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1 Preliminaries

In this thesis, space LP(X) (1 < p < 00) denotes
LP(X) = {f : f is a Lebesgue measurable function and / |f(x)[Pdx <oo} .
X

The inner product and the norm of L?(X) are defined by (f, g) = Jx [( g(z)dx and I fllz2x) =
(f, f)lL/QZ(X), respectively. For the case p = oo, we define L*°(X ) to be the set of essentially bounded

measurable functions on X and || f||peo(x) = esssup,ex |f(z)]. For f € L*(R), the Fourier transform and
the inverse Fourier transform are expressed by

FUE) (= £9) = [ )
and

Flle) = 5= [ sle)e i

In this thesis, we construct basis functions for numerical analysis of differential equations using the
wavelet theory. Firstly, let us give definitions and results related to the wavelet theory. For their proofs,
we refer to [6, 12, 25], etc.

The orthogonal wavelet is a L? function which is defined by the following:

Definition 1.1 A function 1 € L*(R) is called an orthogonal wavelet if the set {1, () = 29/ (27x —
k)};kez is an orthonormal basis for L*(R).

Orthogonal wavelets is usually constructed through a multiresolution analysis (MRA).

Definition 1.2 An MRA {V,};cz is a sequence of closed subspaces of L*(R) which satisfies the followings:
(1) Vj C Vi forall j € Z.

(2) f(@) € Vj < f(22) € Vi,

(3) NjezV; = {0}

(4) UjezV; = L*(R).

(5)

5) There exists a function ¢ € Vi such that {o(- — k)}rez forms an orthonormal basis for V. This

function ¢ is called the scaling function.

Here we remark that, for f € L?(R), we can easily check the orthonormality of {f(- — n)}nez in the
Fourier domain.

Lemma 1.3 Let f € L?(R). Then {f(- — n)}nez is an orthonormal system if and only if

Z‘f(f+2k7r)’2 =1 ae £€R

kEZ



Since ¢(z/2) € Vo1 C Vo = span{p(- — k)}, 7, there exists a sequence {hy}rcz satisfying the two-scale

relation 1
T
57 (5) = 2 hpla = k). (1)
keZ

By the Fourier transform of (1), we obtain

5(6) ) hie™ ™ = mo(§)p(6),

kEZ

where mo(§) = > j.cz hre ¢ € L*(—m, ) is called the low-pass filter associated with the scaling function
. The low-pass filter has the following important property:

Proposition 1.4 Let mg be a low-pass filter. Then, it holds that

\m0(€)|2 + |m0(§—|—7r)|2 =1 ae £€R

Let {V;};ez be a multiresolution analysis. By the orthogonal decomposition, there exists W} such that
W; @ V; = Vjy1. Using the above Proposition and Lemma, we can characterize Vg, V_1, Wy and W_; as
follows:

Lemma 1.5 Let ¢ be a scaling function of an MRA {V;};ez and mg be a low-pass filter associated with
. Then, we have

)

) = B(&)p(€), Be L (—m,m)},
L f(&) = €5y(20)mo(E+ m)@(€), v € LA (—m, )},
L f(26) = e*y(28)mo(E+ m)p(€), v € L2 (—7, )}

In fact, to find an orthogonal wavelet, we only have to find a function ¥ € Wy such that {¢(- — k) }xez is
an orthonormal basis for Wy :

Proposition 1.6 Let p € Wy. If {¢(- — k)}rez forms an orthonormal basis for Wy, then i is an
orthogonal wavelet, i.e., {1 }jrez is an orthonormal basis for L*(R).

From the above arguments, the construction of an orthogonal wavelet from an MRA is summarized
as follows:

Theorem 1.7 Let ¢ be a scaling function for an MRA {V;},cz and mq is the associated low-pass filter.
Suppose that v is a 2mw-periodic function satisfying |v(§)| = 1. Then v defined by

96 = e (§ 7)o (5)

1s an orthogonal wavelet.



2 Introduction

2.1 The Galerkin method

The Galerkin method is a powerful tool for calculating numerical solutions of differential equations. In
particular, lower-degree polynomials are often used for the basis and test functions since the resulting
coefficient matrices of the Galerkin equations have simpler structures. This method is called the finite
element method (FEM). Let us consider the following problem as an example:

" +u=f 0<z<l,
{ w(0) = u(1) = 0. (2)

A weak form of the problem is given by
a(u,v) = (f,v) 2wy forallve H(0,1) (3)

with a bilinear form ) )
a(u,v) = / u(z)v(z)dz —l—/ o' (z)0' (x)d.
0 0

Here we denote the Sobolev space H'(0,1) = {uwe L*(0,1) : v’ € L*(0,1)}, and Hj(0,1) = {u €
HY(0,1) : u(0) = u(1) = 0} is its subspace. A solution of (3) is called a weak solution.

The Galerkin method constructs an approximate solution as the weak solution. Let V,, C H& be an
n-dimensional subspace, and let ¢1,--- , @, be a basis of V,,. By substituting u, € V,, for v and v, € V,
for v, we obtain

a(tp,vy) = (f, Un)LQ(R) for all v, € Vj,. (4)

We consider the approximate solution uj; € Vj of the form
n
un(2) =) Ujpj().
j=1

Taking v, = ¢; (j =1,2,--- ,n) in (4) we obtain a Galerkin equation
MU = F,

where M = {a(pi, p;)}ij=1,.. n is a coefficient matrix, F = *{(f, (pj>L2(R)}j:17"'an is a vector generated
by the inner products of f and the test functions, and U is a unknown vector U = {Uy,--- ,U,}. The
coefficients {U;}; are thus obtained as the solution of the equation U = M ~1F.

Classical FEM employees the hat function Bs(x) = max{l — |z|,0} as the basis and test functions. If
we put {p;(z) = vi(z) = Ba(z/h — z)}zli}fl C H}(0,1), then we can easily see that the components of the
stiffness and mass matrices are given, respectively, by

1 27 ] = Z.a
Gij = <90;=U}>L2(R) =7 x¢ =1, j=i+tl,
0, otherwise,

and
4, j=1,

x< 1, j=i+£1,
0, otherwise.

Ci,j = <90i7vj>L2(R) =

Sy

Thus the coefficient matrix M is a tridiagonal matrix, and its components are given by M; ; = 2/h+2h/3,
M;it1 =—1/h+h/6, and M; ; = 0 otherwise. The sparsity of this matrix results in decreased computing
costs.



Wavelet theory has been developing rapidly in several fields since its inception in the 1980’s, and many
wavelets have been introduced. The application of wavelets to the Galerkin method is an interesting
topic, and the flexibility of wavelet functions provides many options for approximation spaces. Especially,
compactly supported orthogonal wavelets or scaling functions give sparse matrices, including the stiffness
matrix, because of their locality and orthogonality. Among these, the Daubechies scaling function [12],
which is well known as a compactly supported orthogonal function, is commonly used for numerical
analysis. But the Daubechies wavelets and scaling functions do not have explicit expressions in the time
domain. So, if we try to compute the inner product on a wavelet (f, 1) ;2(r) or a scaling function (f, ) z2(r)
with high-dimensional accuracy, it is computationally expensive. Therefore, in some cases inner products
with scaling functions are simply approximated by its sampling, i.e., (f,27/2p(27 - —k)) 2r) ~ f (277k),
but the accuracy of these approximations depends on the smoothness of f, and getting high-precision
analysis results requires an evaluation of the integrals. To overcome this difficulty with integrations,
many methods using wavelets and scaling functions have been introduced [3, 8, 10, 11, 35].

When we use the orthogonal functions as basis and test functions, resulting mass matrix becomes a
diagonal matrix, but in almost all cases, the highest derivative of the original equation is a leading term.
Thus, in the above case, the structure of the stiffness matrix plays an important role.

In this paper, our aim is to find suitable (non orthogonal) Riesz bases for higher order differential
equations in the sense that stiffness matrices are more sparse.

2.2 Uniform approach to find suitable bases

According to differential equations, we expect certain smoothness (at least Lipschitz continuity) for the
subspace. Let us put the B-splines of orders 1 and 2 as follows:

. x if 0<z<1,
Ni)=d L Osesh v o s i l<a<2,
0 otherwise, 0 otherwise

Ni(z) is called the Haar scaling function. {Na(z — k) : k € Z} which is a Riesz basis for the space 1}
of piecewise linear continuous functions on the intervals [k, k 4 1] for all & € Z, is used in the standard
FEM. We remark that the Franklin scaling function and the Strémberg scaling function can be also
orthogonal bases for V) (see [18, 25, 34]). The Lipschitz continuity of functions in the subspace comes
from the property of these bases. Therefore, our task is to determine a base scaling function rather than
a subspace.

From the point of view of the study of differential equations, the coefficient of the highest order
derivative has much more influence on the behavior of the solution. After the translation of the continuous
problem into the discrete one, if the matrix corresponding to the principal part becomes simpler, the
approximate solution will be more stable as an appropriate numerical treatment. In this section we shall
give a uniform approach to find suitable bases such that the matrix corresponding to the principal part
has just a form of three-point formula.

Firstly, for the simplicity, let us consider the second order equation —%u 4+u=fand Vjie., j=0.
We are concerned with the following matrix coming from the principal part:

2
d d d . 9
e = — { 5=P0 ks 5-P0, = ( 3P0,k P0 ifped® |.
dx dz L2(R) dx L2(R)

Since g k(z) = p(x — k), by Parseval’s theorem we see that

a d L ke s e —ite 1 [1earen2l s
<dx900,k,dx900,e>L2(R)—27T<Z§€ p,ige ¢>L2(R)—f [\&0(«5)”(5 k).



On the other hand, in order to get three-point formula for second order derivative, we need the tridiagonal
matrix

-2 1 0 0
1 -2 1 0 0
1 -2 1 0 0
{ak,f}1gk,e§N: R (5)
O - --- 0 1 -2 1
O --- --- 0 0 1 =2
where N depended on the interval in which — 2u + u = f is considered. Thus, ¢ must satisfy the
condition
2 ifk=2¢,
Flep@|-m =4 -1 k=1, (6)
0 otherwise.

It would not be easy to find ¢ from (6). Therefore, we shall try to change the condition (6). Further
computations yield

1 2q+)m
F lep@ |0 =k = 2/2 e eg(¢) P de

Z/ Kk)£|§+2q7r §+2q7r|d§

1

= T RE S (6 + 2gm) (€ + 2qm) P de.

q€Z

Hence, we find that (6) is equivalent to

Z (€ + 2qm)@(€ + 2q7r)‘ = e 4 2¢70¢ e_i5< = 4sin? g)
qE€Z

for almost everywhere £ € R. Denoting the sinc function by sinc £ = Sigg, we see that the Haar scaling

function Ny (z) satisfies Ny (€) = e~%/2sinc % We shall define ®(z) by

P8
2= Ni(€)

(7)
Then we also get

Z‘£+2q7r £+2q7r)‘
Z‘§+2q7r §+2q7r)‘_qez

4.81112 £+2q7r - —eif + 2@'505 — @—if ’

Z ‘(i)(ﬁ + 2qm))|

q€Z qEZ

here we used

This means that




So, the condition (6) has been reduced to the conditions (7) and (8). Now we can easily find ¢ from (7)
and (8), because the identity (8) is well-known as the orthonormal condition. The definition (7) yields

xT

o) = F [N (©)2()] () = Ny + @) = /

r—1

D(y)dy). (9)

The new function ¢ is the elevation of ® with N;. Therefore N; is also called the elevator (see [32, 36]).
More generally, let us represent the elevator by £ and define

o(x) =& * ®(z).

Remark 2.1 The most typical example is the case when the elevator £(z) is N1 (z) and ®(z) is the Haar
scaling function, i.e., £(z) = ®(z) = Ni(x). In this case, by (9) we obtain

This case just coincides with the standard FEM. Choosing other scaling functions for ®(x), we can obtain
various types of bases.
2.3 Definition of elevator

We shall derive some properties for the case when the elevator £(x) is Ni(z). By Taylor expansion we
see that for v € C4

1
d2
Z ag k+,v(x + vh) = hQWU(x) + O(h*) for all k € Z. (10)
x
v=—1
Moreover, we assume that R
B(0) =1, (11)

which allows scaling functions, but excludes wavelet functions. Hence, by (9) it follows that

20—k

S onle) =S e@a-b=3 [ | e
= /_ ®(y)dy = ®(0) = 1. (12)

This is just the partition of unity. Let us put h = 277 and wj(z) = >,y wje0j¢(x). If w; is sufficiently
smooth and ¢ has compact support (or decays sufficiently fast), by (12) we have for k € Z

wi(kh) =" wjppje(kh) ~ wik Y @je(kh) = wj k. (13)
LET LET

Indeed, it holds that w;(kh) = w; in the standard FEM.
Meanwhile we also get the following identity:

> le+ 2qm)|* = > crpave™s,

q<EZ vEZ

where cg ¢ = (@0 .k, Po,¢) 2(r)- In particular, taking £ = 0, by (7) and (11) we find that for all k € Z

S cknie = |[22am)|* =Y [Ni(20m)d(20m)|* =

VEZL qEZ qEZ

d(0)° =1,




~ ~ 2 ~
here we used $(2¢m) = 0 if ¢ # 0, since 3, ‘cp(mm)( - ‘@(0) = 0 by (11) and (8) with € = 0. Noting

that ci x4+, = ci k-, by Taylor expansion we see that for v € C?

:

Zc;ﬁkﬂ, v(z + vh) = v(z) + O(h?) for all k € Z. (14)
VEZL

In our construction, to get the approximate solution w;(x) = > ,c; u;¢@je(x) in the interval (0, 1) for the

equation —%u + u = f, we solve the following system corresponding to the Galerkin equation:

[_ {ak’éh72}1§k,E§N + {Cklh}lgk,egzv} t{uj,é}lgegzv = {Ck,é’hgk,zgzv t{fj,f}lgng'

By (13) this can be regarded as

[_ {aklhq}gk,ﬁg]v + {Cklh}gug}v] t{“j(gh)}gegzv = {Ck,é}lgk,egv t{fj(gh)}gegN'

Paying attention to each row, by (10) and (14) we find that

_ _ d?
-y areh 2u(th) = =Y ag psvhuj(kh + vh) = — ey (kh) + O(h?),
1<0<29 v
Z ko (Ch) = Z sty (kh + vh) = u;(kh) + O(h?),
1<e<23 v
> enefi(Ch) = crpanfi(kh + vh) = f;(kh) + O(h?).
1<0<29 v

These give the numerical difference equation of the original differential equation —%u +u = f at the
point & = kh. The accuracy of (13) depends on the case of application. We remark that (10) and (14)
play an important role to guarantee the accuracy.

From the above observations for £ = Nj, we shall propose the following conditions to characterize
qualitative elevators for the Galerkin method:

# 0 for —m < & < m. Put

Definition 2.2 Let & be a scaling function such that ®(0) = 1 and ®(€)
= & x O(x). The elevator £ for the

1
e = (Qok P00 r2r) and ape = —(ook, Lo 2wy for o(z)
Galerkin method is a function satisfying

(i) £(&) #0 for —m < & <, in particular, E(0) = 1.
(ii) It holds that for v € Cj

D Chprr vz +vh) = v(z) + O(h?),

VEZL
Zakk v(z +vh) = th—2v(x) +O(hY)
VEZ " dz? ‘

(iii) There exists a 2m-periodic function me(€) such that £(26) = mg(£)E(€).

It is known that the exact frame is equivalent to the Riesz basis. The condition for the Riesz basis is
given by

A< e +2qm)|* < B (15)
qEZ



for 0 < A< B < 0o (see [4]). If (&) # 0 for —r < & < m, by (i) we note that
R 2 5 A 2
D @€+ 2gm)|" =) |E(E + 2qm) D€ + 2¢7)]
q€Z qEZL
> ’é(f — 2nm)® (& — 2n7r)|2
>7A>0
for 2nm — 7w < € < 2nw + 7 (n € Z), that is, € € R. Rewriting ¢(z) = Ny * ®(z) with ®%(¢) = é(%‘?g),
from (i) we can expect that the properties corresponding to (12), (13) and (14) still hold, since ®#(0) = 1.
In fact, we may omit Y,y Cr ity v(z + vh) = v(z) + O(h?) in (ii).
Replacing the definition ¢; .(x) = ¢(272—k) by @; x(x) = 27/2¢(272—k), we could also get wavelet ex-
pansions. Thanks to the condition (iii) we obtain a semi-orthogonal wavelet ¢)(¢) = e%/2m(£/2 + )@ (£/2),

where m(§) = my (&) X ez 1P(€ + 2qm)|? = me(€)ma(§) X, ez Chprve™® (2m-periodic). A biorthogonal
wavelet for the elevated ¢ can be also considered (see [16]).

3 Riesz basis of Daubechies type

3.1 Three-point formula for second order derivative

To get compactly-supported and also more smooth base than Ny, we may choose the Daubechies scaling
function of order p for ® = <I>I])D satisfying (11). Then by (9) we have

op (z) = Ny = @) (). (16)

1 1

7N
N
08 / \ 08
/ \
\ \
/ \ \

08 // \ 06 / \
/ /

04 / \ 04 / \
\ \

02} \ o2l / \
/ \ //
, L/ \ \\g///v 0 — |

-02 I I I I L | L ~02 L L L L L L L L L L L
: 0

(a) 5 (supp @2 C [0,4]) (b) ©% (supp @5 C [0,6])

Figure 1: Graphs of ¢2 and ¢?.

The basis {¢}(z — k) : k € Z} had been derived by [32] and [36]. Their approach is motivated from the
observation that the integration of the Haar wavelet becomes Na. Therefore, the pseudoframe was firstly
considered by the integration of the Daubechies wavelet, and secondly it was arranged for the efficiency
of the computation and arrived at gapD (see also [27]).

In order to solve numerically the equation —%u +u = f with some base {¢(x — k) : k € Z}, we
need to know the matrices {ck74}1<k 1<y and {ak‘»f}1<k s<n- 1t one considers the orthogonal Daubechies
scaling function, it holds that the matrix {C’M}Kk s<n = 1. On the other hand, the matrix {ak»f}1<k <N
for the Daubechies scaling function is well studied in [1]. For all the bases constructed by the approach
in §2.2, the matrix {aw}Kk ey 18 just (5).



Remark 3.1 It would be preferable that bases are at least C' or Lipschitz continuous as Ny in order
2

that the weak form _<%<P0,k; %gpo’gﬁz of <;l?cp0,k,g007g>,;z has a meaning. Especially for p = 2, the

Daubechies scaling function ® € C5 fails to satisfy the differentiability, but gives ¢y € C1-5.

We shall also compute the exact value of ¢k for 2 (z). Putting () =

AD(&)‘Q, by Parseval’s
theorem we have

e = (07 (2 — k), 09 (x — 0)) p2r) = (€ — k).
By (16) it holds that

$(€) = sinc? 7<I>D Hcos (2j+1)‘m ( ) EH ( >»
where mb is the Daubechies low-pass filter. Since mb (&) = S3_, e~ ¢ with

1+v3 3+v3 3-V3 1—\/3}
' T8

{770777177727773} - { ] P ] ) ]

and cos® ¢ = M, we find that m(§) = Zi:% pre” ¢ and its coefficients are given by

25 17 1 1 1}

{:u’OvN:I:h,U’:I:QMU’:I:E}a M:ﬁ:4} == {647 a7 T67 _6747 _@

The function ¢ satisfies

4
x) =2 Z urd(2x — k

k=—4

and supp ¢ C [—4, 4] since supp ¢35 C [0,4] and ¢(z) = [ 9% (t + x)pL (t)dt. Hence we have
M t{qb(k)}fggkgg =0,

where
1-— 2/1,_3 —2u_4 0 0 0 0 0
—2p—1 1-2p-9 —2p-3  —2p_4 0 0 0
=21 —2p0 1-2p1 —2p-9  —2p-3 —2u_y 0
M= —2u3 —2p2 =2 1=2p0 —2p1 —2p—2 —2p-3
0 —24u4 —2p3 —2p2 1—-2uw —2pp  —2u-
0 0 0 —2pg  —2p3  1—=2p2  —2m
0 0 0 0 0 —2,[1,4 1-— 2/1,3
We also remark that 3_ . ¢(k) = Zkequ = fao= > rez e*eh(€)de = $(0) = 1. Deriving the

eigenvector with 0 eigenvalue such that $7 4 _3 ¢(k) = 1, we find that

131 37 11 1
(610), (1), 622023} = { 155 316~ 505 00 -

Thus we obtain
131/180 if k=14,
37/240 ifk=/0+1,

cu( — (- k)) —{ 11600 ifk=(+2,
1/3600 if k=4+3,
0 otherwise.

Consequently, we get the following theorem:



Theorem 3.2 ([21]) For o2 (z) defined by (16) with ® = ®L we have

131/180  if k=1,

37/240 if k=041, -2 if k=14,
cre =1 —11/600 if k=0+2, and ap, = 1 if k=041, (17)
1/3600 if k=10+3. 0 otherwise.
0 otherwise,

Moreover, it holds that for v € C

> Chpaw v(@ + vh) = v(x) + O(h?),

VEZL
1

d2
Z ap k+o0(x +vh) = hQWU(l‘) + O(hY).

v=—1

3.2 Five-point formula for second order derivative

With small changes of the approach in §1.2 we can also consider the 5-point formula for 2nd order
derivative. For this purpose, we replace (6) by

5 ifk=o
4 .
“11eser 2]y — J —3 if k=041,
7 les©F e~ m Lo ifk=l£2,
0 otherwise,
which is equivalent to
5 2 1 oo 4 e 0 e 4 e 1 o 4 S8 (.98
2 2qm)|? = — € — Zei 4 2pi06 = — = “sin?2 s
Z‘(f—l— qm)p(€ + 2qm)| T 3¢ +2e 3¢ —1—126 g sin” o | sin 2—1—3
qEZ
for almost everywhere £ € R. We shall define ®(x) by
- p(€
ag) = (18)

(v~ + e ) N(E)
where 7+ = % + % Then we also get

A - (& + 2qm)p(& + 2qm)|°
Z ’(I)(g + 2(]7‘1’)‘ - Z4sin2 f-i‘%b/f + nyre*i(erqu) ’2

q€Z qEZL
S7|(€ + 2gm)p(€ + 2qm) [
. pEZ

T 12 _ 4 5406 _ 4,—i 1 ,-92i¢’
5621 — Jeil 4 Sel0t — Zemit 4 e 2t

here we used

2 : , 4
4 sin2 Mh— +,Y+e—l(5+2q7r)‘2 — Asin? éh— +,y+e—z§‘2 — 2gin? é(sirﬂ § i 3)
2 2 3 2 2
oL oie 4 e 5 0 4 e 1 o
= 126 36 + 26 36 + 126 .

10



(a) ® = ®% (supp & C [0,5]). (b) @ = N1 (supp @ C [0,3)).

Figure 2: Graphs of ¢ = {y"Ni(z) + 7" Ni(z — 1)} * ®(z).

Hence, the identity (8) still holds. Thus, the definition (18) yields

¢(x) = {7y M) +7 N = 1)} * @(). (19)

Let us put Cke = (Pok, Po.e)r2(r) and axp = —<%S50,k, %@074>L2(R). Similarly as §1.2, by (19) we
also find that for all £ € Z

Z 5k,k+u = Z H’y_]\Afl (2qw) + ’Y+e—2qu1(2q7r) }‘i’(2q7r) ‘2
VEZ qQEL

= (v~ +7H(O)] = 1.

We remark that E(z) = v Ni(z — 1) + v~ Ni(z) satisfies (i) in Definition 2.2, since |E(€)] = v+

+ i /102 & [3
Y€ }‘SIHC 2‘ 3SlIl > ‘SIHC

It remains to compute the precise value of ¢, for @(x). Put ¢ = Ny * ® and cx e = (@ok, Por)r2 as
in §3.1. Since @¢(z) =y ¢(x) + v p(z — 1), we get
ke = (V" @0k + 7 0orr1,7 0o+ 00011) 2
2 _2 _
= (’Y+ +y ) (Po,ks o) 12 + vty (<9007k, ©o0,041) 12 + (Po,k+15 <P0,£>L2)

(Cko+1 + Chy10) -

_T., 1
TP 12

In the case of ¢ = <I>2D, each ¢y ¢ is already given by (17). In the case of ® = Ny, since ¢ = Ny we can
easily see that

2/3 if k=14,
Chp = 1/6 ifk=¢+£1,
0 otherwise.

Consequently, we get the following theorem corresponding to Theorem 3.2:

11



Theorem 3.3 ([21]) For ¢2(x) defined by (19) with ® = ®L (resp. Ny) we have

(3557/4320  if k=,
163/1350  if k=041, 3/4  ifk=¢,
_ ) —37/1080 if k=442, _— 5/36 if k=041, (20)
Cht = 1/540 it k=0£3, |"PHRTY 12 itk=042,
—1/43200 it k=10+4, 0 otherwise,
0 otherwise,
and
—5/2 if k=1¢,
) 43 ifk=r41,
Wl=N 112 ifk=0+2,
0 otherwise.
Moreover, it holds that for v € C’g
Z Gy v(x+vh) = wv(x)+ O(h?),
VEZ
2 2
~ 2 d 6
Z ag k+ov(x +vh) = h @v(x) + O(h°).
v=—2
3.3 Numerical results
Let us introduce some examples and numerical results in this section.
Riesz base | Choice of Elevator Length of | Regularity | Remainder
%) P & support in x
Ny N Ny 2 C* (Lip) O(h?)
oD PP Ny 4 cts O(h?)
Y Ni(z - 1)
NQ N +’77N1(.’B) 3 C? O(h4)
YTNi(z — 1)
%4 °y +7"Ni(2) 5 cto O(h?)
N Ny N, 3 C? O(h?)
oD oD N 5 025 O(h?)
The boundary valued problem for
d?
2L w02 f 0ca<t W) =) =0,
has a solution represented by
: 1 T
(o) :_smh(x/s)/ ,hy—l 1/ ,hy—x 01
u@) == SR [ 2 gy + [ sinn U gy (21)
For f(z) = sin 107z, by (21) the exact solution is u(®)(z) = % and the errors with the Riesz bases

Ny and chD are given by the following:

12



Table 1: The case of € = 1.

Meshsize 277 | BN [@QM| EP | QF
j=6 1.57x10% | 2.67 | 2.02x1072 | 6.07
=1 5.67x107 | 2.77 | 3.58x1073 | 5.64
j=38 2.02x107° | 2.81 | 8.47x10* | 4.23

Table 2: The case of € = 10_6'13

Mesh size 277 EJNQ QN2 E}DZ Q“"]23
j=6 1.58x1071 | 2.82 [ 6.21x10* | 5.57
j=1 5.62x1072 | 2.81 | 1.17x10* | 5.32
j=8 2.00x102 | 2.82 | 6.21x107* | 5.57

Table 3: The case of e = 1.

For f(x) = —2(9N1(3z) — 18 N1(3x — 1) + N1(3z — 2)) + N3(3z), the exact solution u(z) = N3(37)

- 6
belongs to H?, since fR<£>4|@(f)|2d§ = fR<§>4 (512/56/6> d§ < co. The errors are given by the following:

Mesh size 277 EJNQ QN2 E}DQD Q“"g
j=6 1.43x10* | 2.81 | 6.08x10* | 4.00
j=1 5.20x107 | 2.75 | 1.52x10™* | 4.00
j=28 1.84x10° | 2.82 | 3.82x10° | 3.98

Table 4. The case of € = 10_6.D

Mesh size 277 EJN 2 QN2 E;.% Q“O%)
j=6 4.68x107° | 2.79 | 5.59x10* | 4.00
j=7 1.69%x103 | 2.77 | 1.40x10* | 3.99
j=8 6.00x10* | 2.82 | 3.51x107° | 3.99

approximation #(®)(z) =

Here Ef is relative L2-error between the exact solution u(¥)(z) and the
Zévzl uppje(x) on [0,1] defined by

1 > ( ANE
Y= Ef(e)= ——— @=)-a =
B =B/ = o\ & 1 () -1 (3)]
and the ratio Q¥ is defined by Q¥ = EY | /EY.
Concluding Remarks The method with the elevated Riesz bases converts a continuous operator to

a discrete problem by featuring the highest order derivatives. Therefore, we can consider the following
advantages:

13



1. For —52%11( ) +ul = f if e > 0 is smaller, —¢2 ;2 gives more perturbation to the solution.
The influence of the parameter € > 0 can be reduced to some extent. Actually, for gaQD the relative

D
L2-error E(.p2 is stable for a smaller € > 0.

2. For (—1)™ d‘iQmu + u = f, if the solution has lower regularity, (— 1)m% plays a more role in the

structure of the equation. When we consider the solution in H?™ or of less regularity in H* (s < 2m),
5D
for instance m = 2, the relative L?-errors EJN % and Ef2 keep good results even in comparison with
= 1 (For detail, see [21]).
3.4 Theoretical error estimates

In the previous sections, we constructed some basis functions and give error estimations through numerical
simulations. On the other hand, theoretical error estimates are also important. Let us consider a Riesz
scaling function ¢ which satisfies the Strang—Fix condition of order L, i.e.,

¢(0)#£0, and ¢ (2nm) =0, forn#£0, k=0,1,---,L—1.
For the Riesz scaling function ¢, its dual function ¢ is defined by

3 (6 2(©)
S S YT L

It is well known that when we consider the approximation of ¢ of the form }, _, cro (% — k:), the

projection
=52 { 1 (-} 2

minimizes the L2-error. In this 51tuat10n, Blu and Unser [2] have derived the following theorem:

Theorem 3.4 ([2]) Let ¢ satisfy the Strang-Fix condition of order L. Then, for any f € HY(R) the
approzrimation error is given by

E©) | B~ (2L)

L
1f = Prfllirzm) < |§|u<1[:r 2L + ) Hf ‘L2(R '
- - _ oo 1 T (3]
Here C is the zeta function ¢ (t) =Y ;2 zr and E(§) =1 S rezlp(E+2km)?

With this theorem, let us estimate the ability of approximation for Daubechies scaling functions and
elevated Daubechies scaling functions. L-th order Daubechies scaling function ®P satisfies the Strang—Fix
condition of order L. Additionally, elevated function go?_l also satisfies the same condition. This means
that increasing the order of Daubechies family, and elevating with N1 produce the same effect that they

1/2
increase the order of Strang—Fix condition from L to L+ 1. Let Cp, () = |:Sup‘5|<7r % + M} .

Then, for ®F and ¢, one can obtain C5 (¢?) = 0.04027, and Cj (®Y) = 0.05948. This shows the
efficiency of the elevation scheme for numerical analysis.

s

4  Wavelet-Galerkin method with biorthogonal functions

In section 2, we introduced a uniform approach that generates Riesz bases such that the associated stiffness
matrices become tridiagonal. This method is highly accurate, but the difficulty with the integral remains
unsolved. In this section,we further develop this method and use the properties of the biorthogonality
of the wavelets to overcome the difficulty with the integrals of the test functions. In particular, The
Deslauriers—Dubuc interpolating scaling functions [13, 15] are used as basis functions.

14



4.1 Interpolating schemes
4.1.1 Deslauriers—Dubuc interpolating wavelet

Deslauriers and Dubuc [13] and Dubuc [15] introduced an interpolation scheme [29] that constructs a
function on R from an initial value {f(k)}rez. The functions obtained from the initial value {0y }recz
are called the fundamental functions. We denote the Deslauriers-Dubuc fundamental functions of order
D=2L+1(L=0,1,---) by Fp. Fp satisfies the refinement relation

Fp(x) =Y Fp(k/2)Fp(2z — k)
keN

and supp Fp = [-D, D]. The smoothness of Fp increases as D increases [13].

Fp is known as a scaling functions of the interpolating wavelet function. In general, an interpolating
scaling function ¢ has some useful properties. First, ¢(k) = 5 for k € Z, which is useful in terms of the
approximation. Second, the two scale equation is given by ¢(x) = >, .7 v(k/2)¢(22 — k), which means
that the filter coefficients {hx}r are equal to the half values ¢(k/2). Moreover, the associate wavelet
function is simply ¢(x) = ¢ (22 — 1).

In the case of Deslauriers-Dubuc scaling functions, the filter coefficients {hy}; are easily calculated
from the Lagrange polynomial: If

N—+1 r—i
Lk(.’E): H k_zv k;:_Nv_N+17aN+1a
i=—N
i£k
then
haoy, = 0p0,
b [ L_x(1/2), k=—-N—-1,---,N,
2k+1 = 0, otherwise.

For example,
11
h_1,hp,h1} =< =,1,=
{ 1,10, 1} {27 a2}
when D =1, and

1 9 9 1
h_3,h_o, h_ hiho hat =< —— 0. —. 1. —.0, ——
{ 37h Qah lahOa 1,142, 3} { 16707 167 716707 16}

when D = 3.

4.1.2 Average interpolation

Donoho [14] and Harten [24] generalized the Deslauriers—Dubuc interpolation scheme and also introduced
a scheme called average interpolation. The fundamental functions of the average interpolation scheme
Ap of order D = 2L (L =1,2,---) still have compact supports supp Ap C [-D, D + 1] and satisfy the
two scale equation

Ap(z) = cxAp(2z — k).
kEZ

For example,

( ) 11 11 1 1
c_9,C_1,Cp,C1,C2,C = — =, = -, — =
2 1, €0, €1, €2, C3 85 87 ) 787 ]
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Figure 3: Deslauriers—-Dubuc fundamental functions

when D = 2,
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when D = 4.
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Figure 4: Fundamental functions of the average interpolation scheme

The fundamental functions Ap and Fp have a strong relationship. If we set ¢ = Ap and ¢ = Fpy1,
then it holds that

¢'(x) = oz +1) — (). (22)
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Since

(22) is equivalent to

¢=@* Ny,
where f¥(r) = f(—x) and N,, is the m-th order B-spline, i.e., Ny = X[o,1) and Ny, = Nyy1 % Ny (m > 2).
For the construction of Riesz bases, this means that ¢ is an elevation of ¢ with the elevator Ny ([21]).
In terms of the low-pass filters mPP(¢) = S0, hPPe ¢ and mA(¢) = Y, hile ¢, it is denoted as
mPP = mAm, where m(£) = (1 + €%)/2, or simply, {hPP} = {h4} * {1/2,1/2}.

Remark 4.1 Deslauriers—Dubuc fundamental functions also have a special relationship to Daubechies
scaling functions. Let CI)]’?] be a Daubechies scaling function of order N. Then Beylkin and Saito[31]
proved the following equation:

[ SR@R(@ - y)do = Fav-a0), (23)
R
Therefore Fon1 is called the autocorrelation function of CD]?,.

Orthogonal wavelets lose several properties due to strong restrictions, but we can construct many
wavelets by discarding the orthogonality. Cohen, Daubechies and Feauveau [7] constructed biorthogonal
spline wavelets, whose primal and dual functions both have compact support.

Generally, the biorthogonal B-spline wavelets are specified with two parameters. Let ¢, and ¢, 5 be
the primal and dual scaling functions of the biorthogonal B-spline wavelet, then the associated low-pass

filters mg and mg are given by
mo(€) = e~¢/2 cos? <g>

(p+p)/2-1 ~
1o (€) = e7/2 cosP <§> Z <(p —i—p)/i -1+ k) sin? <g> )

k=0

and

where p + p is an even integer, € = 0 when p is even, and € = 1 when p is odd.

For p = 1, we note that mg(&) = e~%/2 cos(£/2) is just the low-pass filter of the Haar wavelet. Thus,
in this case, ¢1 = Ni(z). Moreover, Donoho [14] showed that the dual scaling functions are equal to the
fundamental functions: more precisely, for D = 2,4, -- - it holds that

951,D+1 = AD. (24)

4.2 Construction of coefficient matrices

We introduce a way to construct approximate solutions for certain differential equations by using Deslauriers—
Dubuc fundamental functions. As mentioned above, these functions have compact support, are symmetric,
and satisfy Fp(k) = 0x,0; the Daubechies functions do not have these properties.
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Figure 5: Biorthogonal B-spline functions

With ¢ = F3, h=1/(n+ 1) and n > 5, we seek a numerical solution

n—2
un(r) =Y Upp(x/h — k)
k=3

for the Dirichlet boundary value problem (2). The standard Galerkin method leads to
a(un, or) = (f¢p) 2@y, k=3,4,---,n—2. (25)
From this, we obtain the Galerkin equation
MU = F, (26)

where M = {[p pipidr + Jg pivjdx}i; is a coefficient matrix; F = "{(f,¢;)12}j=1,..n; and U is a
unknown vector U = *{Uy,--- ,U,}. This equation can be solved to obtain the coefficients Uy.

In this case, the stiffness matrix is a heptadiagonal matrix, which is relatively full compared with the
one for classical FEM. Moreover, as in the case of the Daubechies function, Deslauriers—Dubuc funda-
mental function ¢y does not have an explicit formula; the difficulty of the integral on the right-hand side
of (25) thus remains.

To deal with this problem, we replace gy by the hat functions vy = Ba(-/h — k) and consider
a(unyvk) = <f7/Uk>L2(]R)7 k:3747 ,n—2.

This leads to a new Galerkin equation: B )
MU =F, (27)

with M = { g pi(x)v)(x)dr + [ pi(z)v;(z)da}iy; F = Y(f,v) o) }j=1,m; and U = YUy, -, Un}.
Equation (27) is more convenient and manageable than (26) for the following reasons:

(i) Both F3 and Bj are elevated functions of pair of biorthogonal functions with elevator Ny, thus the
resulting stiffness matrix is a tridiagonal matrix, which is sparse compared with the one of (26).

(ii) Both Fj and By are refinement functions; therefore we can explicitly calculate the mass matrix.
(iii) Compared to (25), the integrals on the right-hand side of (27) are simpler, and they can be processed

more quickly by computer. Thus our scheme quickly obtains the solution u once f has been set.

18



Let us more fully consider the advantages stated in (i), above. we have proved that if ¢ is orthogonal,
ie., (¢,p(- — k))p2 = ko, then the stiffness matrix generated by its elevated function ® = ¢ * N; is a
tridiagonal matrix, i.e., (&', ®'(- — k))r2r) = 20,0 — Oj),1- We can easily see that this is also true for a
pair of biorthogonal functions, i.e., if (@1, p2(- — k)) 2(r) = 0, then

((p1 % N1)'s (w2 % N1)'(- = k) 2(m) = 20k,0 — Ok 1- (28)

Since F3 and Bs are elevated functions of the pair of biorthogonal functions A = ¢1 3 and N; = ¢ with
elevator N (see (22) and (24)), the resulting stiffness matrix is a tridiagonal matrix.

Remark 4.2 One may expect that there exists an elevator £ such that the stiffness matrix become a
diagonal matriz, i.e., (p*E,px E(- — k)) = 00 with an orthogonal function . But this means that £ is
the sign function, and the resulting elevated function is thus non compactly supported. We therefore can
not use this function for the Galerkin finite element method.

Now let us consider (ii), above. Let f and g be compactly supported refinable functions. Then,
I, = [x f(@)g(x — k)dz = f = gY(k). Here we remark that p¥(z) = p(—x) is also refinable when p is
refinable. Since the convolution of refinable functions is refinable [6], it can be given as a solution of an
eigenvalue problem.

In the case f = F3 and g = Bs, the above is summarized as follows:

Theorem 4.3 ([17]) Set My, = (F3, Ba(- — k)) 2(r) and Sy = (F3, By(- — k)) 12(r)- Then we obtain

131/180 if k=0,
37/240 if k= +1,

M =< —11/600 if k= %2, (29)
1/3600 if k= £3,
0 otherwise,
and
2 if k=0,
Sp=1 —1 if k==1, (30)

0 otherwise.

Proof Fquation (30) is easily seen from (28), so let us prove (29). Set f = F3x By = F3* By. Then f
s a refinable function with filter coefficients

1( 1 9 9 1 11
[TRU S B WA P g -
{PHes 2{ 16016 160" 16}*{2’ ’2}

St rtrdresrl 1 1
64° 32'8'32'32'32'8° 32’ 64)

From the two-scale equation, we get My, = f(k) =" hmf(2k—m) =" hop—mf(m) =", hot—mMmn,
and we can obtain the My as the eigenvector of

M_3 h_s h_y O 0 0 0 0 M_3
M| |hy hog hos hey 0O 0 0 M_,
M_y hi ho h-i h_g h_g h_y O M_y
My hs ho h1 hg h_1 h_o h_3| = My (31)
M, 0 hs hzy ha hi ho ha My
Mo 0 0 0 hey hs hy M M,
M3 0 0 0 0 0 hy  hs M3

under the normalization ), M) = 1.
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Remark 4.4 In [21] and [36], with ®F and elevator Ny, a Riesz basis 2 = ®x Ny was constructed (see
also (16)). Since ®L is orthogonal, (¥’ o¥'(- — k))r2m) corresponds to Sy in Theorem 4.3. Moreover,
(P 0P (-~ k))r2(m) also corresponds to My, in the theorem. Although this may seem strange, it is justified

by the autocorrelation property (23); from Fy = F[®D « ®PV] = |®P|2, we have
(F3, Ba(- — k) 2y = /F3 )Ba(&)e™de

/ B(E) 2N (€) N7 () e

= <902 05 (= k) 2wy

4.3 Numerical results

In this section we present some numerical results to show the efficacy of our method. Let us illustrate
some numerical examples. All computations were carried out with a Mac OS X, Intel Core i7, 3.4GHz,
and by using Mathematica ver. 8.0.1.0.

We consider the following Dirichlet boundary value problem:

" +u=f 0<x<l,
u(0) = u(1) = 0.

In classical FEM, the hat function By is used to represent an approximate solution, and in [21], an
elevated Daubechies scaling function @2 = ®2 x N; was used. To compare these two, we calculated the
approximate solutions using the Galerkin method:

211
= Z U, Bo (22 — k),
n=1
274
n=0
27 -3

= unF3(27x — k),
n=3

with the test functlons By(2z—k) (k=1,---,20—1); o2 (22 —k) (k=0,1,--- ,29 —4); and By(2/x — k)

(k=3,3,- — 3), respectively. The error was estimated by the relative 62 -error:
u(k/27) k/27))?
VSR uy) — ot/ )
HUHL2

The results with various choices of u are presented as follows:

Table 5: The case of u(z) = 2°(1 — z)°

‘ Bs-Bo 05-05 F3-By
Y € €j-1/¢] ¢j €j-1/€; ¢j €j-1/€;
6 | 1.50x107 — 2.87x101 — 3.65x 102 —
7 |1 5.30x10° 283 |4.66x10°  6.16 | 1.76x10°  20.7
8 | 1.88x10°  2.83 |[949x10° 491 |813x107 21.7

9 |6.63x10% 2.83 |[3.33x10°% 285 |3.68x10°% 221
10 | 2.35x 107 2.83 | 3.15x10° 1.06 1.20x 107 30.7
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Table 6: The case of u(x) = N5(5x)

‘ Bsy-By oP-0F F3-By
P €j ¢j-1/¢; ¢j ej-1/¢j €j €j-1/¢;j
6 | 1.51x10% — 4.31x104 — 6.18x10% —
7 | 5.33x10° 283 |6.76x10°  6.38 | 550x10° @ 11.2
8 | 1.88x10° 2.83 |[1.28x10° 529 |4.88x10°  11.3

9 | 6.66x10° 283 |380x10°%  3.36 | 4.32x107 11.3
10 | 2.36x10°%  2.83 |3.14x10% 1.21 | 3.77x10°8 11.4

Table 7: The case of u(x) = N3(3x)

| By-Bo 03 -oF Fy-By
2 ¢j €j-1/€; ¢j €j-1/€; ¢j €j-1/¢;
6 | 1.51x10% — 3.64x 102 — 7.50x 1072 —
7 15.22x10° 290 |1.31x102 278 |267x102 281
8 | 1.87x10° 279 |[4.66x10%  2.81 | 9.46x10°  2.82

9 | 6.57x10% 285 |1.65x10% 2.82 |3.35x10°%  2.82
10 | 2.33x 107 2.82 5.84x 10 2.83 1.19x 103 2.83

Table 8: The case of u(x) = N3(10x/3 — 1/6) (suppu = [1/20,19/20])

. By-By ¢5-03 F3-By
? ej ¢j-1/¢; ¢ ej-1/¢j ¢ €j-1/¢;j
6 | 1.51x10* — 8.24x 104 — 2.01x 107 —
7 1 5.21x10° 2.91 2.13x10% 387 | 7.80x107  2.55
8 | 1.86x10°  2.80 | 5.17x10° 412 |6.39x108 124

9 | 6.63x10° 2.81 1.36x 107 3.79 2.61x108 2.45
10 | 2.34x10°% 284 | 4.47x10%  3.05 | 2.57x107 10.1

Table 9: The case of u(x) = sin?(27x)

. Bo-By 0303 F3-By
2 €j €j-1/¢; ¢ ej-1/¢ ¢ €j-1/¢;j
6 | 1.53x10* — 8.24x 104 — 2.01x10° —
7 | 5.41x10°  2.82 |2.13x10* 3.87 | 7.80x107  2.55
8 | 1.91x10° 283 |517x10° 412 |6.39x108 124

9 | 6.77x10° 2.83 1.36x10™® 3.79 2.61x108 2.45
10 | 2.39x10°%  2.83 | 4.47x10°%  3.05 | 257x10°  10.1

Figures 6-9 shows the CPU time required to calculate the integrals of F), i.e., the inner products of f
and the test functions versus the error (32).

From these results, we can conclude that our method obtain smoother approximate solutions within
the time required to perform classical FEM. In particular, we note that when an exact solution rapidly
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decays to zero near the boundaries of the domain, our method is more effective. When the decay is not
rapid, there is a slight loss of accuracy, which is presumably due to the shape of the basis F3. Since Fj is
nearly zero at the endpoints of its support, non zero values of the exact solution cannot be represented
well in this region. However, this weakness can be easily eliminated. Recall that our proposed method
denotes an approximation solution using Fj as

21 -3 '
i) =Y upF3(2x —n). (33)

n=3

To capture the behavior of u near the boundary of the domain, we denote the approximate solution using
F5 and Bs as

27 -3
i(x) =Y unFs(2x —n) + > UnBa (2 — n). (34)
n=3 n€{1,2,29-2,27 -1}

Figure 10 illustrates the basis and test functions of (33) and (34). This modification increases the size
of the coefficient matrix from 2/ — 5 to 2/ — 1, but the form of the stiffness matrix does not change. In
Figure 11 we show that the computational cost of the modification is comparable to the unmodified form
and that the efficiency of the modification.

5 Two-dimensional cases

Thus far, we have considered the Galerkin method mainly for ordinary differential equations. For partial
differential equations, some difficulties arise:

e (Support) For the general N-dimensional case, the number of nodes is (1/h + 1)". Therefore, we
are forced to use only compactly supported bases, such as Daubechies scaling functions.

e (Smoothness) Some solutions become much smoother, according to the type of partial differential
equation. Thus, smooth bases are preferable for representing the solutions.

e (Symmetry) For partial differential equations, the boundary is considered on general dimensions
for partial differential equations. Then, larger asymmetries can occur with higher dimensions.

The purpose of this section is to overcome these difficulties and apply elevated basis functions to
numerical solutions of boundary value problems for the two-dimensional Laplace equation. For Daubechies
functions, there is a trade-off between the support size and the smoothness. We then construct new Riesz
bases based on definite integrals of the scaling functions. The integrations extend the support of the
scaling functions, but they improve the smoothness and the symmetry of the functions. In order to get
better smoothness, the integrations are more efficient than increasing the order of Daubechies functions.

We consider the boundary value problem for the Poisson equation on the square domain D = {(a:, y) €
R? : ng,ygl}:

*u 0%

o=t

or?  Oy? (35)
vw=0 on 0D.

The exact solution is given by (see [30])

1 1
U(x,y)z—/o /0 f(&,n)G(x,y,&, n)dndg

24



Lo — — — P e — — — ——
08 1 08 L ]
06 1 ost 1
041 B r ]
, | o4r .
02r . L ]
[ 1 02F B
00} 40 ]
I | | | | | | ] 00 L | | | | ]
00 02 0.4 06 038 10 00 02 04 06 08 10
(a) basis functions F3 for (33) (b) test functions Bs for (33)

I
08 1.0

I
0.0 02 04

06
(c) basis functions F3, By for (34) (d) test functions B; for (34)

Figure 10: basis and test functions for (33) and (34)
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Figure 11: case 3; u(z) = N3(3x)
with the Green’s function
2sin(mpz) sin(mpé)
H
fL‘ y Y, 5’ pz; ™ Sll’lh 7Tp) p(y777)7

where
H(y,m) = sinh(zpn) sinh (7p(1 —y)) if 0<n<y<1,
PV = sinh(7py) sinh (7p(1 — 7)) f 0<y<n<l1.

Because of the infinity (p = o0) in the double integrals, however, this solution is not practical. Therefore,
the ability to represent an approximate solution with bases plays an important role.
5.1 Galerkin method

We now shall construct the approximate solutions to (35) in a manner similar to what we did for the
one-dimensional case. The weak form of (35) is written as

0 0 0 0
—( —u, —v —( =—u, —v = (f,v . 36
<<99C Ox >L2(D) <6y dy >L2(D) o)) (3)

To apply the one-dimensional case, we define the approximation space as span{¢;, j,(z,y) = ¢;, (2)¢;, (y) }
and seek an approximate solution

n
J1,J2=1’

Z Z Uy jo P g2 (T, ) ZUJ¢J (z,y). (37)

Jj1=1j2=1

Substituting (37) into (36) and taking v(z,y) = ¢r(z,y) (L =1,2,--- ,n?) yields a linear system, written
in matrix form as

MU = F,
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where

<¢17¢1> <¢27¢1> <¢n2)¢1>

M <¢1,.¢2> <¢2,.¢2> <¢)n2'7¢2>

9

(O1,602) (G2.60z) - bz br2)

U = Hupr<penz, and F = {f;}1<p<p2. Here we remark that (-, -) denotes (-, 8%'>L2(D)+<8%" a%'>L2(D)
and f, = (f, ¢n>L2(D)'

We introduce the following notation in order to show the correspondence between the index J and
the indexes j1, jo of (37). We assume that 1 < I,.J < n? and 1 < 1,49, j1, jo < n are integers that satisfy

I=n(iy—1)+i, J=n(j—1)+, (38)

and we set
R :=j1 — 11, Q = jo — io. (39)

We note that the correspondences (38) are one to one under 1 < I,J < n? and 1 < iy, 9, j1, jo < n.

5.2 Choice of basis functions

We first calculate the (I, J)-th component of M = {M; j}1<r.j<n. We put

aij = (oL 2py  and ¢y = (i, 05) 2(p)-
Then, we get

N

N
MI,JZ—/ -+ (@—ji+l)de [ oy—ia+1)ey—ja+1)dy
0 0

N N
- [ ete-it Vgt e [ @it D¢ e+ )dy
0 0
= @iy ,j; Cin,jo T Ciy,j1 Qig,jo> (40)

which depends on the choice of ¢(x,y) := p(z)p(y).

5.2.1 Case of B-spline N,

We begin with the consideration of the simplest case ¢(x,y) := Na(x)Na(y) with No = Ny« Ny (€ =P =
N7). An easy calculation shows that

2/3 if |j—i] =0, -2 if [j—i| =0,
Ci,j: 1/6 if |j*’L'|:1, ai,j: 1 if ‘j*i|:1, (41)
0  otherwise, 0 otherwise.

Combining (40) and (41), we obtain

o opmden,
_ 1/3 1 R|,|Q]) = (1,0),(0,1
Mrr=9 s it (RLIQD = (1,1),

0 otherwise,
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where R = R(I,J) and Q = Q(I, J) are integers determined by (38) and (39). Therefore, the matrix M
is the block tridiagonal matrix with the tridiagonal matrices A and B:

A B O

B A

.. g
O 54

n2xn?

where

w\loo
ol
-
O W=l
T owle i

ol
Il O

U 1

O . -3
_8

3

5.2.2 Case of Riesz bases of Daubechies-type

W=

nxn nxn

We now turn to the case ® = ®. Let us put

o(z,y) == o5 (2)p5 (y) with @F = Ny = ®F.

In this case, a;j provides a three-point formula for the second-order derivative (see (17)). In addition,

1

0 1 2 3 4
Figure 12: Graphs of o (x) (left) and ¢ (z)p? (y) (right).

we derived ¢; j in section 3 (see Theorem 3.2).
Using (17) we can calculate M7 j, e.g.,

M1 =aic1,1 +ci1a11 = —131/45,
Mo = aipc1,1 + c12a1,1 = 151/360,

and so on. Here we set

—131/45 if (|r[,lq]) = (0,0),

151/360 if (|r],|g) = (1,0), (0, 1),
11//300 if E;quB _ Ez,og,go,zg,
—1/1800 if (|r|,|q|) = (3,0), (0, 3),

MA@ =9 37190 it (rl.|g) = (1, 1), (43)
—11/600 if (|r|,[q]) = (2,1),(1,2),
1/3600 if (|, |ql) = (3,1),(1,3),
0 otherwise.
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Then, from straightforward computation, we see that
> AR QR'Q"F =0
(R,Q)eZ?

forn=0,1,3 and 0 < k <n, and

Y OARQR = ) AMRQQ

(R,Q)€Z? (R,Q)eZ2
> AR,QRQ=0.
(R,Q)eZ?

Consequently, since

A(R, hR h—3h—kRﬁ AL o(h*
T MRQule iR+ Q)= 3 (Ra + Qg ) wlo) + 0
for w € C§(R?), we obtain the following theorem:
Theorem 5.1 For ¢(,y) = p¥ ()P (y), we have
My =A(R,Q), (44)

where R = R(I,J) and Q = Q(I,J) are integers determined by (38) and (89). Moreover, it holds that
for w € C§(R?)

92 92
> AR,Q) w(x+hRy+hQ) = <2w(x,y) + 2w(gc,y)) h? + O(h?). (45)
(RO ox y

Here we introduce the following notation for simplicity. Let ST M (aq,- - ,a) (vesp. SBTM (A1, -, Ag))
denote the symmetric diagonal Toeplitz matrix (resp. symmetric block diagonal Toeplitz matrix)

O Aq Ak O
Qg . Qg resp. Ak . Ak

0" . . 0 " w4

Then, we can rewrite (44) as

al o a

E

M =SBTM(A,B,C,D),
where

A = STM{—131/45,151/360, 11/300, —1/1800},
B = STM{151/360,37/120, —11/600, 1/3600},
C = STM{11/300, —11/600},

D = STM{—1/1800,1/3600}.

We next consider the case ¢(z,y) := @& (2)pY (y) with

7y = {(; + \}3) Ni(-—1) + (; - \}g) N1(')} « O
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Figure 13: Graphs of @ (x) (left) and @2 (z)@> (y) (right).

In this case, @QD gives a five-point formula for the second-order derivative. Using (20) we can calculate
Mr,g, e.g.,

—3557
M1 =aiic11+crpa11 = — 364’
My = ai2c11 +crpa1,1 = %,
and so on. Here we set
—3557/864  (|rl,[q|) = (0,0),
2579/3240  (|r],1q|) = (1,0), (0, 1),
883/51840 (|, [q]) = (2,0),(0,2),
=1/216 (|71, lql) = (3,0),(0,3),
1/17280 (||, lql) = (4,0),(0,4),
N 652/2025  (|r,[q]) = (1,1),
A(T> Q) = _301/5400 (|T‘|¢|Q|) = (271)7(172)7
1/405  (|r],]q]) = (3,1),(1,3),
_1/32400 (|T|¢|Q|) = (47 1)7(174)7
37/6480  (|rl,lal) = (2,2),
_1/6480 (|7"|,|Q|) = (273)7(3?2)’
1/518400  (I7|, |ql) = (2,4), (4,2),
0 otherwise.

Then, from straightforward computation, we see that Z(RQ)GZQ A(R Q)R"Q"* =0 forn =0,1,3,4,5

2,
k
Since g, )ezz MR, Quiz + hB,y + hQ) = S0y By (R + Q) w(w.y) + O(hS) for w € CH(R?),
we obtain the following theorem:

Theorem 5.2 For ¢(z,y) = ¥ (2)pP (y), we have

My = MR, Q),
where R = R(I,J) and Q = Q(I,J) are integers determined by (38) and (39). Moreover, it holds that
for w € C§(R?)

82 02
> AR,Q) w(z+hR,y+hQ) = (82“’(%?/) + agw(w,y)> h?+ O(h%).
(R,Q)€Z? * y
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From this theorem it follows that the coefficient matrix M is the block nonadiagonal matrix
M = SBTM{A,B,C,D, E},

where

A=STM

3557 2579 883 1 1 }

864 ' 3240’ 51840° 216’ 17280 )"
2579 652 301 1 1 }

32407 2025° 54007 405’ 32400 )
883 301 37 1 1 }

51840 5400 6430° 6480 518400

B =STM

D=STM i}
216 405 6480

E=5TM

{-
{
¢ = sTm{
{-
{m

1
17280’ 32400 518400}
5.3 Numerical results

We now present some examples and numerical results. We define the relative L2-error E}P between the
exact solution u(x,y) and the approximation

z,y) = Zn: iumso(i—ﬁ“)SO(Z‘j?“)

Jje=1j1=1
by
,_1l_1
Ef = (1, hls) — @(hts, hiz))?,
£ Bl 0~

and we define the ratio Q, by Qf = EY_./ E‘p Here we remark that n depends to the step size h and

the size of supp ¢. For example, if ¢ = Ng, i.e., meas(supp ¢) = 2, then, n = 4. Generally, it holds that
n=1/h+ 1 — meas(supp ¢).

Table 10: The case of u(x,y) = 2822(1 — z)%y%(1 — y)2.

n | BN oM | g7 | g | EFY | of
10 | 0.0794 | 1.77 | 3.18 | 1.31 | 3.63 | 1.28
15 | 0.0549 | 1.45 | 2.49 | 1.28 | 2.91 | 1.25
20 | 0.0419 | 1.31 | 2.03 | 1.22 | 2.41 | 1.20
25 0.0339 | 1.24 | 1.72 | 1.19 | 2.05 | 1.17

30| 0.0284 | 1.19 | 1.48 | 1.16 | 1.79 | 1.15

Table 11: The case of u(x,y) = 22%25(1 — 2)5y(1 — y)°.
n | B Q| B [QF | B | QF
10| 0.149 | 1.83 | 0.416 | 4.12 | 0.337 | 3.80
15| 0.102 | 1.46 | 0.142 | 2.93 | 0.122 | 2.76
20 | 0.0775 | 1.32 | 0.0616 | 2.31 | 0.0551 | 2.22
25 1 0.0626 | 1.24 | 0.0317 | 1.94 | 0.0291 | 1.89

30 | 0.0524 | 1.19 | 0.0185 | 1.71 | 0.0174 | 1.68
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The above results indicate that Daubechies-type Riesz bases produce a good approximation to the
solution when the exact solution decays quickly at the boundaries of the region. Here, we constructed
two-dimensional basis functions of Daubechies type. Obviously, one can also construct basis functions of
Deslauriers—Dubuc type by using the results in section 4.
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