension of X are denoted by w(X), card(X) and dim(X), respectively. We denote the closure
and the interior of A in X by clX A and intX A, respectively. By A ≺ B (or A ⋆≺ B), it is meant that
A is a refinement (or a star-refinement) of B. The symbol idX stands for the identity map of X. When
X = (X, dX) is a metric space, we denote the diameter of A by diamdX A = sup{dX(x, x′) | x, x′ ∈ A},
and the distance between A and B by dX(A,B) = inf{dX(x, x′) | x ∈ A, x′ ∈ B}. For simplicity, we
write dX(x,A) = dX({x}, A). For each ϵ > 0, let BdX (x, ϵ) = {x′ ∈ X | dX(x, x′) < ϵ}, BdX (x, ϵ) =
{x′ ∈ X | dX(x, x′) ≤ ϵ} and NdX (A, ϵ) = {x ∈ X | dX(x,A) < ϵ}. The mesh of A is denoted by
meshdX A = sup{diamdX A | A ∈ A}. Let f, g : X → Y be maps. The restriction of f over A is denoted
by f |A. For an open cover U of Y , f is U-close to g, which is denoted by f ∼U g, provided that for each
x ∈ X, both f(x) and g(x) are contained in some member U ∈ U . When Y = (Y, dY ) is a metric space,
for each ϵ > 0, it is said that f is ϵ-close to g if dY (f(x), g(x)) < ϵ for every x ∈ X. We write f ≃ g if
there is a homotopy h : X × I → Y linking f and g. A homotopy h : X × I → Y is called a U-homotopy
when {h({x} × I) | x ∈ X} ≺ U , written as f ≃U g. Then we say that f is U-homotopic to g. Similarly,
in the case that Y = (Y, dY ) is a metric space, we say that h is ϵ-homotopy and f is ϵ-homotopic to g,
ϵ > 0, if the diameter diamdY h({x}× I) < ϵ for all x ∈ X. For each t ∈ I, the map ht : X → Y is defined
by ht(x) = h(x, t) for all x ∈ X.
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Let K be a simplicial complex and σ, σ′ ∈ K simplexes. For each n ∈ ω, the n-skeleton of K is denoted
by K(n). In particular, K(0) stands for the set of vertices. Similarly, the set of vertices of σ is denoted
by σ(0). The symbol σ′ ≼ σ means that σ′ is a face of σ. Let σ̂ be the barycenter of σ. For a vertex
v ∈ K(0), the star of v in K is denoted by St(v,K) = {σ ∈ K | v ∈ σ}. We write SdK as the barycentric
subdivision of K. Note that |K| = | SdK| as spaces. A simplicial complex K has two typical geometric
realizations, the one of which is the polyhedron |K| and the other is the metric polyhedron |K|m. For an
infinite cardinal τ , let

ℓ1(τ) =

{
x = (x(γ))γ<τ ∈ Rτ

∣∣∣∣∣ ∑
γ<τ

|x(γ)| <∞

}
,

which has the norm ∥·∥1 defined by ∥x∥1 =
∑

γ<τ |x(γ)|. For a simplicial complex K with card(K(0)) ≤ τ ,
the metric polyhedron |K|m of K is realized in ℓ1(τ) with the all vertices of K in one-to-one correspondence
to the unit vectors of ℓ1(τ), where |K|m admits the metric induced by the norm ∥ · ∥1. In general, |K|
and |K|m are not homeomorphic, but when K is locally finite, |K| = |K|m as spaces.

1.2 The ANR theory

A subset A of a space X is a retract of X if there exists a map r : X → A such that the restriction
r|A = idA, where r is called a retraction. Note that every retract is a closed subset. A closed subset A
of X is a neighborhood retract of X, provided that it is a retract of some neighborhood of A in X. We
say that a metrizable space X is an absolute neighborhood retract, briefly ANR, (or an absolute retract,
briefly AR,) if X is a neighborhood retract (or a retract) of an arbitrary metrizable space that contains
X as a closed subspace. A space Y is an absolute neighborhood extensor, briefly ANE, (or an absolute
extensor, briefly AE,) if every map f : A → Y of a closed set A in a metrizable space X extends over
some neighborhood of A in X (or over X). In this section, we list some results on the ANR theory, that
will be often used in the rest of the thesis without mention. For more details, refer to [50, Chapter 6].
The following facts follow from the definitions immediately.

Fact 1 (cf. 6.2.10.(1), (2) and (3) of [50]). The following hold.

(1) A countable product of ARs is an AR and a finite product of ANRs is an ANR.

(2) A retract of an AR is an AR and a neighborhood retract of an ANR is an ANR.

(3) Every open subset of an ANR is also an ANR.

The following are basic properties of ANRs.

Proposition 1.2.1 (cf. 6.2.10.(4) of [50]). Let X be a paracompact space. If each point of X has an ANR
neighborhood, then X is an ANR.

Proposition 1.2.2 (cf. Theorem 6.2.5 of [50]). Let X be a metrizable space. Then X is an A(N)R if and
only if X is an A(N)E.

Proposition 1.2.3 (cf. Proposition 6.2.8 and Corollary 6.2.9 of [50]). . Every ANR is locally contractible
and every AR is contractible. A contractible ANR is an AR.

The following extension theorem is very important among the ANR theory.

Theorem 1.2.4 (the Homotopy Extension Theorem [15] (cf. Theorem 6.4.1 of [50])). Let Y be an ANR,
U an open cover of Y and h : A× I → Y be a U-homotopy of a closed set A in a metrizable space X. If
h0 extends to a map f : X → Y , then h extends to a U-homotopy h̃ : X × I → Y such that h̃0 = f .
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The following proposition is very useful.

Proposition 1.2.5 (cf. Corollary 6.3.5 of [50]). Let X be an ANR. For each open cover U of X, there is
an open cover V of X such that V ≺ U and any two V-close maps into X are U-homotopic.

Recall that a subspace Y is homotopy dense in X if there is a homotopy h : X × [0, 1] → X such that
h0 = idX and h(X × (0, 1]) ⊂ Y . We have the following:

Proposition 1.2.6 (cf. Corollary 6.6.7 of [50]). For each metrizable space X and each homotopy dense
subset Y of X, X is an A(N)R if and only if Y is an A(N)R.

The following lemma is very useful for detecting homotopy denseness of a dense set in a compact
metric space, which is a generalization of Lemma 3 of [51] (cf. Corollary 4 of [49]) and will be used in
Chapters 5 and 6.

Lemma 1.2.7. Let X = (X, dX) be a compact metric space, and let Y be a dense subset of X which has
the following property:

(hd) There exists α > 0 such that for any locally finite countable simplicial complex K, each map f :
K(0) → Y extends to a map f̃ : |K| → Y such that

diamdX f̃(σ) ≤ α diamdX f(σ(0)) for every σ ∈ K.

Then Y is homotopy dense in X.

Proof. Since X is a compact metric space, we can find a finite open cover Un of X for each n ∈ N so that
meshdX Un < (n+ 1)−1. Let V1 = {U × (2−1, 1] | U ∈ U1} and Vn = {U × ((n+ 1)−1, (n−1)−1) | U ∈ Un},
n ≥ 2. Note that V =

∪
n∈N Vn is a star-finite open cover of X× (0, 1]. Let K be the locally finite nerve of

V and let Kn be the nerve of Vn∪Vn+1 for each n ∈ N, so each Kn is a finite subcomplex of K =
∪
n∈NKn.

Since Y is dense in X, we can choose f(V ) ∈ prX(V )∩Y for each V ∈ V, where prX : X × (0, 1] → X
is the projection and Un = {prX(W ) | W ∈ Vn} for each n ∈ N. Then diamdX f(σ(0)) < 2(n + 1)−1

for every σ ∈ Kn and n ∈ N. By (hd), we can obtain α > 0 and a map f̃ : |K| → Y so that
diamdX f̃(σ) ≤ α diamdX f(σ(0)) for each σ ∈ K. Taking a canonical map ϕ : X × (0, 1] → |K| for
K, we have the map f̃ϕ : X × (0, 1] → Y . It remains to show that f̃ϕ extends to the desired homotopy
h : X × I → X by h0 = idX . Fix any (x, t) ∈ X × (0, 1]. Then there exist n ∈ N and V ∈ Vn such that
(x, t) ∈ V and (n+ 1)−1 < t ≤ n−1. Since ϕ is a canonical map, we can choose σ ∈ Kn so that ϕ(x, t) ∈ σ
and V ∈ σ(0). Then f̃(V ) = f(V ) ∈ prX(V ) ∩ Y and x ∈ prX(V ) ∈ Un, hence

dX(f̃(V ), x) ≤ diamdX prX(V ) ≤ meshdX Un < 1/(n+ 1).

It follows that

dX(f̃ϕ(x, t), x) ≤ dX(f̃ϕ(x, t), f̃(V )) + dX(f̃(V ), x) < diamdX f̃(σ) + 1/(n+ 1)

≤ α diamdX f(σ(0)) + 1/(n+ 1) < (2α+ 1)/(n+ 1) < (2α+ 1)t.

Thus the proof is complete. □

1.3 The infinite-dimensional manifold theory

In this section, several results from the infinite-dimensional manifold theory will be presented. Recall that
a closed subset A of a space X is a Z-set in X if for each open cover U of X, there is a map f : X → X
such that f is U-close to idX and f(X) ∩ A = ∅. This notion plays a central role in infinite-dimensional
topology. A countable union of Z-sets (or a strong Z-set) is called a Zσ-set (or a strong Zσ-set). A
Z-embedding is an embedding whose image is a Z-set in the range. A Z-set in an ANR is characterized
as follows (cf. §2, 3 in [57]):
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Proposition 1.3.1. Let X be an ANR and A a closed subset of X. Then A is a Z-set if and only if
X \A is homotopy dense in X.

Recall that for cardinals τ > 1 and n ≤ ℵ0, a space X has the τ -discrete n-cells property provided
that the following condition is satisfied:

(dcp) Let f :
⊕

γ<τ Dγ → X be a map of a discrete union of the n-cubes. For each open cover U of X,
there exists a map g :

⊕
γ<τ Dγ → X such that g is U-close to f and {g(Dγ) | γ < τ} is discrete in

X.

In particular, we say that X has the disjoint cells property if it has the 2-discrete n-cells property for
all n < ℵ0. As is easily observed, X has the disjoint cells property if and only if it has the 2-discrete
ℵ0-cells property, see [42, Lemma 7.3.1]. Using this notion, H. Toruńczyk [58] gave a characterization to
Q-manifolds as follows (cf. Theorem 7.8.3 and Corollary 7.8.4 of [42]):

Theorem 1.3.2. A connected space is a Q-manifold if and only if it is a locally compact ANR with the
disjoint cells property.

Corollary 1.3.3. A space is homeomorphic to Q if and only if it is a compact AR with the disjoint cells
property.

H. Toruńczyk [59] also characterized ℓ2(τ)-manifolds as follows:

Theorem 1.3.4. For each infinite cardinal τ , a connected space X is an ℓ2(τ)-manifold if and only if the
following conditions are satisfied:

(1) X is a completely metrizable ANR of weight τ ;

(2) X has the τ -discrete n-cells property for all n < ℵ0;

(3) For each sequence {Ki}i∈N of finite-dimensional simplicial complexes with card(K
(0)
i ) ≤ τ , each

map f :
⊕

i∈N |Ki| → X and each open cover U of X, there exists a map g :
⊕

i∈N |Ki| → X such
that g is U-close to f and {g(|Ki|)}i∈N is discrete in X.

A space X has the discrete approximation property if the following condition is satisfied:

(dap) For each map f :
⊕

n∈ω I
n → X and each open cover U of X, there is a map g :

⊕
n∈ω I

n → X such
that g is U-close to f and {g(In)}n∈ω is discrete in X.

When τ = ℵ0, Theorem 1.3.4 can be restated as follows (Corollary 3.2 of [59]):

Theorem 1.3.5. A connected space is an ℓ2-manifold if and only if it is a separable completely metrizable
ANR with the discrete approximation property.

Concerning infinite products homeomorphic to Hilbert spaces, the following holds (cf. Theorem 5.1 of
[59]):

Theorem 1.3.6. Let X =
∏
i∈NXi be a countable product of completely metrizable ARs. Suppose that

w(X) = τ = supj≥i w(Xj) for every i ∈ N. If infinitely many Xi’s are non-compact, then X is homeo-
morphic to ℓ2(τ).

As a corollary of the above, the pseudo-interior s is homeomorphic to the separable Hilbert space ℓ2
(cf. [1]).
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1.4 Hyperspaces

Let Cld(X) be the set of all non-empty closed subsets of X and let Cld∗(X) = Cld(X) ∪ {∅}. For each
subset Z of X, we write

Z− = {A ∈ Cld∗(X) | A ∩ Z ̸= ∅} and Z+ = {A ∈ Cld∗(X) | A ⊂ Z}.

A hyperspace Cld∗(X) has the topology generated by families U− and U+, where U runs over the open
sets in X. We call this topology the Vietoris topology and denote the hyperspace Cld∗(X) endowed with
it and its subspace Cld(X) by Cld∗

V (X) and CldV (X), respectively. Note that the empty set ∅ is isolated
in Cld∗

V (X). For a compact metric space X = (X, d), the hyperspace Cld(X) admits the Hausdorff metric
dH defined as follows:

dH(A,B) = inf{r > 0 | A ⊂ Nd(B, r), B ⊂ Nd(A, r)} for each A,B ∈ Cld(X).

Then the Vietoris topology on Cld(X) coincides with the topology induced by dH , refer to [50, Proposi-
tion 5.12.4].

1.5 Dendrites

Recall that a dendrite is a Peano continuum containing no simple closed curves, equivalently it is a
1-dimensional compact AR, see Corollary 13.5 in Chapter V of [16]. A continuum means a compact
connected metrizable space, and a Peano continuum means a locally connected continuum. In this thesis,
we shall use the following facts of dendrites.

Fact 2. Every dendrite D has the following properties.

(1) D is uniquely arcwise connected, that is, each pair of distinct points of D is connected by the unique
arc [62, Chapter V, (1.2)].

(2) Every connected subset of D is arcwise connected [62, Chapter V, (1.3)].

For a metric space X = (X, dX), the metric dX is convex if for each pair of points x and y, there
exists a point z ∈ X such that dX(x, z) = dX(y, z) = dX(x, y)/2. As is easily observed, when the metric
dX is convex and complete, there exists an arc from x to y isometric to the segment [0, dX(x, y)].

Fact 3. Any Peano continuum admits a convex metric [14, 44]. Hence so any dendrite does.

Arcs in a dendrite have the following good property with respect to the convex metric.

Lemma 1.5.1. Let D = (D, d) be a dendrite with a convex metric. Then there exists a map γ : D2×I → D
such that for any distinct points x, y ∈ D, the map γx,y = γ(x, y, ∗) : I ∋ t 7→ γ(x, y, t) ∈ D is an arc from
x to y and the following holds:

(†) For each xi, yi ∈ D, i = 1, 2, d(γx1,y1(t), γx2,y2(t)) ≤ max{d(x1, x2), d(y1, y2)} for all t ∈ I.

Proof. Since the metric d is convex, for each x, y ∈ D there exists an isometric arc γ′x,y : [0, d(x, y)] → D
from x to y, which is uniquely determined due to Fact 2(1). We define a function γ : D2 × I → D by

γ(x, y, t) = γ′x,y(td(x, y)) for each x, y ∈ D and t ∈ I.

Here, if x ̸= y, then γx,y : I → D is an arc from x to y, and if x = y, then γx,y is the constant path. Note
that

d(γx,y(t), γx,y(s)) = |t− s|d(x, y) for each x, y ∈ D and s, t ∈ I.
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Now, we will verify the condition (†), which implies the continuity of γ. Fix any xi, yi ∈ D, i = 1, 2, and
denote the path γxi,yi from xi to yi by γi for the sake of convenience.

(Case I: γ1(I) ∩ γ2(I) = ∅) We have the unique arc α : I → D linking the two paths such that
α(I) ∩ γ1(I) = {α(0)} and α(I) ∩ γ2(I) = {α(1)}. Then there uniquely exist points si ∈ I, i = 1, 2, such
that α(0) = γ1(s1) and α(1) = γ2(s2). We may assume that s1 ≤ s2 without loss of generality. When
t ≤ s1, both γ1(t) and γ2(t) are contained in the arc from x1 to x2, so we have d(γ1(t), γ2(t)) ≤ d(x1, x2).
When t ≥ s2, both γ1(t) and γ2(t) are contained in the arc from y1 to y2, hence d(γ1(t), γ2(t)) ≤ d(y1, y2).
When s1 ≤ t ≤ s2, since γ1(s1) and γ2(s2) sit on both of the arcs from x1 to x2 and from y1 to y2 in this
order, we have

d(x1, x2) = d(x1, γ1(s1)) + d(γ1(s1), γ2(s2)) + d(γ2(s2), x2) and

d(y1, y2) = d(y1, γ1(s1)) + d(γ1(s1), γ2(s2)) + d(γ2(s2), y2).

Then it follows that

d(γ1(t), γ2(t)) = d(γ1(t), γ1(s1)) + d(γ1(s1), γ2(s2)) + d(γ2(s2), γ2(t))

= (t− s1)d(x1, y1) + d(γ1(s1), γ2(s2)) + (s2 − t)d(x2, y2)

≤ (s2 − s1) max
i=1,2

d(xi, yi) + d(γ1(s1), γ2(s2))

≤ max{(1 − s1)d(x1, y1), s2d(x2, y2)} + d(γ1(s1), γ2(s2))

= max{d(y1, γ1(s1)), d(x2, γ2(s2))} + d(γ1(s1), γ2(s2))

≤ max{d(y1, y2), d(x1, x2)}.

(Case II: γ1(I) ∩ γ2(I) ̸= ∅) There exist mi ≤ ni ∈ I, i = 1, 2, such that γ1(I) ∩ γ2(I) = γ1([m1, n1]) =
γ2([m2, n2]). Then we have two cases (i) γ1(m1) = γ2(m2) and (ii) γ1(m1) = γ2(n2). Remark that

(∗) (n1 −m1)d(x1, y1) = d(γ1(m1), γ1(n1)) = d(γ2(m2), γ2(n2)) = (n2 −m2)d(x2, y2).

(i) In the case that γ1(m1) = γ2(m2), we have γ1(n1) = γ2(n2). When t ≤ min{m1,m2}, we get
d(γ1(t), γ2(t)) ≤ d(x1, x2) because the arc from x1 to x2 contains both γ1(t) and γ2(t). When t ≥
max{n1, n2}, the arc from y1 to y2 contains both γ1(t) and γ2(t), and hence d(γ1(t), γ2(t)) ≤ d(y1, y2).
When max{m1,m2} ≤ t ≤ min{n1, n2}, both of the points γ1(t) and γ2(t) are contained in the arc
γ1([m1, n1]) = γ2([m2, n2]). By (∗), we have

d(γ1(t), γ2(t)) = |d(γ1(t), γ1(m1)) − d(γ2(t), γ2(m2))|
= |(t−m1)d(x1, y1) − (t−m2)d(x2, y2)|
= |m2d(x2, y2) −m1d(x1, y1) − t(d(x2, y2) − d(x1, y1))|
= |m2d(x2, y2) −m1d(x1, y1) − t((1 − n2 + n2 −m2 +m2)d(x2, y2)

− (1 − n1 + n1 −m1 +m1)d(x1, y1))|
= |(1 − t)(m2d(x2, y2) −m1d(x1, y1)) + t((1 − n1)d(x1, y1) − (1 − n2)d(x2, y2))|
≤ (1 − t)|d(x2, γ2(m2)) − d(x1, γ1(m1))| + t|d(y1, γ1(n1)) − d(y2, γ2(n2))|
≤ (1 − t)d(x1, x2) + td(y1, y2) ≤ max{d(x1, x2), d(y1, y2)}.

When min{m1,m2} ≤ t ≤ max{m1,m2}, let mi = min{m1,m2} (so m3−i = max{m1,m2}). Then γi(t)
sits on the arc from γi(mi) to yi and γ3−i(t) sits on the arc from x3−i to γ3−i(m3−i). Hence

d(γ1(t), γ2(t)) = d(γi(t), γi(mi)) + d(γ3−i(m3−i), γ3−i(t))

= (t−mi)d(xi, yi) + (m3−i − t)d(x3−i, y3−i)

= |(t−mi)d(xi, yi) − (t−m3−i)d(x3−i, y3−i)|.
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By the same calculation as above, we get d(γ1(t), γ2(t)) ≤ max{d(x1, x2), d(y1, y2)}. Similarly, when
min{n1, n2} ≤ t ≤ max{n1, n2}, it follows that d(γ1(t), γ2(t)) ≤ max{d(x1, x2), d(y1, y2)}.

(ii) In the case that γ1(m1) = γ2(n2), we have γ1(n1) = γ2(m2). When t ≤ min{m1,m2}, we get
d(γ1(t), γ2(t)) ≤ d(x1, x2) since both γ1(t) and γ2(t) are contained in the arc from x1 to x2. When
t ≥ max{m1,m2}, we have d(γ1(t), γ2(t)) ≤ d(y1, y2) because both γ1(t) and γ2(t) are contained in the
arc from y1 to y2. When min{m1,m2} ≤ t ≤ max{m1,m2}, let mi = min{m1,m2}. In the case t ≤ ni,
both γ1(t) and γ2(t) are contained in the arc from x1 to x2, hence d(γ1(t), γ2(t)) ≤ d(x1, x2). In the case
t ≥ ni, the point γi(t) is on the arc from γi(ni) to yi and the point γ3−i(t) is on the arc from x3−i to
γ3−i(m3−i). It follows that

d(γ1(t), γ2(t)) = d(γi(t), γi(ni)) + d(γ3−i(m3−i), γ3−i(t))

= (t− ni)d(xi, yi) + (m3−i − t)d(x3−i, y3−i)

≤ (t−mi)d(xi, yi) − (t−m3−i)d(x3−i, y3−i).

As is observed in (i), we have d(γ1(t), γ2(t)) ≤ max{d(x1, x2), d(y1, y2)}. Thus the proof is complete. □
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Chapter 2

Characterizing infinite-dimensional
manifolds modeled on sigma-locally
compact metrizable spaces

In this chapter, we shall give characterizations to ℓf2(τ)-manifolds and (ℓf2(τ)×Q)-manifolds for each infi-
nite cardinal τ . Throughout the chapter, all spaces are assumed to be paracompact. In 1984, J. Mogilski
[45] characterized ℓf2 -manifolds as follows:

Theorem 2.0.1. A connected space X is an ℓf2 -manifold if and only if the following conditions are
satisfied:

(1) X is an ANR and a countable union of finite-dimensional compact metrizable spaces;

(2) X is strongly universal for the class of finite-dimensional compact metrizable spaces;

(3) Every finite-dimensional compact subset of X is a strong Z-set in X.

Recall that a space X is strongly universal for a class C when the following condition is satisfied:

(su) For each space A ∈ C, each closed subset B of A, each map f : A→ X such that the restriction f |B
is a Z-embedding, and each open cover U of X, there exists a Z-embedding g : A → X such that
g ∼U f and g|B = f |B.

By removing “finite-dimensionality” from the above conditions in Theorem 2.0.1, a characterization of
(ℓf2 ×Q)-manifolds can be obtained, see [45]. In 2003, Theorem 2.0.1 was generalized to the non-separable
case by K. Sakai and M. Yaguchi [52].

Theorem 2.0.2. Let τ be an infinite cardinal. A connected space X is an ℓf2(τ)-manifold if and only if
the following conditions hold:

(1) X is an ANR of weight τ and a strongly countable-dimensional, σ-locally compact, strong Zσ-space;

(2) X is strongly universal for the class of strongly countable-dimensional, locally compact metrizable
spaces of weight ≤ τ .

Similar to the characterizations of J. Mogilski, removing “strongly countable-dimensionality” from the
above allows us to characterize (ℓf2(τ) ×Q)-manifolds, see [52].

Clearly, the strong universality for the class of strongly countable-dimensional, locally compact metriz-
able spaces (the condition (2) of Theorem 2.0.2) is more difficult to verify than the one for the class of
finite-dimensional compact metrizable spaces (the condition (2) of Theorem 2.0.1). The aim of this chapter
is to improve Theorem 2.0.2 as follows:
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Main Theorem. For every infinite cardinal τ , a connected space X is an ℓf2(τ)-manifold if and only if
the following conditions hold:

(1) X is a strongly countable-dimensional, σ-locally compact ANR of weight τ ;

(2) X has the τ -discrete n-cells property for every non-negative integer n;

(3) X is strongly universal for the class of finite-dimensional compact metrizable spaces;

(4) Every finite-dimensional compact subset of X is a strong Z-set in X.

A characterization of (ℓf2(τ)×Q)-manifolds can be also obtained by the same argument as the above,
see Theorem 2.4.3.

2.1 Preliminaries

In this section, we shall present some notation and results which are used later. Let X be a space. The
symbol cov(X) means the collection of all open covers of X. Let A and B be collections of subsets of X.
We define st(A,B) = {A ∪

∪
{B ∈ B | A ∩ B ̸= ∅} | A ∈ A} and write stA = st(A,A). Inductively, we

define stnA = st(stn−1A,A) for each n ≥ 2. Let A ∧ B = {A ∩B | A ∈ A, B ∈ B}. For a subset C ⊂ X,
the collection A ∧ {C} is denoted by A|C . The following proposition can be proved by the same way as
Corollary 1.8 of [13], which is useful to us for detecting Z-sets in ANRs.

Proposition 2.1.1. Let X be an ANR. If X has the ℵ0-discrete n-cells property for every n ∈ ω, then
every compact subset of X is a Z-set.

The following properties of (strong) Z-sets in ANRs are well-known.

Proposition 2.1.2. Let X be an ANR.

(1) For every (strong) Z-set A in X and every open subset U of X, A ∩ U is a (strong) Z-set in U .

(2) A locally finite union of (strong) Z-sets in X is a (strong) Z-set.

We shall use the following lemma to construct a homeomorphism which approximates a map in the
next section. Refer to (D) of §2 in [45].

Lemma 2.1.3. Let X and Y = (Y, d) be metric spaces and {Yn}n∈N be a closed cover of Y such that
Y1 ⊂ Y2 ⊂ · · · . Suppose that {gn : X → Y }n∈N is a sequence of surjective maps satisfying the following
conditions:

(i) gn|g−1
n (Yn)

: g−1
n (Yn) → Yn is bijective and for every point y ∈ Yn and every neighborhood V of g−1

n (y)

in X, there exists an open neighborhood U of y in Y such that g−1
n (U) ⊂ V ;

(ii) gn+1|g−1
n (Yn)

= gn|g−1
n (Yn)

;

(iii) d(gn+1(x), gn(x)) < αn(gn(x)) for all x ∈ X \ g−1
n (Yn), where αn(y) = 2−n min{1, d(y, Yn)}, n ∈ N,

and α0(y) = 1.

Then, a homeomorphism g :
∪
n∈N g

−1
n (Yn) → Y can be defined as follows:

g(x) = lim
n→∞

gn(x) for all x ∈
∪
n∈N

g−1
n (Yn),

where d(g(x), g1(x)) < 1 for each x ∈
∪
n∈N g

−1
n (Yn).
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Let X and Y be spaces and A be a closed subset of X. The product of X and Y reduced over A,
which is denoted by (X × Y )A, is the space ((X \ A) × Y ) ∪ A endowed with the topology generated by
open subsets of the product space (X \A)×Y and sets ((U \A)×Y )∪ (U ∩A), where U is an open subset
of X. Then, the product space (X \ A) × Y is an open subspace in (X × Y )A. Moreover, the projection
prX : X × Y → X is factored into the two natural maps q : X × Y → (X × Y )A and p : (X × Y )A → X
defined as follows: {

q(x, y) = (x, y) if (x, y) ∈ (X \A) × Y,
q(x, y) = x if (x, y) ∈ A× Y,{
p(x, y) = x if (x, y) ∈ (X \A) × Y,
p(x) = x if x ∈ A.

Note that if both X and Y are metrizable spaces, then (X × Y )A is also a metrizable space by the Bing
Metrization Theorem (Theorem 4.4.8 of [30]). We shall prove the following lemma used the next section.

Lemma 2.1.4. Let X and Y be metrizable spaces and let A1 ⊂ A2 be closed subsets in X. Then, there
exists U ∈ cov(X \A1) with the following property:

(∗) For a subspace B of (X \A1)×Y and an embedding g : B → (X ×Y )A2 \A1, if g ∼p−1(U) q|B, then
g extends to the embedding g̃ : B ∪A1 → (X × Y )A2 by g̃|A1 = idA1,

where p, q are the natural maps, that is,

p : (X × Y )A2 \A1 = ((X \A1) × Y )A2\A1
→ X \A1,

q : (X \A1) × Y → ((X \A1) × Y )A2\A1
= (X × Y )A2 \A1.

Moreover, if g is a closed embedding, that is, g(B) is closed in (X × Y )A2 \ A1, then g̃ is also a closed
embedding.

Proof. Taking an admissible metric d for X, we can define the desired open cover U as follows:

U = {Bd(x, d(x,A1)/2) | x ∈ X \A1} ∈ cov(X \A1).

To show that U has the property (∗), let g : B → (X × Y )A2 \A1 be an embedding of B ⊂ (X \A1)× Y ,
which is p−1(U)-close to q|B. We extend g to g̃ by g̃|A1 = idA1 . Then, it is enough to show the continuity
of both g̃ and g̃−1 : g(B) ∪ A1 → B ∪ A1. Since (X \ A1) × Y and (X × Y )A2 \ A1 are respectively open
subspaces of (X × Y )A1 and (X × Y )A2 , we need to check that both g̃ and g̃−1 are continuous at each
a ∈ A1.

First, to verify that g̃ is continuous at a ∈ A1, let ϵ > 0. Fix a point x ∈ Bd(a, ϵ/3) ⊂ X. In case
x ∈ A1, we have

g̃(x) = x ∈ Bd(a, ϵ/3) ∩A1 ⊂ Bd(a, ϵ) ∩A2.

In case x /∈ A1, we have g̃(x, y) = g(x, y) for all y ∈ Y with (x, y) ∈ B. Since g ∼p−1(U) q|B, there exists a
point x0 ∈ X \A1 such that both pg̃(x, y) = pg(x, y) and pq(x, y) = x are contained in Bd(x0, d(x0, A1)/2).
Then, we get

d(x0, A1) ≤ d(x0, a) ≤ d(x0, x) + d(x, a) <
1

2
d(x0, A1) +

ϵ

3
,

hence d(x0, A1) < 2ϵ/3. It follows that

d(pg̃(x, y), a) ≤ d(pg(x, y), x) + d(x, a) ≤ d(x0, A1) +
ϵ

3
≤ 2ϵ

3
+
ϵ

3
= ϵ,

so g̃(x, y) ∈ (Bd(a, ϵ) \A2) × Y ∪ (Bd(a, ϵ) ∩A2). Therefore

g̃((((Bd(a, ϵ/3) \A1) × Y ) ∩B) ∪ (Bd(a, ϵ/3) ∩A1)) ⊂ (Bd(a, ϵ) \A2) × Y ∪ (Bd(a, ϵ) ∩A2),
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which implies that g̃ is continuous at a.
Next, we show that g̃−1 is continuous at a ∈ A1. Given ϵ > 0, take any point

x ∈ ((Bd(a, ϵ/3) \A2) × Y ∪ (Bd(a, ϵ/3) ∩A2)) ∩ (g(B) ∪A1).

When x ∈ A1, we get
g̃−1(x) = x ∈ Bd(a, ϵ/3) ∩A1 ⊂ Bd(a, ϵ) ∩A1.

When x ∈ g(B) ⊂ (X × Y )A2 \A1, we have g̃(x′, y′) = g(x′, y′) = x for the unique point (x′, y′) ∈ B. We
can choose a point x0 ∈ X \A1 so that both of the points p(x) = pg̃(x′, y′) = pg(x′, y′) and pq(x′, y′) = x′

are contained in Bd(x0, d(x0, A1)/2) because g ∼p−1(U) q|B. It follows that

d(x0, A1) ≤ d(x0, a) ≤ d(x0, p(x)) + d(p(x), a) <
1

2
d(x0, A1) +

ϵ

3
,

so d(x0, A1) ≤ 2ϵ/3. Therefore, we have

d(x′, a) ≤ d(x′, p(x)) + d(p(x), a) < d(x0, A1) +
ϵ

3
≤ 2ϵ

3
+
ϵ

3
= ϵ,

that is, g̃−1(x) = (x′, y′) ∈ (Bd(a, ϵ) \A1) × Y . Hence

g̃−1(((Bd(a, ϵ/3) \A2) × Y ∪ (Bd(a, ϵ/3) ∩A2)) ∩ (g(B) ∪A1)) ⊂ (Bd(a, ϵ) \A1) × Y ∪ (Bd(a, ϵ) ∩A1),

so g̃−1 is continuous at a.
To prove the additional assertion, assume that g(B) is closed in (X × Y )A2 \ A1. Then we have

cl(X×Y )A2
g(B) ∩ ((X × Y )A2 \A1) = g(B). Therefore

g̃(B ∪A1) = g(B) ∪A1 = (cl(X×Y )A2
g(B) ∩ ((X × Y )A2 \A1)) ∪A1 = cl(X×Y )A2

g(B) ∪A1,

that is, g̃(B ∪A1) is closed in (X × Y )A2 . Hence g̃ is a closed embedding. □

Remark 1. In the above lemma, if g is a continuous map, then so the extension g̃ is. When B = (X\A1)×Y
and g : (X \ A1) × Y → (X × Y )A2 \ A1 is a homeomorphism, g̃ : (X × Y )A1 → (X × Y )A2 is a
homeomorphism.

2.2 E-manifold factors being E-manifolds

Throughout the section, let C be a class of spaces which has the following properties:

(∗) C is topological, that is, every space homeomorphic to some member of C is also a member of C;

(∗∗) C is closed hereditary, that is, every closed subspace of a member of C is also a member of C.

Moreover, let E be a locally convex topological linear metric space such that E is homeomorphic to the
countable product EN or

EN
f = {x = (x(n))n∈N ∈ EN | x(n) = 0 except for finitely many n ∈ N},

and E satisfies the following conditions:

(⋆) E is a countable union of closed subspaces which belong to C;

(⋆⋆) For any closed subset C of E, if C ∈ C, then C is a strong Z-set.
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Recall that M0 means the class of compact metrizable spaces, and Mf
0 means the class of finite-

dimensional compact metrizable spaces. In addition, we use the symbol M0(n) as the class of compact
metrizable spaces of dimension ≤ n. For a cardinal τ and a class C, we denote by

⊕
τ C, the class of

spaces X =
⊕

γ<τ Xγ which are discrete unions of spaces Xγ ∈ C. Note that the classes
⊕

τ M0,
⊕

τ M
f
0

and
⊕

τ M0(n) are topological and closed hereditary. It is known that the locally convex topological

linear metric space ℓf2(τ) is homeomorphic to (ℓf2(τ))Nf . Let ℓQ2 be the linear subspace in ℓ2 spanned by∏
n∈N[−2−n, 2−n]. Then, it is also known that ℓf2(τ)×Q is homeomorphic to the locally convex topological

linear metric space ℓf2(τ)× ℓQ2 , which is homeomorphic to (ℓf2(τ)× ℓQ2 )Nf . Furthermore, ℓf2(τ) (respectively,

ℓf2(τ)×Q) satisfies the conditions (⋆) and (⋆⋆) with respect to
⊕

τ M
f
0 (respectively,

⊕
τ M0), which will

be seen in the proof of Theorem 2.4.2 (cf. Remark 4).

Remark 2. Let M be a connected E-manifold. Then M is a countable union of strong Z-sets which belong
to the class C. Indeed, Theorem 4 of [32] allows us to regard an E-manifold M as an open subspace in E,
that is, an Fσ set, so we have M =

∪
m∈NDm, where each Dm is regarded as a closed subspace in E. On

the other hand, by the conditions (⋆) and (⋆⋆) of E, we can write E =
∪
n∈NEn such that every En is a

strong Z-set belonging to C. Since C is closed hereditary, Dm ∩ En ∈ C for all m,n ∈ N. Furthermore,
Dm ∩ En is a strong Z-set in M due to (⋆⋆) and Proposition 2.1.2(1). Therefore M =

∪
m,n∈NDm ∩ En

is a countable union of strong Z-sets which are members of C.

The following proposition, which was proved by H. Toruńczyk in Theorem B1 of [60] (cf. Proposition 5.1
of [57]), shall play an important role in the proof of Theorem 2.2.3.

Proposition 2.2.1. Suppose that A is a strong Z-set in a space X. If X ×E is an E-manifold, then for
each open cover U ∈ cov((X × E)A), there exists a homeomorphism h : X × E → (X × E)A such that
h ∼U q and h(x, 0) = x for all x ∈ A, where q : X × E → (X × E)A is the natural map.

Lemma 2.2.2. Let X be a strongly universal ANR for a class C. Suppose that f : A → X is a map
from a space A ∈ C to X and U is an open subset of X. Given any open cover U of U , there exists a
Z-embedding g : f−1(U) → U such that g ∼U f |f−1(U).

Proof. We write U =
∪
n∈ω Cn, where Cn is a closed subset of X and

∅ = C0 ⊂ intX C1 ⊂ C1 ⊂ intX C2 ⊂ C2 ⊂ · · · .

Let An = f−1(Cn) and Bn = f−1(X \ intX Cn+1) for each n ∈ N. Then A1 ⊂ A2 ⊂ · · · and B1 ⊃ B2 ⊃ · · ·
are closed in A, An ∩Bn = ∅ for each n ∈ N, f−1(U) =

∪
n∈NAn and A \ f−1(U) =

∩
n∈NBn.

Let V ∈ cov(U) be a star-refinement of U . Give an admissible metric for X and take a sequence
{Un}n∈N of open covers of X so that meshUn ≤ 2−n and

Un ≺ (V ∧ {intX Ci+1 \ Ci−1 | i ∈ N})
∪

{X \ Cn+2}.

By induction, we shall construct a sequence {fn : A→ X}n∈N so as to satisfy the following conditions:

(1)n fn|Bn = f |Bn ;

(2)n fn|An : An → U is a Z-embedding;

(3)n fn|An−1∪Bn = fn−1|An−1∪Bn ;

(4)n fn ∼Un fn−1;

(5)n fn(An \ intAAn−1) ⊂ intX Cn+2 \ Cn−3,
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where A0 = C−1 = C−2 = ∅, B0 = A and f0 = f . Assume that fm has been constructed for all m ≤ n−1.
Since X is an ANR and X is strongly universal for C, we can obtain a Un-homotopy h : A× I → X such
that h0 = fn−1, h1 is a Z-embedding and h1|An−1 = fn−1|An−1 . Taking an Urysohn map k : A → I so
that k(Bn) = 0 and k(An) = 1, we define the map fn : A → X by fn(x) = h(x, k(x)). Immediately, the
conditions (1)n, (3)n and (4)n hold from the definition. Observe that

An \ intAAn−1 = An \ intA f
−1(Cn−1) ⊂ An \ f−1(intX Cn−1) ⊂ An ∩Bn−2.

By the inductive assumption (1)n−2,

fn−2(An ∩Bn−2) = f(An ∩Bn−2) ⊂ f(An) ∩ f(Bn−2) ⊂ Cn \ intX Cn−1,

where B−1 = A and f−1 = f . Furthermore, fn(An ∩ Bn−2) ⊂ intX Cn+2 \ Cn−3 due to the conditions
(4)n−1 and (4)n. It follows that

fn(An \ intAAn−1) ⊂ fn(An ∩Bn−2) ⊂ intX Cn+2 \ Cn−3,

hence (5)n holds. Since fn|An = h1|An is a Z-embedding into X and fn(An) ⊂ intX Cn+2 ⊂ U , it follows
from Proposition 2.1.2(1) that fn(An) is a Z-set in U , that is, (2)n also holds.

Now, we can define the desired map g : f−1(U) → U by g|An = fn|An because of (3)n, where the
continuity of g is guaranteed by (4)n and the condition meshUn < 2−n for all n ∈ N. To verify that
g ∼U f |f−1(U), let x ∈ f−1(U). Then, we have x ∈ An \ intAAn−1 ⊂ An ∩ Bn−2 for some n ∈ N, so
fn−2(x) = f(x) ∈ Cn and g(x) = fn(x) ∈ intX Cn+2. Since fn−1 ∼Un−1 fn−2 and fn ∼Un fn−1 by (4)n−1

and (4)n, respectively, we can choose V, V ′ ∈ V so that fn−2(x), fn−1(x) ∈ V and fn−1(x), fn(x) ∈ V ′.
Therefore,

f(x), g(x) ∈ V ∪ V ′ ⊂W ∈ U for some W ∈ U

because V is a star-refinement of U , and hence g ∼U f |f−1(U). It remains to show that g is a Z-embedding
into U . It is clear that g is injective because f−1(U) =

∪
n∈NAn and g|An = fn|An is injective. For any

closed subset D ⊂ f−1(U) and n ∈ N, due to (5)n,

g(D ∩An \ intAAn−1) = fn(D ∩An \ intAAn−1) ⊂ intX Cn + 2 \ Cn−3.

It follows from (2)n that

g(D) =
∪
n∈N

g(D ∩An \ intAAn−1) =
∪
n∈N

fn(D ∩An \ intAAn−1)

is a locally finite union of closed sets in U , that is, a closed subset of g(f−1(U)). Thus, the map g :
f−1(U) → g(f−1(U)) is a closed map. Moreover,

g(f−1(U)) =
∪
n∈N

g(An \ intX An−1) =
∪
n∈N

fn(An \ intX An−1)

is a locally finite union of Z-sets in U , that is, a Z-set by Proposition 2.1.2(2). As a result, g is a
Z-embedding. □

A map f : X → Y is a near-homeomorphism provided that for each open cover U ∈ cov(Y ), there
exists a homeomorphism h : X → Y with h ∼U f . The following theorem is proved by analogy with
Theorem 4 of [45].

Theorem 2.2.3. Suppose that X is a connected ANR satisfying the following conditions:

(i) X is a countable union of closed subspaces which belong to C;
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(ii) X is strongly universal for C;

(iii) For every closed subset C ⊂ X, if C ∈ C, then C is a strong Z-set in X.

If X × E is an E-manifold, then the projection prX : X × E → X is a near-homeomorphism, and hence
X is an E-manifold.

Proof. According to Remark 2 and the conditions (i) and (iii), we can write X × E =
∪
n∈NAn and

X =
∪
n∈NBn, where An and Bn are strong Z-sets which belong to C. For any open cover U ∈ cov(X),

X admits a metric d such that {Bd(x, 1) | x ∈ X} ≺ U due to Theorem 4.1 in Chapter II of [12]. Then,
it is sufficient to construct a homeomorphism k : X ×E → X which is 1-close to the projection prX .

To begin with, we shall inductively construct a sequence of strong Z-sets C1 ⊂ C2 ⊂ · · · ⊂ X with
X =

∪
n∈ω Cn and homeomorphisms hn : X × E → (X × E)Cn , n ∈ N, such that

(1)n Bn ∪ Cn−1 ⊂ Cn,

(2)n hn(An) ⊂ Cn,

(3)n hn|h−1
n−1(Cn−1)

= hn−1|h−1
n−1(Cn−1)

and

(4)n d(pnhn(x), pn−1hn−1(x)) < αn−1(pn−1hn−1(x))
for all x ∈ (X × E) \ h−1

n−1(Cn−1),

where C0 = ∅, h0 : X × E → X × E is the identity map, p0 : X × E → X is the projection onto X,
pn : (X × E)Cn → X is the natural map, and αn : X \ Cn → (0, 1) is the map defined by αn(y) =
2−n min{1, d(y, Cn)}, n ∈ N, and α0(y) = 1.

Suppose that Ci and hi satisfying (1)i, (2)i, (3)i and (4)i have been obtained for all i ≤ n. We define
the map αn : X \ Cn → (0, 1) by αn(y) = 2−n min{1, d(y, Cn)}. Due to Lemma 2.1.4, we can choose
Un ∈ cov(X \ Cn) so that the following conditions are satisfied:

(a) For a map f : (X × E) \ h−1
n (Cn) → X, if f ∼st2 Un

pnhn|(X×E)\h−1
n (Cn)

, then d(f(x), pnhn(x)) <

αn(pnhn(x)) for all x ∈ (X ×E) \ h−1
n (Cn);

(b) For a homeomorphism f ′ : (X \Cn)×E → (X \Cn)×E, if f ′ ∼p−1
n (stUn)

id(X\Cn)×E , then f ′ extends

to the homeomorphism f : (X × E)Cn → (X × E)Cn by f |Cn = idCn ;

(c) For a closed embedding v : hn(An+1) \ Cn → X \ Cn, if v ∼stUn pn|hn(An+1)\Cn
, then v extends to

the closed embedding ṽ : hn(An+1) ∪ Cn → X by v|Cn = idCn .

Since hn is a homeomorphism and C is topological, hn(An+1) ∈ C is a strong Z-set in (X×E)Cn . Applying
Lemma 2.2.2 to the map pn|hn(An+1) : hn(An+1) → X and the open subset X \Cn ⊂ X, we can find a Z-
embedding v : hn(An+1)\Cn → X \Cn such that v ≃Un pn|hn(An+1)\Cn

. Let i : X \Cn → (X \Cn)×{0} ⊂
(X \ Cn) × E be the natural inclusion. Then iv(hn(An+1) \ Cn) is a Z-set in (X \ Cn) × E. Hence
iv : hn(An+1) \Cn → (X \Cn)×E is a Z-embedding such that iv ≃p−1

n (Un)
idhn(An+1)\Cn

in (X \Cn)×E

because v ≃Un pn|hn(An+1) and E is contractible. On the other hand, (X \Cn)×E is an E-manifold as an
open subspace of the E-manifold X×E. By Proposition 2.1.2(1), hn(An+1)\Cn = hn(An+1)∩(X\Cn)×E
is a strong Z-set in (X \Cn)×E. Applying the Z-set Unknotting Theorem (cf. Theorem 2 of [19] 1) to the
E-manifold (X \Cn)×E and using the condition (b), we can obtain a homeomorphism f : (X ×E)Cn →
(X × E)Cn so that

f |hn(An+1)\Cn
= iv, f |(X\Cn)×E ≃p−1

n (stUn)
id(X\Cn)×E

1Theorem 2 of [19] holds for a locally convex topological linear metric space E not only such that E is homeomorphic to
EN but also such that E is homeomorphic to EN

f .
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and f |Cn = idCn . Then f ∼p−1
n (stUn)

id(X×E)Cn
.

By the way, due to (c), the Z-embedding v extends to a closed embedding ṽ : hn(An+1) ∪ Cn → X
by v|Cn = idCn , so ṽ(hn(An+1)) ∈ C is a closed subspace in X, which implies that ṽ(hn(An+1)) is a
strong Z-set in X by (iii). Since Cn and Bn+1 are strong Z-sets, it follows from Proposition 2.1.2 that
Cn+1 = ṽ(hn(An+1) ∪ Cn ∪ Bn+1 is a strong Z-set in X, so Cn+1 \ Cn is a strong Z-set in X \ Cn. Let
q : (X × E)Cn → (X × E)Cn+1 be the natural map defined by pn = pn+1q. Lemma 2.1.4 allows us to
choose Vn ∈ cov(X \ Cn) so that

(d) Vn ≺ Un and

(e) for a homeomorphism g′ : (X \ Cn) × E → (X × E)Cn+1 \ Cn, if g′ ∼p−1
n+1(Vn)

q|(X\Cn)×E , then g′

extends to the homeomorphism g : (X × E)Cn → (X × E)Cn+1 by g|Cn = idCn .

Then, applying Proposition 2.2.1 and (e), we can find a homeomorphism g : (X × E)Cn → (X × E)Cn+1

such that
g|(X\Cn)×E ∼p−1

n+1(Vn)
q|(X\Cn)×E , g(x, 0) = x for all x ∈ Cn+1 \ Cn

and g|Cn = idCn . Then g ∼p−1
n+1(Un)

q by (d).

Now, we have the homeomorphism hn+1 = gfhn : X ×E → (X ×E)Cn+1 . By the definition of Cn+1,
we have (1)n+1. It follows that

hn+1(An+1) = gfhn(An+1) = g(v(hn(An+1) \ Cn) × {0}) ∪ (hn(An+1) ∩ Cn)

⊂ g((Cn+1 \ Cn) × {0}) ∪ Cn = (Cn+1 \ Cn) ∪ Cn = Cn+1,

that is, (2)n+1 holds. Moreover, we get

hn+1(x) = gfhn(x) = hn(x) for every x ∈ h−1
n (Cn),

which means (3)n+1. Observe that

pn+1hn+1|(X×E)\h−1
n (Cn)

= pn+1gfhn|(X×E)\h−1
n (Cn)

∼Un pn+1qfhn|(X×E)\h−1
n (Cn)

= pnfhn|(X×E)\h−1
n (Cn)

∼stUn pnhn|(X×E)\h−1
n (Cn)

,

and hence pn+1hn+1|(X×E)\h−1
n (Cn)

∼st2 Un
pnhn|(X×E)\h−1

n (Cn)
. By (a), we have

d(pn+1hn+1(x), pnhn(x)) < αn(pnhn(x)) for every x ∈ (X × E) \ h−1
n (Cn),

so (4)n+1 holds. Thus, we complete the inductive step.
Finally, we shall construct the desired homeomorphism k : X ×E → X by using Lemma 2.1.3. Define

the surjective maps kn = pnhn : X ×E → X, n ∈ ω. Since Bn ⊂ Cn by (1)n for all n ∈ N, the increasing
sequence {Cn}n∈ω is a closed cover of X. It follows from (2)n that

An ⊂ h−1
n (Cn) = h−1

n p−1
n (Cn) = k−1

n (Cn),

which means that X × E =
∪
n∈ω k

−1
n (Cn). It remains to show that the sequence {kn}n∈ω satisfies the

conditions (i), (ii) and (iii) of Lemma 2.1.3.
(i): Note that kn|k−1

n (Cn)
= pnhn|k−1

n (Cn)
= hn|k−1

n (Cn)
, so kn|k−1

n (Cn)
is bijective. Given a point x ∈ Cn
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and a neighborhood V of k−1
n (x) in X × E, hn(V ) is a neighborhood of hn(k−1

n (x)) = p−1
n (x) = x in

(X × E)Cn . Then, there exists an open neighborhood U of x in X such that

p−1
n (U) = (U ∩ Cn) ∪ (U \ Cn) × E ⊂ hn(V ),

hence it follows that k−1
n (U) = h−1

n p−1
n (U) ⊂ V .

(ii): By (3)n, we have

kn+1|k−1
n (Cn)

= pn+1hn+1|h−1
n p−1

n (Cn)
= pn+1hn+1|h−1

n (Cn)
= pnhn|h−1

n (Cn)
= kn|k−1

n (Cn)
.

(iii): It follows from (4)n+1 that for all x ∈ (X × E) \ k−1
n (Cn),

d(kn+1(x), kn(x)) = d(pn+1hn+1(x), pnhn(x)) < αn(pnhn(x)) = αn(kn(x)).

In conclusion, we can obtain the desired homeomorphism k : X × E → X as follows:

k(x) = lim
n→∞

kn(x) for every x ∈ X × E,

where k is 1-close to k0 = p0h0 = prX . The proof is complete. □

2.3 The discrete approximation property for a class of spaces

For a cardinal τ > 1, a space X has the τ -discrete approximation property (or the τ -locally finite approx-
imation property) for a class C if the following condition is satisfied:

• Let A =
⊕

γ<τ Aγ be a discrete union of a collection {Aγ ∈ C | γ < τ} and f : A → X be a
map. Then, for each open cover U of X, there exists a map g : A → X such that g ∼U f and
{g(Aγ) | γ < τ} is discrete (or locally finite) in X.

For the sake of convenience, we abbreviate the τ -discrete approximation property for C and the τ -locally
finite approximation property for C to τ -DAP(C) and τ -LFAP(C), respectively. When C = {C}, we simply
write τ -DAP(C) and τ -LFAP(C). The τ -discrete n-cells property is no other than τ -DAP(In). Moreover,
τ -DAP({In | n ∈ ω}) is called the τ -discrete cells property. The τ -discrete cells property is stronger than
the τ -discrete n-cells property for all n ∈ ω, but the same as τ -DAP(Q), namely, the τ -discrete ℵ0-cells
property.

Lemma 2.3.1. For a cardinal τ > 1, a space X has the τ -discrete cells property if and only if X has
τ -DAP(Q).

Proof. Let Qγ be a copy of IN for all γ < τ and U ∈ cov(X), where each Qγ admits the following metric
d defined by

d(x, y) = sup
i∈N

i−1|x(i) − y(i)| for x = (x(i))i∈N, y = (y(i))i∈N ∈ Qγ .

For each n ∈ N, the inclusion in : In → IN and the projection pn : IN → In are respectively defined as
follows:

in(x) = (x(1), · · · , x(n), 0, 0, · · · ) for x = (x(i))1≤i≤n ∈ In and

pn(x) = (x(1), · · · , x(n)) for x = (x(i))i∈N ∈ IN.

Moreover, let i0 : I0 = {0} ∋ 0 7→ (0, 0, · · · ) ∈ IN and p0 : IN ∋ x 7→ 0 ∈ I0 = {0}.
First, to show the “if” part, take any map f : D =

⊕
γ<τ I

n(γ) → X, where n(γ) ∈ ω for all γ < τ .
Define a map g :

⊕
γ<τ Qγ → X by g|Qγ = f |In(γ)pn(γ) for each γ < τ . Since X has τ -DAP(Q), there is a
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map g′ :
⊕

γ<τ Qγ → X such that g′ ∼U g and {g′(Qγ) | γ < τ} is discrete in X. Then, we define a map
f ′ : D → X by f ′|In(γ) = g′|Qγ in(γ) for each γ < τ . It follows that

f ′|In(γ) = g′|Qγ in(γ) ∼U g|Qγ in(γ) = f |In(γ)pn(γ)in(γ) = f |In(γ) for every γ < τ,

and hence f ′ ∼U f . Moreover, f ′(In(γ)) = g′|Qγ in(γ)(I
n(γ)) ⊂ g′(Qγ) for each γ < τ , so the collection

{f ′(In(γ)) | γ < τ} is discrete in X. As a result, X has the τ -discrete cells property.
Next, to prove the “only if” part, take any map f :

⊕
γ<τ Qγ → X. Let V ∈ cov(X) be a star-

refinement of U and ϵγ be a Lebesgue number for (f |Qγ )−1(V) ∈ cov(Qγ). Then, we can choose n(γ) ∈ N
so that n(γ)−1 < ϵγ . It is easy to see that idQγ is n(γ)−1-close to in(γ)pn(γ), hence f |Qγ ∼V f |Qγ in(γ)pn(γ).

Define a map g : D =
⊕

γ<τ I
n(γ) → X by g|In(γ) = f |Qγ in(γ) for each γ < τ . Due to the τ -discrete cells

property of X, we can find a map g′ : D → X such that g′ ∼V g and {g′(In(γ)) | γ < τ} is discrete in X.
Then, we define a map f ′ :

⊕
γ<τ Qγ → X by f ′|Qγ = g′|In(γ)pn(γ) for each γ < τ . Observe that for every

γ < τ ,
f ′|Qγ = g′|In(γ)pn(γ) ∼V g|In(γ)pn(γ) = f |Qγ in(γ)pn(γ) ∼V f |Qγ ,

which means that f ′ ∼U f . Furthermore, f ′(Qγ) = g′|In(γ)pn(γ)(Qγ) = g′(In(γ)) for all γ < τ , so the
collection {f ′(Qγ) | γ < τ} is discrete in X. Consequently, X has τ -DAP(Q). □

For a topological subclass C ⊂ M0, by the same argument as Lemma 4 of [7] (cf. [21]) we can show
that τ -LFAP(C) coincides with τ -DAP(C), that is:

Lemma 2.3.2. Let τ be an infinite cardinal and let C be a topological subclass of M0. A space X has
τ -LFAP(C) if and only if X has τ -DAP(C).

Proof. The “if” part is clear. So we shall show “the only if” part. Let f : A =
⊕

γ<τ Aγ → X be a map,
where Aγ ∈ C. As τ is infinite, card(τ × τ) ≤ τ . For each (γ, γ′) ∈ τ × τ , we define

A(γ,γ′) = Aγ × {γ′} ⊂ A× τ,

where τ is considered as a discrete space. Then, A × τ is a discrete union of {A(γ,γ′) | (γ, γ′) ∈ τ × τ}.

Take any open cover U ∈ cov(X). Applying τ -LFAP(C) of X to the map f̃ = f prA : A× τ → X, where
prA : A × τ → A is the projection onto A, we can obtain a map g̃ : A × τ → X such that g̃ ∼U f̃
and {g̃(A(γ,γ′)) | (γ, γ′) ∈ τ × τ} is locally finite in X. Then, each g̃(A(γ,γ′)) meets only finitely many
g̃(A(δ,δ′))’s because g̃(A(γ,γ′)) is compact.

By transfinite induction, we can choose δ(γ) < τ for each γ < τ so as to satisfy the following:

(∗) g̃(A(γ,δ(γ))) ∩ g̃(A(γ′,δ(γ′))) = ∅ for all γ′ < γ.

Indeed, suppose that δ(γ′) < τ has been chosen for each γ′ < γ. Then, as observed in the above,

card({δ < τ | g̃(A(γ,δ)) ∩ g̃(A(γ′,δ(γ′))) ̸= ∅}) <∞ for all γ′ < γ.

So we have

card

({
δ < τ

∣∣∣∣∣ g̃(A(γ,δ)) ∩

( ∪
γ′<γ

g̃(A(γ′,δ(γ′)))

)
̸= ∅

})
≤ ℵ0γ < τ,

which allows us find δ(γ) < τ satisfying (∗). It follows from the local finiteness of {g̃(A(γ,γ′)) | (γ, γ′) ∈
τ × τ} and (∗) that {g̃(A(γ,δ(γ))) | γ < τ} is discrete in X. Then, we define the map g : A → X by
g(x) = g̃(x, δ(γ)) for each x ∈ Aγ and γ ∈ τ . It is easy to see that g ∼U f and {g(Aγ) | γ < τ} is discrete.
As a result, X has τ -DAP(C). □
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Proposition 2.3.3. Let τ be a cardinal > 1 and n ∈ ω. Suppose that W is an open set in an ANR X
which is contractible in X. If X has the τ -discrete cells property (respectively, the τ -discrete (2n+1)-cells
property), then W has τ -DAP(M0) (respectively, τ -DAP(M0(n))).

Proof. We may only prove the case when X has the τ -discrete (2n+ 1)-cells property because the other
case is similarly proved by virtue of Lemma 2.3.1. Suppose that f : A =

⊕
γ<τ Aγ →W is a map, where

Aγ ∈ M0(n) for all γ < τ , and U ∈ cov(X). Due to Lemma 2.3.2, we may construct a map h : A → W
such that h ∼U f and {h(Aγ) | γ < τ} is locally finite in W . Denote D =

⊕
γ<τ Dγ , where Dγ = I2n+1

for each γ < τ . We may assume that Aγ ⊂ Dγ for all γ < τ .
Since W is an ANR, f extends to a map f̃ : V →W from an open neighborhood V of A in D to W .

Take an open neighborhood V ′ of A in D so that clV ′ ⊂ V and let k : D → I be an Urysohn map such
that k−1(0) = A and k−1(1) = D \ V ′. By the hypothesis, we have a contraction ϕ : W × I → X so that
ϕ0 = idW and ϕ1(W ) = {x0} for some x0 ∈ X. Then, we can define the map f̄ : D → X as follows:

f̄(x) = ϕ(f̃(x), k(x)) for each x ∈ V and f̄(D \ V ) = {x0}.

Now, we can write W =
∪
i∈NWi, where Wi is an open set in X and clWi ⊂ Wi+1 for every i ∈ N.

Let U0 ∈ cov(X) such that U0 ≺⋆ U . We define closed subsets Ri ⊂ A, i ∈ N, an open cover U ′ ∈ cov(W )
and open covers Ui ∈ cov(X), i ∈ N, as follows:

Ri = f−1(clWi \Wi−1), U ′ =
∪
i∈N

U0|Wi\clWi−2
and Ui = U ′|W2i ∪ {X \ clW2i−1},

where W−1 = W0 = ∅. Using the τ -discrete (2n+1)-cells property of X, we can obtain a map gi : D → X
such that gi ≃Ui f̄ and {gi(Dγ) | γ < τ} is discrete in X. Then gi|R2i−1 ≃U ′ f |R2i−1 for all i ∈ N.
By the Homotopy Extension Theorem 1.2.4, we can take a map g : A → W such that g ≃U ′ f and
g|R2i−1 = gi|R2i−1 for each i ∈ N. It is easy to see that {g(Aγ ∩R2i−1) | γ < τ} is discrete in W2i \clW2i−3.
Therefore {g(Aγ ∩R2i−1) | γ < τ, i ∈ N} is locally finite in W .

Next, we can find an open refinement V ∈ cov(W ) of U0 so as to satisfy the following:

• For every map h : A→W , h ∼V g implies that {h(Aγ ∩R2i−1) | γ < τ, i ∈ N} is locally finite in W .

By the same construction as g, we can obtain a map h : A → W so that h ≃V g and {h(Aγ ∩ R2i) | γ <
τ, i ∈ N} is locally finite in W . It is follows from the definition of V that {h(Aγ ∩ R2i−1) | γ < τ, i ∈ N}
is locally finite in W . Therefore {h(Aγ ∩ Ri) | γ < τ, i ∈ N} is locally finite in W , which means that
{h(Aγ) | γ < τ} is locally finite in W . Moreover, h ∼V g ∼U ′ f , and hence h ∼U f . Thus, the proof is
complete. □

A little stronger condition than τ -DAP will be introduced in the following proposition.

Proposition 2.3.4. Let τ be a cardinal > 1 and C be a topological and closed hereditary subclass of M0.
Suppose that X is an ANR with τ -DAP(C) and that any closed set C ∈ C in X is a strong Z-set. Then,
for every map f : A =

⊕
γ<τ Aγ → X from a discrete union of Aγ’s to X, where Aγ ∈ C, for every closed

subset B ⊂ A such that the restriction f |B is a closed embedding, and for every U ∈ cov(X), there exists
a map g : A→ X such that g ∼U f , g|B = f |B and the collection {g(Aγ) | γ < τ} is discrete in X.

Proof. We take U1, U2 ∈ cov(X) so that U ≻⋆ U1 ≻⋆ U2. Let Bγ = Aγ ∩ B for each γ < τ . Since f |B is
a closed embedding, {f(Bγ) | γ < τ} is a discrete collection in X. Then, we can find a pairwise disjoint
collection {Uγ | γ < τ} of open subsets of X so that f(Bγ) ⊂ Uγ for each γ < τ .

Take U ′
2 ∈ cov(X) such that U ′

2 ≺ U2 ∧ {Uγ , X \ f(B) | γ < τ}. Since f(Bγ) ∈ C for every γ < τ , it
follows from Proposition 2.1.2(2) that f(B) =

∪
γ<τ f(Bγ) is a strong Z-set in X. Then, we can obtain

a U ′
2-homotopy h′ : X × I → X and an open neighborhood W of f(B) in X such that h′0 = f and
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h′1(X) ⊂ X \W . We write Wγ = W ∩ Uγ for each γ < τ . Let h = h′(f × idI) : A × I → X, so h is a
U ′
2-homotopy and h0 = h′0f = f . Observe that h(Bγ × I) ⊂ Uγ for each γ < τ . Since each Bγ is compact,

we can find an open neighborhood Vγ of Bγ in Aγ so that h(Vγ×I) ⊂ Uγ . Take an Urysohn map k : A→ I
such that k−1(0) = B and k−1(1) = A \

∪
γ<τ Vγ and define the map f ′ : A → X by f ′(x) = h(x, k(x))

for x ∈ A. It is easy to see that f ′ ∼U ′
2
f and f ′|B = h0|B = f |B. Moreover, f ′ satisfies the following

condition:

(1) f ′(A \ Vγ) ∩Wγ = ∅ for any γ < τ .

Indeed, take any point x ∈ A \ Vγ . When x ∈ A \
∪
γ<τ Vγ ,

f ′(x) = h1(x) = h′1f(x) ∈ X \W ⊂ X \Wγ .

When x ∈ Vγ′ for some γ′ ̸= γ, we have

f ′(x) = hk(x)(x) ∈ Uγ′ ⊂ X \ Uγ ⊂ X \Wγ .

We take an open neighborhood W ′
γ of f(Bγ) for each γ < τ so that clW ′

γ ⊂ Wγ . Let U ′
1 ∈ cov(X)

such that

U ′
1 ≺ U1 ∧

{
W ′
γ ,Wγ \ f(Bγ), X \

∪
γ′∈τ

clW ′
γ′

∣∣∣∣∣ γ < τ

}
.

Applying τ -DAP(C) of X to f ′, we can obtain a U ′
1-homotopy h′′ : A× I → X so that h′′0 = f ′ and

(2) {h′′1(Aγ) | γ < τ} is discrete in X.

Since h′′ is a U ′
1-homotopy and h′′0|B = f ′|B = f |B, it follows that h′′(Bγ × I) ⊂ W ′

γ for each γ < τ .
Because of the compactness, each Bγ has an open neighborhood Gγ in Aγ such that h′′(Gγ × I) ⊂ W ′

γ .
Let k′ : A → I be an Urysohn map such that (k′)−1(0) = B and (k′)−1(1) = A \

∪
γ<τ Gγ . Now, we

can define the desired map g : A → X by g(x) = h′′(x, k′(x)) for all x ∈ A. Observe that g ∼U ′
1
f ′ and

the restriction g|B = h′′0|B = f ′|B, and hence g ∼U f and g|B = f |B. Thus, it remains to show that
{g(Aγ) | γ < τ} is discrete in X.

Fix a point x ∈ X. Due to (2), the collection {g(Aγ \Gγ) | γ < τ} is discrete in X, and hence there
exists an open neighborhood Ux of x in X such that card({γ < τ | g(Aγ \Gγ) ∩ Ux ̸= ∅}) ≤ 1.

(Case 1) card({γ < τ | g(Aγ \Gγ) ∩ Ux ̸= ∅}) = 0.
When x ∈ X \

∪
γ<τ clW ′

γ , the subset U ′
x = Ux \

∪
γ<τ clW ′

γ is an open neighborhood of x in X.
Since g(Gγ) ⊂ W ′

γ , we have U ′
x ∩ g(Gγ) = ∅, so U ′

x ∩ g(Aγ) = ∅ for any γ < τ . When x ∈
∪
γ<τ clW ′

γ ,
x ∈ clW ′

γ0 for the unique γ0 ∈ τ . Then U ′
x = Ux \

∪
γ ̸=γ0 clW ′

γ is an open neighborhood of x in X such
that U ′

x ∩ g(Aγ) = ∅ for all γ ̸= γ0.

(Case 2) card({γ < τ | g(Aγ \Gγ) ∩ Ux ̸= ∅}) = 1.
We may assume that g(Aγ0 \ Gγ0) ∩ Ux ̸= ∅ for the unique γ0 ∈ τ . Note that g(Aγ0 \ Gγ0) is a

closed set in X because of the compactness of Aγ0 , so we can turn the case when x /∈ g(Aγ0 \ Gγ0) into
Case 1 by replacing Ux by Ux \ g(Aγ0 \ Gγ0). When x ∈ g(Aγ0 \ Gγ0), we have x ∈ X \

∪
γ ̸=γ0 clW ′

γ .
Otherwise x ∈ clW ′

γ1 for some γ1 ̸= γ0. As x ∈ g(Aγ0 \Gγ0), the point x = g(a) for a point a ∈ Aγ0 \Gγ0 .
Then f ′(a) ∈ Wγ1 because g ∼U ′

1
f ′. On the other hand, since Aγ0 ⊂ A \ Vγ1 , it follows from (1) that

f ′(Aγ0)∩Wγ1 = ∅, which is a contradiction. Now x has the open neighborhood U ′
x = Ux \

∪
γ ̸=γ0 clW ′

γ in
X such that U ′

x ∩ g(Aγ) = ∅ for every γ ̸= γ0. □
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2.4 Proof of Main Theorem

This section is devoted to proving Main Theorem. The following proposition follows from Stone’s Theorem
(Theorem 4.4.1 of [30]).

Proposition 2.4.1. Let X be a metrizable space. Then the following conditions are equivalent:

(1) X is strongly countable-dimensional and σ-locally compact;

(2) X is strongly countable-dimensional and a countable union of closed locally compact subsets;

(3) X is a countable union of locally compact locally finite-dimensional closed subsets;

(4) X is a countable union of closed subsets which are discrete unions of finite-dimensional compact
metrizable spaces.

Proof. The implication (2) ⇒ (3) is obvious. First, we prove the implication (1) ⇒ (2). It is sufficient
to show that any σ-locally compact metrizable space X can be written as a countable union of closed
locally compact subsets. We can write X =

∪
n∈ωXn, where each Xn is locally compact. According to

[54, Theorem 2], each Xn is an absolute Fσ set. Hence we have Xn =
∪
m∈ω A

n
m, where Anm is closed in X

for all m,n ∈ ω. Since Xn is locally compact, so Anm is. Therefore X =
∪
m,n∈ω A

n
m is a countable union

of closed locally compact subsets.
To prove the implication (3) ⇒ (4), we assume that X =

∪
n∈ωXn, where Xn is a locally compact

locally finite-dimensional closed subsets for all n ∈ ω. By the local compactness and the local finite-
dimensionality, each Xn has an open cover Un such that for every U ∈ Un, the closure of U is compact and
finite-dimensional. Due to Stone’s Theorem, each Un has a σ-discrete open refinement Vn =

∪
m∈ω Vmn ∈

cov(Xn), where Vmn is discrete in Xn. Then, Amn =
∪
V ∈Vm

n
clV is a closed subset of Xn which is a discrete

union of finite-dimensional compact metrizable spaces. Evidently X =
∪
n,m∈ω A

m
n , which implies that X

satisfies the condition (4).
Finally, we show the implication (4) ⇒ (1). As is easily observed, we can write X =

∪
n∈ωXn, where

each Xn is a closed subspace which is discrete unions of compact metrizable spaces of dimension ≤ n.
Hence X is a countable union of finite-dimensional locally compact closed subsets, which means that it
is strongly countable-dimensional and σ-locally compact. The proof is complete. □

Remark 3. As is seen in the above proof, when a metrizable space X satisfies the above conditions, we can
write X =

∪
n∈ωXn, where each Xn is a closed subspace which is discrete unions of compact metrizable

spaces of dimension ≤ n.

Now, we shall show the following characterization.

Theorem 2.4.2. Let τ be an infinite cardinal. For a connected space X, the following conditions (1), (2)
and (3) are equivalent:

(1) X is an ℓf2(τ)-manifold;

(2) (a) X is an ANR of weight τ and a countable union of closed sets which are discrete unions of
finite-dimensional compact metrizable spaces;

(b) X is strongly universal for
⊕

τ M0(n) for all n ∈ ω;

(c) For every subset C ⊂ X, if C ∈ Mf
0 , then C is a strong Z-set in X;

(3) (a) X is an ANR of weight τ and a countable union of closed sets which are discrete unions of
finite-dimensional compact metrizable spaces;

(b) (i) X has τ -DAP(M0(n)) for all n ∈ ω;

23



(ii) X is strongly universal for Mf
0 ;

(c) For every subset C ⊂ X, if C ∈ Mf
0 , then C is a strong Z-set in X.

Proof. The implication (2) ⇒ (3) is clear. According to Proposition 2.3.4, the condition (b) of (3) implies
the condition (b) of (2), so the implication (3) ⇒ (2) also holds. Now, we shall show the equivalence
(1) ⇔ (2).

(1) ⇒ (2): Due to Proposition 4.5 of [56], X is an ANR which is a countable union of locally compact
locally finite-dimensional closed subsets. By Proposition 2.4.1, X is a countable union of closed subsets
which are discrete unions of finite-dimensional compact metrizable spaces. Moreover, since X is connected,
we have w(X) = w(ℓf2(τ)) = τ . Therefore X satisfies the condition (a).

By 1.1 of [56], every space in
⊕

τ M0(n), n ∈ ω, can be embedded into ℓf2(τ) as a closed subspace.
Hence, the condition (b) follows from the Strong Universality Theorem (cf. Lemma 5.1 of [19] 2). Fur-
thermore, since the condition (b) implies that X has the τ -discrete n-cells property for all n ∈ ω, any
finite-dimensional compact subset C ⊂ X is a Z-set in X by Proposition 2.1.1. Then C is a strong Z-set
in X due to A1 of [60], which means that the condition (c) holds.

(2) ⇒ (1): Obviously, the class C =
∪
n∈ω

⊕
τ M0(n) is topological and closed hereditary. As is seen in

the proof of (1) ⇒ (2), the model space ℓf2(τ) satisfies the condition (2). Due to the condition (a) and

Remark 3, with respect to C the locally convex topological linear metric space ℓf2(τ) and the connected
ANR X satisfy (⋆) in Section 2.2 and (i) in Theorem 2.2.3, respectively. Combining the condition (c)

with Proposition 2.1.2(2) implies that ℓf2(τ) and X satisfy (⋆⋆) in Section 2.2 and (iii) in Theorem 2.2.3
with respect to C, respectively. The condition (b) is no other than the condition (ii) in Theorem 2.2.3.
On the other hand, since X is an ANR of weight τ and a countable union of locally compact locally
finite-dimensional closed subsets, applying Theorem 4.3 of [56] to X × ℓf2(τ), we have X × ℓf2(τ) is an

ℓf2(τ)-manifold. According to Theorem 2.2.3, X is homeomorphic to X × ℓf2(τ), that is, it is an ℓf2(τ)-
manifold. □

Remark 4. As is seen in the above, the space ℓf2(τ) has the properties (⋆) and (⋆⋆) in Section 2.2 with

respect to the class C =
∪
n∈ω

⊕
τ M0(n). Then, it follows from C ⊂

⊕
τ M

f
0 that ℓf2(τ) satisfies (⋆) with

respect to
⊕

τ M
f
0 , immediately. Moreover, combining (c) of Theorem 2.4.2 with Proposition 2.1.2(2)

implies the stronger assertion that ℓf2(τ) satisfies (⋆⋆) with respect to
⊕

τ M
f
0 , actually. In addition,

removing “finite-dimensionality”, we have ℓf2(τ) × Q satisfies (⋆) and (⋆⋆) with respect to the class⊕
τ M0.

Using the above characterization, we shall prove Main Theorem.

Proof of Main Theorem. Using the condition (3) of Theorem 2.4.2 and Proposition 2.4.1, we can obtain
the “only if” part immediately. Now, we shall prove the “if” part. Since X is locally contractible, each
point x ∈ X has an open neighborhood W which is contractible in X. It is enough to show that W is an
ℓf2(τ)-manifold, that is, W satisfies (3) of Theorem 2.4.2.

It follows from Proposition 2.1.2(1) that W satisfies the condition (c). To verify the condition (b-ii),

suppose that f : A→W is a map from A ∈ Mf
0 such that the restriction f |B on a closed subset B of A is a

Z-embedding. For each open cover W ∈ cov(W ), the collection U = W∪{X \ f(A)} ∈ cov(X) because A
is compact. Then, applying the strong universality of X to f allows us to find a Z-embedding g : A→ X
such that g ∼U f and g|B = f |B. Due to the definition of U , we have g(A) ⊂ W and g ∼W f . Thus,
W satisfies (b-ii). The contractibility of W in X and the τ -discrete n-cells property of X, n ∈ ω, imply
that W has τ -DAP(M0(n)) for all n ∈ ω by Proposition 2.3.3, namely, the condition (b-i) is satisfied. It

2Lemma 5.1 of [19] holds for a locally convex topological linear metric space E not only such that E is homeomorphic to
EN but also such that E is homeomorphic to EN

f .
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remains to check the condition (a). It follows from τ -DAP(M0(n)) of W that τ ≤ w(W ) ≤ w(X) = τ ,
hence w(W ) = τ . Since W is an open subset in X, it is an ANR and an Fσ set in X. Then, because X
is a countable union of closed subsets which are discrete unions of finite-dimensional compact metrizable
space by Proposition 2.4.1, so an Fσ set W is. Therefore, the condition (a) holds. □

By removing “finite-dimensionality” from the characterization of ℓf2(τ)-manifolds, we can similarly

prove the following characterization of (ℓf2(τ) ×Q)-manifolds.

Theorem 2.4.3. Let τ be an infinite cardinal. A connected space X is an (ℓf2(τ) ×Q)-manifold if and
only if the following conditions are satisfied:

(1) X is a σ-locally compact ANR of weight τ ;

(2) X has the τ -discrete cells property;

(3) X is strongly universal for M0;

(4) For every subset C ⊂ X, if C ∈ M0, then C is a strong Z-set in X.
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Chapter 3

Characterizations of infinite-dimensional
manifold pairs

In this chapter, we assume that spaces are paracompact. Combining West’s characterization [61] with
the main theorem in Chapter 2, we shall prove the following:

Main Theorem. A pair (X,Y ) of spaces is an (ℓ2(τ), ℓf2(τ))-manifold pair if and only if X is an ℓ2(τ)-

manifold, Y is an ℓf2(τ)-manifold and Y is homotopy dense in X.

For an infinite cardinal τ , the hedgehog J(τ) is the closed subspace in ℓ1(τ) defined as follows:

J(τ) = {x = (x(γ))γ<τ ∈ ℓ1(τ) ∩ Iτ | x(γ) ̸= 0 at most one γ < τ}.

It is well known that the countable product J(τ)N of J(τ) is a universal space for the class of metrizable
spaces of wight ≤ τ (cf. Corollary 2.3.7 of [50]). We define the subspace J(τ)Nf in J(τ)N as follows:

J(τ)Nf = {x = (x(n))n∈N ∈ J(τ)N | x(n) = 0 except for finitely many n ∈ N}.

Applying the modified West’s characterization Theorem 3.1.4 to the pair (J(τ)N, J(τ)Nf ), we can also
prove the following theorem:

Theorem 3.0.1. Let τ be an infinite cardinal. The pair (J(τ)N, J(τ)Nf ) is homeomorphic to (ℓ2(τ), ℓf2(τ)).

3.1 West’s characterization and the main result

Let C be a topological and closed hereditary class of spaces. We denote the collection of closed subspaces
in a space X which belong to C by C(X). A subspace Y of X is said to be weakly C(X)-absorptive1 if the
following condition hold:

(abs) For each A ∈ C(X), each closed subset B of A contained in Y and each open cover U of X, there
exists an embedding f : A→ Y such that f is U-close to idA and f |B = idB.

A space Y has a C-complex structure {An}n∈ω if each An is a subcollection of C(Y ) with the following
properties:

(1) Y =
∪
n∈ω(

∪
An);

1This notion is introduced in Theorem 6 of [61]. A subspace Y of X is C(X)-absorptive if for each A ∈ C(X), each closed
subset B of A contained in Y , and each open cover U of A in X, there exists a homeomorphism f : X → X such that
f(A) ⊂ Y , f |∪U is U-close to id∪

U , and f |(X\
∪

U)∪B = id(X\
∪

U)∪B . Moreover, if there exists an ambient isotopy h of f such
that {h({x} × I) | x ∈ A} ≺ U , then Y is called strongly C(X)-absorptive.
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(2) An =
∪n
i=0(

∪
Ai) is closed in Y for each n ∈ ω;

(3) For each n ∈ ω, there exists a pairwise disjoint open cover Un of An \An−1 in Y such that U ∩An \
An−1 ∈ {A \An−1 | A ∈ An} for each U ∈ Un, where A−1 = ∅.

J.E. West established the following characterization of (ℓ2(τ), ℓf2(τ))-manifold pairs in 1970, see Theorem 6
of [61].

Theorem 3.1.1. Let τ be an infinite cardinal. For spaces Y ⊂ X, the pair (X,Y ) is an (ℓ2(τ), ℓf2(τ))-

manifold pair if and only if X is an ℓ2(τ)-manifold, Y is weakly Mf
0(X)-absorptive and has an Mf

0 -complex
structure.

Due to Theorem 6 of [32] (cf. Theorem C of [33]) and Theorem 1 of [61], we can classify (ℓ2(τ), ℓf2(τ))-
manifold pairs according to homotopy types.

Theorem 3.1.2. Let τ be an infinite cardinal. Suppose that (X,Y ) and (X ′, Y ′) are (ℓ2(τ), ℓf2(τ))-
manifold pairs. If X and X ′ (or Y and Y ′) have the same homotopy type, then (X,Y ) and (X ′, Y ′) are
homeomorphic.

Remark 5. While it is not mentioned in [61], the similar characterization of (ℓ2(τ)×Q, ℓf2(τ)×Q)-manifold
pairs can be established as follows:

• A pair (X,Y ) of spaces is an (ℓ2(τ) × Q, ℓf2(τ) × Q)-manifold pair if and only if X is an ℓ2(τ)-
manifold2, Y is weakly M0(X)-absorptive and has an M0-complex structure.

In addition, Theorem 3.1.2 is valid for (ℓ2(τ) ×Q, ℓf2(τ) ×Q)-manifold pairs.

Although the complex structure is defined by imitating the simplicial complex structure, it is com-
plicated. The following proposition is very useful for detecting a C-complex structure with respect to a
topological and closed hereditary class C in a metrizable space.

Proposition 3.1.3. For a topological and closed hereditary class C, a metrizable space X is a countable
union of closed sets which are discrete unions of members of C if and only if X has a C-complex structure.

Proof. First, we show the “only if” part. Let X =
∪
n∈ω(

∪
An), where An is a discrete collection of X

whose members are in C and the union
∪

An is closed in X for each n ∈ ω. Note that An ⊂ C(X) for
all n ∈ ω. Then An =

∪n
i=0(

∪
Ai) is closed in X for every n ∈ ω. Since each An is discrete in X, there

exists a pairwise disjoint collection Un = {U(A) | A ∈ An} of open subsets of X such that A ⊂ U(A) for
each A ∈ An. Observe that U(A) ∩ (An \An−1) = A \An−1 for each A ∈ An and n ∈ ω, where A−1 = ∅.
Consequently, the collections {An}n∈ω is a C-complex structure of X.

Next, we prove the “if” part. Let {An}n∈ω be a C-complex structure of X. Then, for each n ∈ ω there
exists a pairwise disjoint collection Un of open subsets of X satisfying the following condition:

• Each Un covers An \ An−1 so that U ∩ An \ An−1 ∈ {A \ An−1 | A ∈ An} for every U ∈ Un, where
A−1 = ∅.

For every U ∈ Un and n ∈ ω, we can choose A ∈ An so that U ∩ An \ An−1 = A \ An−1, which is
open in A, so an Fσ set in A. Hence, we can write U ∩ An \ An−1 =

∪
m∈ω A

m
(n,U), where each Am(n,U)

is closed in A, so closed in X. It is easy to see that A(n,m) = {Am(n,U) | U ∈ Un} is discrete in X and

the union
∪

A(n,m) is closed in X for all n,m ∈ ω. Moreover, X =
∪
n,m∈ω(

∪
A(n,m)). Indeed, for each

x ∈ X, choose n ∈ ω such that x ∈ An \ An−1. Since Un covers An \ An−1, there is U ∈ Un such that
x ∈ U ∩ An \ An−1 =

∪
m∈ω A

m
(n,U), which implies that x ∈ Am(n,U) ⊂

∪
A(n,m) for some m ∈ ω. Thus, X

is a countable union of closed sets which are discrete unions of members of C. □
2Remark that ℓ2(τ)×Q is homeomorphic to ℓ2(τ).
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Combining Proposition 2.4.1 in Chapter 2 with the above, we can modify West’s characterizations as
follows:

Theorem 3.1.4. Let Y ⊂ X be spaces and τ an infinite cardinal. The pair (X,Y ) is an (ℓ2(τ), ℓf2(τ))-
manifold pair if and only if X is an ℓ2(τ)-manifold, and Y is strongly countable-dimensional, σ-locally

compact, and weakly Mf
0(X)-absorptive, and (X,Y ) is an (ℓ2(τ)×Q, ℓf2(τ)×Q)-manifold pair if and only

if X is an ℓ2(τ)-manifold, and Y is σ-locally compact and weakly M0(X)-absorptive.

Proposition 3.1.5. Let C be a topological and closed hereditary subclass of M. Suppose that a homotopy
dense subset Y of a metrizable space X satisfies the following conditions:

(∗) Y is strongly universal for C;

(∗∗) Every closed subset C ∈ C(Y ) is a Z-set in Y .

Then Y is weakly C(X)-absorptive.

Proof. Fix A ∈ C(X), a closed subset B of A contained in Y and an open cover U of X. Take an open
cover V of X so that V ≺⋆ U . Since Y is homotopy dense in X, we can find a homotopy h : X × I → X
such that h0 = idX and h(X × (0, 1]) ⊂ Y . Then, we have a map k : A → I such that k−1(0) = B and
{{x} × [0, k(x)] | x ∈ A} ≺ h−1(V). Define a map f : A → Y ⊂ X by f(x) = h(x, k(x)) for each x ∈ A,
so f is V-close to idA and f |B = h0|B = idB. On the other hand, since C is closed hereditary, it follows
from (∗∗) that B is a Z-set in Y , hence the restriction f |B is a Z-embedding into Y . Then, applying the
strong universality of Y to f , we can obtain a Z-embedding g : A→ Y such that g is V|Y -close to f and
g|B = f |B = idB, where V|Y = {V ∩ Y | V ∈ V}. Observe that g is U-close to idA. Consequently, Y is
weakly C(X)-absorptive. □

A subset A ⊂ X is said to be locally homotopy negligible in a space X if for each n ∈ ω, x ∈ X and open
neighborhood U of x, there exists a neighborhood V of x such that given a map f : (In, bd In) → (V, V \A),
there is a homotopy h : (In, bd In) × I → (U,U \ A) with h0 = f and h1(I

n) ⊂ U \ A, where bd In is the
boundary of In. It is easy to see that a subset A ⊂ X is locally homotopy negligible in a space X if and
only if each point of X has a neighborhood U such that U ∩ A is locally homotopy negligible in U . For
every infinite cardinal τ , the subset ℓ2(τ) \ ℓf2(τ) is locally homotopy negligible in ℓ2(τ). Now, we shall
demonstrate Main Theorem.

Proof of Main Theorem. First, we prove the “only if” part. Since ℓ2(τ) \ ℓf2(τ) is locally homotopy

negligible in ℓ2(τ), it follows from Remark 2.2 of [57] that U \ ℓf2(τ) is locally homotopy negligible in
U for every open subset U ⊂ ℓ2(τ). This means that X \ Y is locally homotopy negligible in X, recall

that (X,Y ) is an (ℓ2(τ), ℓf2(τ))-manifold pair. Thus, Y is homotopy dense in X by Theorem 2.4 of [57].

Next, we show the “if” part. Since Y is an ℓf2(τ)-manifold, it follows from the conditions (3) and
(4) of the main theorem in Chapter 2 that Y satisfies the conditions (∗) and (∗∗) in Proposition 3.1.5

for the class Mf
0 . Moreover, because Y is homotopy dense in X, we have that Y is weakly Mf

0(X)-
absorptive by Proposition 3.1.5. Then, we can apply Theorem 3.1.4 to the pair (X,Y ), so (X,Y ) is an

(ℓ2(τ), ℓf2(τ))-manifold pair. □

Remark 6. Combining Theorems 2.4.3 and 3.1.4 with Proposition 3.1.5, we can obtain another character-
ization of (ℓ2(τ) ×Q, ℓf2(τ) ×Q)-manifold pairs as follows:

• A pair (X,Y ) of spaces is an (ℓ2(τ)×Q, ℓf2(τ)×Q)-manifold pair if and only if X is an ℓ2(τ)-manifold,

Y is an (ℓf2(τ) ×Q)-manifold and Y is homotopy dense in X.
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Remark 7. The main theorem does not hold for other infinite-dimensional manifolds. For example,
consider the pair (Q × ℓ2, s × ℓf2). Recall that s is homeomorphic to the separable Hilbert space ℓ2,

see Section 1.3 in Chapter 1. Then we have Q × ℓ2 is homeomorphic to ℓ2, s × ℓf2 is homeomorphic

to ℓ2 × ℓf2 and s × ℓf2 is homotopy dense in Q × ℓ2. However, (Q × ℓ2, s × ℓf2) is not homeomorphic to

(ℓ2× ℓ2, ℓ2× ℓf2) because ℓ2× ℓf2 is an Fσ set in ℓ2× ℓ2 while s× ℓf2 is not an Fσ set but a Gδσ set in Q× ℓ2.

3.2 An application

This section is devoted to proving Theorem 3.0.1. Throughout the section, we consider τ an infinite
cardinal. We use an admissible metric d on J(τ)N as follows:

d(x, y) =
∑
i∈N

2−i∥x(i) − y(i)∥1 for every x = (x(i))i∈N, y = (y(i))i∈N ∈ J(τ)N.

Let pri : J(τ)N → J(τ) be the projection onto the ith coordinate. Define the vector eγ ∈ ℓ1(τ) for each
γ < τ as follows:

eγ(γ′) =

{
eγ(γ′) = 1 if γ′ = γ,
eγ(γ′) = 0 if γ′ ̸= γ,

that is, eγ is an unit vector of ℓ1(τ). Moreover, for x, y ∈ ℓ1(τ), the line segment between x and y is
denoted by ⟨x, y⟩, that is,

⟨x, y⟩ = {(1 − t)x+ ty | t ∈ I}.
First, we shall show the following:

Theorem 3.2.1. The space J(τ)N is homeomorphic to ℓ2(τ).

Proof. Since the hedgehog J(τ) is closed in ℓ1(τ), it is completely metrizable. As is easily observed, J(τ) is
a metric polyhedron of a simplicial complex, and hence it is a contractible ANR (cf. Theorem 6.2.6 of [50]).
Therefore J(τ) is an AR. According to Theorem 1.3.6, the countable product J(τ)N is homeomorphic to
ℓ2(τ). □

Proposition 3.2.2. The space J(τ)Nf is strongly countable-dimensional and σ-locally compact.

Proof. According to Proposition 2.4.1 in Chapter 2, we need only to show that J(τ)Nf can be written as
a countable union of closed subsets which are discrete unions of finite-dimensional compact subsets. Let
Fin(N) be the all non-empty finite subsets of N. For each M ∈ Fin(N), each n ∈ ω and each function
ψM : M → τ , we define the finite-dimensional compact subset of J(τ)Nf as follows:

AψM

(M,n) =

{
x ∈ J(τ)N

∣∣∣∣ x(i) ∈ ⟨2−neψM (i), eψM (i)⟩, if i ∈M, and

x(i) = 0, otherwise

}
,

which is homeomorphic to the cube Icard(M). Let

A(M,n) = {AψM

(M,n) | ψM : M → τ} for each M ∈ Fin(N) and n ∈ ω.

Fix a point x ∈ J(τ)Nf \ {0}, so we have the set M = {i ∈ N | x(i) ̸= 0} ∈ Fin(N). Define the function
ψM : M → τ as follows:

ψM (i) = γ < τ if x(i)(γ) > 0 for each i ∈M.

Taking n ∈ ω so that 2−n ≤ mini∈M ∥x(i)∥1, we can easily see that x ∈ AψM

(M,n). It follows that

J(τ)Nf = {0} ∪

( ∪
M∈Fin(N),n∈ω

(∪
A(M,n)

))
.
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Moreover, A(M,n) is discrete in J(τ)Nf for each M ∈ Fin(N) and n ∈ ω. Indeed, let x ∈ J(τ)Nf . When

x(i) = 0 for some i ∈ M , we have Bd(x, 2
−n) ∩ AψM

(M,n) = ∅ for every ψM : M → τ . When x(i) ̸= 0

for all i ∈ M , as is easily observed, we can take the unique function ψM : M → E such that x(i) ∈
⟨0, eψM (i)⟩ \ {0}. Then, define δ = mini∈M ∥x(i)∥1, so Bd(x, δ) ∩ A

ψ′
M

(M,n) = ∅ for every ψ′
M : M → τ with

ψ′
M ̸= ψM . Thus, the proof is complete. □

Lemma 3.2.3. The space J(τ)Nf is homotopy dense in J(τ)N.

Proof. We can take a contraction ϕ : J(τ) × I → J(τ) such that ϕ0 = idJ(τ) and ϕ1(J(τ)) = {0}. Then,

the homotopy h : J(τ)N × I → J(τ)N is defined as follows: h(x, 0) = x and

h(x, t) = (pr1(x), · · · , pri−1(x), ϕ(pri(x), 2it− 1),0,0, · · · ) for each x ∈ J(τ)N and 2−i ≤ t ≤ 2−i+1.

It follows that h0 = idJ(τ) and h(J(τ)N × (0, 1]) ⊂ J(τ)Nf , hence J(τ)Nf is homotopy dense in J(τ)N. □

Since J(τ)N is an AR, so J(τ)Nf is due to Proposition 1.2.6 and the above. Using the above lemma,
we shall also show the following:

Proposition 3.2.4. The space J(τ)Nf is Mf
0(J(τ)N)-absorptive.

Proof. For the sake of convenience, let X = J(τ)Nf , X̄ = J(τ)N and

Xm = {x = (x(i))i∈N ∈ X | x(i) = 0 for all i > m} ⊂ X for each m ∈ N.

Suppose that A is an finite-dimensional compact subset in X̄, B is a closed subset of A contained in X,
and U is an open cover of X̄. It is sufficient to construct an embedding g̃ : A→ X such that g̃ is U-close
to idA and g̃|B = idB. We have A \ B =

∪
n∈NAn, where A1 ⊂ A2 ⊂ · · · are closed subsets of A, and

an open cover U ′ of X̄ such that U ≻⋆ U ′. Since X is homotopy dense in X̄ due to Lemma 3.2.3, we can
obtain a homotopy ϕ : X̄ × I → X̄ so that ϕ0 = idX̄ and ϕ(X̄ × (0, 1]) ⊂ X. Let k : A → I be a map
such that k−1(0) = B and for each x ∈ A \B, there exists U ∈ U ′ such that {x}× [0, k(x)] ⊂ ϕ−1(U \B).
We define the map f : A → X by f(x) = ϕ(x, k(x)). Observe that f is U ′-close to idA, f |B = idB and
f(A \B) ⊂ X \B. Let λ > 1 be a Lebesgue number for U ′ with respect to f(A). By the same argument
of Lemma 2.1.4 in Chapter 2, we can find an open cover V of X \ B of meshV < λ so as to satisfy the
following conditions (cf. Lemma 3 of [4]):

(∗) For a map h : f−1(X \B) = A \B → X \B, if h ∼V f |A\B, then h extends to the map h̃ : A→ X

by h̃|B = idB.

Take a sequence of open covers V ≻⋆ V0 ≻⋆ V1 ≻⋆ · · · of X \ B of meshVn < 2−n for every n ∈ ω. Since
X \B is an ANR, by Proposition 1.2.5, we can choose an open cover V ′

n of X \B for each n ∈ ω so that
Vn ≻ V ′

n and it has the following property:

(∗∗) Given a space Y and maps h1, h2 : Y → X \B, if h1 ∼V ′
n
h2, then h1 ≃Vn h2.

By induction, we shall construct maps gn : A \B → X \B, n ∈ ω, and a sequence of natural numbers
1 = m(0) < m(1) < · · · such that

(1) gn|An is an embedding into Xm(n) \B,

(2) gn+1|An = gn|An and

(3) gn+1 ≃Vn gn,
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where g0 = f |A\B and A0 = ∅. After completing the inductive construction, the sequence {gn}n∈ω
converges to the injection g : A \ B → X \ B such that g ∼V f |A\B and g|An = gn|An for all n ∈ ω. Due
to (∗), the map g is extended to the desired embedding g̃ : A → X by g̃|B = idB. Therefore, it remains
to complete the induction.

Assume that gj and m(j) have been obtained for all j < n. Let λn < 1 be a Lebesgue number for V ′
n

with respect to gn−1(An). Then, there is a number m(n)′ ≥ m(n−1) such that
∑

i>m(n)′ 2−i+1 < λn. Let

m(n) = m(n)′+2 dim(A)+2. Fix an unit vector e of ℓ1(τ). Remark that the segment ⟨e/2, e⟩ is contained
in J(τ). By the finite dimensionality of An, there exists an embedding qn : An → ⟨e/2, e⟩2 dim(A)+1. Taking
a map kn : An → I with k−1

n (0) = An−1, we can define the map g′n : An → Xm(n) \B as follows:

pri g
′
n(x) =


pri gn−1(x) if i ≤ m(n)′,
kn(x)pi−m′

(n)
qn(x) if m(n)′ < i < m(n),

kn(x)e if i = m(n),
0 if m(n) < i,

where pj : ⟨e/2, e⟩2 dim(A)+1 → ⟨e/2, e⟩ is the projection onto the jth coordinate, j = 1, · · · , 2 dim(A) + 1.
Then g′n is an embedding. Indeed, take two distinct points x, y ∈ An arbitrarily. In case x, y ∈ An−1, we
have kn(x) = kn(y) = 0, so

g′n(x) = gn−1(x) ̸= gn−1(y) = g′n(y)

since gn−1|An−1 is an embedding. In case x ∈ An \An−1 and y ∈ An−1, we get kn(x) > 0 = kn(y), hence

prm(n) g
′
n(x) = kn(x)e ̸= 0 = prm(n) g

′
n(y),

that is, g′n(x) ̸= g′n(y). In case x, y ∈ An \An−1, we have kn(x), kn(y) > 0. When kn(x) ̸= kn(y), we see

prm(n) g
′
n(x) = kn(x)e ̸= kn(y)e = prm(n) g

′
n(y),

so g′n(x) ̸= g′n(y). When kn(x) = kn(y), there is m(n)′ < i < m(n) such that

pri g
′
n(x) = kn(x) pri qn(x) ̸= kn(y) pri qn(y) = pri g

′
n(y)

because qn is an embedding. Therefore g′n(x) ̸= g′n(y). Moreover, g′n|An−1 = gn−1|An−1 because gn−1(An−1) ⊂
Xm(n−1)

and kn(An−1) = 0. For every x ∈ An, we have

d(g′n(x), gn−1(x)) =
∑
i∈N

2−i∥pri g
′
n(x) − pri gn−1(x)∥1

≤
∑

i≤m(n)′

2−i∥ pri g
′
n(x) − pri gn−1(x)∥1 +

∑
i>m(n)′

2−i+1

=
∑

i>m(n)′

2−i+1 < λn,

hence g′n ∼V ′
n
gn−1|An . By (∗∗), g′n ≃Vn gn−1|An . Applying the Homotopy Extension Theorem 1.2.4 to

g′n, we can obtain an extension gn : A \B → X \B of g′n such that gn ≃Vn gn−1, which is desired. □

Now we can prove Theorem 3.0.1.

Proof of Theorem 3.0.1. Combining Theorems 3.1.4, 3.2.1, Propositions 3.2.2 and 3.2.4, we have that
(J(τ)N, J(τ)Nf ) is an (ℓ2(τ), ℓf2(τ))-manifold pair. According to Theorem 3.1.2, (J(τ)N, J(τ)Nf ) is homeo-

morphic to (ℓ2(τ), ℓf2(τ)). □
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Chapter 4

Topological types of sigma-locally
compact convex sets

The topological classification of convex sets in linear spaces has been an important problem of infinite-
dimensional topology. By virtue of the efforts due to V. Klee [35], T. Dobrowolski [23] and H. Toruńczyk
[25, 26], the following theorem can be established, see Corollary 5.2.3 of [10].

Theorem 4.0.1. Let C be a separable completely metrizable closed convex set in a topological linear
space. Suppose that C is an AR. Then, the convex set C is homeomorphic to [0, 1]n × [0, 1)m × (0, 1)k

for some cardinals 0 ≤ n, k ≤ ℵ0 and 0 ≤ m ≤ 1. In particular, if C is not locally compact, then it is
homeomorphic to the separable Hilbert space ℓ2.

Recall that a Fréchet space is a locally convex completely metrizable linear space. According to
the Dugundji Extension Theorem [28] (cf. Theorem 6.1.1 of [50]), any convex subset of a locally convex
topological linear space is an AE. It is well known that every infinite-dimensional Fréchet space is home-
omorphic to a Hilbert space of the same weight (the Kadec [34] -Anderson [1] -Toruńczyk [59] Theorem).
T. Banakh and R. Cauty [9] extended Theorem 4.0.1 to non-separable convex sets in Fréchet spaces as
follows:

Theorem 4.0.2. Let C be a closed convex set in a Fréchet space. Then, the convex set C is homeomorphic
to [0, 1]n× [0, 1)m× ℓ2(τ) for some cardinals 0 ≤ n ≤ ℵ0, 0 ≤ m ≤ 1 and 0 ≤ τ . In particular, if C is not
locally compact, then it is homeomorphic to a Hilbert space of the same weight.

By ℓQ2 , we denote the linear span of
∏
n∈N[−2−n, 2−n] in ℓ2. Remark that the pair (ℓ2, ℓ

Q
2 ) is homeo-

morphic to (ℓ2 ×Q, ℓf2 ×Q). D. Curtis, T. Dobrowolski, and J. Mogilski [22] studied on when σ-compact

convex sets in a topological linear space is homeomorphic to the linear subspaces ℓf2 or ℓQ2 of the separable
Hilbert space ℓ2. They established the following theorem:

Theorem 4.0.3. Let C be a σ-compact convex set in a completely metrizable linear space E. Suppose
that the closure clE C is an AR and not locally compact. Then, the pair (clE C,C) is homeomorphic to

(ℓ2, ℓ
f
2) if C is strongly countable-dimensional, and (clE C,C) is homeomorphic to (ℓ2, ℓ

Q
2 ) if C contains

an infinite-dimensional locally compact convex set.

Due to T. Dobrowolski [24] and T. Banakh [8], the above second assertion is strengthened as follows:

Theorem 4.0.4. Suppose that C is a σ-compact convex set in a completely metrizable linear space E,
whose closure clE C is an AR and not locally compact. If C contains a topological copy Q of the Hilbert
cube having infinite codimension in C, then (clE C,C) is homeomorphic to (ℓ2, ℓ

Q
2 ) .
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For two subsets A ⊂ B of a linear space, we shall say that A has infinite codimension in B if the
linear hull of A has infinite codimension in the linear hull of B.

Remark 8. In the second assertion of Theorem 4.0.3, the convex set C contains an infinite-dimensional
compact convex set Q homeomorphic to the Hilbert cube, see Proposition 3.5 of [22] and Theorem 3.1 in
Chapter III of [12]. Then it has infinite codimension in C, refer to Lemma 3.3 and Proposition 3.4 of [22].

The aim of this chapter is to extend the above theorems to non-separable convex sets in Fréchet spaces.

Main Theorem. Let C be a σ-locally compact convex set of weight τ > ℵ0 in a Fréchet space F . Then
the pair (clF C,C) is homeomorphic to (ℓ2(τ), ℓf2(τ)) if and only if C is strongly countable-dimensional,

and (clF C,C) is homeomorphic to (ℓ2(τ) ×Q, ℓf2(τ) ×Q) if and only if C contains a topological copy of
the Hilbert cube Q.

Remark 9. In the above theorem, we have C ̸= clF C. Indeed, by Proposition 2.4.1 in Chapter 2, we can
write C =

∪
n<ℵ0

Cn, where each Cn is a closed locally compact set in C. According to Proposition 3.1 of
[22], each compact subset of C is a Z-set in C. Since every Z-set is nowhere dense, for any n < ℵ0, the
closed subset Cn is nowhere dense in C. Therefore, the convex set C is of first category (, in fact, it is a
Zσ-set), which means that C ̸= clF C.

4.1 Proof of Main Theorem

This section is devoted to proving the main theorem. We shall use the modified West’s Characterization
Theorem 3.1.4 and the Classification Theorem 3.1.2 in Chapter 3.

Proof of Main Theorem. The “only if” part in the both statements are trivial. We shall show the “if”
parts. According to Theorem 4.0.2, the closure clF C is homeomorphic to the Hilbert space ℓ2(τ). Now
we consider two cases.

(1) First, assume that the convex set C is strongly countable-dimensional. By Theorems 3.1.4 and

3.1.2, the homeomorphism of the pairs (clF C,C) and (ℓ2(τ), ℓf2(τ)) will follow as soon as we check that C
absorbs finite-dimensional compact subsets of clF C. Fix a finite-dimensional compact subset A ⊂ clF C,
a closed subset B of A contained in C, and an open cover U of clF C. By the density of C in clF C
and the separability of A, there is a separable convex subset D ⊂ C such that B ⊂ D and A ⊂ clF D.
Moreover, using the fact that C is not separable, we can choose D so that the closure clF D is not
locally compact. By Theorem 4.0.3, the pair (clF D, clF D∩C) is homeomorphic to (ℓ2, ℓ

f
2), and hence by

Theorem 3.1.4, the set clF D ∩C absorbs finite-dimensional compact subsets of clF D. Consequently, for
the finite-dimensional compact subset A ⊂ clF D ⊂ clF C, there is an embedding f : A→ clF D ∩ C ⊂ C
such that f is U-close to idA and f |B = idB. This means that C absorbs finite-dimensional compact

subsets of clF C. Therefore the pair (clF C,C) is homeomorphic to (ℓ2(τ), ℓf2(τ)).
(2) Next, assume that C contains a subspace Q ⊂ C homeomorphic to the Hilbert cube. Similarly,

according to Theorem 3.1.4 and 3.1.2, the homeomorphism of the pairs (clF C,C) and (ℓ2(τ)×Q, ℓf2(τ)×Q)
will follow as soon as we check that C absorbs compact subsets of clF C. Take any compact subset
A ⊂ clF C, any closed subset B of A contained in C, and any open cover U of clF C. Using the density
of C in clF C and the separability of the compact set A ∪ Q, we can find a separable convex subset
D ⊂ C such that Q ∪ B ⊂ D and A ⊂ clF D. Then we may assume that D = clF D ∩ C. Since C is not
separable, the compact set Q has infinite codimension in C. So we can choose D to be so large that Q
has infinite codimension in D and clF D is not locally compact. Since C is σ-locally compact and D is
separable, the convex set D = clF D ∩ C is σ-compact. Since the topological copy Q of the Hilbert cube
has infinite codimension in D, the pair (clF D,D) is homeomorphic to (ℓ2, ℓ

Q
2 ) by Theorem 4.0.4. Due

to Theorem 3.1.4, the convex set D absorbs compact subsets of clF D. In particular, for the compact
subset A ⊂ clF D, there is an embedding f : K → D ⊂ C such that f is U-close to idA and f |B = idB.
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This implies that C absorbs compact subsets of clF C. Consequently, (clF C,C) is homeomorphic to

(ℓ2(τ) ×Q, ℓf2(τ) ×Q). This completes the proof. □

We do not know if the condition on Q to have infinite codimension in C in Theorem 4.0.4 can be
omitted.

Probrem 2. Assume that a subset A of a Fréchet space is homeomorphic to the Hilbert cube Q. Does A
contain a subset B, which is homeomorphic to the Hilbert cube and has infinite codimension in A?

4.2 Infinite-dimensional convex sets in Fréchet spaces

In the proof of the main theorem, we show any strongly countable-dimensional, σ-locally compact convex
set C in a Fréchet space F is weakly Mf

0(clF C)-absorptive. In fact, each infinite-dimensional convex
subset of a Fréchet space absorbs finite-dimensional compact subsets of its closure. For a subset K of a
linear space, we denote the convex hull of K by conv(K) and the flat hull of K by fl(K). By the same
argument of Lemma 3.2 in [22], we can show the following lemma:

Lemma 4.2.1. Let F be a Fréchet space and D be an infinite-dimensional convex set in F . Suppose
that A is a compact metrizable space, B is a closed subset of A, and f : A → clF D is a map such that
f(B) ⊂ conv(K) for some K ⊂ D. Then for each open cover U of clF D, there exists a map g : A → D
and a finite subset L ⊂ D such that g is U-close to f , g|B = f |B, and g(A) ⊂ conv(K ∪ L).

Proof. Fix an admissible F -norm ∥·∥ on F . Since A is a compact metrizable space, we can regard A ⊂ IN.
It follows from the Dugundji Extension Theorem that the convex set clF D is an AR, and hence the map
f extends to a map f̃ : IN → clF D. We use an admissible metric d on IN defined as follows:

d(x, y) =
∑
i∈N

2−i|x(i) − y(i)| for each x = (x(i))i∈N, y = (y(i))i∈N ∈ IN.

Let ϵ > 0 be a Lebesgue number of U with respect to f(A). Take δ > 0 so that for all x, y ∈ IN, if
d(x, y) < δ, then ∥f̃(x)− f̃(y)∥ < ϵ/4. Then we can choose n ∈ N such that the nth coordinate projection
p : IN → In × {0} is δ-close to idIN , where p(x) = (x(1), · · · , x(n), 0, · · · ) for each x ∈ IN. Note that f̃p is
ϵ/4-close to f̃ .

Since p(A) is a finite-dimensional compact metric space of dimension ≤ n, it has a finite open cover V
of order ≤ n+ 1 such that for all x, y ∈ p(A), if some V ∈ V contains both x and y, then ∥f̃(x)− f̃(y)∥ <
ϵ/(8(n+ 1)). Take a nerve N of V and a canonical map ϕ : p(A) → |N |. Then we can choose xV ∈ V and
ψ(V ) ∈ D for each V ∈ N (0) = V so that ∥ψ(V )−f̃(xV )∥ < ϵ/(8(n+1)). Let L = {ψ(V ) ∈ D | V ∈ N (0)},
which is the desired finite subset. The choice ψ extends to the affine map ψ̃ : |N | → conv(L). Then ψ̃ϕ
is ϵ/4-close to f̃ |p(A). Indeed, fix any x ∈ p(A), so we can write ϕ(x) =

∑
x∈V ∈V tV V ∈ |N |, where tV ∈ I

and
∑

x∈V ∈V tV = 1. Then we have

∥ψ̃ϕ(x) − f̃(x)∥ = ∥ψ̃(
∑

x∈V ∈V
tV V ) − f̃(x)∥ = ∥

∑
x∈V ∈V

tV ψ̃(V ) − f̃(x)∥

≤
∑

x∈V ∈V
∥tV (ψ̃(V ) − f̃(x))∥ ≤

∑
x∈V ∈V

∥ψ̃(V ) − f̃(x)∥

≤
∑

x∈V ∈V
(∥ψ̃(V ) − f̃(xV )∥ + ∥f̃(xV ) − f̃(x)∥)

< (n+ 1)(ϵ/(8(n+ 1)) + ϵ/(8(n+ 1))) = ϵ/4.

Hence ψ̃ϕp|A is ϵ/2-close to f .

34



On the other hand, the restriction f |B extends to a map f̄ : A → conv(K) because conv(K) is an
AR. Taking a map k : A→ I such that k(B) = {0} and {x ∈ A | ∥f̄(x) − f(x)∥ ≥ ϵ/2} ⊂ k−1(1), we can
define a map g : A→ conv(K ∪ L) as follows:

g(x) = (1 − k(x))f̄(x) + k(x)ψ̃ϕp(x).

Then g is the desired map. □

The following proposition is the non-separable version of Propositions 2.2 and 3.4 in [22].

Proposition 4.2.2. Let D be an infinite-dimensional convex set in a Fréchet space F . Then, D is weakly
Mf

0(clF D)-absorptive.

Proof. We use an admissible metric d on F . For simplicity, denote clF D by D. Let A be a finite-
dimensional compact set in D, B be a closed subset of A with B ⊂ D, and U be an open cover of D.
We shall construct an embedding f : A → D such that f is U-close to idA and f |B = idB. According
to Lemma 3 of [4], we can obtain an open refinement V of {U ∩D \ B | U ∈ U} that has the following
property:

(∗) For every map h : A \ B → D \ B, if h is V-close to idA\B, then h extends to the map h̃ : A → D

by h̃|B = idB.

Then, the space D \ B has a sequence of open covers V ≻⋆ V0 ≻⋆ V1 ≻⋆ · · · of meshVn < 2−n for each
n < ℵ0. It follows from the Dugundji Extension Theorem that D\B is an ANR. Due to Proposition 1.2.5,
we can choose open covers V ′

n and V ′′
n of D \ B for each n < ℵ0 so that V ′′

n ≺ V ′
n
⋆≺ Vn and they satisfy

the following condition:

(∗∗) Given a space Y and maps h1, h2 : Y → D \ B, if h1 is V ′′
n-close to h2, then h1 is V ′

n-homotopic to
h2.

We can write A \B =
∪
n∈NAn so that A1 ⊂ A2 ⊂ · · · are closed sets in A. Now, we shall inductively

construct maps fn : A \ B → D \ B, n < ℵ0, and a tower of finite subsets ∅ = D0 ⊂ D1 ⊂ · · · ⊂ D such
that

(1) fn|An is an embedding into conv(Dn) \B,

(2) fn+1|An = fn|An , and

(3) fn+1 is Vn-close to fn,

where f0 = idA\B and A0 = ∅. Assume that fn−1 and Dn−1 have been obtained. Applying Lemma 4.2.1,
we have a map g : An → D and a finite subset L ⊂ D such that g is V ′′

n−1-close to fn−1|An , g|An−1 =
fn−1|An−1 , and g(An) ⊂ conv(Dn−1 ∪ L). Note that g(An) ∩ B = ∅ and g is V ′

n−1-homotopic to fn−1|An

by (∗∗). Moreover, we can find a map k : An → I2 dimAn+2 such that An−1 = k−1(0) and k|An\An−1
is

an embedding (cf. Lemma 5.9.1 of [50]). Since D is infinite-dimensional, we can choose a subset L′ ⊂ D
consisting of 2 dimAn + 2 points so that L′ is affinely independent and L′ ∩ fl(Dn−1 ∪ L) = ∅. Let
Dn = Dn−1 ∪ L ∪ L′. Then, there exists an embedding

i : conv(Dn−1 ∪ L) × I2 dimAn+2 → conv(Dn)

such that i is V ′′
n−1-close to the projection onto the first coordinate and i(x,0) = x for all x ∈ conv(Dn−1∪

L). Define g′ : An → conv(Dn) by g′(x) = i(g(x), k(x)) for each x ∈ An. Observe that g′ is V ′′
n−1-close to g,

an extension of fn−1|An−1 , and an embedding into conv(Dn) \B. By (∗∗), we have g′ is V ′
n−1-homotopic

to g, so g′ is Vn−1-homotopic to fn−1|An . Since D \ B is an ANR, due to the Homotopy Extension
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Theorem 1.2.4, the embedding g′ extends to a map fn : A \ B → D \ B such that fn is Vn−1-homotopic
to fn−1, which is the required map.

Due to conditions (2) and (3), and meshVn < 2−n for each n < ℵ0, the sequence {fn}n<ℵ0 converges
to a map h : A \ B → D \ B. Then, h|An = fn|An for all n < ℵ0, so h(A \ B) ⊂ D \ B and h is V-close
to idA\B. It follows from (∗) that h extends to the map f : A → D by f |B = idB. By condition (1), the
map f is an embedding. It is clear that f is U-close to idA. Consequently, f is the desired embedding. □

4.3 An application

A full simplicial complex K is a simplicial complex such that any finite vertices of K spans a simplex of
K. We denote the full simplicial complex with the cardinality of vertices an infinite cardinal τ by ∆(τ).
The following assertion was proved by K. Sakai in 1987 (cf. Proposition 4.1 of [47]).

Proposition 4.3.1. The metric polyhedron |∆(ℵ0)|m is homeomorphic to ℓf2 .

For each infinite cardinal τ , the metric polyhedron |∆(τ)|m is a convex set in the Fréchet space ℓ1(τ)
and it is strongly countable-dimensional and σ-locally compact due to the following proposition.

Proposition 4.3.2. For any simplicial complex K, the metric polyhedron |K|m is a countable union of
closed sets which are discrete unions of finite-dimensional compact metrizable spaces.

Proof. For each simplex σ ∈ K, let σ̂ and ∂σ be the barycenter and the boundary of σ, respectively.
Given σ ∈ K \K(0) and t ∈ I,

σ[t] = {(1 − s)σ̂ + sx | x ∈ ∂σ, 0 ≤ s ≤ t}

is a closed subset of σ. Let A0 = K(0) and An = {σ[1 − 2−n] | σ ∈ K(n) \K(0)} for all n ∈ N, so An is a
discrete collection of finite-dimensional compact metrizable spaces in |K|m. Then |K|m =

∪
n∈ω(

∪
An).

Consequently, the assertion holds. □

Applying the main theorem, we can generalize Proposition 4.3.1 as follows:

Corollary 4.3.3. For every infinite cardinal τ , the pair (clℓ1(τ) |∆(τ)|m, |∆(τ)|m) is homeomorphic to

(ℓ2(τ), ℓf2(τ)).
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Chapter 5

A function space from a Peano space
into a one-dimensional locally compact
absolute retract and its compactification

Throughout this chapter, spaces are assumed to be regular. Given spaces X and Y , we denote by C(X,Y )
the space of all maps from X to Y with the compact-open topology, that is, the topology of C(X,Y ) is
generated by the following set

{f ∈ C(X,Y ) | K is a compact set in X, U is an open set in Y, f(K) ⊂ U}.

When X is locally compact and σ-compact, and Y is metrizable, the space C(X,Y ) is metrizable. In the
paper [36], it was shown that if X is an infinite, locally compact, locally connected, separable metrizable
space, then C(X,R) has a natural compactification C(X,R) such that the pair (C(X,R),C(X,R)) is
homeomorphic to (Q, s) (cf. the compact case was proved in [51]). We shall generalize this result by
replacing R with a 1-dimensional locally compact AR as follows:

Main Theorem. Let X be an infinite, locally compact, locally connected, separable metrizable space, and
let Y be a 1-dimensional locally compact AR. Suppose that X is non-discrete or Y is non-compact. Then
the function space C(X,Y ) has a natural compactification C(X,Y ) such that the pair (C(X,Y ),C(X,Y ))
is homeomorphic to (Q, s).

Remark 10. In the main theorem, when X is discrete and Y is compact, the function space C(X,Y ) is
the product space Y X , and hence it is homeomorphic to Q due to Toruńczyk’s characterization of the
Hilbert cube (Corollary 1.3.3 of Chapter 1, cf. [42, Corollary 8.1.2]).

The Fell topology on a hyperspace Cld∗(X) of closed sets in a space X is generated by the following
collection

{U− | U is an open set in X} ∪ {(X \K)+ | K is a compact set in X},
and the space Cld∗(X) with the Fell topology is denoted by Cld∗

F (X). In the case X is compact, the
Fell topology on Cld∗(X) coincides with the Vietoris topology and the empty set ∅ is an isolated point of
Cld∗

F (X). It is known that Cld∗
F (X) is compact metrizable if and only if X is locally compact separable

metrizable, see Theorem 5.1.5 of [11]. When X is a locally compact, locally connected space, and Y is
a locally compact space, the function space C(X,Y ) can be regarded as a subspace of the hyperspace
Cld∗

F (X × Y ), where each f ∈ C(X,Y ) is identified with the graph of f in X × Y , refer to Lemma 2.1
of [36]. Thus, if X is locally compact, locally connected, separable metrizable, and Y is locally compact
separable metrizable, then the closure clCld∗F (X×Y ) C(X,Y ) of C(X,Y ) in Cld∗

F (X × Y ) is a metrizable
compactification of C(X,Y ). In [36], the closure clCld∗F (X×R) C(X,R) was the desired compactification

C(X,R), where R = [−∞,∞] is the extended real line:
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Theorem 5.0.1. Let X be an infinite, locally compact, locally connected, separable metrizable space.
Then the pair (clCld∗F (X×R) C(X,R),C(X,R)) is homeomorphic to (Q, s).

We will prove that a space Y is a 1-dimensional locally compact AR if and only if Y has a dendrite
compactification Ỹ such that the remainder Ỹ \ Y is closed and contained in the set of all end points
of Ỹ (Theorem 5.4.2). Taking a dendrite compactification Ỹ of Y as above, we will adopt the closure
cl
Cld∗F (X×Ỹ )

C(X,Y ) as the compactification C(X,Y ) in the main theorem.

We denote the set consisting of all subsets of a space Y by P(Y ). A set-valued function ϕ : X → P(Y )
is said to be upper semi-continuous (briefly, u.s.c.) if ϕ−1(U+) = {x ∈ X | ϕ(x) ⊂ U} is an open subset
of X for every open subset U of Y . Let

USCC(X,Y ) = {ϕ : X → Cld(Y ) | ϕ is u.s.c. and ϕ(x) is connected for every x ∈ X}.

Due to Lemma 3.1 of [36], identifying each ϕ ∈ USCC(X,Y ) with the graph of ϕ, we can regard
USCC(X,Y ) as a subspace of Cld∗

F (X × Y ). Under our assumption, choosing a dendrite compacti-
fication Ỹ of Y as above, we can show that if X is connected, then the closure cl

Cld∗F (X×Ỹ )
C(X,Y )

coincides with USCC(X, Ỹ ) (Theorem 5.2.1). In Section 5.6, we will show that X is locally compact and
locally connected if the above space USCC(X, Ỹ ) is homeomorphic to Q, which is the converse of Main
Theorem.

As mentioned in Proposition 6.3 of [36], the pair (clCld∗F (I×R) C(I,R),C(I,R)) is not homeomorphic
to (Q, s). In fact, the space C(I,R) is not homotopy dense in the closure clCld∗F (I×R) C(I,R). Even if we

take the one-point compactification Ỹ , the above closure is not necessarily the desired compactification
(Proposition 5.7.1). The n-dimensional Euclidean space Rn is a typical space that is a n-dimensional
locally compact AR. It has a compactification Rn that is homeomorphic to the n-dimensional closed unit
ball. For each locally compact separable metrizable space X, the function space C(X,Rn) is homeomor-
phic to Hilbert space ℓ2 (Theorem 5.5.4). However, the pair (clCld∗F (X×Rn) C(X,Rn),C(X,Rn)) is not

necessarily homeomorphic to (Q, s) when n ≥ 2. In fact, if X is the unit (n − 1)-sphere, then C(X,Rn)
is not homotopy dense in clCld∗F (X×Rn) C(X,Rn) (Proposition 5.7.2).

5.1 A convex structure on a dendrite

The standard unit simplex of dimension n− 1 in Rn is denoted by Pn, namely

Pn =

{
t = (t(i))ni=1 ∈ Rn

∣∣∣∣∣ 0 ≤ t(i) ≤ 1,
n∑
i=1

t(i) = 1

}
.

E. Michael [41] (cf. [46, Part B, Definitions 4.9 and 4.10]) introduced the convexity to subsets of metric
spaces as follows:

Definition 1. A convex structure on a metric space X = (X, d) is a sequence (Mn, kn)n∈N of pairs of
subsets Mn ⊂ Xn and functions kn : Mn × Pn → X such that the following conditions hold:

(1) If x ∈M1, then k1(x, 1) = x;

(2) If x ∈Mn, n ≥ 2, and 1 ≤ i ≤ n, then ∂ix ∈Mn−1 and kn(x, t) = kn−1(∂ix, ∂it) for any t ∈ Pn with
t(i) = 0, where ∂i is the operator of forgetting the ith coordinate;

(3) If x ∈Mn, n ≥ 2, with x(i) = x(i+ 1) for some 1 ≤ i < n and t ∈ Pn, then

kn(x, t) = kn−1(∂ix, (t(1), · · · , t(i− 1), t(i) + t(i+ 1), t(i+ 2), · · · , t(n)));
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(4) For each n ∈ N and each x ∈Mn, the function kn(x, ∗) : Pn ∋ t 7→ kn(x, t) ∈ X is continuous;

(5) For each ϵ > 0, there exists a neighborhood U of the diagonal in X ×X such that for every n ∈ N
and every x, y ∈Mn, if (x(i), y(i)) ∈ U for all 1 ≤ i ≤ n, then

d(kn(x, t), kn(y, t)) < ϵ for all t ∈ Pn.

Then a subset C ⊂ X is said to be convex with respect to (Mn, kn)n∈N if Cn ⊂Mn and kn(Cn×Pn) ⊂ C
for every n ∈ N.

It is said that a set-valued function ϕ : X → P(Y ) is lower semi-continuous (briefly, l.s.c.) if ϕ−1(U−) =
{x ∈ X | ϕ(x)∩U ̸= ∅} is open in X for every open subset U of Y . A continuous selection for a set-valued
function ϕ : X → P(Y ) is a map (i.e., a continuous function) f : X → Y such that f(x) ∈ ϕ(x) for every
x ∈ X. Michael [41] (cf. [46, Part B, Theorem 4.11]) established the selection theorem for metric spaces
with convex structures as follows:

Theorem 5.1.1. Let X be a paracompact space and Y = (Y, d) a metric space with a convex structure
(Mn, kn)n∈N. For each l.s.c. set-valued function ϕ : X → Cld(Y ), if each ϕ(x) is complete with respect to
d and convex with respect to (Mn, kn)n∈N, then ϕ has a continuous selection. □

Michael [41] (cf. [46, Part B, Definition 4.12 and Theorem 4.13]) defined also geodesic structures on
metric spaces, which can inductively generate convex structures.

Definition 2. A geodesic structure on a metric space X = (X, d) is a pair (M,k) of a subset M ⊂ X2

and a function k : M × I → X satisfying the following conditions:

(1) If (x, x) ∈M , then k((x, x), t) = x for all t ∈ I;

(2) If (x1, x2) ∈M , then k((x1, x2), 0) = x1 and k((x1, x2), 1) = x2;

(3) For each (x1, x2) ∈M and each t ∈ I, if ((k((x1, x2), t), x2) ∈M , then

k((k((x1, x2), t), x2), s) = k((x1, x2), t+ s(1 − t)) for all s ∈ I;

(4) For each x ∈M , the function k(x, ∗) : I ∋ t 7→ k(x, t) ∈ X is continuous;

(5) For each ϵ > 0, there exist neighborhoods V ⊂ U of the diagonal in X × X such that (x, y) ∈ U
implies that d(x, y) < ϵ, and for every (x1, y1), (x2, y2) ∈M , if (x1, x2) ∈ U and (y1, y2) ∈ V , then

(k((x1, y1), t), k((x2, y2), t)) ∈ U for all t ∈ I.

Then it is said that a subset G ⊂ X is geodesic with respect to (M,k) if G2 ⊂M and k(G2 × I) ⊂ G.

Proposition 5.1.2. If a metric space has a geodesic structure, then it has a convex structure with respect
to which every geodesic set is convex. □

Remark 11. It is easy to see that the functions kn, n ∈ N, and k in Definitions 1 and 2 are continuous
because of the conditions (4) and (5) of each definition.

We will prove that dendrites have convex structures.

Proposition 5.1.3. Every dendrite D = (D, d) with a convex metric has a convex structure (Dn, kn)
with respect to which any connected subset of it is convex.
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Proof. Due to Proposition 5.1.2, it is sufficient to show that D has a geodesic structure such that every
connected subset is geodesic. Let γ : D2 × I → D be the map as in Lemma 1.5.1 of Chapter 1. We
shall first show that (D2, γ) is a geodesic structure of D, that is, it satisfies the conditions (1), (2), (3),
(4) and (5) of Definition 2. Clearly, the conditions (1), (2) and (4) are satisfied from the definition. By
the property of d and the uniqueness of the arcs in D, the condition (3) holds. To check the condition
(5), for each ϵ > 0 choose a neighborhood U = {(x, y) ∈ D2 | d(x, y) < ϵ} of the diagonal in D2. Then
the condition (†) of Lemma 1.5.1 implies the condition (5). Consequently, the pair (D2, γ) is a geodesic
structure.

It remains to show that if C is a connected subset in D, then C is geodesic. Indeed, for any x, y ∈ C
and t ∈ I, we have γ(x, y, t) = γx,y(t) ∈ C since C is arcwise connected from Fact 2(2) and γx,y(I) is the
unique arc between x and y from Fact 2(1). Hence C is geodesic. □

5.2 The closure of C(X,D) in Cld∗F (X ×D)

In this section, we shall show that the result in Theorem 4.1 of [36] (cf. [31, Theorem 1.10]) is valid for
dendrites, that is,

Theorem 5.2.1. For each locally compact, locally connected, paracompact space X with no isolated points
and each dendrite D, the closure clCld∗F (X×D) C(X,D) of C(X,D) coincides with USCC(X,D).

For each A ⊂ X × Y and each x ∈ X, let A(x) = {y ∈ Y | (x, y) ∈ A}. When Y is compact, due to
Proposition 3.1 of [36], A is closed in X×Y if and only if the set-valued function A : X ∋ x 7→ A(x) ∈ P(Y )
is u.s.c. First, we shall extend Lemma 4.1 of [36] to the following lemma:

Lemma 5.2.2. Let X be a locally compact, locally connected space, and let Y be a compact connected
space. Then USCC(X,Y ) is closed in Cld∗

F (X × Y ).

Proof. Fix any A ∈ Cld∗
F (X × Y ) \ USCC(X,Y ). Then there exists x ∈ X such that A(x) = ∅ or A(x)

is disconnected. When A(x) = ∅, we have an open neighborhood W = (X × Y \ {x} × Y )+ of A in
Cld∗

F (X ×Y ). For each B ∈W , we get B(x) = ∅, so B /∈ USCC(X,Y ). Therefore W ∩USCC(X,Y ) = ∅.
When A(x) is disconnected, there exist disjoint open sets U , V in Y such that A(x)∩U ̸= ∅, A(x)∩V ̸=

∅ and A(x) ⊂ U ∪ V . Then C = Y \ (U ∪ V ) is a non-empty compact set because of the compactness and
connectedness of Y . Since X is locally compact and locally connected, there are a compact connected
neighborhood Nx of x in X and an open neighborhood NC of C in Y such that (Nx×NC)∩A = ∅. Then
A has an open neighborhood

W = (intNx × U)− ∩ (intNx × V )− ∩ (X × Y \Nx × C)+

in Cld∗
F (X × Y ). To see W ∩ USCC(X,Y ) = ∅, take any B ∈ W . If B(y) = ∅ for some y ∈ X, then

B /∈ USCC(X,Y ). Otherwise, we have the u.s.c. set-valued function B : X ∋ z 7→ B(z) ∈ Cld(Y ). Since
B ∩ (Nx × C) = ∅ and Y \ C = U ∪ V , we see that

NU = {z ∈ Nx | B(z) ∩ U ̸= ∅} = Nx \ {z ∈ X | B(z) ⊂ V } and

NV = {z ∈ Nx | B(z) ∩ V ̸= ∅} = Nx \ {z ∈ X | B(z) ⊂ U}

are closed in Nx. Note that Nx = NU ∪ NV . Since B ∈ (intNx × U)− ∩ (intNx × V )−, there exist
points xU , xV ∈ Nx such that B(xU ) ∩ U ̸= ∅ and B(xV ) ∩ V ̸= ∅, that is, NU ̸= ∅ and NV ̸= ∅. By the
connectedness ofNx, there exists y ∈ NU∩NV . ThenB(y)∩U ̸= ∅, B(y)∩V ̸= ∅ andB(y) ⊂ Y \C = U∪V ,
which means that B(y) is disconnected. Hence B /∈ USCC(X,Y ). Thus, we have W ∩ USCC(X,Y ) = ∅.
Consequently, the space USCC(X,Y ) is closed in Cld∗

F (X × Y ). □

Using Michael’s Selection Theorem 5.1.1, we have the following:
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Lemma 5.2.3. Let X be a paracompact space with no isolated points and let D be a dendrite. Then
C(X,D) is dense in USCC(X,D).

Proof. Let ϕ ∈ USCC(X,D) andW be a neighborhood of ϕ in Cld∗
F (X×D). Then there exist open subsets

Vi ⊂ X×D, i = 1, · · · ,m, and a compact subset K ⊂ X×D such that ϕ ∈
∩m
i=1 V

−
i ∩(X×D\K)+ ⊂W .

For each x ∈ X, since D is locally compact and locally connected, ϕ(x) is a continuum, K(x) is compact
and ϕ(x) ∩ K(x) = ∅, we can find a continuum Ax ⊂ D such that ϕ(x) ⊂ intAx and Ax ∩ K(x) = ∅.
Then each x ∈ X has an open neighborhood Ux such that (Ux × Ax) ∩K = ∅ and ϕ(x′) ⊂ intAx for all
x′ ∈ Ux because Ax is compact and ϕ is u.s.c. Since X is paracompact, the open cover {Ux | x ∈ X} has a
locally finite open refinement {Uλ | λ ∈ Λ}. For each λ ∈ Λ, choose x(λ) ∈ X so that Uλ ⊂ Ux(λ) and let
Aλ = Ax(λ). By the local finiteness of {Uλ | λ ∈ Λ}, we can define a set-valued function ψ : X → Cld(D) by
ψ(x) =

∪
{Aλ | x ∈ Uλ}. Then ψ(x) is a continuum for every x ∈ X. Indeed, for each λ ∈ Λ with x ∈ Uλ,

we have ϕ(x) ⊂ Ax(λ) = Aλ because Uλ ⊂ Ux(λ). Hence ψ(x) is continuum as a finite union of continua
containing the continuum ϕ(x). Moreover, ψ is l.s.c. In fact, {x ∈ X | ψ(x)∩V ̸= ∅} =

∪
{Uλ | Aλ∩V ̸= ∅}

for each open subset V ⊂ D.
Since X has no isolated points, we can choose (xi, yi) ∈ ψ ∩Vi for each i = 1, · · · ,m so that xi ̸= xj if

i ̸= j. Take an admissible convex metric d onD (Fact 3). By virtue of Proposition 5.1.3, the dendriteD has
a convex structure (Dn, kn)n∈N for d such that every continuum in D is convex with respect to it. Applying
Theorem 5.1.1 to the l.s.c. convex-valued function ψ, we can obtain a continuous selection f : X → D
for ψ such that f(xi) = yi for each i = 1, · · · ,m. It is easy to see that f ∈

∩m
i=1 V

−
i ∩ (X × D \ K)+.

Consequently, C(X,D) is dense in USCC(X,D). □

Proof of Theorem 5.2.1. Combining Lemmas 5.2.2 and 5.2.3 implies Theorem 5.2.1. □

5.3 The homotopy denseness of C(X,D) in USCC(X,D)

This section is devoted to proving the following theorem:

Theorem 5.3.1. For each non-degenerate Peano continuum X and each dendrite D, the function space
C(X,D) is homotopy dense in USCC(X,D).

In the rest of this section, we assume that X = (X, dX) is a Peano continuum with a convex metric
and D = (D, dD) is a dendrite with a convex metric. Moreover, we define an admissible metric ρ for the
product X ×D as follows:

ρ((x1, y1), (x2, y2)) = max{dX(x1, x2), dD(y1, y2)}

and denote by ρH the Hausdorff metric on Cld(X ×D) induced from ρ. Here, the relative topology on
Cld(X×D) ⊂ Cld∗

F (X×D) is induced by the Hausdorff metric ρH . According to Theorem 5.2.1, the proof
of Theorem 5.3.1 is reduced to showing that (C(X,D), ρH) satisfies the condition (hd) in Lemma 1.2.7.
The following lemma can be proved by the same technique in the proof of Theorem 1.9 of [31].

Lemma 5.3.2. For each map f : X → D and each point x ∈ X, the subset A = Nρ(f, ϵ)(x) of D is
connected.

Proof. It suffices to prove that A is arcwise connected. For each a1, a2 ∈ A, take the path γa1,a2 as in
Lemma 1.5.1. We shall show that a = γa1,a2(t) ∈ A for each t ∈ I. Since (x, ai) ∈ Nρ(f, ϵ) for i = 1, 2, we
can take xi ∈ X so that d((x, ai), (xi, f(xi))) < ϵ. Then dX(x, xi) < ϵ and dD(ai, f(xi)) < ϵ for i = 1, 2.
Let b = γf(x1),f(x2)(t). It follows from Lemma 1.5.1 that

dD(a, b) = dD(γa1,a2(t), γf(x1),f(x2)(t)) ≤ max
i=1,2

dD(ai, f(xi)) < ϵ.
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Since dX is a convex metric, the ϵ-ball BdX (x, ϵ) of x in X is connected. It follows from the continuity
of f that f(BdX (x, ϵ)) is also connected, so it is arcwise connected due to Fact 2(2). The uniqueness of
arcs in D implies that b = γf(x1),f(x2)(t) ∈ f(BdX (x, ϵ)). Therefore, there exists y ∈ BdX (x, ϵ) such that
b = f(y). Note that

d((x, a), (y, b)) = max{dX(x, y), dD(a, b)} < ϵ,

that is, (x, a) ∈ Nρ(f, ϵ). Consequently, a ∈ A. □

Using convex structures on dendrites, we can obtain the same result as Lemma 2 of [51] under our
assumption.

Lemma 5.3.3. Let K be a locally finite countable simplicial complex. If X has no isolated points, then
any map f : K(0) → C(X,D) extends to a map f̃ : |K| → C(X,D) such that

(∗) diamρH f̃(σ) ≤ 4 diamρH f(σ(0)) for each σ ∈ K.

Proof. By Proposition 5.1.3, the dendrite D has a convex structure (Dn, kn)n∈N such that every connected
subset is convex. For each simplex σ ∈ K \ K(0), let ϵσ = 3 diamρH f(σ(0))/2 ≥ 0. Moreover, for each
vertex v ∈ K(0) with diamρH f(St(v,K)(0)) > 0, let

ϵv = min{diamρH f(σ(0)) | σ ∈ St(v,K), diamρH f(σ(0)) > 0} > 0,

where St(v,K) is the star at v in K.
Take the barycenter σ̂ for each σ ∈ K and the barycentric subdivision SdK of K. For each u ∈ K(0),

let g(u) = f(u), and for each τ ∈ K \K(0) with diamρH f(τ (0)) = 0, choose w ∈ τ (0) and let g(τ̂) = f(w).
Since K is locally finite and X has no isolated points, for each v ∈ K(0) with ϵv > 0, we can inductively
take a finite subset Av ⊂ X and an open subset Uv ⊂ X so that f(v) ⊂ Nρ(f(v)|Av , ϵv), Av ⊂ Uv and
clUv∩clUv′ = ∅ if v ̸= v′ ∈ σ(0) for some σ ∈ K with diamρH f(σ(0)) > 0. Then we have a map rv : X → I
such that rv(Av) = 1 and rv(X \ Uv) = 0. Give K(0) a total order ⩽. For each σ ∈ K, we can write
σ(0) = {v1, · · · , vm}, where v1 ⩽ · · · ⩽ vm. Now we define g(σ̂) ∈ C(X,D) as follows:

g(σ̂)(x) =

{
km((f(v1)(x), · · · , f(vm)(x)), (1/m, · · · , 1/m)) if x /∈

∪m
i=1 Uvi ,

km((f(v1)(x), · · · , f(vm)(x)), ϕj(x)) if x ∈ clUvj ,

where the m-tuple ϕj(x) ∈ Pm is defined by

ϕj(x)(i) =

{
(1 − rvj (x))/m if i ̸= j,
(1 + (m− 1)rvj (x))/m if i = j.

Thus f has an extension g : SdK(0) → C(X,D).
It is easily observed that

(⋆) g(σ̂)(x) = f(v)(x) for every σ ∈ K with diamρH f(σ(0)) > 0, v ∈ σ(0) and x ∈ Av.

For each σ ∈ K such that diamρH f(σ(0)) > 0, since diamρH f(σ(0)) < ϵσ, we have f(u) ⊂ Nρ(f(v), ϵσ)
for every u, v ∈ σ(0), which implies that f(u)(x) ∈ Nρ(f(v), ϵσ)(x) for each x ∈ X. It follows from
Lemma 5.3.2 thatNρ(f(v), ϵσ)(x) is connected, so convex with respect to (Dn, kn)n∈N, and hence g(σ̂)(x) ∈
Nρ(f(v), ϵσ)(x) for each x ∈ X. Therefore, we have

(⋆⋆) g(σ̂) ⊂ Nρ(f(v), ϵσ) for every σ ∈ K with diamρH f(σ(0)) > 0 and v ∈ σ(0).
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Next, extend g to a map f̃ : |K| = |SdK| → C(X,D) as follows:

f̃

( m∑
i=1

tiσ̂i

)
(x) = km((g(σ̂1)(x), · · · , g(σ̂m)(x)), (t1, · · · , tm))

for each σ1 ≼ · · · ≼ σm ∈ K and (t1, · · · , tm) ∈ Pm.

Recall that the symbol τ ′ ≼ τ means that τ ′ is a face of τ . Let σ ∈ K, v ∈ σ(0) and y ∈ | St(v, SdK)| ∩ σ.
Then we can write y =

∑m
i=1 tiσ̂i, where v = σ1 ≼ · · · ≼ σm = σ ∈ K and (t1, · · · , tm) ∈ Pm. In the

case diamρH f(σ(0)) = 0, we have f̃(y) = f(v) because g(σ̂i) = f(v) for all i = 1, · · · ,m. Otherwise,
we get d(f̃(y), f(v)) < ϵσ. Indeed, when x ∈ Av, it follows from (⋆) that g(σ̂i)(x) = f(v)(x) for every
i = 1, · · · ,m, and hence

f̃(y)(x) = f̃

( m∑
i=1

tiσ̂i

)
(x) = km((g(σ̂1)(x), · · · , g(σ̂m)(x)), (t1, · · · , tm))

= km((f(v)(x), · · · , f(v)(x)), (t1, · · · , tm)) = f(v)(x).

Therefore f(v)|Av ⊂ f̃(y), which means that

f(v) ⊂ Nρ(f(v)|Av , ϵv) ⊂ Nρ(f̃(y), ϵσ).

On the other hand, g(σ̂i) = f(v) if diamρH f(σ
(0)
i ) = 0, i = 2, · · · ,m, and it follows from (⋆⋆) that

g(σ̂i) ⊂ Nρ(f(v), ϵσi) ⊂ Nρ(f(v), ϵσ)

if diamρH f(σ
(0)
i ) > 0, i = 2, · · · ,m. For every z ∈ X, since Nρ(f(v), ϵσ)(z) is also convex with respect to

(Dn, kn)n∈N by Lemma 5.3.2, we have

f̃(y)(z) = f̃

( m∑
i=1

tiσ̂i

)
(z) = km((g(σ̂1)(z), · · · , g(σ̂m)(z)), (t1, · · · , tm)) ∈ Nρ(f(v), ϵσ)(z),

so f̃(y) ⊂ Nρ(f(v), ϵσ). Hence ρH(f̃(y), f(v)) < ϵσ.
To verify (∗), fix any y, y′ ∈ σ ∈ K and choose v, v′ ∈ σ(0) so that y ∈ |St(v, SdK)| and y′ ∈

| St(v′, SdK)|. Then we get

ρH(f̃(y), f̃(y′)) ≤ ρH(f̃(y), f(v)) + ρH(f(v), f(v′)) + ρH(f̃(y′), f(v′))

< ϵσ + diamρH f(σ(0)) + ϵσ = 4 diamρH f(σ(0)).

The proof is complete. □

Proof of Theorem 5.3.1. Combining Theorem 5.2.1 with Lemmas 1.2.7 and 5.3.3, we can establish Theo-
rem 5.3.1. □

5.4 A dendrite compactification of a one-dimensional locally compact
absolute retract

In this section, we show that every 1-dimensional locally compact AR has a dendrite compactification.

Lemma 5.4.1. Let D be a dendrite with E the end points. Then D \ E is homotopy dense in D.
Consequently, the product space (D \ E)Λ is homotopy dense in DΛ for any set Λ.
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Proof. Let γ : D2 × I → D be the map obtained in Lemma 1.5.1. Fixing x0 ∈ D \ E, we can define the
desired homotopy h : D × I → D as h(x, t) = γ(x, x0, t) for each x ∈ D and each t ∈ I. □

D.W. Curtis showed in Proposition 2.4 and Lemma 3.2 of [20] that every locally compact, connected,
locally connected, metrizable space Y has a Peano compactification Ỹ such that the remainder Ỹ \ Y is
locally non-separating, that is, the following holds:

• For each non-empty connected open set U in Ỹ , the subset U ∩ Y is a non-empty connected set.

Using this result, we can characterize 1-dimensional locally compact ARs as follows:

Theorem 5.4.2. A space Y is a 1-dimensional locally compact AR if and only if Y has a dendrite
compactification Ỹ such that the remainder Ỹ \ Y is closed and contained in the set of end points of Ỹ .

Proof. First, we will prove the “if” part. The space Y is locally compact and 1-dimensional because Y
is open in the dendrite Ỹ . Moreover, it follows from Lemma 5.4.1 that Y is homotopy dense in Ỹ . Since
the dendrite Ỹ is an AR, so the homotopy dense subset Y is according to Proposition 1.2.6 in Chapter 1.

Next, we shall show the “only if” part. Due to Curtis’ result mentioned in the above, since Y is locally
compact, connected, locally connected and metrizable, we can obtain a Peano compactification Ỹ of Y
that has a locally non-separating remainder. Then Ỹ has no simple closed curves, which means that it is
a dendrite. Indeed, suppose that there exists an simple closed curve C ⊂ Ỹ . Since Ỹ is locally connected
and C is homeomorphic to a circle, we can find non-empty connected open sets Ui ⊂ Ỹ , i = 1, 2, 3, 4,
so that Ui ∩ Uj = ∅ if and only if |i − j| = 2, and S ⊂

∪4
i=1 Ui. As the remainder Ỹ \ Y is locally

non-separating, each Vi = Ui ∩ Y is a non-empty connected open set in Y and Vi ∩ Vj = ∅ if and only
if |i − j| = 2. Then each Vi is arcwise connected because it is connected, locally connected, completely
metrizable (cf. [50, Theorem 5.14.5]). Fix points xi+1 ∈ Vi∩Vi+1, i = 1, 2, 3, and x1 ∈ V1∩V4, and choose
arcs γi : I → Vi from xi to xi+1, i = 1, 2, 3, and γ4 : I → V4 from x4 to x1. It is easy to find a simple closed
curve C ′ in the union

∪4
i=1 γi(I) ⊂ Y . Then we have a retraction r : Y → C ′ because Y is 1-dimensional

and C ′ is homeomorphic to a circle (cf. [50, Theorem 5.2.3]). Since Y is an AR, the curve C is also an
AR, which is a contradiction. Thus Ỹ is a dendrite.

It remains to show that the remainder Ỹ \ Y is closed and contained in the set of all end points of
Ỹ . From the local compactness of Y , it easily follows that Ỹ \ Y is closed. Moreover, assume that there
exists a point x ∈ Ỹ \ Y such that x is not an end point, that is, x is a cut point (cf. [62, Chapter V,
(1.1)]). Then we can obtain disjoint non-empty open sets W1 and W2 so that Ỹ \ {x} = W1 ∪W2. Since
Y is connected, it misses the one of W1 or W2, which contains a non-empty connected open set. This
contradicts that the remainder Ỹ \ Y is locally non-separating. Hence the set of all end points of Ỹ
contains Ỹ \ Y . Thus the proof is complete. □

5.5 Proof of Main Theorem

In this section, we shall prove the main theorem. From now on let X and Y be spaces under the assumption
in the main theorem and fix a dendrite compactification Ỹ of Y such that the remainder Ỹ \Y is closed in
Ỹ and contained in the set of all end points of Ỹ . Remark that Y is homotopy dense in Ỹ by Lemma 5.4.1.
Then we have the following:

Proposition 5.5.1. The space C(X,Y ) is homotopy dense in C(X, Ỹ ). □

For simplicity, we write

C(X,Y ) = cl
Cld∗F (X×Ỹ )

C(X,Y ) = cl
Cld∗F (X×Ỹ )

C(X, Ỹ ),
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so it is a compactification of C(X,Y ). Furthermore, if X is connected, it coincides with USCC(X, Ỹ ) by
Theorem 5.2.1.

R.D. Anderson [2, 3] introduced the concept of cap sets for the Hilbert cube Q to characterize subsets
M ⊂ Q such that the pairs (Q,M) are homeomorphic to (Q,Q \ s) (cf. [18, Lemma 8.1]). A subset
M ⊂ Q is a cap set for Q if M is a Zσ-set and has the following property:

(cap) For each pair A, B of compact sets in Q with B ⊂ A∩M and each ϵ > 0, there exists an embedding
h : A→M such that h|B = idB and d(h(a), a) < ϵ for every a ∈ A, where d is an admissible metric
for Q.

According to the above, we only need to check that C(X,Y ) is homeomorphic to Q and the complement
C(X,Y ) \ C(X,Y ) is a cap set for C(X,Y ).

5.5.1 The case X is discrete.

First, we consider the case that X is discrete. Then X is homeomorphic to N and Y must be non-compact.

Lemma 5.5.2. For every discrete space W and every compact space Z, the function space C(W,Z) is
closed in Cld∗

F (W × Z).

Proof. Remark that for each A ∈ Cld∗
F (W ×Z), if A(x) is a singleton for every x ∈W , then A ∈ C(W,Z)

becauseW is discrete. Hence, for anyB ∈ Cld∗
F (W×Z)\C(W,Z), we have some x ∈W such thatB(x) = ∅

or B(x) is non-degenerate. In the case B(x) = ∅, we take an open neighborhood (W × Z \ {x} × Z)+

of B in Cld∗
F (W × Z), which misses C(W,Z). In the case B(x) is non-degenerate, we can find disjoint

non-empty open subsets U and V of Z the both of which meet B(x). Then ({x} × U)− ∩ ({x} × V )− is
an open neighborhood of B in Cld∗

F (W × Z). For every B′ ∈ ({x} × U)− ∩ ({x} × V )−, it is clear that
B′(x) is non-degenerate, hence B′ ∈ Cld∗

F (W × Z) \ C(W,Z). As a result, the space C(W,Z) is closed in
Cld∗

F (W × Z). □

Applying this lemma to our setting, we have (C(X,Y ),C(X,Y )) coincides with (C(X, Ỹ ),C(X,Y )),
which is homeomorphic to (Ỹ N, Y N) because X and N are homeomorphic. Therefore, we can establish
the main theorem in the case X is discrete as a corollary of the following theorem:

Theorem 5.5.3. Let D be a dendrite and let E0 be a non-empty closed set of D which consists of end
points. Then the pair (DN, (D \E0)

N) of the countable products is homeomorphic to the pair (Q, s).

Proof. Let Z = D \E0 for simplicity. Since Z is a non-compact separable completely metrizable AR, the
countable product ZN is homeomorphic to ℓ2 due to Theorem 1.3.6. Moreover, D is a non-degenerate
compact AR. Using Toruńczyk’s characterization (Corollary 1.3.3, cf. [42, Corollary 8.1.2]), we can show
that DN is homeomorphic to Q. Let M = DN \ ZN. It is sufficient to prove that the pair (DN,M) is
homeomorphic to (Q,Q \ s).

First, the product space ZN is a homotopy dense Gδ set in DN by Lemma 5.4.1. It follows from
Proposition 1.3.1 that the complement M is a Zσ-set in DN. The countable product DN assigns a metric
d defined by

d(x, y) =
∑
i∈N

2−idD(x(i), y(i)) for each x, y ∈ DN,

where dD is an admissible convex metric on D. Then the rest of the proof is to show the following:

(∗) For any compact subsets A, B contained in DN with B ⊂ A ∩M and each ϵ > 0, there exists an
embedding h : A→M such that h|B = idB and d(h(a), a) < ϵ for every a ∈ A,
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Define a map α : A → I by α(a) = min{1, ϵ, dD(a,B)}/3. Since ZN is homotopy dense in DN, we can
obtain a map f : A→ DN so that f(A \B) ⊂ ZN, f |B = idB and dD(f(a), a) < α(a) for every a ∈ A. Let
Zi be a copy of Z for each i ∈ N. Then

∏
i∈N Z2i and

∏
i∈N Z2i−1 are homeomorphic to ZN, so they are

homeomorphic to ℓ2. Here we can take admissible metrics de on
∏
i∈N Z2i and do on

∏
i∈N Z2i−1 defined

as follows:

de(x, y) =
∑
i∈N

2−2idD(x(2i), y(2i)) and do(x, y) =
∑
i∈N

2−2i+1dD(x(2i− 1), y(2i− 1)).

It is well known that Hilbert spaces are strongly universal for the class of completely metrizable spaces
of the same weight (cf. [59, Proposition 2.1]). Since A \ B is completely metrizable and

∏
i∈N Z2i is

homeomorphic to ℓ2, we can find an embedding ge : A \B →
∏
i∈N Z2i so that de(ge(a), (pr2i f(a))i∈N) <

α(a) for each a ∈ A \ B, where pri : ZN → Zi is the ith coordinate projection. Fix e0 ∈ E0 and define a
map go : A \B →

∏
i∈N Z2i−1 as follows:

go(a) = (pr1 f(a), · · · , pr2i−3 f(a), γpr2i−1 f(a),e0
(22i−2α(a)/ diamdD D − 1), e0, · · · )

if 2−2i+2 diamdD D < α(a) ≤ 2−2i+4 diamdD D,

where γx,y : I → D is the unique path from x to y as in Lemma 1.5.1. For any a ∈ A \ B, if
2−2j+2 diamdD D < α(a), then

do(go(a), (pr2i−1 f(a))i∈N) =
∑
i∈N

2−2i+1dD(pr2i−1 go(a), pr2i−1 f(a))

≤
∑
i≥j

2−2i+1 diamdD D = 2−2j+2 diamdD D < α(a).

Now we define a map g : A \B →M as follows:

pri g(a) =

{
pri ge(a) if i = 2j,
pri go(a) if i = 2j − 1.

It follows from the definition of g that

d(g(a), a) ≤ d(g(a), f(a)) + d(f(a), a) < 3α(a) = min{1, ϵ, d(a,B)}

for each a ∈ A \B. Hence we can extend g to a map h : A→M by h|B = idB. Then h is clearly ϵ-close
to idA. Since g is injective and

h(A \B) ∩ h(B) = g(A \B) ∩B = ∅,

the map h is an embedding. Thus the condition (∗) is satisfied. □

5.5.2 The case X is non-discrete.

Next, we consider the case X is non-discrete. As a corollary of the following theorem, we conclude that
the function space C(X,Y ) is homeomorphic to Hilbert space ℓ2 under our assumption.

Theorem 5.5.4. For a non-discrete, locally compact, separable metrizable space W and a separable
completely metrizable AR Z with no isolated points, the function space C(W,Z) is homeomorphic to ℓ2.

Remark 12. The above theorem was proved by K. Sakai [48] when W is compact. Moreover, J. Smrekar
and A. Yamashita [53] showed the case W is a countable CW-complex of dimension ≥ 1. This theorem
cannot be generalized to the case that Z is an ANR. In fact, the space C(W,Z) is not an ANR even if Z
is the unit circle (cf. [53, Introduction]).
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Proposition 5.5.5. For a locally compact space W and an AE Z, the function space C(W,Z) is an AE.

Proof. Let A be a metrizable space, B a closed subset of A and let f : B → C(W,Z) be a map. Define
a function F : B × W → Z by F (b, x) = f(b)(x), which is continuous due to the local compactness
of W . Since Z is an AE, the map F extends to a map F̃ : A ×W → Z. Then we can define a map
f̃ : A→ C(W,Z) by f̃(a)(x) = F̃ (a, x). Note that for each b ∈ B and x ∈W

f̃(b)(x) = F̃ (b, x) = F (b, x) = f(b)(x),

that is, the map f̃ is an extension of f . Consequently, the function space C(W,Z) is an AE. □

Proposition 5.5.6. Let W =
∪
n∈NWn be a σ-compact space, where each Wn is compact and contained

in intWn+1, and let Z be a completely metrizable space. Then the function space C(W,Z) is completely
metrizable.

Proof. Take an admissible complete bounded metric d for Z and define a metric d∗ on C(W,Z) as follows:

d∗(f, g) =
∑
n∈N

2−n sup
x∈Wn

d(f(x), g(x)) for each f, g ∈ C(W,Z),

so d∗ is an admissible complete metric on it. □

By the same argument of [53, Proof of Theorem 1.2], we have the following:

Proposition 5.5.7. Let W be a non-discrete, locally compact, separable metrizable space and let Z be an
ANR with no isolated points. If C(W,Z) is path-connected, then C(W,Z) has the discrete approximation
property.

Proof. By the assumption, we can write W =
∪
n∈NWn, where each Wn is compact and contained in the

interior intWn+1 of Wn+1, and choose countable distinct points x1, x2, · · · , x∞ ∈ intW1 so that xi → x∞
as i → ∞. Moreover, since Z is an ANR with no isolated points, it has an admissible bounded metric d
such that

(1) for each ϵ > 0 there exists δ > 0 such that any two δ-close maps from any space to Z is ϵ-homotopic,
and

(2) every component P of Z has the diameter diamd P > 1.

We shall use an admissible metric d∗ on C(W,Z) defined as in Proposition 5.5.6. Let Ci = {f ∈ C(W,Z) |
f(x∞) = f(xj) for all j ≥ i} for each i ∈ N. Clearly, Ci ⊂ Ci+1. According to [53, Lemma 3.2], we need
only to show the following two conditions:

(i) For each ϵ > 0 and f : In → C(W,Z), n ∈ ω, there are i ∈ N and g : In → Ci such that g is
ϵ-homotopic to f ;

(ii) For each ϵ > 0, there is δ > 0 such that for any i ∈ N and f : In → Ci, n ∈ ω, there exist j ≥ i and
g : In → Cj that is ϵ-homotopic to f and satisfies d∗(f(In), g(In)) ≥ δ.

(i) Let ϵ > 0 and f : In → C(W,Z), n ∈ ω. Take δ > 0 so as to satisfy the condition (1). From the
compactness of In, we can find i ∈ N such that for any s ∈ In and j ≥ i, d∗(f(s)(xj), f(s)(x∞)) < δ.
Define F : In×W → Z by F (s, x) = f(s)(x). Then the restriction F |In×{xj |j≥i} is δ-close to the constant
map F ′ : In × {xj | j ≥ i} ∋ (s, xj) 7→ f(s)(x∞) ∈ Z, and hence F |In×{xj |j≥i} is ϵ-homotopic to F ′ by the
definition of δ. Since Z is an ANR, by the Homotopy Extension Theorem 1.2.4, there is an ϵ-homotopy
H : In ×W × I → Z such that H(s, x, 0) = F (s, x) = f(s)(x) and H(s, xj , 1) = F ′(s, xj , 1) = f(s)(x∞)
for every s ∈ In and j ≥ i. Define g : In → C(W,Z) by g(s)(x) = H(s, x, 1). Note that for each s ∈ In
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and j ≥ i, g(s)(xj) = H(s, xj , 1) = f(s)(x∞). Therefore g(In) ⊂ Ci. Let h : In × I → C(W,Z) be the
map defined by h(s, t)(x) = H(s, x, t), which is an ϵ-homotopy linking f and g. Indeed, we have for each
s ∈ In and t, t′ ∈ I,

d∗(h(s, t), h(s, t′)) =
∑
n∈N

2−n sup
x∈Wn

d(H(s, x, t),H(s, x, t′)) <
∑
n∈N

2−nϵ = ϵ.

(ii) Take any ϵ > 0. Due to (1), we can choose 0 < δ ≤ 1/8 so that any two 10δ-close maps into Z are
ϵ-homotopic. Fix i ∈ N and f : In → Ci. Let

K = {f(s)(x∞) | s ∈ In} = F (In × {xj | i ≤ j ≤ ∞}).

Since K is compact, there are finite points y0, · · · , yn ∈ K such that K ⊂
∪n
k=0Bd(yk, 2δ). Then we can

find a point zk ∈ Bd(yk, 6δ) \ Bd(yk, 4δ) for each k = 0, · · · , n, because each path component of Z has
the diameter > 8δ by (2). It follows from the choice of δ and the Homotopy Extension Theorem 1.2.4
that there is an ϵ-homotopies hk : Z × I → Z, k = 0, · · · , n, such that hk(y, 0) = y, hk(y, 1) = zk if
y ∈ Bd(yk, 4δ), and hk(y, t) = y if y /∈ Bd(yk, 6δ). Using the Homotopy Extension Theorem 1.2.4 again,
we can obtain an ϵ-homotopy H : W ×Z × I → Z so that H(x, y, 0) = y, H(xi+k, y, t) = hk(y, t) for each
k = 0, · · · , n, and H(xj , y, t) = y for each i + n < j ≤ ∞. Define the desired map g : In → C(W,Z) by
g(s)(x) = H(x, f(s)(x), 1). It follows that for each i+ n < j ≤ ∞,

g(s)(xj) = H(xj , f(s)(xj), 1) = f(s)(xj) = f(s)(x∞),

which implies that g(In) ⊂ Ci+n+1. Moreover, we have an ϵ-homotopy h : In×I → C(W,Z) linking f and
g defined by h(s, t)(x) = H(x, f(s)(x), t). It remains to show that d∗(f(In), g(In)) ≥ δ. Fix any s, s′ ∈ In.
In the case that d(f(s)(x∞), f(s′)(x∞)) ≥ 2δ, we have

d(f(s)(x∞), g(s′)(x∞)) = d(f(s)(x∞), f(s′)(x∞)) ≥ 2δ.

Since x∞ ∈W1, it follows that

d∗(f(s), g(s′)) =
∑
n∈N

2−n sup
x∈Wn

d(f(s)(x), g(s′)(x)) ≥ 2−1d(f(s)(x∞), g(s′)(x∞)) ≥ δ.

In the case that d(f(s)(x∞), f(s′)(x∞)) < 2δ, taking some k = 0, · · · , n such that f(s)(x∞) ∈ Bd(yk, 2δ),
we have f(s′)(x∞) ∈ Bd(yk, 4δ). Then

g(s′)(xi+k) = H(xi+k, f(s′)(xi+k), 1) = hk(f(s′)(x∞), 1) = zk /∈ Bd(yk, 4δ).

On the other hand, we get f(s)(xi+k) = f(s)(x∞) ∈ Bd(yk, 2δ), and hence d(f(s)(xi+k), g(s′)(xi+k)) ≥ 2δ.
Since xi+k ∈W1, it follows that

d∗(f(s), g(s′)) =
∑
n∈N

2−n sup
x∈Wn

d(f(s)(x), g(s′)(x)) ≥ 2−1d(f(s)(xi+k), g(s′)(xi+k)) ≥ δ.

Thus the proof is complete. □

Proof of Theorem 5.5.4. Combining Propositions 5.5.5, 5.5.6 and 5.5.7, we get C(W,Z) is a completely
metrizable space with the discrete approximation property. The separability of C(W,Z) follows from the
ones of W and Z, and the local compactness of W (cf. [29, Chapter XII, Theorem 5.2]). According to
Toruńczyk’s characterization (Theorem 1.3.5), the function space C(W,Z) is homeomorphic to ℓ2. □

The following two lemmas guarantee that we may assume X is connected in the proof of the main
theorem.
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Lemma 5.5.8. Let W =
⊕

λ∈ΛWλ be a locally connected space, where each Wλ is a component of W .
For any spaces Z ′ ⊂ Z, the quadruplet

(Cld∗
F (W × Z), clCld∗F (W×Z) C(W,Z),C(W,Z),C(W,Z ′))

is homeomorphic to the quadruplet(∏
λ∈Λ

Cld∗
F (Wλ × Z),

∏
λ∈Λ

clCld∗F (Wλ×Z) C(Wλ, Z),
∏
λ∈Λ

C(Wλ, Z),
∏
λ∈Λ

C(Wλ, Z
′)

)
.

Proof. Define a map h : Cld∗
F (W × Z) →

∏
λ∈Λ Cld∗

F (Wλ × Z) as follows:

h(A) = (A ∩ (Wλ × Z))λ∈Λ for each A ∈ Cld∗
F (W × Z),

which is the desired homeomorphism. □

Lemma 5.5.9. Let Wn be a compact AR and let Zn be a homotopy dense Gδ subset of Wn, n ∈ N. Then
the pair (Q×

∏
n∈NWn, s×

∏
n∈N Zn) is homeomorphic to (Q, s).

Proof. We may assume that each Wn is non-degenerate. By Toruńczyk’s characterization (Corollary 1.3.3,
cf. [42, Corollary 8.1.2]), the product space Q×

∏
n∈NWn is homeomorphic to Q. We shall show that the

complement M = (Q ×
∏
n∈NWn) \ (s ×

∏
n∈N Zn) is a cap set in Q ×

∏
n∈NWn. It is easy to see that

(Q \ s)×
∏
n∈NWn is a cap set in Q×

∏
n∈NWn because Q \ s is a cap set in Q. Moreover, since each Zn

is a homotopy dense Gδ subset of Wn, the complement Wn \ Zn is a countable union of compact Z-sets
in Wn due to Proposition 1.3.1. Let prm :

∏
n∈NWn → Wm be the projection for each m ∈ N. Then, as

is easily observed,

M =

(
(Q \ s) ×

∏
n∈N

Wn

)
∪
∪
m∈N

(Q× pr−1
m (Wm \ Zm))

is also a countable union of compact Z-sets in Q×
∏
n∈NWn, which contains (Q\s)×

∏
n∈NWn. It follows

from Theorem 6.6 of [18] that M is a cap set in Q×
∏
n∈NWn, hence the pair (Q×

∏
n∈NWn, s×

∏
n∈N Zn)

is homeomorphic to (Q, s). □

Proof of Main Theorem in the Case X is Non-Discrete. We may suppose that X is connected as men-
tioned in the above. We divide the proof into the two case, the case X is compact, and the case X is
non-compact.

(The compact case) Combining Theorem 5.3.1 with Proposition 5.5.1, we conclude that C(X,Y ) is
homotopy dense in C(X,Y ) = USCC(X, Ỹ ). Since C(X,Y ) is homeomorphic to ℓ2 according to Theo-
rem 5.5.4 (c.f. [48]), it easily follows that USCC(X, Ỹ ) is a compact AR with the disjoint cells property.
Hence USCC(X, Ỹ ) is homeomorphic to Q by virtue of Toruńczyk’s characterization (Corollary 1.3.3).
Moreover, the complement M = USCC(X, Ỹ ) \ C(X,Y ) is a Zσ-set. Take an admissible metric dX and
an admissible convex metric d

Ỹ
on X and Ỹ , respectively, and define an admissible metric ρ on X × Ỹ

as follows:
ρ((x, y), (x′, y′)) = max{dX(x, x′), d

Ỹ
(y, y′)}.

It remains to verify that the following condition holds:

(∗) For any compact sets A,B ⊂ USCC(X, Ỹ ) with B ⊂ A ∩ M and each ϵ > 0, there exists an
embedding h̃ : A→M such that h̃|B = idB and ρH(h̃(a), a) < ϵ for every a ∈ A,
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where ρH is the Hausdorff metric on Cld(X × Ỹ ) induced by ρ.
Let α : A → I be a map defined by α(a) = min{1, ϵ, ρH(a,B)}/3. Since C(X,Y ) is homotopy dense

in USCC(X, Ỹ ), we can construct a map f : A→ USCC(X, Ỹ ) such that f |B = idB, f(A \B) ⊂ C(X,Y )
and ρH(f(a), a) ≤ α(a) for every a ∈ A. In addition, we can find an embedding g : A \ B → C(X,Y )
so that ρH(g(a), f(a)) < α(a) for each a ∈ A \ B because C(X,Y ) is homeomorphic to ℓ2 and A \ B is
completely metrizable. Fix a point x0 ∈ X and define a function h : A \B → Cld(X × Ỹ ) by

h(a)(x) =

{
B(g(a)(x0), α(a)) if x = x0,
g(a)(x) if x ̸= x0,

where B(g(a)(x0), α(a)) is the closed ball. Remark that each h(a) is an u.s.c. set-valued function due to
Proposition 3.1 of [36]. Because d

Ỹ
is a convex metric, the function h is continuous and the closed ball

B(g(a)(x0), α(a)) is a subcontinuum of Ỹ , hence h(A \ B) ⊂ M . Since x0 is not isolated point and g is
an injection, the map h is also an injection. It follows that

ρH(h(a), a) ≤ ρH(h(a), g(a)) + ρH(g(a), f(a)) + ρH(f(a), a) < 3α(a) ≤ min{1, ϵ, ρH(a,B)}

for each a ∈ A \ B. Therefore, the map h : A \ B → M can be extended to the map h̃ : A → M by
h̃|B = idB. Moreover, we have h(A \B)∩B = ∅, hence h̃ is the desired embedding because A is compact.
Thus the pair (C(X,Y ),C(X,Y )) is homeomorphic to (Q, s).

(The non-compact case) Similar to the compact case, it suffices to prove that C(X,Y ) is homotopy
dense in C(X,Y ), and that C(X,Y ) is homeomorphic to Q. Let αX = X ∪ {∞} be the one-point
compactification of X. Then it is a Peano continuum, refer to [55]. According to the compact case, the
pair (C(αX, Y ),C(αX, Y )) is homeomorphic to (Q, s), where

C(αX, Y ) = cl
Cld∗F (αX×Ỹ )

C(αX, Y ) = USCC(αX, Ỹ ).

Due to Proposition 3.2 of [36], we have the embedding e : Cld∗
F (X × Ỹ ) → Cld∗

F (αX × Ỹ ) and the
retraction r : Cld∗

F (αX × Ỹ ) → e(Cld∗
F (X × Ỹ )) defined by

e(A) = A ∪ ({∞} × Ỹ ) and r(B) = B ∪ ({∞} × Ỹ ),

where r(C(αX, Y )) ⊂ e(C(X,Y )) and e(C(X,Y )) = r(C(αX, Y )).
First, we will show that C(X,Y ) is homotopy dense in C(X,Y ). Since C(αX, Y ) is homotopy dense

in C(αX, Y ), we can find a homotopy h : C(αX, Y ) × I → C(αX, Y ) so that h0 = id
C(αX,Y )

and

h(C(αX, Y ) × (0, 1]) ⊂ C(αX, Y ). Taking a homotopy

h′ = e−1rh(e× idI) : C(X,Y ) × I → C(X,Y ),

we have h′0 = id
C(X,Y )

because e(C(X,Y )) = r(C(αX, Y )). In addition, since r(C(αX, Y )) ⊂ e(C(X,Y )),

we get h′(C(X,Y ) × (0, 1]) ⊂ C(X,Y ). Hence C(X,Y ) is homotopy dense in C(X,Y ).
Next, we shall prove that C(X,Y ) is homeomorphic to Q. Since e(C(X,Y )) = r(C(αX, Y )), we can

regard C(X,Y ) as a retract of C(αX, Y ), which is homeomorphic to Q. Hence C(X,Y ) is a compact AR.
Furthermore, the space C(X,Y ) is homeomorphic to ℓ2 by Theorem 5.5.4, so C(X,Y ) has the disjoint
cells property. Using the Toruńczyk characterization (Corollary 1.3.3), we have C(X,Y ) is homeomorphic
to Q. Thus the proof is complete. □

5.6 The converse of Main Theorem

In this section, we shall prove the converse of the main theorem.
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Lemma 5.6.1. Let X be a space and Y a non-degenerate connected space. If USCC(X,Y ) is Hausdorff,
then X is locally compact.

Proof. We shall show that for each point x ∈ X and each open neighborhood U of x in X, there exists a
compact neighborhood of x contained in U . Fix y0 ∈ Y . Since USCC(X,Y ) is Hausdorff, we can separate
the following two functions

ϕ = X × {y0} ∪ (X \ U) × Y and ψ = X × {y0} ∪ (X \ U) × Y ∪ {x} × Y

by disjoint open sets V and W in USCC(X,Y ). Then we can write

V = (X × Y \ C)+ ∩ (

n∩
i=1

V −
i ) ∩ USCC(X,Y ) and W = (X × Y \D)+ ∩ (

m∩
j=1

W−
j ) ∩ USCC(X,Y ),

where C and D are compact sets in X ×Y , and Vi’s and Wj ’s are open sets in X ×Y . Moreover, we may
assume that prX(D) ∩ prX(Wj) = ∅ for each 1 ≤ j ≤ m, where prX : X × Y → X is the projection onto
X.

Note that x ∈ prX(C) because ψ /∈ V , and prX(C) ⊂ U because ϕ ∈ V . We prove that prX(C) is
the desired neighborhood. Since ϕ /∈ W and ψ ∈ W , we get {1 ≤ j ≤ m | x ∈ prX(Wj)} ̸= ∅. Let
{jk | 1 ≤ k ≤ l} = {1 ≤ j ≤ m | x ∈ prX(Wj)}. Then there exists jk ∈ {jk | 1 ≤ k ≤ l} such that
prX(Wjk) ⊂ prX(C). Supposing the contrary, we can choose xjk ∈ prX(Wjk) \prX(C) for each 1 ≤ k ≤ l.
Define the function

ξ = X × {y0} ∪ (X \ U) × Y ∪
l∪

k=1

{xjk} × Y ∈ USCC(X,Y ).

Observe that ξ ∈ V ∩W , which is a contradiction. Hence we have x ∈ prX(Wj) ⊂ prX(C) for some
1 ≤ j ≤ m. This means that prX(C) is a neighborhood of x. The proof is complete. □

Let Y be a non-degenerate connected space. Then we can regard a space X as a subspace of
USCC(X,Y ). Indeed, taking y0 ∈ Y , we have an embedding i : X ∋ x 7→ X × {y0} ∪ {x} × Y ∈
USCC(X,Y ). Thus X is metrizable when USCC(X,Y ) is so.

Proposition 5.6.2. Let X be a space and Y a non-degenerate connected space. If USCC(X,Y ) is compact
metrizable, then X is locally compact, locally connected metrizable.

Proof. According to Lemma 5.6.1, X is locally compact metrizable. So it remains to prove that X is
locally connected. Suppose the contrary, that is, there exists a point x0 ∈ X and an open neighborhood
U of x0 such that every neighborhood V of x0 contained in U is disconnected. We will show that there
exists x ∈ U , open and closed subsets Vn in U containing x and wn ∈ Wn = U \ Vn, n ∈ N, such that
{wn}n∈N converges to x. Let

V = {V ⊂ U | V is an open and closed subset of U containing x0}.

Then
∩

V is not open in U . Otherwise, since x0 ∈
∩

V, we have
∩

V is disconnected. So we can find an
open and closed subset V of

∩
V such that x0 ∈ V ⊊

∩
V. Then V is open and closed in U , which is

a contradiction to the minimality of
∩

V. Hence
∩

V is not open in U . Choose a point x ∈
∩

V and a
sequence {wn}n∈N ⊂ U \

∩
V converging to x, and take Vn ∈ V so that wn ∈Wn = U \ Vn.

Now, we define

ϕn =

n∩
i=1

Vi × {y1} ∪
n∪
i=1

Wi × {y2} ∪ (X \ U) × Y,
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where y1 and y2 are distinct points of Y . Observe that ϕn ∈ USCC(X,Y ). By the assumption,
USCC(X,Y ) is a compact metrizable space. Therefore we may suppose that the sequence {ϕn}n∈N
converges to some ϕ ∈ USCC(X,Y ). Then for each n ∈ N, ϕn ∩ U × Y \ {y1, y2} = ∅, which implies that
ϕ ∩ U × Y \ {y1, y2} = ∅. Since every ϕn contains (x, y1), we have y1 ∈ ϕ(x). Assume that y2 /∈ ϕ(x),
so ϕ−1((Y \ {y2})+) is an open neighborhood of x because ϕ is u.s.c. Since X is locally compact, we can
take a compact neighborhood N ⊂ ϕ−1((Y \{y2})+) of x. Then ϕ∩N ×{y2} = ∅, and hence, there exists
n0 ∈ N such that for every n ≥ n0, ϕn ∩N × {y2} = ∅. On the other hand, we can find n ≥ n0 such that
wn ∈ N , which means that (wn, y2) ∈ ϕn ∩ N × {y2}. This is a contradiction. Therefore y2 ∈ ϕ(x). It
follows that ϕ(x) = {y1, y2} is disconnected, which contradicts that ϕ ∈ USCC(X,Y ). Consequently, X
is localIy connected. □

We can derive the following corollary from the above proposition immediately.

Corollary 5.6.3. Let X be a space and Y a non-degenerate connected space. If USCC(X,Y ) is homeo-
morphic to Q, then X is locally compact, locally connected metrizable.

Consequently, we have the following:

Theorem 5.6.4. Let X be a non-degenerate connected space and Y a 1-dimensional locally compact AR.
Then the following conditions are equivalent:

(1) X is locally compact, locally connected metrizable;

(2) (USCC(X, Ỹ ),C(X,Y )) is homeomorphic to (Q, s);

(3) USCC(X, Ỹ ) is homeomorphic to Q,

where Ỹ is a dendrite compactification of Y such that the remainder is closed and contained in the set of
end points of Ỹ .

5.7 Examples

Let αR be the one-point compactification of R. Then we have the following proposition.

Proposition 5.7.1. The function space C(I,R) is not homotopy dense in the closure clCld∗F (I×αR) C(I,R).

Proof. Let S1 be the unit circle in R2, that is, S1 = {(x, y) ∈ R2 | x2 + y2 = 1}. Since the pair (αR,R)
is homeomorphic to (S1,S1 \ {(1, 0)}), we need to prove that C(I,S1 \ {(1, 0)}) is not homotopy dense in
clCld∗F (I×S1) C(I,S1\{(1, 0)}). For simplicity, we denote clCld∗F (I×S1) C(I,S1\{(1, 0)}) by C(I,S1 \ {(1, 0)}).

Let f, g : I → S1 \ {(1, 0)} be the constant maps such that f(I) = {(0, 1)} and g(I) = {(0,−1)}. Then f
and g miss K = {(0,−1, 0)} ⊂ I× S1, that is, they are contained in the open set

U = (I× S1 \K)+ ∩ C(I,S1 \ {(1, 0)}) ⊂ C(I,S1 \ {(1, 0)}).

It is sufficient to show that f and g are connected by a path in U but not connected by any path in
U ∩ C(I,S1 \ {(1, 0)}).

First, we shall construct a path from f to g in U . For each t ∈ I, let ϕ(t) : I → S1 be the constant
map such that

ϕ(t)(I) = {(sinπ(1 − 2t)/2, cosπ(1 − 2t)/2)}.

Then we have the path ϕ : I → C(I,S1) ⊂ Cld(I× S1) between f and g in U .
Next, we will show that any path γ : I → C(I,S1 \ {(1, 0)}) from f to g cannot be contained

in U . Let β : C(I,S1 \ {(1, 0)}) → S1 \ {(1, 0)} be the map defined by β(h) = h(0). Then for the
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composition βγ : I → S1 \ {(1, 0)}, we have βγ(0) = f(0) = (0, 1) and βγ(1) = g(0) = (0,−1). Since
S1 \ {(1, 0)} is homeomorphic to R, according to the Mean Value Theorem, we can find t ∈ I such that
γ(t)(0) = βγ(t) = (−1, 0), which means that γ(t) /∈ (I× S1 \K)+ ⊂ U . Thus f and g are not connected
by any path in U ∩ C(I,S1 \ {(1, 0)}). □

Let Sn−1 be the unit (n − 1)-sphere in Rn, that is, Sn−1 = {x = (x(i))ni=1 ∈ Rn |
∑n

i=1 x(i)2 = 1}.
Recall that Rn is a compactification of Rn that is homeomorphic to the n-dimensional unit closed ball.
Then we can establish the following:

Proposition 5.7.2. For n ≥ 2, the function space C(Sn−1,Rn) is not homotopy dense in the closure
clCld∗F (Sn−1×Rn) C(Sn−1,Rn).

Proof. Let B = {x = (x(i))ni=1 ∈ Rn | ∥x∥ < 2} and B = {x = (x(i))ni=1 ∈ Rn | ∥x∥ ≤ 2}, where
∥x∥ = max{|x(i)| | i = 1, · · · , n}. Then the pair (B,B) is homeomorphic to (Rn,Rn). So it suffices
to prove that C(Sn−1, B) is not homotopy dense in clCld∗F (Sn−1×B) C(Sn−1, B). For simplicity, denote

clCld∗F (Sn−1×B) C(Sn−1, B) by C(Sn−1, B). Define two maps f, g ∈ C(Sn−1, B) by

f(x) = (x(1), · · · , x(n)) and g(x) = (x(1), · · · , x(n− 1),−x(n)) for each x = (x(1), · · · , x(n)) ∈ Sn−1.

Let K = Sn−1 × {(0, · · · , 0)} ⊂ Sn−1 ×B. Then the maps f and g are contained in the open subset

U = ((Sn−1 ×B) \K)+ ∩ C(Sn−1, B) ⊂ C(Sn−1, B).

Now, we shall show that f and g are connected by a path in U but not in U ∩C(Sn−1, B), which implies
that C(Sn−1, B) is not homotopy dense in C(Sn−1, B).

(1) We prove that the maps f and g are connected by a path in U . Set

A = {(1, 0, · · · , 0)} × Sn−1 ∪ Sn−1 × {(−1, 0, · · · , 0)} ⊂ Sn−1 ×B.

We will construct a path linking f to A in U . Define a map ϕ : Sn−1 × [0, 1) → B as follows: For
x = (x(1), · · · , x(n)) ∈ Sn−1 and t ∈ [0, 1), let

ϕ(x, t) =


(−1, 0, · · · , 0) if x(1) ≤ 2t− 1,

((x(1) − t)/(1 − t), αx(2), · · · , αx(n)) if 2t− 1 < x(1) < 1,
(1, 0, · · · , 0) if x(1) = 1,

where α = (((1−t)2−(x(1)−t)2)/((1−t)2(1−x(1)2)))1/2. So we can get the function Φ : I → Cld(Sn−1×B)
defined by

Φ(t) =

{
ϕt if t ∈ [0, 1),
A if t = 1.

Then it follows from the continuity of ϕ that Φ is continuous on [0, 1). To verify the continuity of Φ
at t = 1, take any neighborhood N of Φ(1) = A in Cld∗

F (Sn−1 × B). Then we can choose open sets
Vj ⊂ Sn−1 ×B, j = 1, · · · ,m, and a compact set L ⊂ Sn−1 ×B so that

A ∈
m∩
j=1

V −
j ∩ ((Sn−1 ×B) \ L)+ ⊂ N.

We use an admissible metric ρ on Sn−1 ×B defined as follows:

ρ((x, y), (x′, y′)) = max{∥x− x′∥, ∥y − y′∥}.
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Since A ∈
∩m
j=1 V

−
j , we can find (xj , yj) ∈ A and ϵj > 0 for each j = 1, · · · ,m so that ρ((x, y), (xj , yj)) < ϵj

implies that (x, y) ∈ Vj . Moreover, we have ϵL = inf{ρ((x, y), L) | (x, y) ∈ A} > 0 because A ∈ ((Sn−1 ×
B) \L)+ and L is compact. Let ϵ = min{1, ϵj , ϵL | j = 1, · · · ,m} and take any t′ ∈ ((1 + (1− ϵ2)1/2)/2, 1)
(i.e., 2t′ − 1 > (1 − ϵ2)1/2).

First, we show that Φ(t′) ∈ V −
j for every j = 1, · · · ,m. When xj = (1, 0, · · · , 0), we can find x′j ∈ Sn−1

with x′j(1) ≥ 2t′ − 1 so that Φ(t′)(x′j) = ϕt′(x
′
j) = yj . Then, note that

1 − x′j(1) ≤ 1 − (2t′ − 1) < 1 − (1 − ϵ2)1/2 ≤ ϵ and

|x′j(i)| ≤ (1 − x′j(1)2)1/2 ≤ (1 − (2t′ − 1)2)1/2 < (1 − (1 − ϵ2))1/2 = ϵ

for i = 2, · · · , n. It follows that

ρ((x′j ,Φ(t′)(x′j)), (xj , yj)) = ρ((x′j , yj), ((1, 0, · · · , 0), yj)) = ∥x′j − (1, 0, · · · , 0)∥
= max{1 − x′j(1), |x′j(i)| | i = 2, · · · , n} < ϵ,

hence Φ(t′) ∈ V −
j . When xj ̸= (1, 0, · · · , 0), we get yj = (−1, 0, · · · , 0). Observe that there exists

x′j ∈ {x = (x(i))ni=1 ∈ Sn−1 | x(1) ≤ 2t′ − 1} such that for each i = 2, · · · , n,

|xj(i) − x′j(i)| ≤ (1 − (2t′ − 1)2)1/2 < (1 − (1 − ϵ2))1/2 = ϵ.

Moreover, we have
|xj(1) − x′j(1)| < 1 − (2t′ − 1) < 1 − (1 − ϵ2)1/2 < ϵ,

hence ∥x′j − xj∥ < ϵ. Since

Φ(t′) ∩ Sn−1 × {(−1, 0, · · · , 0)} = {x = (x(i))ni=1 ∈ Sn−1 | x(1) ≤ 2t′ − 1} × {(−1, 0, · · · , 0)},

it follows that

ρ((x′j ,Φ(t′)(x′j)), (xj , yj)) = ρ((x′j , (−1, 0, · · · , 0)), (xj , (−1, 0, · · · , 0))) = ∥x′j − xj∥ < ϵ,

which implies that Φ(t′) ∈ V −
j . Therefore, Φ(t′) ∈

∩m
j=1 V

−
j .

Next, we verify that Φ(t′) ∈ ((Sn−1 ×B) \ L)+. Fix any (x, y) ∈ Φ(t′). When y = (−1, 0, · · · , 0), the
point (x, y) ∈ A, which means that (x, y) /∈ L. When y ̸= (−1, 0, · · · , 0), we have x(1) > 2t′ − 1. Then

ρ((x, y), L) ≥ ρ(((1, 0, · · · , 0), y), L) − ρ((x, y), ((1, 0, · · · , 0), y))

≥ ϵL − ∥x− (1, 0, · · · , 0)∥ > ϵL − ϵ ≥ 0.

Hence (x, y) /∈ L. It follows that Φ(t′) ∈ ((Sn−1 ×B) \ L)+. Consequently, Φ is continuous at t = 1.
Observe that Φ(I) ⊂ U . Hence f and A are linked by the path Φ in U . Similarly, we can construct a

path from A to g in U , so f is connected to g by a path in U .
(2) We show that the maps f and g are not connected by any path in U ∩ C(Sn−1, B). Assume that

f and g are connected by a path Φ : I → U ∩ C(Sn−1, B). Then Φ induces a homotopy h : Sn−1 × I →
B \ {(0, · · · , 0)} from f to g. Taking a retract r : B \ {(0, · · · , 0)} → Sn−1, we have the homotopy
rh : Sn−1×I → Sn−1 from rf = idSn−1 to rg = − idSn−1 , where − idSn−1(x) = (x(1), · · · , x(n−1),−x(n))
for each x = (x(1), · · · , x(n)) ∈ Sn−1. This is a contradiction. Therefore, f and g are not connected by
any path in U ∩ C(Sn−1, B). Thus the proof is complete. □
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Chapter 6

A space of hypo-graphs and its
compactification

For each function f : X → Y from a space X into a dendrite Y and v ∈ Y , we can define the hypo-graph
↓vf of f with respect to v as follows:

↓vf =
∪
x∈X

{x} × [v, f(x)] ⊂ X × Y.

Recall that the symbol [x, y] means the unique arc of two points x, y in a dendrite Y , see Fact 2. When
f is continuous, the hypo-graph ↓vf is closed in X × Y . Hence we can regard

↓v C(X,Y ) = {↓vf | f : X → Y is continuous}

as the subspace of the hyperspace CldV (X × Y ) endowed with the Vietoris topology. Let ↓v C(X,Y ) be
the closure of ↓v C(X,Y ) in CldV (X × Y ). In the case that Y = I and v = 0, we can consider

↓0 USC(X, I) = {↓0f | f : X → I is upper semi-continuous}

as the subspace in CldV (X × I). Z. Yang and X. Zhou [63, 64] showed the following theorem:

Theorem 6.0.1. Let X be a compact metrizable space. If the set of isolated points is not dense in X,
then ↓0 USC(X, I) = ↓0 C(X, I) and the pair (↓0 USC(X, I), ↓0 C(X, I)) is homeomorphic to (Q, c0).

This result is a counterpart of the one of [27] (cf. Chapter 6 of [43]) concerning function spaces endowed
with the pointwise convergence topology. The aim of this chapter is to generalize the above theorem as
follows:

Main Theorem. Let X be an infinite, locally connected, compact metrizable space, Y a dendrite and
v ∈ Y an end point of Y . Then the pair (↓v C(X,Y ), ↓v C(X,Y )) is homeomorphic to (Q, c0).

In the above, we assume the stronger condition for a compact metrizable space X than the one of
Z. Yang and X. Zhou’s. In the last section, we will discuss this gap.

Remark 13. The space ↓v C(X,Y ) has a cluster point in CldV (X×Y ) which is not the hypo-graph of any
map from X to Y . For example, let X = I, Y = {0}× I∪ [−1, 1]×{1} a triod and v = (0, 0) ∈ Y . Define
a closed set A in X × Y as follows:

A = I× {0} × I ∪ {0} × [−1, 1] × {1} ∪ {(x, t sin(π/x), 1) | x ∈ (0, 1], t ∈ I}.
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For each n ∈ N, let fn : X → [−1, 1] × {1} ⊂ Y be the map defined by

fn(x) =

{
(sin(π/x), 1) if x ≥ 1/2n,
(0, 1) if x ≤ 1/2n.

Then observe that

↓vfn = I× {0} × I ∪ {(x, t sin(π/x), 1) | x ∈ [1/2n, 1], t ∈ I}

and the sequence (↓vfn)n∈N converges to A in CldV (X × I). However, the set A is not the hypo-graph of
any map from X to Y .

6.1 Preliminaries

From now on, we proceed with our argument in the following assumption:

• X = (X, dX) is a compact metric space, and Y = (Y, dY ) is a dendrite with a convex metric dY and
a distinguished end point 0 ∈ Y .

Remark that any dendrite admits a convex metric, see Fact 3 in Chapter 1. For simplicity, we write
↓C(X,Y ) =↓0 C(X,Y ). We use an admissible metric for the product space X × Y defined by

ρ((x, y), (x′, y′)) = max{dX(x, x′), dY (y, y′)} for each x, x′ ∈ X and y, y′ ∈ Y.

Define r : Y × I → Y by r(y, t) = γ(0, y, t) for each y ∈ Y and t ∈ I, where γ is the map as in
Lemma 1.5.1. Note that r0(Y ) = {0} and r1 = idY . Using this map r, we can define the homotopy
r : ↓C(X,Y ) × I → ↓C(X,Y ) as follows:

r(A, t) = (idX ×rt)(A) = {(x, rt(y)) | (x, y) ∈ A}.

Then r0(↓C(X,Y )) = X × {0} and r1 = id↓C(X,Y )
. We shall verify the uniform continuity of r. Take any

ϵ > 0. According to Lemma 1.5.1, the map r is uniform continuous. Hence we can choose ϵ > δ > 0 so that
for each y, y′ ∈ Y and t, t′ ∈ I, if dY (y, y′) < δ and |t−t′| < δ, then dY (r(y, t), r(y′, t′)) < ϵ. Now, letA,A′ ∈
↓C(X,Y ) and t, t′ ∈ I such that ρH(A,A′) < δ and |t − t′| < δ. For each (x, z) ∈ rt(A), there is a point
y ∈ A(x) such that z = rt(y). Since ρ((x, y), A′) < δ, we can find (x′, y′) ∈ A′ such that ρ((x, y), (x′, y′)) <
δ, which means that dX(x, x′) < δ and dY (y, y′) < δ. Let z′ = rt′(y

′) ∈ A′(x′). Then (x′, z′) ∈ rt′(A
′)

and dY (z, z′) = dY (rt(y), rt′(y
′)) < ϵ, and hence ρ((x, z), (x′, z′)) = max{dX(x, x′), dY (z, z′)} < ϵ. Thus

we have ρ((x, z), rt′(A
′)) < ϵ. By the same argument, we can show that ρ((x′, z′), rt(A)) < ϵ for each

(x′, z′) ∈ rt′(A
′). Therefore ρH(rt(A), rt′(A)) < ϵ. Consequently, the map r is uniformly continuous.

Then r is a contraction of ↓C(X,Y ).
The following lemma will often be used in this chapter, which can be easily proved.

Lemma 6.1.1. Let A, A′, B and B′ be closed sets in a compact metric space Z = (Z, d). Then

dH(A ∪B,A′ ∪B′) ≤ max{dH(A,A′), dH(B,B′)}.

6.2 The closure of ↓C(X,Y ) in Cld(X × Y )

This section is devoted to proving the following theorem:

Theorem 6.2.1. If X has no isolated points, then ↓C(X,Y ) is an AR.
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For each A ∈ Cld(X × Y ), we define a set-valued function A : X → Cld∗(Y ) as follows:

A(x) = {y ∈ Y | (x, y) ∈ A} ∈ Cld∗(Y ).

For the sake of convenience, let A(B) =
∪
x∈B A(x) for each B ⊂ X.

Lemma 6.2.2. If X has no isolated points, then

↓C(X,Y ) = {A ∈ Cld(X × Y ) | A(x) ̸= ∅ for all x ∈ X and y ∈ A(x) ⇒ [0, y] ⊂ A(x)}.

Proof. For convenience sake, let F be the set of the right side of the above equality. Then observe that
↓C(X,Y ) ⊂ F .

First, we prove that F is closed in CldV (X × Y ). Let A be the limit of a sequence (An)n∈N in F .
We shall show that A(x) ̸= ∅ for every x ∈ X. For n ∈ N, we can take yn ∈ An(x) ̸= ∅. Because of the
compactness of Y , we can assume that (yn)n∈N converges to some y ∈ Y . Since ρH(An, A) → 0 as n→ ∞
and

ρ((x, y), An) ≤ ρ((x, y), (x, yn)) = dY (y, yn) → 0 as n→ ∞,

it follows that (x, y) ∈ A. Hence A(x) ̸= ∅. To show that [0, y] ⊂ A(x) for each y ∈ A(x), take any
z ∈ [0, y]. Since (x, y) ∈ A, we can choose (xn, yn) ∈ An, n ∈ N, so that (xn, yn) → (x, y) as n → ∞.
According to Lemma 1.5.1, we can find zn ∈ [0, yn], n ∈ N, such that dY (z, zn) ≤ dY (y, yn). Since yn → y
as n → ∞, we have zn → z as n → ∞. Then zn ∈ [0, yn] ⊂ An(xn), so (xn, zn) ∈ An for every n ∈ N.
Because (xn, zn) → (x, z) as n→ ∞, it follows that (x, z) ∈ A, so z ∈ A(x). Thus we have [0, y] ⊂ A(x).
Consequently, A ∈ F , so F is closed in CldV (X × Y ).

Next, we will show that ↓ C(X,Y ) is dense in F . For each ϵ > 0 and A ∈ F , because of the
compactness of A, A has finite points (xi, yi), i = 1, · · · , n, such that A ⊂

∪n
i=1Bρ((xi, yi), ϵ/2), where

we can take xi ̸= xj if i ̸= j because X has no isolated points. Let A0 =
∪n
i=1{xi} × [0, yi] ⊂ A. Then

A ⊂ N(A0, ϵ/2), which implies that ρH(A0, A) < ϵ/2. Let δ = min{ϵ, dX(xi, xj) | i ̸= j}/3 > 0. Note that
BdX (xi, δ) ∩ BdX (xj , δ) = ∅ for every i ̸= j. Using Urysohn maps, we can construct a map f : X → Y
such that f

(
X \

∪n
i=1BdX (xi, δ)

)
= {0}, f(BdX (xi, δ)) ⊂ [0, yi] and f(xi) = yi for each i = 1, · · · , n. Then

ρH(↓f,A0) < δ ≤ ϵ/3. It follows that

ρH(↓f,A) ≤ ρH(↓f,A0) + ρH(A0, A) ≤ ϵ/3 + ϵ/2 < ϵ.

Therefore ↓C(X × Y ) is dense in F . □

We show the uniformly local path-connectedness of ↓C(X,Y ) as follows:

Lemma 6.2.3. If there are no isolated points in X, then ↓C(X,Y ) is uniformly locally path-connected
with respect to ρH .

Proof. Let ϵ > 0 and A,A′ ∈ ↓C(X,Y ) such that ρH(A,A′) < ϵ/2. We define a path h : I → ↓C(X,Y )
from A to A ∪ A′ by h(t) = A ∪ rt(A′), where Lemma 6.2.2 guarantees h(I) ⊂ ↓C(X,Y ). The continuity
of h follows from the one of r and Lemma 6.1.1. In fact,

ρH(h(t), h(t′)) = ρH(A ∪ rt(A′), A ∪ rt′(A′)) ≤ ρH(rt(A
′), rt′(A

′)).

Moreover, A ⊂ h(t), h(t′) ⊂ A ∪A′, and hence

ρH(h(t), h(t′)) ≤ ρH(A,A ∪A′) = ρH(A,A′) < ϵ/2.

It follows that diamρH h(I) ≤ ρH(A,A′) < ϵ/2. Consequently, A is connected with A∪A′ by an ϵ/2-path.
Similarly, A′ is connected with A ∪ A′ by an ϵ/2-path. Therefore A and A′ are connected by an ϵ-path.
Thus the proof is complete. □
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Now, we shall prove Theorem 6.2.1.

Proof of Theorem 6.2.1. By Lemma 6.2.3, ↓C(X,Y ) is a Peano continuum. Then, according to the Wo-
jdys lawski Theorem [65], refer to [42, Theorem 5.3.14], we have CldV (↓C(X,Y )) is an AR. Identifying
A ∈ CldV (X × Y ) with {A} ∈ CldV (CldV (X × Y )), we can regard CldV (X × Y ) ⊂ CldV (CldV (X × Y )).
Then the union operator∪

: CldV (CldV (X × Y )) ∋ A 7→
∪

A ∈ CldV (X × Y )

is a retraction, see [42, Proposition 5.3.6]. As is easily observed due to Lemma 6.2.2, we have the
image

∪
(CldV (↓C(X,Y ))) = ↓C(X,Y ). It follows that ↓C(X,Y ) is a retract of the AR CldV (↓C(X,Y )).

Therefore ↓C(X,Y ) is an AR. □

6.3 The homotopy denseness of ↓C(X, Y ) in ↓C(X,Y )

In this section, we will prove the following theorem:

Theorem 6.3.1. If X has no isolated points, then ↓C(X,Y ) is homotopy dense in ↓C(X,Y ).

Proof. We only need to verify condition (hd) with respect to α = 10 in Lemma 1.2.7. Let K be a locally
finite countable simplicial complex and f : K(0) →↓C(X,Y ). We shall construct a map f : |K| →↓C(X,Y )
such that the restriction f |K(0) = f and diamρH f(σ) ≤ 10 diamρH f(σ(0)) for every σ ∈ K. For simplicity,
let ϵσ = diamρH f(σ(0)) ≥ 0 for each σ ∈ K \K(0). Let K0 be the full subcomplex of K such that

K
(0)
0 = {v ∈ K(0) | f(St(v,K)(0)) is a singleton},

where St(v,K) is the star at v in K. Note that f(σ(0)) is a singleton if σ ∈ K and σ ∩ |K0| ̸= ∅. We

define K1 = {σ ∈ K | σ ∩ |K0| = ∅}. For every v ∈ K
(0)
1 , since diamρH f(St(v,K)(0)) > 0, we can define

ϵv = min{ϵσ | σ ∈ St(v,K), ϵσ > 0} > 0.

Let f0 : |K0| →↓C(X,Y ) be the map such that f0(σ) = f(σ(0)) for each σ ∈ K0.
Since K is locally finite and X has no isolated points, we can choose a finite sets Av ⊂ X and δv > 0,

v ∈ K
(0)
1 , so that

(1) ρH(f(v)|Av , f(v)) < ϵσ,

(2) BdX (a, δv) ∩ BdX (a′, δv′) = ∅ if v ̸= v′ ∈ K
(0)
1 , v and v′ are contained in some σ ∈ K, a ∈ Av, and

a′ ∈ Av′ ,

(3) BdX (a, δv) ∩BdX (a′, δv) = ∅ if a ̸= a′ ∈ Av and v ∈ K
(0)
1 ,

where f(v)|Av =
∪
a∈Av

{a} × [0, f(v)(a)]. First, we will construct a map f1 : |K1| →↓C(X,Y ) such that

ρH(f1(v), f(v)) < ϵv for each v ∈ K
(0)
1 and diamρH f1(σ) < 7ϵσ for each σ ∈ K1. For every v ∈ K

(0)
1 , we

define f1(v) ∈↓C(X,Y ) as follows:

f1(v)(x) =

{
r(f(v)(x) × {(δv − dX(x,Av))/δv}) if dX(x,Av) ≤ δv,
{0} if dX(x,Av) ≥ δv.

Since f(v)|Av ⊂ f1(v) ⊂ f(v), it follows that ρH(f(v), f1(v)) ≤ ρH(f(v)|Av , f(v)) < εv. Denote the
barycenter of σ ∈ K1 by σ̂. For σ ∈ K1, let

f1(σ̂) =
∪

v∈σ(0)

f1(v) ∈↓C(X,Y ).
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For each z ∈ σ, there exist faces σ0 ≼ σ1 ≼ · · · ≼ σn ≼ σ of σ such that z =
∑n

i=0 tiσ̂i, where
∑n

i=0 ti = 1
and ti > 0. Then we can define

f1(z) =

n∪
i=0

r

(
f1(σ̂i),

n∑
i=j

tj

)
∈↓C(X,Y ).

For each σ ∈ K1 and v ∈ σ(0), the continuity of f1|St(v,SdK)∩σ follows from the ones of both the map r and
the union operator on CldV (X × Y ), where SdK is the barycentric subdivision of K. Since K1 is locally
finite, it follows that f1 is continuous. Thus we have a map f1 : |K1| →↓C(X,Y ). For each σ ∈ K1, let
v ∈ σ(0) and z ∈ | St(v, SdK)| ∩ σ. By the definition of f1, we have

f1(v) ⊂ f1(z) ⊂ f1(σ̂) =
∪

v′∈σ(0)

f(v′).

Then it follows that

ρH(f1(z), f1(v)) ≤ ρH

(
f1(v),

∪
v′∈σ(0)

f(v′)

)
≤ ρH(f1(v), f(v)) + ρH

(
f(v),

∪
v′∈σ(0)

f(v′)

)
≤ ρH(f1(v), f(v)) + max{ρH(f(v), f(v′)) | v′ ∈ σ(0)}
≤ ρH(f1(v), f(v)) + diamρH f(σ(0)) ≤ ϵv + ϵσ ≤ 2ϵσ.

For each z, z′ ∈ σ ∈ K1, we can choose vertices v, v′ ∈ σ(0) such that z ∈ | St(v, SdK)| and z′ ∈
| St(v′), SdK|. Then we have

ρH(f1(z), f1(z
′)) ≤ ρH(f1(z), f1(v)) + ρH(f1(v), f(v)) + ρH(f(v), f(v′))

+ ρH(f(v′), f1(v
′)) + ρH(f1(v

′), f1(z
′))

< 2ϵσ + ϵv + ϵσ + ϵv′ + 2ϵσ ≤ 7ϵσ.

Consequently, diamρH f1(σ) < 7ϵσ for each σ ∈ K1.
Next, we construct a map f∗ : |K|∪K(0)×I →↓C(X,Y ), where |K| is identified with |K|×{0} ⊂ |K|×I.

Let f∗||K0| = f0 and f∗||K1| = f1. For each z ∈ |K| \ |K0∪K1|, there exits σ0 ∈ K0 and σ1 ∈ K1 such that
z is contained in the join of σ0 and σ1, and hence z can be uniquely written as follows: z = tz0 + (1− t)z1
for some z0 ∈ σ0, z1 ∈ σ1 and t ∈ I. Then we can define

f∗(z) = r(f0(z0), t) ∪ f1(z1) ∈↓C(X,Y ).

Observe that f∗(z0) = f0(z0) and f∗(z1) = f1(z1). For each (v, t) ∈ K(0) × I, we define

f∗(v, t) = r(f(v), t) ∪ f1(v),

where f∗(v, 0) = f1(v) and f∗(v, 1) = f(v).
Thirdly, we can obtain a map g : |K| → |K| ∪K(0) × I so that g(v) = (v, 1) for each v ∈ K(0) and

g(σ) = σ ∪ σ(0) × I for each σ ∈ K \K(0). In fact, let v ∈ K(0) and z =
∑n

i=0 tiσ̂i ∈ |St(v, SdK)|, where
σ0 ≼ σ1 ≼ · · · ≼ σn ∈ K,

∑n
i=0 ti = 1 and ti ≥ 0. We define

g(z) =

{
(1 − 2t0)z + 2t0v if t0 ≤ 1/2,
(v, 2t0 − 1) if t0 ≥ 1/2.

Now, the desired map f : |K| →↓C(X,Y ) can be defined by f = f∗g. As is easily observed, f |K(0) = f .
We will show that diamρH f(σ) ≤ 10ϵσ for every σ ∈ K. When σ ∈ K0, we have diamρH f(σ) =
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diamρH f(σ(0)) = 0. For each σ ∈ K1, since f(σ) = f1(σ) ∪ f∗(σ(0) × I), it follows that

diamρH f(σ) ≤ diamρH f1(σ) + diamρH f∗(σ
(0) × I)

≤ diamρH f1(σ) + diamρH f(σ(0)) + 2 max{ρH(f1(v), f(v)) | v ∈ σ(0)}
< 7ϵσ + ϵσ + 2ϵσ = 10ϵσ.

When σ ∈ K \ (K0 ∪K1), we can take σ0 ∈ K0 and σ1 ∈ K1 so that σ is the join of σ0 and σ1. Since

σ ∈ St(v0,K) for any v0 ∈ σ
(0)
0 ⊂ K

(0)
0 , f(σ(0)) is a singleton. For each z = tz0 + (1 − t)z1 ∈ σ, where

z0 ∈ σ0, z1 ∈ σ1 and 0 ≤ t ≤ 1, choose v ∈ σ
(0)
1 such that z1 ∈ |St(v, SdK)|. Then f(σ(0)) = {f(v)},

f1(v) ⊂ f1(z1) ⊂ f(v) and f∗(z) = r(f0(z0), t) ∪ f1(z1) ⊂ f(v). Hence we get

ρH(f∗(z), f(σ(0))) = ρH(f∗(z), f(v)) ≤ ρH(f1(v), f(v)) < ϵv ≤ ϵσ.

Therefore for each z, z′ ∈ σ,

ρH(f∗(z), f∗(z
′)) ≤ ρH(f∗(z), f(σ(0))) + ρH(f(σ(0)), f∗(z

′)) + diamρH f(σ(0)) < ϵσ + ϵσ = 2ϵσ.

Consequently, diamρH f∗(σ) ≤ 2ϵσ. Since

diamρH f∗(σ
(0) × I) ≤ diamρH f(σ(0)) + max{ρH(f(v), f1(v)) | v ∈ σ

(0)
1 } ≤ ϵσ1 ≤ ϵσ,

it follows that

diamρH f(σ) ≤ diamρH f∗(σ) + diamρH f∗(σ
(0) × I) ≤ 2ϵσ + ϵσ = 3ϵσ.

Thus the proof is complete. □

6.4 The space ↓C(X,Y ) is an Fσδ set in ↓C(X,Y )

A dendrite Y has an order ≤ defined as follows: x ≤ y if x ∈ [0, y]. For each δ, ϵ > 0, let A(δ, ϵ) be the
set which consists of A ∈ ↓C(X,Y ) such that the following condition is satisfied:

• For all x, x′ ∈ X, if dX(x, x′) < δ and y, y′ ∈ Y are maximal points of A(x), A(x′), respectively, then
dY (y, y′) ≤ ϵ.

To prove that ↓C(X,Y ) is an Fσδ set in ↓C(X,Y ), we need the following lemma.

Lemma 6.4.1. For each δ, ϵ > 0, the set A(δ, ϵ) is closed in ↓C(X,Y ).

Proof. Take any sequence {An}n∈N in A(δ, ϵ) that converges to A in ↓C(X,Y ). To show that A ∈ A(δ, ϵ),
let (x, y), (x′, y′) ∈ A such that dX(x, x′) < δ and y, y′ are maximal in A(x), A(x′), respectively. Since
An → A, there exist (xn, yn), (x′n, y

′
n) ∈ An such that (xn, yn) → (x, y) and (x′n, y

′
n) → (x′, y′), see [42,

Lemma 5.3.1]. Without loss of generality, we may assume that dX(xn, x
′
n) < δ for every n ∈ N. For each

n ∈ N, there exist maximal points zn ∈ An(xn) and z′n ∈ An(x′n) such that zn ≥ yn and z′n ≥ y′n. Because
Y is compact, replacing (zn)n∈N and (z′n)n∈N with subsequences, we can assume that zn → z ∈ Y and
z′n → z′ ∈ Y . Using Lemma 5.3.1 of [42] again, we have z ∈ A(x) and z′ ∈ A(x′). Then y is contained
in the arc [0, z] from 0 to z. Indeed, if not, we have dY (y, [0, z]) > 0. Since yn → y and zn → z, we can
choose m ∈ N so that dY (y, ym), dY (z, zm) < dY (y, [0, z])/2. Note that ym ∈ [0, zm]. Then there exists a
point p ∈ [0, z] such that dY (ym, p) ≤ dY (z, zm) < dY (y, [0, z])/2 by Lemma 1.5.1. It follows that

dY (y, p) ≤ dY (y, ym) + dY (ym, p) < dY (y, [0, z])/2 + dY (y, [0, z])/2 = dY (y, [0, z]),
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which is a contradiction. Hence y ∈ [0, z]. By the maximality of y in A(x), we have y = z. Similarly,
y′ = z′.

Since each An ∈ A(δ, ϵ), dX(xn, x
′
n) < δ and zn, z

′
n are maximal in A(xn), A(x′n), respectively, it

follows that dY (zn, z
′
n) ≤ ϵ. Recall that zn → z = y and z′n → z′ = y′, so dY (y, y′) ≤ ϵ. Consequently, we

have A ∈ A(δ, ϵ). Thus the proof is complete. □

Now, we show the following:

Proposition 6.4.2. The space ↓C(X,Y ) is an Fσδ set in ↓C(X,Y ).

Proof. By virtue of Lemma 6.4.1, it suffices to show that

↓C(X,Y ) =
∩
n∈N

∪
m∈N

A(1/m, 1/n).

From the definition, we need only to prove that A(x) has the unique maximal point in Y for every
A ∈

∩
n∈N

∪
m∈NA(1/m, 1/n) and x ∈ X. Let y, y′ ∈ Y be maximal points in A(x). For each n ∈ N,

we can choose m ∈ N such that A ∈ A(1/m, 1/n), which implies that dY (y, y′) < 1/n. It follows that
dY (y, y′) = 0, that is, y = y′. Therefore the maximal point of A(x) is unique, and hence A is the
hypo-graph of some continuous function. This completes the proof. □

6.5 The Digging Lemma

The following lemma will play an important role for the rest of this chapter.

Lemma 6.5.1 (The Digging Lemma). Suppose that Z is a paracompact space, ϕ : Z →↓C(X,Y ) is a map,
and a ∈ X is a non-isolated point. Then for each map ϵ : Z → (0, 1), there exist maps ψ : Z →↓C(X,Y )
and δ : Z → (0, 1) such that for each z ∈ Z,

(a) ρH(ϕ(z), ψ(z)) < ϵ(z),

(b) ψ(z)(BdX (a, δ(z))) = {0}.

Proof. For each z ∈ Z, let ξ(z) = sup{η > 0 | ρH(ϕ(z), ϕ(z)|X\BdX
(a,η)) < ϵ(z)}. Since a is not isolated

and ϕ(z) ∈↓C(X,Y ), we have ξ(z) > 0. We shall prove ξ : Z → (0,∞) is a lower semi-continuous function.
Fix any z ∈ Z and η ∈ (0, ξ(z)). From the definition of ξ(z),

(⋆) ρH(ϕ(z), ϕ(z)|X\BdX
(a,ξ(z)−η/2)) < (n− 1)ϵ(z)/n for some n ∈ N.

Let t = min{η/2, ϵ(z)/3n}. Since ϕ and ϵ are continuous, the point z has a neighborhood N in Z such
that if z′ ∈ N , then ρH(ϕ(z), ϕ(z′)) < t and |ϵ(z)− ϵ(z′)| < ϵ(z)/3n. We shall show that for every z′ ∈ N ,
ξ(z′) ≥ ξ(z) − η. Take any (x, y) ∈ ϕ(z′)|BdX

(a,ξ(z)−η). Since ρH(ϕ(z), ϕ(z′)) < t, we can choose (x′, y′) ∈
ϕ(z) so that ρ((x, y), (x′, y′)) < t ≤ η/2. Then dX(x, x′) < η/2, that is, (x′, y′) ∈ ϕ(z)|BdX

(a,ξ(z)−η/2). Due

to (⋆), there exists (x′′, y′′) ∈ ϕ(z)|X\BdX
(a,ξ(z)−η/2) such that ρ((x′, y′), (x′′, y′′)) < (n − 1)ϵ(z)/n. Since

ρH(ϕ(z), ϕ(z′)) < t, we can find a point (x′′′, y′′′) ∈ ϕ(z′) such that ρ((x′′, y′′), (x′′′, y′′′)) < t ≤ η/2, which
implies that x′′′ ∈ X \BdX (a, ξ(z) − η). Then it follows that

ρ((x, y), (x′′′, y′′′)) ≤ ρ((x, y), (x′, y′)) + ρ((x′, y′), (x′′, y′′)) + ρ((x′′, y′′), (x′′′, y′′′))

< t+ (n− 1)ϵ(z)/n+ t ≤ (2/3n+ (n− 1)/n)ϵ(z)

= ϵ(z) − ϵ(z)/3n < ϵ(z′).

Thus ξ is lower semi-continuous.
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By Theorem 2.7.6 of [50], we can obtain a map δ : Z → (0, 1) so that δ(z) < ξ(z)/2 for each z ∈ Z.
Now, we can define the desired map ψ : Z →↓C(X,Y ) as follows:

ψ(z) = ϕ(z)|X\BdX
(a,2δ(z)) ∪BdX (a, δ(z)) × {0}

∪ {(x, y) ∈ X × Y | δ(z) ≤ dX(x, a) ≤ 2δ(z), y ∈ [0, r(maxϕ(z)(x), dX(x, a)/δ(z) − 1)]}.

Remark that ϕ(z) ∈↓C(X,Y ) is the hypo-graph of the map X ∋ x 7→ maxϕ(z)(x) ∈ Y . By the definition
of ψ, it is easy to show that ψ satisfies conditions (a) and (b).

Claim. The function ψ is continuous.
For every z ∈ Z and ϵ > 0, by Lemma 1.5.1, there exists δ1 > 0 such that δ1 < 1/2 and

dY (y, y1) < δ1 and |t− t1| < δ1 ⇒ dY (r(y, t), r(y1, t1)) < ϵ.

Take δ2 > 0 such that δ2 ≤ δ1/2 and δ2 diamdY Y < ϵ. We can choose δ3 > 0 so that δ3 < δ(z) and

a, b ∈ [δ(z)/2, 5δ(z)/2] and |a− b| < δ3 ⇒ |b/a− 1| < δ2.

Since ϕ and δ are continuous, there exists a neighborhood U of z such that for each z′ ∈ U , ρH(ϕ(z), ϕ(z′)) <
min{ϵ, δ(z)δ1/2, δ3/4}, |1/δ(z) − 1/δ(z′)| < 2δ1/9δ(z) and |δ(z) − δ(z′)| < δ3/8. We shall verify that
ρH(ψ(z), ψ(z′)) < ϵ for each z′ ∈ U . Take any (x, y) ∈ ψ(z). It is sufficient to show that (x, y) ∈
N(ψ(z′), ϵ).

Case I. dX(x, a) ≤ δ(z)
Then we have y = 0. So (x, y) = (x,0) ∈ ψ(z′).

Case II. δ(z) < dX(x, a) < δ(z) + δ3
Then |dX(x, a)/δ(z) − 1| < δ2, so

dY (0, y) ≤ dY (0, r(maxϕ(z)(x), dX(x, a)/δ(z) − 1)) = (dX(x, a)/δ(z) − 1)dY (0,maxϕ(z)(x))

< δ2 diamdY Y < ϵ.

Therefore ρ((x, y), (x,0)) = dY (0, y) < ϵ.
Case III. dX(x, a) ≥ δ(z) + δ3

Since ρH(ϕ(z), ϕ(z′)) < min{ϵ, δ(z)δ1/2, δ3/4}, there exists a point (x1, y1) ∈ ϕ(z′) such that

ρ((x,maxϕ(z)(x)), (x1, y1)) < min{ϵ, δ(z)δ1/2, δ3/4}.

Then we have
dX(x, x1) ≤ ρ((x,maxϕ(z)(x)), (x1, y1)) < min{ϵ, δ(z)δ1/2, δ3/4}.

Moreover, |δ(z) − δ(z′)| < δ3/8, and hence

dX(x1, a) ≥ dX(x, a) − dX(x, x1) > δ(z) + δ3 − δ3/4 > δ(z′) − δ3/8 + δ3 − δ3/4 > δ(z′).

If dX(x1, a) ≥ 2δ(z′), we get (x1, y1) ∈ ψ(z′). Since y ∈ [0,maxϕ(z)(x)], by Lemma 1.5.1, we can find
y2 ∈ [0, y1] such that dY (y, y2) ≤ dY (maxϕ(z)(x), y1) < ϵ. It follows that (x1, y2) ∈ ψ(z′) and

ρ((x, y), (x1, y2)) = max{dX(x, x1), dY (y, y2)} < ϵ.

Now, we need only to consider the case that δ(z′) < dX(x1, a) < 2δ(z′). Let y3 = r(y1, dX(x1, a)/δ(z′)−
1). Then y3 ∈ [0, r(maxϕ(z′)(x1), dX(x1, a)/δ(z′) − 1)], so (x1, y3) ∈ ψ(z′).
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Case III-i. δ(z) + δ3 ≤ dX(x, a) < 2δ(z)
Then we have

|dX(x, a)/δ(z) − 1 − (dX(x1, a)/δ(z′) − 1)| ≤ |1/δ(z) − 1/δ(z′)|dX(x1, a) + |dX(x, a) − dX(x1, a)|/δ(z)
≤ |1/δ(z) − 1/δ(z′)|(dX(x, x1) + dX(x, a)) + dX(x, x1)/δ(z)

< 2δ1(δ(z)/4 + 2δ(z))/9δ(z) + δ(z)δ1/2δ(z)

= δ1/2 + δ1/2 = δ1.

On the other hand, we get

dY (maxϕ(z)(x), y1) ≤ ρ((x,maxϕ(z)(x)), (x1, y1)) < δ(z)δ1/2 < δ1.

It follows that

dY (r(maxϕ(z)(x), dX(x, a)/δ(z) − 1), y3)

= dY (r(maxϕ(z)(x), dX(x, a)/δ(z) − 1), r(y1, dX(x1, a)/δ(z′) − 1)) < ϵ.

Using Lemma 1.5.1, we can choose y4 ∈ [0, y3] so that

dY (y, y4) ≤ dY (r(maxϕ(z)(x), dX(x, a)/δ(z) − 1), y3) < ϵ.

Then (x1, y4) ∈ ψ(z′) and ρ((x, y), (x1, y4)) = max{dX(x, x1), dY (y, y4)} < ϵ.
Case III-ii. 2δ(z) ≤ dX(x, a) < 2δ(z) + δ3/2

It follows that

|2δ(z′) − dX(x1, a)| ≤ |2δ(z′) − 2δ(z)| + |2δ(z) − dX(x, a)| + |dX(x, a) − dX(x1, a)|
< δ3/4 + δ3/2 + δ3/4 = δ3.

Therefore we have

|1 − (dX(x1, a)/δ(z′) − 1)| = |2 − dX(x1, a)/δ(z′)| < 2δ2 < δ1.

Observe that

dY (maxψ(z)(x), y3) = dY (maxϕ(z)(x), y3) = dY (r(maxϕ(z)(x), 1), r(y1, dX(x1, a)/δ(z′) − 1)) < ϵ.

Due to Lemma 1.5.1, there exists y5 ∈ [0, y3] such that dY (y, y5) ≤ dY (maxψ(z)(x), y3) < ϵ. Then
(x1, y5) ∈ ψ(z′) and ρ((x, y), (x1, y5)) = max{dX(x, x1), dY (y, y5)} < ϵ.

Case III-iii. dX(x, a) ≥ 2δ(z) + δ3/2
Note that

dX(x1, a) ≥ dX(x, a) − dX(x, x1) ≥ 2δ(z) + δ3/2 − δ3/4 > 2δ(z′) − δ3/4 + δ3/2 − δ3/4 = 2δ(z′),

which is a contradiction.
Consequently, (x, y) ∈ N(ψ(z′), ϵ). Similarly, ψ(z′) ⊂ N(ψ(z), ϵ). Thus ρH(ψ(z), ψ(z′)) < ϵ, and

hence ψ is continuous. □
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6.6 The disjoint cells property of ↓C(X, Y )

In this section, we shall show the following proposition:

Proposition 6.6.1. If there are no isolated points in X, then ↓C(X,Y ) has the disjoint cells property.

Proof. Let f, g : Q → ↓C(X,Y ) be maps and 0 < ϵ < diamdY Y . Since ↓C(X,Y ) is homotopy dense
in ↓C(X,Y ) by Theorem 6.3.1, we can obtain maps f ′ : Q →↓C(X,Y ) that is ϵ-close to f , and g′ :
Q →↓C(X,Y ) that is ϵ/3-close to g. Take a non-isolated point x0 ∈ X. Using the Digging Lemma 6.5.1,
we can find a map g′′ : Q →↓C(X,Y ) such that g′′ is ϵ/3-close to g′ and g′′(z)(x0) = {0} for all z ∈ Q.
Define a map g′′′ : Q → ↓C(X,Y ) as follows:

g′′′(z) = g′′(z) ∪ {x0} ×BdY (0, ϵ/3).

Then ρH(g′′(z), g′′′(z)) < ϵ/3 for every z ∈ Q, and hence g′′′ is ϵ/3-close to g′′. So it is ϵ-close to g. Take
any y ∈ Y with dY (0, y) = ϵ/3. Since g′′(z) ∈↓C(X,Y ) and g′′(z)(x0) = {0} for each z ∈ Q, we can
choose δ > 0 so that Bρ((x0, y), δ)∩ g′′(z) = ∅. This implies that g′′′(z) is not the hypo-graph of any map
because x0 is a non-isolated point. Hence g′′′(z) /∈↓C(X,Y ). Consequently, f ′(Q) ∩ g′′′(Q) = ∅. Thus
↓C(X,Y ) has the disjoint cells property. □

Combining Theorem 6.2.1, Proposition 6.6.1, and Toruńczyk’s characterization of the Hilbert cube,
see Corollary 1.3.3 in Chapter 1, we can immediately obtain the following:

Corollary 6.6.2. If X has no isolated points, then ↓C(X,Y ) is homeomorphic to the Hilbert cube Q.

Due to Proposition 6.4.2, ↓C(X,Y ) is an Fσδ set in ↓C(X,Y ) in the above. Hence we conclude as
follows:

Corollary 6.6.3. If X has no isolated points, then ↓C(X,Y ) is an absolute Fσδ set.

6.7 Detecting a Zσ-set in ↓C(X, Y ) containing ↓C(X, Y )

In this section, we prove the following proposition:

Proposition 6.7.1. If there are no isolated points in X, then ↓C(X,Y ) is contained in some Zσ-set in
↓C(X,Y ).

We can easily prove the following:

Lemma 6.7.2. Let Z be a Z-set in M that is homotopy dense in N . Then the closure Z of Z in N is a
Z-set in N .

Proof. Take any open cover U of N . Let V be an open cover of N such that V ⋆≺ U . Since M is
homotopy dense in N , we can find a map f : N → M such that f is V-close to idN . Moreover, since Z
is a Z-set in M , there is a map g : M → M such that g is V|M -close to idM and g(M) ∩ Z = ∅, where
V|M = {V ∩M | V ∈ V} is an open cover of M . Then the composition gf : N → M is U-close to idN
and gf(N) ∩ Z ⊂ g(M) ∩ Z = ∅. Consequently, Z is a Z-set in N . □

The next lemma is very useful for detecting Z-sets in ↓C(X,Y ).

Lemma 6.7.3. Suppose that F = E ∪ Z is a closed set in ↓C(X,Y ) such that Z is a Z-set in ↓C(X,Y ),
and for each A ∈ E, there exists a point a ∈ X with A(a) = {0}. Then F is a Z-set in ↓C(X,Y ).
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Proof. Let ϵ : ↓C(X,Y ) → (0, 1). It suffices to construct a map ϕ : ↓C(X,Y ) → ↓C(X,Y ) such that
ϕ(↓C(X,Y )) ∩ F = ∅ and ρH(ϕ(A), A) < ϵ(A) for each A ∈ ↓C(X,Y ). Since Z is a Z-set, there exists a
map ψ : ↓C(X,Y ) → ↓C(X,Y ) \ Z such that ρH(ψ(A), A) < ϵ(A)/2 for each A ∈ ↓C(X,Y ). Fix a point
y0 ∈ Y \ {0}. We define a map ϕ : ↓C(X,Y ) → ↓C(X,Y ) by

ϕ(A) = ψ(A) ∪ r([0, y0], t(A)),

where t(A) = min{ϵ(A), ρH(ψ(A), Z)}/(2 diamdY Y ) > 0. Obviously, ϕ(A)(x) ̸= 0 for each x ∈ X, that
is, ϕ(A) /∈ E. Observe that

ρH(ϕ(A), ψ(A)) ≤ t(A)dY (0, y0) ≤ t(A) diamdY Y ≤ min{ϵ(A), ρH(ψ(A), Z)}/2.

Hence ϕ(A) /∈ Z and

ρH(ϕ(A), A) ≤ ρH(ϕ(A), ψ(A)) + ρH(ψ(A), A) < ϵ(A)/2 + ϵ(A)/2 = ϵ(A).

The continuity of ϕ follows from the ones of r, ψ and t, and Lemma 6.1.1. This completes the proof. □

Proof of Proposition 6.7.1. Take a countable dense set D = {dn | n ∈ N} in X. For each n,m ∈ N, let

Fn,m = {↓f ∈↓C(X,Y ) | dY (f(dn),0) ≥ 1/m}.

As is easily observed, Fn,m is closed in ↓C(X,Y ). For each map ϵ :↓C(X,Y ) → (0, 1), by the Digging
Lemma 6.5.1, we have ϕ :↓C(X,Y ) →↓C(X,Y ) such that ρH(↓f, ϕ(↓f)) < ϵ(↓f) and ϕ(↓f)(dn) = {0} for
↓f ∈↓C(X,Y ). Obviously, ϕ(↓C(X,Y )) ∩ Fn,m = ∅. Thus each Fn,m is a Z-set in ↓C(X,Y ). It follows

from Theorem 6.3.1 and Lemma 6.7.2 that the closure Fn,m is a Z-set in ↓C(X,Y ).

Let F =
∩
n∈N

∩
m∈N(↓C(X,Y ) \ Fn,m). It remains to prove that the closure F of F in ↓C(X,Y ) is a

Z-set. Observe that

F = {↓f ∈↓C(X,Y ) | f(dn) = 0 for each n ∈ N} = {↓0},

where 0 : X → {0} ⊂ Y is the constant map. Hence F = {↓0} = {X ×{0}}. According to Lemma 6.7.3,
F is a Z-set in ↓C(X,Y ). Consequently, ↓C(X,Y ) is contained in the Zσ-set F ∪

∪
m,n∈N Fn,m. □

6.8 The strong (M0,Fσδ)-universality of (↓C(X, Y ), ↓C(X, Y ))

In this section, we shall show the main theorem. Let (X1, X2) be a pair of spaces, and let C1 and C2 be
classes. We say that (X1, X2) is strongly (C1, C2)-universal if the following condition holds:

• Let Z1 ∈ C1, Z2 ∈ C2, K a closed subset of Z1, and f : Z1 → X1 a map such that f |K is a Z-
embedding. Then for every open cover U of X1, there exists a Z-embedding g : Z1 → X1 such that
g is U-close to f , g|K = f |K and g−1(X2) \K = Z2 \K.

A pair (X1, X2) of spaces is (C1, C2)-absorbing1 provided that the following conditions are satisfied:

(i) X1 ∈ C1 and X2 ∈ C2;

(ii) X2 is contained in a Zσ-set in X1;

(iii) (X1, X2) is strongly (C1, C2)-universal.

1We modify the definition of [10].
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Denote the class of compact metrizable spaces by M0, and the one of separable metrizable absolute Fσδ
spaces by Fσδ. According to Theorem 1.7.6 of [10], the following can be established.

Theorem 6.8.1. Let X1 and Z1 be topological copies of the Hilbert cube Q. If pairs (X1, X2) and (Z1, Z2)
are (M0,Fσδ)-absorbing, then there exists a homeomorphism f : X1 → Z1 such that f(X2) = Z2.

Let c1 = {(xi)i∈N ∈ Q | limi→∞ xi = 1}. The following fact is well known.

Fact 4. The pairs (Q, c0) and (Q, c1) are (M0,Fσδ)-absorbing, and hence (Q, c0) is homeomorphic to
(Q, c1).

We needs the following lemma to verify the strong (M0,Fσδ)-universality of (↓C(X,Y ), ↓C(X,Y )).

Lemma 6.8.2. Let xm, x∞ ∈ X, m ∈ N, such that {rm = dX(xm, x∞)}m∈N is a strictly decreasing
sequence conversing to 0, and let y0 ∈ Y \ {0} such that dY (0, y0) ≤ 1. Suppose that g : Z → Q is an
injection from a space Z to the Hilbert cube Q and δ : Z → (0, 1) is a map. Then there exists a map
Φ : Z → ↓C(X, [0, y0]) satisfying the following conditions:

(1) Φ is injective;

(2) ρH(Φ(z), X × {0}) ≤ δ(z) for all z ∈ Z;

(3) Φ(z)(X \BdX (x∞, r2k)) = {0} for all z ∈ Z with 2−k ≤ δ(z) ≤ 2−k+1, k ∈ N;

(4) z ∈ g−1(c1) if and only if Φ(z) ∈↓C(X, [0, y0]);

(5) Φ(z)(x∞) = [0, r(y0, δ(z))] for all z ∈ Z.

Proof. For each k,m ∈ N, let Zk = {z ∈ Z | 2−k ≤ δ(z) ≤ 2−k+1} and Sm = {x ∈ X | rm ≤ dX(x, x∞) ≤
rm−1}. Note that Z =

∪
k∈N Zk, xm−1, xm ∈ Sm,

∪
m∈N Sm = X \ {x∞}, and Sm ∩ Sm′ ̸= ∅ if and only if

|m−m′| ≤ 1. We define maps ϕk : Zk → I and ψm : Sm → I for each k,m ∈ N by ϕk(z) = 2− 2kδ(z) and
ψm(x) = (dX(x, x∞) − rm)/(rm−1 − rm), respectively. Then ψm(xm−1) = 1 and ψm(xm) = 0. For each
i, k ∈ N, let fki : Zk → I be a map defined by

fki (z) =


0 if i = 1,
(1 − ϕk(z))δ(z) if i = 2,
(1 − ϕk(z))δ(z)g(z)(1) if i = 3,
δ(z) if i = 2j, j ≥ 2,
δ(z)((1 − ϕk(z))g(z)((i− 1)/2) + ϕk(z)g(z)((i− 3)/2)) if i = 2j + 1, j ≥ 2.

Remark that fki (z) ≤ δ(z) for every z ∈ Z. We define a map Φk : Zk → ↓C(X, [0, y0]), k ∈ N, as follows:

Φk(z) = {x ∈ X | dX(x, x∞) ≥ r2k} × {0} ∪ {x∞} × [0, r(y0, δ(z))]

∪
∪
i∈N

{(x, y) ∈ X × Y | x ∈ S2k+i, y ∈ [0, r(y0, α
k
i (x, z))]},

where αki (x, z) = ψ2k+i(x)fki (z) + (1 − ψ2k+i(x))fki+1(z). Then Φk(z) = Φk+1(z) for every z ∈ Zk ∩ Zk+1.
Indeed, take any z ∈ Zk ∩ Zk+1. Since δ(z) = 2−k, we have ϕk(z) = 1 and ϕk+1(z) = 0. Observe that
fk1 (z) = fk2 (z) = fk3 (z) = 0. Hence for each x ∈ X,

αk1(x, z) = ψ2k+1(x)fk1 (z) + (1 − ψ2k+1(x))fk2 (z) = 0 and

αk2(x, z) = ψ2k+2(x)fk2 (z) + (1 − ψ2k+2(x))fk3 (z) = 0.

It follows that

Φk(z)({x ∈ X | dX(x, x∞) ≥ r2k+2}) = {0} = Φk+1(z)({x ∈ X | dX(x, x∞) ≥ r2k+2}).
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We see fk3 (z) = 0 = fk+1
1 (z), fk2j+3(z) = δ(z)g(z)(j) = fk+1

2j+1(z) and fk2j+2(z) = δ(z) = fk+1
2j (z) for all

j ≥ 1, that is, fki+2(z) = fk+1
i (z) for all i ≥ 1. Therefore for each x ∈ S2k+i+2, i ≥ 1,

Φk(z)(x) = [0, r(y0, α
k
i+2(x, z))] = [0, r(y0, α

k+1
i (x, z))] = Φk+1(z)(x).

Moreover, Φk(z)(x∞) = [0, r(y0, δ(z))] = Φk+1(z)(x∞). Thus Φk(z) = Φk+1(z).
Now, we can obtain the desired map Φ : Z → ↓C(X, [0, y0]) defined by Φ(z) = Φk(z) if z ∈ Zk.

It follows from the definition that Φ satisfies conditions (2), (3) and (5). So it remains to verify that
conditions (1) and (4) hold.

Condition (1) Φ is injective.
Let z1, z2 ∈ Z such that Φ(z1) = Φ(z2). Then

[0, r(y0, δ(z1))] = Φ(z1)(x∞) = Φ(z2)(x∞) = [0, r(y0, δ(z2))],

which implies that δ(z1) = δ(z2). Hence both of z1 and z2 are contained in Zk for some k ∈ N and

ϕk(z1) = 2 − 2kδ(z1) = 2 − 2kδ(z1) = ϕk(z2).

Since ψ2k+i(x2k+i) = 0 for all i ∈ N, we have

[0, r(y0, f
k
i+1(z1))] = Φk(z1)(x2k+i) = Φk(z2)(x2k+i) = [0, r(y0, f

k
i+1(z2))],

which implies that fkj (z1) = fkj (z2) for every j ≥ 2. In the case ϕk(z1) = 1, for each j ∈ N, we have

g(z1)(j) = fk2j+3(z1) = fk2j+3(z2) = g(z2)(j),

In the case ϕk(z1) ̸= 1, we have

(1 − ϕk(z1))δ(z1)g(z1)(1) = fk3 (z1) = fk3 (z2) = (1 − ϕk(z2))δ(z2)g(z2)(1),

which implies that g(z1)(1) = g(z2)(1). Assume that g(z1)(i) = g(z2)(i) for i ∈ N. Then

δ(z1)((1 − ϕk(z1))g(z1)(i+ 1) + ϕk(z1)g(z1)(i)) = fk2i+3(z1) = fk2i+3(z2)

= δ(z2)((1 − ϕk(z2))g(z2)(i+ 1) + ϕk(z2)g(z2)(i)),

so g(z1)(i + 1) = g(z2)(i + 1). By induction, for all j ∈ N, we get g(z1)(j) = g(z2)(j). It follows that
g(z1) = g(z2). Since g is injective, z1 = z2. Therefore Φ is injective.

Condition (4) z ∈ g−1(c1) if and only if Φ(z) ∈↓C(X, [0, y0]).
We define a function h(z) : X → [0, y0] ⊂ Y for each z ∈ Zk and k ∈ N as follows:

h(z)(x) =


0 if dX(x, x∞) ≥ r2k,
r(y0, α

k
i (x, z)) if x ∈ S2k+i, i ∈ N,

r(y0, δ(z)) if x = x∞.

Observe that ↓h(z) = Φ(z) and h(z) is continuous on X \{x∞}. When h(z) is continuous at the point x∞,
Φ(z) =↓h(z) ∈↓C(X, [0, y0]). So we need only to show that z ∈ g−1(c1) if and only if h(z) is continuous
at x∞.

First, we shall prove the only if part. Take any ϵ > 0. We may assume that ϵ < δ(z). Since g(z) ∈ c1,
there exists i0 ∈ N such that for every i ≥ i0, g(z)(i) > 1 − ϵ/δ(z). Fix any point x ̸= x∞ in the
neighborhood {x∞} ∪

∪
i≥2i0+3 S2k+i of x∞ in X, where z ∈ Zk. Then x ∈ S2k+i for some i ≥ 2i0 + 3.

When i is even, fki (z) = δ(z). When i is odd,

fki (z) = δ(z)((1 − ϕk(z))g(z)((i− 1)/2) + ϕk(z)g(z)((i− 3)/2))

> δ(z)((1 − ϕk(z))(1 − ϵ/δ(z)) + ϕk(z)(1 − ϵ/δ(z))) > δ(z) − ϵ.
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Hence we have

αki (x, z) = ψ2k+i(x)fki (z) + (1 − ψ2k+i(x))fki+1(z)

> ψ2k+i(x)(δ(z) − ϵ) + (1 − ψ2k+i(x))(δ(z) − ϵ) = δ(z) − ϵ.

It follows that

dY (h(z)(x∞), h(z)(x)) = dY (r(y0, δ(z)), r(y0, α
k
i (z))) = (δ(z) − αki (z))dY (0, y0)

< δ(z) − (δ(z) − ϵ) = ϵ.

Consequently, h(z) is continuous.
Next, we shall show the if part. Let ϵ ∈ (0, 1) and ϵ′ = ϵϕk(z)δ(z), where z ∈ Zk with ϕk(z) > 0.

Since h(z) is continuous at x∞, we can choose i0 ≥ 5 so that for any x ∈ X,

dX(x, x∞) ≤ r2k+i0 ⇒ dY (h(z)(x), h(z)(x∞)) < ϵ′dY (0, y0).

Recall that ψm(xm) = 0 for all m ∈ N. Therefore for every i ≥ i0,

dY (r(y0, f
k
i+1(z)), r(y0, δ(z))) = dY (r(y0, ψ2k+i(x2k+i)f

k
i (z) + (1 − ψ2k+i(x2k+i))f

k
i+1(z)), r(y0, δ(z)))

= dY (r(y0, α
k
i (x2k+i, z)), r(y0, δ(z)))

= dY (h(z)(x2k+i), h(z)(x∞)) < ϵ′dY (0, y0).

Note that for all i ≥ i0 + 1,

δ(z) − fki (z) = dY (r(y0, f
k
i (z)), r(y0, δ(z)))/dY (0, y0) < ϵ′.

It follows that for any j ≥ (io − 2)/2,

g(z)(j) = (fk2j+3(z)/δ(z) − (1 − ϕk(z))g(z)(j + 1))/ϕk(z) ≥ (fk2j+3(z)/δ(z) − (1 − ϕk(z)))/ϕk(z)

> ((δ(z) − ϵ′)/δ(z) − (1 − ϕk(z)))/ϕk(z) = ((δ(z) − ϵϕk(z)δ(z))/δ(z) − (1 − ϕk(z)))/ϕk(z)

= 1 − ϵ.

Hence g(z) ∈ c1. Thus the proof is complete. □

Proposition 6.8.3. If X has no isolated points, then the pair (↓C(X,Y ), ↓C(X,Y )) is strongly (M0,Fσδ)-
universal.

Proof. Let Z ∈ M0, C ∈ Fσδ, K a closed subset of Z, ϵ > 0 and Φ : Z → ↓C(X,Y ) a map such that the
restriction Φ|K is a Z-embedding. We shall construct a Z-embedding Ψ : Z → ↓C(X,Y ) so that Ψ is ϵ-
close to Φ, Ψ|K = Φ|K and Ψ−1(↓C(X,Y ))\K = C\K. Since Φ(K) is a Z-set in ↓C(X,Y ), we may assume
that Φ(K) ∩ Φ(Z \K) = ∅. Define a map δ : Z → [0, 1) by δ(z) = min{ϵ, ρH(Φ(z),Φ(K))}/4. Observe
that δ(z) = 0 if and only if z ∈ K. Since ↓C(X,Y ) is homotopy dense in ↓C(X,Y ) by Theorem 6.3.1,
there exists a homotopy H : ↓C(X,Y )×I → ↓C(X,Y ) such that H0 = id↓C(X,Y )

, Ht(↓C(X,Y )) ⊂↓C(X,Y )

for all t ∈ (0, 1] and ρH(Ht(↓A), ↓A) ≤ t for each ↓A ∈ ↓C(X,Y ) and t ∈ I. Let h : Z → ↓C(X,Y ) be
a map defined by h(z) = H(Φ(z), δ(z)). Remark that ρH(h(z),Φ(z)) = ρH(H(Φ(z), δ(z)),Φ(z)) ≤ δ(z)
for every z ∈ Z, in particular, h(z) = Φ(z) for all z ∈ K, and h(Z \K) ⊂↓C(X,Y ). Take a non-isolated
point x∞ ∈ X. According to the Digging Lemma 6.5.1, we can obtain maps ψ : Z \K →↓C(X,Y ) and
r : Z \K → (0, 1) so that for each z ∈ Z \K,

(a) ρH(h(z), ψ(z)) ≤ δ(z),

(b) ψ(z)(BdX (x∞, r(z))) = {0}.
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Let Zk = {z ∈ Z | 2−k ≤ δ(z) ≤ 2−k+1} ⊂ Z \ K for each k ∈ N. Then each Zk is compact and
Z \ K =

∪
k∈N Zk. Since x∞ is a non-isolated point, there exists a point x1 ∈ X \ {x∞} such that

dX(x1, x∞) < min{1, r(z) | z ∈ Z1}. By induction, we can choose xm ∈ X \ {x∞} for each m ≥ 2 so that
dX(xm, x∞) < min{1/m, dX(xm−1, x∞), r(z) | z ∈ Zm}. Let rm = dX(xm, x∞) for each m ∈ N, so rm
converges to 0 as m intends to ∞. Note that for every z ∈ Zk and k ∈ N, ψ(z)(BdX (x∞, rk)) = {0}. Since
the pair (Q, c1) is strongly (M0,Fσδ)-universal due to Fact 4, we can take am embedding g : Z → Q so
that g−1(c1) = C. Choose y0 ∈ Y \ {0} with dY (0, y0) ≤ 1.

Using Lemma 6.8.2, we can obtain a map ψ′ : Z\K → ↓C(X, [0, y0]) satisfying the following conditions:

(1) ψ′ is injective;

(2) ρH(ψ′(z), X × {0}) ≤ δ(z) for all z ∈ Z \K;

(3) ψ′(z)(X \BdX (x∞, r2k)) = {0} for all z ∈ Zk, k ∈ N;

(4) z ∈ C \K if and only if ψ′(z) ∈↓C(X, [0, y0]);

(5) ψ′(z)(x∞) = [0, r(y0, δ(z))] for all z ∈ Z \K.

Define ψ′′ : Z \K → ↓C(X,Y ) by ψ′′(z) = ψ(z) ∪ ψ′(z). The continuity of ψ′′ follows from the ones of ψ
and ψ′, and Lemma 6.1.1. By conditions (a) and (2), and Lemma 6.1.1, for each z ∈ Z \K,

ρH(h(z), ψ′′(z)) = ρH(h(z) ∪X × {0}, ψ(z) ∪ ψ′(z))

≤ max{ρH(h(z), ψ(z)), ρH(X × {0}, ψ′(z))} ≤ δ(z).

According to conditions (b), (3) and (4), we have z ∈ C \K if and only if ψ′′(z) ∈↓C(X,Y ). Moreover,
ψ′′ is injective. Indeed, take any z1, z2 ∈ Z \K with ψ′′(z1) = ψ′′(z2). Then there exist k1, k2 ∈ N such
that z1 ∈ Zk1 and z2 ∈ Zk2 , respectively. It follows from (b) and (5) that

[0, r(y0, δ(z1))] = ψ′(z1)(x∞) = ψ′′(z1)(x∞) = ψ′′(z2)(x∞) = ψ′(z2)(x∞) = [0, r(y0, δ(z2))],

which implies that δ(z1) = δ(z2). Hence z1, z2 ∈ Zk, where k = k1 = k2. Since ψ(z1)(BdX (x∞, rk)) =
{0} = ψ(z2)(BdX (x∞, rk)) by (b), we have

ψ′(z1)(x) = ψ′′(z1)(x) = ψ′′(z2)(x) = ψ′(z2)(x) for every x ∈ BdX (x∞, r2k).

On the other hand, by (3), ψ′(z1)(X \ BdX (x∞, r2k)) = {0} = ψ′(z2)(X \ BdX (x∞, r2k)). Therefore
ψ′(z1) = ψ′(z2). Due to (1), we get z1 = z2, so ψ′′ is injective.

We can extend ψ′′ to the desired map Ψ : Z → ↓C(X,Y ) by Ψ|K = Φ|K . Then for each z ∈ Z,

ρH(Φ(z),Ψ(z)) ≤ ρH(Φ(z), h(z)) + ρH(h(z),Ψ(z)) ≤ 2δ(z) ≤ min{ϵ, ρH(Φ(z),Φ(K))}/2,

which means that Ψ is continuous. Moreover, it follows that ρH(Φ(z),Ψ(z)) ≤ ϵ for all z ∈ Z, and
Ψ(z) ∈ ↓C(X,Y ) \ Φ(K) for all z ∈ Z \ K. Since z ∈ C \ K if and only if ψ′′(z) ∈↓C(X,Y ), we have
Ψ−1(↓C(X,Y )) \K = C \K. It remains to show that Ψ is a Z-embedding. It is easy to see that Ψ is an
embedding. Recall that Ψ(K) = Φ(K) is a Z-set in ↓C(X,Y ). Since x2k ∈ BdX (x∞, rk) \ BdX (x∞, r2k)
for every k ∈ N, it follows from (b) and (3) that

Ψ(z)(x2k) = ψ′′(z)(x2k) = ψ(z)(x2k) ∪ ψ′(z)(x2k) = {0} for each z ∈ Zk.

Applying Lemma 6.7.3, Ψ(Z) = Ψ(Z \ K) ∪ Ψ(K) is a Z-set in ↓C(X,Y ). Consequently, Ψ is a Z-
embedding. □

Finally, we prove the main theorem.
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Proof of Main Theorem. We can write X =
⊕n

i=1Xi, where each Xi is a component of X. Note that

the pair (↓v C(X,Y ), ↓ v C(X,Y )) is homeomorphic to
(∏n

i=1 ↓v C(Xi, Y ),
∏n
i=1 ↓ v C(Xi, Y )

)
, refer to

Lemma 6.8 of [39]. Since X is infinite, there exists at least one component that is non-degenerate. When
Xi is a singleton, (↓v C(Xi, Y ), ↓v C(Xi, Y )) is homeomorphic to (Y, Y ). When Xi is non-degenerate, it
is compact and has no isolated points. Combining Corollary 6.6.2, Proposition 6.4.2, Proposition 6.7.1 and
Proposition 6.8.3, we can obtain that ↓v C(Xi, Y ) is homeomorphic to Q and that (↓v C(Xi, Y ), ↓v C(Xi, Y ))
is (M0,Fσδ)-absorbing. It follows from Theorem 6.8.1 and Fact 4 that (↓v C(Xi, Y ), ↓v C(Xi, Y )) is homeo-
morphic to (Q, c0). On the other hand, using Theorem 6.8.1, we can easily show that the pairs (Q×Q, c0×
c0) and (Q×Y, c0×Y ) are homeomorphic to (Q, c0). This means that

(∏n
i=1 ↓v C(Xi, Y ),

∏n
i=1 ↓v C(Xi, Y )

)
is homeomorphic to (Q, c0). Thus the proof is complete. □

6.9 Remarks

In this section, we will give some remarks on the main theorem. Z. Yang and X. Zhou [64] proved the
stronger result as follows:

Theorem 6.9.1. The pair (↓USC(X, I), ↓C(X, I)) is homeomorphic to (Q, c0) if and only if the set of
isolated points of X is not dense.

It is unknown whether the same result holds or not in the general case. However, we show the following
theorem (cf. Z. Yang [63] proved the case that Y = I).

Theorem 6.9.2. The space ↓C(X,Y ) is a Baire space if and only if the set of isolated points is dense in
X.

The following two assertions are counterparts to Lemma 6.7.3 and Proposition 6.7.1, respectively.

Lemma 6.9.3. Suppose that F = E ∪ Z ⊂↓C(X,Y ) is a closed set such that Z is a Z-set in ↓C(X,Y ),
and there exists a point x ∈ X such that for every ↓f ∈ E, f(x) = 0. Then F is a Z-set in ↓C(X,Y ).

Proof. Let ϵ :↓C(X,Y ) → (0, 1). It suffices to construct a map ϕ :↓C(X,Y ) →↓C(X,Y ) such that
ϕ(↓C(X,Y ))∩F = ∅ and ρH(ϕ(↓f), ↓f) < ϵ(↓f) for each ↓f ∈↓C(X,Y ). Since Z is a Z-set, there exists a
map ψ :↓C(X,Y ) →↓C(X,Y ) \Z such that ρH(ψ(↓f), ↓f) < ϵ(↓f)/2 for every ↓f ∈↓C(X,Y ). Fix a point
y0 ∈ Y \ {0} with dY (0, y0) ≤ 1 and let t(↓f) = min{ϵ(↓f), ρH(ψ(↓f), Z)}/2 > 0 for each ↓f ∈↓C(X,Y ).

First, we consider the case that x ∈ X is an isolated point. Define a map ϕ :↓C(X,Y ) →↓C(X,Y ) by

ϕ(↓f) = ψ(↓f)|X\{x} ∪ [0, γ(maxψ(↓f)(x), y0, t(↓f)/diamdY Y )] for each ↓f ∈↓C(X,Y ),

where γ : Y 2 × I → Y is as in Lemma 1.5.1. Obviously, ϕ(↓f)(x) ̸= 0, that is, ϕ(↓f) /∈ E. Observe that

ρH(ψ(↓f), ϕ(↓f)) ≤ t(↓f) ≤ ρH(ψ(↓f), Z)/2,

which implies that ϕ(↓f) /∈ Z. Moreover,

ρH(↓f, ϕ(↓f)) ≤ ρH(↓f, ψ(↓f)) + ρH(ψ(↓f), ϕ(↓f)) < ϵ(↓f)/2 + t(↓f) ≤ ϵ(↓f).

Next, we consider the case that x ∈ X is a non-isolated point. Using the Digging Lemma 6.5.1, we
can obtain maps ξ :↓C(X,Y ) →↓C(X,Y ) and δ :↓C(X,Y ) → (0, 1) such that for each ↓f ∈↓C(X,Y ),

(a) ρH(ψ(↓f), ξ(↓f)) < t(↓f)/2,

(b) ξ(↓f)(BdX (x, δ(↓f))) = {0}.
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For each ↓f ∈↓C(X,Y ), let

η(↓f) =
∪

x′∈BdX
(x,δ(↓f))

[0, r(y0, t(↓f)(δ(↓f) − dY (x, x′))/(2δ(↓f))].

We define a map ϕ :↓C(X,Y ) →↓C(X,Y ) as follows:

ϕ(↓f) = ξ(↓f) ∪ η(↓f).

Note that ϕ(↓f)(x) ̸= 0, and hence ϕ(↓C(X,Y )) ∩ E = ∅. For every ↓f ∈↓C(X,Y ), we have

ρH(ψ(↓f), ϕ(↓f)) ≤ ρH(ψ(↓f), ξ(↓f)) + ρH(ξ(↓f), ϕ(↓f))

< t(↓f)/2 + t(↓f)/2 ≤ ρH(ψ(↓f), Z)/2.

Therefore ϕ(↓f) /∈ Z. It follows that

ρH(↓f, ϕ(↓f)) ≤ ρH(↓f, ψ(↓f)) + ρH(ψ(↓f), ϕ(↓f)) < ϵ(↓f)/2 + t(↓f) ≤ ϵ(↓f).

This completes the proof. □

Proposition 6.9.4. If the set of isolated points is not dense in X, then ↓C(X,Y ) is a Zσ-set in itself,
and hence it is not a Baire space.

Proof. Let X0 be the set of isolated points in X and take a countable dense set D = {dn | n ∈ N} in
X \X0. For each n,m ∈ N, let

Fn,m = {↓f ∈↓C(X,Y ) | dY (f(dn),0) ≥ 1/m}.

As is easily observed, Fn,m is closed in ↓C(X,Y ). For each map ϵ :↓C(X,Y ) → (0, 1), by the Digging
Lemma 6.5.1, we have ϕ :↓C(X,Y ) →↓C(X,Y ) such that ρH(↓f, ϕ(↓f)) < ϵ(↓f) and ϕ(↓f)(dn) = 0 for
↓f ∈↓C(X,Y ). Obviously, ϕ(↓C(X,Y )) ∩ Fn,m = ∅. Thus each Fn,m is a Z-set in ↓C(X,Y ).

Let F =
∩
n∈N

∩
m∈N(↓C(X,Y ) \ Fn,m). It remains to prove that the closure F of F in ↓C(X,Y ) is a

Z-set. Observe that
F = {↓f ∈↓C(X,Y ) | f(dn) = 0 for each n ∈ N},

which implies that f(x) = 0 for all ↓f ∈ F and all x ∈ X \ X0. Fix x ∈ X \ X0 and δ > 0 such that
BdX (x, δ) ⊂ X \ X0. For every ↓f ∈ F , we have f(x) = 0. Indeed, for each ϵ ∈ (0, δ), there exists
↓g ∈ F such that ρH(↓f, ↓g) < ϵ. Then we can find (a, b) ∈↓g such that ρ((x, f(x)), (a, b)) < ϵ. Since
dX(x, a) < ϵ < δ, we get g(a) = 0, so dY (f(x),0) = dY (f(x), b) < ϵ. Hence f(x) = 0. According to
Lemma 6.9.3, the closure F is a Z-set in ↓C(X,Y ). Consequently, ↓C(X,Y ) = F ∪

∪
m,n∈N Fn,m is a

Zσ-set in itself. □

We prove the “if” part of Theorem 6.9.2.

Proposition 6.9.5. If the set of isolated points is dense in X, then ↓C(X,Y ) is a Baire space.

Proof. Let X0 be the set of isolated points in X and F be the finite subsets of X0. For each F ∈ F and
n ∈ N, we define

UF,n = {A ∈ ↓C(X,Y ) | A(x) ⊂ BdY (0, 1/n) for all x ∈ X \ F}.

Since F ⊂ X0, UF,n is open in ↓C(X,Y ). Let Un =
∪
F∈F UF,n. We shall prove that each Un is dense in

↓C(X,Y ). For each ↓f ∈↓C(X,Y ) and ϵ > 0, we can obtain F ∈ F so that ρH(↓f |F , ↓f) < ϵ because ↓f
is compact and X0 is dense in X. Define a map g : X → Y as follows:

g(x) =

{
f(x) if x ∈ F,
0 if x ∈ X \ F.
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Then ↓g ∈ UF,n ⊂ Un and ρH(↓g, ↓f) ≤ ρH(↓f |F , ↓f) < ϵ. Hence Un is dense in ↓C(X,Y ).
Next, we will show that G =

∩
n∈N Un ⊂↓C(X,Y ). Let A ∈ G. Observe that for each x ∈ X \ X0,

A(x) = {0}. Moreover, for each n ∈ N, we can find F ∈ F such that A ∈ UF,n. Then A(y) ⊂ BdY (0, 1/n)
for all y ∈ X \F , which means that A is a hypo-graph of a function from X to Y that is continuous at x.
Therefore A ∈↓C(X,Y ). Since ↓C(X,Y ) is compact, the Gδ-set G =

∩
n∈N Un is a Baire space and dense

in ↓C(X,Y ).Consequently, ↓C(X,Y ) is a Baire space. □

Remark 14. In the above proof, if A ∈ ↓C(X,Y ) and x ∈ X0, then A(x) is an arc or the singleton {0}.
Hence the restriction A|X0 is a hypo-graph of a continuous function from X0 to Y .

Combining Propositions 6.9.4 and 6.9.5, we can establish Theorem 6.9.2. The space c0 is not a Baire
space. In fact, it is a Zσ-set in it. Immediately, we have the following:

Corollary 6.9.6. If ↓C(X,Y ) is homeomorphic to c0, then the set of isolated points is not dense in X.
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[26] T. Dobrowolski and H. Toruńczyk, Separable complete ANR’s admitting a group structure are Hilbert
manifolds, Topology Appl. 12 (1981), 229–235.

[27] T. Dobrowolski, W. Marciszewski and J. Mogilski, On topological classification of function spaces
Cp(X) of low Borel complexity, Trans. Amer. Math. Soc. 328 (1991), no. 1, 307–324.

[28] J. Dugundji, An extension of Tietze’s theorem, Pacific J. Math. 1 (1951), 353–367.

[29] J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.

[30] R. Engelking, General Topology, Revised and Complete Edition, Sigma Ser. in Pure Math., 6, Hel-
dermann Verlag, Berlin, 1989.

[31] V.V. Fedorchuk, Completions of spaces of functions on compact spaces with respect to the Hausdorff
uniformity, J. of Math. Sci. 80 (1996), 2118–2129.

[32] D.W. Henderson, Corrections and extensions of two papers about infinite-dimensional manifolds,
Gen. Topology Appl. 1 (1971), 321–327.

[33] D.W. Henderson and R. Schori, Topological classification of infinite dimensional manifolds by homo-
topy type, Bull. Amer. Math. Soc. 76 (1970), 121–124.

[34] M.I. Kadec, A proof the topological equivalence of all separable infinite-dimensional Banach spaces
(Russian), Funkcional Anal. i Priložen, 1 (1967), 61–70.
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[58] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math.
106 (1980), 31–40.
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