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Introduction

Throughout this thesis, all spaces are Hausdorff and all maps are continuous, but functions are not
necessarily continuous. We use often cardinals itself as a set. Given a space E, an E-manifold is a
topological manifold modeled on E, that is, a paracompact space such that each point has an open
neighborhood homeomorphic to an open subset of E, where F is called a model space. An E-manifold is
an infinite-dimensional manifold if the model space F is infinite-dimensional. The Hilbert space of weight
7 is denoted by f2(7), that is,

to(r) = {:c = (2(1)y<r ERT

> a(y)? < OO},

<1

where 7 is an infinite cardinal. We denote the Hilbert cube by Q = [~1,1]Y. They are the most typical
model spaces of infinite-dimensional manifolds. The study of infinite-dimensional manifolds, which had
risen in the late 1960s, reached the celebrated topological characterizations of f5(7)-manifolds and Q-
manifolds by H. Toruriczyk [58, 59] in the early 1980s.

In this thesis, we study on characterizations of infinite-dimensional manifolds and their pairs modeled
on Hilbert spaces, the Hilbert cube and the subspaces, and as applications, we detect infinite-dimensional
manifolds among convex sets in topological linear spaces and function spaces.

In recent years, many researchers eagerly study infinite-dimensional manifolds modeled on incomplete
metrizable spaces being universal for absolute Borel classes. The following concept plays a central role in
topological characterizations of such infinite-dimensional manifolds. A space X is strongly universal for
a class C if the following condition is satisfied:

(su) For each space A € C and each closed subset B of A, every map f : A — X, whose image f(B) of
B is a Z-set, is arbitrarily closely approximated by an embedding g : A — X such that g(A) is a
Z-set and the restriction g|p = f|pB.

A closed subset A of a space X is said to be a Z-set (or a strong Z-set) in X if the identity map of X is
arbitrarily closely approximated by a map f : X — X (the closure of) whose image misses A. Let €£(7)
be the linear span of the canonical orthonormal basis of the Hilbert space f5(7), that is,

fg(T) ={z = (2(7))y<r € la(7) | () = 0 except for finitely many v < 7}.

In the case 7 = Vg, the linear spaces ¢2(Rg) and 6% (Np) are simply denoted by ¢2 and Eg , respectively.
It is known that the spaces Eg (1) x Q and Eg (1) are strongly universal for the absolute F, class and its
subclass, respectively. J. Mogilski [45] characterized Kg—manifolds and (££ x Q)-manifolds. His result was
extended to the non-separable case by K. Sakai and M. Yaguchi [52]. In Chapter 2, we shall improve their
characterizations. It is difficult to adopt Sakai and Yaguchi’s characterizations for detecting these mani-
folds because they use the strong universality for big and complicated classes in their characterizations.
To give more useful characterizations, we shall introduce the 7-discrete n-cells property, that is defined
as follows: For cardinals 7 > 1 and n < Xy, a space X has the 7T-discrete n-cells property if the following
condition holds:



(dep) Every map f: @7 <« Dy — X of a discrete union of the n-cubes is arbitrarily closely approximated
by a map g : €, , Dy — X such that the family {g(D,) [ v < 7} is discrete in X.

Using this property, we can obtain a characterization of 65 (7)-manifolds as follows:

Theorem A (K. Koshino [37]). For every infinite cardinal T, a connected space X is an 55(7)—manifold
if and only if the following conditions hold:

(1) X is a strongly countable-dimensional, o-locally compact ANR of weight T;
(2
(
(

) X has the T-discrete n-cells property for every non-negative integer n;
3) X is strongly universal for the class of finite-dimensional compact metrizable spaces;
)

4) Every finite-dimensional compact subset of X is a strong Z-set in X.

We say that a space is strongly countable-dimensional if it can be written as a countable union of finite-
dimensional closed subsets, and a space is o-(locally )compact if it can be written as a countable union
of (locally) compact subsets. By the same argument, a characterization of (65 (1) x Q)-manifolds can be
also obtained.

For spaces X and Y, writing (X,Y’), we understand Y is a subspace of X. A pair (X,Y) of spaces is
homeomorphic to (X', Y”) if there exists a homeomorphism f : X — X’ such that f(Y) = Y’. Considering
how a subspace Y is embedded in a space X, we often investigate whether the pair (X,Y") is homeomorphic
to a well-known pair of spaces. Given a pair (E, F), a pair (X,Y’) of paracompact spaces is an (E, F')-
manifold pair if each point of X has an open neighborhood U such that the pair (U, UNY") is homeomorphic
to (V,V N F) for some open subset V of E. R.D. Anderson [3]| gave characterizations to the pairs ({2, fg )
and ({2 X Q, E%c x Q) by using the notions of f.d. cap sets and cap sets, respectively. These was generalized
for (62,55)—manifold pairs and ({2 X Q,Eg x Q)-manifold pairs by T.A. Chapman in [17, 18]. J.E. West
[61] characterized non-separable (62(7),65 (7))-manifold pairs. Moreover, M. Bestvina and J. Mogilski
[13] introduced the conception of absorbing sets in fs-manifolds and Q-manifolds, which leads to the
conception of absorbing pairs, see [5, 10]. Since these manifold pairs have certain topological uniqueness,
the study of infinite-dimensional manifold pairs is a central role in infinite-dimensional topology. In
Chapter 3, in order to use the later chapters, we modify West’s characterization. In general, for pairs
(X,Y) and (E, F), even if X is an E-manifold and Y is an F-manifold, the pair (X,Y") is not necessarily
an (F, F')-manifold pair.

Probrem 1. Given a pair (X,Y) of an E-manifold and an F-manifold, when (X,Y’) is an (£, F')-manifold
pair?

Combining the modified West’s characterization with the result in Chapter 2, we can establish the fol-
lowing theorem:

Theorem B (K. Koshino [37]). Let 7 be an infinite cardinal. A pair (X,Y) of spaces is an (EQ(T),Eg(T))—

manifold pair if and only if X is an lo(7)-manifold, Y is an E{(T)-mam’fold and Y is homotopy dense in
X.

A subspace Y is homotopy dense in X if there exists a homotopy h : X x [0,1] — X such that h(x,0) =z
and h(z,t) € Y for every z € X and ¢t € (0,1]. We can also establish the similar characterization of
(la(T) % Q,fg(T) x Q)-manifold pairs.

The theory of infinite-dimensional manifolds goes back to the topological classification of convex sets
in linear spaces, that has been an important problem of infinite-dimensional topology. A Fréchet space is
a locally convex completely metrizable linear space. The combined efforts of V. Klee [35], T. Dobrowolski
[23], H. Torunczyk [25, 26], T. Banakh and R. Cauty [9] gives the complete classification to closed convex



sets in Fréchet spaces. D. Curtis, T. Dobrowolski and J. Mogilski [22] studied topological types of o-
compact convex sets in a topological linear space. The aim of Chapter 4 is to extend their result to
the non-separable case. Using West’s characterizations modified in Chapter 3, we will give sufficient and
necessary conditions for a pair (c1C,C) of a o-locally compact convex set and the closure in a Fréchet
space to be homeomorphic to (KQ(T),Zg(T)) or (lo(7) X Q,fg(T) x Q) as follows:

Theorem C (I. Banakh, T. Banakh and K. Koshino [6, 38]). Let C be a o-locally compact conver set of
weight T > Rg in a Fréchet space. Then the pair (c1C,C) is homeomorphic to (¢2(T), Zg(T)) if and only if
C' is strongly countable-dimensional, and (c1C,C) is homeomorphic to (f2(T) X Q,Eg(T) x Q) if and only
if C' contains a topological copy of the Hilbert cube Q.

The study of topologies of function spaces plays an important role in functional analysis. Since
function spaces are frequently infinite-dimensional, the theory of infinite-dimensional topology has made
meaningful contributions to it. Chapters 5 and 6 are devoted to determining topological types of certain
function spaces. For spaces X and Y, we denote by C(X,Y") the set of all maps from X to Y endowed
with the compact-open topology. Let s = (—1,1)N be the pseudo-interior of the Hilbert cube Q. In the
paper [36], it was shown that if X is an infinite, locally compact, locally connected, separable metrizable

space, then the function space C(X,R) from X to the real line R has a natural compactification C(X,R)
such that the pair (C(X,R),C(X,R)) is homeomorphic to (Q,s) (cf. the compact case was proved in
[51]). In Chapter 5, we shall generalize this result by replacing R with a 1-dimensional locally compact

AR as follows:

Theorem D (K. Koshino and K. Sakai [39]). Let X be an infinite, locally compact, locally connected,
separable metrizable space, and let Y be a 1-dimensional locally compact AR. Suppose that X is non-
discrete or Y is non-compact. Then the function space C(X,Y) has a natural compactification C(X,Y)
such that the pair (C(X,Y),C(X,Y)) is homeomorphic to (Q,s).

For a space X, let Cldy(X) be the hyperspace of non-empty closed sets in X endowed with the
Vietoris topology. A dendrite is a Peano continuum containing no simple closed curves. It is well known
that any two distinct points of a dendrite is connected by the unique arc. Then we denote the unique
arc between two points z and y in a dendrite by [z,y], where it is the constant path if x = y. For each
function f: X — Y into a dendrite Y and each point v € Y, we can define the hypo-graph |, f of f with
respect to v as follows:

bf = J{ae} x v, fl@)] € X x V.
zeX
When f is continuous, the hypo-graph |, f is a closed subset of the product space X x Y. Hence we can
regard

WC(X,Y)={luf| f: X =Y is continuous}

as the subspace of the hyperspace Cldy (X xY'). Let |, C(X,Y") be the closure of |, C(X,Y") in Cldy (X x
Y). In the case that Y = [0,1] and v = 0, Z. Yang and X. Zhou [63, 64] showed that for a compact
metrizable space X whose set of isolated points is not dense, the pair (Jo C(X,[0,1]),l0C(X,]0,1])) is
homeomorphic to (Q, ¢g), where

co= {l‘ = (z(n))neny € Q nh_}ngo z(n) = O}.

An end point of a space has an arbitrarily small open neighborhood whose boundary is a singleton. The
aim of Chapter 6 is to generalize their result as follows:

Theorem E (K. Koshino, K. Sakai and H. Yang [40]). Let X be an infinite, locally connected, compact
metrizable space, Y a dendrite and v € Y an end point. Then the pair (1, C(X,Y),),C(X,Y)) is
homeomorphic to (Q,co).



Chapter 1

Preliminaries

In this chapter, we introduce some terminology and notation. We give several basic results on the ANR
theory and the infinite-dimensional manifold theory for later use. In addition, we present some elementary
information on hyperspaces and some properties of dendrites which are used in Chapters 5 and 6.

1.1 Terminology and notation

For the standard sets, we use the following notation:
e N is the set of positive integers;
e w=NU{0} is the set of non-negative integers;
e R = (—00,00) is the real line;
e I =10,1] is the closed unit interval.
We shall use the following symbols for subclasses of all metrizable spaces It:
e iy is the class of compact metrizable spaces;
° zmg is the class of finite-dimensional compact metrizable spaces.

Let X be a space, z € X, A,B C X, and A, B collections of subsets of X. The weight, the cardinality
and the dimension of X are denoted by w(X), card(X) and dim(X), respectively. We denote the closure
and the interior of A in X by cly A and intx A, respectively. By A < B (or A *< B), it is meant that
A is a refinement (or a star-refinement) of B. The symbol idy stands for the identity map of X. When
X = (X,dx) is a metric space, we denote the diameter of A by diamy, A = sup{dx(z,2’) | z,2’ € A},
and the distance between A and B by dx(A, B) = inf{dx(x,2’) | x € A,2’ € B}. For simplicity, we
write dx(z,A) = dx({z}, A). For each € > 0, let By, (z,¢) = {2’ € X | dx(z,2') < €}, Bay(z,€) =
{2/ € X | dx(z,2") < €} and Ny, (A,e) = {x € X | dx(x,A) < €}. The mesh of A is denoted by
meshg, A = sup{diamy, A | A € A}. Let f,g: X — Y be maps. The restriction of f over A is denoted
by f|a. For an open cover U of Y, f is U-close to g, which is denoted by f ~y g, provided that for each
xz € X, both f(x) and g(x) are contained in some member U € Y. When Y = (Y, dy) is a metric space,
for each € > 0, it is said that f is e-close to g if dy (f(z),g(x)) < € for every x € X. We write f ~ g if
there is a homotopy h: X x I — Y linking f and g. A homotopy h: X x I — Y is called a U/-homotopy
when {h({z} xI) |z € X} < U, written as f ~ g. Then we say that f is &-homotopic to g. Similarly,
in the case that Y = (Y,dy) is a metric space, we say that h is e-homotopy and f is e-homotopic to g,
€ > 0, if the diameter diamg, h({z} x I) < € for all z € X. For each ¢t € I, the map h; : X — Y is defined
by hi(z) = h(z,t) for all x € X.



Let K be a simplicial complex and o, 0’ € K simplexes. For each n € w, the n-skeleton of K is denoted
by K. In particular, K(© stands for the set of vertices. Similarly, the set of vertices of o is denoted
by 0(®. The symbol ¢/ < ¢ means that o’ is a face of 0. Let & be the barycenter of o. For a vertex
v e KO the star of v in K is denoted by St(v, K) = {0 € K | v € 0}. We write Sd K as the barycentric
subdivision of K. Note that |K| = |Sd K| as spaces. A simplicial complex K has two typical geometric
realizations, the one of which is the polyhedron |K| and the other is the metric polyhedron |K]|,,. For an

infinite cardinal 7, let
>zl < OO},

y<T

(1) = {x = (z(7))y<r € RT

which has the norm ||-||; defined by ||z|l; = >_.__ |z(7)|. For a simplicial complex K with card(K(©) < 7,

v<T
the metric polyhedron |K|,, of K is realized in ¢1(7) with the all vertices of K in one-to-one correspondence
to the unit vectors of ¢1(7), where |K|,, admits the metric induced by the norm | - ||;. In general, |K]|
and |K|,, are not homeomorphic, but when K is locally finite, |K| = | K|, as spaces.

1.2 The ANR theory

A subset A of a space X is a retract of X if there exists a map r : X — A such that the restriction
r|4 = ida, where r is called a retraction. Note that every retract is a closed subset. A closed subset A
of X is a neighborhood retract of X, provided that it is a retract of some neighborhood of A in X. We
say that a metrizable space X is an absolute neighborhood retract, briefly ANR, (or an absolute retract,
briefly AR,) if X is a neighborhood retract (or a retract) of an arbitrary metrizable space that contains
X as a closed subspace. A space Y is an absolute neighborhood extensor, briefly ANE, (or an absolute
extensor, briefly AE,) if every map f : A — Y of a closed set A in a metrizable space X extends over
some neighborhood of A in X (or over X). In this section, we list some results on the ANR theory, that
will be often used in the rest of the thesis without mention. For more details, refer to [50, Chapter 6].
The following facts follow from the definitions immediately.

Fact 1 (cf. 6.2.10.(1), (2) and (3) of [50]). The following hold.
(1) A countable product of ARs is an AR and a finite product of ANRs is an ANR.
(2) A retract of an AR is an AR and a neighborhood retract of an ANR is an ANR.
(3) Every open subset of an ANR is also an ANR.
The following are basic properties of ANRs.

Proposition 1.2.1 (cf. 6.2.10.(4) of [50]). Let X be a paracompact space. If each point of X has an ANR
neighborhood, then X is an ANR.

Proposition 1.2.2 (cf. Theorem 6.2.5 of [50]). Let X be a metrizable space. Then X is an A(N)R if and
only if X is an A(N)E.

Proposition 1.2.3 (cf. Proposition 6.2.8 and Corollary 6.2.9 of [50]). . Every ANR is locally contractible
and every AR is contractible. A contractible ANR is an AR.

The following extension theorem is very important among the ANR theory.

Theorem 1.2.4 (the Homotopy Extension Theorem [15] (cf. Theorem 6.4.1 of [50])). Let Y be an ANR,
U an open cover of Y and h: AX 1 =Y be aU-homotopy of a closed set A in a metrizable space X. If
ho extends to a map f: X — Y, then h extends to a U-homotopy h: X x I — 'Y such that hg = f.



The following proposition is very useful.

Proposition 1.2.5 (cf. Corollary 6.3.5 of [50]). Let X be an ANR. For each open cover U of X, there is
an open cover V of X such that V <U and any two V-close maps into X are U-homotopic.

Recall that a subspace Y is homotopy dense in X if there is a homotopy h : X x [0,1] — X such that
ho =idx and h(X x (0,1]) C Y. We have the following:

Proposition 1.2.6 (cf. Corollary 6.6.7 of [50]). For each metrizable space X and each homotopy dense
subset Y of X, X is an A(N)R if and only if Y is an A(N)R.

The following lemma is very useful for detecting homotopy denseness of a dense set in a compact
metric space, which is a generalization of Lemma 3 of [51] (cf. Corollary 4 of [49]) and will be used in
Chapters 5 and 6.

Lemma 1.2.7. Let X = (X,dx) be a compact metric space, and let Y be a dense subset of X which has
the following property:

(hd) There exists o > 0 such that for any locally finite countable simplicial complex K, each map f :
KO Y extends to a map f: |K| =Y such that

diamg, f(0) < adiamg, F(0 @) for every o € K.

Then Y is homotopy dense in X.

Proof. Since X is a compact metric space, we can find a finite open cover U, of X for each n € N so that
meshg, U, < (n+1)"L Let Vi = {Ux (2L 1]|U ey} and V,, = {Ux (n+1)"1, (n—1)"1) | U € U},
n > 2. Note that V = [J,,cn Vn is a star-finite open cover of X x (0,1]. Let K be the locally finite nerve of
V and let K, be the nerve of V,, UV, 11 for each n € N, so each K, is a finite subcomplex of K = UneN K,.

Since Y is dense in X, we can choose f(V) € pry(V)NY for each V € V, where pry : X x (0,1] = X
is the projection and U, = {prx(W) | W € V,} for each n € N. Then diamg, f(c(®) < 2(n + 1)7!
for every o € K, and n € N. By (hd), we can obtain @ > 0 and a map f : |[K| — Y so that
diamg, f(0) < adiamg, f(c(®) for each ¢ € K. Taking a canonical map ¢ : X x (0,1] — |K] for
K, we have the map fqﬁ : X x (0,1] — Y. It remains to show that f ¢ extends to the desired homotopy
h:X xI— X by hg =idx. Fix any (z,t) € X x (0,1]. Then there exist n € N and V € V,, such that
(r,t) € V and (n+1)"! <t <n~!l. Since ¢ is a canonical map, we can choose o € K, so that ¢(x,t) € o
and V € 0. Then f(V) = f(V) € prx(V)NY and z € pry (V) € U, hence

dx(f(V),z) < diamg, pry(V) < meshg, U, < 1/(n+1).
It follows that
dx (fo(w,t),x) < dx(fo(z, 1), (V) +dx(f(V),z) < diamgy f(o) +1/(n+1)
< adiamg, f(e)+1/(n+1) < 2a+1)/(n+1) < (20 + 1)t.

Thus the proof is complete. [J

1.3 The infinite-dimensional manifold theory

In this section, several results from the infinite-dimensional manifold theory will be presented. Recall that
a closed subset A of a space X is a Z-set in X if for each open cover U of X, there isamap f: X — X
such that f is U-close to idx and f(X)N A = (). This notion plays a central role in infinite-dimensional
topology. A countable union of Z-sets (or a strong Z-set) is called a Z,-set (or a strong Z,-set). A
Z-embedding is an embedding whose image is a Z-set in the range. A Z-set in an ANR is characterized
as follows (cf. §2, 3 in [57]):



Proposition 1.3.1. Let X be an ANR and A a closed subset of X. Then A is a Z-set if and only if
X \ A is homotopy dense in X.

Recall that for cardinals 7 > 1 and n < Ny, a space X has the 7-discrete n-cells property provided
that the following condition is satisfied:

(dep) Let f: @,KT D, — X be a map of a discrete union of the n-cubes. For each open cover U of X,
there exists a map g : @._,. D, — X such that g is U-close to f and {g(D) | v < 7} is discrete in
X.

y<T

In particular, we say that X has the disjoint cells property if it has the 2-discrete n-cells property for
all n < Wo. As is easily observed, X has the disjoint cells property if and only if it has the 2-discrete
No-cells property, see [42, Lemma 7.3.1]. Using this notion, H. Toruniczyk [58] gave a characterization to
Q-manifolds as follows (cf. Theorem 7.8.3 and Corollary 7.8.4 of [42]):

Theorem 1.3.2. A connected space is a Q-manifold if and only if it is a locally compact ANR with the
disjoint cells property.

Corollary 1.3.3. A space is homeomorphic to Q if and only if it is a compact AR with the disjoint cells
property.

H. Toruriczyk [59] also characterized ¢2(7)-manifolds as follows:

Theorem 1.3.4. For each infinite cardinal T, a connected space X is an ly(T)-manifold if and only if the
following conditions are satisfied:

(1) X is a completely metrizable ANR of weight T;

(2) X has the T-discrete n-cells property for all n < Wo;

(3) For each sequence {K;}ien of finite-dimensional simplicial complexes with card(Ki(O)) < 7, each
map f: @,y [Ki| — X and each open cover U of X, there exists a map g : @,y |Ki| — X such
that g is U-close to f and {g(|Ki|) }ien is discrete in X.

A space X has the discrete approrimation property if the following condition is satisfied:

(dap) For each map f : @, I" — X and each open cover U of X, there is a map g : @,,c,, I" — X such

that ¢ is U-close to f and {g(I")}ney is discrete in X.

new

When 7 = Xy, Theorem 1.3.4 can be restated as follows (Corollary 3.2 of [59]):

Theorem 1.3.5. A connected space is an £a-manifold if and only if it is a separable completely metrizable
ANR with the discrete approximation property.

Concerning infinite products homeomorphic to Hilbert spaces, the following holds (cf. Theorem 5.1 of
[59]):

Theorem 1.3.6. Let X = [[,.yXi be a countable product of completely metrizable ARs. Suppose that
w(X) = 7 = sup,>; w(Xj) for every i € N. If infinitely many X;’s are non-compact, then X is homeo-
morphic to la(T).

As a corollary of the above, the pseudo-interior s is homeomorphic to the separable Hilbert space £

(ct. [1)).



1.4 Hyperspaces

Let Cld(X) be the set of all non-empty closed subsets of X and let Cld*(X) = Cld(X) U {0}. For each
subset Z of X, we write

Z-={AeCd"(X)|ANZ £ 0} and ZT = {A € Cld*(X) | A C Z}.

A hyperspace Cld*(X) has the topology generated by families U~ and U™, where U runs over the open
sets in X. We call this topology the Vietoris topology and denote the hyperspace Cld*(X) endowed with
it and its subspace Cld(X) by Cldj,(X) and Cldy (X), respectively. Note that the empty set () is isolated
in Cldj,(X). For a compact metric space X = (X, d), the hyperspace Cld(X) admits the Hausdorff metric
dy defined as follows:

dp(A,B) =inf{r >0| A C N4(B,r),B C N4g(A,r)} for each A, B € Cld(X).

Then the Vietoris topology on Cld(X) coincides with the topology induced by dg, refer to [50, Proposi-
tion 5.12.4].

1.5 Dendrites

Recall that a dendrite is a Peano continuum containing no simple closed curves, equivalently it is a
1-dimensional compact AR, see Corollary 13.5 in Chapter V of [16]. A continuum means a compact
connected metrizable space, and a Peano continuum means a locally connected continuum. In this thesis,
we shall use the following facts of dendrites.

Fact 2. Every dendrite D has the following properties.

(1) D is uniquely arcwise connected, that is, each pair of distinct points of D is connected by the unique
arc [62, Chapter V, (1.2)].

(2) Every connected subset of D is arcwise connected [62, Chapter V, (1.3)].

For a metric space X = (X,dyx), the metric dx is convez if for each pair of points x and y, there
exists a point z € X such that dx(x,z) = dx(y,z) = dx(z,y)/2. As is easily observed, when the metric
dx is convex and complete, there exists an arc from z to y isometric to the segment [0, dx (z,y)].

Fact 3. Any Peano continuum admits a convex metric [14, 44]. Hence so any dendrite does.
Arcs in a dendrite have the following good property with respect to the convex metric.
Lemma 1.5.1. Let D = (D, d) be a dendrite with a convex metric. Then there exists a map~y : D*xI — D

such that for any distinct points x,y € D, the map vz = v(2,y,*) : I3t —= v(z,y,t) € D is an arc from
x to y and the following holds:

(1) For each xi,y; € D, i =1,2, d(Vay 41 (1), Yoo,y (t) < max{d(z1,22),d(y1,y2)} for allt € 1.

Proof. Since the metric d is convex, for each z,y € D there exists an isometric arc v, , : [0,d(z,y)] = D
from x to y, which is uniquely determined due to Fact 2(1). We define a function v : D? x I — D by

Y(x,y,t) =7, ,(td(z,y)) for each z,y € D and t € L.

Here, if x # y, then v, : I — D is an arc from x to y, and if x = y, then v, , is the constant path. Note
that
Ad(Yay(t), Yoy (s)) = |t — sld(x,y) for each x,y € D and s,t € 1.



Now, we will verify the condition (), which implies the continuity of . Fix any z;,y; € D, ¢ = 1,2, and
denote the path ~;, ,, from z; to y; by 7; for the sake of convenience.

(Case I 7 (I) N v2(I) = @) We have the unique arc o : I — D linking the two paths such that
a(I) Ny (I) = {«(0)} and «(I) N y2(I) = {a(1)}. Then there uniquely exist points s; € I, i = 1,2, such
that a(0) = v1(s1) and a(l) = y2(s2). We may assume that s; < s without loss of generality. When
t < s1, both ~;(t) and 72(t) are contained in the arc from z; to 2, so we have d(y1(t),2(t)) < d(x1,z2).
When ¢ > s9, both 71 (¢) and 72(t) are contained in the arc from y; to y2, hence d(y1(t),v2(t)) < d(y1,y2).
When s1 <t < s9, since v1(s1) and y2(s2) sit on both of the arcs from z1 to x2 and from y; to y, in this
order, we have

d(z1,z2) = d(z1,71(51)) + d(71(51),72(52)) + d(72(s2), 22) and
d(y1,y2) = d(y1,71(s1)) + d(y1(51),72(52)) + d(72(52), y2)-

Then it follows that

d(y1(t), 72(t)) = d(71(t), 11(s1)) + d(71(s1),72(52)) + d(72(s2),72(t))
(t = s1)d(w1,y1) + d(71(51),72(52)) + (52 — t)d(72,92)
(52 — S1)m%§d(mz,yz) + d(71(s1),72(s2))

max{(1 — s1)d(z1,y1), s2d(z2, y2) } + d(71(51),72(52))
= max{d(y1,71(s1)), d(w2,72(s2))} + d(71(51),72(s2))
< max{d(y1,y2), d(x1,72)}.

IN

| /\

(Case II: v1(I) Ny2(I) # 0) There exist m; < n; € I, i = 1,2, such that v (I) N y2(I) = y1([m1,n1]) =
v2([ma, n2]). Then we have two cases (i) y1(m1) = y2(m2) and (ii) v1(m1) = y2(n2). Remark that

(x) (n1 —ma)d(z1,y1) = d(y1(m1), 71(n1)) = d(v2(m2), v2(n2)) = (n2 — m2)d(z2,y2).

(i) In the case that yi(mi) = 72(m2), we have v1(n1) = y2(n2). When t < min{m;, ma}, we get
d(v1(t),y2(t)) < d(z1,x2) because the arc from x; to xe contains both vi(¢) and ~2(t). When ¢ >
max{ni,ne}, the arc from y; to yo contains both ~;(¢) and v2(t), and hence d(v1(t),v2(t)) < d(y1,y2)-
When max{mj,ma} < t < min{ni,na}, both of the points v1(¢) and ~2(¢) are contained in the arc
Y1([m1, m]) = 72([me, ns]). By (x), we have

d(y1(t),72(t)) = [d(v1(t),v1(m1)) — d(72(2), v2(m2))|

= |(t —m1)d(z1,y1) — (t — ma)d(z2,y2)]

= |mad(z2,y2) — mid(z1,y1) — t(d(w2,y2) — d(x1,91))]

= [mad(z2,y2) — mad(z1,y1) — t((1 — n2 4+ na — ma + ma)d(x2, y2)

— (1 =n1+n1 —my +mi)d(z1,41))]

[(1 = t)(mad(z2, y2) — mid(z1, 1)) + 1((1 — n1)d(z1,y1) — (1 — n2)d(w2,y2))|
(1 = t)|d(z2,72(m2)) — d(z1, 71 (m1))] + t{d(y1, 71 (n1)) — d(y2,2(n2))|
(1 = t)d(z1,x2) + td(y1,y2) < max{d(z1,z2),d(y1,y2)}.

IN A

When min{mi,ms} <t < max{mq,mso}, let m; = min{mq,ma} (so mg—; = max{mq,ma}). Then ~;(t)
sits on the arc from ~;(m;) to y; and ~y3_;(¢) sits on the arc from z3_; to v3_;(ms—;). Hence

d(71(t),72(t)) = d(vi(t), vi(ms)) + d(y3—i(ms—i), v3-i(t))
(t ) (1:17 yl) ( —i = t)d(l‘?)fia ySfi)
[(t —mi)d(xi, yi) — (¢ — ma—i)d(z3-4,Y3-i)|-



By the same calculation as above, we get d(v1(t),72(t)) < max{d(z1,x2),d(y1,y2)}. Similarly, when
min{ni,ne} <t < max{ni,ne}, it follows that d(y1(t),v2(t)) < max{d(z1,z2),d(y1,y2)}

(ii) In the case that vi(m1) = y2(n2), we have y1(n1) = v2(m2). When ¢ < min{m;, ma}, we get
d(v1(t),y2(t)) < d(x1,z2) since both 7i(t) and ~2(t) are contained in the arc from z; to x2. When
t > max{mi, ma}, we have d(v1(t),v2(t)) < d(y1,y2) because both ~1(t) and v2(t) are contained in the
arc from y; to y2. When min{mi,ms} < ¢ < max{mi, ma}, let m; = min{m;, mo}. In the case t < n;,
both v;(t) and ~2(t) are contained in the arc from x; to xg, hence d(v1(t),v2(t)) < d(x1,x2). In the case
t > n;, the point v;(¢) is on the arc from ~;(n;) to y; and the point ~v3_;(¢) is on the arc from x3_; to
~v3—i(ms—;). It follows that

d(y1(t),72(t)) = d(i(t), vi(ni)) + d(v3—i(ms—i), y3—i(t))
= (t —ni)d(wi, yi) + (m3—; — t)d(z3-i,Y3-i)
(t —mi)d(wi, yi) — (t — m3—;)d(3-i,Y3-i)-

IN

As is observed in (i), we have d(7y1(t),v2(t)) < max{d(z1,x2),d(y1,y2)}. Thus the proof is complete. []
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Chapter 2

Characterizing infinite-dimensional
manifolds modeled on sigma-locally
compact metrizable spaces

In this chapter, we shall give characterizations to £} (7)-manifolds and (£} () x Q)-manifolds for each infi-
nite cardinal 7. Throughout the chapter, all spaces are assumed to be paracompact. In 1984, J. Mogilski
[45] characterized ¢4-manifolds as follows:

Theorem 2.0.1. A connected space X is an Eg—mam'fold if and only if the following conditions are
satisfied:

(1) X is an ANR and a countable union of finite-dimensional compact metrizable spaces;
(2) X is strongly universal for the class of finite-dimensional compact metrizable spaces;

(3) Ewvery finite-dimensional compact subset of X is a strong Z-set in X.
Recall that a space X is strongly universal for a class C when the following condition is satisfied:

(su) For each space A € C, each closed subset B of A, each map f : A — X such that the restriction f|p
is a Z-embedding, and each open cover U of X, there exists a Z-embedding g : A — X such that

g ~u f and g|p = f|B.

By removing “finite-dimensionality” from the above conditions in Theorem 2.0.1, a characterization of
(ﬂg x Q)-manifolds can be obtained, see [45]. In 2003, Theorem 2.0.1 was generalized to the non-separable
case by K. Sakai and M. Yaguchi [52].

Theorem 2.0.2. Let 7 be an infinite cardinal. A connected space X is an 65(7)—mam’fold if and only if
the following conditions hold:

(1) X is an ANR of weight T and a strongly countable-dimensional, o-locally compact, strong Z,-space;

(2) X is strongly universal for the class of strongly countable-dimensional, locally compact metrizable
spaces of weight < T.

Similar to the characterizations of J. Mogilski, removing “strongly countable-dimensionality” from the
above allows us to characterize (Zg (1) x Q)-manifolds, see [52].

Clearly, the strong universality for the class of strongly countable-dimensional, locally compact metriz-
able spaces (the condition (2) of Theorem 2.0.2) is more difficult to verify than the one for the class of
finite-dimensional compact metrizable spaces (the condition (2) of Theorem 2.0.1). The aim of this chapter
is to improve Theorem 2.0.2 as follows:
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Main Theorem. For every infinite cardinal T, a connected space X is an 55(7)-mamf0ld if and only if
the following conditions hold:

(1) X is a strongly countable-dimensional, o-locally compact ANR of weight ;

(2) X has the T-discrete n-cells property for every non-negative integer n;

(3) X is strongly universal for the class of finite-dimensional compact metrizable spaces;
(4) Every finite-dimensional compact subset of X is a strong Z-set in X.

A characterization of (Eg (1) x Q)-manifolds can be also obtained by the same argument as the above,
see Theorem 2.4.3.

2.1 Preliminaries

In this section, we shall present some notation and results which are used later. Let X be a space. The
symbol cov(X) means the collection of all open covers of X. Let A and B be collections of subsets of X.
We define st(A,B) = {AUU{B e B| ANB # 0} | A € A} and write st A = st(A, . A). Inductively, we
define st™ A = st(st" ! A, A) for each n > 2. Let ANB={ANB| A€ A, B¢€B}. Forasubset C C X,
the collection A A {C} is denoted by A|c. The following proposition can be proved by the same way as
Corollary 1.8 of [13], which is useful to us for detecting Z-sets in ANRs.

Proposition 2.1.1. Let X be an ANR. If X has the Wg-discrete n-cells property for every n € w, then
every compact subset of X is a Z-set.

The following properties of (strong) Z-sets in ANRs are well-known.
Proposition 2.1.2. Let X be an ANR.
(1) For every (strong) Z-set A in X and every open subset U of X, ANU is a (strong) Z-set in U.
(2) A locally finite union of (strong) Z-sets in X is a (strong) Z-set.

We shall use the following lemma to construct a homeomorphism which approximates a map in the
next section. Refer to (D) of §2 in [45].

Lemma 2.1.3. Let X and Y = (Y,d) be metric spaces and {Y,}nen be a closed cover of Y such that
Y1 C Yy C ---. Suppose that {g, : X — Y },en is a sequence of surjective maps satisfying the following
conditions:

(1) 9n|g;1(Yn) : 9.1 (Yn) — Yy, s bijective and for every point y € Yy, and every neighborhood V' of .t (y)
in X, there exists an open neighborhood U of y in'Y such that g, *(U) C V;

(1) 9n+1‘g;1(Yn) = g”‘gﬁl(Yn)"

(111) d(gns1(2), gn(7)) < an(gn(x)) for all z € X\ g, *(Yy), where ap(y) = 27" min{1,d(y,Y,)}, n € N,
and ap(y) = 1.

Then, a homeomorphism g : |, ¢y 9,1 (Yn) = Y can be defined as follows:

g(x) = nh_)rgogn(a:) for all x € U g, (V2),
neN

where d(g(x), g1(z)) < 1 for each z € U,,en 95 - (Yn)-
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Let X and Y be spaces and A be a closed subset of X. The product of X and Y reduced over A,
which is denoted by (X x Y)4, is the space ((X \ A) x Y) U A endowed with the topology generated by
open subsets of the product space (X \ A) x Y and sets (U\ A) xY)U(UNA), where U is an open subset
of X. Then, the product space (X \ A) X Y is an open subspace in (X X Y)4. Moreover, the projection
pry : X xY — X is factored into the two natural maps ¢: X xY — (X xY)gandp: (X xY)4 - X
defined as follows:

{ q(z,y) = (z,y) if (z,y) € (X \A4)xY,

q(z,y) = = if (z,y) € AXY,

{ p(x,y) = z if (x7y) (X \ A) XY,
plx) = z ifzxe A

Note that if both X and Y are metrizable spaces, then (X x Y')4 is also a metrizable space by the Bing
Metrization Theorem (Theorem 4.4.8 of [30]). We shall prove the following lemma used the next section.

Lemma 2.1.4. Let X and Y be metrizable spaces and let A1 C Ag be closed subsets in X. Then, there
exists U € cov(X \ A1) with the following property:

(¥) For a subspace B of (X \ A1) XY and an embedding g : B — (X XY )a, \ A1, if g ~p-1) 4|5, then
g extends to the embedding §g: BU A; — (X xY)a, by gla, =ida,,

where p, q are the natural maps, that is,

P (X xY)a, \ Ar = ((X\ A1) x V) g4, = X\ A1,
¢ (XA XY = (X \ A1) xY) 4504, = (X xV)a, \ A1

Moreover, if g is a closed embedding, that is, g(B) is closed in (X x Y)a, \ A1, then g is also a closed
embedding.

Proof. Taking an admissible metric d for X, we can define the desired open cover U as follows:
U ={By(z,d(z,A1)/2) |z € X \ A1} € cov(X \ 41).

To show that U has the property (), let g : B — (X x Y)4, \ 41 be an embedding of B C (X \ A1) x Y,
which is p~1(U)-close to q|g. We extend g to § by §|a, = id4,. Then, it is enough to show the continuity
of both g and §=': g(B)U A; — BU A;. Since (X \ A1) x Y and (X x Y)a, \ A1 are respectively open
subspaces of (X x Y)4, and (X x Y)a,, we need to check that both § and §~! are continuous at each
a € Aj.

First, to verify that ¢ is continuous at a € Ay, let € > 0. Fix a point z € By(a,¢/3) C X. In case
x € A1, we have

g(z) = x € By(a,e/3) N A1 C By(a,e) N As.

In case x ¢ Ay, we have §(z,y) = g(z,y) for all y € Y with (z,y) € B. Since g ~,-1() q|B, there exists a
point xg € X \ A1 such that both pg(x,y) = pg(x,y) and pg(x,y) = x are contained in By(zo, d(zo, A1)/2).
Then, we get

1
d(zg, A1) < d(zg,a) < d(xg,z) + d(x,a) < id(aco, Ar) + g,
hence d(xg, A1) < 2¢/3. It follows that
- 2¢
d(pg(z,y),a) < d(pg(z,y),z) + d(z,a) < d(zg, A1) + 5 < 3+

:e’

W m
[SCN e

so g(z,y) € (Bgla,€) \ Az) x Y U (Bg(a,€) N Az). Therefore
g((((Ba(a,€e/3) \ A1) xY)N B) U (Bg(a,e/3) N A1) C (Ba(a,e) \ A2) x Y U (Bg(a,€) N Az),
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which implies that g is continuous at a.
Next, we show that §—! is continuous at a € A;. Given € > 0, take any point

T € ((Bd(a, 6/3) \ AQ) XY U (Bd(a, 6/3) N Ag)) N (g(B) U Al)

When z € A;, we get
G (z) =z € By(a,e/3) N Ay C Byla,e) N A

When x € g(B) C (X xY)a, \ A1, we have g(2',y') = g(2/,y') = x for the unique point (2/,y’) € B. We
can choose a point zg € X \ A; so that both of the points p(x) = pg(z’,y’) = pg(2’,y') and pq(2’,y') = 2’
are contained in By(wo, d(zo, A1)/2) because g ~,-1 q|p. It follows that

o, Ar) < d(w0,0) < d(ao, p(@)) + d(p(z),0) < oo, A) + 5,
so d(zo, A1) < 2¢/3. Therefore, we have
d(z',a) < d(2',p(x)) + d(p(z),a) < d(zo, A1) +
that is, g~1(z) = (2/,y) € (Bg(a,€) \ A1) x Y. Hence
T (Balae/3) \ A2) ¥ U (Balae/3) 01 42)) 0 (9(B) U AD) € (Bala, ) \ A1) % Y U (Bafa, ) 0 A4v),

so g~ ! is continuous at a.

To prove the additional assertion, assume that g(B) is closed in (X x Y)a, \ A;. Then we have
cl(XXy)A2 g(B)N (X xY)a, \ A1) = g(B). Therefore

g(BU A1) = g(B) U A1 = (clixxy),, 9(B) N (X X Y)a, \ A1) U AL = clixxy),, 9(B) U A1,
that is, g(B U A1) is closed in (X x Y)4,. Hence g is a closed embedding. [J

Remark 1. In the above lemma, if g is a continuous map, then so the extension g is. When B = (X\ A;)xY
and g : (X \ A1) xY — (X xY)yu, \ 41 is a homeomorphism, g : (X x Y)4, — (X xY),, is a
homeomorphism.

2.2 FE-manifold factors being E-manifolds
Throughout the section, let € be a class of spaces which has the following properties:
(%) € is topological, that is, every space homeomorphic to some member of € is also a member of €;

(%) € is closed hereditary, that is, every closed subspace of a member of € is also a member of €.

Moreover, let E be a locally convex topological linear metric space such that E is homeomorphic to the
countable product EY or

EJRJ = {z = ((n))nen € EV | 2(n) = 0 except for finitely many n € N},
and F satisfies the following conditions:

(%) E is a countable union of closed subspaces which belong to €;

(xx) For any closed subset C of E, if C € €, then C' is a strong Z-set.
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Recall that 9y means the class of compact metrizable spaces, and 9375 means the class of finite-
dimensional compact metrizable spaces. In addition, we use the symbol 9y(n) as the class of compact
metrizable spaces of dimension < n. For a cardinal 7 and a class C, we denote by @_C, the class of
spaces X = @'y <» X which are discrete unions of spaces X, € C. Note that the classes @, Mo, P, Dﬁg
and @, My(n) are topological and closed hereditary. It is known that the locally convex topological
linear metric space Eg (1) is homeomorphic to (Eg (T))I}I Let ggg be the linear subspace in ¢» spanned by
[L,en[—27",27"]. Then, it is also known that Eg(r) x Q is homeomorphic to the locally convex topological
linear metric space ﬂg (1) x 632, which is homeomorphic to (ﬁg (1) x é?)g\f. Furthermore, ﬁg (1) (respectively,

Zg (1) x Q) satisfies the conditions (x) and (») with respect to @, Sﬁg (respectively, @, My), which will
be seen in the proof of Theorem 2.4.2 (cf. Remark 4).

Remark 2. Let M be a connected E-manifold. Then M is a countable union of strong Z-sets which belong
to the class €. Indeed, Theorem 4 of [32] allows us to regard an E-manifold M as an open subspace in FE,
that is, an I, set, so we have M = J,,cy Dm, where each D, is regarded as a closed subspace in £. On
the other hand, by the conditions (x) and (»x) of E, we can write E' = | J,,cy B such that every E, is a
strong Z-set belonging to €. Since € is closed hereditary, D,, N E, € € for all m,n € N. Furthermore,
Dy, N Ey is a strong Z-set in M due to (%) and Proposition 2.1.2(1). Therefore M = {J,, ey Dm N En,
is a countable union of strong Z-sets which are members of €.

The following proposition, which was proved by H. Toruriczyk in Theorem B1 of [60] (cf. Proposition 5.1
of [57]), shall play an important role in the proof of Theorem 2.2.3.

Proposition 2.2.1. Suppose that A is a strong Z-set in a space X. If X x E is an FE-manifold, then for
each open cover U € cov((X x E)4), there exists a homeomorphism h : X x E — (X x E)4 such that
h ~y q and h(x,0) =z for allx € A, where q: X X E — (X X E)_4 is the natural map.

Lemma 2.2.2. Let X be a strongly universal ANR for a class €. Suppose that f : A — X is a map
from a space A € € to X and U is an open subset of X. Given any open cover U of U, there exists a
Z-embedding g - f~1(U) — U such that g ~y fl—1y-

Proof. We write U = C,, where C), is a closed subset of X and

new

@ZC@CintXclC01Cintxc2CCQC“'.

Let A, = f~%C,) and B,, = f~}(X \intx C41) foreachn € N. Then Ay C Ay C--- and By D By D - -
are closed in A, A, N B, =0 foreach n € N, f~1(U) = ,,cn An and A\ f71({U) = ,,en Bn-

Let V € cov(U) be a star-refinement of . Give an admissible metric for X and take a sequence
{Un}nen of open covers of X so that meshi, < 27" and

Un < (VA {intx Cit1\ Cioy | i € N} {X\ Coga}.

By induction, we shall construct a sequence {f,, : A — X },en so as to satisfy the following conditions:
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where Ag=C_1=C_3 =0, By = A and fy = f. Assume that f,, has been constructed for all m < n—1.
Since X is an ANR and X is strongly universal for €, we can obtain a U,-homotopy h: A x I — X such
that hg = fn—1, h1 is a Z-embedding and h1|a, , = fn—1]a, ,- Taking an Urysohn map k& : A — I so
that k(By) = 0 and k(A,,) = 1, we define the map f,, : A — X by fn(x) = h(z,k(z)). Immediately, the
conditions (1), (3), and (4), hold from the definition. Observe that

Ap\inta A, 1 = Ay \inta f~HCr1) € Ap \ f Hintx Cpo1) C Ay N Byya.
By the inductive assumption (1),_2,
fn—Q(An N Bn—Z) - f(An N Bn—2) C f(An) N f(Bn—Z) C Cn \ intX Cn—h

where B_; = A and f_; = f. Furthermore, f,(A4, N By_2) C intx Cp12 \ Cn—3 due to the conditions
(4)p—1 and (4),. It follows that

fn(An \ int 5 Anfl) C fn(An N Bn72) Cintyx Cn+2 \ Ch-3,

hence (5),, holds. Since fy,|a, = hi|a, is a Z-embedding into X and f,(4,) C intx Cp4o C U, it follows
from Proposition 2.1.2(1) that f,(A,) is a Z-set in U, that is, (2),, also holds.

Now, we can define the desired map g : f~1(U) — U by g|la, = fa]a, because of (3),, where the
continuity of g is guaranteed by (4), and the condition meshif, < 27" for all n € N. To verify that
g ~uy f]f_l(U), let x € f~1(U). Then, we have x € A, \ int4 A, 1 C A, N B,,_o for some n € N, so
fn—2(z) = f(z) € Cy, and g(x) = fu(x) € intx Cpia. Since fr—1 ~y,_, fn—2 and fi, ~y, fn—1 by (4)n—1
and (4)p, respectively, we can choose V,V’ € V so that f,_ao(z), fn—1(x) € V and fr—1(x), fo(x) € V.
Therefore,

f(z),g(z) e VUV C W €U for some W € U

because V is a star-refinement of U, and hence g ~y/ f] f-1(u)- 1t remains to show that g is a Z-embedding
into U. Tt is clear that g is injective because f~1(U) = |, . An and gla, = fala, is injective. For any
closed subset D C f~1(U) and n € N, due to (5),,

neN

g(DNA,\intg Ap—1) = fu(DNA, \intg Ay—1) Cintx Cp, + 2\ Cp—s.

It follows from (2),, that

g(D) = g(DN Ay, \intg Ay_1) = | fu(D N Ay \inty A,_y)
neN neN

is a locally finite union of closed sets in U, that is, a closed subset of g(f~*(U)). Thus, the map g :
f~YU) = g(f~1(U)) is a closed map. Moreover,

g(f 1)) = | 9(An \intx A1) = | ful(An \intx A1)

neN neN

is a locally finite union of Z-sets in U, that is, a Z-set by Proposition 2.1.2(2). As a result, g is a
Z-embedding. U

A map f: X — Y is a near-homeomorphism provided that for each open cover U € cov(Y), there
exists a homeomorphism h : X — Y with h ~y; f. The following theorem is proved by analogy with
Theorem 4 of [45].

Theorem 2.2.3. Suppose that X is a connected ANR satisfying the following conditions:

(i) X is a countable union of closed subspaces which belong to €;
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(i) X is strongly universal for €;
(iii) For every closed subset C C X, if C € €, then C is a strong Z-set in X.

If X x E s an E-manifold, then the projection pry : X x E — X is a near-homeomorphism, and hence
X is an E-manifold.

Proof. According to Remark 2 and the conditions (i) and (iii), we can write X x E = J,cyAn and
X = Upen Bn, where A, and B, are strong Z-sets which belong to €. For any open cover U € cov(X),
X admits a metric d such that {By(z,1) | x € X} < U due to Theorem 4.1 in Chapter II of [12]. Then,
it is sufficient to construct a homeomorphism k : X x E — X which is 1-close to the projection pry.

To begin with, we shall inductively construct a sequence of strong Z-sets C; C Cy C --- C X with
X = Unew Cn and homeomorphisms Ay, : X x £ — (X x E)¢,, n € N, such that

(1)n B,UC,_1 CC,,
(2)n hn(A4n) C Cy,
(3)n hn|h;11(cnfl) = hn_l’h;il(c'nfl) and

(4)71 d(pnhn(w)7pn—1hn—1(x)) < an—l(pn—lhn—l(l'))
for all z € (X x E)\ h, 1 (Ch1),

where Cy = 0, hg : X x E — X x FE is the identity map, pp : X x E — X is the projection onto X,
pn ¢ (X X E)¢g, — X is the natural map, and «, : X \ C,, — (0,1) is the map defined by a,(y) =
27" min{1,d(y,Cp)}, n € N, and ag(y) = 1.

Suppose that C; and h; satisfying (1);, (2);, (3); and (4); have been obtained for all i < n. We define
the map o, : X \ C,, — (0,1) by an(y) = 27" min{1,d(y,Cy)}. Due to Lemma 2.1.4, we can choose
Uy, € cov(X \ C),) so that the following conditions are satisfied:

(a) For a map f : (X x E)\ h;l(C’n) = X, i f ~geq, pnhn|(X><E)\h;1(Cn)v then d(f(z), pnhn(z)) <
an(pnhn(x)) for all z € (X x E)\ h;1(Ch);

(b) For a homeomorphism f': (X\Cp)x E — (X\C,)x E, if f’ ~prsoty) 1d(x\c,) <k, then 1’ extends
to the homeomorphism f: (X x E)¢, — (X x E)¢, by flo, =ide,;

(c) For a closed embedding v : hy(An11) \ Cp = X\ Cy, if v ~g24, Pulh,(a,.0)\C,» then v extends to
the closed embedding ¢ : hy,(Ap4+1) UC,, — X by v|¢, =ide,.

Since hy, is a homeomorphism and € is topological, hy,(A,+1) € € is a strong Z-set in (X X E)¢,,. Applying
Lemma 2.2.2 to the map py|p,(a,.1) : An(An+1) — X and the open subset X \ €}, C X, we can find a Z-
embedding v : by (Ant1)\Cn — X\ Cp such that v >y, paln, (4,00\Cp- Let i X\Cp — (X\Cy) x {0} C
(X \ Cp) x E be the natural inclusion. Then v(hy(An+1) \ Cpn) is a Z-set in (X \ Cp,) x E. Hence
v hy(Aps1) \ Cn — (X'\ Cp) X E is a Z-embedding such that v >4y hn (4, 0\Cp IR (X\Cp) xE
because v ~, pnlp, (a,,,) and E is contractible. On the other hand, (X \ C,,) x E is an E-manifold as an
open subspace of the E-manifold X x E. By Proposition 2.1.2(1), hy(Apn+1)\Crn = hn(Ant1)N(X\Cp) X E
is a strong Z-set in (X \ C,,) x E. Applying the Z-set Unknotting Theorem (cf. Theorem 2 of [19] !) to the
E-manifold (X \ C,) x E and using the condition (b), we can obtain a homeomorphism f : (X x E)¢, —
(X x E)¢, so that

Flhn(ansine, = 10, Flexaca)xE ~p=1 (st 10X0\Co)x B

!Theorem 2 of [19] holds for a locally convex topological linear metric space E not only such that E is homeomorphic to
EY but also such that E is homeomorphic to E?.

17



and f|c, =idc,. Then f ~ o (st 2Un) id(xxE)e,

By the way, due to (c), the Z-embedding v extends to a closed embedding 0 : h,(Ap+1) UC, — X
by vlc, = idg,, so U(hn(An+1)) € € is a closed subspace in X, which implies that 0(h,(An+1)) is a
strong Z-set in X by (iii). Since C,, and B,4; are strong Z-sets, it follows from Proposition 2.1.2 that
Cn+1 = 0(hp(Aps1) UC, U Byyq is a strong Z-set in X, so Cpqq \ Oy, is a strong Z-set in X \ C,,. Let
q: (X x E)g, — (X X E)¢g,+1 be the natural map defined by p, = pp+19g. Lemma 2.1.4 allows us to
choose V,, € cov(X \ Cy,) so that

(d) V, < Uy, and

(e) for a homeomorphism ¢’ : (X \ Cy) X E = (X x E)¢,,, \ Cy, if ¢’ ~prl (V) ql(x\cp)x e, then g’
extends to the homeomorphism g : (X x E)¢, — (X x E)¢,+1 by glc, =idc,,.

Then, applying Proposition 2.2.1 and (e), we can find a homeomorphism ¢ : (X x E)¢, — (X x E)¢
such that

n+1

9lx\cayxB Pt (Vn) q| (x\C)xEs 9(,0) = for all z € Cpy1 \ Cp

and g|c, =id¢g,. Then g ~prh W) 4 by (d).
Now, we have the homeomorphism h,11 = gfh, : X x E — (X x E)¢

.1+ By the definition of C, 41,
we have (1),,41. It follows that

hini1(Ani1) = 9fhn(Ang1) = g(v(hn(Any1) \ Cn) X {O}) U (hp(Ans1) N Cy)
C g((Crs1\ Cn) x {0} U Cp = (Crg1 \ Cp) U Cp = Cya,

that is, (2),+1 holds. Moreover, we get
hni1(x) = gfhn(z) = hp(z) for every z € b, 1 (Cy),

which means (3),,4+1. Observe that

Prothnitl(mpnz (o) = Prtt9F nl ocmpnz ()
Mty P10 Tnl (x s py izt (o)
= Pnfbnl xxmpnztcn)

sttty Pafinl (xcmp\nz ()
and hence p"+1h”+1‘(XxE)\h;1(Cn) ~st2 U, pnhn|(XxE)\h;1(On)' By (a), we have

d(pn-i-lhn-l-l(m)’pnhn(z)) < an(pnhn(x)) for every x € (X X E) \ hﬁl(cn),

0 (4)n+41 holds. Thus, we complete the inductive step.

Finally, we shall construct the desired homeomorphism & : X x F — X by using Lemma 2.1.3. Define
the surjective maps k, = pphy, : X X E— X, n € w. Since B,, C C), by (1),, for all n € N, the increasing
sequence {Cy, }new is a closed cover of X. It follows from (2),, that

AnChr_Ll(C ) =hy ! _1(071):]‘7;1(071)7
which means that X x E = {J, ¢, k" (Cp). It remains to show that the sequence {ky}nc. satisfies the
conditions (1), (11) and (111) of Lemma 2.1.3.
(1): Note that kn’kgl(cn) = pnhn\kgl(cn) = hn‘k,;l(cn)’ o) kn’kgl(cn) is bijective. Given a point = € C),

18



and a neighborhood V' of k;!(x) in X x E, h,(V) is a neighborhood of h,(k,'(z)) = p,'(z) = z in
(X X E)¢,. Then, there exists an open neighborhood U of = in X such that

P (U)=(UNC,)UU\Cn) X EC hp(V),

hence it follows that k, (U) = h, p, }(U) C V.
(1): By (3),, we have

kil = Porthnaili i,y = Porthnailiie,) = Pabnlizi e,y = knlie,):
(111): It follows from (4),41 that for all z € (X x E) \ k;Y(Cy),

d(kn+1(), kn(2)) = d(prt1hn1(2), Pnhn(2)) < an(Prhn(z)) = an(kn()).
In conclusion, we can obtain the desired homeomorphism &k : X x E — X as follows:

k(z) = lim k,(x) for every z € X x E,

n—o0

where k is 1-close to ko = poho = pry. The proof is complete. [

2.3 The discrete approximation property for a class of spaces

For a cardinal 7 > 1, a space X has the 7-discrete approximation property (or the 7-locally finite approz-
imation property) for a class C if the following condition is satisfied:

e Let A =D, Ay be a discrete union of a collection {Ay € C [y < 7} and f: A — X bea
map. Then, for each open cover U of X, there exists a map g : A — X such that g ~;; f and
{g9(A,) | v < 7} is discrete (or locally finite) in X.

For the sake of convenience, we abbreviate the 7-discrete approximation property for C and the 7-locally
finite approximation property for C to 7-DAP(C) and 7-LFAP(C), respectively. When C = {C'}, we simply
write 7-DAP(C) and 7-LFAP(C). The 7-discrete n-cells property is no other than 7-DAP(I™). Moreover,
7-DAP({I" | n € w}) is called the 7-discrete cells property. The T-discrete cells property is stronger than
the 7-discrete n-cells property for all n € w, but the same as 7-DAP(Q), namely, the 7-discrete Ry-cells

property.

Lemma 2.3.1. For a cardinal 7 > 1, a space X has the T-discrete cells property if and only if X has
7-DAP(Q).

Proof. Let Q4 be a copy of IN for all ¥ < 7 and U € cov(X), where each Q. admits the following metric
d defined by

d(z,y) = sugi’l\w(i) —y(@)] for x = (2(i))ien, y = (y(7))ien € Q4.
1€
For each n € N, the inclusion i, : I* — IN and the projection p,, : IV

follows:

— I'" are respectively defined as

in(z) = (z(1),---,2(n),0,0,---) for x = ((7))1<i<n € I" and
pa(z) = (2(1),- -+, z(n)) for z = (2(i))sen € T

Moreover, let ig : I = {0} 2 0~ (0,0,---) € IN and pp : I 3 z — 0 € I’ = {0}.
First, to show the “if” part, take any map f : D = ®’Y<T 1) — X, where n(y) € w for all v < 7.
Define a map g : ®7<T Q, = X by glq, = flin(Pn(y) for each v < 7. Since X has -DAP(Q), there is a
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map ¢’ : P, ., Qy — X such that ¢’ ~y g and {¢'(Q,) | v < 7} is discrete in X. Then, we define a map
f'oD = X by f'line = 9'lQ, in(y) for each v < 7. Tt follows that

Flnen = g'lein(»y) ~u 91Q,in(y) = [l Pr(y)iny) = flme for every v <,

and hence f’ ~y f. Moreover, f/(I"7)) = 9'1Qyin(y) I"™) C ¢'(Q,) for each v < 7, so the collection
{f/(1"M) | v < 7} is discrete in X. As a result, X has the 7-discrete cells property.

Next, to prove the “only if” part, take any map f : @70 Q, — X. Let ¥V € cov(X) be a star-
refinement of ¢ and e, be a Lebesgue number for (f|Qw)_ (V) € cov(Q,). Then, we can choose n(y) € N
so that n(y) ™! < ;. It is easy to see that idq, is n(y)~'-close to i n(y)Pn(y), hence flq, ~v flQ,in(qPn)-
Define amap g: D =P, I" ) — X by gline) = flQ,in(y) for each v < 7. Due to the 7-discrete cells
property of X, we can find a map ¢’ : D — X such that g ~yp g and {g/(I"")) | v < 7} is discrete in X.
Then, we define a map f': P, Qy = X by f'|lq, = ¢'lin(Pn(y) for each v < 7. Observe that for every
v<T,

Fla, = 9l Poe) ~v 9l Puiy) = F1Qy in()Pat) ~v flays

which means that f" ~y f. Furthermore, f'(Qy) = ¢'|pn)Pn()(Qy) = ¢ "(I*)) for all v < 7, so the
collection {f(Q,) | v < 7} is discrete in X. Consequently, X has -DAP(Q). O

For a topological subclass C C 9, by the same argument as Lemma 4 of [7] (cf. [21]) we can show
that 7-LFAP(C) coincides with 7-DAP(C), that is:

Lemma 2.3.2. Let 7 be an infinite cardinal and let C be a topological subclass of My. A space X has
T7-LFAP(C) if and only if X has T-DAP(C).

Proof. The “if” part is clear. So we shall show “the only if” part. Let f: A = GB’Y<T A, — X be a map,

where A, € C. As 7 is infinite, card(r x 7) < 7. For each (v,7') € 7 x 7, we define
A

vy = Ay x {7} C Ax,

where 7 is considered as a discrete space. Then, A x 7 is a discrete union of {A¢, . | (v,7') € 7 x 7}
Take any open cover U € cov(X). Applying 7-LFAP(C) of X to the map f= fpra:Ax 71— X, where
pry : Ax 17 — A is the projection onto A, we can obtain a map g : A x 7 — X such that g ~y f
and {§(A¢y) | (7,7") € 7 x 7} is locally finite in X. Then, each G(A(,,/)) meets only finitely many
G(A(551))’s because G(A(, 1)) is compact.

By transfinite induction, we can choose §(y) < 7 for each v < 7 so as to satisfy the following:

(*) g(A(%(g(,y))) N g(A(7/75(’Y'))) = @ for all ’}// <.

Indeed, suppose that §(7") < 7 has been chosen for each 7/ < . Then, as observed in the above,

card({0 < 7 | §(A¢y,5)) N G(A¢y s(vy) # 0}) < oo for all v < .

card ({(5 <T

which allows us find () < 7 satisfying (x). It follows from the local finiteness of {g(A(, 1) | (v,7') €
7 x 7} and (%) that {g(As(y))) | ¥ < 7} is discrete in X. Then, we define the map g : A — X by
g(x) = g(x, (7)) for each x € Ay and v € 7. It is easy to see that g ~¢ f and {g(Ay) | v < 7} is discrete.
As a result, X has 7-DAP(C). O

So we have

G(Ap.5)) N ( U (Aqs6m) )) #@}) <Ry < 7,

v <y
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Proposition 2.3.3. Let 7 be a cardinal > 1 and n € w. Suppose that W is an open set in an ANR X
which is contractible in X . If X has the T-discrete cells property (respectively, the T-discrete (2n+1)-cells
property), then W has T-DAP(IMy) (respectively, T-DAP(My(n))).

Proof. We may only prove the case when X has the 7-discrete (2n 4 1)-cells property because the other
case is similarly proved by virtue of Lemma 2.3.1. Suppose that f: A = @V < Ay — W is a map, where
A, € My(n) for all vy < 7, and U € cov(X). Due to Lemma 2.3.2, we may construct a map h: A — W
such that h ~y f and {h(A,) | ¥ < 7} is locally finite in W. Denote D = @.__, D.,, where D, = I*"!
for each v < 7. We may assume that A, C D, for all v <.

Since W is an ANR, f extends to a map f: V — W from an open neighborhood V of A in D to W.
Take an open neighborhood V' of A in D so that c1V’ C V and let k : D — I be an Urysohn map such
that k=1(0) = A and k~!(1) = D\ V'. By the hypothesis, we have a contraction ¢ : W x I — X so that
#o = idyw and ¢1(W) = {xo} for some 2o € X. Then, we can define the map f: D — X as follows:

<1

f(x) = ¢(f(x), k(z)) for each z € V and f(D\ V) = {xo}.

Now, we can write W = Uz’eN W;, where W; is an open set in X and clW; C W,y for every i € N.
Let Uy € cov(X) such that Uy <* U. We define closed subsets R; C A, i € N, an open cover U’ € cov(W)
and open covers U; € cov(X), i € N, as follows:

Ry = fTHAW\Wisa), U = | Uolw\aw,_, and Us = U'|w,, U{X \ cl Way 1},
ieN

where W_1 = Wy = (). Using the 7-discrete (2n+ 1)-cells property of X, we can obtain amap ¢; : D — X
such that g; ~y, f and {gi(D,) | v < 7} is discrete in X. Then gi|ry, , ~u flRy_, for all i € N.
By the Homotopy Extension Theorem 1.2.4, we can take a map g : A — W such that g ~; f and
9|Roi_1 = 9i|Roy_, for each i € N. It is easy to see that {g(A,NRyi—1) | v < 7} is discrete in Wa; \ ¢l Wa;_3.
Therefore {g(Ay N Rai—1) | v < 7,1 € N} is locally finite in .

Next, we can find an open refinement V € cov(W) of Uy so as to satisfy the following:

e For every map h: A — W, h ~y g implies that {h(Ay N Ry;—1) | v < 7,1 € N} is locally finite in W.

By the same construction as g, we can obtain a map h : A — W so that h ~y g and {h(A, N Ry) | v <
7,1 € N} is locally finite in W. It is follows from the definition of V that {h(A, N Ry;—1) | v < 7,7 € N}
is locally finite in W. Therefore {h(A, N R;) | v < 7,7 € N} is locally finite in W, which means that
{h(A,) | v < 7} is locally finite in W. Moreover, h ~y g ~ f, and hence h ~y f. Thus, the proof is
complete. [

A little stronger condition than 7-DAP will be introduced in the following proposition.

Proposition 2.3.4. Let 7 be a cardinal > 1 and C be a topological and closed hereditary subclass of M.
Suppose that X is an ANR with 7-DAP(C) and that any closed set C € C in X is a strong Z-set. Then,
for every map f: A= @7@ A, — X from a discrete union of A’s to X, where A, € C, for every closed
subset B C A such that the restriction f|p is a closed embedding, and for every U € cov(X), there exists
amap g:A— X such that g ~y f, gl = f|p and the collection {g(Ay) | v < T} is discrete in X.

Proof. We take Uy, Us € cov(X) so that U >* Uy =* Us. Let B, = A, N B for each v < 7. Since f|p is
a closed embedding, {f(By) | v < 7} is a discrete collection in X. Then, we can find a pairwise disjoint
collection {U, | v < 7} of open subsets of X so that f(By) C Uy for each v < 7.

Take Uy € cov(X) such that Uy < Us A {U,, X \ f(B) | v < 7}. Since f(B,) € C for every v < 7, it
follows from Proposition 2.1.2(2) that f(B) = U,, f(By) is a strong Z-set in X. Then, we can obtain
a Uj-homotopy A’ : X x I — X and an open neighborhood W of f(B) in X such that h{ = f and
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RY(X) C X\ W. We write W, = W NU, for each v < 7. Let h = h/(f xid;) : AxI — X, s0 hisa
Uy-homotopy and hg = hyf = f. Observe that h(By x I) C U, for each v < 7. Since each B, is compact,
we can find an open neighborhood V;, of B, in A, so that h(V, xI) C U,. Take an Urysohn map k: A — 1
such that k~1(0) = B and k=1(1) = 4\ U'y<7’ V7 and define the map f’ : A — X by f'(x) = h(z, k(x))
for z € A. It is easy to see that f' ~y, f and f'[p = ho|p = f|p. Moreover, f satisfies the following
condition:

(1) f'(A\V,)NW, =0 for any v < 7.
Indeed, take any point x € A\ V;. When z € A\, .V,
F(2) = ha(w) = W f(z) € X\ W € X\ W,
When z € V., for some ' # ~, we have
(@) = hyy(z) e Uy C X\U, C X\ W,.

We take an open neighborhood W of f(B,) for each v < 7 so that clW, C W,. Let Uj € cov(X)

such that
v < T}.

Applying 7-DAP(C) of X to f’, we can obtain a U;-homotopy h” : A x I — X so that hj = f’ and

u{<bl1/\{ Wy \ £(By), X\ | awl,

y'er

(2) {h{(Ay) |y < 7} is discrete in X.

Since A" is a Uj-homotopy and hg|lp = f'|p = flp, it follows that h"(B, x I) C W, for each v < 7.
Because of the compactness, each B, has an open neighborhood G in A, such that h"(G, x I) C W..
Let ¥ : A — I be an Urysohn map such that (k')~1(0) = B and (k')~(1) = A\ U<, Gy. Now, we
can define the desired map g : A — X by g(x) = h"(z,k'(z)) for all x € A. Observe that g ~ f" and
the restriction g|p = hj|p = f'|B, and hence g ~y f and g|p = f|p. Thus, it remains to show that
{9(Ay) | v < 7} is discrete in X.

Fix a point € X. Due to (2), the collection {g(A, \ G) | v < 7} is discrete in X, and hence there
exists an open neighborhood U, of z in X such that card({y < 7 | (4, \ G,) N U, # 0}) < 1.

(CasE 1) card({y < 7 | g(Ay \ Gy) N U, # 0}) = 0.
When z € X \ U, clWJ, the subset U; = Uy \ U, ., clW is an open neighborhood of z in X.
Since g(G,) C W2, we have U, N g(G,) =0, so U, Ng(A,) =0 for any v < 7. When 2 € |, clW/,

'y<7'
z € cl W for the unique 79 € 7. Then U; = U, \ U cl W, is an open neighborhood of x in X such
that U, ﬁg( ~) = 0 for all v # ~o.

(CaSE 2) card({y < 7| g(Ay \ Gy) NU, # 0}) = 1.

We may assume that g(A,, \ G4) N Uz # O for the unique 79 € 7. Note that g(A,, \ G,,) is a
closed set in X because of the compactness of A, so we can turn the case when = ¢ g(A4,, \ G,) into
Case 1 by replacing Uy by Uy \ g(Ay, \ G4). When x € g(Ay, \ Gy), we have z € X \ U, cIW].
Otherwise = € cl W, for some 71 # 0. As x € g(Ay, \ G,), the point x = g(a) for a point a € A,y \ G-
Then f'(a) € W, because g ~, f’. On the other hand, since A,, C A\ V,,, it follows from (1) that
f(Aye) "Wy, =0, which is a contradiction. Now x has the open neighborhood Uy = Uy \ U, 4., ¢l W/ in
X such that U, N g(A,) = 0 for every v # ~o. O

Y#Y0
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2.4 Proof of Main Theorem

This section is devoted to proving Main Theorem. The following proposition follows from Stone’s Theorem
(Theorem 4.4.1 of [30]).

Proposition 2.4.1. Let X be a metrizable space. Then the following conditions are equivalent:

1) X is strongly countable-dimensional and o-locally compact;

2) X s strongly countable-dimensional and a countable union of closed locally compact subsets;

4

(1)
(2)
(3) X is a countable union of locally compact locally finite-dimensional closed subsets;
(4)

X is a countable union of closed subsets which are discrete unions of finite-dimensional compact
metrizable spaces.

Proof. The implication (2) = (3) is obvious. First, we prove the implication (1) = (2). It is sufficient
to show that any o-locally compact metrizable space X can be written as a countable union of closed
locally compact subsets. We can write X = J, ¢, Xn, where each X, is locally compact. According to
[54, Theorem 2], each X, is an absolute Fi, set. Hence we have X, = |J,,¢,, A, where A} is closed in X
for all m,n € w. Since X, is locally compact, so A", is. Therefore X = J A7 is a countable union
of closed locally compact subsets.

To prove the implication (3) = (4), we assume that X = J,c,, Xn, where X, is a locally compact
locally finite-dimensional closed subsets for all n € w. By the local compactness and the local finite-
dimensionality, each X, has an open cover U,, such that for every U € U,,, the closure of U is compact and
finite-dimensional. Due to Stone’s Theorem, each U, has a o-discrete open refinement V,, = J,,,c, V;/' €
cov(X,,), where V" is discrete in X,,. Then, A" = UVEV;” clV is a closed subset of X, which is a discrete
union of finite-dimensional compact metrizable spaces. Evidently X = A7, which implies that X
satisfies the condition (4).

Finally, we show the implication (4) = (1). As is easily observed, we can write X = J,,c,, Xn, where
each X, is a closed subspace which is discrete unions of compact metrizable spaces of dimension < n.
Hence X is a countable union of finite-dimensional locally compact closed subsets, which means that it
is strongly countable-dimensional and o-locally compact. The proof is complete. [

mnew

n,mew

Remark 3. As is seen in the above proof, when a metrizable space X satisfies the above conditions, we can
write X = J,,c,, Xn, where each X, is a closed subspace which is discrete unions of compact metrizable
spaces of dimension < n.

Now, we shall show the following characterization.

Theorem 2.4.2. Let 7 be an infinite cardinal. For a connected space X, the following conditions (1), (2)
and (3) are equivalent:

(1) X is an ﬁg(T)—manifold;

(2) (a) X is an ANR of weight T and a countable union of closed sets which are discrete unions of
finite-dimensional compact metrizable spaces;
(b) X is strongly universal for @, Mo(n) for alln € w;
(¢) For every subset C C X, if C € img, then C is a strong Z-set in X;

(3) (a) X is an ANR of weight T and a countable union of closed sets which are discrete unions of
finite-dimensional compact metrizable spaces;

(b) (i) X has T-DAP(My(n)) for alln € w;
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il) X 1s strongly universal for imf;
0
(¢) For every subset C C X, if C € f)ﬁf, then C is a strong Z-set in X.

Proof. The implication (2) = (3) is clear. According to Proposition 2.3.4, the condition (b) of (3) implies
the condition (b) of (2), so the implication (3) = (2) also holds. Now, we shall show the equivalence
1) < (2).

(1) = (2): Due to Proposition 4.5 of [56], X is an ANR which is a countable union of locally compact
locally finite-dimensional closed subsets. By Proposition 2.4.1, X is a countable union of closed subsets
which are discrete unions of finite-dimensional compact metrizable spaces. Moreover, since X is connected,
we have w(X) = W(Eg(T)) = 7. Therefore X satisfies the condition (a).

By 1.1 of [56], every space in @, Moy(n), n € w, can be embedded into 65(7) as a closed subspace.
Hence, the condition (b) follows from the Strong Universality Theorem (cf. Lemma 5.1 of [19] ?). Fur-
thermore, since the condition (b) implies that X has the 7-discrete n-cells property for all n € w, any
finite-dimensional compact subset C' C X is a Z-set in X by Proposition 2.1.1. Then C' is a strong Z-set
in X due to Al of [60], which means that the condition (c) holds.

(2) = (1): Obviously, the class € = |J,,c,, D, Mo(n) is topological and closed hereditary. As is seen in
the proof of (1) = (2), the model space 65(7’) satisfies the condition (2). Due to the condition (a) and
Remark 3, with respect to € the locally convex topological linear metric space Eg (1) and the connected
ANR X satisfy () in Section 2.2 and (i) in Theorem 2.2.3, respectively. Combining the condition (c)
with Proposition 2.1.2(2) implies that 55(7) and X satisfy (xx) in Section 2.2 and (iii) in Theorem 2.2.3
with respect to €, respectively. The condition (b) is no other than the condition (ii) in Theorem 2.2.3.
On the other hand, since X is an ANR of weight 7 and a countable union of locally compact locally
finite-dimensional closed subsets, applying Theorem 4.3 of [56] to X x Eg (1), we have X X Eg () is an
85(7)—manifold. According to Theorem 2.2.3, X is homeomorphic to X x fg(T), that is, it is an 65(7)—
manifold. [

Remark 4. As is seen in the above, the space Eg (7) has the properties (x) and (xx) in Section 2.2 with
respect to the class € = J,,c,, @, Mo(n). Then, it follows from € C . Dﬁg that 65(7') satisfies (x) with
respect to @, smg; , immediately. Moreover, combining (c) of Theorem 2.4.2 with Proposition 2.1.2(2)
implies the stronger assertion that Eg (1) satisfies (%) with respect to ., zmg , actually. In addition,
removing “finite-dimensionality”, we have fg (1) x Q satisfies (x) and (**) with respect to the class
D, Mo.

Using the above characterization, we shall prove Main Theorem.

Proof of Main Theorem. Using the condition (3) of Theorem 2.4.2 and Proposition 2.4.1, we can obtain
the “only if” part immediately. Now, we shall prove the “if” part. Since X is locally contractible, each
point z € X has an open neighborhood W which is contractible in X. It is enough to show that W is an
55(7)—manifold, that is, W satisfies (3) of Theorem 2.4.2.

It follows from Proposition 2.1.2(1) that W satisfies the condition (c). To verify the condition (b-ii),
suppose that f: A — W is a map from A € E)ﬁg such that the restriction f|p on a closed subset B of Ais a
Z-embedding. For each open cover W € cov(W), the collection Y = WU{X \ f(A)} € cov(X) because A
is compact. Then, applying the strong universality of X to f allows us to find a Z-embedding g: A — X
such that g ~y f and g|p = f|p. Due to the definition of U, we have g(A) C W and g ~yy f. Thus,
W satisfies (b-ii). The contractibility of W in X and the 7-discrete n-cells property of X, n € w, imply
that W has 7-DAP(9My(n)) for all n € w by Proposition 2.3.3, namely, the condition (b-i) is satisfied. It

*Lemma 5.1 of [19] holds for a locally convex topological linear metric space E not only such that E is homeomorphic to
EY but also such that E is homeomorphic to E?.
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remains to check the condition (a). It follows from 7-DAP(9Mp(n)) of W that 7 < w(W) < w(X) = 7,
hence w(W) = 7. Since W is an open subset in X, it is an ANR and an Fj, set in X. Then, because X
is a countable union of closed subsets which are discrete unions of finite-dimensional compact metrizable
space by Proposition 2.4.1, so an F,, set W is. Therefore, the condition (a) holds. [

By removing “finite-dimensionality” from the characterization of 65 (7)-manifolds, we can similarly
prove the following characterization of (55(7) x Q)-manifolds.

Theorem 2.4.3. Let 7 be an infinite cardinal. A connected space X is an (6;(7) x Q)-manifold if and
only if the following conditions are satisfied:

1) X is a o-locally compact ANR of weight T;

2) X has the T-discrete cells property;

(
(2)
(3) X is strongly universal for 9My;
(4)

4) For every subset C C X, if C € My, then C is a strong Z-set in X.
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Chapter 3

Characterizations of infinite-dimensional
manifold pairs

In this chapter, we assume that spaces are paracompact. Combining West’s characterization [61] with
the main theorem in Chapter 2, we shall prove the following:

Main Theorem. A pair (X,Y) of spaces is an (62(7’),65(7’))—mam’f01d pair if and only if X is an la(7)-
manifold, Y is an 65(7)—manifold and Y is homotopy dense in X.

For an infinite cardinal 7, the hedgehog J(7) is the closed subspace in ¢;(7) defined as follows:
J(1) ={x = (2(7))y<r € tLa(7) NI | 2(7y) # 0 at most one v < 7}.

It is well known that the countable product J (7)Y of J(7) is a universal space for the class of metrizable
spaces of wight < 7 (cf. Corollary 2.3.7 of [50]). We define the subspace J (T)IJ\J in J(7)Y as follows:

J(T)I;cI = {2z = (2(n))nen € J(1)V | £(n) = 0 except for finitely many n € N}.

Applying the modified West’s characterization Theorem 3.1.4 to the pair (J(7)N, J(T)I}]), we can also
prove the following theorem:

Theorem 3.0.1. Let 7 be an infinite cardinal. The pair (J(7)Y, J(T)I?) is homeomorphic to (l2(T), 6%(7’))

3.1 West’s characterization and the main result

Let C be a topological and closed hereditary class of spaces. We denote the collection of closed subspaces
in a space X which belong to C by C(X). A subspace Y of X is said to be weakly C(X)-absorptive! if the
following condition hold:

(abs) For each A € C(X), each closed subset B of A contained in Y and each open cover U of X, there
exists an embedding f : A — Y such that f is U-close to id4 and f|p = idp.

A space Y has a C-complex structure {A,}new if each A, is a subcollection of C(Y') with the following
properties:

(1) Y= UnEw(U An);

!This notion is introduced in Theorem 6 of [61]. A subspace Y of X is €(X)-absorptive if for each A € €(X), each closed
subset B of A contained in Y, and each open cover U of A in X, there exists a homeomorphism f : X — X such that
f(A) CY, flyu is U-close to id |y, and f|x\yuwyus = id(x\(Juyus- Moreover, if there exists an ambient isotopy h of f such
that {h({z} xI) |z € A} <U, then Y is called strongly €(X)-absorptive.
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(2) A =Uiy(UA) is closed in Y for each n € w;

(3) For each n € w, there exists a pairwise disjoint open cover U,, of A, \ A,—1 in Y such that UN A4, \
A1 €{A\A,_1| A€ A,} for each U € U, where A_; = ().

J.E. West established the following characterization of (¢2(7), Eg (7))-manifold pairs in 1970, see Theorem 6
of [61].

Theorem 3.1.1. Let 7 be an infinite cardinal. For spaces Y C X, the pair (X,Y) is an (Eg(T)Jé(T))-
manifold pair if and only if X is an ly(T)-manifold, Y is weakly ?Jﬁg (X)-absorptive and has an fmg—complex
structure.

Due to Theorem 6 of [32] (cf. Theorem C of [33]) and Theorem 1 of [61], we can classify (62(7),55(7))—
manifold pairs according to homotopy types.

Theorem 3.1.2. Let 7 be an infinite cardinal. Suppose that (X,Y) and (X', Y') are (EQ(T),Eg(T))—
manifold pairs. If X and X' (or'Y andY') have the same homotopy type, then (X,Y) and (X',Y') are
homeomorphic.

Remark 5. While it is not mentioned in [61], the similar characterization of (¢2(7) x Q, 65 (1) x Q)-manifold
pairs can be established as follows:

e A pair (X,Y) of spaces is an (f2(7) X Q,fg(T) x Q)-manifold pair if and only if X is an f5(7)-
manifold?, Y is weakly 9%y (X)-absorptive and has an 9-complex structure.

In addition, Theorem 3.1.2 is valid for (¢2(7) X Q,%c (1) x Q)-manifold pairs.

Although the complex structure is defined by imitating the simplicial complex structure, it is com-
plicated. The following proposition is very useful for detecting a C-complex structure with respect to a
topological and closed hereditary class C in a metrizable space.

Proposition 3.1.3. For a topological and closed hereditary class C, a metrizable space X is a countable
union of closed sets which are discrete unions of members of C if and only if X has a C-complex structure.

Proof. First, we show the “only if” part. Let X = J,,(lUAn), where A, is a discrete collection of X
whose members are in C and the union |J A, is closed in X for each n € w. Note that A, C C(X) for
all n € w. Then A, = J ,(JA) is closed in X for every n € w. Since each A, is discrete in X, there
exists a pairwise disjoint collection U, = {U(A) | A € A, } of open subsets of X such that A C U(A) for
each A € A,. Observe that U(A) N (A, \ Ap—1) = A\ Ap—1 for each A € A, and n € w, where A_; = ).
Consequently, the collections {A,, },e. is a C-complex structure of X.

Next, we prove the “if” part. Let {4, }new be a C-complex structure of X. Then, for each n € w there
exists a pairwise disjoint collection U, of open subsets of X satisfying the following condition:

e Each U,, covers A, \ A,—1 so that UN A, \ A,—1 € {A\ 4,1 | A € A,} for every U € U,,, where
A1 =0.

For every U € U,, and n € w, we can choose A € A, so that U N A, \ A,—1 = A\ A,_1, which is
open in A, so an F, set in A. Hence, we can write U N A, \ A1 = Upnen A’(Z’U), where each A’(Z’U)
is closed in A, so closed in X. It is easy to see that A, ) = {A?;’L’U) | U € Uy} is discrete in X and
the union (J A, m) is closed in X for all n,m € w. Moreover, X =, ,,c,(UAgnm)). Indeed, for each
x € X, choose n € w such that z € A, \ A,_1. Since U,, covers A, \ A,_1, there is U € U,, such that
reUNA\ An1 = Upeo Al 1ry» which implies that z € A7 ;) C U Agn,m) for some m € w. Thus, X
is a countable union of closed sets which are discrete unions of members of C. [

2Remark that £2(7) x Q is homeomorphic to £2(7).
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Combining Proposition 2.4.1 in Chapter 2 with the above, we can modify West’s characterizations as
follows:

Theorem 3.1.4. Let Y C X be spaces and T an infinite cardinal. The pair (X,Y) is an (62(7),65(7))-
manifold pair if and only if X is an la2(7)-manifold, and Y is strongly countable-dimensional, o-locally
compact, and weakly fmg(X)—absorptive, and (X,Y) is an (ba(7) X Q,K%(T) x Q)-manifold pair if and only
if X is an ly(T)-manifold, and Y is o-locally compact and weakly My(X)-absorptive.

Proposition 3.1.5. Let C be a topological and closed hereditary subclass of 9. Suppose that a homotopy
dense subset Y of a metrizable space X satisfies the following conditions:

(x) Y s strongly universal for C;
(xx) Every closed subset C € C(Y) is a Z-set in'Y .
Then'Y is weakly C(X)-absorptive.

Proof. Fix A € C(X), a closed subset B of A contained in Y and an open cover U of X. Take an open
cover V of X so that V <* Y. Since Y is homotopy dense in X, we can find a homotopy h: X x I — X
such that hg = idx and (X x (0,1]) C Y. Then, we have a map k : A — I such that k~*(0) = B and
{{z} x [0,k(x)] | x € A} < h~Y(V). Defineamap f: A =Y C X by f(z) = h(z, k(x)) for each x € A,
so f is V-close to id4 and f|p = ho|p = idp. On the other hand, since C is closed hereditary, it follows
from (x*) that B is a Z-set in Y, hence the restriction f|p is a Z-embedding into Y. Then, applying the
strong universality of Y to f, we can obtain a Z-embedding g : A — Y such that g is V|y-close to f and
glp = flp = idp, where V|y = {V NY | V € V}. Observe that g is U-close to id4. Consequently, Y is
weakly C(X)-absorptive. [J

A subset A C X is said to be locally homotopy negligible in a space X if for each n € w, x € X and open
neighborhood U of z, there exists a neighborhood V of x such that given a map f : (I",bdI") — (V,V\ A),
there is a homotopy h : (I",bdI") x I — (U,U \ A) with hg = f and h;(I") C U \ A, where bdI" is the
boundary of I". It is easy to see that a subset A C X is locally homotopy negligible in a space X if and
only if each point of X has a neighborhood U such that U N A is locally homotopy negligible in U. For
every infinite cardinal 7, the subset f2(7) \ €£ (1) is locally homotopy negligible in ¢5(7). Now, we shall
demonstrate Main Theorem.

Proof of Main Theorem. First, we prove the “only if” part. Since fo(7) \ 65(7) is locally homotopy
negligible in lo(7), it follows from Remark 2.2 of [57] that U \ Zg (1) is locally homotopy negligible in
U for every open subset U C f5(7). This means that X \ Y is locally homotopy negligible in X, recall
that (X,Y) is an (4o(7), 65(7))—manifold pair. Thus, Y is homotopy dense in X by Theorem 2.4 of [57].

Next, we show the “if” part. Since Y is an Eg (7)-manifold, it follows from the conditions (3) and
(4) of the main theorem in Chapter 2 that Y satisfies the conditions (*) and (**) in Proposition 3.1.5
for the class ,‘Jﬁg . Moreover, because Y is homotopy dense in X, we have that Y is weakly Sﬁg (X)-
absorptive by Proposition 3.1.5. Then, we can apply Theorem 3.1.4 to the pair (X,Y), so (X,Y) is an
(La(T), 65(7))—manifold pair. [

Remark 6. Combining Theorems 2.4.3 and 3.1.4 with Proposition 3.1.5, we can obtain another character-
ization of (fo(7) X Q,Eg(T) x Q)-manifold pairs as follows:

e A pair (X,Y) of spaces is an (¢2(7) xQ, 65(7') x Q)-manifold pair if and only if X is an ¢5(7)-manifold,
Y is an (Eg (1) x Q)-manifold and Y is homotopy dense in X.
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Remark 7. The main theorem does not hold for other infinite-dimensional manifolds. For example,
consider the pair (Q x fa,s X 65 ). Recall that s is homeomorphic to the separable Hilbert space /2,
see Section 1.3 in Chapter 1. Then we have Q X {5 is homeomorphic to f3, s X Eg is homeomorphic
to fo X Eg and s X Eg is homotopy dense in Q X ¢5. However, (Q X f2,s X Eé) is not homeomorphic to
(b X Lo, by X Eg) because £ x 6% is an F, set in 9 x £ while s x Eg is not an F,, set but a Gy, set in Q x £5.

3.2 An application

This section is devoted to proving Theorem 3.0.1. Throughout the section, we consider 7 an infinite
cardinal. We use an admissible metric d on J (7)Y as follows:

d(a,y) =Y 27" a(i) = y(@)| for every @ = (2(i))ier, y = (y(0))ien € J(7)".
1€EN
Let pr; : J(7)N — J(7) be the projection onto the ith coordinate. Define the vector e, € ¢1(7) for each
v < 7 as follows:
N=1 ify =«
e / _{ e’Y(r}/) . ’7 )
= =0 ity 27,
that is, e, is an unit vector of ¢1(7). Moreover, for z,y € ¢1(7), the line segment between x and y is
denoted by (x,y), that is,
(xyy ={(1—t)z+ty |t € I}.

First, we shall show the following;:
Theorem 3.2.1. The space J(7)Y is homeomorphic to l5(T).

Proof. Since the hedgehog J(7) is closed in ¢1(7), it is completely metrizable. As is easily observed, J(7) is
a metric polyhedron of a simplicial complex, and hence it is a contractible ANR (cf. Theorem 6.2.6 of [50]).
Therefore J(7) is an AR. According to Theorem 1.3.6, the countable product J (T)N is homeomorphic to
lo(1). O

Proposition 3.2.2. The space J(T)l;l 1s strongly countable-dimensional and o-locally compact.

Proof. According to Proposition 2.4.1 in Chapter 2, we need only to show that J (7')?I can be written as
a countable union of closed subsets which are discrete unions of finite-dimensional compact subsets. Let
Fin(N) be the all non-empty finite subsets of N. For each M € Fin(N), each n € w and each function
Yar : M — 7, we define the finite-dimensional compact subset of .J (7')11\0I as follows:

Aq(b]fj’n) = {x e J(r)N

z(i) € (27"ey, ) Cpp(i))s if i € M, and
z(i) = o, otherwise ’

which is homeomorphic to the cube I¢rd(M) Tet
A = {A%ﬁn) | Yar : M — 7} for each M € Fin(N) and n € w.

Fix a point z € (](7')1}I \ {0}, so we have the set M = {i € N | z(i) # 0} € Fin(N). Define the function
Y M — 7 as follows:
(i) =y < 7 if 2(d)(y) > 0 for each i € M.

Taking n € w so that 27" < min;eps ||2(7)||1, we can easily see that x € Azpﬁn). It follows that

J@ﬁ—ﬂnu< U (UAmmO-

MeFin(N),ncw
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Moreover, Ay, is discrete in J(T)I}I for each M € Fin(N) and n € w. Indeed, let = € J(T)JI\J. When
z(i) = 0 for some i € M, we have By(z,27") N Al(bﬁn) = () for every ¢py : M — 7. When z(i) # 0
for all i € M, as is easily observed, we can take the unique function ¥y : M — FE such that z(i) €
(0, €4,,) \ {0}. Then, define § = mingens [[2(i)[1, so Ba(x,5) N ALY

(M) = 0 for every ¢}, : M — 7 with
Yy # ¥ar. Thus, the proof is complete. O

Lemma 3.2.3. The space J(T)JI\CI is homotopy dense in J(T)N.

Proof. We can take a contraction ¢ : J(7) x I — J(7) such that ¢g = id () and ¢1(J(7)) = {0}. Then,
the homotopy h : J(7)N x I — J(7)Y is defined as follows: h(x,0) = x and

h(z,t) = (pry(x), - ,pr;_q(z), o(pr;(z),2% — 1),0,0,---) for each z € J(r)N and 27¢ < ¢t < 2741,
It follows that hg = id ;) and h(J(7)N x (0,1]) C J(T)?I, hence J(T)I]\f is homotopy dense in J(7)N. O

Since J(7)Y is an AR, so J(T)Ij\cI is due to Proposition 1.2.6 and the above. Using the above lemma,
we shall also show the following:

Proposition 3.2.4. The space J(T)I;] is th(J(T)N)-absorptive.
Proof. For the sake of convenience, let X = J(T)I;}, X = J(7)Y and
Xm ={r = (2(7))ieny € X | (i) =0 for all i > m} C X for each m € N.

Suppose that A is an finite-dimensional compact subset in X, B is a closed subset of A contained in X,
and I is an open cover of X. It is sufficient to construct an embedding §: A — X such that § is U-close
to idy and g|p = idg. We have A\ B = |J,,cry An, where Ay C Ay C --- are closed subsets of A, and
an open cover U of X such that U =* U’. Since X is homotopy dense in X due to Lemma 3.2.3, we can
obtain a homotopy ¢ : X x I — X so that ¢y = idg and ¢(X x (0,1]) C X. Let k : A — I be a map
such that k~1(0) = B and for each x € A\ B, there exists U € U’ such that {z} x [0, k(x)] C ¢~1(U \ B).
We define the map f: A — X by f(x) = ¢(z, k(x)). Observe that f is U’'-close to ida, f|p = idp and
f(A\ B) C X \ B. Let A > 1 be a Lebesgue number for &’ with respect to f(A). By the same argument
of Lemma 2.1.4 in Chapter 2, we can find an open cover V of X \ B of meshV < X so as to satisfy the
following conditions (cf. Lemma 3 of [4]):

(¥) Foramap h: f~(X\ B) = A\ B— X\ B, if h ~y f|a\p, then h extends to the map h:A— X
by iL‘B:idB.

Take a sequence of open covers V =* Vy >=* V| =* .-+ of X \ B of meshV,, < 27" for every n € w. Since
X \ B is an ANR, by Proposition 1.2.5, we can choose an open cover V/ of X \ B for each n € w so that
Vy, = V), and it has the following property:

(#*) Given a space Y and maps hi,ho : Y — X \ B, if hy ~yr ha, then hy >~y ho.

By induction, we shall construct maps g, : A\ B — X \ B, n € w, and a sequence of natural numbers
1=m(0) < m(l) < --- such that

(1) gnla, is an embedding into X,,,,,) \ B,

(3) Gnt1 v, n,
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where go = fla\p and Ag = 0. After completing the inductive construction, the sequence {gn}new
converges to the injection g : A\ B — X \ B such that g ~y f|4\p and g|a, = gn|a, for all n € w. Due
to (%), the map g is extended to the desired embedding g : A — X by g|p = idp. Therefore, it remains
to complete the induction.

Assume that g; and m(j) have been obtained for all j < n. Let A\, < 1 be a Lebesgue number for V},
with respect to g,—1(A;). Then, there is a number m(n)’ > m(n — 1) such that D ismin)’ 27 <\, Let
m(n) = m(n)’'+2dim(A)+2. Fix an unit vector e of £1(7). Remark that the segment (e/2, €) is contained
in J(7). By the finite dimensionality of A,,, there exists an embedding ¢, : A, — (e/2, e)?dmA)+1 Taking
amap ky : A, — I with k,;1(0) = A,,_1, we can define the map ¢/, : A, — Xmm) \ B as follows:

pr; gn—1(2) if i <m(n),
/ kn(x)pi—m’ Qn(x) if m(n), <1< m(n)v
pr; g (2) = ™ y
kn(x)e if i = m(n),
0 if m(n) <1,

where p; : (e/2,e)24m(A)+1  (e/2 e) is the projection onto the jth coordinate, j = 1,--- ,2dim(A) + 1.
Then g/, is an embedding. Indeed, take two distinct points x,y € A,, arbitrarily. In case x,y € A,_1, we
have ky(z) = kn(y) =0, so

9n(2) = gn-1(2) # gn-1(y) = g, (y)
since gn—1]4,_, is an embedding. In case z € A, \ A,—1 and y € A,,_1, we get k,(x) > 0 = k,(y), hence

Pl (n) 9n () = kn(x)€ # 0 = Pryy) 97 (),
that is, g/, (x) # g,,(y). In case x,y € A, \ A,—1, we have ky(z),k,(y) > 0. When k,(x) # k,(y), we see
Dl (n) 9 (%) = kn(x)e # kn(y)e = prym) 9n (1),
so g (z) # g/, (y). When k,(z) = kn(y), there is m(n)’ < i < m(n) such that
Pr; 9 (%) = kn(2) Pr; gn () # ki (4) PL; G (y) = Pr; 9, (y)

because ¢, is an embedding. Therefore ¢/, (x) # g.,(y). Moreover, g.| 4, _, = gn—1|4,_, because gn—1(An—1) C
X1y and k,(A,—1) = 0. For every z € A,,, we have

(g (), gn-1(x)) = Y27 pr; g () — pr; g1 (2)|1

1€N

< Y 2ergn@) —prigaaa(@)i+ Yo 2
i<m(n)’ i>m(n)’
= Z 27 <\,

i>m(n)’

hence g;, ~v gn-1|a,- By (%%), 9;, ~v, gn-1|4,. Applying the Homotopy Extension Theorem 1.2.4 to
gr,, we can obtain an extension g, : A\ B — X \ B of ¢/, such that g, ~y, gn—1, which is desired. OJ

Now we can prove Theorem 3.0.1.

Proof of Theorem 8.0.1. Combining Theorems 3.1.4, 3.2.1, Propositions 3.2.2 and 3.2.4, we have that
(J ()N, J(T)I;}) is an (EQ(T),Eg(T))—manifold pair. According to Theorem 3.1.2, (J(7)N, J(T)JI\J) is homeo-
morphic to (62(7’),@5(7’)). O
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Chapter 4

Topological types of sigma-locally
compact convex sets

The topological classification of convex sets in linear spaces has been an important problem of infinite-
dimensional topology. By virtue of the efforts due to V. Klee [35], T. Dobrowolski [23] and H. Toruniczyk
[25, 26], the following theorem can be established, see Corollary 5.2.3 of [10].

Theorem 4.0.1. Let C' be a separable completely metrizable closed convexr set in a topological linear
space. Suppose that C is an AR. Then, the convex set C is homeomorphic to [0,1]™ x [0,1)™ x (0,1)*
for some cardinals 0 < n,k < Xg and 0 < m < 1. In particular, if C is not locally compact, then it is
homeomorphic to the separable Hilbert space {s.

Recall that a Fréchet space is a locally convex completely metrizable linear space. According to
the Dugundji Extension Theorem [28] (cf. Theorem 6.1.1 of [50]), any convex subset of a locally convex
topological linear space is an AE. It is well known that every infinite-dimensional Fréchet space is home-
omorphic to a Hilbert space of the same weight (the Kadec [34] -Anderson [1] -Toruriczyk [59] Theorem).
T. Banakh and R. Cauty [9] extended Theorem 4.0.1 to non-separable convex sets in Fréchet spaces as
follows:

Theorem 4.0.2. Let C' be a closed convex set in a Fréchet space. Then, the convez set C' is homeomorphic
to [0,1]" x [0,1)™ X Lo(T) for some cardinals 0 <n <Ny, 0 <m <1 and 0 < 7. In particular, if C' is not
locally compact, then it is homeomorphic to a Hilbert space of the same weight.

By (%, we denote the linear span of [L.en[—27",27"] in f3. Remark that the pair ({2, KQQ) is homeo-
morphic to (¢ X Q,Kg x Q). D. Curtis, T. Dobrowolski, and J. Mogilski [22] studied on when o-compact
convex sets in a topological linear space is homeomorphic to the linear subspaces Eg or Eg of the separable
Hilbert space ¢3. They established the following theorem:

Theorem 4.0.3. Let C' be a o-compact convex set in a completely metrizable linear space E. Suppose
that the closure clgp C is an AR and not locally compact. Then, the pair (clg C,C) is homeomorphic to
(Eg,ﬁg) if C is strongly countable-dimensional, and (clg C,C') is homeomorphic to (KQ,EQQ) if C contains
an infinite-dimensional locally compact conver set.

Due to T. Dobrowolski [24] and T. Banakh [8], the above second assertion is strengthened as follows:

Theorem 4.0.4. Suppose that C is a o-compact convex set in a completely metrizable linear space E,
whose closure clg C' is an AR and not locally compact. If C contains a topological copy Q of the Hilbert
cube having infinite codimension in C, then (clg C,C) is homeomorphic to ({2,05) .
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For two subsets A C B of a linear space, we shall say that A has infinite codimension in B if the
linear hull of A has infinite codimension in the linear hull of B.

Remark 8. In the second assertion of Theorem 4.0.3, the convex set C' contains an infinite-dimensional
compact convex set () homeomorphic to the Hilbert cube, see Proposition 3.5 of [22] and Theorem 3.1 in
Chapter IIT of [12]. Then it has infinite codimension in C, refer to Lemma 3.3 and Proposition 3.4 of [22].

The aim of this chapter is to extend the above theorems to non-separable convex sets in Fréchet spaces.

Main Theorem. Let C' be a o-locally compact convex set of weight T > Wg in a Fréchet space F'. Then
the pair (clp C,C) is homeomorphic to (62(7),55(7)) if and only if C is strongly countable-dimensional,
and (clp C,C) is homeomorphic to ({3(T) x Q,Eg(r) x Q) if and only if C' contains a topological copy of
the Hilbert cube Q.

Remark 9. In the above theorem, we have C # clgp C. Indeed, by Proposition 2.4.1 in Chapter 2, we can
write C =, <xo On, where each Cy, is a closed locally compact set in C. According to Proposition 3.1 of
[22], each compact subset of C' is a Z-set in C. Since every Z-set is nowhere dense, for any n < RNy, the
closed subset C), is nowhere dense in C. Therefore, the convex set C is of first category (, in fact, it is a
Zy-set), which means that C' # clp C.

4.1 Proof of Main Theorem

This section is devoted to proving the main theorem. We shall use the modified West’s Characterization
Theorem 3.1.4 and the Classification Theorem 3.1.2 in Chapter 3.

Proof of Main Theorem. The “only if” part in the both statements are trivial. We shall show the “if”
parts. According to Theorem 4.0.2, the closure clp C' is homeomorphic to the Hilbert space ¢5(7). Now
we consider two cases.

(1) First, assume that the convex set C' is strongly countable-dimensional. By Theorems 3.1.4 and
3.1.2, the homeomorphism of the pairs (clp C, C) and (¢2(7), Eg (7)) will follow as soon as we check that C
absorbs finite-dimensional compact subsets of clp C. Fix a finite-dimensional compact subset A C clg C,
a closed subset B of A contained in C, and an open cover U of clp C. By the density of C in clp C
and the separability of A, there is a separable convex subset D C C such that B C D and A C clp D.
Moreover, using the fact that C' is not separable, we can choose D so that the closure clg D is not
locally compact. By Theorem 4.0.3, the pair (clp D, clp DNC) is homeomorphic to (¢, Eg ), and hence by
Theorem 3.1.4, the set clp D N C absorbs finite-dimensional compact subsets of clp D. Consequently, for
the finite-dimensional compact subset A C clp D C clp C, there is an embedding f: A > clp DNC C C
such that f is U-close to id4 and f|p = idp. This means that C' absorbs finite-dimensional compact
subsets of clp C. Therefore the pair (clp C, C) is homeomorphic to (52(7),65(7)).

(2) Next, assume that C' contains a subspace Q C C' homeomorphic to the Hilbert cube. Similarly,
according to Theorem 3.1.4 and 3.1.2, the homeomorphism of the pairs (clp C, C') and (¢2(7)xQ, ﬁg (T)xQ)
will follow as soon as we check that C' absorbs compact subsets of clp C. Take any compact subset
A C clp C, any closed subset B of A contained in C, and any open cover U of clp C. Using the density
of C in clp C and the separability of the compact set A U ), we can find a separable convex subset
D C C such that QU B C D and A C clg D. Then we may assume that D = clp D N C. Since C' is not
separable, the compact set () has infinite codimension in C. So we can choose D to be so large that Q
has infinite codimension in D and clg D is not locally compact. Since C is o-locally compact and D is
separable, the convex set D = clp D N C' is o-compact. Since the topological copy @ of the Hilbert cube
has infinite codimension in D, the pair (clp D, D) is homeomorphic to (fg,ég?) by Theorem 4.0.4. Due
to Theorem 3.1.4, the convex set D absorbs compact subsets of clp D. In particular, for the compact
subset A C clp D, there is an embedding f : K — D C C such that f is U-close to idg and f|p = idp.

33



This implies that C' absorbs compact subsets of clp C. Consequently, (clp C,C) is homeomorphic to
(La(T) x Q,Eg(r) x Q). This completes the proof. [

We do not know if the condition on () to have infinite codimension in C' in Theorem 4.0.4 can be
omitted.

Probrem 2. Assume that a subset A of a Fréchet space is homeomorphic to the Hilbert cube Q. Does A
contain a subset B, which is homeomorphic to the Hilbert cube and has infinite codimension in A?

4.2 Infinite-dimensional convex sets in Fréchet spaces

In the proof of the main theorem, we show any strongly countable-dimensional, o-locally compact convex
set C in a Fréchet space F' is weakly Dﬁg (clp C)-absorptive. In fact, each infinite-dimensional convex
subset of a Fréchet space absorbs finite-dimensional compact subsets of its closure. For a subset K of a
linear space, we denote the convex hull of K by conv(K') and the flat hull of K by fl(K). By the same
argument of Lemma 3.2 in [22], we can show the following lemma:

Lemma 4.2.1. Let F' be a Fréchet space and D be an infinite-dimensional convex set in F. Suppose
that A is a compact metrizable space, B is a closed subset of A, and f : A — clgp D is a map such that
f(B) C conv(K) for some K C D. Then for each open cover U of clg D, there exists a map g : A — D
and a finite subset L C D such that g is U-close to f, g|p = f|B, and g(A) C conv(K U L).

Proof. Fix an admissible F-norm ||-|| on F. Since A is a compact metrizable space, we can regard A C IV,
It follows from the Dugundji Extension Theorem that the convex set clp D is an AR, and hence the map
f extends to a map f : IN — clp D. We use an admissible metric d on IV defined as follows:

d(z,y) =Y 27|a(i) - y(i)| for each x = ((i))iern,y = (y(i))ien € I".
ieN

Let € > 0 be a Lebesgue number of ¢/ with respect to f(A). Take § > 0 so that for all z,y € IV, if
d(z,y) < 8, then ||f(z)— f(y)|| < €/4. Then we can choose n € N such that the nth coordinate projection
p:IN =17 x {0} is d-close to idp, where p(x) = (z(1),--- ,z(n),0,---) for each z € IN. Note that fp is
¢/4-close to f.

Since p(A) is a finite-dimensional compact metric space of dimension < n, it has a finite open cover V
of order < n+ 1 such that for all z,y € p(A), if some V € V contains both z and y, then || f(z) — f(y)| <
€/(8(n+1)). Take a nerve N of V and a canonical map ¢ : p(A) — |N|. Then we can choose zy € V' and
(V) € Dforeach Ve N©O =V so that ||¢(V)— f(zv)|| < €/(8(n+1)). Let L= {(V) e D |V € NO},
which is the desired finite subset. The choice 1 extends to the affine map 1 : |N| — conv(L). Then Vo
is €/4-close to f\p(A). Indeed, fix any = € p(A), so we can write ¢(x) = > ey tvV € [N, where ty €1
and ) .y cpty = 1. Then we have

lWo(z) = F@) =190 D V)= F@)ll=1 D> tvid(V) = f)l

zeVey zeVey
< D tv@V) = F@pl < Do 19(V) = f@)]
zevVey zevVey
< > (V) = Flav)ll + 11 f@v) = F@)l)
zeVey

<(n+1)(e/(8(n+1))+¢€/(8(n+1))) =c¢/4.

Hence @Z¢p|A is €/2-close to f.
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On the other hand, the restriction f|p extends to a map f : A — conv(K) because conv(K) is an
AR. Taking a map k : A — I such that k(B) = {0} and {z € A | ||f(z) — f(2)| > ¢/2} C k~1(1), we can
define a map g : A — conv(K U L) as follows:

g(z) = (1 = k() f () + k(z)dep(x).
Then g is the desired map. [
The following proposition is the non-separable version of Propositions 2.2 and 3.4 in [22].

Proposition 4.2.2. Let D be an infinite-dimensional convex set in a Fréchet space F'. Then, D is weakly
931(’; (clp D)-absorptive.

Proof. We use an admissible metric d on F. For simplicity, denote clz D by D. Let A be a finite-
dimensional compact set in D, B be a closed subset of A with B C D, and I be an open cover of D.
We shall construct an embedding f : A — D such that f is U-close to id4 and f|p = idp. According
to Lemma 3 of [4], we can obtain an open refinement V of {UN D\ B | U € U} that has the following

property:

(%) For every map h: A\ B — D\ B, if h is V-close to id 4\ g, then h extends to the map h:A—D
by iL‘B =idpg.

Then, the space D \ B has a sequence of open covers V =* Vo =* V; =* ... of meshV,, < 27" for each
n < Ng. It follows from the Dugundji Extension Theorem that D\ B is an ANR. Due to Proposition 1.2.5,
we can choose open covers V! and V) of D\ B for each n < Xy so that V/ < V! *< V, and they satisfy
the following condition:

() Given a space Y and maps hi,hs : Y — D\ B, if hy is V/-close to hs, then h; is V! -homotopic to
ho.

We can write A\ B = UneN A, so that A; C As C --- are closed sets in A. Now, we shall inductively
construct maps f, : A\ B — D\ B, n < Ny, and a tower of finite subsets ) = Dy C D; C --- C D such
that

(1) fnla, is an embedding into conv(D,,) \ B,
(2) fos1la, = fula,, and
(3) fnt1 is Vy-close to fp,

where fy = idy\p and 4g = (). Assume that f,_1 and D,_1 have been obtained. Applying Lemma 4.2.1,
we have a map ¢ : A, — D and a finite subset L C D such that g is V//_;-close to fn—1|a,, 9la, , =
fn-1la, ., and g(A,) C conv(D,,_1 U L). Note that g(4,) N B =0 and g is V/ _;-homotopic to f,_1|a,
by (). Moreover, we can find a map k : A, — I24mA4+2 gych that A, 1 = k~!(0) and Elana,_, is
an embedding (cf. Lemma 5.9.1 of [50]). Since D is infinite-dimensional, we can choose a subset L' C D
consisting of 2dim A, + 2 points so that L’ is affinely independent and L' N fi(D,,—1 U L) = 0. Let
D, =D,y ULUL'. Then, there exists an embedding

i conv(Dy_1 UL) x I24mAnt2 _ cony(D,)

such that 4 is V/_;-close to the projection onto the first coordinate and i(z,0) = z for all x € conv(D,,_1 U
L). Define ¢' : A,, — conv(D,,) by ¢'(z) = i(g(z), k(x)) for each 2z € A,,. Observe that ¢’ is V/_;-close to g,
an extension of f,_1|4, ,, and an embedding into conv(D,,) \ B. By (xx), we have ¢’ is V/,_;-homotopic
to g, so ¢’ is V,_1-homotopic to f,_1|a,. Since D\ B is an ANR, due to the Homotopy Extension
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Theorem 1.2.4, the embedding ¢’ extends to a map f,, : A\ B — D\ B such that f, is V,,_1-homotopic
to fn—_1, which is the required map.

Due to conditions (2) and (3), and mesh V,, < 27" for each n < N, the sequence { fy }n<x, converges
toamap h: A\ B — D\ B. Then, h|a, = fu|a, for all n < R, so h(A\ B) C D\ B and h is V-close
to id4\ . It follows from (*) that h extends to the map f: A — D by f|p =idp. By condition (1), the
map f is an embedding. It is clear that f is U-close to id4. Consequently, f is the desired embedding. [

4.3 An application

A full simplicial complex K is a simplicial complex such that any finite vertices of K spans a simplex of
K. We denote the full simplicial complex with the cardinality of vertices an infinite cardinal 7 by A(7).
The following assertion was proved by K. Sakai in 1987 (cf. Proposition 4.1 of [47]).

Proposition 4.3.1. The metric polyhedron |A(Xg)|,, is homeomorphic to Zg.

For each infinite cardinal 7, the metric polyhedron |A(7)|,, is a convex set in the Fréchet space ¢1(7)
and it is strongly countable-dimensional and o-locally compact due to the following proposition.

Proposition 4.3.2. For any simplicial complex K, the metric polyhedron |K |, is a countable union of
closed sets which are discrete unions of finite-dimensional compact metrizable spaces.

Proof. For each simplex o € K, let 6 and Jo be the barycenter and the boundary of o, respectively.
Given o € K\ K© and t €1,

olt]={(1—s)d + sz |z € do,0<s <t}

is a closed subset of o. Let Ag = K(®) and A, = {o[1 =277 | o0 € KM\ KO} for all n € N, so A, is a
discrete collection of finite-dimensional compact metrizable spaces in |K|,,. Then |K|; = U, e, (U An).
Consequently, the assertion holds. [J

Applying the main theorem, we can generalize Proposition 4.3.1 as follows:

Corollary 4.3.3. For every infinite cardinal T, the pair (cly, () |A(T)|m, [A(T)|m) is homeomorphic to

(62(7), 5 (7).
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Chapter 5

A function space from a Peano space
into a one-dimensional locally compact
absolute retract and its compactification

Throughout this chapter, spaces are assumed to be regular. Given spaces X and Y, we denote by C(X,Y’)
the space of all maps from X to Y with the compact-open topology, that is, the topology of C(X,Y) is
generated by the following set

{feC(X,Y)| K is a compact set in X, U is an open set in Y, f(K) C U}.

When X is locally compact and o-compact, and Y is metrizable, the space C(X,Y") is metrizable. In the
paper [36], it was shown that if X is an infinite, locally compact, locally connected, separable metrizable
space, then C(X,R) has a natural compactification C(X,R) such that the pair (C(X,R),C(X,R)) is
homeomorphic to (Q,s) (cf. the compact case was proved in [51]). We shall generalize this result by

replacing R with a 1-dimensional locally compact AR as follows:

Main Theorem. Let X be an infinite, locally compact, locally connected, separable metrizable space, and
let Y be a 1-dimensional locally compact AR. Suppose that X is non-discrete or'Y is non-compact. Then

the function space C(X,Y") has a natural compactification C(X,Y’) such that the pair (C(X,Y),C(X,Y))
is homeomorphic to (Q,s).

Remark 10. In the main theorem, when X is discrete and Y is compact, the function space C(X,Y) is
the product space YX, and hence it is homeomorphic to Q due to Toruriczyk’s characterization of the
Hilbert cube (Corollary 1.3.3 of Chapter 1, cf. [42, Corollary 8.1.2]).

The Fell topology on a hyperspace Cld*(X) of closed sets in a space X is generated by the following
collection
{U~ | U is an open set in X} U{(X \ K)¥ | K is a compact set in X},

and the space Cld*(X) with the Fell topology is denoted by Cldz(X). In the case X is compact, the
Fell topology on Cld*(X) coincides with the Vietoris topology and the empty set ) is an isolated point of
Cld%(X). It is known that Cldz(X) is compact metrizable if and only if X is locally compact separable
metrizable, see Theorem 5.1.5 of [11]. When X is a locally compact, locally connected space, and Y is
a locally compact space, the function space C(X,Y) can be regarded as a subspace of the hyperspace
Cldx(X x Y), where each f € C(X,Y) is identified with the graph of f in X x Y, refer to Lemma 2.1
of [36]. Thus, if X is locally compact, locally connected, separable metrizable, and Y is locally compact
separable metrizable, then the closure cloygs (xxy) C(X,Y) of C(X,Y) in Cldp(X x Y) is a metrizable
compactification of C(X,Y). In [36], the closure clewas (xx®) C(X,R) was the desired compactification

C(X,R), where R = [~00, o] is the extended real line:

37



Theorem 5.0.1. Let X be an infinite, locally compact, locally connected, separable metrizable space.
Then the pair (chId*F(XX@) C(X,R),C(X,R)) is homeomorphic to (Q,s).

We will prove that a space Y is a 1-dimensional locally compact AR if and only if Y has a dendrite
compactification Y such that the remainder ¥ \'Y is closed and contained in the set of all end points
of Y (Theorem 5.4.2). Taking a dendrite compactification Y of Y as above, we will adopt the closure
chld}(XX?) C(X,Y) as the compactification C(X,Y") in the main theorem.

We denote the set consisting of all subsets of a space Y by P(Y). A set-valued function ¢ : X — P(Y)
is said to be upper semi-continuous (briefly, w.s.c.) if =1 (UT) = {z € X | ¢(x) C U} is an open subset
of X for every open subset U of Y. Let

USCC(X,Y)={¢: X — Cld(Y) | ¢ is u.s.c. and ¢(z) is connected for every x € X }.

Due to Lemma 3.1 of [36], identifying each ¢ € USCC(X,Y) with the graph of ¢, we can regard
USCC(X,Y) as a subspace of Cldn(X x Y). Under our assumption, choosing a dendrite compacti-
fication Y of Y as above, we can show that if X is connected, then the closure ClCld*F(Xxf/) C(X,Y)

coincides with USCC(X,Y) (Theorem 5.2.1). In Section 5.6, we will show that X is locally compact and
locally connected if the above space USCC(X, 17) is homeomorphic to Q, which is the converse of Main
Theorem.

As mentioned in Proposition 6.3 of [36], the pair (clags axr) C(I, R), C(I,R)) is not homeomorphic
to (Q,s). In fact, the space C(I,R) is not homotopy dense in the closure cloias (1xr) C(I,R). Even if we
take the one-point compactification }7, the above closure is not necessarily the desired compactification
(Proposition 5.7.1). The n-dimensional Euclidean space R™ is a typical space that is a n-dimensional
locally compact AR. It has a compactification R” that is homeomorphic to the n-dimensional closed unit
ball. For each locally compact separable metrizable space X, the function space C(X,R") is homeomor-
phic to Hilbert space ¢ (Theorem 5.5.4). However, the pair (Clmd}(XX@) C(X,R"),C(X,R™)) is not
necessarily homeomorphic to (Q,s) when n > 2. In fact, if X is the unit (n — 1)-sphere, then C(X,R")
is not homotopy dense in clewas (x <& C(X,R"™) (Proposition 5.7.2).

5.1 A convex structure on a dendrite

The standard unit simplex of dimension n — 1 in R” is denoted by F,,, namely

0<t(i) < 1,Zn:t(i) = 1}.

=1

P, = {t = (i) € R”

E. Michael [41] (cf. [46, Part B, Definitions 4.9 and 4.10]) introduced the convexity to subsets of metric
spaces as follows:

Definition 1. A convex structure on a metric space X = (X, d) is a sequence (M, ky)nen of pairs of
subsets M, C X" and functions k, : M,, X P,, — X such that the following conditions hold:

(1) If x € My, then ki(z,1) = x;

(2) fx e My, n>2 and 1 <i <mn, then 0;x € M,,_1 and k,(z,t) = k,—1(0;x, 0;t) for any ¢t € P,, with
t(i) = 0, where 0; is the operator of forgetting the ith coordinate;

(3) f x € My, n > 2, with (i) = (i + 1) for some 1 < i < n and t € P,, then

ki (,1) = Ky (B3, (E(1), -+, #(i — 1), 8(3) + £(i + 1), 8(i + 2), - , £(n)));
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(4) For each n € N and each = € M, the function k,(x,*) : P, 3t — ky(z,t) € X is continuous;

(5) For each € > 0, there exists a neighborhood U of the diagonal in X x X such that for every n € N
and every x,y € M,, if (z(i),y(:)) € U for all 1 <i < n, then

d(kp(z,t), kn(y,t)) < e for all t € P,.
Then a subset C' C X is said to be convex with respect to (M, ky)nen if C™ C M, and k,(C™ x P,) C C
for every n € N.

It is said that a set-valued function ¢ : X — P(Y) is lower semi-continuous (briefly, L.s.c.) if =1 (U~) =
{r € X | ¢(x)NU # 0} is open in X for every open subset U of Y. A continuous selection for a set-valued
function ¢ : X — P(Y) is a map (i.e., a continuous function) f : X — Y such that f(z) € ¢(z) for every
x € X. Michael [41] (cf. [46, Part B, Theorem 4.11]) established the selection theorem for metric spaces
with convex structures as follows:

Theorem 5.1.1. Let X be a paracompact space and Y = (Y,d) a metric space with a convex structure
(M, kn)nen. For each l.s.c. set-valued function ¢ : X — CIA(Y"), if each ¢(x) is complete with respect to
d and convex with respect to (My,, kn)nen, then ¢ has a continuous selection. O

Michael [41] (cf. [46, Part B, Definition 4.12 and Theorem 4.13]) defined also geodesic structures on
metric spaces, which can inductively generate convex structures.

Definition 2. A geodesic structure on a metric space X = (X,d) is a pair (M, k) of a subset M C X?
and a function k : M x I — X satisfying the following conditions:

(1) If (x,z) € M, then k((x,z),t) =z for all t € I;
(2) If (z1,22) € M, then k((x1,22),0) = z1 and k((x1,x2),1) = x2;
(3) For each (x1,z9) € M and each ¢ € I, if ((k((x1,22),t),22) € M, then

E((k((x1,22),t),22),s) = k((z1,22),t + s(1 —t)) for all s € I;

(4) For each x € M, the function k(z,*) : I >t — k(x,t) € X is continuous;

(5) For each € > 0, there exist neighborhoods V' C U of the diagonal in X x X such that (z,y) € U
implies that d(z,y) < €, and for every (x1,y1), (z2,y2) € M, if (x1,22) € U and (y1,y2) € V, then

(k((x1,91),1), k((x2,y2),t)) € U for all t € 1.

Then it is said that a subset G C X is geodesic with respect to (M, k) if G2 C M and k(G? x I) C G.

Proposition 5.1.2. If a metric space has a geodesic structure, then it has a convex structure with respect
to which every geodesic set is convex. [

Remark 11. It is easy to see that the functions k,, n € N, and k in Definitions 1 and 2 are continuous
because of the conditions (4) and (5) of each definition.

We will prove that dendrites have convex structures.

Proposition 5.1.3. Every dendrite D = (D,d) with a convex metric has a convez structure (D", ky,)
with respect to which any connected subset of it is convex.
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Proof. Due to Proposition 5.1.2, it is sufficient to show that D has a geodesic structure such that every
connected subset is geodesic. Let v : D?> x I — D be the map as in Lemma 1.5.1 of Chapter 1. We
shall first show that (D?,7) is a geodesic structure of D, that is, it satisfies the conditions (1), (2), (3),
(4) and (5) of Definition 2. Clearly, the conditions (1), (2) and (4) are satisfied from the definition. By
the property of d and the uniqueness of the arcs in D, the condition (3) holds. To check the condition
(5), for each € > 0 choose a neighborhood U = {(z,y) € D? | d(x,y) < €} of the diagonal in D?. Then
the condition (f) of Lemma 1.5.1 implies the condition (5). Consequently, the pair (D?,7) is a geodesic
structure.

It remains to show that if C' is a connected subset in D, then C' is geodesic. Indeed, for any z,y € C
and t € I, we have y(x,y,t) = v,,,(t) € C since C is arcwise connected from Fact 2(2) and v;,(I) is the
unique arc between z and y from Fact 2(1). Hence C is geodesic. [

5.2 The closure of C(X, D) in Cldp(X x D)

In this section, we shall show that the result in Theorem 4.1 of [36] (cf. [31, Theorem 1.10]) is valid for
dendrites, that is,

Theorem 5.2.1. For each locally compact, locally connected, paracompact space X with no isolated points
and each dendrite D, the closure claigs,(xxp) C(X, D) of C(X, D) coincides with USCC(X, D).

For each A C X xY and each z € X, let A(z) ={y €Y | (z,y) € A}. When Y is compact, due to
Proposition 3.1 of [36], A is closed in X x Y if and only if the set-valued function A : X 3 z — A(z) € P(Y)
is u.s.c. First, we shall extend Lemma 4.1 of [36] to the following lemma:

Lemma 5.2.2. Let X be a locally compact, locally connected space, and let Y be a compact connected
space. Then USCC(X,Y) is closed in Cldp(X x Y).

Proof. Fix any A € Cldjp(X xY)\ USCC(X,Y). Then there exists z € X such that A(z) = 0 or A(x)
is disconnected. When A(x) = (), we have an open neighborhood W = (X x Y \ {z} x V)T of A in
Cldj (X xY). For each B € W, we get B(z) =0, so B ¢ USCC(X,Y). Therefore WNUSCC(X,Y) = 0.

When A(z) is disconnected, there exist disjoint open sets U, V in Y such that A(z)NU # 0, A(x)NV #
) and A(x) CUUV. Then C =Y \ (UUYV) is a non-empty compact set because of the compactness and
connectedness of Y. Since X is locally compact and locally connected, there are a compact connected
neighborhood N, of z in X and an open neighborhood N¢ of C in Y such that (N, x No)N A = (). Then
A has an open neighborhood

W= (int N, xU)" N(int N, x V)" N(X xY\ N, xC)*"

in Cldz(X xY). To see WNUSCC(X,Y) = 0, take any B € W. If B(y) = 0 for some y € X, then
B ¢ USCC(X,Y). Otherwise, we have the u.s.c. set-valued function B : X 3 z — B(z) € Cld(Y). Since
BN(N; xC)=0and Y\ C =UUV, we see that

Ny={2€ N, |B(z)NU #0} =N, \{z € X | B(z) C V} and

Ny ={ze N, |B(z)NV #0} =N, \{z € X | B(z) CU}
are closed in N,. Note that N, = Ny U Ny. Since B € (int N, x U)™ N (int N, x V)7, there exist
points xy, zy € N, such that B(zy) NU # 0 and B(xy) NV # 0, that is, Ny # () and Ny # (. By the
connectedness of N, there exists y € NyNNy . Then B(y)NU # 0, B(y)NV # @ and B(y) C Y\C = UUV,

which means that B(y) is disconnected. Hence B ¢ USCC(X,Y). Thus, we have W NUSCC(X,Y) = 0.
Consequently, the space USCC(X,Y) is closed in Cldi(X x Y). O

Using Michael’s Selection Theorem 5.1.1, we have the following:
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Lemma 5.2.3. Let X be a paracompact space with no isolated points and let D be a dendrite. Then
C(X, D) is dense in USCC(X, D).

Proof. Let ¢ € USCC(X, D) and W be a neighborhood of ¢ in Cld(X x D). Then there exist open subsets
V;CXxD,i=1,---,m, and a compact subset K C X x D such that ¢ € -, V, N(X xD\K)" Cc W.
For each = € X, since D is locally compact and locally connected, ¢(x) is a continuum, K (x) is compact
and ¢(z) N K(xz) = 0, we can find a continuum A, C D such that ¢(z) C int A, and A, N K(z) = 0.
Then each z € X has an open neighborhood U, such that (U, x A;) N K = () and ¢(z’) C int A, for all
x’ € U, because A, is compact and ¢ is u.s.c. Since X is paracompact, the open cover {U, | z € X} has a
locally finite open refinement {Uy | A € A}. For each A € A, choose z(\) € X so that Uy C U,y and let
Ax = Ag(y)- By thelocal finiteness of {Uy | A € A}, we can define a set-valued function ¢ : X — Cld(D) by
¥(x) = J{A\ | z € Uy}. Then 9(z) is a continuum for every x € X. Indeed, for each A € A with = € U,
we have ¢(z) C Ayn) = Ay because Uy C U,(y). Hence () is continuum as a finite union of continua
containing the continuum ¢(z). Moreover, ¢ is Ls.c. Infact, {z € X | ¢(2)NV # 0} = U{U\ | AxNV # 0}
for each open subset V C D.

Since X has no isolated points, we can choose (z;,y;) € YNV for each i = 1,--- ,m so that ; # x; if
i # j. Take an admissible convex metric d on D (Fact 3). By virtue of Proposition 5.1.3, the dendrite D has
a convex structure (D", ky, )nen for d such that every continuum in D is convex with respect to it. Applying
Theorem 5.1.1 to the l.s.c. convex-valued function 1, we can obtain a continuous selection f : X — D
for ¢ such that f(z;) = y; for each i = 1,--- ,m. It is easy to see that f € -, V, N (X x D\ K)*.
Consequently, C(X, D) is dense in USCC(X, D). O

Proof of Theorem 5.2.1. Combining Lemmas 5.2.2 and 5.2.3 implies Theorem 5.2.1. [J

5.3 The homotopy denseness of C(X, D) in USCC(X, D)

This section is devoted to proving the following theorem:

Theorem 5.3.1. For each non-degenerate Peano continuum X and each dendrite D, the function space
C(X, D) is homotopy dense in USCC(X, D).

In the rest of this section, we assume that X = (X,dx) is a Peano continuum with a convex metric
and D = (D,dp) is a dendrite with a convex metric. Moreover, we define an admissible metric p for the
product X x D as follows:

p((1, 1), (22,y2)) = max{dx (z1,22),dp(y1,92)}

and denote by py the Hausdorff metric on Cld(X x D) induced from p. Here, the relative topology on
Cld(X x D) C Cldj(X x D) is induced by the Hausdorff metric pg. According to Theorem 5.2.1, the proof
of Theorem 5.3.1 is reduced to showing that (C(X, D), py) satisfies the condition (hd) in Lemma 1.2.7.
The following lemma can be proved by the same technique in the proof of Theorem 1.9 of [31].

Lemma 5.3.2. For each map f : X — D and each point x € X, the subset A = N,(f,€)(x) of D is
connected.

Proof. It suffices to prove that A is arcwise connected. For each ai,as € A, take the path 74, 4, as in
Lemma 1.5.1. We shall show that a = 74, ,4,(t) € A for each ¢t € 1. Since (z,a;) € N,(f,¢€) fori=1,2, we
can take z; € X so that d((z,a;), (z;, f(x;))) < e. Then dx(x,z;) < € and dp(a;, f(x;)) < € for i = 1,2.
Let b = Yf(a,),f(20)(t). It follows from Lemma 1.5.1 that

dp(a;b) = dp(Ya,az (1), Yy f(az) (1)) < maxdp(as, f(zi)) < e
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Since dy is a convex metric, the e-ball By, (z,€) of x in X is connected. It follows from the continuity
of f that f(Bg, (z,€)) is also connected, so it is arcwise connected due to Fact 2(2). The uniqueness of
arcs in D implies that b = v¢(4,) f(20)(t) € f(Bay (z,€)). Therefore, there exists y € By, (7, ) such that
b= f(y). Note that

d((z,a), (y,b)) = max{dx(z,y),dp(a,b)} <,

that is, (z,a) € N,(f,€). Consequently, a € A. [

Using convex structures on dendrites, we can obtain the same result as Lemma 2 of [51] under our
assumption.

Lemma 5.3.3. Let K be a locally finite countable simplicial complex. If X has no isolated points, then
any map f: K — C(X, D) extends to a map f : |K| — C(X, D) such that

(x) diam,, flo) < 4diam,,, (o) for each o € K.

Proof. By Proposition 5.1.3, the dendrite D has a convex structure (D", k;, )nen such that every connected
subset is convex. For each simplex 0 € K\ K, let ¢, = 3diam,,, f(¢(®)/2 > 0. Moreover, for each
vertex v € K(©) with diam,,, f(St(v, K)®) > 0, let

e, = min{diam,, f(c(?) | o € St(v, K), diam,, f(o'?) > 0} >0,

where St(v, K) is the star at v in K.

Take the barycenter ¢ for each ¢ € K and the barycentric subdivision Sd K of K. For each u € K,
let g(u) = f(u), and for each 7 € K \ K(© with diam,,, f(7(?)) = 0, choose w € 7 and let g(#) = f(w).
Since K is locally finite and X has no isolated points, for each v € K(© with e, > 0, we can inductively
take a finite subset A, C X and an open subset U, C X so that f(v) C N,(f(v)|a,,€), Ay C U, and
AdU,NclUy =P if v # v € 0 for some o € K with diamy,,, f(@©) > 0. Then we have amap 7, : X — I
such that r,(A,) = 1 and r,(X \ U,) = 0. Give K© a total order <. For each 0 € K, we can write

o = {v,--- v}, where v; < -+ < vy, Now we define ¢(&) € C(X, D) as follows:
o(6) (@) = { ke ((f(v1) (@), f(om)(2)), (L/m, -+, 1/m)) i @ ¢ UL, U,
ke ((f (v1) (@), -+, f(vm)(2)), ¢5()) if # € clUy,,
where the m-tuple ¢;(x) € Py, is defined by
N (1—ij(x))/m if i # 4,
¢5(2)(0) = { (1+ (m — 1)ry,(2))/m  ifi=j.

Thus f has an extension g : Sd K9 — C(X, D).
It is easily observed that

(*) g(6)(z) = f(v)(z) for every o € K with diam,,, f(¢(?) > 0, v € ¢{® and = € A,.

For each o € K such that diam,,, f(c(®) > 0, since diam,,, f(c(?)) < ¢,, we have f(u) C N,(f(v),¢)
for every u,v € ¢(®, which implies that f(u)(z) € N,(f(v),e,)(x) for each € X. Tt follows from
Lemma 5.3.2 that N,(f(v), €;)(x) is connected, so convex with respect to (D", ky)nen, and hence g(6)(x) €
N,(f(v),€es)(x) for each x € X. Therefore, we have

(x%) g(6) C N,y(f(v),¢€) for every o € K with diam,,, f(c(®) > 0 and v € o(?).
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Next, extend ¢ to a map f : |K| = |Sd K| — C(X, D) as follows:

f(ztzal) () = km((g(d1) (@), -+, g(om) (), (t1, -+ tm))
i=1
foreach o1 < -+ < 0y € K and (t1,- -+ ,tm) € P.

Recall that the symbol 7/ < 7 means that 7/ is a face of 7. Let 0 € K, v € 0(® and y € | St(v,Sd K)|No.
Then we can write y = Y i~ tid5, where v =01 < -+ X 0y, = 0 € K and (t1,--+ ,tm) € Pp. In the
case diam,,,, f(0(®) = 0, we have f(y) = f(v) because g(d;) = f(v) for all i = 1,--- ,m. Otherwise,

v glet d( fg);{l((iul)l)e n<ceea. Indeed, when 2 € A,, it follows from (%) that g(d;)(z) = f(v)(z) for every
Fy)(@) = f(it(f) () = km((9(d1) (), -+, 9(00) (@), (t1, -+ 1))
=kn((f(v)(2),- -, f(0)(@)), (t1, -+ s tm)) = f(v)().
Therefore f(v)|a, C f(y), which means that
F(v) C Ny(f(0)]a,:€0) C No(F(y), €0)-
On the other hand, g(d;) = f(v) if diam,,, f(0\") =0, i =2,--- ,m, and it follows from (+) that
9(6i) C Np(f(v),€q,) C Np(f(v),€5)

if diam,,, f(a§0)) >0,i=2,---,m. For every z € X, since N,(f(v), €,)(2) is also convex with respect to
(D™, kp)nen by Lemma 5.3.2, we have

Fo)) = F (Ztm) (2) = k(@) (@)D (t1, - +tm)) € NoF(0)e0)(2),
=1

s0 f(y) C Np(f(v), €5). Hence pi(f(y), f(v)) < .
To verify (%), fix any 3,5/ € ¢ € K and choose v,v/ € o so that y € |St(v,SdK)| and ¢/ €

| St(v/, Sd K')|. Then we get

pr(f(). J()) < pr(f(y), F(0) + pr(f(0), F() + pr(f(y), F(v)))
< €5 + diam,, f(0©) + ¢, = 4diam,,, f(cV).

The proof is complete. [J
Proof of Theorem 5.3.1. Combining Theorem 5.2.1 with Lemmas 1.2.7 and 5.3.3, we can establish Theo-
rem 5.3.1. [J

5.4 A dendrite compactification of a one-dimensional locally compact
absolute retract

In this section, we show that every 1-dimensional locally compact AR has a dendrite compactification.

Lemma 5.4.1. Let D be a dendrite with E the end points. Then D \ E is homotopy dense in D.
Consequently, the product space (D \ E)A is homotopy dense in D for any set A.
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Proof. Let v : D?> x I — D be the map obtained in Lemma 1.5.1. Fixing 29 € D \ E, we can define the
desired homotopy h : D x I — D as h(z,t) = vy(x,x,t) for each x € D and each t € I. O

D.W. Curtis showed in Proposition 2.4 and Lemma 3.2 of [20] that every locally compact, connected,
locally connected, metrizable space Y has a Peano compactification Y such that the remainder Y \ Y is
locally non-separating, that is, the following holds:

e For each non-empty connected open set U in SN/, the subset U NY is a non-empty connected set.
Using this result, we can characterize 1-dimensional locally compact ARs as follows:

Theorem 5.4.2. A space Y is a 1-dimensional locally compact AR if and only if Y has a dendrite
compactification Y such that the remainder Y \'Y is closed and contained in the set of end points of Y.

Proof. First, we will prove the “if” part. The space Y is locally compact and 1-dimensional because Y’
is open in the dendrite Y. Moreover, it follows from Lemma 5.4.1 that Y is homotopy dense in Y. Since
the dendrite Y is an AR, so the homotopy dense subset Y is according to Proposition 1.2.6 in Chapter 1.
Next, we shall show the “only if” part. Due to Curtis’ result mentioned in the above, since Y is locally
compact, connected, locally connected and metrizable, we can obtain a Peano compactification Y of V'
that has a locally non-separating remainder. Then Y has no simple closed curves, which means that it is
a dendrite. Indeed, suppose that there exists an simple closed curve C' C Y. Since Y is locally connected
and C' is homeomorphic to a circle, we can find non-empty connected open sets U; C Y, i = 1,2,3,4,
so that U; N U; = 0 if and only if [i — j| = 2, and S € Ji, U;. As the remainder Y \ 'Y is locally
non-separating, each V; = U; NY is a non-empty connected open set in Y and V; NV, = 0 if and only
if |i — j| = 2. Then each V; is arcwise connected because it is connected, locally connected, completely
metrizable (cf. [50, Theorem 5.14.5]). Fix points z;41 € V;N V41,4 =1,2,3, and 1 € V1 NV}, and choose
arcs v; : I = V; from x; to ;11,7 =1,2,3, and 4 : I — V} from x4 to x1. It is easy to find a simple closed
curve C’ in the union | J{_, 7(I) C Y. Then we have a retraction r : ¥ — C’ because Y is 1-dimensional
and C” is homeomorphic to a circle (cf. [50, Theorem 5.2.3]). Since Y is an AR, the curve C is also an
AR, which is a contradiction. Thus Y is a dendrite.
It remains to show that the remainder Y\ Y is closed and contained in the set of all end points of
Y. From the local compactness of Y, it easily follows that YV’ \'Y is closed. Moreover, assume that there
exists a point # € Y \ 'Y such that  is not an end point, that is, = is a cut point (cf. [62, Chapter V,
(1.1)]). Then we can obtain disjoint non-empty open sets W; and Wy so that Y\ {z} = W; U Wa. Since
Y is connected, it misses the one of Wy or Wy, which contains a non-empty connected open set. This
contradicts that the remainder Y \ 'Y is locally non-separating. Hence the set of all end points of Y
contains Y \ Y. Thus the proof is complete. [

5.5 Proof of Main Theorem

In this section, we shall prove the main theorem. From now on let X and Y be spaces under the assumption
in the main theorem and fix a dendrite compactification Y of Y such that the remainder Y \'Y is closed in
Y and contained in the set of all end points of Y. Remark that Y is homotopy dense in Y by Lemma 5.4.1.
Then we have the following;:

Proposition 5.5.1. The space C(X,Y) is homotopy dense in C(X,Y). O

For simplicity, we write

C(X,Y) = eloygs () OO Y) = el (o5 CX V),
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so it is a compactification of C(X,Y’). Furthermore, if X is connected, it coincides with USCC(X, }7) by
Theorem 5.2.1.

R.D. Anderson [2, 3] introduced the concept of cap sets for the Hilbert cube Q to characterize subsets
M C Q such that the pairs (Q, M) are homeomorphic to (Q,Q \ s) (cf. [18, Lemma 8.1]). A subset
M C Qis a cap set for Q if M is a Z,-set and has the following property:

(cap) For each pair A, B of compact sets in Q with B C AN M and each € > 0, there exists an embedding
h: A — M such that h|p = idp and d(h(a),a) < € for every a € A, where d is an admissible metric

for Q.

According to the above, we only need to check that C(X,Y") is homeomorphic to Q and the complement

C(X,Y)\C(X,Y) is a cap set for C(X,Y).

5.5.1 The case X is discrete.

First, we consider the case that X is discrete. Then X is homeomorphic to N and Y must be non-compact.

Lemma 5.5.2. For every discrete space W and every compact space Z, the function space C(W, Z) is
closed in Cldp(W x Z).

Proof. Remark that for each A € Cld(W x Z), if A(x) is a singleton for every x € W, then A € C(W, Z)
because W is discrete. Hence, for any B € Cld(W x Z)\C(W, Z), we have some x € W such that B(z) = 0
or B(z) is non-degenerate. In the case B(z) = (), we take an open neighborhood (W x Z \ {z} x Z)*
of B in Cldp(W x Z), which misses C(W, Z). In the case B(x) is non-degenerate, we can find disjoint
non-empty open subsets U and V' of Z the both of which meet B(z). Then ({z} x U)™ N ({z} x V)~ is
an open neighborhood of B in Cldn(W x Z). For every B’ € ({x} x U)~ N ({z} x V)7, it is clear that
B'(x) is non-degenerate, hence B’ € Cldn(W x Z)\ C(W, Z). As a result, the space C(W, Z) is closed in
Cldp(W x Z). O

Applying this lemma to our setting, we have (C(X,Y’),C(X,Y)) coincides with (C(X,Y),C(X,Y)),
which is homeomorphic to (YN, YN) because X and N are homeomorphic. Therefore, we can establish
the main theorem in the case X is discrete as a corollary of the following theorem:

Theorem 5.5.3. Let D be a dendrite and let Ey be a non-empty closed set of D which consists of end
points. Then the pair (DN, (D \ Eg)N) of the countable products is homeomorphic to the pair (Q,s).

Proof. Let Z = D\ Ey for simplicity. Since Z is a non-compact separable completely metrizable AR, the
countable product ZY is homeomorphic to fo due to Theorem 1.3.6. Moreover, D is a non-degenerate
compact AR. Using Toruriczyk’s characterization (Corollary 1.3.3, cf. [42, Corollary 8.1.2]), we can show
that DY is homeomorphic to Q. Let M = DN\ ZN. It is sufficient to prove that the pair (DN, M) is
homeomorphic to (Q,Q \ s).

First, the product space ZN is a homotopy dense G5 set in DN by Lemma 5.4.1. It follows from
Proposition 1.3.1 that the complement M is a Z,-set in DY. The countable product DY assigns a metric
d defined by

d(z,y) = Z 27 dp(x(i),y(i)) for each z,y € DY,
1€N

where dp is an admissible convex metric on D. Then the rest of the proof is to show the following:

(%) For any compact subsets A, B contained in DY with B € AN M and each € > 0, there exists an
embedding h : A — M such that h|p = idp and d(h(a),a) < € for every a € A,
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Define a map a : A — I by a(a) = min{l,¢,dp(a, B)}/3. Since ZV is homotopy dense in DN, we can
obtain a map f : A — DN so that f(A\ B) C 2V, f|p = idp and dp(f(a),a) < a(a) for every a € A. Let
Z; be a copy of Z for each i € N. Then [[,. Z2; and [[;cy Z2i—1 are homeomorphic to ZN| so they are
homeomorphic to #». Here we can take admissible metrics d. on HieN Z9; and d, on HieN Zoi—1 defined
as follows:

de(z,y) =Y 27%dp(x(2i),y(2i)) and do(x,y) = Y 2% dp(x(2i — 1),y(2i - 1)).
ieN i€N
It is well known that Hilbert spaces are strongly universal for the class of completely metrizable spaces
of the same weight (cf. [59, Proposition 2.1]). Since A\ B is completely metrizable and [, y Z2; is
homeomorphic to £, we can find an embedding ge : A\ B — [[;cyy Z2i so that de(ge(a), (pro; f(a))ien) <

a(a) for each a € A\ B, where pr; : ZN — Z; is the ith coordinate projection. Fix eq € Ep and define a
map go : A\ B = [[;cy Z2i—1 as follows:

go(a) = (pry f(a), -+ ,pro;_5 f(a), Ypra;_y f(a)seo (22i72a(a)/diamdD D—1),e0, ")
if 9242 diamg, D < a(a) < 9 2i+4 diamg, D,

where 7, : I — D is the unique path from z to y as in Lemma 1.5.1. For any a € A\ B, if
2722 diamy, D < a(a), then

do(9o(a), (Pro;—1 f(a))ien) = Z 272 dp (pro;_y go(a), pra;_1 f(a))
i€EN
< Z 272 diamg,, D = 27% " diamg,, D < a(a).
i>j

Now we define a map g : A\ B — M as follows:

_J prige(a) ifi=2j,
pri g(a) _{ pr; gola) ifi=2j— 1.

It follows from the definition of ¢ that
d(g(a),a) < d(g(a), f(a)) + d(f(a),a) < 3a(a) = min{1,¢,d(a, B)}

for each a € A\ B. Hence we can extend g to a map h: A — M by h|g = idp. Then h is clearly e-close
to id4. Since g is injective and

WA\ B)Nh(B) = g(A\ B)N B =0,

the map h is an embedding. Thus the condition (*) is satisfied. O

5.5.2 The case X is non-discrete.

Next, we consider the case X is non-discrete. As a corollary of the following theorem, we conclude that
the function space C(X,Y) is homeomorphic to Hilbert space ¢ under our assumption.

Theorem 5.5.4. For a non-discrete, locally compact, separable metrizable space W and a separable
completely metrizable AR Z with no isolated points, the function space C(W, Z) is homeomorphic to {5.

Remark 12. The above theorem was proved by K. Sakai [48] when W is compact. Moreover, J. Smrekar
and A. Yamashita [53] showed the case W is a countable CW-complex of dimension > 1. This theorem
cannot be generalized to the case that Z is an ANR. In fact, the space C(W, Z) is not an ANR even if Z
is the unit circle (cf. [53, Introduction]).
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Proposition 5.5.5. For a locally compact space W and an AE Z, the function space C(W, Z) is an AE.

Proof. Let A be a metrizable space, B a closed subset of A and let f : B — C(W, Z) be a map. Define
a function F' : B x W — Z by F(b,z) = f(b)(z), which is continuous due to the local compactness
of W. Since Z is an AE, the map F extends to a map F': A x W — Z. Then we can define a map
f:A— C(W,Z) by f(a)(z) = F(a,z). Note that for each b € B and = € W

f) (@) = F(b,x) = F(b,z) = f(b)(),
that is, the map f is an extension of f. Consequently, the function space C(W,Z) is an AE. O

Proposition 5.5.6. Let W = |J,,cy Wa be a o-compact space, where each W, is compact and contained
in int Wy11, and let Z be a completely metrizable space. Then the function space C(W, Z) is completely
metrizable.

Proof. Take an admissible complete bounded metric d for Z and define a metric d* on C(W, Z) as follows:

d*(f,9) => 27" sup d(f(z),g(x)) for each f,g € C(W, Z),
neN z€Wn

so d* is an admissible complete metric on it. [
By the same argument of [53, Proof of Theorem 1.2], we have the following:

Proposition 5.5.7. Let W be a non-discrete, locally compact, separable metrizable space and let Z be an
ANR with no isolated points. If C(W, Z) is path-connected, then C(W, Z) has the discrete approximation
property.

Proof. By the assumption, we can write W = (J,,cy Wn, where each W), is compact and contained in the
interior int W, 11 of Wj,41, and choose countable distinct points x1, 2, - , T € int Wi so that x; = x4
as i — oo. Moreover, since Z is an ANR with no isolated points, it has an admissible bounded metric d
such that

(1) for each € > 0 there exists 6 > 0 such that any two d-close maps from any space to Z is e-homotopic,
and

(2) every component P of Z has the diameter diamgy P > 1.

We shall use an admissible metric d* on C(W, Z) defined as in Proposition 5.5.6. Let C; = {f € C(W, Z) |
f(xso) = f(x;) for all j > i} for each ¢ € N. Clearly, C; C Cjt1. According to [53, Lemma 3.2}, we need
only to show the following two conditions:

(i) For each ¢ > 0 and f : I" — C(W,Z), n € w, there are ¢ € N and g : I" — C; such that g is
e-homotopic to f;

(ii) For each e > 0, there is § > 0 such that for any i € N and f : I" — C;, n € w, there exist j > ¢ and
g : I" — Cj that is e-homotopic to f and satisfies d*(f(I"), g(I")) > 6.

(i) Let e >0 and f : I" — C(W, Z), n € w. Take § > 0 so as to satisfy the condition (1). From the
compactness of I", we can find ¢ € N such that for any s € I" and j > i, d*(f(s)(z;), f(s)(z)) < 6.
Define F': I" x W — Z by F(s,z) = f(s)(z). Then the restriction Fliny(4,]j>4 is d-close to the constant
map F': 1" x {z; [ j > i} 3 (s,25) = f(s)(2e0) € Z, and hence Flin,(,,|j>4) 18 e-homotopic to F” by the
definition of §. Since Z is an ANR, by the Homotopy Extension Theorem 1.2.4, there is an e-homotopy
H : 1" x W x I — Z such that H(s,z,0) = F(s,z) = f(s)(z) and H(s,z;,1) = F'(s,zj,1) = f(s)(%)
for every s € I and j > i. Define g : I" — C(W, Z) by ¢(s)(x) = H(s,z,1). Note that for each s € I"
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and j > i, g(s)(z;
map defined by h(s,
seI™and t,t' €1,

d*(h(s,t),h ZQ”supd H(s,x,t),H(s,z,t') 22

neN z€Wn neN

i) = H(s,z,1) = f(5)(%s0). Therefore g(I") C C;j. Let h : I" x I — C(W, Z) be the
s,t)(z) = H(s,x,t), which is an e-homotopy linking f and g. Indeed, we have for each

(ii) Take any € > 0. Due to (1), we can choose 0 < § < 1/8 so that any two 100-close maps into Z are
e-homotopic. Fix i € N and f:I" — C;. Let

K ={f(s)(xo) | s € I"} = F(I" x {j | i <j < 00}).

Since K is compact, there are finite points yo, - ,y, € K such that K C {J;_q Ba(yx,26). Then we can
find a point zp € By(yk,60) \ Ba(yk,4d) for each k = 0,--- ,n, because each path component of Z has
the diameter > 89 by (2). It follows from the choice of § and the Homotopy Extension Theorem 1.2.4
that there is an e-homotopies h* : Z x I — Z, k = 0,--- ,n, such that h¥(y,0) = y, hF(y,1) = z, if
y € Ba(yg,40), and h*(y,t) = y if y ¢ Ba(yx,65). Using the Homotopy Extension Theorem 1.2.4 again,
we can obtain an e-homotopy H : W x Z x I — Z so that H(z,y,0) = y, H(z;4x,y,t) = hF(y,t) for each
k=0,---,n,and H(zj,y,t) =y for each i + n < j < oo. Define the desired map g : I — C(W, Z) by
g(s)(x) = H(x, f(s)(z),1). It follows that for each i + n < j < o0,

9(s)(x;) = H(xj, f(s)(x),1) = f(s)(2j) = f(5)(2o0),

which implies that g(I") C Cj4pn+1. Moreover, we have an e-homotopy h : I" xI — C(W, Z) linking f and
g defined by h(s,t)(x) = H(z, f(s)(x),t). It remains to show that d*(f(I"),g(I")) > 6. Fix any s,s" € I".
In the case that d(f(s)(Zeo), f(8')(7s0)) > 20, we have

d(f(s)(wo0), 9(5")(To0)) = d(f(5)(ws0), f(5')(ec)) = 20.

Since xo, € W1, it follows that

d*(f( = 27" sup d(f(s)(x),9(s) (@) = 271 d(f(5)(2e0), 9(8') (w0)) 2 0.

neN z€Wn

In the case that d(f(s)(zx), f(5")(Za0)) < 28, taking some k = 0, --- ,n such that f(s)(zs) € Ba(yk,20),
we have f(s')(2c) € Ba(yg,46). Then

9(8") (@irk) = H ik, F(5") (@ign), 1) = HF(f (') (o0), 1) = 2z & Ba(y, 40).

On the other hand, we get f(s)(zi1x) = f(8)(20) € Balyk, 29), and hence d(f(s)(xivk), 9(8')(ivr)) > 26.
Since x; 1 € Wy, it follows that

d*(f(s),9(s") =D 27" sup d(f(s)(x), 9(s") (@) = 27 d(f(5)(wirn), 9(5) (wirn)) = 0.

Thus the proof is complete. [

Proof of Theorem 5.5.4. Combining Propositions 5.5.5, 5.5.6 and 5.5.7, we get C(W, Z) is a completely
metrizable space with the discrete approximation property. The separability of C(W, Z) follows from the
ones of W and Z, and the local compactness of W (cf. [29, Chapter XII, Theorem 5.2]). According to
Torunczyk’s characterization (Theorem 1.3.5), the function space C(W, Z) is homeomorphic to ¢5. O

The following two lemmas guarantee that we may assume X is connected in the proof of the main
theorem.
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Lemma 5.5.8. Let W = @, W be a locally connected space, where each W)y is a component of W.
For any spaces Z' C Z, the quadruplet

(Cldp(W x Z), clags.wxz) C(W, Z), C(W, Z), C(W, Z")

is homeomorphic to the quadruplet

( [ Cdi(Wi x 2), ] doasvaxz) C(Wa, 2), [ C(Wa, 2), [] C(Wa, Z’)).

AEA A€A AEA A€A

Proof. Define a map h : Cldp(W x Z) — [ cp CldR (W) x Z) as follows:
h(A) = (A N (W)\ X Z)))\EA for each A € Cld}(W X Z),

which is the desired homeomorphism. [

Lemma 5.5.9. Let W, be a compact AR and let Z,, be a homotopy dense Gs subset of W,,, n € N. Then
the pair (Q x [[,ex Wnss X [, Zn) is homeomorphic to (Q,s).

Proof. We may assume that each W), is non-degenerate. By Torunczyk’s characterization (Corollary 1.3.3,
cf. [42, Corollary 8.1.2]), the product space Q x [[,,cy Wr is homeomorphic to Q. We shall show that the
complement M = (Q x [],,cx Wa) \ (8 X [[,eny Zn) is a cap set in Q x [], .y Wa. It is easy to see that
(Q\s) x[[,,eny Wh is a cap set in Q X [[,,cy Wn because Q \ s is a cap set in Q. Moreover, since each Z,
is a homotopy dense G subset of W,,, the complement W,, \ Z, is a countable union of compact Z-sets
in W, due to Proposition 1.3.1. Let pr,, : [[,,cy Wn — Wi, be the projection for each m € N. Then, as
is easily observed,

M = <(Q\S) e H Wn> U U (Q x pryy' (Win \ Zim))
neN meN

is also a countable union of compact Z-sets in Q x [ [,,cy W, which contains (Q\s) x [[,,cny Wa- It follows

from Theorem 6.6 of [18] that M is a cap set in Q X [],,cry Wha, hence the pair (Q x [, cxy Wa,s <[ 1,en Zn)

is homeomorphic to (Q,s). O

Proof of Main Theorem in the Case X is Non-Discrete. We may suppose that X is connected as men-
tioned in the above. We divide the proof into the two case, the case X is compact, and the case X is
non-compact.

(The compact case) Combining Theorem 5.3.1 with Proposition 5.5.1, we conclude that C(X,Y) is
homotopy dense in C(X,Y) = USCC(X,Y). Since C(X,Y) is homeomorphic to ¢5 according to Theo-
rem 5.5.4 (c.f. [48]), it easily follows that USCC(X, 17) is a compact AR with the disjoint cells property.
Hence USCC(X,Y) is homeomorphic to Q by virtue of Toruticzyk’s characterization (Corollary 1.3.3).
Moreover, the complement M = USCC(X,Y)\ C(X,Y) is a Z,-set. Take an admissible metric dx and
an admissible convex metric dy on X and }7, respectively, and define an admissible metric p on X X Y

as follows:
p((z,y), (xlv y/)) = max{dX(x, .7}/), df/(% y,)}

It remains to verify that the following condition holds:

(¥) For any compact sets A, B C USCC(X, Y) with B C AN M and each € > 0, there exists an
embedding h : A — M such that h|p = idp and py(h(a),a) < € for every a € A,
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where pg is the Hausdorff metric on Cld(X x Y) induced by p.

Let o : A — I be a map defined by a(a) = min{1, ¢, pg(a, B)}/3. Since C(X,Y’) is homotopy dense
in USCC(X,Y), we can construct a map f : A — USCC(X,Y) such that f|p = idp, f(A\B) Cc C(X,Y)
and pg(f(a),a) < ala) for every a € A. In addition, we can find an embedding g : A\ B — C(X,Y)
so that pg(g(a), f(a)) < a(a) for each a € A\ B because C(X,Y) is homeomorphic to ¢5 and A\ B is
completely metrizable. Fix a point zp € X and define a function h: A\ B — Cld(X x Y) by

[ B(g(a)(z0),a(a)) if z= =z,
o) = { i) it 2 # a0,

where B(g(a)(xo), a(a)) is the closed ball. Remark that each h(a) is an u.s.c. set-valued function due to
Proposition 3.1 of [36]. Because dy is a convex metric, the function A is continuous and the closed ball

B(g(a)(x0), a(a)) is a subcontinuum of ¥, hence h(A\ B) € M. Since zq is not isolated point and g is
an injection, the map h is also an injection. It follows that

pr(h(a),a) < pu(h(a),g(a)) + pr(g(a), f(a)) + pu(f(a),a) < 3a(a) < min{l, ¢, pr(a, B)}

for each a € A\ B. Therefore, the map h : A\ B — M can be extended to the map h : A — M by
h|p = idp. Moreover, we have h(A\ B)N B = (), hence h is the desired embedding because A is compact.
Thus the pair (C(X,Y),C(X,Y)) is homeomorphic to (Q,s).

(The non-compact case) Similar to the compact case, it suffices to prove that C(X,Y’) is homotopy
dense in C(X,Y), and that C(X,Y) is homeomorphic to Q. Let aX = X U {oo} be the one-point
compactification of X. Then it is a Peano continuum, refer to [55]. According to the compact case, the
pair (C(aX,Y),C(aX,Y)) is homeomorphic to (Q,s), where

ClaX,Y) =l C(aX,Y) = USCC(aX,Y).

Cld% (aX xY)
Due to Proposition 3.2 of [36], we have the embedding e : Cldp(X x Y) = Cldi(aX x Y) and the
retraction 7 : Cldp(aX xY) — e(Cldi(X x Y)) defined by

e(A) = AU ({oo} x V) and r(B) = BU ({0} x Y),

where r(C(aX,Y)) C e(C(X,Y)) and e(C(X,Y)) = r(C(aX,Y)).

First, we will show that C(X,Y) is homotopy dense in C(X,Y"). Since C(aX,Y) is homotopy dense
in C(aX,Y), we can find a homotopy h : C(aX,Y) x I — C(aX,Y) so that hg = id and

h(C(aX,Y) x (0,1]) € C(aX,Y). Taking a homotopy

C(aX)Y)

B =e trh(e x idp) : C(X,Y) x I = C(X,Y),

we have hy = idm because e(C(X,Y)) = r(C(aX,Y)). In addition, since r(C(aX,Y)) C e(C(X,Y)),

we get M'(C(X,Y) x (0,1]) € C(X,Y). Hence C(X,Y) is homotopy dense in C(X,Y).

Next, we shall prove that C(X,Y’) is homeomorphic to Q. Since e(C(X,Y)) = r(C(aX,Y)), we can

regard C(X,Y) as a retract of C(aX,Y’), which is homeomorphic to Q. Hence C(X,Y’) is a compact AR.

Furthermore, the space C(X,Y’) is homeomorphic to ¢ by Theorem 5.5.4, so C(X,Y’) has the disjoint
cells property. Using the Toruriczyk characterization (Corollary 1.3.3), we have C(X,Y) is homeomorphic
to Q. Thus the proof is complete. [J

5.6 The converse of Main Theorem

In this section, we shall prove the converse of the main theorem.
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Lemma 5.6.1. Let X be a space and 'Y a non-degenerate connected space. If USCC(X,Y") is Hausdorff,
then X 1is locally compact.

Proof. We shall show that for each point x € X and each open neighborhood U of x in X, there exists a
compact neighborhood of x contained in U. Fix yg € Y. Since USCC(X,Y’) is Hausdorff, we can separate
the following two functions

dp=Xx{y}UX\U)xY and p =X x{yp}U(X\U)xYU{z} xY

by disjoint open sets V and W in USCC(X,Y). Then we can write

V:(XxY\C)”Lﬂ(ﬁV[)mUSCC(X,Y) and W = (X x Y\ D)* N (
=1 J

s

W) NUSCC(X,Y),

1

where C' and D are compact sets in X x Y, and V;’s and Wj’s are open sets in X x Y. Moreover, we may
assume that pry (D) N pry(W;) =0 for each 1 < j < m, where pry : X x Y — X is the projection onto
X.

Note that 2 € pry(C) because ¢ ¢ V, and pry(C) C U because ¢ € V. We prove that pry(C) is
the desired neighborhood. Since ¢ ¢ W and ¢ € W, we get {1 < j < m | x € pry(Wj)} # 0. Let
{11 <EkE<Il}={1<j<m|xepry(W;)}. Then there exists jr € {ji | 1 < k < [} such that
pry(Wj,) C prx(C). Supposing the contrary, we can choose z;, € pryx(W;, )\ prx(C) for each 1 <k < 1.
Define the function

l
£=X x{yo} UX\U) x YU | J{z;,} x Y € USCC(X,Y).
k=1

Observe that £ € V N W, which is a contradiction. Hence we have x € pry(W;) C prx(C) for some
1 < j < m. This means that pry(C) is a neighborhood of x. The proof is complete. O

Let Y be a non-degenerate connected space. Then we can regard a space X as a subspace of
USCC(X,Y). Indeed, taking yo € Y, we have an embedding ¢ : X 3 z — X x{y}U{z} xY €
USCC(X,Y). Thus X is metrizable when USCC(X,Y) is so.

Proposition 5.6.2. Let X be a space andY a non-degenerate connected space. If USCC(X,Y") is compact
metrizable, then X 1is locally compact, locally connected metrizable.

Proof. According to Lemma 5.6.1, X is locally compact metrizable. So it remains to prove that X is
locally connected. Suppose the contrary, that is, there exists a point o € X and an open neighborhood
U of x( such that every neighborhood V' of x(y contained in U is disconnected. We will show that there
exists # € U, open and closed subsets V,, in U containing x and w, € W,, = U \ V,,, n € N, such that
{wn }nen converges to x. Let

Y ={V C U |V is an open and closed subset of U containing x}.

Then () V is not open in U. Otherwise, since zg € [V, we have (| V is disconnected. So we can find an
open and closed subset V' of (V such that o € V' C (V. Then V is open and closed in U, which is
a contradiction to the minimality of (V. Hence [V is not open in U. Choose a point = € (| and a
sequence {wy }neny C U \ [V converging to x, and take V,, € V so that w, € W,, = U \ V,,.

Now, we define

dn =\ Vix {y U Wi x {2} U(X\U) x Y,

i=1 =1
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where y; and yy are distinct points of Y. Observe that ¢, € USCC(X,Y). By the assumption,
USCC(X,Y) is a compact metrizable space. Therefore we may suppose that the sequence {¢,}nen
converges to some ¢ € USCC(X,Y’). Then for each n € N, ¢, NU x Y \ {y1, 42} = 0, which implies that
dNU XY \{y1,y2} = (. Since every ¢,, contains (x,y1), we have y1 € ¢(x). Assume that yo ¢ ¢(z),
so ¢ L((Y \ {y2})") is an open neighborhood of  because ¢ is u.s.c. Since X is locally compact, we can
take a compact neighborhood N C ¢~ 1((Y'\ {y2})™) of 2. Then ¢ NN x {y2} = ), and hence, there exists
no € N such that for every n > ng, ¢, NN X {y2} = 0. On the other hand, we can find n > ng such that
wy, € N, which means that (wp,y2) € ¢, "N x {y2}. This is a contradiction. Therefore yo € ¢(z). It
follows that ¢(x) = {y1,y2} is disconnected, which contradicts that ¢ € USCC(X,Y’). Consequently, X
is locally connected. [J

We can derive the following corollary from the above proposition immediately.

Corollary 5.6.3. Let X be a space and Y a non-degenerate connected space. If USCC(X,Y") is homeo-
morphic to Q, then X is locally compact, locally connected metrizable.

Consequently, we have the following:

Theorem 5.6.4. Let X be a non-degenerate connected space and Y a 1-dimensional locally compact AR.
Then the following conditions are equivalent:

(1) X s locally compact, locally connected metrizable;
(2) (USCC(X,Y),C(X,Y)) is homeomorphic to (Q,s);
(3) USCC(X, }7) is homeomorphic to Q,

where Y is a dendrite compactification of Y such that the remainder is closed and contained in the set of
end points of Y.

5.7 Examples

Let aR be the one-point compactification of R. Then we have the following proposition.
Proposition 5.7.1. The function space C(I,R) is not homotopy dense in the closure claigs, ixar) C(L R).

Proof. Let S! be the unit circle in R?, that is, S! = {(x,y) € R? | 22 + y? = 1}. Since the pair (aR,R)
is homeomorphic to (S, S\ {(1,0)}), we need to prove that C(I,S*\ {(1,0)}) is not homotopy dense in
claas. axst) C(L S'\{(1,0)}). For simplicity, we denote claaz axsty C(L S'\{(1,0)}) by C(I,S1\ {(1,0)}).
Let f,g: T — S'\ {(1,0)} be the constant maps such that f(I) = {(0,1)} and ¢g(I) = {(0,—1)}. Then f
and g miss K = {(0,—1,0)} C I x S!, that is, they are contained in the open set

U=Ix8"\K)"nC,S\ {(1,0)}) c C(I,S*\ {(1,0)}).

It is sufficient to show that f and g are connected by a path in U but not connected by any path in
UNCLS'\ {(1,0)}).

First, we shall construct a path from f to g in U. For each t € I, let ¢(¢) : I — S! be the constant
map such that

o(t)(I) = {(sinm(1 — 2t)/2,cos (1 — 2t)/2)}.

Then we have the path ¢ : T — C(I,S') C Cld(I x S!) between f and g in U.
Next, we will show that any path v : I — C(I,S!\ {(1,0)}) from f to g cannot be contained
in U. Let 8 : C(I,S'\ {(1,0)}) — S\ {(1,0)} be the map defined by B(h) = h(0). Then for the
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composition By : I — S'\ {(1,0)}, we have 57(0) = f(0) = (0,1) and Bv(1) = g(0) = (0,—1). Since
S\ {(1,0)} is homeomorphic to R, according to the Mean Value Theorem, we can find ¢ € I such that
7(t)(0) = By(t) = (—1,0), which means that v(t) ¢ (I x S\ K)* c U. Thus f and g are not connected
by any path in U N C(I,S'\ {(1,0)}). O

Let S"~! be the unit (n — 1)-sphere in R, that is, "~ = {z = (x(i))j-; € R" | Y11, x(i)* = 1}.
Recall that R” is a compactification of R™ that is homeomorphic to the n-dimensional unit closed ball.
Then we can establish the following:

Proposition 5.7.2. For n > 2, the function space C(S"~!,R") is not homotopy dense in the closure
-1
clejag sn-txam G877, R™).

Proof. Let B = {z = (a(i))l_; € R" | al] < 2} and B = {z = (#(), € R" | [lz]] < 2}, where
|z|| = max{|z(i)| | # = 1,---,n}. Then the pair (B, B) is homeomorphic to (R",R™). So it suffices
to prove that C(S” 1 B) is not homotopy dense in CICId* (Sn—1xB) C(S" 1, B). For simplicity, denote

cloas (sn-1x3) C(S™ 1, B) by C(S"~1, B). Define two maps f,g € C(S"~!, B) by

f(z) = (x(1),--- ,z(n)) and g(z) = (x(1),--- ,z(n — 1), —x(n)) for each z = (z(1),--- ,z(n)) € S* L.

Let K =S" 1 x {(0,---,0)} € S”! x B. Then the maps f and g are contained in the open subset

U=(S""!'xB)\K)"nC(S"1, B) c C(S"~1,B).

Now, we shall show that f and g are connected by a path in U but not in U N C(S"~!, B), which implies
that C(S™~1, B) is not homotopy dense in C(S"~1, B).
(1) We prove that the maps f and g are connected by a path in U. Set

A={(1,0,---,0)} x S"tus" ! x {(~1,0,---,0)} cS"! x B.

We will construct a path linking f to A in U. Define a map ¢ : S* ! x [0,1) — B as follows: For
= (x(1),--,2(n)) € S" Land t € [0,1), let

(=1,0,---,0) if 2(1) < 2t — 1,
oz, t) =< ((z(1) —t)/(1 —t),ax(2), - ,ax(n)) if2t—1<z(1) <1,
(1,0, ,0) if 2(1) = 1,

where o = ((1—t)2—(z(1)—1)?)/((1—t)?(1—x(1)?)))"/2. So we can get the function ® : T — Cld(S" ! xB)
defined by

_ o iftelon),
(I)(t)_{At if ¢ = 1.

Then it follows from the continuity of ¢ that ® is continuous on [0,1). To verify the continuity of ®
at t = 1, take any neighborhood N of ®(1) = A in Cld}%(Si‘1 x B). Then we can choose open sets
Vi C S"1xB,j=1,---,m, and a compact set L C S* ! x B so that

Ac ﬁvjfm((s"—l x B)\ L)" C N.
j=1

We use an admissible metric p on S”! x B defined as follows:

p((z,y), («',y") = max{||z — ||, [ly — ¥'[|}.
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Since A € (;L, V;”, we can find (z;,y;) € Aand¢; > Oforeach j =1, -+ ,mso that p((z,y), (z;,y;)) < ¢;
implies that (z,y) € V;. Moreover, we have €7, = inf{p((z,y),L) | (z,y) € A} > 0 because A € ((S"~! x
B)\ L)t and L is compact. Let € = min{1,¢j,ez, | j = 1,--- ,m} and take any ¢’ € ((1+ (1 —€2)/2)/2,1)
(ie., 2t' —1 > (1 — €2)1/?).

First, we show that ®(t') € V. forevery j=1,--- ,m. Whenz; = (1,0,---,0), we can find ) € St
with 27 (1) > 2¢' — 1 so that ®(t')(z;) = ¢y (z};) = y;. Then, note that

1-2i1)<1-2¢ -1)<1-(1-€é)*<cand

|25 ()] < (1 — 25(1) )1/2 (1= =)< (1-(1-e))=e

for i =2,--- ,n. It follows that

p((, () (2))), (x5,5)) = p((2, 95), (1,0, ,0),95)) = [l — (1,0, -+, 0)]
=max{1 — 2}(1), [¢j(i)] | i =2,--- ,n} <,

hence ®(t') € V;". When z; # (1,0,---,0), we get y; = (—1,0,---,0). Observe that there exists
o € {x = (x(i))j=; € 8" | 2(1) < 2t' — 1} such that for each i = 2,--- ,n,

2j(0) = 25(D)] < (1= 2 = D)2 < (1 (1= )2 =

Moreover, we have
|z;(1) — $3(1)| <1-(@2'-1)<1-(1- 62)1/2 <e

hence [|z; — z;|| <e. Since

d)YNS" !t x {(=1,0,---,0)} = {z = (x(i)), € S" ! | x(1) <2t/ =1} x {(~1,0,---,0)},

it follows that

((x (I)( )( )) (xj’y])) P(($;‘,<—1,0,"' 70))7(xj7(_1707"' 70))) = Hx; _ij <k¢,

which implies that ®(t') € V. Therefore, ®(t') € [}, V} .
Next, we verify that ®(#') € ((S"~! x B)\ L)*. Fix any (z,y) € ®(t'). When y = (—1,0,---,0), the
point (z,y) € A, which means that (z,y) ¢ L. When y # (—1,0,---,0), we have (1) > 2t' — 1. Then

p((m,y),L) > p(((l’()?' o 30)73/)’[’) - p((x7y)a ((1’07' o 70)73/))
>er — ||z —(1,0,---,0)|| > e —e>0.

Hence (z,y) ¢ L. It follows that ®(¢') € ((S"~! x B) \ L)*. Consequently, ® is continuous at ¢ = 1.

Observe that ®(I) C U. Hence f and A are linked by the path ® in U. Similarly, we can construct a
path from A to g in U, so f is connected to g by a path in U.

(2) We show that the maps f and g are not connected by any path in U N C(S"~!, B). Assume that
f and g are connected by a path ® : I — U N C(S"" !, B). Then ® induces a homotopy h : S*! x I —
B\ {(0,---,0)} from f to g. Taking a retract » : B\ {(0,---,0)} — S"!, we have the homotopy
rh:S" I xI— S" ! from rf = idgn-1 to rg = —idgn-1, where —idgn-1(z) = (z(1),--- ,z(n—1), —z(n))
for each x = (x(1),--- ,z(n)) € S"~!. This is a contradiction. Therefore, f and g are not connected by
any path in U N C(S™" !, B). Thus the proof is complete. (]
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Chapter 6

A space of hypo-graphs and its
compactification

For each function f : X — Y from a space X into a dendrite Y and v € Y, we can define the hypo-graph
o f of f with respect to v as follows:

Wf= U{I}X[v,f(x)]CXxY.

zeX

Recall that the symbol [z,y] means the unique arc of two points z,y in a dendrite Y, see Fact 2. When
f is continuous, the hypo-graph |, f is closed in X x Y. Hence we can regard

LOCX,Y)={lf|f: X —Y is continuous}

as the subspace of the hyperspace Cldy (X x Y) endowed with the Vietoris topology. Let |, C(X,Y") be
the closure of |, C(X,Y) in Cldy (X x Y). In the case that Y =TI and v = 0, we can consider

o USC(X,I) ={lof | f: X — Iis upper semi-continuous}

as the subspace in Cldy (X x I). Z. Yang and X. Zhou [63, 64] showed the following theorem:

Theorem 6.0.1. Let X be a compact metrizable space. If the set of isolated points is not dense in X,

then o USC(X,I) = o C(X,I) and the pair (1o USC(X,I), o C(X,I)) is homeomorphic to (Q,co).

This result is a counterpart of the one of [27] (cf. Chapter 6 of [43]) concerning function spaces endowed
with the pointwise convergence topology. The aim of this chapter is to generalize the above theorem as
follows:

Main Theorem. Let X be an infinite, locally connected, compact metrizable space, Y a dendrite and
v €Y an end point of Y. Then the pair (1, C(X,Y),l, C(X,Y)) is homeomorphic to (Q,co).

In the above, we assume the stronger condition for a compact metrizable space X than the one of
7. Yang and X. Zhou’s. In the last section, we will discuss this gap.

Remark 13. The space |, C(X,Y') has a cluster point in Cldy (X x Y) which is not the hypo-graph of any
map from X to Y. For example, let X =1, Y = {0} x IU[—1,1] x {1} a triod and v = (0,0) € Y. Define
a closed set A in X x Y as follows:

A=TIx{0} xTU{0} x [-1,1] x {1} U {(z, tsin(n/x),1) | x € (0,1],t € T}.
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For each n € N, let f,, : X — [—1,1] x {1} C Y be the map defined by
folz) = { (sin(m/x), 1) %fac > 1/2n,
(0,1) if x <1/2n.
Then observe that
fn =1Ix{0} xTU{(z,tsin(r/x),1) | x € [1/2n,1],t € I}

and the sequence ({y fn)nen converges to A in Cldy (X x I). However, the set A is not the hypo-graph of
any map from X to Y.

6.1 Preliminaries

From now on, we proceed with our argument in the following assumption:

e X = (X,dx) is a compact metric space, and Y = (Y, dy) is a dendrite with a convex metric dy and
a distinguished end point 0 € Y.

Remark that any dendrite admits a convex metric, see Fact 3 in Chapter 1. For simplicity, we write
JC(X,Y) =]lo C(X,Y). We use an admissible metric for the product space X x Y defined by

p((x,y), (z',y)) = max{dx (z,2"),dy (y,y)} for each z,2" € X and y,y’ € Y.

Define r : Y x I — Y by r(y,t) = v(0,y,t) for each y € Y and t € I, where v is the map as in
Lemma 1.5.1. Note that ro(Y) = {0} and r; = idy. Using this map r, we can define the homotopy

7:JC(X,Y) xI— |[C(X,Y) as follows:

(A1) = (idx xr¢)(A) = {(z,7:(y)) | (z,y) € A}.

Then 7o(JC(X,Y)) = X x {0} and 71 = idm. We shall verify the uniform continuity of . Take any
€ > 0. According to Lemma 1.5.1, the map r is uniform continuous. Hence we can choose € > ¢ > 0 so that
foreachy,y’ € Yandt,t' € I,if dy(y,vy') < d and |[t—t'| < 6, then dy (r(y,t),r(y',t')) < e. Now, let A, A" €
JC(X,Y) and t,t' € I such that py(A, A") < § and |t — /| < §. For each (x,z) € T4(A), there is a point
y € A(z) such that z = r4(y). Since p((x,y), A") < §, we can find (2/,y’) € A" such that p((x,y), (2, vy)) <
d, which means that dx(z,2’) < 0 and dy(y,y') < §. Let 2/ = ry(y') € A'(2'). Then (2/,2') € Ty (A)
and dy (z,2") = dy(r¢(y),rv(y')) < €, and hence p((z, 2), (2, 2')) = max{dx(z,2’),dy(z,2")} < e. Thus
we have p((x,2),7py(A’")) < e. By the same argument, we can show that p((2/,2"),7:(A)) < e for each
(a',2") € ry(A"). Therefore pp(7:(A),7v(A)) < e. Consequently, the map 7 is uniformly continuous.
Then 7 is a contraction of JC(X,Y).
The following lemma will often be used in this chapter, which can be easily proved.

Lemma 6.1.1. Let A, A', B and B’ be closed sets in a compact metric space Z = (Z,d). Then

dH(A U B, AU B/) < max{dH(A, Al), dy (B, B/)}

6.2 The closure of |[C(X,Y) in Cld(X xY)

This section is devoted to proving the following theorem:

Theorem 6.2.1. If X has no isolated points, then |C(X,Y) is an AR.
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For each A € Cld(X x Y'), we define a set-valued function A : X — Cld*(Y) as follows:
A(z) ={y €Y | (z,y) € A} € Cld*(Y).
For the sake of convenience, let A(B) = J, .5 A(x) for each B C X.

Lemma 6.2.2. If X has no isolated points, then

WCX,)Y)={AeCldX xY) | A(z) #0 for allz € X and y € A(xz) = [0,y] C A(z)}.

Proof. For convenience sake, let F' be the set of the right side of the above equality. Then observe that
IC(X,Y) C F.

First, we prove that F' is closed in Cldy (X x Y). Let A be the limit of a sequence (A4, )pen in F.
We shall show that A(z) # 0 for every z € X. For n € N, we can take y, € A,(x) # (). Because of the
compactness of Y, we can assume that (y,)nen converges to some y € Y. Since pg(A,, A) — 0asn — oo
and

p((z,9), An) < p((x,y), (T, yn)) = dy (y,yn) — 0 as n — oo,

it follows that (x,y) € A. Hence A(xz) # 0. To show that [0,y] C A(x) for each y € A(z), take any
z € |0,y]. Since (z,y) € A, we can choose (2, yn) € An, n € N, so that (z,,yn) — (z,y) as n — oo.
According to Lemma 1.5.1, we can find z, € [0,y,], n € N, such that dy(z, z,) < dy(y,yn). Since y, — y
as n — oo, we have z, — z as n — oo. Then z, € [0,y,] C An(zy), S0 (2, 2,) € Ay, for every n € N.
Because (zp, zn) — (z,2) as n — oo, it follows that (z,2) € A, so z € A(z). Thus we have [0,y] C A(x).
Consequently, A € F', so F is closed in Cldy (X x Y).

Next, we will show that | C(X,Y) is dense in F. For each ¢ > 0 and A € F, because of the
compactness of A, A has finite points (z;,y;), ¢ = 1,--- ,n, such that A C (| B,((2s,vi), €/2), where
we can take x; # x; if ¢ # j because X has no isolated points. Let Ag = |J;_;{z:} x [0,y] C A. Then
A C N(Ao,€/2), which implies that pg (Ao, A) < €/2. Let 6 = min{e, dx (v, 2;) | i # j}/3 > 0. Note that
By, (24,0) N Bay (zj,6) = 0 for every i # j. Using Urysohn maps, we can construct a map f: X — Y
such that f(X\U; Bay (2:,6)) = {0}, f(Bay (zi,6)) C [0,y;] and f(x;) = y; foreachi =1,--- ,n. Then
pr(Lf, Ao) < 0 < ¢€/3. It follows that

pr(Lf, A) < pa(Lf, Ao) + pu(Ag, A) <€/3+¢€/2 <e
Therefore [C(X x Y) is dense in F. [
We show the uniformly local path-connectedness of |C(X,Y") as follows:

Lemma 6.2.3. If there are no isolated points in X, then [C(X,Y) is uniformly locally path-connected
with respect to pgr.

Proof. Let € > 0 and A, A’ € |[C(X,Y) such that py(A4, A’) < ¢/2. We define a path h : I — [C(X,Y)

from A to AU A" by h(t) = AUT(A"), where Lemma 6.2.2 guarantees h(I) C JC(X,Y). The continuity
of h follows from the one of ¥ and Lemma 6.1.1. In fact,

pr(h(t), h(t") = pr(AUT(A"), AUT(A) < pr(Te(A)), T (A)).
Moreover, A C h(t), h(t') € AU A’, and hence
pr(h(0), h(t)) < prr(A, AU A) = pig(A, ) < /2.

It follows that diam,, h(I) < pu(A, A’) < €/2. Consequently, A is connected with AU A’ by an €/2-path.
Similarly, A’ is connected with AU A" by an €/2-path. Therefore A and A’ are connected by an e-path.
Thus the proof is complete. [
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Now, we shall prove Theorem 6.2.1.

Proof of Theorem 6.2.1. By Lemma 6.2.3, |C(X,Y) is a Peano continuum. Then, according to the Wo-
jdystawski Theorem [65], refer to [42, Theorem 5.3.14], we have Cldy (JC(X,Y)) is an AR. Identifying
A€ Cldy(X xY) with {4} € Cldy (Cldy (X xY)), we can regard Cldy (X x Y) C Cldy (Cldy (X x Y)).
Then the union operator

|J: Cldy (Cldy (X xY)) 5 Ars | JA € Cldy(X x Y)

is a retraction, see [42, Proposition 5.3.6]. As is easily observed due to Lemma 6.2.2, we have the
image (J(Cldy ({C(X,Y))) = {C(X,Y). It follows that JC(X,Y") is a retract of the AR Cldy ({C(X,Y)).
Therefore JC(X,Y) is an AR. O

6.3 The homotopy denseness of [C(X,Y) in |C(X,Y)

In this section, we will prove the following theorem:
Theorem 6.3.1. If X has no isolated points, then [C(X,Y") is homotopy dense in |C(X,Y).

Proof. We only need to verify condition (hd) With respect to a = 10 in Lemma 1.2.7. Let K be a locally
finite countable simplicial complex and f : K(©) —|C(X,Y). We shall construct a map f : | K| =]C(X,Y)
such that the restriction f|x© = f and diam,,, f(c) < 10diam,, f(c©) for every o € K. For simplicity,
let ¢, = diam,,, f(0(®)) >0 for each 0 € K\ K(©). Let Ky be the full subcomplex of K such that

0~ {fv e KO f(St(v, K)©) is a singleton},

where St(v, K) is the star at v in K. Note that f(c(?) is a singleton if ¢ € K and o N |Ky| # 0. We
define K1 = {0 € K | o N|Ky| = 0}. For every v € K%O), since diam,,,, f(St(v, K)(®) > 0, we can define

€, = min{e, | 0 € St(v, K), e, > 0} > 0.

Let fo: |Ko| =1C(X,Y) be the map such that fo(o) = f(c(?) for each o € Kj.
Since K is locally finite and X has no isolated points, we can choose a finite sets A, C X and §, > 0,
v e K£0)7 so that

(1) pu(f()la,, f(v) < e,

(2) Bay(a,0,) N Bay(d',0,) =0ifv#0 € K9 v and o/ are contained in some o € K, a € A,, and
a e Ay,

(3) Bay(a,d,) N By (d,d,) = Difa#d €A, andve K,

where f(v)[a, = Ugea, 10} X [0, f(v)(a)]. First, we will construct a map f1 : |K1| =]C(X,Y) such that

pu(fi(v), f(v)) < €, for each v € K( ) and diam,,, fi(o) < Te, for each o € Kj. For every v € Kﬁo), we
define fi(v) €JC(X,Y) as follows:

_ [ rU)) *6— dx (e AN/ i dx (e A) <
fl(v)(:v){ o : £ dx (e, Ay) > by

Since f(v)|la, C fi(v) C f(v), it follows that pg(f(v), fi(v)) < pu(f(v)|a,, f(v)) < &,. Denote the
barycenter of ¢ € K7 by 6. For 0 € K1, let

= |J h) elox,y).

vEr(0)
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For each z € o, there exist faces 09 < 01 < -+ < 0, < 0 of o such that z = Z?:o t;o;, where Z?:O ti=1
and t; > 0. Then we can define

fi(z) = O%ﬁ(@),iq) clC(X,Y).

i=0 i=j

For each o € K and v € ¢(%, the continuity of f; |st(v,8d K)ne follows from the ones of both the map 7 and
the union operator on Cldy (X x Y'), where Sd K is the barycentric subdivision of K. Since K is locally
finite, it follows that f; is continuous. Thus we have a map f; : |K;| =]C(X,Y). For each o € K7, let
v e o® and z € |St(v,Sd K)| No. By the definition of f;, we have

hw) c fiiz)C fi@) = |J ).

v'€c(0)

Then it follows that

(). £10) < o (A0, U 10)) < pui) ) + o (500, U 100)

v' € (0) v €c(0)

Fi(v), f(v)) + max{pg (f(v), f() | v/ € oD}
F1(v), f(v)) + diam,,, f(0 @) < e, + €5 < 2¢,.

For each z,2/ € o € Kj, we can choose vertices v,v" € ¢ such that z € |St(v,SdK)| and 2’ €
| St(v'), Sd K|. Then we have

pr(fi(2), fi(2) < pr(fi(2), fi(v)) + pu(fi(v), f(0) + pr(f(v), f())
+ pu(f(W), i) + pu(fi(v'), f1(2)
<265t €+ €5+ €y + 26, < Te,.

Consequently, diam,,, fi(o) < 7e, for each o € K.

Next, we construct a map fy : |[K|UK©) xT —|C(X,Y), where | K| is identified with |K|x {0} C |K|xI.
Let filjx,| = fo and fi||k,| = f1. For each z € [K|\ [KoU K|, there exits o9 € Ko and o1 € K such that
z is contained in the join of op and o7, and hence z can be uniquely written as follows: z = tzp+ (1 — 1)z
for some zy € 0g, 21 € 01 and t € I. Then we can define

fo(z) =7(fo(20),t) U fi(z1) €JC(X,Y).
Observe that f.(z0) = fo(z0) and f.(21) = fi(21). For each (v,t) € KO x I, we define
fe(v,t) =7(f(v), 1) U f1(v),
where f.(v,0) = fi(v) and fi(v,1) = f(v).
Thirdly, we can obtain a map g : |K| — |K|UK©® x I so that g(v) = (v,1) for each v € K and

g(o) =0 Uc® x T for each 0 € K\ K. In fact, let v € K(©) and z = 31", t;6; € | St(v,Sd K)|, where
o010, €K,Y " t;=1andt; > 0. We define

()_ (1—2t0)z+2t0v ift0§1/2,
IEI=N (0,2t — 1) if tg > 1/2.

Now, the desired map f : | K| =]C(X,Y) can be defined by f = f«g. Asis easily observed, f]| K

= f.
We will show that diam,, f(c) < 10¢, for every 0 € K. When o € Ky, we have diam,, f(o) =
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diam,,, f(c(®) = 0. For each o € K7, since f(c) = f1(0) U fu(c(® x I), it follows that

diam,,,, 7(0) < diam,, fi(0) + diamy,, f.(o0 x 1)

< diamy, f(0) + diamy,, [(0®) +2max{pn(fi(v), f(v)) | v € 00}

< Tes + €5 + 265, = 10¢,.
When o € K\ (Ko U K1), we can take oy € Ky and o1 € Kj so that o is the join of op and o;. Since
o € St(vg, K) for any vy € 0'(()0) C Kéo), f(c©) is a singleton. For each z = tzg + (1 — t)z; € o, where
20 € 00, 21 € 01 and 0 < t < 1, choose v € 050) such that z; € |St(v,SdK)|. Then f(c@) = {f(v)},
fi(v) C fi(21) C f(v) and fi(2) =T (fo(20),t) U fi(z1) C f(v). Hence we get

pi(fe(2), [0 D)) = pr(fe(2), f() < pr(f1(v), f(v) < € < €.

Therefore for each z,2’ € o,

pi(f:(2), f+(2)) < pr(fo(2), F(6' D) + pu(f(6'V), () + diam,,, f(0©) < &5 + e5 = 2¢5.

Consequently, diam,,, fi(0) < 2¢,. Since

diam,, £.(o0 x T) < diam,,, f(0©) + max{pa(/(v), i(0)) |v e 0"} < o, < o,
it follows that
diam,,, f(o) < diam,,, f.(0) + diam,,, f.(0@ x I) < 2¢, + €, = 3¢,
Thus the proof is complete. [

6.4 The space |C(X,Y) is an F,; set in [C(X,Y)

A dendrite Y has an order < defined as follows: x < y if = € [0,y]. For each d,e > 0, let A(d, €) be the
set which consists of A € [C(X,Y") such that the following condition is satisfied:

e Forall z,2' € X, if dx(z,2') < § and y,y' € Y are maximal points of A(x), A(z'), respectively, then
dy (y,y') < e

To prove that JC(X,Y) is an F,s set in {C(X,Y), we need the following lemma.

Lemma 6.4.1. For each §,e¢ > 0, the set A(d,€) is closed in JC(X,Y).

Proof. Take any sequence {4, },en in A(, €) that converges to A in {C(X,Y"). To show that A € A(J,¢€),
let (z,y),(2',y") € A such that dx(z,2’) < ¢ and y,y are maximal in A(x), A(z’), respectively. Since
A, — A, there exist (zn,yn), (2],,yh) € Ay such that (x,,y,) — (x,y) and (2),,y),) — (2',y'), see [42,
Lemma 5.3.1]. Without loss of generality, we may assume that dx (x,,z],) < § for every n € N. For each
n € N, there exist maximal points z, € A, (z,) and z], € A, (z},) such that z, >y, and 2/, > y/,. Because
Y is compact, replacing (z,)nen and (z],)nen with subsequences, we can assume that z, — z € Y and
2], — 2/ € Y. Using Lemma 5.3.1 of [42] again, we have z € A(x) and 2’ € A(z’). Then y is contained
in the arc [0, z] from 0 to z. Indeed, if not, we have dy(y, [0, z]) > 0. Since y,, — y and z, — 2z, we can
choose m € N so that dy (v, ym),dy (2, zm) < dy(y, [0, z])/2. Note that y,, € [0, z;,]. Then there exists a
point p € [0, z] such that dy (ym,p) < dy (2, zm) < dy(y, [0, z])/2 by Lemma 1.5.1. It follows that

dY(y>p) < dY(f‘/?ym) + dY(ymyp) < dY(y7 [07 Z])/Q + dY(y7 [07 Z])/Q = dY(ya [07 Z])a
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which is a contradiction. Hence y € [0, z]. By the maximality of y in A(x), we have y = z. Similarly,
/ /
y =z
Since each A, € A(d,¢), dx(zn,z]) < § and zp,z] are maximal in A(zy), A(x}), respectively, it
follows that dy (zn,2),) < €. Recall that z, — 2z =y and 2], = 2/ = ¢/, so dy(y,y’) < e. Consequently, we
have A € A(d,€). Thus the proof is complete. [

Now, we show the following;:
Proposition 6.4.2. The space |C(X,Y) is an Fy5 set in JC(X,Y).

Proof. By virtue of Lemma 6.4.1, it suffices to show that

X y)=) U Aa/m,1/n).

neNmeN

From the definition, we need only to prove that A(x) has the unique maximal point in Y for every
A€ NpenUpnen A(l/m,1/n) and € X. Let y,' € Y be maximal points in A(x). For each n € N,
we can choose m € N such that A € A(1/m,1/n), which implies that dy (y,vy") < 1/n. It follows that
dy (y,y") = 0, that is, y = y'. Therefore the maximal point of A(z) is unique, and hence A is the
hypo-graph of some continuous function. This completes the proof. [J

6.5 The Digging Lemma

The following lemma will play an important role for the rest of this chapter.

Lemma 6.5.1 (The Digging Lemma). Suppose that Z is a paracompact space, ¢ : Z —[C(X,Y) is a map,
and a € X is a non-isolated point. Then for each map € : Z — (0,1), there exist maps ¢ : Z —|C(X,Y)
and 6 : Z — (0,1) such that for each z € Z,

(a) pr(9(2),9(2)) < e(2),

(b) ¥(2)(Bay (a,6(2))) = {0}.

Proof. For each z € Z, let {(z) = sup{n > 0| pu(é(2), ¢(z)\X\BdX (am) < €(2)}. Since a is not isolated
and ¢(z) €JC(X,Y), we have £(z) > 0. We shall prove  : Z — (0, 00) is a lower semi-continuous function.
Fix any z € Z and n € (0,£(z)). From the definition of £(z),

() Pr(B(2), S\ (me)-ny2y) < (1 — De(2)/ for some 7 € N,

Let t = min{n/2,¢(z)/3n}. Since ¢ and € are continuous, the point z has a neighborhood N in Z such
that if 2’ € N, then py(¢(2), d(2)) < t and |e(2) — €(2’)| < €(2)/3n. We shall show that for every 2’ € N,
£(2') > &(z) — n. Take any (z,y) € ¢(Z/)’de(a,é(2)fn)‘ Since py(¢(2), ¢(2")) < t, we can choose (2/,y) €
8(2) so that p((z, ), (@',1/)) < ¢ < 1/2. Then dx(z,2') < /2, that is, (2/,5") € (2) 1, (2)-ny2)- Dt
to (%), there exists (z”,y") € ¢(2)|x\Bu, (a,6(x)—n/2) Such that p((2',y), (2", y")) < (n — 1)e(2)/n. Since
pr(¢(z), p(2")) < t, we can find a point (2", y"") € ¢(2’) such that p((z”,y”), (", y")) <t <n/2, which
implies that =/ € X \ By, (a,&(z) —n). Then it follows that

p((z,), (@, y")) < p((z,y), (@, 9)) + p((2,), (", y")) + p((2",y"), (=", y"))
<t+(n—1)e(z)/n+t<(2/3n+ (n—1)/n)e(2)
=e(2) —€(2)/3n < €(2').

Thus £ is lower semi-continuous.
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By Theorem 2.7.6 of [50], we can obtain a map § : Z — (0,1) so that §(z) < £(z)/2 for each z € Z.
Now, we can define the desired map 1 : Z —]C(X,Y) as follows:

¥(2) = ¢(2)x\By (a,25()) Y Bax (a,6(2)) x {0}
U {(xay) €EX XY | 6(2) < dX(:Uaa) < 2(5(2)?y € [Oar(max¢(z)(w)ad)(($aa)/d(z) - 1)]}
Remark that ¢(z) €/C(X,Y) is the hypo-graph of the map X > x — max ¢(z)(z) € Y. By the definition
of 1, it is easy to show that v satisfies conditions (a) and (b).

Claim. The function ¥ is continuous.
For every z € Z and € > 0, by Lemma 1.5.1, there exists 6; > 0 such that ; < 1/2 and

dy (y,y1) < 61 and |t — t1| < 01 = dy (r(y,t),r(y1,t1)) < €.
Take d2 > 0 such that d; < §;/2 and 0 diamg, ¥ < e. We can choose d3 > 0 so that d3 < §(z) and
a,b € [6(2)/2,50(z)/2] and |a — b| < d3 = |b/a — 1| < Js.

Since ¢ and § are continuous, there exists a neighborhood U of z such that for each 2’ € U, pg(6(2), ¢(2')) <
min{e, §(2)01/2,03/4}, |1/0(z) — 1/0(2")| < 261/95(2) and |§(z) — §(2")| < d3/8. We shall verify that
pu(V(2),1¥(2") < € for each 2/ € U. Take any (z,y) € 9¥(z). It is sufficient to show that (z,y) €
N, e).

Case I. dx(z,a) < 6(z)
Then we have y = 0. So (z,y) = (z,0) € ¥(2).

Case II. 0(z) < dx(x,a) < 0(z) + 03
Then |dx(z,a)/0(z) — 1] < d2, so

dy (0,y) < dy(0,r(max ¢(2)(z), dx (x,a)/0(2) = 1)) = (dx(z,a)/6(2) = 1)dy (0, max ¢(z)(z))
< dgpdiamg, YV <e.

Therefore p((z,y), (z,0)) = dy(0,y) < e.
Case III. dx(z,a) > 6(z) + 03
Since pr(¢(2), ¢(2')) < min{e, 6(2)d1/2,d3/4}, there exists a point (x1,y1) € ¢(z') such that

p((2, max é(=)()), (1, 41)) < minfe, 5(=)51/2, 55/4}.

Then we have
dx(z,z1) < p((z,max ¢(z)(x)), (x1,y1)) < min{e, 6(2)d1/2, d3/4}.

Moreover, |6(z) — 6(2')| < d3/8, and hence
d_)((:rl,a) > dX(x,a) — dx(x,:l,‘l) > (5(2) + 03 — 53/4 > 5(2’/) — (53/8 + 03 — 53/4 > 5(2’/).

If dx(z1,a) > 26(2'), we get (x1,y1) € ¥(2'). Since y € [0,max ¢(z)(z)], by Lemma 1.5.1, we can find
y2 € [0,y1] such that dy (y,y2) < dy (max ¢(z)(x),y1) < e. It follows that (x1,y2) € 1(z') and

p((m,y), ($17y2)) = max{dX(xaxl)adY(yva)} < €.

Now, we need only to consider the case that 6(z') < dx(x1,a) < 20(2"). Let y3 = r(y1,dx(z1,a)/6(2")—
1). Then ys € [0, r(max 6(=') (1), dx (1, ) /6()) — D], s0 (21,55) € ¥(=").
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Case III-i. 0(2) + 03 < dx(x,a) < 26(2)
Then we have

|dx (z,a)/8(2) =1 = (dx(21,a)/0(z") = 1)| < [1/8(2) — 1/8(2")|dx (21, a) + |dx (2, a) — dx(21,a)|/d(2)
<[1/6(2) = 1/6(2")[(dx (2, 21) + dx (x,a)) + dx(z,21)/5(2)
< 201(0(2)/4426(2))/90(2) + 6(2)d1/26(2)
=01/2+61/2 = 01.

On the other hand, we get
dy (max ¢(2) (), y1) < p((z, max ¢(z)(2)), (x1,y1)) < 0(2)01/2 < b1.
It follows that
dy (r(max ¢(z)(z), dx (x,a)/0(z) — 1),ys)
= dy (r(max ¢(z)(z), dx (v,a)/0(z) — 1),7(y1,dx(21,a) /0(z') — 1)) <.
Using Lemma 1.5.1, we can choose y4 € [0, y3] so that
dY(yv y4) < dY(T(maX¢(Z)($)7 dx(.%', a)/d(z) - 1)7 ?Js) < €.
Then (w1,y4) € ¥(2') and p((z,y), (z1,94)) = max{dx (z,21),dy (y, 1)} <€
Case III-ii. 26(z) < dx(z,a) < 26(z) + d3/2
It follows that

20(2") — dx (21, a)] < [20(2") = 26(2)| +[20(2) — dx (2, a)| + |dx(2,a) — dx(z1,a)]|
< 53/4—|- 53/2 + 53/4 = 03.

Therefore we have
11— (dy(21,a) /(') — 1)| = |2 — dx (z1,0)/5(2)| < 265 < 6.
Observe that
dy (max1h(2)(2), ys) = dy (max ¢(2)(z), ys) = dy (r(max $(=)(2), 1), vy, dx (21, a) /(') ~ 1)) < e.

Due to Lemma 1.5.1, there exists y5 € [0,ys3] such that dy(y,ys) < dy(max(z)(x),y3) < e. Then

(3717 3/5) S 1/1<Zl) and p(<$7 y)7 (xla 95)) = maX{dX(x7 xl)a dY(y7 y5)} <e.
Case III-iii. dx(z,a) > 26(z) + 03/2
Note that

dX(ml,a) > dX(a;,a) — dx(l',m'l) > 2(5(2) +(53/2 — (53/4 > 2(5(2’/) — 53/4+ (53/2 — (53/4 = 2(5(2/),

which is a contradiction.
Consequently, (z,y) € N(1(2'),€). Similarly, ¥(z') C N(¢(2),€). Thus pg(¥(2),%(2") < €, and
hence v is continuous. [
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6.6 The disjoint cells property of |C(X,Y)
In this section, we shall show the following proposition:
Proposition 6.6.1. If there are no isolated points in X, then [C(X,Y') has the disjoint cells property.

Proof. Let f,g : Q — JC(X,Y) be maps and 0 < € < diamg, Y. Since JC(X,Y’) is homotopy dense
in JC(X,Y) by Theorem 6.3.1, we can obtain maps f' : Q =] C(X,Y) that is e-close to f, and ¢ :
Q —JC(X,Y) that is €/3-close to g. Take a non-isolated point xy € X. Using the Digging Lemma 6.5.1,
we can find a map ¢” : Q —=]C(X,Y) such that ¢” is €/3-close to ¢’ and ¢”(z)(xo) = {0} for all z € Q.

Define a map ¢"” : Q — |C(X,Y) as follows:

g"(2) = ¢"(2) U{xo} x Bqay, (0,¢/3).

Then pg(g”(2),9" (%)) < €/3 for every z € Q, and hence ¢"” is €/3-close to g”. So it is e-close to g. Take
any y € Y with dy(0,y) = ¢/3. Since ¢"(z) €|/ C(X,Y) and ¢"(2)(zo) = {0} for each z € Q, we can
choose § > 0 so that B,((zo,y),9) Ng"(z) = 0. This implies that ¢"(z) is not the hypo-graph of any map
because zg is a non-isolated point. Hence ¢”'(z) ¢]C(X,Y’). Consequently, f/(Q) N g¢g”(Q) = 0. Thus
JC(X,Y) has the disjoint cells property. [

Combining Theorem 6.2.1, Proposition 6.6.1, and Torunczyk’s characterization of the Hilbert cube,
see Corollary 1.3.3 in Chapter 1, we can immediately obtain the following:

Corollary 6.6.2. If X has no isolated points, then {C(X,Y) is homeomorphic to the Hilbert cube Q.

Due to Proposition 6.4.2, |C(X,Y) is an F,s set in JC(X,Y) in the above. Hence we conclude as
follows:

Corollary 6.6.3. If X has no isolated points, then |C(X,Y) is an absolute F,s set.

6.7 Detecting a Z,-set in |C(X,Y) containing |C(X,Y)
In this section, we prove the following proposition:

Proposition 6.7.1. If there are no isolated points in X, then JC(X,Y) is contained in some Z,-set in

1C(X,Y).
We can easily prove the following:

Lemma 6.7.2. Let Z be a Z-set in M that is homotopy dense in N. Then the closure Z of Z in N is a
Z-set in N.

Proof. Take any open cover U of N. Let V be an open cover of N such that V *< U. Since M is
homotopy dense in N, we can find a map f : N — M such that f is V-close to idy. Moreover, since Z
is a Z-set in M, there is a map g : M — M such that g is V|y-close to idy; and g(M) N Z = (), where
Vv ={VNM|V €V} is an open cover of M. Then the composition gf : N — M is U-close to idy
and gf(N)NZ C g(M)N Z = (). Consequently, Z is a Z-set in N. [J

The next lemma is very useful for detecting Z-sets in JC(X,Y).

Lemma 6.7.3. Suppose that F = EU Z is a closed set in {C(X,Y) such that Z is a Z-set in JC(X,Y),

and for each A € E, there exists a point a € X with A(a) = {0}. Then F is a Z-set in JC(X,Y).
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Proof. Let € : |C(X,Y) — ( 1). It suffices to construct a map ¢ : JC(X,Y) — JC(X,Y) such that
d(JC(X,Y))NF =0 and pr(o(A),A) < e(A) for each A € |C(X,Y). Since Z is a Z-set, there exists a
map ¢ : JC(X,Y) = JC(X,Y) \ Z such that pg(¢p(A), A) < €(A)/2 for each A € |C(X,Y). Fix a point
yo € Y \ {0}. We define a map ¢ : [C(X,Y) — JC(X,Y) by

¢<A) - 1/1(14) U F([()? yO]? t(A))7

where t(A) = min{e(A), pr(¥(A), Z)}/(2diamg, Y) > 0. Obviously, ¢(A)(z) # 0 for each x € X, that
is, p(A) ¢ E. Observe that

pr(9(A), ¥(A)) < t(A)dy(0,10) < t(A) diamg, Y < min{e(A), pr(¢(A), Z)}/2.
Hence ¢(A) ¢ Z and
pr(#(A), A) < pr(P(A),p(A)) + pr(V(A), A) < e(A)/2+ €(A)/2 = €(A).

The continuity of ¢ follows from the ones of 7, ¢ and ¢, and Lemma 6.1.1. This completes the proof. [J

Proof of Proposition 6.7.1. Take a countable dense set D = {d,, | n € N} in X. For each n,m € N, let

Fom = {1f €1C(X,Y) | dy (f(dn),0) > 1/m}.

As is easily observed, F), ,, is closed in |C(X,Y’). For each map € :/C(X,Y) — (0,1), by the Digging
Lemma 6.5.1, we have ¢ :|C(X,Y) —=]C(X,Y) such that pg(Lf, o(Lf)) < e(lf) and ¢(Lf)(d,,) = {0} for
1f €lC(X,Y). Obviously, ¢(JC(X,Y)) N F,,, = 0. Thus each F,,, is a Z-set in [C(X,Y). It follows
from Theorem 6.3.1 and Lemma 6.7.2 that the closure F}, ,, is a Z-set in JC(X,Y).

Let F = Mpen NimenC(X,Y) \ F, ). It remains to prove that the closure F of F in [C(X,Y) is a
Z-set. Observe that

F={lf €el]C(X,Y) | f(d,) = 0 for each n € N} = {|0},

where 0 : X — {0} C Y is the constant map. Hence F = {0} = {X x {0}}. According to Lemma 6.7.3,
Fis a Z-set in JC(X,Y). Consequently, JC(X,Y) is contained in the Z,-set F' U Unnen Frm- O

6.8 The strong (9, F,s)-universality of (|C(X,Y),|C(X,Y))

In this section, we shall show the main theorem. Let (X1, X2) be a pair of spaces, and let C; and Ca be
classes. We say that (X7, X2) is strongly (C1,Ca)-universal if the following condition holds:

o Let Zy € C1, Zy € Co, K a closed subset of Z1, and f : Z; — X; a map such that f|x is a Z-
embedding. Then for every open cover U of X, there exists a Z-embedding g : Z; — X7 such that
g is U-close to f, glx = flx and g7 (X)) \ K = Z5 \ K.

A pair (X1, X3) of spaces is (C1,Co)-absorbing! provided that the following conditions are satisfied:
(i) X1 € C1 and X2 c CQ;
(ii) X9 is contained in a Z,-set in X7;

(iii) (Xy,X2) is strongly (C1,Cz)-universal.

We modify the definition of [10].
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Denote the class of compact metrizable spaces by 2y, and the one of separable metrizable absolute Fys
spaces by F,s. According to Theorem 1.7.6 of [10], the following can be established.

Theorem 6.8.1. Let X and Z; be topological copies of the Hilbert cube Q. If pairs (X1, X2) and (Z1, Z2)
are (Mo, Fos)-absorbing, then there exists a homeomorphism f : X1 — Z1 such that f(X3) = Z5.

Let ¢1 = {(2;)ien € Q | lim; 0 z; = 1}. The following fact is well known.

Fact 4. The pairs (Q,co) and (Q,c1) are (M, Fys)-absorbing, and hence (Q,cp) is homeomorphic to
(Qa Cl)'

We needs the following lemma to verify the strong (9, Fys)-universality of (JC(X,Y), JC(X,Y)).
Lemma 6.8.2. Let o, 200 € X, m € N, such that {ry, = dx(Tm,%Too)}men 1S a strictly decreasing
sequence conversing to 0, and let yo € Y \ {0} such that dy(0,yp) < 1. Suppose that g : Z — Q is an

injection from a space Z to the Hilbert cube Q and ¢ : Z — (0,1) is a map. Then there exists a map
O Z — |C(X,[0,y0]) satisfying the following conditions:

1) ® is injective;

2) pa(®(2), X x {0}) < d(2) forall z € Z;

®(2)(X \ Bay (Too, m2k)) = {0} for all z € Z with 27 < §(2) <271 ke N;
z € g~ Y(c1) if and only if ®(z) €]C(X,[0,v0]);

D(2)(rs0) = [0,7(y0,0(2))] for all z € Z.

Proof. For each k,m € N, let Z, = {z € Z |27% < §(2) <271} and S, = {z € X | 7 < dx(2,700) <
Tm—1}. Note that Z = Upeny Zks Tm—15Tm € Smy Upmen Sm = X \ {2}, and Sy, N S, # 0 if and only if
Im —m’| < 1. We define maps ¢ : Zx — I and ¢, : S, — I for each k,m € N by ¢p(2) = 2 —2%§(2) and
Um(z) = (dx (2, 200) — Tm)/(Tm—1 — Tm), respectively. Then ¥, (xy,—1) = 1 and ¥, (z,,) = 0. For each
i,k €N, let fik : Zr, — 1 be a map defined by

4

(
(
3
(
(5

) P
)
)
)

0 ifi=1,
(1 — or(2))d(z) if i =2,
) =< (1—nr(2)8(2)g(2)(1) if i =3,
5(2) ifi=2j,j>2,
6(2)((1 = ¢r(2))g(2)((i —1)/2) + dr(2)g(2)((i — 3)/2)) ifi=2j+1,j>2.

Remark that fF(2) < §(2) for every z € Z. We define a map @y, : Z, — |C(X,[0,%0]), k € N, as follows:

Dp(2) ={z € X |dx(x,250) > 1o} X {0} U{zsc} X [0,7(y0,d(2))]

U U{(ajvy) e X xY | T E SQk-I—’iay € [O,T(yo,ai?(ﬂf, Z))]}7
€N

where af(m, z) = Yopri(x )fk( )+ (11— wgkﬂ 7;1 . Then ®y(z) = Pp41(2) for every z € Z; N Zgy1.
Indeed, take any z € Zx N Zi41. Since 6(z) = 2_ , we have ¢(z) = 1 and ¢p11(2) = 0. Observe that
fr(2) = f¥(2) = f5(2) = 0. Hence for each r e X,

af (2, 2) = Yor1 (2) f1 (2) + (1 = thors1(2)) f5(2) = 0 and
ab(x,2) = Yopp2(2) 5 (2) + (1 — Yopya(2)) f5(2) = 0.
It follows that

i(2)({ € X | dx (2, 200) > ransa}) = {0} = B (2)({ar € X | dx (@, 200) > ransa}):
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We see f§(2) = 0= f{T(2), fj15(2) = 8(2)9(2)(j) = fa;54(2) and f3,5(2) = 8(2) = f5;"(2) for all
j > 1, that is, fF ,(2) = fF(2) for all i > 1. Therefore for each 2 € Sopyira, i > 1,

i (2)(2) = [0,7(yo, af (2, 2))] = [0,7(y0, 07 (2, 2))] = Ppya (2) ().

Moreover, ®x(2)(zs0) = [0,7(Y0,0(2))] = Pr11(2)(To0). Thus Pg(z) = Pri1(2).

Now, we can obtain the desired map ¢ : Z — |[C(X,[0,yo]) defined by ®(z) = Pp(z) if z € Z.
It follows from the definition that ® satisfies conditions (2), (3) and (5). So it remains to verify that
conditions (1) and (4) hold.

Condition (1) @ is injective.
Let 21,22 € Z such that ®(z1) = ®(22). Then

[0,7(y0,6(21))] = ®(21)(7e0) = P(22)(2os) = [0,7(y0, 0(22))],
which implies that d(z1) = §(z2). Hence both of z; and z9 are contained in Zj for some k € N and
dr(z1) =2 — 286(21) = 2 — 286(21) = dr(22).
Since Yok 1i(xor4;) = 0 for all i € N, we have

(0,7 (o, 111 (21))] = Ppl21) (@2ni) = Pr(22)(T2rs) = [0,7 (o, 1 (22))],

which implies that ff(zl) = ff(zz) for every j > 2. In the case ¢y (z1) = 1, for each j € N, we have

9(z1)(4) = frj4a(21) = [ 1(22) = 9(22) (),
In the case ¢(z1) # 1, we have

(1= dr(21))d(21)g(21)(1) = f5 (1) = f5(22) = (1 = dx(22))8(22)9(22)(1),
which implies that g(z1)(1) = g(22)(1). Assume that g(z1)(:7) = g(22)(i) for i € N. Then

)
3(z21) (1 — @r(21))g(21) (i + 1) + d(21)9(21) (1)) = fris(21) = fhiys(22)
= 0(22)((1 — dr(22))9(22) (i + 1) + ¢r(22)9(22)(4)),

so g(z1)(i + 1) = g(22)(i + 1). By induction, for all j € N, we get g(z1)(j) = g(22)(j). It follows that
g(z1) = g(22). Since g is injective, z1 = z3. Therefore ® is injective.

Condition (4) z € g~!(cy) if and only if ®(z) €/C(X, [0, yo])-
We define a function h(z) : X — [0,y0] C Y for each z € Zj, and k € N as follows:

0 if dX(x7xOO) 2 T2k,
r(yo,aF(x,2)) if x € Soprs,i €N,
r(y0,9(2)) if 2 = Too.

Observe that [h(z) = ®(z) and h(z) is continuous on X \ {z}. When h(z) is continuous at the point z«,
®(2) =lh(z) €JC(X,[0,0]). So we need only to show that z € g~*(c1) if and only if h(z) is continuous
at Too-

First, we shall prove the only if part. Take any € > 0. We may assume that € < §(z). Since g(z) € cy,
there exists ig € N such that for every i > ig, g(z)(i) > 1 — €/6(z). Fix any point z # x in the
neighborhood {zs} U Ui22i0+3 Sokti of oo in X, where z € Z. Then x € Sy, for some i > 2ig + 3.
When i is even, fF(z) = §(z). When i is odd,

() = 8(2)((1 = d(2))g(2) (i = 1)/2) + du(2)g(2)((i — 3)/2))
5(2)((1 = ¢x(2))(1 — €/0(2)) + dr(2)(1 — €/6(2))) > d(2) — €.

h(z)(z) =
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Hence we have
af (z,2) = Yopyi(@) f7(2) + (1 = Porra(@)) 1 (2)
> o4 () (0(2) — €) + (1 — Yhor+i(2)) (0(2) — €) = 3(2) —

It follows that

dy (h(2) (s ), h(2)(x)) = dy (r(yo, 8(2)), m(y0, @ (2))) = (8(2) — af (2))dy (0, y0)

Consequently, h(z) is continuous.
Next, we shall show the if part. Let ¢ € (0,1) and € = e¢r(2)d(z), where z € Zj with ¢x(z) > 0.
Since h(z) is continuous at x., we can choose ig > 5 so that for any = € X,

dx (T, Too) < Topriy = dy (h(2)(2), h(2) (7)) < €'dy (0,%0).

Recall that ¢, (z,,) = 0 for all m € N. Therefore for every ¢ > i,

dy (r(yo, fF1(2)),7(40,0(2))) = dy (r(yo, Yor+i(Tarrs) [7(2) + (1 = topri(wonsi)) f1(2)), (10, 6(2)))
= dy (7(y0, &F (Tor4i, 2)), (Y0, 6(2)))
= dy (h(2)(w2k4), h(2)(Te0)) < € dy (0,90).

Note that for all ¢ > ig + 1,

3(2) = ff(2) = dy (r(yo. [ (2)), (90, 6(2))) /dy (0, y0) < €.
It follows that for any j > (i, — 2)/2,

(¢
9(2)(7) = (f543(2)/6(2) = (1 = @r(2))9(2) (G + 1) /bw(2) = (f543(2)/6(2) = (1 = du(2))) /b (2)
> ((6(2) = €)/0(2) = (1 = 61(2)))/ Pk (2) = ((0(2) — €61(2)6(2))/0(2) — (1 — ¢k (2)))/$n(2)

=1—-e
Hence g(z) € c¢;. Thus the proof is complete. [

Proposition 6.8.3. If X has no isolated points, then the pair (JC(X,Y),|C(X,Y)) is strongly (Mo, Fus)-
universal.

Proof. Let Z € My, C € Fus, K a closed subset of Z, ¢ >0 and ® : Z — |C(X,Y) a map such that the
restriction @|x is a Z-embedding. We shall construct a Z-embedding ¥ : Z — [C(X,Y) so that U is e-
close to @, | = ®|x and U1 (|C(X,Y))\K = C\ K. Since ®(K) is a Z-set in |C(X,Y), we may assume
that ®(K) N ®(Z \ K) = (). Define a map 6 : Z — [0,1) by 6(z) = min{e, py(®(z), ®(K))}/4. Observe
that 0(z) = 0 if and only if z € K. Since |C(X,Y) is homotopy dense in |[C(X,Y) by Theorem 6.3.1,
there exists a homotopy H : JC(X,Y)xI — |C(X,Y) such that Hy = idm, H,(]C(X,Y)) cl{C(X,Y)
for all t € (0,1] and py(H:(JA),JA) <t for each J|A € |[C(X,Y)and t € I. Let h: Z — |[C(X,Y) be
a map defined by h(z) = H(®(z),0(z)). Remark that pg(h(z),®(2)) = pg(H(®(2),0(2)), ®(2)) < 4(2)
for every z € Z, in particular, h(z) = ®(2) for all z € K, and h(Z \ K) C]C(X,Y). Take a non-isolated
point zo, € X. According to the Digging Lemma 6.5.1, we can obtain maps ¢ : Z \ K —]C(X,Y) and
r:Z\ K — (0,1) so that for each z € Z\ K,

(a) pr(h(z),9¥(2)) < 6(2),
(b) ¥(2)(Bay (20, 7(2))) = {0}
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Let Z, = {z € Z | 27F < §(2) < 271} ¢ Z\ K for each k € N. Then each Z; is compact and
Z\ K = Upen Zi- Since o is a non-isolated point, there exists a point 21 € X \ {#o} such that
dx(x1,%00) < min{l,7(2) | z € Z1}. By induction, we can choose x,, € X \ {z} for each m > 2 so that
dx (Tm,Too) < min{l/m,dx(Tm-1,%x0),7(2) | 2 € Zn}. Let ry = dx(2m, o) for each m € N, so 1y,
converges to 0 as m intends to co. Note that for every z € Z and k € N, 9(2)(Bay (o0, 7)) = {0}. Since
the pair (Q, c1) is strongly (9, Fus)-universal due to Fact 4, we can take am embedding g : Z — Q so
that g~'(c1) = C. Choose yg € Y \ {0} with dy (0, ) < 1.

Using Lemma 6.8.2, we can obtain a map ¢’ : Z\K — [C(X, [0, yo]) satisfying the following conditions:

(1) ¢ is injective;

2) pr(¥'(2), X x {0}) < 8(2) for all z € Z\ K;

(3) W'(2)(X \ Bay (oo, 2)) = {0} for all z € Z, k € N;
(4) z € C\ K if and only if ¥/(z) €1C(X, [0, y0]):

(5) ¥'(2)(2o0) = [0, 7(y0, 6(2))] for all z € Z\ K.

Define ¢ : Z\ K — |C(X,Y) by ¢ (z) = 1(z) U4/(z). The continuity of ¢” follows from the ones of
and 1/, and Lemma 6.1.1. By conditions (a) and (2), and Lemma 6.1.1, for each z € Z \ K,
pr(h(2),4"(2)) = pr(h(z) UX x {0}, 4(2) Uy/(2))
< max{pn (h(2),%(2)), pr (X x {0},9'(2))} < d(2).

According to conditions (b), (3) and (4), we have z € C'\ K if and only if ¥"(z) €/C(X,Y). Moreover,
Y is injective. Indeed, take any 21,29 € Z \ K with ¢ (z1) = ¢"(22). Then there exist k1, k2 € N such
that 21 € Zk, and 29 € Zj,, respectively. It follows from (b) and (5) that

[0, 7(y0, 0(21))] = ¥ (21)(ws0) = 9" (21)(¥o0) = ¥"(22)(Woo) = ¥ (22)(¥e0) = [0, 7(y0, I(22))];

which implies that 6(z1) = 0(22). Hence 21,29 € Zj, where k = k; = k. Since 9(21)(Biy (Too, k) =
{0} = ¢(22)(Bay (o0, k) by (b), we have

Y (1) () = ¥ (21)(x) = 9" (22)(z) = ¢'(22) () for every x € Byy (¥oo, T2k)-

On the other hand, by (3), ¢¥/(21)(X \ Bay (Zeo,T2k)) = {0} = ¢'(22)(X \ By (oo, 72k)). Therefore
Y'(21) = ¢'(22). Due to (1), we get 21 = 29, so 9" is injective.
We can extend v to the desired map ¥ : Z — |C(X,Y) by ¥|x = ®|k. Then for each z € Z,

pr(®(2), U(2)) < pu(®(2), h(2)) + pr(h(z), ¥(2)) < 26(2) < min{e, pr (2(2), 2(K))}/2,

which means that ¥ is continuous. Moreover, it follows that py(®(z),¥(z)) < € for all z € Z, and
U(z) € JC(X,Y)\ ®(K) for all z € Z\ K. Since z € C'\ K if and only if ¢"(z) €] C(X,Y), we have

“1(JC(X,Y))\ K = C\ K. It remains to show that ¥ is a Z-embedding. It is easy to see that ¥ is an
embedding. Recall that ¥(K) = ®(K) is a Z-set in JC(X,Y’). Since zar € B, (Too, k) \ By (Too, 2k)

for every k € N, it follows from (b) and (3) that

U(2)(@ar) = ¥ (=) (war) = V(=) (@an) Ut/ (2)(w2k) = {0} for each = € Z.

Applying Lemma 6.7.3, ¥(Z) = ¥(Z \ K) U ¥(K) is a Z-set in JC(X,Y). Consequently, ¥ is a Z-
embedding. [J

Finally, we prove the main theorem.
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Proof of Main Theorem. We can write X = @], X;, where each X; is a component of X. Note that

the pair (1, C(X,Y),},C(X,Y)) is homeomorphic to ([ ;s C(X;,Y), [T, 4+ C(X;,Y)), refer to

Lemma 6.8 of [39]. Since X is infinite, there exists at least one component that is non-degenerate. When

X; is a singleton, (J, C(X;,Y), 4y C(X;,Y)) is homeomorphic to (Y,Y). When X; is non-degenerate, it

is compact and has no isolated points. Combining Corollary 6.6.2, Proposition 6.4.2, Proposition 6.7.1 and

Proposition 6.8.3, we can obtain that |, C(Xj;,Y") is homeomorphic to Q and that (}, C(X;,Y), , C(X;,Y))
is (Mo, Fos)-absorbing. It follows from Theorem 6.8.1 and Fact 4 that (J, C(X;,Y), ], C(X;,Y)) is homeo-

morphic to (Q, cg). On the other hand, using Theorem 6.8.1, we can easily show that the pairs (QxQ, co X

co) and (QxY, ¢oxY') are homeomorphic to (Q, ¢p). This means that ([[7; , C(X;,Y), [T, 4o C(X;,Y))
is homeomorphic to (Q, cg). Thus the proof is complete. [

6.9 Remarks

In this section, we will give some remarks on the main theorem. Z. Yang and X. Zhou [64] proved the
stronger result as follows:

Theorem 6.9.1. The pair (JUSC(X,I),|C(X,I)) is homeomorphic to (Q,co) if and only if the set of
1solated points of X is not dense.

It is unknown whether the same result holds or not in the general case. However, we show the following
theorem (cf. Z. Yang [63] proved the case that Y =1).

Theorem 6.9.2. The space [C(X,Y") is a Baire space if and only if the set of isolated points is dense in
X.

The following two assertions are counterparts to Lemma 6.7.3 and Proposition 6.7.1, respectively.

Lemma 6.9.3. Suppose that F = EU Z C|{C(X,Y) is a closed set such that Z is a Z-set in JC(X,Y),
and there exists a point x € X such that for every |f € E, f(x) =0. Then F is a Z-set in JC(X,Y).

Proof. Let € :}C(X,Y) — (0,1). It suffices to construct a map ¢ :JC(X,Y) -] C(X,Y) such that
d(JC(X,Y))NF =0 and pg(op(Lf),Lf) < e(lf) for each |f €]C(X,Y). Since Z is a Z-set, there exists a
map ¢ :JC(X,Y) =|C(X,Y)\ Z such that pg((1f),lf) < e(}f)/2 for every |f €|/C(X,Y). Fix a point
yo € Y \ {0} with dy(0,y0) <1 and let t(}f) = min{e(Lf), pa (¥ (f), Z)}/2 > 0 for each |f €|C(X,Y).
First, we consider the case that = € X is an isolated point. Define a map ¢ :JC(X,Y) =]C(X,Y) by

(L) = V) x\ (2} U [0, y(maxp(Lf) (@), yo, t(Lf)/ diamg, V)] for each |f €lC(X,Y),
where v : Y2 x I — Y is as in Lemma 1.5.1. Obviously, ¢(1f)(z) # 0, that is, ¢(1f) ¢ E. Observe that
pr(PUF), o(Lf)) < t(Lf) < pr(W(Lf), Z)/2,
which implies that ¢(1f) ¢ Z. Moreover,

pr(Lf, o(L) < pr(Lf, (L) + pa (L), ¢(Lf)) < e(Lf)/2 +t(Lf) < e(Lf).

Next, we consider the case that x € X is a non-isolated point. Using the Digging Lemma 6.5.1, we
can obtain maps £ :JC(X,Y) —|C(X,Y) and ¢ :/C(X,Y) — (0,1) such that for each |f €]C(X,Y),

(@) pr (VL) W) <t(Lf)/2,
(b) €(F)(Bax (x,6(1f))) = {0}
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For each |f €|C(X,Y), let

n(df) = [0, 7(yo, t(LF) (O (LS) — dy (z,2")) /(26 (L1))].

@/€Bay (2,6()))

We define a map ¢ :|/C(X,Y) =]C(X,Y) as follows:

o(Lf) =S Un(Lf).
Note that ¢(1f)(x) # 0, and hence ¢(JC(X,Y)) N E = 0. For every |f €/C(X,Y), we have

pr(W(Lf), ¢(Lf)) < pr (VL) E(LS)) + pu(E(LS), ¢(Lf))
<t(Lf)/2+t(1)/2 < pr(P(Lf), 2) /2.

Therefore ¢(l.f) ¢ Z. It follows that

pr(Lf,0ULf)) < pr(Lf (L) + pa (W), o(Lf)) < e(Lf)/2+ t(Lf) < e(Lf).
This completes the proof. [J

Proposition 6.9.4. If the set of isolated points is not dense in X, then |C(X,Y) is a Zy-set in itself,
and hence it is not a Baire space.

Proof. Let Xo be the set of isolated points in X and take a countable dense set D = {d,, | n € N} in
X \ Xy. For each n,m € N, let

Fn,m = {\Lf G\I/C(Xv Y) | dY(f(dn)’O) > 1/m}

As is easily observed, F), ,, is closed in |C(X,Y’). For each map € :|C(X,Y) — (0,1), by the Digging
Lemma 6.5.1, we have ¢ :JC(X,Y) —]C(X,Y) such that pg(}f,o(1f)) < e(f) and ¢({f)(d,,) = O for
1f €]C(X,Y). Obviously, ¢({C(X,Y)) N F,, ,,, = 0. Thus each F,, ,, is a Z-set in |[C(X,Y).
Let F = (Nyen Nmen($C(X,Y) \ Fy ). It remains to prove that the closure F of F in |C(X,Y) is a
Z-set. Observe that
F={lf €lC(X,Y) | f(d,) = 0 for each n € N},

which implies that f(x) = 0 for all |f € F and all x € X \ Xy. Fix z € X \ Xo and § > 0 such that
By (2,8) € X \ Xo. For every | f € F, we have f(z) = 0. Indeed, for each ¢ € (0,4), there exists
lg € F such that py(lf,}g) < e. Then we can find (a,b) €lg such that p((x, f(x)), (a,b)) < e. Since
dx(xz,a) < € < §, we get g(a) = 0, so dy(f(z),0) = dy(f(x),b) < e. Hence f(z) = 0. According to
Lemma 6.9.3, the closure F is a Z-set in [ C(X,Y). Consequently, |C(X,Y) = F U J Fom is a
Zg-set in itself. []

m,neN

We prove the “if” part of Theorem 6.9.2.
Proposition 6.9.5. If the set of isolated points is dense in X, then |C(X,Y) is a Baire space.

Proof. Let X be the set of isolated points in X and F be the finite subsets of Xy. For each F' € F and
n € N, we define

Upn ={A € JC(X,Y) | A(x) C B4, (0,1/n) for all z € X \ F}.

Since F' C Xo, Ur,, is open in |C(X,Y). Let U, = Jpcr Ur,n. We shall prove that each U, is dense in

JC(X,Y). For each |f €JC(X,Y) and € > 0, we can obtain F' € F so that pg(lf|F,f) < € because |f
is compact and X is dense in X. Define a map g : X — Y as follows:

| flx) ifzeF,
9@”‘{0 ifzeX\F
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Then g € Up,, C Uy, and pr(lg,Lf) < pu({f|r,lf) < e. Hence U, is dense in JC(X,Y).

Next, we will show that G = [,cx Un CLC(X,Y). Let A € G. Observe that for each € X \ X,
A(x) = {0}. Moreover, for each n € N, we can find F' € F such that A € Ug,,. Then A(y) C By, (0,1/n)
for all y € X \ F', which means that A is a hypo-graph of a function from X to Y that is continuous at x.
Therefore A €|C(X,Y). Since |C(X,Y) is compact, the Gs-set G = (),,cy Un is a Baire space and dense
in JC(X,Y).Consequently, |C(X,Y) is a Baire space. [J

Remark 14. In the above proof, if A € [C(X,Y) and x € Xy, then A(z) is an arc or the singleton {0}.
Hence the restriction A|x, is a hypo-graph of a continuous function from Xy to Y.

Combining Propositions 6.9.4 and 6.9.5, we can establish Theorem 6.9.2. The space cg is not a Baire
space. In fact, it is a Z,-set in it. Immediately, we have the following:

Corollary 6.9.6. If [C(X,Y) is homeomorphic to cqg, then the set of isolated points is not dense in X.
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