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ABSTRACT 
 

Sexual dimorphism in the hypothalamus is caused by testicular androgens and occurs 

from the late embryonic stage to the first postnatal week. In the anteroventral 

periventricular nucleus (AVPV), one of the sexual dimorphic nuclei, females have more 

total dopaminergic, and kisspeptin-immunoreactive (kisspeptin-ir) neurons than do 

males, whereas the sexually dimorphic nucleus of the preoptic area (SDN-POA) has a 

larger volume in males than in females. However, the molecular mechanisms underlying 

sexual differentiation are not fully understood. The aims of the present study were to 

identify proteins involved in the sexual differentiation of the AVPV in rats using 

proteomics analysis, and to reveal the function of these proteins using gene-deficient 

mice. I compared the expression of proteins in the AVPV in males and females on 

postnatal day 1 (PD1) using two-dimensional fluorescence difference gel 

electrophoresis followed by MALDI-TOF-MS. I identified a number of protein spots 

with sexually dimorphic expression, one of which was identified as collapsin response 

mediator protein-4 (CRMP4). Real-time RT-PCR analysis showed that the expression 

level of CRMP4 mRNA in the AVPV was higher in males than in females on PD1. 

However, no difference in CRMP4 expression was detected on PD6. Prenatal androgen 

treatment increased CRMP4 mRNA expression in the female AVPV on PD1 to the same 

level as in males. Next, I used CRMP4-knockout (CRMP4-KO) mice to determine the 

in vivo function of CRMP4 in the AVPV. CRMP4-KO did not change the number of 

kisspeptin-ir neurons in the adult AVPV in either sex. However, the number of tyrosine 

hydroxylase-immunoreactive (TH-ir) neurons was larger in the AVPV of adult female 

CRMP4-KO, compared to adult female CRMP4-wild type (CRMP4-WT) mice. No 
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significant difference in the number of TH-ir neurons was detected in both sexes and 

genotypes on embryonic day 15 (E15). However, a female-specific increase of TH-ir 

neurons was observed in CRMP4-KO mice on PD1, a time when sex differences found 

in adult wild type mice are not yet apparent. These results suggest that CRMP4 

regulates the number of TH-ir neurons in the female AVPV. 
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ABBREVIATION 

 

2D: two-dimensional 

2D-DIGE: two-dimensional difference gel electrophoresis 

3V: third ventricle 

AH: anterior hypothalamus 

AP: alkaline phosphatase 

ARC: arcuate nucleus 

AVPV: anteroventral periventricular nucleus 

BrdU: bromodeoxyuridine 

CHAPS: 3-[(3-Cholamidopropyl) dimethylammonio] propanesulfonate 

CRMP: collapsin response mediator protein 

DIG: digoxigenin 

E: embryonic day 

E2: estradiol 

ER: endoplasmic reticulum 

Gn: gonadotropin 

GnRH: gonadotropin-releasing hormone 

Grp75: 75kDa glucose-regulated protein 

IPG: immobilized pH gradient 

ir: immunoreactive 

KO: knockout 

LH: luteinizing hormone 

MPNc: medial preoptic nucleus 

6 
 



OVLT: organum vasculosum of the lamina terminalis 

PBS: phosphate buffered saline 

PD: postnatal day 

PeN: periventricular nucleus 

PNP: purine nucleoside phosphorylase 

POA: preoptic area 

SDN-POA: sexually dimorphic nucleus of the preoptic area 

SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

SO: stratum oriens 

SSC: saline-sodium citrate 

TP: testosterone propionate 

TRIP: TNF receptor-associated factor 2-inhibiting protein 

TH: tyrosine hydroxylase 

WT: wild type 

ZVAD: N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone 
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INTRODUCTION 

Structural and functional sex differences have been reported in several brain regions. 

Among these regions, the hypothalamus exhibits sex differences throughout vertebrate 

species, including mammals. Although many studies have reported sex differences in 

the hypothalamus, there are a limited number of studies that have examined the 

molecular and cellular mechanisms underlying these differences. In this thesis, I 

examined proteins which are thought to guide hypothalamic sex differentiation, 

focusing on the rodent anteroventral periventricular nucleus (AVPV) due to its 

important role in regulating the pulsatile secretion of gonadotropin (Gn).  

 

Functions of the hypothalamus 

The hypothalamus exhibits sex differences in functions related to reproductive 

behavior and Gn secretion. It is well accepted that sex differences in the neuroendocrine 

system and the sexual behavior are induced by androgens during the perinatal period. 

For example, despite the male genotype, orchidectomy during the perinatal periods 

alters the male-specific Gn secretion pattern and produces phenotypically female sexual 

behavior in adult rats (Pfeiffer, 1936). In contrast, testosterone injection in female rats 

during the perinatal period extinguishes the estrous cycle and induces male sexual 

behavior (Takasugi, 1952). These findings suggest that sexual differentiation of the 

neuroendocrine system regulating Gn secretion and the regulation of sexual behavior 

are determined by perinatal exposure, or lack thereof, to androgens. 

 

 The role of the AVPV in sex differentiation 

The AVPV is a small nucleus along the third ventricle in the hypothalamus and is 
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located immediately caudal to the organum vasculosum of the lamina terminalis (OVLT, 

Fig. 1). The AVPV plays critical roles in regulating the pulsatile secretion of Gn in 

females (Kotani et al., 2001; Muir et al., 2001; Ohtaki et al., 2001). In adults, the AVPV 

has a larger nuclear volume and higher neuronal packing density in females than in 

males (Fig. 2; Bleier et al., 1982; Sumida et al., 1993). In addition, in comparison to 

males, females have 3-4 times more dopaminergic neurons (Simerly et al., 1985a), 

10-20 times more kisspeptin-immunoreactive (kisspeptin-ir) neurons (Clarkson and 

Herbison, 2006; Kauffman et al., 2007), and nearly twice as many GABAergic neurons 

(Ottem et al., 2004) in the AVPV. 

Dopaminergic neurons in rat AVPV were the first to be identified as showing sexual 

dimorphism (Simerly et al., 1985a; Semaan et al., 2010). Dopaminergic neurons are 

more abundant in females than in males, and a similar sex difference has been shown in 

the mouse AVPV (Simerly et al., 1985a, b; Simerly et al., 1997; Forger et al., 2004). In 

female rats, approximately 80% of the kisspeptin neurons in the AVPV and preoptic 

periventricular nucleus (PeN) co-express mRNA of tyrosine hydroxylase (TH), which is 

an enzyme involved in catecholamine synthesis (Semaan et al., 2010). In contrast, only 

approximately 30% of kisspeptin neurons in the AVPV co-express TH mRNA in female 

mice (Kauffman et al., 2007). Therefore, there is a species difference in the 

co-expression rate of TH mRNA and kisspeptin in the female AVPV between rats and 

mice. 

Kisspeptin stimulates the release of gonadotropin-releasing hormone (GnRH) from 

the hypothalamus and plays a critical role in regulating reproductive function (Fig. 3; 

Simerly, 1998, Simerly, 2002; Gottsch et al., 2004; Irwig et al., 2004; Matsui et al., 

2004; Kinoshita et al., 2005; Navarro et al., 2005). A number of studies have shown that 
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there are many kisspeptin neurons in the AVPV and the arcuate nucleus (ARC) in 

female rats and mice (Smith et al., 2005; Clarkson and Herbison, 2006; Adachi et al., 

2007; Kauffman et al., 2007). However, in males, while kisspeptin neurons are located 

in the ARC, few are found in the AVPV. A small periventricular column located 

immediately caudal to the OVLT corresponds to the AVPV. Electrolytic lesions applied 

to this structure or to the medial preoptic nucleus lead to the loss of estrus cycle 

(persistent estrus) and failure of the steroid-induced luteinizing hormone (LH) surge 

(Wiegand et al., 1980). Kauffman et al. (2007) showed that testosterone propionate 

(TP)-treated neonatal female rats display a male-like pattern of reduced expression of 

Kiss1, which encodes kisspeptin in the AVPV. In addition, loss of kisspeptin receptor 

function in humans and rodents causes hypogonadism (de Roux et al., 2003, Seminara 

et al., 2003). Taken together, these findings suggest that estrogen converted from fetal 

or neonatal testicular androgen causes loss of kisspeptin expression in the AVPV and 

GnRH surge in male rats (Kauffman et al., 2007). 

 

Neurogenesis and sexual differentiation of the AVPV 

The mechanism regulating sexual differentiation in the AVPV has been investigated 

with special reference to neurogenesis, neuronal death, and neuronal migration. In an 

experiment using bromodeoxyuridine (BrdU), it was found that neurogenesis of the rat 

AVPV occurred during a limited period, from embryonic day 13 (E13) to E18, and was 

not affected by the treatment with TP (Nishizuka, 1993). In contrast, there is no report 

about neurogenesis in the mouse AVPV. 

 

Apoptosis and sexual differentiation of the AVPV 

Neuronal death is classified into two major types - necrosis and apoptosis. Necrosis is 
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caused by extracellular factors, such as the deficiency of nutrition and external injury. In 

contrast, apoptosis is regulated by intracellular factors. Apoptosis is mainly regulated by 

two different processes, the mitochondrial pathway and the endoplasmic reticulum (ER) 

pathway. The mitochondrial pathway is well characterized and regulates apoptosis by 

the Bcl-2 family. Among the Bcl-2 family, Bcl-2 suppresses apoptosis through the 

inhibition of cytochrome C release from mitochondria, while Bax promotes apoptosis 

by inducing cytochrome C release. The released cytochrome C then activates caspase 9 

and caspase 3 (Kluck et al., 1997; Li et al., 1997; Eskes et al., 1998; Hu et al., 1999). 

Initiation of the ER pathway is caused by ER stress, i.e., from the accumulation of 

misfolded proteins (Martinez et al., 2010; Tabas and Ron, 2011; Jing et al., 2012). The 

crosstalk between the mitochondrial pathway and the ER pathway plays an important 

role in ER stress-mediated apoptosis. The cytochrome C-dependent mitochondrial 

pathway is activated by ER stress. In addition, the ER pathway activates caspase 12 

without cytochrome C (Martinez et al., 2010). Besides the mitochondrial and ER 

pathways, the death ligand pathway is known as an extrinsic pathway. The death ligand 

pathway causes apoptosis when extracellular death ligands, such as Fas ligand, bind cell 

membrane receptors. After the receptor binding, caspase 8 and subsequently caspase 3 

are activated, which induces apoptosis (Kreuz et al., 2004; Pellegrini et al., 2005). 

Several studies have examined apoptosis in the AVPV of rats and mice. The number 

of apoptotic cells in the AVPV is higher in male rats than in female rats on postnatal 

day 2 (PD2). By PD5, however, sex differences in apoptosis are no longer detected 

(Yoshida et al., 2000). These results suggest that apoptosis during the early neonatal 

period is involved in sexual differentiation of the rat and mouse AVPVs. The Bcl-2 

family in the mitochondrial pathway is involved in the sexual differentiation of the 
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AVPV. In the rat AVPV on PD1, the expression level of Bax is higher in males than 

females, whereas that of Bcl-2 is higher in females than in males (Tsukahara et al., 

2006). In mice, the null mutation of Bax gene completely eliminates the sex difference 

in the total neuron number of the AVPV (Forger et al., 2004), whereas Bcl-2 

overexpression significantly increases the overall neuron density of the male AVPV 

(Zup et al., 2003). These results suggest that the total number of neurons and the neuron 

density in the AVPV are negatively regulated by Bax and positively by Bcl-2. Krishnan 

et al. (2009) examined apoptosis-related genes in the rat AVPV by DNA microarray and 

identified 23 genes, including TNF receptor-associated factor 2-inhibiting protein 

(TRIP). TRIP inhibits bcl-2 gene expression and is higher in the male than in the female 

AVPV on PD2. In the rat AVPV, regardless of sex, 70% of all AVPV GABAergic 

neurons contained TRIP mRNA on PD2, but the mean cellular levels of TRIP mRNA 

were significantly higher in GABAergic neurons of males than females. Therefore, sex 

differences of GABAergic neuron number in the rat AVPV may be regulated by TRIP 

through Bcl-2 in the mitochondrial pathway. 

Recently, it has been suggested that sex differences in the numbers of TH-ir neurons 

and kisspeptin-ir neurons in mouse AVPV are regulated by a pathway independent of 

the Bcl-2 family (Zup et al., 2003; Forger et al., 2004; Semaan et al., 2010). It was 

reported that sex differences of TH-ir neuron number in mouse AVPV are not affected 

by Bax gene deletion (Forger et al., 2004) and Bcl-2 overexpression (Zup et al., 2003). 

Sex steroid hormones may regulate apoptosis in the AVPV. In the rat AVPV, the 

percentage of degenerating cells in TP-treated females was significantly higher than in 

normal females (Murakami and Arai, 1989). In the female mouse AVPV, estradiol (E2) 

treatment on PD2 increased the number of apoptotic cells on PD3. However, the 
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number of apoptotic cells in E2-treated female decreased to that of oil-treated control by 

PD6 (Waters and Simerly, 2009). Moreover, in rats, E2 treatment reduced the number of 

TH-ir neurons in vivo (Simerly and Swanson, 1987; Simerly, 1989; Waters and Simerly, 

2009), and simultaneous application of E2 and estrogen receptor antagonist, ICI 182,780, 

blocked alterations in TH-ir neuron number in AVPV explants in vitro (Waters and 

Simerly, 2009). These results suggest that TH-ir neuron number is regulated by E2 

through estrogen receptors. To investigate caspase-dependent TH-ir neuron loss, the 

pancaspase inhibitor ZVAD (N-benzyloxycabonyl-Val-Ala-Asp-fluoromethylketone) 

was used to rescue TH-ir neurons from E2-mediated reduction in number (Waters and 

Simerly, 2009). These results suggest that E2 regulates TH-ir neuron numbers by 

apoptosis of the pathway involving caspase in the AVPV. 

 

Neuronal migration and sexual differentiation of the AVPV 

The neuronal migration of the preoptic area/anterior hypothalamus (POA/AH), 

including the AVPV and sexually dimorphic nucleus (SDN)-POA, has been 

investigated (Henderson et al., 1999; Knoll et al., 2007). Knoll et al. (2007) examined 

sex differences in neuronal movement using live-cell fluorescence video microscopy in 

organotypic brain slices. Neurons from E14 mice displayed significant sex differences 

in their basal neuronal movement characteristics in the POA/AH. Cells in female slices 

migrated nearly three times as fast as those in males. In addition, exposure to E2 

decreased the rate of motion of cells located in the dorsal POA/AH but increased the 

frequency of movement in cells located more ventrally (Knoll et al., 2007). This study 

demonstrates that the effect of E2 is specific to the POA region. Although two 

mechanisms of sexual differentiation, apoptosis and migration, have been suggested 
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from these studies, the molecular regulation of sexual differentiation in the AVPV 

remains to be elucidated. 

 

Sexual differentiation of the SDN-POA 

The SDN-POA was discovered in the rat medial POA by Gosrki et al. (Gorski et al., 

1978). The SDN-POA lies caudal to the AVPV (Fig. 1) and exhibits sex differences. In 

contrast to the AVPV, the SDN-POA is 5-7 times larger in volume and has more neurons 

in male rats as compared with females (Gorski et al., 1978, 1980). Additionally, the 

volume of the calbindin-D28K-ir region in the SDN-POA is 2-4 times larger in males 

than in females (Simerly et al., 1990, Sickel and McCarthy, 2000, Orikasa et al., 2007). 

Although the morphological sex differences are well established, the physiological role 

of SDN-POA in males and females has been only partly determined. In sexually 

experienced adult male rats, male sexual behaviors are lost after extensive lesions to the 

POA, but not after small lesions limited to the SDN-POA.  

Sex differences of the neuronal number in SDN-POA may result from apoptosis in 

the early postnatal period. In the central division of the medial preoptic nucleus (MPNc), 

a major component of the SDN-POA, the number of apoptotic cells is greater in female 

than in male rats between PD7 and PD10 (Davis et al., 1996), and the number of 

apoptotic cells reaches peak on PD8 in the female MPNc (Chung et al., 2000). Thus, sex 

differences in the number of apoptotic cells are negatively correlated with those in the 

number of neurons in adulthood. In contrast to the AVPV, apoptosis is suppressed by E2 

in SDN-POA (Arai et al., 1996; Davis et al., 1996). 

 

Collapsin response mediator protein  

In the present proteomics analysis, I identified some proteins, including CRMP4, 
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which showed sex differences in amount of expression in the AVPV. CRMP was 

originally identified as a signaling molecule of semaphorin3A (Goshima et al., 1995). 

The CRMP family consists of five cytosolic proteins, CRMP1-5, all of which are highly 

expressed in the developing and adult nervous system (Minturn et al., 1995; Byk et al., 

1996; Hamajima et al., 1996; Wang and Strittmatter, 1996; Fukada et al., 2000; Inatome 

et al., 2000; Yuasa-Kawada et al., 2003; Tsutiya and Ohtani-Kaneko, 2012). 

Unphosphorylated CRMP2 binds to tubulin heterodimers and promotes microtubule 

assembly, whereas phosphorylation of CRMP2 by Rho/ROCK kinase, cyclin-dependent 

kinase-5, and glycogen synthase kinase-3 suppresses the binding affinity of CRMP2 

to tubulin (Fukata et al., 2002; Uchida et al., 2005). Recently, several studies using 

gene-KO mice demonstrated that the loss of CRMP1, 3, or 5 causes impairment of cell 

migration, dendritic patterning, and dendritic spine formation (Charrier et al., 2006; 

Yamashita et al., 2006, 2007, 2011; Su et al., 2007; Quach et al., 2008). In the cerebellar 

explants of CRMP1-KO mice, radial migration was retarded (Yamashita et al., 2006). 

CRMP1-KO mice also showed a decrease in the number of granule cells migrating out 

of explants of developing cerebellum (Charrier et al., 2006; Yamashita et al., 2006). In 

CRMP3-KO mice, apical dendrites of hippocampal CA1 neurons displayed a reduction 

in length and branching points (Quach et al., 2008). Their basal dendrites also exhibited 

a reduction in length with alteration in soma stem distribution and increased number of 

thick dendrites localized in stratum oriens (SO). Furthermore, mushroom and finger 

spine lengths were shorter in CRMP3-KO than WT mice in SO and stratum radiatum 

(Quach et al., 2008). The CRMP5-KO mice revealed aberrant dendrite morphology in 

cerebellar Purkinje cells (Yamashita et al., 2011). In these mice, soma size and primary 

dendrite diameter of the Purkinje cells were decreased and the induction of long-term 
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depression of excitatory synaptic transmission between parallel fibers and Purkinje cells 

was lost (Yamashita et al., 2011). These results suggest that CRMPs play important 

roles in cell migration, dendritic patterning, and dendritic spine formation during brain 

development. The present study highlighted CRMP4 as one of the sexually dimorphic 

proteins in the AVPV; however, the role of CRMP4 is less well understood. 

 

Purpose of the present study 

The AVPV is a hypothalamic nucleus that shows sexual dimorphism in rodents. The 

numbers of total neurons, dopaminergic neurons, and kisspeptin-ir neurons are higher in 

females than in males. The purpose of the present study was to identify proteins 

involved in the sexual differentiation of the AVPV in rats using proteomics analysis, and 

to reveal the functions of these proteins using gene-deficient mice. To this end, I first 

searched for proteins exhibiting sexual differences in expression in the rat AVPV using 

proteomics analysis, and found that CRMP4 is a sexually dimorphic protein in the 

AVPV on PD1. Next, the effect of androgen treatment on the expression of CRMP4 

mRNA was examined. Finally, I analyzed the role of CRMP4 in the generation of sex 

differences in the AVPV by using gene-deficient mice.  
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MATERIALS AND METHODS 
 

Animals 

Sprague-Dawley rats were used for the proteomics analysis and in subsequent 

experiments including prenatal hormone treatment. Pregnant rats purchased from Japan 

SLC (Hamamatsu, Japan) were maintained at the University of Tsukuba animal care 

facility under a 12-hour light/12-hour dark cycle at 23±1°C, with free access to water 

and food. Female and male newborns were used on PD1 (day of birth) or PD6. All 

animal experiments were approved and conducted according to the Guidelines of 

University of Tsukuba for the Care and Use of Experimental Animals. 

Crmp4 gene-deficient mice were generated as previously described (Niisato et al., 

2012). Age-matched wild type littermates were used as controls. The mice were housed 

in a standard mouse facility and allowed access to autoclaved diet and water under a 

12-/12-hour light/dark cycle at 24±1°C. All procedures were performed according to the 

guidelines outlined in the Institutional Animal Care and Use Committee of Yokohama 

City University School of Medicine. 

Throughout all experiments, efforts were made to minimize the number of animals 

used and their suffering. 

 

Tissue samples for proteomics analysis and real-time PCR 

In order to identify proteins showing sex differences in expression during AVPV 

development, a protein sample extracted from the AVPV was subjected to proteomic 

analysis. In this study, I searched for proteins exhibiting sex differences on PD1 (early 

neonatal stage), focusing on the proteins whose sex differences in neuronal cell death 
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have been reported. The sex differences in neuronal cell death were no longer detected 

on PD6. Thus, I focused on proteins whose expression levels were no longer sexually 

dimorphic at PD6. First, on PD1, newborns (15 males and 18 females) were 

anesthetized by subcutaneous injection of sodium pentobarbital and their brains were 

removed. The AVPV was identified according to previously described procedures 

(Tsukahara et al., 2008). Frontal slices (300 μm thick) of the brain were cut at the level 

of the optic chiasm using a microslicer (Dosaka EM, Kyoto, Japan), and tissue 

fragments of the AVPV were immediately isolated from the slices under a 

stereo-microscope using a stainless steel tube (inner diameter, 0.65 mm). The tissue 

fragments were then homogenized in 50 μl of lysis buffer (30 mM Tris buffer (pH 8.5) 

containing 2 M thiourea, 7 M urea, and 4% CHAPS). For mRNA extraction, AVPV 

tissue fragments were sampled from newborns (6 males and 6 females) and 

homogenized in 50 μl of RNAlater (Ambion, Austin, TX). These samples were 

immediately frozen and kept at -80°C until use. To confirm the location of the isolated 

tissue, the remaining brain slices were fixed with 4% paraformaldehyde in phosphate 

buffered saline (PBS), stained with Hoechst 33258 (Molecular Probes, Inc., Eugene, 

OR) and subjected to fluorescence microscopy to obtain images. 

Protein and mRNA samples were prepared from the AVPV tissue fragments on PD6 

(9 females and 9 males for the preparation of protein samples; 6 males and 6 females for 

the preparation of mRNA samples). In addition, proteins and mRNAs were also 

extracted from SDN-POA fragments on PD1 (15 males and 18 females for protein 

extraction; 4 males and 4 females for mRNA extraction) and PD6 (9 males and 9 

females for protein; 6 males and 6 females for mRNA extraction) to compare mRNA 

expression levels of the identified proteins between the AVPV and the SDN-POA, as 
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well as between PD1 and PD6. 

 

Two-dimensional difference gel electrophoresis for proteomics analysis 

For two-dimensional (2D)-DIGE analysis, protein extracts (2.5 μg) were incubated 

with 1 nM Tris (2-carboxyethyl) phosphine hydrochloride (Sigma, St Louis, MO) at 

37°C in the dark for 1 hour. Then, the reduced samples were labeled with 2 mM of 

Cyanine dye 5 (Cy5, Cy Dye DIGE Fluor Labelling kit for Scarce Sample, GE 

Healthcare) according to the manufacturer’s instructions. For the in-gel standards, equal 

aliquots (2.5 μg) of each sample (AVPV on PD1 and PD6; SDN-POA on PD1 and PD6) 

were pooled and labeled with Cy3. The reaction mixture was incubated at 37°C for 30 

minute. The labeling reaction was terminated by the addition of lysis buffer (30 mM 

Tris-HCl, 2 M thiourea, 7 M urea, 4% CHAPS, 130 mM dithiothreitol, 2% immobilized 

pH gradient (IPG) buffer pH 4-7 (GE Healthcare), pH 8.5). All the labeling procedures 

were carried out in the dark. Next, the Cy3-labeled internal standard sample and each of 

the individual Cy5-labeled protein samples were mixed and loaded onto a 24-cm 

Immobiline Dry-strip covering the range of pH 4 to pH 7 (GE Healthcare) for isoelectric 

focusing using the IPGphor Isoelectric Focusing System (GE Healthcare). Separation by 

sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was then 

performed with the Ettan DALTsix Electrophoresis System (GE Healthcare) according 

to a previous report (Fujisawa et al., 2008). For mass spectrometry analysis, the protein 

samples (50 µg) were separated by 2D gel electrophoresis. 

 

Proteomic image analysis 

The separated labeled proteins on the 2D gels were scanned at 100-µm resolution 

using an image analyzer (Typhoon 9400 Imager, GE Healthcare). Matching between 
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gels was done by means of landmarking spots in the internal standard images for each 

gel. To compare spot intensities between the sexes, the Cy5-fluorescent intensities of 

the protein spots were normalized with the Cy3-fluorescent intensities of identical spots 

using Progenesis PG240 software (Nonlinear Dynamics, Newcastle, UK) program, and 

normalized Cy5-intensities were used in statistical analyses. 

 

In-gel digestion, mass determination, and protein identification 

2D gel fragments (approx. 1 mm in diameter) corresponding to the protein spots of 

interest were picked up with Xcise (Proteome Systems Ltd. and Shimadzu-Biotech, 

Kyoto, Japan), and peptide samples were prepared according to a previously described 

procedure (Fujisawa et al., 2008). In brief, the gel fragment was cut into small pieces, 

decolored, and incubated in a trypsin solution (0.02 µg/µl trypsin (Promega, Madison, 

WI)) at 37°C for 16 hours for digestion of the contained proteins. The digested peptides 

were extracted from the gel pieces with trifluoroacetic acid (Sigma) and acetonitrile. 

After four extraction cycles, the supernatant was filtered and concentrated in an 

evaporator. The peptide sample solution was stored at -20°C until the mass spectrometry 

analysis. The digested peptides in the samples were analyzed using a MALDI-TOF/TOF 

mass spectrometer (Ultraflex, Bruker Daltonics, Germany) or HCTultra ETD II system 

(Bruker Daltonics). The identification of peptides (proteins) was carried out by a search 

against the NCBI database with Mascot software (Matrix Science Ltd., London, U.K.). 

 

Quantitative real-time RT-PCR 

Total RNA was extracted from tissue samples immersed in RNAlater (Ambion) 

using an RNeasy kit (QIAGEN, Valencia, CA), and then converted to cDNA using a 

reverse transcription kit (QIAGEN). The synthesized cDNA was used as a template in 
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the following PCR. Real-time RT-PCR analysis was performed using a Thermal Cycler 

Dice Real Time System TP800 (Takara Bio, Ootsu, Japan) according to the 

manufacturer’s protocol. Gene expression levels were normalized with those of 18S 

rRNA measured simultaneously. Primers used for gene amplification are listed in Table 

1. The amplification was carried out in a 20-µl volume containing 1 µl of cDNA, 200 

nM of each primer pair and SYBR Premix Ex Taq (Takara Bio). The reaction mixture 

was subjected to 40 cycles of amplification, followed by post-PCR fluorescence melting 

curve analysis. 

 

Treatment with TP 

Pregnant rats were subcutaneously injected with 0.2 ml sesame oil vehicle containing 

TP (2 mg/day, 2 females) or 0.2 ml vehicle alone (2 females) daily from gestation days 

14 to 18. On PD1, newborns (male oil: n=4, female oil: n=9; male TP: n=5, female TP: 

n=10) were decapitated, and the brains were quickly removed. The AVPV was isolated 

from the brain, and the amount of CRMP4 mRNA was analyzed by real-time RT-PCR 

according to the method described above. 

 

In situ hybridization 

In situ hybridization was carried out according to a previous report (Kanda et al., 

2010), with a slight modification. In brief, cDNA containing 1792 bp of Rattus 

norvegicus CRMP4 (GenBank: AF389425.1) was incubated overnight with Xba I 

(Roche Diagnostics, Tokyo, Japan) or Hind III (Roche Diagnostics) in 1× SuRE/Cut 

Buffer H (Roche Diagnostics) at 37°C to prepare template DNA for the generation of an 

antisense or sense probe. To generate the digoxigenin (DIG)-labeled antisense or sense 

probe, the template DNA was incubated with T7 (for anti-sense probe) or T3 (for sense 
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probe) RNA polymerase (Roche Diagnostics). 

Newborn Sprague-Dawley rats (3 males and 3 females) were anesthetized on PD1 

and transcardially perfused with 4% paraformaldehyde in 0.1 M PBS, and the brains 

were removed. Serial frontal cryosections (16-μm thick) of the brain were cut with a 

cryostat (CM-3050-S; Leica Microsystems, Tokyo, Japan) and thaw-mounted on 

MAS-coated glass slides (Matsunami, Osaka, Japan). Brains of male and female WT 

mice on PD1 were removed after anesthesia and fixed with 4% paraformaldehyde. 

Under pentobarbital anesthesia, the brains of female and male WT mice on PD8 were 

removed following intracardiac perfusion with saline followed by 4% paraformaldehyde. 

The brains were then sectioned with the cryostat. After alkaline phosphatase (AP) 

activity was quenched with 0.2 N HCl, sections were postfixed with 4% 

paraformaldehyde, treated with proteinase K (Promega, Tokyo, Japan), and acetylated 

with 0.25% (v/v) acetic anhydride (Wako, Osaka, Japan) in 0.1 M triethanolamine 

(Sigma Aldrich, Tokyo, Japan). The sections were then incubated with prehybridization 

solution, and hybridized with 1 μg/mL DIG-labeled antisense cRNA probe. A sense 

probe was used as a negative control. After hybridization, the sections were washed 

twice with 2× saline-sodium citrate (SSC; Sigma) and treated with 20 μg/mL RNaseA 

(Sigma) in TNE (10 mM Tris-HCl, 0.5 M NaCl, and 1 mM EDTA, pH7.4; Sigma). After 

soaking in TNE buffer and washing with 2× SSC and then 0.5× SSC, the sections were 

incubated with AP-conjugated anti-DIG antibody (1:1000; Roche Diagnostics) and 

treated with a chromogen solution until a signal became visible. Sections were 

dehydrated, embedded with Entellan, and observed microscopically (AXIO Imager A1, 

Zeiss, Jena, Germany). 
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Western blot analysis 

In order to confirm the deficiency of CRMP4 protein, western blot analysis was 

carried out using CRMP4-KO mice. Whole brains (WT male, n=4; WT female, n=4; 

CRMP4-KO male, n=4; CRMP4-KO female, n=4) were homogenized and separated by 

electrophoresis on a 12% SDS-PAGE. Proteins were electrophoretically transferred 

from the gel to a polyvinylidene difluoride membrane (Immobilon-P transfer 

membranes, Merk Millipore, Darmstadt, Germany). Membranes were incubated with 

the polyclonal CRMP4 antibody (1:2500; Chemicon, Temecula, U.S.A.) and then the 

AP-conjugated secondary antibody (1:1000; Abcam, Cambridge, U.K.). CRMP4 was 

visualized using nitroblue tetrazolium and 5-bromo-4-chloro-3-indolyl-phosphate 

(NBT/BCIP). Image analysis was performed using the ImageJ 1.41 (National Institutes 

of Health, U.S.A.). 

 

Morphological comparison of the AVPV among CRMP4-KO and WT mice 

Male and female CRMP4-KO and WT littermates on E15 (WT male, n=4; WT 

female, n=6; CRMP4-KO male, n=6; CRMP4-KO female, n=6) were isolated from the 

anesthetized pregnant mice. Brains of PD1 mice (WT male, n=3; WT female, n=3; KO 

male, n=3; KO female, n=3) were isolated after anesthesia. Eight-week-old (8w, 

adulthood) mice (WT male, n=4; WT female, n=6; KO male, n=6; KO female, n=6) 

were anesthetized and subjected to perfusion fixation with saline, followed by 4% 

paraformaldehyde. Brains were removed, postfixed overnight, and cryoprotected in 

20 % sucrose in 0.1 M PBS at 4°C overnight before sectioning on a cryostat. Serial 

frontal frozen sections of the brains (PD1 and adult) were cut at a thickness of 16 μm 

and mounted on MAS-coated glass slides. Serial frontal frozen sections (12 μm 

thickness) of brains from E15 fetuses were obtained. To determine the sex of samples, 
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cDNA from each sample was analyzed for Zfy expression. 

For the purpose of cytoarchitecture determination, a series of every third section 

from each brain was stained with cresyl violet (Muto Pure Chemicals, Tokyo, Japan). 

This was used to measure AVPV size and cell numbers. Other sections were 

immunohistochemically stained with rabbit polyclonal antibody against TH (ab621, 

1:2000 dilution; Abcam) or rabbit polyclonal antibody against kisspeptin 10 (kp10, 

1:1000 dilution, AB9754; Chemicon), in combination with Hoechst 33258, or used for 

double immunostaining with a chicken polyclonal antibody against TH (1: 2000 dilution, 

NBP2-10493; Novus Biologicals, Littleton, CO) and a polyclonal rabbit antibody 

against CRMP4 (1:5000 dilution, AB5454; Millipore, Billerica, MA). After incubation 

with the primary antibodies, the sections were reacted with anti-rabbit IgG conjugated 

with Alexa Fluor 488 or Alexa Fluor 555 (1:500; Invitrogen, Carlsbad, U.S.A.). For 

double immunostaining, anti-chicken IgG conjugated with Alexa Fluor 555 and 

anti-rabbit IgG conjugated with Alexa Fluor 488 were used as secondary antibodies. 

AVPVs were identified according to the standard mouse brain atlas (Allen Reference 

Atlas and Atlas of the Developing Mouse Brain). The shape of the third ventricle (3V), 

anterior commissure, and optic chiasm were used as landmarks to determine the AVPV. 

For enumeration of total neurons, TH-ir, and kisspeptin-ir neurons, cells with a clearly 

visible nucleus were enumerated in the AVPV. For adult and PD1 AVPVs, measurements 

were performed in 6 or 7 sections from a series of every third section (16-μm thickness) 

from each brain. For AVPVs on E15, measurements were performed in 5 or 6 sections 

from a series of every third section (12-μm thickness) from each brain. 
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Statistical analysis 

Density of protein spots and expression levels of mRNA were compared between 

sexes using Student's t-test (paired, P<0.05). TP treatment experiments and experiments 

of CRMP4-KO mice were analyzed using a two-way ANOVA. In all analyses, ANOVA 

was followed by Scheffe’s post hoc test for multiple comparisons (P<0.05). 
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RESULTS 

 

Analysis of sexually dimorphic proteins in the AVPV on PD1 with 2D-DIGE 

In order to characterize the proteins related to AVPV sex differentiation, I compared 

the expression of each protein spot in Cy5-labeled male or female AVPV samples with 

that in Cy3-labeled in-gel standards on 2D-DIGE gels (Fig. 4A). The samples used in 

this experiment were extracted on PD1, the early phase of the sex differentiation. 

Electrophoresis was performed on each male and female sample (from 15 and 18 

samples, respectively), which provided 6 gel images in total. Approximately 1,000 

protein spots were matched among the 6 gel images. From matched spots, I selected 9 

protein spots (Fig. 4B) whose intensity exhibited a sex-difference of greater than 

1.3-fold and was statistically significant (P<0.05, Student’s t-test). Among the 9 spots, 

the intensity of 6 spots was greater in females than in males and the intensity of the 

remaining 3 was greater in males than in females (Table 2). I subsequently attempted to 

identify the proteins of the 9 spots using mass spectrometric analysis, and successfully 

identified the proteins in 6 spots (Table 2). Among these spots, two cytoskeletal proteins, 

γ-actin and α-internexin were identified. The other four spots were identified as 

stress-70 protein mitochondrial precursor (75 kDa glucose-regulated protein; GRP75), 

purine nucleoside phosphorylase, heterogeneous nuclear ribonucleoprotein K and 

CRMP4. The proteins in three remaining spots could not be identified. 

 

Comparison of mRNA expression of identified proteins in female and male AVPVs 
on PD1 

Relative gene expression levels of the identified 6 proteins were compared between 

the sexes in the AVPV on PD1 using real-time RT-PCR. The mRNA levels of 
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α-internexin and CRMP4 were significantly higher in males than in females, whereas 

those of the other 4 proteins did not show significant sex differences (Table 2, mRNA). I, 

thus, identified α-internexin and CRMP4 as proteins with sexually dimorphic 

expression at the level of protein and mRNA. In the present study, I focused on CRMP4, 

due to the important roles of the CRMP family in neural development (Nishimura et al., 

2003; Yamashita et al., 2006, 2007, 2011; Yamashita and Goshima, 2012). 

 

Absence of sex differences in CRMP4 expression in the AVPV on PD6 

It has been known that the sexual differentiation occurs in the AVPV from the late 

fetal stage to the first postnatal week (MacLusky and Naftolin, 1981). Thus, I examined 

CRMP4 expression levels in the AVPV on PD6, near the end of sexual differentiation. 

Pooled protein samples extracted from the AVPV on PD6 (each from 3 males or 3 

females) were quantitatively compared using 2D-DIGE (Fig. 5A). As described above, 

the intensity of the CRMP4 spot on PD1 (spot No. 787 in Fig. 5A and in Table 2) was 

statistically higher in males than in females (Fig. 5B, left). In addition, the other spots 

that were also identified as CRMP4 tended to have higher expression in males on PD1 

(Fig. 6). However, the intensity of the CRMP4 spot on PD6 (spot No. 2327 in Fig. 5A 

right) showed no apparent sex difference (Fig. 5B, right). 

Next, I measured the expression levels of the CRMP4 mRNA in the PD6 AVPV using 

real-time RT-PCR (Fig. 5C). The sex difference in the CRMP4 mRNA expression levels 

observed on PD1 (Fig. 5C, left) was no longer detected on PD6 (Fig. 5C, right). 

Therefore, the relative up-regulation of CRMP4 in males occurred specifically on PD1 

and not on PD6. 
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Expression of CRMP4 protein and mRNA in the SDN-POA on PD1 and PD6 

I examined protein and mRNA expression of CRMP4 in the SDN-POA of both sexes 

on PD1 and PD6. 2D-DIGE analysis showed that no differences were observed between 

males and females in CRMP4 spot intensity on PD1 and PD6 (Fig. 7A). Moreover, 

real-time RT-PCR analysis revealed that CRMP4 mRNA levels were not significantly 

different between the sexes in the SDN-POA on PD1 and PD6 (Fig. 7B). 

 

Prenatal TP-treatment suppresses sex differences in CRMP4 mRNA expression on 
PD1 

To investigate hormonal effects on the expression of CRMP4 mRNA in the AVPV, 

TP-containing sesame oil, or sesame oil alone (as a control), was injected into pregnant 

rats and RNA was extracted from the AVPV on PD1. CRMP4 mRNA expression level 

in the control males was significantly higher than that of control females (Fig. 8). 

Prenatal TP-treatment had no effect on the expression of CRMP4 mRNA in males. In 

contrast, TP-treatment significantly increased the expression of CRMP4 mRNA in 

females, and eliminated the sex difference in the expression of CRMP4 mRNA on PD1. 

 

Deletion of crmp4 gene affects the number of TH-ir neurons in adult female AVPV 

CRMP4-KO mice were previously established (Niisato et al., 2012). I compared 

sexually dimorphic morphological features of the AVPV between WT and CRMP4-KO 

mice at 8 weeks of age. As shown in Table 3, there was a tendency that the size of the 

AVPV was larger in WT females than in WT males, although the difference was not 

significant (P = 0.073, WT male, n=4; WT female, n=6, Scheffe’s post hoc test). 

Deletion of crmp4 gene did not induce significant changes in the size of the AVPV. 

Additionally, sex differences in the number of AVPV neurons identified by Nissl 

28 
 



staining were detected in WT mice, as well as CRMP4-KO mice (Table 3). In 

CRMP4-KO mice, the number of AVPV neurons was not significantly different as 

compared with that in WT mice. 

 

Deletion of crmp4 gene alters the number of TH-ir, but not kisspeptin-ir neurons in 
the adult female AVPV 

I performed western blot analysis using an anti-CRMP4 antibody of CRMP4-WT 

and CRMP4-KO mouse brains, and confirmed that CRMP4 protein was absent in the 

CRMP4-KO brain (Fig. 9). I then determined the numbers of kisspeptin-ir and TH-ir 

neurons in the adult AVPV of WT and CRMP4-KO mice. As previously reported 

(Clarkson and Herbison, 2006; Kauffman et al., 2007), the number of kisspeptin-ir 

neurons in the AVPV was much higher in WT females than in WT males (Fig. 10A left, 

10B). Deletion of the crmp4 gene did not affect the number of kisspeptin-ir neurons in 

either sex (Fig. 10A, 10B). 

In contrast, crmp4 gene deficiency altered the number of TH-ir neurons in the female 

AVPV. Consistent with the previous reports (Simerly et al., 1985a, b), the number of 

TH-ir neurons in the AVPV of adult WT mice was significantly greater in females than 

in males (Fig. 11A left, 11B). Deletion of the crmp4 gene did not affect the number of 

TH-ir neurons in males (Fig. 11A right, 11B). However, the number of TH-ir neurons 

was significantly larger in CRMP4-KO females, as compared with WT females (Fig. 

11A right, 11B). 

 

Deletion of crmp4 gene specifically affects the development of TH-ir neurons in the 
female AVPV 

In order to examine the developmental effects of CRMP4-KO on TH-ir neurons, I 
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determined the number of TH-ir neurons in the AVPV of both sexes in WT and 

CRMP4-KO mice at E15 and PD1 (Fig. 12). On E15, no significant difference in the 

number of TH-ir neurons was detected between WT and CRMP4-KO mice or between 

females and males (Figs. 12A, 13). The numbers of TH-ir neurons in WT mice of both 

sexes and CRMP4-KO males (Fig. 12B) remained unchanged from E15 to PD1 (Figs. 

12, 13). However, a dramatic increase in the number of TH-ir neurons was detected in 

female CRMP4-KO mice on PD1, producing a statistically significant sex difference in 

CRMP4-KO mice on PD1 (Figs. 12, 13). 

After PD1, the number of TH-ir neurons was decreased in male WT mice. In contrast, 

the number of TH-ir neurons was similar in female WT mice at PD1 and adulthood 

(Figs. 11, 13). Thus, a sex difference in the number of TH-ir neurons was observed in 

WT mice (Figs. 11, 13). Although the number of TH-ir neurons in both sexes of 

CRMP4-KO mice was smaller at adulthood than on PD1 (Figs. 11, 13), the number of 

TH-ir neurons was higher in adult female CRMP4-KO mice than in adult male 

CRMP4-KO mice (Figs. 11, 13). Lastly, female CRMP4-KO mice had significantly 

more TH-ir neurons than did female WT mice (Figs. 11, 13). 

 

Expression of CRMP4 mRNA and colocalization of CRMP4 and TH in the PD1 
mouse AVPV 

As shown in Fig. 14, CRMP4 mRNA was detected in the mouse AVPV by in situ 

hybridization on PD1 (Fig. 14A). Hybridization signals were detected as black dots in 

the cytoplasm of many cells within the AVPV on PD1 (insert in Fig. 14A). Sex 

differences in the expression of CRMP4 mRNA were observed on PD1 (Fig. 14A) but 

not on PD8. Hybridization signals were very weak on PD8, comparable to the other 

areas of the mouse preoptic region, as reported previously (Tsutiya and Ohtani-Kaneko, 
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2012). I assessed colocalization of CRMP4 and TH in the male AVPV (Fig. 14C-F) 

using double immunostaining with the CRMP4 and the TH antibodies, and found that 

TH-ir cells were immunoreactive for CRMP4 (arrows in Fig. 14F), though many 

TH-negative cells were also CRMP4 immunoreactive. 
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DISCUSSION 

A proteomics approach (2D-DIGE followed by MALDI-TOF-MS) was used to 

identify sexually dimorphic expression of CRMP4 in the AVPV. The sexually dimorphic 

expression was identified on PD1, during the development of sex differences in the 

AVPV, but not on PD6 when AVPV sexual differentiation is mostly completed. 

Consistent with the changes in CRMP4 protein levels, the expression of CRMP4 mRNA 

was also up-regulated in the male AVPV on PD1, but not on PD6. Furthermore, sexually 

dimorphic expression was not found in CRMP4 protein and mRNA in the SDN-POA at 

both PD1 and PD6. This is the first study that demonstrates sexual dimorphic expression 

of CRMP4 in the AVPV. In the present study, CRMP4-KO mice with depletion of the 

crmp4 gene did not affect the number of kisspeptin-ir neurons, which is known to be 

sexually dimorphic in the AVPV. However, loss of the crmp4 gene caused a 

female-specific increase in the number of TH-ir neurons in neonatal and adult mice. 

These results suggest a new role for CRMP4 in sex-dependent regulation of TH-ir 

neurons in the AVPV. 

 

Different mechanisms involved in determining the neuronal subpopulations in the 
AVPV 

Both the volume and number of neurons in the female AVPV are more than twice as 

those of the male AVPV in rodents (Bleier et al., 1982; Ito et al., 1986; Sumida et al., 

1993). The number of neurons in brain nuclei is determined by a variety of factors that 

regulate neurogenesis, neuronal migration, and apoptosis during development. An 

examination of Bax-KO mice and transgenic mice with Bcl-2-overexpression showed 

that the sexual dimorphism in the total neuron number in the AVPV was absent in these 
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mice (Zup et al., 2003; Forger et al., 2004). These studies suggest that apoptosis through 

the Bcl-2 family is involved in the regulation of the total number of neurons in the 

AVPV. 

Sexual dimorphism in the AVPV has also been found in neuronal subpopulations; a 

female-dominant sex difference was previously showed in the number of kisspeptin-ir 

neurons (10-20 fold difference) in the AVPV and the PeN (Clarkson and Herbison, 

2006), as well as TH-ir neurons (3-4 fold difference) in the AVPV (Simerly, 1985a). In 

Bax-KO mice, the sexual dimorphism in the number of kisspeptin-ir neurons was lost in 

the AVPV, but that of TH-ir neurons was maintained (Forger et al., 2004; Semaan et al., 

2010). These results suggest that apoptosis through Bax regulates the number of 

kisspeptin-ir neurons but not TH-ir neurons. Additionally, overexpression of Bcl-2 does 

not affect the number of TH-ir neurons (Zup et al., 2003). This result demonstrates the 

heterogeneity of the mechanisms involved in regulating cell numbers in the AVPV. 

Bcl-2 and Bax may regulate sexual dimorphism of the neuronal density and the number 

of kisspeptin-ir neurons in the AVPV, whereas the Bcl-2 family does not regulate sex 

differences in TH-ir neuronal numbers. The present results show differences in effects 

of crmp4 gene deficiency between kisspeptin-ir neurons and TH-ir neurons and the 

heterogeneity of the mechanisms determining the cell numbers of neuronal 

subpopulations in the AVPV. 

 

Role of CRMP4 in the development of the AVPV 

As described in the introduction, several studies have demonstrated that the loss of 

CRMP1, 3 and 5 causes impaired cell migration, dendritic patterning and dendritic 

spine formation (Charrier et al., 2006; Yamashita et al., 2006, 2007, 2011; Su et al., 
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2007; Quach et al., 2008). Based on these studies describing the roles of the CRMP 

family in neuronal development, I focused on CRMP4 among the sexually dimorphic 

proteins identified in the present proteomics analysis. 

The CRMP4 mRNA is initially detected in the rat brain on E13, increases transiently 

until PD1, and then decreases rapidly to the adult level (Wang and Strittmatter, 1996). 

However, certain brain regions where neurogenesis is maintained throughout adulthood, 

including the dentate gyrus (Bayer et al. 1982; Bayer, 1982), retain CRMP4 expression 

until adulthood (Nacher et al., 2000; Tsutiya and Ohtani-Kaneko, 2012). Therefore, it is 

suggested that CRMP4 may have roles in neuronal development in many brain regions 

during embryonic and early postnatal stages, as well as in adult neurogenic regions. 

CRMP4 appears in growing axons of dorsal root ganglion neurons (Minturn et al., 

1995), and has a regulatory role in actin cytoskeleton dynamics, which may be related to 

growth cone collapse (Rosslenbroich, 2005). Alabed et al. (2007) found that short 

interfering RNA-mediated knockdown of CRMP4 promotes prominent process 

outgrowth of HEK293T cells. Niisato et al. (2012) recently generated CRMP4-KO mice 

in order to study the in vivo roles of CRMP4 and identified an increased proximal 

bifurcation of apical dendrites in CA1 pyramidal neurons of these mice. They also 

found increased dendritic branching in cultured hippocampal neurons of CRMP4-KO 

mice, as well as in cultured cortical neurons treated with CRMP4 short hairpin RNA 

(shRNA). In addition, other research groups have shown that CRMP4 is involved in the 

developmental process as well as in degenerative or regenerative processes of neurites 

in adulthood (Nacher et al., 2000; Franken et al. 2003; Fujisawa et al., 2008; Liu et al., 

2009; Duplan et al., 2010; Jang et al., 2010). Furthermore, Franken et al. (2003) showed 

the involvement of CRMP4 in naturally occurring cell death during cortical 
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development. 

The present study demonstrated increased TH-ir neurons in the AVPV of female 

CRMP4-KO mice. CRMP4 may regulate the number of TH-ir neurons through several 

processes: neurogenesis, neuronal migration, and apoptosis. In addition, the possibility 

cannot be excluded that the increase of TH-ir neuronal numbers is due to the increased 

expression of TH. If this holds true, CRMP4 may regulate the expression of TH. 

An examination of neurogenesis showed cell labeling in the adult AVPV when BrdU 

was injected into pregnant rats during E13-E18 but not during E10-E12, E19-E20, or on 

PD1 (Nishizuka et al., 1993). These results suggest that neurogenesis in the rat AVPV 

occurs during a limited period between E13 and E18. The exact day for the 

neurogenesis in the mouse AVPV is unknown. Considering the rat data described above 

(Nishizuka et al., 1993), neurogenesis in the mouse AVPV may occur during the 

embryonic stages. I found that the numbers of TH-ir neurons on E15 were the same in 

both sexes of WT or CRMP-KO mice, and their sexual differentiation in numbers of 

TH-ir neurons emerged in CRMP4-KO mice on PD1. Based on these findings, CRMP4 

may regulate the proliferation of TH-ir neurons after E15. Therefore, a close 

examination using BrdU-administered CRMP4-KO mice is needed to address the 

question whether CRMP4 controls the number of TH-ir neurons via a neurogenic 

pathway. 

Some studies have also demonstrated that CRMP4 is involved in apoptosis. Franken 

et al. (2003) showed that CRMP4 is involved in naturally occurring cell death during 

cerebral cortex development. Recent studies show that CRMP4 acts as a pro-apoptotic 

factor in apoptotic neurons, i.e., motoneurons of mutant superoxide dismutase 1 mice 

(Duplan et al., 2010). Moreover, calpain truncated CRMP4 induces apoptosis in 
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cerebellar granule neurons (Liu et al., 2009). It is also known that calpain activates 

caspase 12 and induces apoptosis through the ER pathway (Martinez et al., 2010). 

Taken together, these findings suggest that CRMP4 is involved in the regulation of 

TH-ir neuron numbers via an apoptotic pathway. 

In addition to proliferation and apoptosis, neuronal migration might play a role in 

CRMP4-mediated regulation of TH-ir neuron number in the AVPV. It has been 

demonstrated that CRMP1 and CRMP2 are involved in the signal transduction pathway 

that mediates neuronal migration in the cerebral cortex (Yamashita et al., 2006; Ip et al., 

2011). These studies suggest that CRMP4 could regulate TH-ir neuron number by 

controlling their migration. 

Because the mechanisms underlying the regulation of the number of TH-ir neurons 

in male and female mice by CRMP4 remain undetermined, the role of CRMP4 should 

be examined from various perspectives, including proliferation, apoptosis, and 

migration. Finally, most of AVPV cells including TH-ir neurons have CRMP4 

immunoreactivity, suggesting that CRMP4 could affect the characteristics of diverse 

range of cells in the AVPV. 

 

Speculations as to why TH-ir neurons increased only in CRMP4-KO female mice  

I identified increased expression of CRMP4 mRNA in the AVPVs of control male 

rats and TP-treated female rats. Inexplicably, the deletion of crmp4 gene increased the 

number of TH-ir neurons only in female mice, suggesting that CRMP4 is involved in 

limiting TH-ir neuronal density in the female mouse AVPV. One possible explanation 

for this discrepancy is that the CRMP4-dependent pathway regulating the number of 

TH-ir neurons may be masked in males by a more potent cell death pathway induced by 
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testosterone during the perinatal period. This potent cell death pathway might lead to 

decreased male TH-ir neurons irrespective of CRMP4. On the other hand, in females, 

the CRMP4-dependent regulatory pathway might be able to function because of the 

absence of testosterone. 

 

Other sexually dimorphic proteins identified by proteomics analysis 

The present proteomics study identified other sexually dimorphic proteins, including 

the cytoskeletal protein γ-actin, GRP75, and purine nucleoside phosphorylase (PNP). 

Mutations in the γ-actin gene are associated with hearing loss (Zhu et al 2003). It is 

possible that γ-actin plays an important role in development. It is known that actin has at 

least 17 kinds of post-translational modification. Arginylation promotes the 

polymerization of actin and glutathionylation decreases the polymerization. 

Phosphorylation promotes the polymerization of actin depending on the residue, or 

decreases the polymerization (Terman and Kashina, 2013). The deficit of arginylation of 

β-actin which is the same cytoskeleton as γ-actin, decreases cell movement 

(Karakozova et al., 2006; Kurosaka et al., 2010). Glutathionylation of actin protects 

neurons from oxidant stress, and is participating in neuronal survival (Sparaco et al., 

2006). Thus, the post-translational modification of actin influences neuronal migration 

and neuronal survival. In the present study, the density of protein spot of γ-actin was 

increased in the female without changes in the expression of the mRNA. It is possible 

that the isoelectric point was changed by these post-translational modifications. In this 

study, the expression of PNP was higher in the female AVPV than in males. It has been 

reported that PNP suppresses apoptosis in chronic lymphocytic leukemia cells 

(Balakrishnan et al., 2006). Therefore, PNP could suppress apoptosis in the female 
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AVPV. GRP75 is an important molecular chaperone that belongs to the heat shock 

protein 70 family and resides predominantly in mitochondria. GRP75 has been 

suggested to suppress apoptosis through inhibition of Bax in PC12 cells (Yang et al., 

2008, 2011). In the present study, the expression of GRP75 was also higher in the 

females AVPV than in males. Thus, GRP75 may increase the number of cells in female 

AVPV through inhibition of Bax. Further study is needed to investigate the precise roles 

of these proteins in the sexual differentiation of the AVPV. 

 

Technical considerations for 2D-DIGE 

Some remarks should be added on various technical considerations concerning the 

2D-DIGE method. Several methods have been used to identify molecules underlying 

the sexual differentiation of the hypothalamus (Yonehara et al., 2003; Krishnan et al., 

2009). DNA microarray was used to compare male and female gene expression patterns 

in the hypothalamus on PD5 (Yonehara et al., 2003). It was shown that the mRNA 

expression of GAD65 and Coro1b was higher in males than in females, whereas that of 

TrkR2 and COL3A1 was higher in females. Krishnan et al. (2009) also used DNA 

microarray to examine apoptosis-related genes and identified 23 genes, including TRIP, 

which showed sex differences in the AVPV on PD2. Interestingly, none of these gene 

products were identified in the present study. There may be several reasons for the 

differences between the above genes identified with microarray and proteins identified 

with proteomics here. One of the reasons is that different hypothalamic nuclei were 

examined. Yonehara et al. (2003) examined the entire hypothalamic nuclei, while others 

(Krishnan et al., 2009; present study) focused on the AVPV. It was reported that 

different mechanisms are involved in mediating sexual differentiation among the 
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hypothalamic nuclei (Schwarz and McCarthy, 2008a, b). The second reason is that 

different developmental stages were examined. The present study focused on PD1 for 

two reasons. First, previous studies have shown that there are more apoptotic cells in the 

AVPV of male rats than female rats on PD2. Second, there are significant sex 

differences in the levels of Bcl-2 (female > male) and Bax (female < male) proteins in 

the AVPV of PD1 rats (Yoshida et al., 2000; Tsukahara et al., 2006). Finally, the present 

2D-DIGE analysis examined the expression of proteins in the pH range of 4-7. As a 

result, proteins with the isoelectric points outside this range were not characterized. For 

example, the theoretical isoelectric point of TRIP is 8.93; therefore, TRIP could not be 

identified in the present analysis. 

It is known that CRMP4 and heterogeneous nuclear ribonucleoprotein K are 

phosphorylated (Rembutsu et al., 2008; Kimura et al., 2010). Post-translational 

modification is a very important process for controlling the function of these proteins. 

Therefore, it is necessary to carry out further analyses to understand the function of  

post-translational modifications of these proteins  

. 

 

 

Conclusions 

In the present study, I aimed to elucidate the mechanisms involved in mediating sexual 

dimorphism in the AVPV. First, I used proteomic analysis to show that CRMP4 is a 

sexually dimorphic protein in the AVPV during the critical developmental period in a 

stage- and region-specific manner. Next, I demonstrated that the sex differences in 

CRMP4 expression are dependent on androgens during the critical period. Finally, I 
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used CRMP4-KO mice to show that crmp4 gene-deficiency increased the number of 

TH-ir neurons in neonatal and adult female animals. The findings in the present study 

show a new role for CRMP4 in sex-dependent regulation of TH-ir neurons in the AVPV. 

Although I could not find molecules that are responsible for AVPV sexual dimorphism, 

the present study is the first to show the involvement of CRMP4 in controlling the 

number of TH-ir neurons as well as the androgen dependency of its control. This study 

provides important information regarding the mechanisms underlying the formation of 

this sexually dimorphic nucleus as well as the molecular mechanisms mediating 

hormonal regulation of brain development. 
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Table 1 
 

Primers used in this study 
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Table 2 
 

Identified proteins with sex differences in the AVPV on PD1 
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Table 3 
 
Nuclear size and cell number in the AVPV of wild type (WT) and CRMP4-knockout 
(CRMP4-KO) mice 

 

n.s.; Not different from males of the same genotype. 
*Significantly different from males of the same genotype. 
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Figure 1. Diagrams showing the location of AVPV. A: Sagittal section of the rat brain 
showing the location of AVPV (red dotted lines) and SDN-POA (dotted lines). B: Frontal 
section at the plane shown by the line in A. III, third ventricle; CB, cerebellum; CC, 
corpus callosum; CR, cerebral cortex; HT, hypothalamus; MB, midbrain; OB, olfactory 
bulb; OC, optic chiasm; OVLT, organum vasculosum of the lamina terminalis; SP, 
septum; ST, striatum.  
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AVPV 

Figure 2. Photomicrographs showing the frontal section of the mouse AVPV stained 
with cresyl violet. Red dotted lines show the AVPV outline. Scale bar: 100 μm.   
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Figure 3. Schematic diagram showing positive feedback of GnRH through the 
kisspeptin neuron in the AVPV.   
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Figure 4. (A) A representative two-dimensional difference gel electrophoresis 
(2D-DIGE) image. Proteins extracted from the female or male rat anteroventral 
periventricular nucleus (AVPV) were labeled with Cy5, and equal amounts of protein 
were labeled with Cy3; these Cy3-labeled proteins were used as an in-gel standard to 
quantify differences between female and male samples. These 2 differentially labeled 
samples were separated by isoelectric focusing and subsequent 12.5% SDS-PAGE. 
Protein spots exhibiting differential intensities compared to those of the in-gel 
standard were visualized as red (higher intensity) or green (lower intensity), 
depending on the degree of change. Protein spots that showed little difference appear 
yellow in color. (B) Detection of sexually dimorphic proteins in the AVPV by 
2D-DIGE. Circled and numbered protein spots indicate sexually dimorphic proteins 
that were processed for further identification by MALDI-TOF-MS. 

49 
 



 

Figure 5. (A) Paired images of 2D-DIGE spots identified as CRMP4 in male and 
female rats on PD1 (left) and PD6 (right). (B, C) Relative expression of CRMP4 
protein (B) and CRMP4 mRNA (C) in the male and female AVPV on PD1 (left) 
and PD6 (right). The relative levels of CRMP4 protein and mRNA in females 
were calculated by comparison with CRMP4 expression in males. Values (100%) 
are expressed as means ± SEMs. Asterisks indicate significant differences between 
sexes (Student’s t-test, P<0.05). 
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Figure 6. (A) Paired images of 2D-DIGE spots identified as CRMP4 in male and 
female rats on PD1 (B) and PD6 (C). The relative levels of CRMP4 protein in 
female AVPV were calculated by comparison with CRMP4 expression in males. 
Values (100%) are expressed as means ± SEMs.  
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Figure 7. Expression of CRMP4 protein and mRNA in the SDN-POA of male and 
female rats on PD1 and PD6. Relative expression levels of the CRMP4 spot (A) and 
CRMP4 mRNA (B) in the SDN-POA of male and female rats on PD1 and PD6. 
CRMP4 protein and mRNA expressions in the SDN-POA on PD1 and PD6 showed 
no sex difference. Values are indicated as means ± SEMs. 
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Figure 8. Effect of testosterone propionate (TP) on CRMP4 mRNA expression. 
Pregnant rats were injected daily with TP or sesame oil (Oil) from day 14 to 18 of 
gestation, and the relative expression of CRMP4 mRNA in the AVPV was 
determined on PD1 by real-time RT-PCR. Expression levels of CRMP4 mRNA 
were calculated by comparing to the levels of control males (Oil male). TP 
treatment significantly increased CRMP4 mRNA in females. Values are indicated 
as means ± SEMs. Different letters (a, b) indicate a significant difference by the 
Scheffe’s post hoc test (P< 0.05). 

53 
 



 

 

Figure 9. CRMP4 protein expression in whole brains of adult CRMP4 WT and KO 
mice. (A) Western blot analysis of male and female WT and KO mice. (B) The 
expression of CRMP4 was virtually absent in male and female KO mice. Values are 
indicated as means ± SEMs. Asterisks indicate significant differences between sexes 
(Student’s t-test, P<0.05). 
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Figure 10. Effect of CRMP4-KO on the number of kisspeptin-ir neurons in the 
AVPV of adult mice. (A) Representative micrographs showing kisspeptin-ir 
neurons in male and female AVPVs of WT and CRMP4-KO mice. Scale bar: 100 
μm. (B) The number of kisspeptin-ir neurons was greater in WT and KO female 
mice than in WT and KO male mice. CRMP4-KO did not affect the number of 
kisspeptin-ir neurons in either sex. Values are expressed as means ± SEMs. 
Different letters (a, b) indicate significant differences (two-way ANOVA with sex 
and genotype as the independent factors, followed by Scheffe’s post hoc test for 
multiple comparisons, P< 0.05). 
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Figure 11. Effect of CRMP4 KO on the number of TH-ir neurons in the AVPV of 
adult mice. (A) Representative micrographs showing TH-ir neurons in male and 
female AVPVs of WT and CRMP4-KO mice. Scale bar: 100 μm. (B) The number of 
TH-ir neurons was greater in WT and KO female mice than in WT and KO male 
mice. CRMP4-KO increased the number of TH-ir neurons in females (right) but not 
in males (left). Values are expressed as means ± SEMs. Different letters (a, b, c) 
indicate significant differences (two-way ANOVA with sex and genotype as the 
independent factors, followed by Scheffe’s post hoc test for multiple comparisons, 
P< 0.05).  
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Figure 12. Effect of CRMP4 KO on the number of TH-ir cells in the developing 
AVPVs.  Micrographs showing TH-ir neruons in the male and female AVPVs of 
WT and KO mice on E15 (A) and PD1 (B). Scale bar: 50 μm. 
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Figure 13. Changes in the number of TH-ir neurons in the AVPVs of WT and KO 
mice during development. TH-ir neurons in female and male AVPVs of WT and 
KO mice were enumerated on E15 and PD1. No significant differences were found 
in the number of TH-ir neurons in male versus female mice or in WT versus 
CRMP4-KO mice on E15. A female-specific increase in the number of TH-ir 
neurons was found in CRMP4-KO mice on PD1, when the sex difference had yet to 
be observed in WT mice. Values are expressed as means ± SEMs. Different letters 
(a, b) indicate significant differences (two-way ANOVA with sex and genotype as 
the independent factors, followed by Scheffe’s post hoc test for multiple 
comparisons, P< 0.05). 

58 
 



 

 

Figure 14. The expression of CRMP4 mRNA in female and male WT mouse 
AVPVs, and colocalizaton of TH-immunoreactivity with CRMP4. Representative 
micrographs of in situ hybridization showing the expression of CRMP4 mRNA in 
the AVPVs of male and female mouse brains on PD1 (A) and PD8 (B). Scale bar: 
100 μm. (C-F) Double immunostaining for TH and CRMP4. Scale bar: 20 μm. 
3V: third ventricle. (C) TH-immunoreactive (TH-ir, red). (D) CRMP4-ir (green). 
(E) Hoechst 33342 (blue). (F) Merged image. 
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