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1 Preliminaries

In this thesis, space Lp(X) (1 ≤ p <∞) denotes

Lp(X) :=
{
f : f is a Lebesgue measurable function and

∫
X
|f(x)|pdx <∞

}
.

The inner product and the norm of L2(X) are defined by ⟨f, g⟩L2(X) :=
∫
X f(x)g(x)dx and ∥f∥L2(X) :=

⟨f, f⟩1/2
L2(X), respectively. For the case p = ∞, we define L∞(X) to be the set of essentially bounded

measurable functions on X and ∥f∥L∞(X) = ess supx∈X |f(x)|. For f ∈ L2(R), the Fourier transform and
the inverse Fourier transform are expressed by

F [f ](ξ)
(
= f̂(ξ)

)
=

∫
R
f(x)e−ixξdx

and

F−1[g](x) =
1

2π

∫
R
g(ξ)eixξdξ.

In this thesis, we construct basis functions for numerical analysis of differential equations using the
wavelet theory. Firstly, let us give definitions and results related to the wavelet theory. For their proofs,
we refer to [6, 12, 25], etc.

The orthogonal wavelet is a L2 function which is defined by the following:

Definition 1.1 A function ψ ∈ L2(R) is called an orthogonal wavelet if the set {ψj,k(x) = 2j/2ψ(2jx −
k)}j,k∈Z is an orthonormal basis for L2(R).

Orthogonal wavelets is usually constructed through a multiresolution analysis (MRA).

Definition 1.2 An MRA {Vj}j∈Z is a sequence of closed subspaces of L2(R) which satisfies the followings:

(1) Vj ⊂ Vj+1 for all j ∈ Z.

(2) f(x) ∈ Vj ⇐⇒ f(2x) ∈ Vj+1.

(3) ∩j∈ZVj = {0}.

(4) ∪j∈ZVj = L2(R).

(5) There exists a function φ ∈ V0 such that {φ(· − k)}k∈Z forms an orthonormal basis for V0. This
function φ is called the scaling function.

Here we remark that, for f ∈ L2(R), we can easily check the orthonormality of {f(· − n)}n∈Z in the
Fourier domain.

Lemma 1.3 Let f ∈ L2(R). Then {f(· − n)}n∈Z is an orthonormal system if and only if∑
k∈Z

∣∣∣f̂(ξ + 2kπ)
∣∣∣2 = 1 a.e. ξ ∈ R.
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Since φ(x/2) ∈ V−1 ⊂ V0 = span{φ(· − k)}k∈Z, there exists a sequence {hk}k∈Z satisfying the two-scale
relation

1

2
φ
(x
2

)
=
∑
k∈Z

hkφ(x− k). (1)

By the Fourier transform of (1), we obtain

φ̂(2ξ) = φ̂(ξ)
∑
k∈Z

hke
−ikξ ≡ m0(ξ)φ̂(ξ),

where m0(ξ) =
∑

k∈Z hke
−ikξ ∈ L2(−π, π) is called the low-pass filter associated with the scaling function

φ. The low-pass filter has the following important property:

Proposition 1.4 Let m0 be a low-pass filter. Then, it holds that

|m0(ξ)|2 + |m0(ξ + π)|2 = 1 a.e. ξ ∈ R.

Let {Vj}j∈Z be a multiresolution analysis. By the orthogonal decomposition, there exists Wj such that
Wj ⊕ Vj = Vj+1. Using the above Proposition and Lemma, we can characterize V0, V−1,W0 and W−1 as
follows:

Lemma 1.5 Let φ be a scaling function of an MRA {Vj}j∈Z and m0 be a low-pass filter associated with
φ. Then, we have

V−1 = {f ∈ L2(R) : f̂(ξ) = α(2ξ)m0(ξ)φ̂(ξ), α ∈ L2(−π, π)},
V0 = {f ∈ L2(R) : f̂(ξ) = β(ξ)φ̂(ξ), β ∈ L2(−π, π)},

W−1 = {f ∈ L2(R) : f̂(ξ) = eiξγ(2ξ)m0(ξ + π)φ̂(ξ), γ ∈ L2(−π, π)},
W0 = {f ∈ L2(R) : f̂(2ξ) = eiξγ(2ξ)m0(ξ + π)φ̂(ξ), γ ∈ L2(−π, π)}.

In fact, to find an orthogonal wavelet, we only have to find a function ψ ∈W0 such that {ψ(· − k)}k∈Z is
an orthonormal basis for W0 :

Proposition 1.6 Let ψ ∈ W0. If {ψ(· − k)}k∈Z forms an orthonormal basis for W0, then ψ is an
orthogonal wavelet, i.e., {ψj,k}j,k∈Z is an orthonormal basis for L2(R).

From the above arguments, the construction of an orthogonal wavelet from an MRA is summarized
as follows:

Theorem 1.7 Let φ be a scaling function for an MRA {Vj}j∈Z and m0 is the associated low-pass filter.
Suppose that ν is a 2π-periodic function satisfying |ν(ξ)| = 1. Then ψ defined by

ψ̂(ξ) = eiξ/2ν(ξ)m0

(
ξ

2
+ π

)
φ̂

(
ξ

2

)
is an orthogonal wavelet.
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2 Introduction

2.1 The Galerkin method

The Galerkin method is a powerful tool for calculating numerical solutions of differential equations. In
particular, lower-degree polynomials are often used for the basis and test functions since the resulting
coefficient matrices of the Galerkin equations have simpler structures. This method is called the finite
element method (FEM). Let us consider the following problem as an example:{

−u′′ + u = f, 0 < x < 1,
u(0) = u(1) = 0.

(2)

A weak form of the problem is given by

a(u, v) = ⟨f, v⟩L2(R) for all v ∈ H1
0 (0, 1) (3)

with a bilinear form

a(u, v) =

∫ 1

0
u(x)v(x)dx+

∫ 1

0
u′(x)v′(x)dx.

Here we denote the Sobolev space H1(0, 1) =
{
u ∈ L2(0, 1) : u′ ∈ L2(0, 1)

}
, and H1

0 (0, 1) = {u ∈
H1(0, 1) : u(0) = u(1) = 0} is its subspace. A solution of (3) is called a weak solution.

The Galerkin method constructs an approximate solution as the weak solution. Let Vn ⊂ H1
0 be an

n-dimensional subspace, and let φ1, · · · , φn be a basis of Vn. By substituting un ∈ Vn for u and vn ∈ Vn
for v, we obtain

a(un, vn) = ⟨f, vn⟩L2(R) for all vn ∈ Vn. (4)

We consider the approximate solution uJ ∈ VJ of the form

un(x) =

n∑
j=1

Ujφj(x).

Taking vn = φj (j = 1, 2, · · · , n) in (4) we obtain a Galerkin equation

MU = F,

where M = {a(φi, φj)}i,j=1,··· ,n is a coefficient matrix, F = t{⟨f, φj⟩L2(R)}j=1,··· ,n is a vector generated

by the inner products of f and the test functions, and U is a unknown vector U = t{U1, · · · , Un}. The
coefficients {Uj}j are thus obtained as the solution of the equation U =M−1F .

Classical FEM employees the hat function B2(x) = max{1− |x|, 0} as the basis and test functions. If

we put {φi(x) = vi(x) = B2(x/h− i)}1/h−1
i=1 ⊂ H1

0 (0, 1), then we can easily see that the components of the
stiffness and mass matrices are given, respectively, by

ai,j = ⟨φ′
i, v

′
j⟩L2(R) =

1

h
×


2, j = i,
−1, j = i± 1,
0, otherwise,

and

ci,j = ⟨φi, vj⟩L2(R) =
h

6
×


4, j = i,
1, j = i± 1,
0, otherwise.

Thus the coefficient matrixM is a tridiagonal matrix, and its components are given byMi,i = 2/h+2h/3,
Mi,i±1 = −1/h+h/6, and Mi,j = 0 otherwise. The sparsity of this matrix results in decreased computing
costs.
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Wavelet theory has been developing rapidly in several fields since its inception in the 1980’s, and many
wavelets have been introduced. The application of wavelets to the Galerkin method is an interesting
topic, and the flexibility of wavelet functions provides many options for approximation spaces. Especially,
compactly supported orthogonal wavelets or scaling functions give sparse matrices, including the stiffness
matrix, because of their locality and orthogonality. Among these, the Daubechies scaling function [12],
which is well known as a compactly supported orthogonal function, is commonly used for numerical
analysis. But the Daubechies wavelets and scaling functions do not have explicit expressions in the time
domain. So, if we try to compute the inner product on a wavelet ⟨f, ψ⟩L2(R) or a scaling function ⟨f, φ⟩L2(R)
with high-dimensional accuracy, it is computationally expensive. Therefore, in some cases inner products
with scaling functions are simply approximated by its sampling, i.e., ⟨f, 2j/2φ(2j · −k)⟩L2(R) ≈ f(2−jk),
but the accuracy of these approximations depends on the smoothness of f , and getting high-precision
analysis results requires an evaluation of the integrals. To overcome this difficulty with integrations,
many methods using wavelets and scaling functions have been introduced [3, 8, 10, 11, 35].

When we use the orthogonal functions as basis and test functions, resulting mass matrix becomes a
diagonal matrix, but in almost all cases, the highest derivative of the original equation is a leading term.
Thus, in the above case, the structure of the stiffness matrix plays an important role.

In this paper, our aim is to find suitable (non orthogonal) Riesz bases for higher order differential
equations in the sense that stiffness matrices are more sparse.

2.2 Uniform approach to find suitable bases

According to differential equations, we expect certain smoothness (at least Lipschitz continuity) for the
subspace. Let us put the B-splines of orders 1 and 2 as follows:

N1(x) =

{
1 if 0 ≤ x ≤ 1,
0 otherwise,

N2(x) =


x if 0 ≤ x < 1,
2− x if 1 ≤ x < 2,
0 otherwise.

N1(x) is called the Haar scaling function. {N2(x − k) : k ∈ Z} which is a Riesz basis for the space V0
of piecewise linear continuous functions on the intervals [k, k + 1] for all k ∈ Z, is used in the standard
FEM. We remark that the Franklin scaling function and the Strömberg scaling function can be also
orthogonal bases for V0 (see [18, 25, 34]). The Lipschitz continuity of functions in the subspace comes
from the property of these bases. Therefore, our task is to determine a base scaling function rather than
a subspace.

From the point of view of the study of differential equations, the coefficient of the highest order
derivative has much more influence on the behavior of the solution. After the translation of the continuous
problem into the discrete one, if the matrix corresponding to the principal part becomes simpler, the
approximate solution will be more stable as an appropriate numerical treatment. In this section we shall
give a uniform approach to find suitable bases such that the matrix corresponding to the principal part
has just a form of three-point formula.

Firstly, for the simplicity, let us consider the second order equation − d2

dx2u+ u = f and V0 i.e., j = 0.
We are concerned with the following matrix coming from the principal part:

ak,ℓ := −
⟨
d

dx
φ0,k,

d

dx
φ0,ℓ

⟩
L2(R)

(
=

⟨
d2

dx2
φ0,k, φ0,ℓ

⟩
L2(R)

if φ ∈ C2

)
.

Since φ0,k(x) = φ(x− k), by Parseval’s theorem we see that⟨
d

dx
φ0,k,

d

dx
φ0,ℓ

⟩
L2(R)

=
1

2π

⟨
iξe−ikξφ̂, iξe−iℓξφ̂

⟩
L2(R)

= F−1
[∣∣ξφ̂(ξ)∣∣2](ℓ− k).

4



On the other hand, in order to get three-point formula for second order derivative, we need the tridiagonal
matrix

{
ak,ℓ
}
1≤k,ℓ≤N

=



−2 1 0 · · · · · · · · · 0
1 −2 1 0 · · · · · · 0
0 1 −2 1 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0
0 · · · · · · 0 1 −2 1
0 · · · · · · 0 0 1 −2


, (5)

where N depended on the interval in which − d2

dx2u + u = f is considered. Thus, φ must satisfy the
condition

F−1
[∣∣ξφ̂(ξ)∣∣2](ℓ− k) =


2 if k = ℓ,
−1 if k = ℓ± 1,
0 otherwise.

(6)

It would not be easy to find φ from (6). Therefore, we shall try to change the condition (6). Further
computations yield

F−1
[∣∣ξφ̂(ξ)∣∣2](ℓ− k) =

1

2π

∑
q∈Z

∫ 2(q+1)π

2qπ
ei(ℓ−k)ξ

∣∣ξφ̂(ξ)∣∣2dξ
=

1

2π

∑
q∈Z

∫ 2π

0
ei(ℓ−k)ξ

∣∣(ξ + 2qπ)φ̂(ξ + 2qπ)
∣∣2dξ

=
1

2π

∫ 2π

0
ei(ℓ−k)ξ

∑
q∈Z

∣∣(ξ + 2qπ)φ̂(ξ + 2qπ)
∣∣2dξ.

Hence, we find that (6) is equivalent to∑
q∈Z

∣∣(ξ + 2qπ)φ̂(ξ + 2qπ)
∣∣2 ≡ −eiξ + 2ei0ξ − e−iξ

(
= 4 sin2

ξ

2

)
for almost everywhere ξ ∈ R. Denoting the sinc function by sinc ξ = sin ξ

ξ , we see that the Haar scaling

function N1(x) satisfies N̂1(ξ) = e−iξ/2sinc ξ
2 . We shall define Φ(x) by

Φ̂(ξ) =
φ̂(ξ)

N̂1(ξ)
. (7)

Then we also get

∑
q∈Z

∣∣Φ̂(ξ + 2qπ)
∣∣2=∑

q∈Z

∣∣(ξ + 2qπ)φ̂(ξ + 2qπ)
∣∣2

4 sin2 ξ+2qπ
2

=

∑
q∈Z

∣∣(ξ + 2qπ)φ̂(ξ + 2qπ)
∣∣2

−eiξ + 2ei0ξ − e−iξ
,

here we used

4 sin2
ξ + 2qπ

2
= 4 sin2

ξ

2
= −eiξ + 2ei0ξ − e−iξ.

This means that ∑
q∈Z

∣∣Φ̂(ξ + 2qπ)
∣∣2 ≡ 1 a.e. ξ ∈ R. (8)

5



So, the condition (6) has been reduced to the conditions (7) and (8). Now we can easily find φ from (7)
and (8), because the identity (8) is well-known as the orthonormal condition. The definition (7) yields

φ(x) = F−1
[
N̂1(ξ)Φ̂(ξ)

]
(x) = N1 ∗ Φ(x)

(
=

∫ x

x−1
Φ(y)dy

)
. (9)

The new function φ is the elevation of Φ with N1. Therefore N1 is also called the elevator (see [32, 36]).
More generally, let us represent the elevator by E and define

φ(x) = E ∗ Φ(x).

Remark 2.1 The most typical example is the case when the elevator E(x) is N1(x) and Φ(x) is the Haar
scaling function, i.e., E(x) = Φ(x) = N1(x). In this case, by (9) we obtain

φ(x) = N1 ∗N1(x) = N2(x).

This case just coincides with the standard FEM. Choosing other scaling functions for Φ(x), we can obtain
various types of bases.

2.3 Definition of elevator

We shall derive some properties for the case when the elevator E(x) is N1(x). By Taylor expansion we
see that for v ∈ C4

1∑
ν=−1

ak,k+νv(x+ νh) = h2
d2

dx2
v(x) +O(h4) for all k ∈ Z. (10)

Moreover, we assume that
Φ̂(0) = 1, (11)

which allows scaling functions, but excludes wavelet functions. Hence, by (9) it follows that

∑
k∈Z

φj,k(x) =
∑
k∈Z

φ(2jx− k) =
∑
k∈Z

∫ 2jx−k

2jx−k−1
Φ(y)dy

=

∫ ∞

−∞
Φ(y)dy = Φ̂(0) = 1. (12)

This is just the partition of unity. Let us put h = 2−j and wj(x) =
∑

ℓ∈Zwj,ℓφj,ℓ(x). If wj is sufficiently
smooth and φ has compact support (or decays sufficiently fast), by (12) we have for k ∈ Z

wj(kh) =
∑
ℓ∈Z

wj,ℓφj,ℓ(kh) ∼ wj,k

∑
ℓ∈Z

φj,ℓ(kh) = wj,k. (13)

Indeed, it holds that wj(kh) = wj,k in the standard FEM.
Meanwhile we also get the following identity:∑

q∈Z

∣∣φ̂(ξ + 2qπ)
∣∣2 =∑

ν∈Z
ck,k+νe

iνξ,

where ck,ℓ := ⟨φ0,k, φ0,ℓ⟩L2(R). In particular, taking ξ = 0, by (7) and (11) we find that for all k ∈ Z∑
ν∈Z

ck,k+ν =
∑
q∈Z

∣∣φ̂(2qπ)∣∣2 =∑
q∈Z

∣∣N̂1(2qπ)Φ̂(2qπ)
∣∣2 = ∣∣Φ̂(0)∣∣2 = 1,

6



here we used Φ̂(2qπ) = 0 if q ̸= 0, since
∑

q ̸=0

∣∣∣Φ̂(2qπ)∣∣∣2 − ∣∣∣Φ̂(0)∣∣∣2 = 0 by (11) and (8) with ξ = 0. Noting

that ck,k+ν = ck,k−ν , by Taylor expansion we see that for v ∈ C2
0∑

ν∈Z
ck,k+ν v(x+ νh) = v(x) +O(h2) for all k ∈ Z. (14)

In our construction, to get the approximate solution uj(x) =
∑

ℓ∈Z uj,ℓφj,ℓ(x) in the interval (0, 1) for the

equation − d2

dx2u+ u = f , we solve the following system corresponding to the Galerkin equation:[
−
{
ak,ℓh

−2
}
1≤k,ℓ≤N

+
{
ck,ℓh

}
1≤k,ℓ≤N

]
t
{
uj,ℓ
}
1≤ℓ≤N

=
{
ck,ℓ
}
1≤k,ℓ≤N

t
{
fj,ℓ
}
1≤ℓ≤N

.

By (13) this can be regarded as[
−
{
ak,ℓh

−2
}
1≤k,ℓ≤N

+
{
ck,ℓh

}
1≤k,ℓ≤N

]
t
{
uj(ℓh)

}
1≤ℓ≤N

=
{
ck,ℓ
}
1≤k,ℓ≤N

t
{
fj(ℓh)

}
1≤ℓ≤N

.

Paying attention to each row, by (10) and (14) we find that

−
∑

1≤ℓ≤2j

ak,ℓh
−2uj(ℓh) = −

∑
ν

ak,k+νh
−2uj(kh+ νh) = − d2

dx2
uj(kh) +O(h2),

∑
1≤ℓ≤2j

ck,ℓuj(ℓh) =
∑
ν

ck,k+νuj(kh+ νh) = uj(kh) +O(h2),

∑
1≤ℓ≤2j

ck,ℓfj(ℓh) =
∑
ν

ck,k+νfj(kh+ νh) = fj(kh) +O(h2).

These give the numerical difference equation of the original differential equation − d2

dx2u + u = f at the
point x = kh. The accuracy of (13) depends on the case of application. We remark that (10) and (14)
play an important role to guarantee the accuracy.

From the above observations for E = N1, we shall propose the following conditions to characterize
qualitative elevators for the Galerkin method:

Definition 2.2 Let Φ be a scaling function such that Φ̂(0) = 1 and Φ̂(ξ) ̸= 0 for −π ≤ ξ ≤ π. Put
ck,ℓ := ⟨φ0,k, φ0,ℓ⟩L2(R) and ak,ℓ := −⟨ d

dxφ0,k,
d
dxφ0,ℓ⟩L2(R) for φ(x) = E ∗ Φ(x). The elevator E for the

Galerkin method is a function satisfying

(i) Ê(ξ) ̸= 0 for −π ≤ ξ ≤ π, in particular, Ê(0) = 1.

(ii) It holds that for v ∈ C4
0 ∑

ν∈Z
ck,k+ν v(x+ νh) = v(x) +O(h2),

∑
ν∈Z

ak,k+νv(x+ νh) = h2
d2

dx2
v(x) +O(h4).

(iii) There exists a 2π-periodic function mE(ξ) such that Ê(2ξ) = mE(ξ)Ê(ξ).

It is known that the exact frame is equivalent to the Riesz basis. The condition for the Riesz basis is
given by

A ≤
∑
q∈Z

∣∣φ̂(ξ + 2qπ)
∣∣2 ≤ B (15)

7



for 0 < A ≤ B <∞ (see [4]). If Φ̂(ξ) ̸= 0 for −π ≤ ξ ≤ π, by (i) we note that∑
q∈Z

∣∣φ̂(ξ + 2qπ)
∣∣2 =∑

q∈Z

∣∣Ê(ξ + 2qπ)Φ̂(ξ + 2qπ)
∣∣2

≥
∣∣Ê(ξ − 2nπ)Φ̂(ξ − 2nπ)

∣∣2
≥ ∃A > 0

for 2nπ − π ≤ ξ ≤ 2nπ + π (n ∈ Z), that is, ξ ∈ R. Rewriting φ(x) = N1 ∗ Φ♯(x) with Φ̂♯(ξ) = Ê(ξ)Φ̂(ξ)

N̂1(ξ)
,

from (i) we can expect that the properties corresponding to (12), (13) and (14) still hold, since Φ̂♯(0) = 1.
In fact, we may omit

∑
ν∈Z ck,k+ν v(x+ νh) = v(x) +O(h2) in (ii).

Replacing the definition φj,k(x) = φ(2jx−k) by φj,k(x) = 2j/2φ(2jx−k), we could also get wavelet ex-

pansions. Thanks to the condition (iii) we obtain a semi-orthogonal wavelet ψ̂(ξ) = eiξ/2m(ξ/2 + π)φ̂(ξ/2),
where m(ξ) = mφ(ξ)

∑
q∈Z |φ̂(ξ + 2qπ)|2 = mE(ξ)mΦ(ξ)

∑
ν∈Z ck,k+νe

iνξ (2π-periodic). A biorthogonal
wavelet for the elevated φ can be also considered (see [16]).

3 Riesz basis of Daubechies type

3.1 Three-point formula for second order derivative

To get compactly-supported and also more smooth base than N2, we may choose the Daubechies scaling
function of order p for Φ ≡ ΦD

p satisfying (11). Then by (9) we have

φD
p (x) = N1 ∗ ΦD

p (x). (16)

0 1 2 3 40.5 1.5 2.5 3.5
-0.2

0

0.2

0.4

0.6

0.8

1

(a) φD
2

(
supp φD

2 ⊂ [0, 4]
) 0 1 2 3 4 5 60.5 1.5 2.5 3.5 4.5 5.5

-0.2

0

0.2

0.4

0.6

0.8

1

(b) φD
3

(
supp φD

3 ⊂ [0, 6]
)

Figure 1: Graphs of φD
2 and φD

3 .

The basis {φD
p (x− k) : k ∈ Z} had been derived by [32] and [36]. Their approach is motivated from the

observation that the integration of the Haar wavelet becomes N2. Therefore, the pseudoframe was firstly
considered by the integration of the Daubechies wavelet, and secondly it was arranged for the efficiency
of the computation and arrived at φD

p (see also [27]).

In order to solve numerically the equation − d2

dx2u + u = f with some base {φ(x − k) : k ∈ Z}, we
need to know the matrices

{
ck,ℓ
}
1≤k,ℓ≤N

and
{
ak,ℓ
}
1≤k,ℓ≤N

. If one considers the orthogonal Daubechies

scaling function, it holds that the matrix
{
ck,ℓ
}
1≤k,ℓ≤N

= I. On the other hand, the matrix
{
ak,ℓ
}
1≤k,ℓ≤N

for the Daubechies scaling function is well studied in [1]. For all the bases constructed by the approach
in §2.2, the matrix

{
ak,ℓ
}
1≤k,ℓ≤N

is just (5).
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Remark 3.1 It would be preferable that bases are at least C1 or Lipschitz continuous as N2 in order
that the weak form −⟨ d

dxφ0,k,
d
dxφ0,ℓ⟩L2 of ⟨ d2

dx2φ0,k, φ0,ℓ⟩L2 has a meaning. Especially for p = 2, the
Daubechies scaling function ΦD

2 ∈ C0.55 fails to satisfy the differentiability, but gives φD
2 ∈ C1.55.

We shall also compute the exact value of ck,ℓ for φD
2 (x). Putting ϕ̂(ξ) =

∣∣φ̂D
2 (ξ)

∣∣2, by Parseval’s
theorem we have

ck,ℓ = ⟨φD
2 (x− k), φD

2 (x− ℓ)⟩L2(R) = ϕ(ℓ− k).

By (16) it holds that

ϕ̂(ξ) = sinc2
ξ

2
Φ̂D
2 (ξ)

2 =

∞∏
j=1

cos2
(

ξ

2j+1

) ∣∣∣∣mD
2

(
ξ

2j

)∣∣∣∣2 ≡ ∞∏
j=1

m̃

(
ξ

2j

)
,

where mD
2 is the Daubechies low-pass filter. Since mD

2 (ξ) =
∑3

k=0 ηke
−ikξ with

{η0, η1, η2, η3} =

{
1 +

√
3

8
,
3 +

√
3

8
,
3−

√
3

8
,
1−

√
3

8

}

and cos2 ξ = e2iξ+2+e−2iξ

4 , we find that m̃(ξ) =
∑4

k=−4 µke
−ikξ and its coefficients are given by

{µ0, µ±1, µ±2, µ±3, µ±4} =

{
25

64
,
17

64
,
1

16
,− 1

64
,− 1

128

}
.

The function ϕ satisfies

ϕ(x) = 2

4∑
k=−4

µkϕ(2x− k)

and suppϕ ⊂ [−4, 4] since suppφD
2 ⊂ [0, 4] and ϕ(x) =

∫
R φ

D
2 (t+ x)φD

2 (t)dt. Hence we have

M t{ϕ(k)}−3≤k≤3 = 0,

where

M =



1− 2µ−3 −2µ−4 0 0 0 0 0
−2µ−1 1− 2µ−2 −2µ−3 −2µ−4 0 0 0
−2µ1 −2µ0 1− 2µ−1 −2µ−2 −2µ−3 −2µ−4 0
−2µ3 −2µ2 −2µ1 1− 2µ0 −2µ−1 −2µ−2 −2µ−3

0 −2µ4 −2µ3 −2µ2 1− 2µ1 −2µ0 −2µ−1

0 0 0 −2µ4 −2µ3 1− 2µ2 −2µ1
0 0 0 0 0 −2µ4 1− 2µ3


.

We also remark that
∑3

k=−3 ϕ(k) =
∑

k∈Z ϕ(k) =
∫
R

1
2π

∑
k∈Z e

ikξϕ̂(ξ)dξ = ϕ̂(0) = 1. Deriving the

eigenvector with 0 eigenvalue such that
∑3

k=−3 ϕ(k) = 1, we find that

{ϕ(0), ϕ(±1), ϕ(±2), ϕ(±3)} =

{
131

180
,
37

240
,− 11

600
,

1

3600

}
.

Thus we obtain

ck,ℓ

(
= ϕ(l − k)

)
=


131/180 if k = ℓ,
37/240 if k = ℓ± 1,
−11/600 if k = ℓ± 2,
1/3600 if k = ℓ± 3,

0 otherwise.

Consequently, we get the following theorem:
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Theorem 3.2 ([21]) For φD
2 (x) defined by (16) with Φ = ΦD

2 we have

ck,ℓ =


131/180 if k = ℓ,
37/240 if k = ℓ± 1,
−11/600 if k = ℓ± 2,
1/3600 if k = ℓ± 3.

0 otherwise,

and ak,ℓ =


−2 if k = ℓ,
1 if k = ℓ± 1,
0 otherwise.

(17)

Moreover, it holds that for v ∈ C4
0∑

ν∈Z
ck,k+ν v(x+ νh) = v(x) +O(h2),

1∑
ν=−1

ak,k+νv(x+ νh) = h2
d2

dx2
v(x) +O(h4).

3.2 Five-point formula for second order derivative

With small changes of the approach in §1.2 we can also consider the 5-point formula for 2nd order
derivative. For this purpose, we replace (6) by

F−1
[∣∣ξφ̂(ξ)∣∣2](ℓ− k) =


5
2 if k = ℓ,
−4

3 if k = ℓ± 1,
1
12 if k = ℓ± 2,
0 otherwise,

which is equivalent to∑
q∈Z

∣∣(ξ + 2qπ)φ̂(ξ + 2qπ)
∣∣2 ≡ 1

12
e2iξ − 4

3
eiξ +

5

2
ei0ξ − 4

3
e−iξ +

1

12
e−2iξ

(
=

4

3
sin2

ξ

2

(
sin2

ξ

2
+ 3

))

for almost everywhere ξ ∈ R. We shall define Φ(x) by

Φ̂(ξ) =
φ̂(ξ)

(γ− + γ+e−iξ)N̂1(ξ)
, (18)

where γ± = 1
2 ± 1√

3
. Then we also get

∑
q∈Z

∣∣Φ̂(ξ + 2qπ)
∣∣2 =∑

q∈Z

∣∣(ξ + 2qπ)φ̂(ξ + 2qπ)
∣∣2

4 sin2 ξ+2qπ
2

∣∣γ− + γ+e−i(ξ+2qπ)
∣∣2

=

∑
p∈Z

∣∣(ξ + 2qπ)φ̂(ξ + 2qπ)
∣∣2

1
12e

2iξ − 4
3e

iξ + 5
2e

i0ξ − 4
3e

−iξ + 1
12e

−2iξ
,

here we used

4 sin2
ξ + 2qπ

2

∣∣γ− + γ+e−i(ξ+2qπ)
∣∣2 = 4 sin2

ξ

2

∣∣γ− + γ+e−iξ
∣∣2 = 4

3
sin2

ξ

2

(
sin2

ξ

2
+ 3
)

=
1

12
e2iξ − 4

3
eiξ +

5

2
ei0ξ − 4

3
e−iξ +

1

12
e−2iξ.
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(a) Φ = ΦD
2 (supp φ̃ ⊂ [0, 5]).
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(b) Φ = N1 (supp φ̃ ⊂ [0, 3]).

Figure 2: Graphs of φ̃ =
{
γ−N1(x) + γ+N1(x− 1)

}
∗ Φ(x).

Hence, the identity (8) still holds. Thus, the definition (18) yields

φ̃(x) =
{
γ−N1(·) + γ+N1(· − 1)

}
∗ Φ(x). (19)

Let us put c̃k,ℓ := ⟨φ̃0,k, φ̃0,ℓ⟩L2(R) and ãk,ℓ := −⟨ d
dx φ̃0,k,

d
dx φ̃0,ℓ⟩L2(R). Similarly as §1.2, by (19) we

also find that for all ℓ ∈ Z∑
ν∈Z

c̃k,k+ν =
∑
q∈Z

∣∣{γ−N̂1(2qπ) + γ+e−2qπiN̂1(2qπ)
}
Φ̂(2qπ)

∣∣2
=
∣∣(γ− + γ+)Φ̂(0)

∣∣2 = 1.

We remark that E(x) = γ+N1(x − 1) + γ−N1(x) satisfies (i) in Definition 2.2, since |Ê(ξ)| =
∣∣γ− +

γ+eiξ
∣∣ ∣∣∣sinc ξ

2

∣∣∣ =√1
3 sin

2 ξ
2

∣∣∣sinc ξ
2

∣∣∣.
It remains to compute the precise value of c̃k,ℓ for φ̃(x). Put φ = N1 ∗ Φ and ck,ℓ = ⟨φ0,k, φ0,ℓ⟩L2 as

in §3.1. Since φ̃(x) = γ−φ(x) + γ+φ(x− 1), we get

c̃k,ℓ = ⟨γ−φ0,k + γ+φ0,k+1, γ
−φ0,ℓ + γ+φ0,ℓ+1⟩L2

=
(
γ+

2
+ γ−

2
)
⟨φ0,k, φ0,ℓ⟩L2 + γ+γ−

(
⟨φ0,k, φ0,ℓ+1⟩L2 + ⟨φ0,k+1, φ0,ℓ⟩L2

)
=

7

6
ck,ℓ −

1

12
(ck,ℓ+1 + ck+1,ℓ) .

In the case of Φ = ΦD
2 , each ck,ℓ is already given by (17). In the case of Φ = N1, since φ = N2 we can

easily see that

ck,ℓ =


2/3 if k = ℓ,
1/6 if k = ℓ± 1,
0 otherwise.

Consequently, we get the following theorem corresponding to Theorem 3.2:
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Theorem 3.3 ([21]) For φ̃D
2 (x) defined by (19) with Φ = ΦD

2 (resp. N1) we have

c̃k,ℓ =



3557/4320 if k = ℓ,
163/1350 if k = ℓ± 1,
−37/1080 if k = ℓ± 2,
1/540 if k = ℓ± 3,

−1/43200 if k = ℓ± 4,
0 otherwise,

resp. c̃k,ℓ =


3/4 if k = ℓ,
5/36 if k = ℓ± 1,
−1/72 if k = ℓ± 2,

0 otherwise,

 (20)

and

ãk,ℓ =


−5/2 if k = ℓ,
4/3 if k = ℓ± 1,

−1/12 if k = ℓ± 2,
0 otherwise.

Moreover, it holds that for v ∈ C6
0∑

ν∈Z
c̃k,k+ν v(x+ νh) = v(x) +O(h2),

2∑
ν=−2

ãk,k+νv(x+ νh) = h2
d2

dx2
v(x) +O(h6).

3.3 Numerical results

Let us introduce some examples and numerical results in this section.

Riesz base Choice of Elevator Length of Regularity Remainder
φ Φ E support in x

N2 N1 N1 2 C1 (Lip) O(h2)

φD
2 ΦD

2 N1 4 C1.5 O(h2)

Ñ2 N1

γ+N1(x− 1)

+γ−N1(x) 3 C2 O(h4)

φ̃D
2 ΦD

2

γ+N1(x− 1)

+γ−N1(x) 5 C1.5 O(h4)

N3 N1 N2 3 C2 O(h2)
◦
φD
2 ΦD

2 N2 5 C2.5 O(h2)

The boundary valued problem for

−ε2 d
2

dx2
u(ε) + u(ε) = f, 0 < x < 1, u(ε)(0) = u(ε)(1) = 0,

has a solution represented by

u(ε)(x)=− sinh(x/ε)

ε sinh(1/ε)

∫ 1

0
sinh

y − 1

ε
f(y)dy +

1

ε

∫ x

0
sinh

y − x

ε
f(y)dy. (21)

For f(x) = sin 10πx, by (21) the exact solution is u(ε)(x) = sin 10πx
1+100ε2π2 and the errors with the Riesz bases

N2 and φD
2 are given by the following:

12



Table 1: The case of ε = 1.

Mesh size 2−j EN2
j QN2 E

φD
2

j QφD
2

j = 6 1.57×10-4 2.67 2.02×10-2 6.07
j = 7 5.67×10-5 2.77 3.58×10-3 5.64
j = 8 2.02×10-5 2.81 8.47×10-4 4.23

Table 2: The case of ε = 10−6.

Mesh size 2−j EN2
j QN2 E

φD
2

j QφD
2

j = 6 1.58×10-1 2.82 6.21×10-4 5.57
j = 7 5.62×10-2 2.81 1.17×10-4 5.32
j = 8 2.00×10-2 2.82 6.21×10-4 5.57

For f(x) = −ε2(9N1(3x) − 18N1(3x − 1) + N1(3x − 2)) + N3(3x), the exact solution u(x) = N3(3x)

belongs to H2, since
∫
R⟨ξ⟩

4|û(ξ)|2dξ =
∫
R⟨ξ⟩

4
(
sin ξ/6
ξ/6

)6
dξ <∞. The errors are given by the following:

Table 3: The case of ε = 1.

Mesh size 2−j EN2
j QN2 E

φD
2

j QφD
2

j = 6 1.43×10-4 2.81 6.08×10-4 4.00
j = 7 5.20×10-5 2.75 1.52×10-4 4.00
j = 8 1.84×10-5 2.82 3.82×10-5 3.98

Table 4: The case of ε = 10−6.

Mesh size 2−j EN2
j QN2 E

φD
2

j QφD
2

j = 6 4.68×10-3 2.79 5.59×10-4 4.00
j = 7 1.69×10-3 2.77 1.40×10-4 3.99
j = 8 6.00×10-4 2.82 3.51×10-5 3.99

Here Eφ
j is relative L2-error between the exact solution u(ε)(x) and the approximation ũ(ε)(x) =∑N

ℓ=1 uℓφj,ℓ(x) on [0, 1] defined by

Eφ
j = Eφ

j (ε) =
1

∥u(ε)∥L2

√√√√ 2j∑
ℓ=0

{
u(ε)

(
ℓ

2j

)
− ũ(ε)

(
ℓ

2j

)}2

and the ratio Qφ is defined by Qφ = Eφ
j−1/E

φ
j .

Concluding Remarks The method with the elevated Riesz bases converts a continuous operator to
a discrete problem by featuring the highest order derivatives. Therefore, we can consider the following
advantages:
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1. For −ε2 d2

dx2u
(ε) + u(ε) = f , if ε > 0 is smaller, −ε2 d2

dx2 gives more perturbation to the solution.
The influence of the parameter ε > 0 can be reduced to some extent. Actually, for φD

2 the relative

L2-error E
φD
2

j is stable for a smaller ε > 0.

2. For (−1)m d2m

dx2mu + u = f , if the solution has lower regularity, (−1)m d2m

dx2m plays a more role in the
structure of the equation. When we consider the solution inH2m or of less regularity inHs (s < 2m),

for instance m = 2, the relative L2-errors EN3
j and E

◦
φD
2

j keep good results even in comparison with
m = 1 (For detail, see [21]).

3.4 Theoretical error estimates

In the previous sections, we constructed some basis functions and give error estimations through numerical
simulations. On the other hand, theoretical error estimates are also important. Let us consider a Riesz
scaling function φ which satisfies the Strang–Fix condition of order L, i.e.,

φ̂(0) ̸= 0, and φ̂(k)(2nπ) = 0, for n ̸= 0, k = 0, 1, · · · , L− 1.

For the Riesz scaling function φ, its dual function φ̃ is defined by

̂̃φ (ξ) =
φ̂ (ξ)∑

k∈Z |φ̂ (ξ + 2kπ)|2
.

It is well known that when we consider the approximation of φ of the form
∑

k∈Z ckφ
(
x
T − k

)
, the

projection

PT f(x) =
∑
k

{∫
R
f(y)φ̃

( y
T

− k
) dy
T

}
φ
( x
T

− k
)

minimizes the L2-error. In this situation, Blu and Unser [2] have derived the following theorem:

Theorem 3.4 ([2]) Let φ satisfy the Strang–Fix condition of order L. Then, for any f ∈ HL(R) the
approximation error is given by

∥f − PT f∥L2(R) ≤

[
sup
|ξ|<π

E (ξ)

ξ2L
+

∥E∥L∞ ζ (2L)

π2L

]1/2 ∥∥∥f (L)∥∥∥
L2(R)

TL.

Here ζ is the zeta function ζ (t) =
∑∞

k=1
1
kt and E (ξ) = 1− |φ̂(ξ)|2∑

k∈Z|φ̂(ξ+2kπ)|2

With this theorem, let us estimate the ability of approximation for Daubechies scaling functions and
elevated Daubechies scaling functions. L-th order Daubechies scaling function ΦD

L satisfies the Strang–Fix
condition of order L. Additionally, elevated function φD

L−1 also satisfies the same condition. This means
that increasing the order of Daubechies family, and elevating with N1 produce the same effect that they

increase the order of Strang–Fix condition from L to L+1. Let CL (φ) =
[
sup|ξ|<π

E(ξ)
ξ2L

+
∥E∥L∞ζ(2L)

πL

]1/2
.

Then, for ΦD
3 and φD

2 , one can obtain C3

(
φD
2

)
= 0.04027, and C3

(
ΦD
3

)
= 0.05948. This shows the

efficiency of the elevation scheme for numerical analysis.

4 Wavelet-Galerkin method with biorthogonal functions

In section 2, we introduced a uniform approach that generates Riesz bases such that the associated stiffness
matrices become tridiagonal. This method is highly accurate, but the difficulty with the integral remains
unsolved. In this section,we further develop this method and use the properties of the biorthogonality
of the wavelets to overcome the difficulty with the integrals of the test functions. In particular, The
Deslauriers–Dubuc interpolating scaling functions [13, 15] are used as basis functions.
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4.1 Interpolating schemes

4.1.1 Deslauriers–Dubuc interpolating wavelet

Deslauriers and Dubuc [13] and Dubuc [15] introduced an interpolation scheme [29] that constructs a
function on R from an initial value {f(k)}k∈Z. The functions obtained from the initial value {δk,0}k∈Z
are called the fundamental functions. We denote the Deslauriers–Dubuc fundamental functions of order
D = 2L+ 1 (L = 0, 1, · · · ) by FD. FD satisfies the refinement relation

FD(x) =
∑
k∈N

FD(k/2)FD(2x− k)

and supp FD = [−D,D]. The smoothness of FD increases as D increases [13].
FD is known as a scaling functions of the interpolating wavelet function. In general, an interpolating

scaling function φ has some useful properties. First, φ(k) = δk,0 for k ∈ Z, which is useful in terms of the
approximation. Second, the two scale equation is given by φ(x) =

∑
k∈Z φ(k/2)φ(2x − k), which means

that the filter coefficients {hk}k are equal to the half values φ(k/2). Moreover, the associate wavelet
function is simply ψ(x) = φ (2x− 1).

In the case of Deslauriers–Dubuc scaling functions, the filter coefficients {hk}k are easily calculated
from the Lagrange polynomial: If

Lk(x) =

N+1∏
i=−N
i̸=k

x− i

k − i
, k = −N,−N + 1, · · · , N + 1,

then

h2k = δk,0,

h2k+1 =

{
L−k(1/2), k = −N − 1, · · · , N,

0, otherwise.

For example,

{h−1, h0, h1} =

{
1

2
, 1,

1

2

}
when D = 1, and

{h−3, h−2, h−1, h0, h1, h2, h3} =

{
− 1

16
, 0,

9

16
, 1,

9

16
, 0,− 1

16

}
when D = 3.

4.1.2 Average interpolation

Donoho [14] and Harten [24] generalized the Deslauriers–Dubuc interpolation scheme and also introduced
a scheme called average interpolation. The fundamental functions of the average interpolation scheme
AD of order D = 2L (L = 1, 2, · · · ) still have compact supports supp AD ⊂ [−D,D + 1] and satisfy the
two scale equation

AD(x) =
∑
k∈Z

ckAD(2x− k).

For example,

{c−2, c−1, c0, c1, c2, c3} =

{
−1

8
,
1

8
, 1, 1,

1

8
,−1

8

}
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Figure 3: Deslauriers–Dubuc fundamental functions

when D = 2,

{c−3, c−2, c−1, c0, c1, c2, c3, c4} =

{
3

128
,− 3

128
,−11

64
,
11

64
, 1, 1,

11

64
,−11

64
,− 3

128
,

3

128

}
when D = 4.
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Figure 4: Fundamental functions of the average interpolation scheme

The fundamental functions AD and FD have a strong relationship. If we set φ = AD and ϕ = FD+1,
then it holds that

ϕ′(x) = φ(x+ 1)− φ(x). (22)
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Since

φ(x+ 1)− φ(x) =
d

dx

∫ x+1

x
φ(y)dy

=
d

dx

∫
R
N1(y − x)φ(y)dy

=
d

dx
φ ∗N∨

1 (x),

(22) is equivalent to
ϕ = φ ∗N∨

1 ,

where f∨(x) = f(−x) and Nm is the m-th order B-spline, i.e., N1 = χ[0,1) and Nm = Nm−1 ∗N1 (m ≥ 2).
For the construction of Riesz bases, this means that ϕ is an elevation of φ with the elevator N1 ([21]).
In terms of the low-pass filters mDD(ξ) =

∑
k h

DD
k e−ikξ and mA(ξ) =

∑
k h

A
k e

−ikξ, it is denoted as
mDD = mAm, where m(ξ) = (1 + eiξ)/2, or simply, {hDD} = {hA} ∗ {1/2, 1/2}.

Remark 4.1 Deslauriers–Dubuc fundamental functions also have a special relationship to Daubechies
scaling functions. Let ΦD

N be a Daubechies scaling function of order N . Then Beylkin and Saito[31]
proved the following equation: ∫

R
ΦD
N (x)ΦD

N (x− y)dx = F2N−1(y). (23)

Therefore F2N+1 is called the autocorrelation function of ΦD
N .

Orthogonal wavelets lose several properties due to strong restrictions, but we can construct many
wavelets by discarding the orthogonality. Cohen, Daubechies and Feauveau [7] constructed biorthogonal
spline wavelets, whose primal and dual functions both have compact support.

Generally, the biorthogonal B-spline wavelets are specified with two parameters. Let φp and φ̃p,p̃ be
the primal and dual scaling functions of the biorthogonal B-spline wavelet, then the associated low-pass
filters m0 and m̃0 are given by

m0(ξ) = e−iεξ/2 cosp
(
ξ

2

)
and

m̃0(ξ) = e−iεξ/2 cosp̃
(
ξ

2

) (p+p̃)/2−1∑
k=0

(
(p+ p̃)/2− 1 + k

k

)
sin2k

(
ξ

2

)
,

where p+ p̃ is an even integer, ε = 0 when p is even, and ε = 1 when p is odd.
For p = 1, we note that m0(ξ) = e−iξ/2 cos(ξ/2) is just the low-pass filter of the Haar wavelet. Thus,

in this case, φ1 = N1(x). Moreover, Donoho [14] showed that the dual scaling functions are equal to the
fundamental functions: more precisely, for D = 2, 4, · · · , it holds that

φ̃1,D+1 = AD. (24)

4.2 Construction of coefficient matrices

We introduce a way to construct approximate solutions for certain differential equations by using Deslauriers–
Dubuc fundamental functions. As mentioned above, these functions have compact support, are symmetric,
and satisfy FD(k) = δk,0; the Daubechies functions do not have these properties.
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Figure 5: Biorthogonal B-spline functions

With φ = F3, h = 1/(n+ 1) and n ≥ 5, we seek a numerical solution

un(x) =

n−2∑
k=3

Ukφ(x/h− k)

for the Dirichlet boundary value problem (2). The standard Galerkin method leads to

a(un, φk) = ⟨f, φk⟩L2(R), k = 3, 4, · · · , n− 2. (25)

From this, we obtain the Galerkin equation

MU = F, (26)

where M = {
∫
R φ

′
iφ

′
jdx +

∫
R φiφjdx}i,j is a coefficient matrix; F = t{⟨f, φj⟩L2}j=1,··· ,n; and U is a

unknown vector U = t{U1, · · · , Un}. This equation can be solved to obtain the coefficients Uk.
In this case, the stiffness matrix is a heptadiagonal matrix, which is relatively full compared with the

one for classical FEM. Moreover, as in the case of the Daubechies function, Deslauriers–Dubuc funda-
mental function φk does not have an explicit formula; the difficulty of the integral on the right-hand side
of (25) thus remains.

To deal with this problem, we replace φk by the hat functions vk = B2(·/h− k) and consider

a(un, vk) = ⟨f, vk⟩L2(R), k = 3, 4, · · · , n− 2.

This leads to a new Galerkin equation:
M̃U = F̃ , (27)

with M̃ = {
∫
R φ

′
i(x)v

′
j(x)dx +

∫
R φi(x)vj(x)dx}i,j ; F̃ = t{⟨f, vj⟩L2(R)}j=1,··· ,n; and U = t{U1, · · · , Un}.

Equation (27) is more convenient and manageable than (26) for the following reasons:

(i) Both F3 and B2 are elevated functions of pair of biorthogonal functions with elevator N∨
1 , thus the

resulting stiffness matrix is a tridiagonal matrix, which is sparse compared with the one of (26).

(ii) Both F3 and B2 are refinement functions; therefore we can explicitly calculate the mass matrix.

(iii) Compared to (25), the integrals on the right-hand side of (27) are simpler, and they can be processed
more quickly by computer. Thus our scheme quickly obtains the solution u once f has been set.
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Let us more fully consider the advantages stated in (i), above. we have proved that if φ is orthogonal,
i.e., ⟨φ,φ(· − k)⟩L2 = δk,0, then the stiffness matrix generated by its elevated function Φ = φ ∗ N1 is a
tridiagonal matrix, i.e., ⟨Φ′,Φ′(· − k)⟩L2(R) = 2δk,0 − δ|k|,1. We can easily see that this is also true for a
pair of biorthogonal functions, i.e., if ⟨φ1, φ2(· − k)⟩L2(R) = δk,0, then

⟨(φ1 ∗N1)
′, (φ2 ∗N1)

′(· − k)⟩L2(R) = 2δk,0 − δ|k|,1. (28)

Since F3 and B2 are elevated functions of the pair of biorthogonal functions A2 = φ̃1,3 and N1 = φ1 with
elevator N∨

1 (see (22) and (24)), the resulting stiffness matrix is a tridiagonal matrix.

Remark 4.2 One may expect that there exists an elevator E such that the stiffness matrix become a
diagonal matrix, i.e., ⟨φ ∗ E , φ ∗ E(· − k)⟩ = δk,0 with an orthogonal function φ. But this means that E is
the sign function, and the resulting elevated function is thus non compactly supported. We therefore can
not use this function for the Galerkin finite element method.

Now let us consider (ii), above. Let f and g be compactly supported refinable functions. Then,
Ik =

∫
R f(x)g(x − k)dx = f ∗ g∨(k). Here we remark that p∨(x) = p(−x) is also refinable when p is

refinable. Since the convolution of refinable functions is refinable [6], it can be given as a solution of an
eigenvalue problem.

In the case f = F3 and g = B2, the above is summarized as follows:

Theorem 4.3 ([17]) Set Mk = ⟨F3, B2(· − k)⟩L2(R) and Sk = ⟨F ′
3, B

′
2(· − k)⟩L2(R). Then we obtain

Mk =


131/180 if k = 0,
37/240 if k = ±1,
−11/600 if k = ±2,
1/3600 if k = ±3,

0 otherwise,

(29)

and

Sk =


2 if k = 0,
−1 if k = ±1,
0 otherwise.

(30)

Proof Equation (30) is easily seen from (28), so let us prove (29). Set f = F3 ∗B∨
2 = F3 ∗B2. Then f

is a refinable function with filter coefficients

{hk}4k=−4 =
1

2

{
− 1

16
, 0,

9

16
, 1,

9

16
, 0,− 1

16

}
∗
{
1

2
, 1,

1

2

}
=

{
− 1

64
,− 1

32
,
1

8
,
17

32
,
25

32
,
17

32
,
1

8
,− 1

32
,− 1

64

}
.

From the two-scale equation, we get Mk = f(k) =
∑

m hmf(2k−m) =
∑

m h2k−mf(m) =
∑

m h2k−mMm,
and we can obtain the Mk as the eigenvector of

M−3

M−2

M−1

M0

M1

M2

M3





h−3 h−4 0 0 0 0 0
h−1 h−2 h−3 h−4 0 0 0
h1 h0 h−1 h−2 h−3 h−4 0
h3 h2 h1 h0 h−1 h−2 h−3

0 h4 h3 h2 h1 h0 h−1

0 0 0 h4 h3 h2 h1
0 0 0 0 0 h4 h3


=



M−3

M−2

M−1

M0

M1

M2

M3


(31)

under the normalization
∑

kMk = 1.
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Remark 4.4 In [21] and [36], with ΦD
2 and elevator N1, a Riesz basis φD

2 = ΦD
2 ∗N1 was constructed (see

also (16)). Since ΦD
2 is orthogonal, ⟨φD

2
′, φD

2
′(· − k)⟩L2(R) corresponds to Sk in Theorem 4.3. Moreover,

⟨φD
2 , φ

D
2 (·−k)⟩L2(R) also corresponds to Mk in the theorem. Although this may seem strange, it is justified

by the autocorrelation property (23); from F̂3 = F [ΦD
2 ∗ ΦD

2
∨] = |Φ̂D

2 |2, we have

⟨F3, B2(· − k)⟩L2(R) =
1

2π

∫
R
F̂3(ξ)B̂2(ξ)e

ikξdξ

=
1

2π

∫
R
|Φ̂D

2 (ξ)|2N̂1(ξ)N̂1(ξ)e
ikξdξ

= ⟨φD
2 , φ

D
2 (· − k)⟩L2(R).

4.3 Numerical results

In this section we present some numerical results to show the efficacy of our method. Let us illustrate
some numerical examples. All computations were carried out with a Mac OS X, Intel Core i7, 3.4GHz,
and by using Mathematica ver. 8.0.1.0.

We consider the following Dirichlet boundary value problem:{
−u′′ + u = f, 0 < x < 1,
u(0) = u(1) = 0.

In classical FEM, the hat function B2 is used to represent an approximate solution, and in [21], an
elevated Daubechies scaling function φD

2 = ΦD
2 ∗N1 was used. To compare these two, we calculated the

approximate solutions using the Galerkin method:

ũ(x) =

2j−1∑
n=1

unB2(2
jx− k),

ũ(x) =

2j−4∑
n=0

unφ
D
2 (2

jx− k),

ũ(x) =

2j−3∑
n=3

unF3(2
jx− k),

with the test functions B2(2
jx−k) (k = 1, · · · , 2j−1); φD

2 (2
jx−k) (k = 0, 1, · · · , 2j−4); and B2(2

jx−k)
(k = 3, 3, · · · , 2j − 3), respectively. The error was estimated by the relative ℓ2-error:

ej =

√∑2j

k=0(u(k/2
j)− ũ(k/2j))2

∥u∥L2(R)
. (32)

The results with various choices of u are presented as follows:

Table 5: The case of u(x) = x5(1− x)5

B2-B2 φD
2 -φ

D
2 F3-B2

2j ej ej−1/ej ej ej−1/ej ej ej−1/ej
6 1.50×10-4 — 2.87×10-4 — 3.65×10-4 —
7 5.30×10-5 2.83 4.66×10-5 6.16 1.76×10-5 20.7
8 1.88×10-5 2.83 9.49×10-6 4.91 8.13×10-7 21.7
9 6.63×10-6 2.83 3.33×10-6 2.85 3.68×10-8 22.1
10 2.35×10-6 2.83 3.15×10-6 1.06 1.20×10-9 30.7
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Table 6: The case of u(x) = N5(5x)
B2-B2 φD

2 -φ
D
2 F3-B2

2j ej ej−1/ej ej ej−1/ej ej ej−1/ej
6 1.51×10-4 — 4.31×10-4 — 6.18×10-4 —
7 5.33×10-5 2.83 6.76×10-5 6.38 5.50×10-5 11.2
8 1.88×10-5 2.83 1.28×10-5 5.29 4.88×10-6 11.3
9 6.66×10-6 2.83 3.80×10-6 3.36 4.32×10-7 11.3
10 2.36×10-6 2.83 3.14×10-6 1.21 3.77×10-8 11.4

Table 7: The case of u(x) = N3(3x)
B2-B2 φD

2 -φ
D
2 F3-B2

2j ej ej−1/ej ej ej−1/ej ej ej−1/ej
6 1.51×10-4 — 3.64×10-2 — 7.50×10-2 —
7 5.22×10-5 2.90 1.31×10-2 2.78 2.67×10-2 2.81
8 1.87×10-5 2.79 4.66×10-3 2.81 9.46×10-3 2.82
9 6.57×10-6 2.85 1.65×10-3 2.82 3.35×10-3 2.82
10 2.33×10-6 2.82 5.84×10-4 2.83 1.19×10-3 2.83

Table 8: The case of u(x) = N3(10x/3− 1/6) ( suppu = [1/20, 19/20])
B2-B2 φD

2 -φ
D
2 F3-B2

2j ej ej−1/ej ej ej−1/ej ej ej−1/ej
6 1.51×10-4 — 8.24×10-4 — 2.01×10-6 —
7 5.21×10-5 2.91 2.13×10-4 3.87 7.80×10-7 2.55
8 1.86×10-5 2.80 5.17×10-5 4.12 6.39×10-8 12.4
9 6.63×10-6 2.81 1.36×10-5 3.79 2.61×10-8 2.45
10 2.34×10-6 2.84 4.47×10-6 3.05 2.57×10-9 10.1

Table 9: The case of u(x) = sin2(2πx)
B2-B2 φD

2 -φ
D
2 F3-B2

2j ej ej−1/ej ej ej−1/ej ej ej−1/ej
6 1.53×10-4 — 8.24×10-4 — 2.01×10-6 —
7 5.41×10-5 2.82 2.13×10-4 3.87 7.80×10-7 2.55
8 1.91×10-5 2.83 5.17×10-5 4.12 6.39×10-8 12.4
9 6.77×10-6 2.83 1.36×10-5 3.79 2.61×10-8 2.45
10 2.39×10-6 2.83 4.47×10-6 3.05 2.57×10-9 10.1

Figures 6-9 shows the CPU time required to calculate the integrals of F , i.e., the inner products of f
and the test functions versus the error (32).

From these results, we can conclude that our method obtain smoother approximate solutions within
the time required to perform classical FEM. In particular, we note that when an exact solution rapidly
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decays to zero near the boundaries of the domain, our method is more effective. When the decay is not
rapid, there is a slight loss of accuracy, which is presumably due to the shape of the basis F3. Since F3 is
nearly zero at the endpoints of its support, non zero values of the exact solution cannot be represented
well in this region. However, this weakness can be easily eliminated. Recall that our proposed method
denotes an approximation solution using F3 as

ũ(x) =

2j−3∑
n=3

unF3(2
jx− n). (33)

To capture the behavior of u near the boundary of the domain, we denote the approximate solution using
F3 and B2 as

ũ(x) =

2j−3∑
n=3

unF3(2
jx− n) +

∑
n∈{1,2,2j−2,2j−1}

unB2(2
jx− n). (34)

Figure 10 illustrates the basis and test functions of (33) and (34). This modification increases the size
of the coefficient matrix from 2j − 5 to 2j − 1, but the form of the stiffness matrix does not change. In
Figure 11 we show that the computational cost of the modification is comparable to the unmodified form
and that the efficiency of the modification.

5 Two-dimensional cases

Thus far, we have considered the Galerkin method mainly for ordinary differential equations. For partial
differential equations, some difficulties arise:

• (Support) For the general N -dimensional case, the number of nodes is (1/h+ 1)N . Therefore, we
are forced to use only compactly supported bases, such as Daubechies scaling functions.

• (Smoothness) Some solutions become much smoother, according to the type of partial differential
equation. Thus, smooth bases are preferable for representing the solutions.

• (Symmetry) For partial differential equations, the boundary is considered on general dimensions
for partial differential equations. Then, larger asymmetries can occur with higher dimensions.

The purpose of this section is to overcome these difficulties and apply elevated basis functions to
numerical solutions of boundary value problems for the two-dimensional Laplace equation. For Daubechies
functions, there is a trade-off between the support size and the smoothness. We then construct new Riesz
bases based on definite integrals of the scaling functions. The integrations extend the support of the
scaling functions, but they improve the smoothness and the symmetry of the functions. In order to get
better smoothness, the integrations are more efficient than increasing the order of Daubechies functions.

We consider the boundary value problem for the Poisson equation on the square domain D =
{
(x, y) ∈

R2 : 0 ≤ x, y ≤ 1
}
: 

∂2u

∂x2
+
∂2u

∂y2
= f,

u = 0 on ∂D.
(35)

The exact solution is given by (see [30])

u(x, y) = −
∫ 1

0

∫ 1

0
f(ξ, η)G(x, y, ξ, η)dηdξ
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Figure 10: basis and test functions for (33) and (34)
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with the Green’s function

G(x, y, ξ, η) =

∞∑
p=1

2 sin(πpx) sin(πpξ)

πp sinh(πp)
Hp(y, η),

where

Hp(y, η)=

{
sinh(πpη) sinh (πp(1− y)) if 0≤η<y≤1,
sinh(πpy) sinh (πp(1− η)) if 0≤y<η≤1.

Because of the infinity (p = ∞) in the double integrals, however, this solution is not practical. Therefore,
the ability to represent an approximate solution with bases plays an important role.

5.1 Galerkin method

We now shall construct the approximate solutions to (35) in a manner similar to what we did for the
one-dimensional case. The weak form of (35) is written as

−
⟨
∂

∂x
u,

∂

∂x
v

⟩
L2(D)

−
⟨
∂

∂y
u,

∂

∂y
v

⟩
L2(D)

= ⟨f, v⟩L2(D). (36)

To apply the one-dimensional case, we define the approximation space as span
{
ϕj1,j2(x, y) := φj1(x)φj2(y)

}n
j1,j2=1

,
and seek an approximate solution

ũ(x, y)=

n∑
j1=1

n∑
j2=1

uj1,j2ϕj1,j2(x, y) ≡
n2∑
J=1

uJϕJ(x, y). (37)

Substituting (37) into (36) and taking v(x, y) = ϕL(x, y) (L = 1, 2, · · · , n2) yields a linear system, written
in matrix form as

MU = F,
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where

M = −


⟨ϕ1, ϕ1⟩ ⟨ϕ2, ϕ1⟩ · · · ⟨ϕn2 , ϕ1⟩
⟨ϕ1, ϕ2⟩ ⟨ϕ2, ϕ2⟩ · · · ⟨ϕn2 , ϕ2⟩

...
...

. . .
...

⟨ϕ1, ϕn2⟩ ⟨ϕ2, ϕn2⟩ · · · ⟨ϕn2 , ϕn2⟩

 ,

U = t{uk}1≤k≤n2 , and F = t{fℓ}1≤ℓ≤n2 . Here we remark that ⟨·, ·⟩ denotes ⟨ ∂
∂x ·,

∂
∂x ·⟩L2(D)+⟨ ∂

∂y ·,
∂
∂y ·⟩L2(D)

and fn = ⟨f, ϕn⟩L2(D).
We introduce the following notation in order to show the correspondence between the index J and

the indexes j1, j2 of (37). We assume that 1 ≤ I, J ≤ n2 and 1 ≤ i1, i2, j1, j2 ≤ n are integers that satisfy

I = n(i2 − 1) + i1, J = n(j2 − 1) + j1, (38)

and we set
R := j1 − i1, Q := j2 − i2. (39)

We note that the correspondences (38) are one to one under 1 ≤ I, J ≤ n2 and 1 ≤ i1, i2, j1, j2 ≤ n.

5.2 Choice of basis functions

We first calculate the (I, J)-th component of M = {MI,J}1≤I,J≤n. We put

ai,j := −⟨φ′
i, φ

′
j⟩L2(D) and ci,j := ⟨φi, φj⟩L2(D).

Then, we get

MI,J = −
∫ N

0
φ′ (x− i1 + 1)φ′ (x− j1 + 1) dx

∫ N

0
φ (y − i2 + 1)φ (y − j2 + 1) dy

−
∫ N

0
φ (x− i1 + 1)φ (x− j1 + 1) dx

∫ N

0
φ′ (y − i2 + 1)φ′ (y − j2 + 1) dy

≡ ai1,j1ci2,j2 + ci1,j1ai2,j2 , (40)

which depends on the choice of ϕ(x, y) := φ(x)φ(y).

5.2.1 Case of B-spline N2

We begin with the consideration of the simplest case ϕ(x, y) := N2(x)N2(y) with N2 = N1 ∗N1 (E = Φ =
N1). An easy calculation shows that

ci,j=


2/3 if |j − i| = 0,
1/6 if |j − i| = 1,
0 otherwise,

ai,j=


−2 if |j − i| = 0,
1 if |j − i| = 1,
0 otherwise.

(41)

Combining (40) and (41), we obtain

MI,J =


−8/3 if (|R|, |Q|) = (0, 0),
1/3 if (|R|, |Q|) = (1, 0), (0, 1)
1/3 if (|R|, |Q|) = (1, 1),
0 otherwise,
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where R = R(I, J) and Q = Q(I, J) are integers determined by (38) and (39). Therefore, the matrix M
is the block tridiagonal matrix with the tridiagonal matrices A and B:

M =


A B O
B A

. . .
. . .

. . . B

O B A


n2×n2

, (42)

where

A =


−8

3
1
3 0

1
3 −8

3

. . .
. . .

. . . 1
30 1

3 −8
3


n×n

, B =


1
3

1
3 0

1
3

1
3

. . .
. . .

. . . 1
30 1

3
1
3


n×n

.

5.2.2 Case of Riesz bases of Daubechies-type

We now turn to the case Φ = ΦD
2 . Let us put

ϕ(x, y) := φD
2 (x)φ

D
2 (y) with φD

2 = N1 ∗ ΦD
2 .

In this case, ai,j provides a three-point formula for the second-order derivative (see (17)). In addition,
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Figure 12: Graphs of φD
2 (x) (left) and φ

D
2 (x)φ

D
2 (y) (right).

we derived ci,j in section 3 (see Theorem 3.2).
Using (17) we can calculate MI,J , e.g.,

M1,1 = a1,1c1,1 + c1,1a1,1 = −131/45,

M1,2 = a1,2c1,1 + c1,2a1,1 = 151/360,

and so on. Here we set

Λ(r, q) =



−131/45 if (|r|, |q|) = (0, 0),
151/360 if (|r|, |q|) = (1, 0), (0, 1),
11/300 if (|r|, |q|) = (2, 0), (0, 2),
−1/1800 if (|r|, |q|) = (3, 0), (0, 3),
37/120 if (|r|, |q|) = (1, 1),
−11/600 if (|r|, |q|) = (2, 1), (1, 2),
1/3600 if (|r|, |q|) = (3, 1), (1, 3),

0 otherwise.

(43)
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Then, from straightforward computation, we see that∑
(R,Q)∈Z2

Λ(R,Q)RnQn−k = 0

for n = 0, 1, 3 and 0 ≤ k ≤ n, and∑
(R,Q)∈Z2

Λ(R,Q)R2 =
∑

(R,Q)∈Z2

Λ(R,Q)Q2 = 2,

∑
(R,Q)∈Z2

Λ(R,Q)RQ = 0.

Consequently, since

∑
(R,Q)∈Z2

Λ(R,Q)w(x+ hR, y + hQ) =
3∑

k=0

hk

k!

(
R
∂

∂x
+Q

∂

∂y

)k

w(x, y) +O(h4)

for w ∈ C6
0 (R2), we obtain the following theorem:

Theorem 5.1 For ϕ(x, y) := φD
2 (x)φ

D
2 (y), we have

MI,J = Λ(R,Q), (44)

where R = R(I, J) and Q = Q(I, J) are integers determined by (38) and (39). Moreover, it holds that
for w ∈ C4

0 (R2)∑
(R,Q)∈Z2

Λ(R,Q) w(x+ hR, y + hQ) =

(
∂2

∂x2
w(x, y) +

∂2

∂y2
w(x, y)

)
h2 +O(h4). (45)

Here we introduce the following notation for simplicity. Let STM(a1, · · · , ak) (resp. SBTM(A1, · · · , Ak))
denote the symmetric diagonal Toeplitz matrix (resp. symmetric block diagonal Toeplitz matrix)

a1 · · · ak 0...
. . .

. . .

ak
. . . ak

. . .
...0 ak · · · a1




resp.



A1 · · · Ak 0...
. . .

. . .

Ak
. . . Ak

. . .
...0 Ak · · · A1




.

Then, we can rewrite (44) as
M = SBTM(A,B,C,D),

where

A = STM{−131/45, 151/360, 11/300,−1/1800},
B = STM{151/360, 37/120,−11/600, 1/3600},
C = STM{11/300,−11/600},
D = STM{−1/1800, 1/3600}.

We next consider the case ϕ(x, y) := φ̃D
2 (x)φ̃

D
2 (y) with

φ̃D
2 =

{(
1

2
+

1√
3

)
N1(· − 1) +

(
1

2
− 1√

3

)
N1(·)

}
∗ ΦD

2 .
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Figure 13: Graphs of φ̃D
2 (x) (left) and φ̃

D
2 (x)φ̃

D
2 (y) (right).

In this case, φ̃D
2 gives a five-point formula for the second-order derivative. Using (20) we can calculate

MI,J , e.g.,

M1,1 = a1,1c1,1 + c1,1a1,1 = −−3557

864
,

M1,2 = a1,2c1,1 + c1,2a1,1 =
2579

3240
,

and so on. Here we set

Λ̃(r, q) =



−3557/864 (|r|, |q|) = (0, 0),
2579/3240 (|r|, |q|) = (1, 0), (0, 1),
883/51840 (|r|, |q|) = (2, 0), (0, 2),
−1/216 (|r|, |q|) = (3, 0), (0, 3),
1/17280 (|r|, |q|) = (4, 0), (0, 4),
652/2025 (|r|, |q|) = (1, 1),
−301/5400 (|r|, |q|) = (2, 1), (1, 2),

1/405 (|r|, |q|) = (3, 1), (1, 3),
−1/32400 (|r|, |q|) = (4, 1), (1, 4),
37/6480 (|r|, |q|) = (2, 2),
−1/6480 (|r|, |q|) = (2, 3), (3, 2),
1/518400 (|r|, |q|) = (2, 4), (4, 2),

0 otherwise.

Then, from straightforward computation, we see that
∑

(R,Q)∈Z2 Λ̃(R,Q)RnQn−k = 0 for n = 0, 1, 3, 4, 5

and 0 ≤ k ≤ n;
∑

(R,Q)∈Z2 Λ(R,Q)R2 =
∑

(R,Q)∈Z2 Λ(R,Q)Q2 = 2, and
∑

(R,Q)∈Z2 Λ(R,Q)RQ = 0.

Since
∑

(R,Q)∈Z2 Λ(R,Q)w(x + hR, y + hQ) =
∑5

k=0
hk

k!

(
R ∂

∂x +Q ∂
∂y

)k
w(x, y) + O(h6) for w ∈ C6

0 (R2),

we obtain the following theorem:

Theorem 5.2 For ϕ(x, y) := φ̃D
2 (x)φ̃

D
2 (y), we have

MI,J = Λ̃(R,Q),

where R = R(I, J) and Q = Q(I, J) are integers determined by (38) and (39). Moreover, it holds that
for w ∈ C6

0 (R2)∑
(R,Q)∈Z2

Λ(R,Q) w(x+ hR, y + hQ) =

(
∂2

∂x2
w(x, y) +

∂2

∂y2
w(x, y)

)
h2 +O(h6).
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From this theorem it follows that the coefficient matrix M is the block nonadiagonal matrix

M = SBTM{A,B,C,D,E},

where

A = STM
{
− 3557

864
,
2579

3240
,

883

51840
,− 1

216
,

1

17280

}
,

B = STM
{2579
3240

,
652

2025
,− 301

5400
,

1

405
,− 1

32400

}
,

C = STM
{ 883

51840
,− 301

5400
,

37

6480
,− 1

6480
,

1

518400

}
,

D = STM
{
− 1

216
,

1

405
,− 1

6480

}
,

E = STM
{ 1

17280
,− 1

32400
,

1

518400

}
.

5.3 Numerical results

We now present some examples and numerical results. We define the relative L2-error Eφ
j between the

exact solution u(x, y) and the approximation

ũ(x, y) =
n∑

j2=1

n∑
j1=1

uj1,j2φ
(x
h
− j1 + 1

)
φ
(y
h
− j2 + 1

)
by

Eφ
n =

1

∥u∥L2(R)

√√√√√ 1
h
−1∑

ℓ1=1

1
h
−1∑

ℓ2=1

(
u(hℓ1, hℓ2)− ũ(hℓ1, hℓ2)

)2
,

and we define the ratio Qφ
n by Qφ

n = Eφ
n−5/E

φ
n . Here we remark that n depends to the step size h and

the size of supp φ. For example, if φ = N2, i.e., meas(supp φ) = 2, then, n = 4. Generally, it holds that
n = 1/h+ 1−meas(supp φ).

Table 10: The case of u(x, y) = 28x2(1− x)2y2(1− y)2.

n EN2
n QN2

n E
φD
2

n Q
φD
2

n E
φ̃D
2

n Q
φ̃D
2

n

10 0.0794 1.77 3.18 1.31 3.63 1.28
15 0.0549 1.45 2.49 1.28 2.91 1.25
20 0.0419 1.31 2.03 1.22 2.41 1.20
25 0.0339 1.24 1.72 1.19 2.05 1.17
30 0.0284 1.19 1.48 1.16 1.79 1.15

Table 11: The case of u(x, y) = 220x5(1− x)5y5(1− y)5.

n EN2
n QN2

n E
φD
2

n Q
φD
2

n E
φ̃D
2

n Q
φ̃D
2

n

10 0.149 1.83 0.416 4.12 0.337 3.80
15 0.102 1.46 0.142 2.93 0.122 2.76
20 0.0775 1.32 0.0616 2.31 0.0551 2.22
25 0.0626 1.24 0.0317 1.94 0.0291 1.89
30 0.0524 1.19 0.0185 1.71 0.0174 1.68
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The above results indicate that Daubechies-type Riesz bases produce a good approximation to the
solution when the exact solution decays quickly at the boundaries of the region. Here, we constructed
two-dimensional basis functions of Daubechies type. Obviously, one can also construct basis functions of
Deslauriers–Dubuc type by using the results in section 4.
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