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1. Abbreviations 
 
BrdU+: BrdU positive 
CNS: central nervous system 
DW: distilled water 
DIV: days in vitro 
ECM: extracellular matrix 
EMT: epithelial-mesenchymal transition 
FBS: fetal bovine serum 
HSPG : heparan sulfate proteoglycan 
MEM: minimum essential medium 
NR: neural retina 
PFA: paraformaldehyde 
PCR: polymerase chain reaction 
po: post operative 
RLEC: retina-less eye-cup 
RPE: retinal pigment epithelium 
RT: room temperature 
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2. Abstract 

 

The retinal pigment epithelium (RPE) is a highly specialized cell layer 

located between the neural retina and the choriocapillaris in the eye, 

providing essential support for the metabolism and physiology of the neural 

retina (NR). Mature RPE cells are mitotically inactive. However, they change 

their phenotype and proliferate when the retina is injured by ischemia or 

trauma. In humans, RPE cell proliferation typically results in retinal 

diseases and blindness. However, newts can regenerate their NR through 

proliferation and transdifferentiation of the RPE cells. Therefore, the adult 

newt retinal regeneration system may be a good model to obtain insight into 

the treatment of retinal diseases caused by proliferation of RPE cells, and 

may also help to establish regenerative therapies.  

The mechanisms underlying proliferation in mitotically quiescent RPE 

cells are not fully understood, mainly because a suitable experimental 

system has not been established. Therefore, in the present study, I developed 

a new in vitro experimental system in the newt. Using this system, I 

investigated the mechanisms of the cell-cycle entry of RPE cells, following 

the removal of the NR. 

I performed retinectomy, a surgical operation to remove the NR from the 

eye, in vitro and cultured the posterior half of the eyeball containing the RPE. 

Under this retina-less eye-cup (RLEC) culture condition, the RPE cells 

entered the S-phase of cell-cycle between 5 and 10 days in culture, but these 

cells were located around the wound edge of the RLEC. Cells inside the 
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tissue hardly entered the cell-cycle, which could not be explained by 

degeneration or cell death because a cell viability assay and intraocular 

transplantation of the RPE showed no significant degeneration or cell death 

of the RPE cells. 

   To determine the mechanism by which RPE cells around the wound edge 

enter the cell-cycle, I examined the effect of heparin because it is known to 

bind various soluble factors and support their action on receptors. As 

expected, heparin promoted the cell-cycle entry of RPE cells. Therefore, I 

next examined the heparin-binding factors FGF2, Wnt, Shh, and thrombin, 

which have been speculated to participate in body-parts regeneration in 

vertebrates. FGF2, Wnt, and Shh did not promote cell-cycle entry of RPE 

cells. In contrast, thrombin promoted cell-cycle entry of RPE cells only in the 

presence of serum, although thrombin itself showed an inhibitory effect. 

Subsequently, I investigated factors that suppress the cell-cycle entry of 

RPE cells in the center of the RLEC. I found that when a small piece of RPE 

was removed from the center of the RLEC, the cells around the evulsed area 

entered the cell-cycle. I also found that EGTA treatment, which loosens 

cell-to-cell contact, but not basement membrane (Bruch’s membrane) 

digestion, promotes the cell-cycle. These results suggest that the cell-cycle 

entry of the RPE cells is suppressed through cell-to-cell contact. 

In the conclusion, in vitro retinectomy followed by RLEC culture is a good 

system to research the first cell-cycle entry of the RPE cells, following NR 

injury. Thrombin is a heparin-susceptible factor that stimulates the cell-cycle 

entry of RPE cells in combination with serum factors, and cell-to-cell contact 
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suppresses this process. 
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3. Introduction 

 

The retinal pigment epithelium (RPE), which is located between the 

neural retina (NR) and the choriocapillaris in the eye (Figure 1), plays an 

essential role in vision. In the mature state, RPE cells are mitotically 

inactive. Once the retina is injured, the RPE cells start to proliferate. In 

humans, the proliferation of RPE cells is a sign of pathogenesis causing 

blindness. 

In contrast to other vertebrates, newts can regenerate their entire retina 

through the proliferation and transdifferentiation of RPE cells, even in 

adulthood and even when the NR is completely removed by surgery (Chiba et 

al., 2006; Chiba and Mitashov, 2007; Haynes and Del Rio-Tsonis, 2004; 

Mitashov, 1996; Reh and Pittack, 1995; Reh and Pittack, 1997; Tsonis, 2000; 

Tsonis and Del Rio-Tsonis, 2004). Therefore, the adult newt retinal 

regeneration system may be a good model to obtain insights into the 

treatment of retinal diseases caused by phenotype switching and 

proliferation of RPE cells, and even retinal regeneration. 

 

3.1. The RPE 

The RPE, which is located between the NR and the choriocapillaris in the 

eye, is derived as a partner of the NR from the multipotent optic 

neuroepithelium. The mature RPE is a highly specialized monolayer with 

pigmented microvilli, and its apical membrane faces the photoreceptor outer 
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segments of the NR (Figure 2). Long apical microvilli surround the 

light-sensitive outer segments, establishing a complex with close structural 

interaction. With its basolateral membrane, the RPE faces the basement 

membrane (Bruch’s membrane), which separates the RPE from the 

fenestrated endothelium of the choriocapillaris. The RPE provides an 

essential support for the NR and vision with various physiological roles 

(Marmor, 1998; Strauss, 2005). As a layer of pigmented cells, the RPE 

absorbs the light energy focused by the lens on the retina (Bok, 1993; 

Boulton and Dayhaw-Barker, 2001). The RPE transports ions, water, and 

metabolic end products from the subretinal space to the blood and delivers 

nutrients such as glucose, retinol, and fatty acids from the blood to the NR. 

In addition, the RPE plays an important role in the visual cycle of retina, in 

order to maintain photoreceptor activity. Furthermore, the RPE secretes a 

variety of growth factors or immunosuppressive factors to facilitate 

homeostasis of the NR and vision.  

 

3.2. Phenotype switching and proliferation of RPE cells 

The RPE cells are highly specialized and mitotically inactive. However, 

they change their phenotype and start to proliferate when the NR or the 

choroid is injured. In humans, RPE cell proliferation is a negative sign, 

indicating the pathogenesis of retinal diseases such as proliferative 

vitreoretinopathy (PVR) or choroidal melanoma (Kim and Arroyo, 2002; 

Pastor, 1998). In PVR, upon injury of the retina or the choroid, the RPE cells 

are exposed to the serum through damage to the blood–retinal barrier. 
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Subsequently, they are detached from the Bruch’s membrane, lose their 

epithelial morphology, migrate into the vitreous cavity through a tear in the 

NR, and participate in the formation of epiretinal membranes on both the 

surfaces of the NR. The epiretinal membranes grow and contract, causing 

further retinal detachment and loss of vision.  

In contrast to humans, newts can regenerate their entire retinas through 

the proliferation and transdifferentiation of the RPE cells (Reh and Pittack, 

1995; Mitashov, 1996, 1997; Tsonis, 2000; Hynes and Del Rio-Tsonis, 2004; 

Tsonis and Del Rio-Tsonis, 2004; Chiba and Mitashov, 2007). In the adult 

newt, upon surgical removal of the NR, the RPE cells typically form layers 

and aggregate with a thickness of a few cells, possibly because of their 

migration and/or the shrinking of the vitreous chamber (Chiba et al., 2006). 

The cells become mitotically active during this process and then generate a 

bilayer of cells consisting of presumptive progenitor cells of the NR and the 

RPE (Chiba et al., 2006; Susaki and Chiba, 2007; Kaneko and Chiba, 2009). 

The cells of the inner cell layer facing the vitreous cavity continue to 

proliferate, producing various types of retinal neurons and glia to form visual 

circuitry, and finally regenerate a new functional NR (Negishi et al., 1992; 

Saito et al., 1994; Cheon et al., 1998; Chiba, 1998; Cheon and Saito, 1999; 

Chiba and Saito, 2000; Chiba et al., 1997, 2005, 2006; Sakakibara et al., 

2002; Oi et al., 2003a, b; Nakamura and Chiba, 2007); however, the cells of 

the outer cell layer, along the Bruch’s membrane, exit the cell-cycle earlier 

and differentiate to renew the RPE cell layer (Chiba et al., 2006). 
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3.3. Experimental systems to study RPE cell-cycle entry 

The mechanism underlying the onset of proliferation in mitotically 

quiescent RPE cells following retinal injury is not fully understood in either 

humans or newts, although it may present a clinical target for analyzing 

retinal disease or regeneration. To address this issue, many studies have 

used primary cultures of isolated RPE cells or have performed retinectomy 

(Fredi-Reygrobellet et al., 1991; Kauffmann et al., 1994; Lashkari et al., 

1999; Andrews et al., 1999; Bryckaert, et al., 2000; Kaven et al., 2000; Bian 

et al., 2001; Meitinger et al., 2001; Hecquet et al., 2002a,b; Nagineni et al., 

2003; Hollborn et al., 2006; Susaki and Chiba, 2007; Pacheco-Domínguez et 

al., 2008; Palma-Nicolas et al., 2008). However, isolated cells or primary 

culture systems may not be suitable because isolated cells have already 

received signals to become mitotically active during the enzymatic 

dissociation process. In fact, in adult newts, when the RPE cells are isolated 

from the basement membrane (Bruch’s membrane) of choroid tissue by 

enzyme treatment and then cultured in serum-free minimum essential 

medium (MEM), they enter the S-phase of the cell-cycle even in the absence 

of exogenous growth factors (Susaki and Chiba, 2007). However, retinectomy 

also presents problems with regard to experimentation. Wound opening, 

blood inflow, vascular expansion, and other disruptions resulting from the 

operation make the intraocular environment hard to control. 

 

3.4. Objective of this study 

The mechanism underlying RPE cell proliferation following retinal injury 
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is not fully understood in humans or newts, although it may provide new 

insights into clinical treatments for retinal diseases or retinal regeneration. 

One of the reasons why advances have been limited is the lack of a suitable 

experimental system. Therefore, in the present study, using adult newts of 

the species Cynops pyrrhogaster, I developed an in vitro retinectomy 

procedure followed by the RPE culture from the posterior half of the eye, 

termed the retina-less eye-cup (RLEC), to observe RPE cells with lower 

disruption than that observed in in vivo experiments. Using this system, I 

investigated the factors or signals involved in the first cell-cycle entry of RPE 

cells, following removal of the NR. 
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4. Materials and methods 

 

4.1. Animals 

Adult Cynops pyrrhogaster newts (total body-length: 8-10 cm) were 

purchased from local suppliers in Japan and housed in polyethylene 

containers with water at 18 °C under a natural light condition (Casco-Robles 

et al., 2010, 2011). The original research reported herein was performed 

under the guidelines established by the University of Tsukuba Animal Use 

and Care Committee. 

 

4.2. RPE culture 

 

4.2.1. In vitro retinectomy (RLEC culture) 

Adult newts were anesthetized with 0.1 % FA-100 

(4-allyl-2-methoexyphenol; Tanabe, Japan) in the dark for 2 h and then 

sacrificed. After rinsing the heads in 70 % ethanol, the eyeballs were placed, 

cornea side up, on a membrane filter (Millipore, Billerica, MA, USA) in a 

35mm plastic dish (Becton Dickinson, Franklin Lakes, NJ, USA) at one 

eyeball per dish, and the eyeball was cut along the equator, its anterior half 

was carefully removed, the posterior half (i.e., the eye-cup) was soaked in 

PBS for ~1 h, and finally the NR was carefully removed to make a 

“retina-less eye-cup (RLEC)” (Figure 3). 
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4.2.2. RLEC culture 

The RLEC on the filter was transferred into a chamber, a cap of the 1.5 

ml sample-tube (Assist, Tokyo, Japan), containing 200 µl of a culture 

medium. After the chamber was closed with the sample-tube body, the tubes 

were was incubated at 25 °C. The culture was transferred into another 

chamber containing a fresh medium every 5 days. The newt MEM composed 

of 80 % L-15 (Invitrogen, Carisbad, CA, USA) diluted with distilled water 

(DW), 7.5 µg/ml heparin (heparin, sodium salt; 081-00136, Wako, Osaka, 

Japan) and 5 µg/ml BrdU (Sigma, St. Louis, MO, USA) was used as a 

standard culture medium. 

In some experiments, the RLEC was cut into halves along a longitudinal 

axis through the optic disk with a razor blade immediately before culture 

(Figure 6A). In other experiments, a piece of the epithelium was removed 

from a central region of the RPE in the RLEC before culture as follows: the 

tip of a micropipette (0.2-10 µl, outer diameter: ~800 µm; BIO-BIK No. 1088, 

INA-OPTIKA, Osaka, Japan) was carefully put on the apical surface of the 

RPE under a stereomicroscope, applied with a small negative pressure, and 

then lifted up together with a piece of the epithelium attached (Figure 16A). 

To investigate the participation of cell-to-ECM and cell to cell contact in 

the cell-cycle entry, RLECs were incubated in either 0.1% (w/v) elastase 

solution at 25 °C for 1 h or 10 mM EGTA solution at 25 °C for 1.5 h, rinsed 

twice (10 and 35 min) in 80% L-15, and then cultured in the basal medium. 

The elastase solution was prepared by diluting 1% stock [Elastase – high 

purity, porcine, EC134; Elastin Products Co., Owensville, MO, USA; stored 
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in 10 mM Tris-HCl (pH = 8.4) at 4 °C and used at room temperature (pH = 

7.8)] in 80% L-15 and sterilized through a syringe filter (DISMIC-25cs, 

cellulose acetate, 0.2 µm pore size; Toyo Roshi Kaisha, Ltd., Tokyo, Japan) 

right before use. The EGTA solution contains 115 mM NaCl, 3.7 mM KCl, 10 

mM EGTA, 18 mM D-glucose, 10 mM HEPES, and 0.001% phenol red (pH 

was adjusted to 7.5 with 0.3 N NaOH). For mock control of each treatment, 

80% L-15 containing 1 mM Tris-HCl, or a newt saline [115 mM NaCl, 3.7 

mM KCl, 3 mM CaCl2, 1 mM MgCl2, 18 mM D-glucose, 10 mM HEPES, 

0.001% phenol red; pH = 7.5] was used. 

To investigate signaling pathways involved in the cell-cycle entry of RPE 

cells, the following reagents were tested: 50 ng/ml FGF2 (a synthetic C. 

pyrrhogaster FGF2; stock solution: 10 µg/ml in PBS, -20 °C; Susaki and 

Chiba, 2007), 5 µM U0126 [V1121, Promega, Madison, WI, USA; stock 

solution: 2 mM in DMSO (D2650, Sigma), -20 °C], 10 ng/ml Dkk-1 [1096-DK, 

R&D Systems, Minneapolis, MN, USA; stock solution: 10 µg/ml in PBS 

containing 0.1 % bovine serum albumin (BSA; A3294, Sigma), -20 °C], 500 

ng/ml Shh [Human Sonic Hedgehog (C24II), amino terminal peptide, 

1845-SH, R&D systems; stock solution: 20 µg/ml in PBS containing 0.1 % 

BSA, -20 °C], 40 µM KAAD (KAAD-Cyclopamine, K171000, Toronto 

Research Chemicals, North York, ON, Canada; stock solution: 10 mM in 

ethanol, -80 °C), 5 U/ml thrombin (a bovine thrombin, 605157, EMD 

Chemicals, Gibbstown, NJ, USA; stock solution: 500 U/ml in PBS, -20 °C), 20 

µM PPACK (520222, Calbiochem, Darmstadt, Germany; stock solution: 9.54 

mM in 5 % acetic acid solution, 4 °C; pH was adjusted to 7.4 with 2N NaOH 
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before administration) and 1 % fetal bovine serum (FBS; 26140-079, Gibco, 

Carisbad, CA, USA). These reagents were added to the culture medium from 

the beginning of culture except for U0126, KAAD and PPACK which were 

administered from the time at which the eye-cup is soaked in PBS. For mock 

control of each drug, only the solution to store the drug was administered at 

the corresponding concentration, pH and timing. 

 

4.2.3. Intraocular RPE transplantation 

RLECs were prepared as described above. For transplant, an 

RPE-choroid tissue was separated from the RLEC with a fine needle and 

kept in PBS. Adult newts were anesthetized with 0.1 % FA-100 

(4-allyl-2-methoexyphenol; Tanabe, Japan) in the dark for 2 h and then 

placed under a binocular microscope. The dorsal half of the left eye was cut 

open along the corneal-scleral junction, and the NR together with the lens 

was carefully removed by a fine needle and forceps (retinectomy, Figure 3). 

During this operation, the vitreous chamber was gently rinsed with sterile 

newt saline solution (115 mM NaCl, 3.7 mM KCl, 3 mM CaCl2, 1 mM MgCl2, 

18 mM D-glucose, 5 mM HEPES, pH=7.5 adjusted with 0.3 N NaOH). 

Enucleated RPE-choroid tissue was put into the eye by spatula and fine 

needle. 

After the operation, the eye flap, consisting of the iris and cornea, was 

carefully placed back in its original position. The operated animals were 

maintained in moist containers and allowed to recover at 22 °C (the 

day-night cycle was 12 h: 12 h). They were sacrificed on selected 
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post-operative (po) days under anesthesia. 

Eyeballs of selected days po were fixed in 2 % paraformaldehyde (PFA)/ 

0.2 % picric acid in phosphate-buffered saline (PBS, pH=7.5) for 6 h at 4 °C, 

washed thoroughly in PBS overnight at 4 °C, then cryosectioned transversely 

at 20 µm thickness. The samples were immersed into 1/50000 DAPI 

(Molecular prove,) in PBS for 3 h, then rinsed twice in PBS (5 min each). 

 

4.3. Counting the cells entering S-phase of cell-cycle 

RLEC cultures were fixed in 4 % PFA in PBS for 15 h at 4 °C, and washed 

thoroughly (PBS, 15 min → 0.5 % Triton X-100 in PBS, 15 min → PBS, 15 

min). They were incubated in 0.3 % H2O2 diluted with PBS for 20 min, rinsed 

twice in PBS (5 min each), and then incubated in 2 N HCl for 2 h. After 

washed thoroughly, they were incubated in a blocking solution [3% goat 

normal serum (S-1000, Vector, Burlingame, CA, USA)/ 0.5% TritonX-100 in 

PBS] containing Avidin D (1:50; Avidin/Biotin blocking kit, SP-2001, Vector) 

for 2 h. After rinsed twice in PBS, they were incubated in a mouse anti-BrdU 

antibody (1:400; B2531-2ML, Sigma) diluted with the blocking solution 

containing Biotin (1:50; Avidin/Biotin blocking kit) for 15 h at 4 °C. After 

washed thoroughly, they were incubated in a biotinylated goat anti-mouse 

IgG antibody (1:400; BA-9200, Vector) diluted with the blocking solution for 4 

h. After rinsed twice in PBS, they were incubated in a mixture of Avidin and 

Biotin Complex (Vectastain ABC Elite kit, PK-6100, Vector) for 2 h. After 

washed thoroughly, they were incubated in a DAB solution (DAB substrate 

kit, SK-4100, Vector) for 3 min. Finally the reaction was stopped by washing 
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them in DW for 15 min. 

A total RPE-cell number in a RLEC culture was counted as follows: the 

culture was re-fixed in 4 % PFA in PBS for 20 min and rinsed with DW; the 

RPE-choroid tissue was separated from the sclera by fine forceps and pins 

under a stereomicroscope, and transferred onto a slide glass; the tissue was 

immersed into 90 % glycerol in PBS and mounted under a cover slip; the 

preparation was put on the stage of a fluorescence microscope (BX50; 

Olympus, Tokyo, Japan) and viewed through a filter set (excitation: 460-495 

nm, emission: 510-550 nm; U-MWIBA/GFP; Olympus); RPE cells identified 

by their characteristic morphology appeared on a green autofluorescence of 

the choroid (see Figure 4B) were counted. 

BrdU+ nuclei in the RPE were counted as follows: the cover slip mounted 

on the RPE-choroid tissue was removed, and the tissue was transferred into 

DW and rinsed well, incubated in 15 % H2O2/ 1.5 % sodium azide (197-11091, 

Wako) in PBS for overnight to bleach their melanin pigments, and rinsed 

twice in DW; the tissue was transferred into 90 % glycerol in PBS on a slide 

glass and mounted under a cover slip again; the preparation was put on the 

stage of the microscope and the number of brown nuclei (BrdU+) were 

counted under a transmitted light condition (Figure 4C, D). 

 

4.4. Cell viability assay 

For MTT assay, RLEC cultures were incubated in 80% L-15 medium 

containing 500 µg/ml 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium 

(MTT; Nacalai tesque, Tokyo, Japan) at 25 °C for 3 h, transferred into a 
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sample tube containing 200 µl DMSO, and sonicated for 3 min. The 

supernatant containing formazan was collected by centrifugation at 12000 

rpm for 5 min, and examined for its absorbance at 570 nm (A570) by a 

spectrophotometer (D640; Beckman coulter, Brea, CA, USA). TUNEL assay 

to label apoptotic cells was carried out using Neuro TACS II kit (4823-30-K; 

Trevigen, Gaithersburg, MD, USA) according to the manufacturer’s 

instructions. 

For TUNEL assay, RLEC cultures were fixed in 4 % PFA in PBS for 15 h 

at 4 °C, and washed thoroughly (PBS, 15 min → 0.5 % Triton X-100 in PBS, 

15 min → PBS, 15 min). They were incubated in Neuropore solution 

(NeuroTACS II kit, 4823-30-K, TREVIGEN, Gaithersburg, MD, USA) for 30 

min, rinsed twice in PBS (10 min each), and then incubated in 3 % H2O2 

diluted with methanol for 5 min. After rinsing in PBS (5 min), they were 

incubated with TdT labeling buffer (NeuroTACS II kit) for 5 min, TdT 

reaction buffer (NeuroTACS II kit) for 1 h and TdT stop buffer (NeuroTACS 

II kit) for 5 min. After rinsing twice in PBS, the RLECs was incubated in 2 % 

Strep-HRP (NeuroTACS II kit) diluted with PBS for 10 min. After rinsing 

twice in PBS, they were incubated in 0.03 % H2O2, 0.5 % DAB (NeuroTACS 

II kit), 0.1 % DAB enhancer (NeuroTACS II kit) diluted with PBS for 7 min. 

Finally, the reaction was stopped by washing them in DW four times (10 min 

each). 

The total cell number in a RLEC and apoptotic cell number in RPE were 

counted as same way as BrdU labeling (see Materials and methods 4.3.). 
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4.5. Polymerase chain reaction (PCR) analysis 

Template cDNA pools were constructed from six RLECs collected on 

selected days po and six NR as described previously (Susaki and Chiba, 

2007). One µl of template cDNA was used for 50 µl PCR solution. KOD Dash 

(LDP-101, Toyobo, Osaka, Japan) was used as the PCR enzyme. For Wnt2b, 

a primer set (sense, 5’- cacagccatacaagtgac-3’; antisense, 

5’-cgactgtctcctcgcagtc-3’) was designed to amplify a 314bp cDNA fragment. 

For Wnt5a, a primer set (sense, 5’-ccagaaagggtcctacgagagc-3’; antisense, 

5’-cagcttcccccggctgttcagc-3’) was designed to amplify a 235bp cDNA fragment. 

These primers were designed according to Hayashi et al., (2006). 

 

4.6. Data analysis 

Bright-light and fluorescence images of tissues were acquired using a 

personal computer and a color CCD camera (C4742-95 ORCA-ER system, 

Hamamatsu Photonics, Japan). Figures were prepared using Photoshop 

Extended CS5. Image, brightness, contrast, and sharpness were adjusted. 

Statistical data in the text were presented as the mean ± SEM (n: the 

number of RLECs examined) from more than two independent experiments 

(N). Non-parametric tests were carried out to evaluate the statistical 

significance of the data. 
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5. Results 
 

5.1. Development of in vitro retinectomy and RLEC culture 

 
5.1.1. Properties of RPE cells under RLEC culture conditions 

In adult newt eyes, RPE cells entered the cell-cycle in 10 days when NR 

was surgically removed. I first examined whether the RPE cells become 

mitotically active under RLEC culture conditions (Figure 4). RLECs were 

prepared in PBS, as illustrated in Figure 4A, and then cultured in newt 

MEM (80% L-15 medium containing 7.5 µg/ml heparin and 5 µg/ml BrdU). 

Under this culture condition, the RPE appeared to maintain its original 

characteristics for 10 days; RPE cells retained their melanin pigment, and 

their hexagonal morphology was almost unchanged (Figure 4B). However, 

some indications of dedifferentiation appeared; microvilli on the apical 

surface of the RPE were not obvious, and most RPE cells apparently had an 

enlarged nucleus, and a small population of the RPE cells expressed a 

pan-retinal neuronal marker, acetylated tubulin (see Susaki and Chiba, 

2007). During this 10-day culture, BrdU-positive (BrdU+) cells were 

observed in the RPE when BrdU-incorporated nuclei were immunostained 

and visualized by bleaching of the melanin pigments. Interestingly, most 

BrdU+ cells were located along the peripheral margin of the RPE sheet 

(Figure 4C, D). When the ratio of the BrdU+ cells was calculated in a 100-µm 

region along the peripheral margin (defined as ‘Edge’), the value was 

significantly higher than that in the rest of the RPE sheet (defined as 
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‘Center’) (25.0 ± 2.8% in the edge, 5.6 ± 0.9% in the center, and 10.2 ± 1.2% in 

the whole area; Sheffe’s test following the Friedman test, p < 0.01; n = 49, 

Figure 5). Mitosis was observed only rarely in each region: at the edge of 18 

(36.7%) RPE sheets, 2.4 ± 0.4% BrdU+ cells and in the center of 9 (18.4%) 

RPE sheets, 2.4 ± 0.5 % BrdU+ cells. These results indicate that a population 

of RPE cells, mostly located in the edge, enters the S phase of the cell-cycle, 

but hardly proceeds into the M phase in 10 days, when cultured in the RLEC. 

 

5.1.2. Wound-edge RPE cells enter the S phase of the cell-cycle under the 

RLEC culture condition 

The distribution pattern of BrdU+ cells raises the question of whether 

there is a difference of cell properties between the peripheral and the central 

RPE or whether the cell-cycle entry is related to the wound edge of the 

RPE/RLEC. Therefore, I cut the RLEC longitudinally across the posterior 

pole into halves and cultured the halves separately for 10 days (Figure 6). In 

every piece of the RPE sheet after 10 days in culture, the BrdU+ cells 

appeared along the newly formed longitudinal margins (Figure 6B, C). These 

results indicate that cell-cycle entry is related to the wound-edge of the 

RPE/RLEC. 

In contrast, the ratio of cells entering the cell-cycle inside the tissue was 

low, although no cell death was observed on performing the TUNEL assay (n 

= 2; data not shown). The number of RPE cells in the RLEC at 10 days in 

culture (1894 ± 114, n = 49) was not significantly different from that (1804 ± 

131, n = 10) in the intact eye-cup. In addition, to examine whether the 
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cultured RPE cells maintained their regenerative ability, I transplanted an 

RPE-choroid tissue enucleated from a 10-day-cultured RLEC into the 

retinectomized eye of a living animal (see method) and found that an NR was 

regenerated from the transplanted tissue on the 40th day after the transplant 

(Figure 7). Thus, cell death or degeneration was unlikely to be the cause of 

the low ratio of cell-cycle entry inside the tissue. 

These observations provided insight that a factor guiding RPE cells into 

the cell-cycle exists near the wound, and that the lack of this factor or the 

presence of a suppression mechanism is responsible for the low ratio of 

cell-cycle entry in RPE cells located at the center of the tissue. Therefore, in a 

subsequent study, I explored for these factors by using an in vitro 

retinectomy and a RLEC culture system. 

 
5.2. Exploration of the factors that lead RPE cells into the cell-cycle 
 

5.2.1. Heparin promotes the cell-cycle entry of RPE cells 
For the RLEC culture shown above, newt MEM was used because this 

medium had been used for serum-free culture of newt isolated RPE cells in a 

previous study (Susaki and Chiba, 2007). However, this medium contained 
heparin, a member of the glycosaminoglycan family. In a previous study that 
aimed at examining the effects of exogenously administered growth factors 

such as FGF2 on RPE cells in vitro (Susaki and Chiba, 2007), heparin was 
added to the basal medium (80% L-15) as a supplement because it is known 
to bind various soluble factors, including FGF2 and support their effect on 

receptors (Cumberledge and Reichsman, 1997; Waksman and Herr, 1998; 
Tumova et al., 2000; Zhang et al., 2007) in addition to protecting the factors 
against degradation (Gospodarowicz and Chen, 1896; Saksela et al., 1988; 
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Tumova et al., 2000). Therefore, I hypothesized that heparin enhances the 
effect of endogenous factors released from an RLEC wound. 

To examine this possibility, I compared the results obtained in newt 

MEM containing different concentrations of heparin (0.75, 7.5, and 75 μg/ml) 

with those in the basal medium (i.e., heparin-free). As expected, the ratio of 

the BrdU+ cells in the whole RLEC in the 7.5 μg/ml heparin condition (i.e., 

the standard newt MEM) was significantly higher than that in the basal 

medium (i.e., heparin-free) (10.2 ± 1.2 % in standard newt MEM, n = 49; 6.7 ± 

1.4 % in the heparin-free medium, n = 13; Mann-Whitney U-test, p < 0.01, 

Figure 8) or that in the 0.75 mg/ml heparin condition (6.4 ± 1.2, n = 13; 

Mann-Whitney U-test, p < 0.05, Figure 8). However, it should be noted that a 

10x higher concentration of heparin (75 μg/ml) did not further increase the 

ratio of BrdU+ cells (6.4 ± 1.2 %, n = 13, Figure 8). Next, I examined whether 

heparin influences the kinetics of the cell-cycle (Figure 9). At 5 DIV, in the 

heparin-free medium, only 1 BrdU+ cell was recognized in the edge of one of 

the total 2 RLECs examined (0.08% in the edge, 0% in the center, and 0.02% 

in the whole), whereas in the heparin-containing medium, a larger number 

(range: 5 – 62, n = 3) of cells became BrdU+ (2.8 ± 1.3% in the edge, 0.7 ± 

0.4% in the center, and 1.2 ± 0.5% in the whole), suggesting that this 

concentration of heparin may facilitate the cell-cycle entry of the RPE cells. 

Consistently, by 10 DIV, the ratio of BrdU+ cells in the RPE under the 

heparin condition obviously increased to a significantly higher level than 

that in the heparin-free condition, regardless of the location (in the edge, 

25.0 ± 2.8% in standard newt MEM, n = 49, 19.4 ± 3.2% in the heparin-free 
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medium, n = 39; Jonckheere-Terpstra test, p < 0.05; in the center, 5.6 ± 0.9% 

at the standard newt MEM, n = 49; 3.3 ± 1.2% at heparin-free, n = 39; 

Mann-Whitney U-test, p < 0.05, Figure 9). MTT and TUNEL assays were 

performed to evaluate cell viability, and the results were not different in the 

case of the absence and presence of heparin (data not shown). 
 
5.2.2. The heparin-susceptible factors FGF2, Wnt, and Shh do not trigger 

cell-cycle entry of RPE cells 
Subsequently, I examined signaling pathways whose activity can be 

modulated by heparin. Initially, I tested FGF2, whose actions in vitro are 

supported by heparin. FGF2 is a candidate trigger factor for the 
transdifferentiation of the embryonic/larval RPE into the NR (Nguyen and 
Arnheiter, 2000). In addition, in the adult newt, this factor promotes neural 

transdifferentiation with AT expression in the RPE cells in vitro (Susaki and 
Chiba, 2007). 

I also analyzed Wnt and Shh because these factors are known to be 

heparin-binding proteins involved in the regeneration of various tissues 
(Cumberledge and Reichsman, 1997; Zhang et al., 2007). 
 

5.2.2.1. FGF2 

FGF2 was administered to RPE cells in the RLEC from the beginning of 

the culture at a concentration of 50 ng/ml. In the control culture with newt 

MEM (‘Heparin’ in Figure 10), the RPE cells mostly started entering the S 

phase of the cell-cycle after more than 5 days of beg. There was no significant 

difference between the ratio of BrdU+ cells in presence of FGF2 (‘Heparin + 

FGF2’ in Figure 10) and that of the control at both 5 DIV (in the edge, 0.1 ± 

0.1% with heparin, n = 49, 0.2 ± 0.1% with heparin + FGF2, n = 42; in the 
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center, 0% with heparin, n = 49, 0% with heparin + FGF2, n = 42; in the 

whole, 0.02 ± 0.01 % with heparin, n = 49, 0.05 ± 0.3% with heparin + FGF2, 

n = 42, Figure 10) and 10 DIV (in the edge, 25.0 ± 2.8% with heparin, n = 49, 

24.2 ± 3.2% with heparin + FGF2, n = 42; in the center, 5.6 ± 0.9% with 

heparin, n = 49, 6.0 ± 1.7% with heparin + FGF2, n = 42; in the whole, 0.02 ± 

10.2 ± 1.2% with heparin, n = 49, 9.9 ± 1.8% with heparin + FGF2, n = 42, 

Figure 10). FGF2 did not affect either the kinetics of the cell-cycle or the 

distribution pattern and ratio of the BrdU+ cells in the RPE. To confirm this 

finding, I examined the effects of an FGF receptor–specific tyrosine kinase 

inhibitor, SU5402, on the cell-cycle entry of the RPE cells: 25 μM SU5402 

dissolved in 0.25% DMSO was administered to RPE cells in the RLEC from 

the beginning of culture. As expected, compared with the solvent only (mock), 

SU5402 did not affect the distribution pattern and ratio of the BrdU+ cells 

(in the edge, 27.5 ± 6.8% in the mock condition, n = 21, 28.3 ± 4.5% with 

SU5402, n = 15; in the center, 5.0 ± 1.4% in the mock condition, n = 21, 7.4 ± 

1.7% with SH5402, n = 15; in the whole, 11.1 ± 2.8% in the mock condition, n 

= 21, 11.7 ± 2.0% with SU5402, n = 15, Figure 11). 
 
5.2.2.2 Wnt 

I evaluated the secreted protein Dickkopf1 (Dkk-1), which can inhibit 
Wnt signaling by blocking the interactions of Wnt with the transmembrane 
co-receptors Frizzled and low-density lipoprotein receptor-related protein 

(Klaus and Birchmeier, 2008). When RLECs were cultured in newt MEM 
containing 10 ng/ml Dkk-1 for 10 days, the ratio of the BrdU+ cells increased 
only in the edge (in the edge, 22.2 ± 3.6% with heparin, n = 15, 33.6 ± 5.4% 

with heparin + Dkk-1, n = 15; Jonckheere-Terpstra test, p < 0.05; in the 
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center, 7.4 ± 3.9% with heparin, n = 15, 6.7 ± 2.5% with heparin + Dkk-1, n = 
15; in the whole, 11.3 ± 3.0% with heparin, n = 15, 13.7 ± 2.6% with heparin + 

Dkk-1, n = 15, Figure 12A), assuming that endogenous Wnt may exert an 
inhibitory effect at the edge. I further examined the expression of Wnt 
ligands in the eye-cup tissue by performing RT-PCR. Here, I tested Wnt2b 

and Wnt5a and found that both of them are expressed in the NR, although 
no positive signal was detected in the RLECs (Figure 12B). Thus, Wnt 
signaling did not trigger or promote the cell-cycle entry of the RPE cells. 

 
5.2.2.3. Shh 

I tested KAAD, which blocks Shh signaling by inhibiting the 

G-protein-coupled receptor Smoothened (Smo), which sends a signal when 
Shh binds the receptor Patched (Ptch) and liberates Smo from repression by 
Ptch (Ng and Curran, 2011). RLECs were cultured in newt MEM containing 

40 µM KAAD dissolved in 0.4% EtOH for 10 days. Unexpectedly, the ratio of 
the BrdU+ cells did not change in any region of the RPE (in the edge, 24.3 ± 
10.2% with heparin, n = 9, 14.3 ± 2.6% with heparin + KAAD, n = 11; in the 

center, 3.0 ± 0.7% with heparin, n = 9, 4.9 ± 1.6% in KAAD, n = 11; in the 
whole, 6.6 ± 1.1 with heparin, n = 9, 7.9 ± 1.5% with heparin + KAAD, n = 11, 
Figure 13A). Thus, Shh signaling was also not involved in the 

heparin-promoted cell-cycle entry of the RPE cells. 
Next I examined the effect of Shh. RLECs were cultured in newt MEM 

(with heparin) containing 0.5 µg/ml Shh for 10 days. In this condition, Shh 
did not affect the cell-cycle entry of the RPE cells (in the edge, 25.0 ± 2.8% 

with heparin, n = 49, 31.7 ± 4.4% with Shh, n = 23; in the center, 5.6 ± 0.9% 
with heparin, n = 49, 3.7 ± 1.4% with Shh, n = 23; in the whole, 10.2 ± 1.2% 
with heparin, n = 49, 8.5 ± 1.6% with Shh, n = 23, Figure 13B). However, 

because heparin is also known to perturb the interaction of Shh with Ptch by 
binding to Shh (Carrasco et al., 2005), I further examined this possibility. 
RLECs were cultured in the basal medium containing the same 
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concentration of Shh for 10 days. The ratio of BrdU+ cells only increased in 
the edge (in the edge, 19.4 ± 3.2% without Shh, n = 39, 35.8 ± 8.3% with Shh, 

n = 6; Jonckheere-Terpstra test, p < 0.05; in the center, 3.3 ± 1.2% with no 
Shh, n = 39, 3.8 ± 1.4% with Shh, n = 6; in the whole, 6.7 ± 1.4% with Shh, n = 
39, 11.5 ± 2.9% at Shh, n = 6, Figure 13C), suggesting that Shh may promote 

cell-cycle entry at the edge, but this effect is suppressed by heparin. However, 
because KAAD did affect the ratio of the BrdU+ cells even in the absence of 
heparin (in the edge, 4.9 ± 2.4% without KAAD, n = 6, 5.6 ± 1.7% at KAAD, n 

= 6; in the center, 2.2 ± 1.2% without KAAD, n = 6, 1.4 ± 0.6% with KAAD, n 
= 6; in the whole, 2.7 ± 1.0% without KAAD, n = 6, 2.1 ± 0.7% at KAAD, n = 6, 
Figure 13D), Shh may not be a component of the endogenously activated 

signaling that allows RPE cells in the RLEC to enter the cell-cycle in the 
absence of heparin. 
 

5.2.3. The heparin-susceptible factor thrombin promotes cell-cycle entry of 
RPE cells depending on the presence of serum 

 

< An omission > 
 

 

5.3. Exploration of factors that suppress cell-cycle entry of RPE cells  
 
5.3.1. Removal of a small piece of the RPE induces cell-cycle entry into 
surrounding cells 

As shown above, the ratios of BrdU+ cells were very low in the center of 
the RLEC, even in the presence of both thrombin and FBS (Figure 15). This 
observation led to the next hypothesis that the RPE cells in the center of the 

RLEC may have limited susceptibility to mitotic factors. 

I suspected that cell-to-cell contact may be responsible for the inhibition 

of cell-cycle entry in the center because many studies have suggested that 
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contact inhibition suppresses the proliferation of cells (Matsumoto et al., 

1990; Tezel and Del Priore, 1996; Liu et al., 2010). Therefore, I removed a 

small piece of the epithelium from the center of the RPE in the RLEC by 

using a micropipette tip under a stereomicroscope (Figure 16A; see Materials 

and Methods) and cultured the RLEC. After 10 days in culture, BrdU+ nuclei 

were observed on Bruch’s membrane inside the area without epithelium and 

also around its circumference (Figure 16B-E). 

 

5.3.2. Digestion of Bruch’s membrane does not promote the cell-cycle entry of 

the RPE cells 

I examined the participation of cell-to-extracellular matrix (ECM) contact 

in the inhibition of the cell-cycle entry of the RPE cells; RLECs were 

incubated in a basal medium containing 0.1% elastase, a protease that 

efficiently digests Bruch’s membrane beneath the RPE (Susaki and Chiba, 

2007), for 1 h prior to 10 days of culture in the basal medium. This elastase 

treatment significantly reduced the ratio of BrdU+ cells in the edge (in the 

edge, 26.2 ± 4.8% in the mock condition, n = 13, 11.4 ± 3.0% with elastase, n = 

13; Jonckheere-Terpstra test, p < 0.05; in the center, 2.9 ± 0.7% in the mock 

condition, n = 14, 1.3 ± 0.4% with elastase, n = 14; in the whole, 8.1 ± 1.2% in 

the mock condition, n = 13, 3.8 ± 0.9% with elastase, Figure 17A), although 

the total cell number was not affected in any region of the RLEC (in the edge, 

247 ± 24 cells in the mock condition, n = 13, 251 ± 16 cells with elastase, n = 

13; in the center, 897 ± 91 cells in the mock condition, n = 14, 754 ± 72 cells 

with elastase, n = 13; in the whole, 1144 ± 109 cells in the mock condition, n = 
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13, 1006 ± 85 cells with elastase, Figure 17B). 

 

5.3.3. The calcium chelator EGTA promotes the cell-cycle entry of the RPE 

cells 

Next, I evaluated the effect of EGTA which weaken cell-to-cell contact. 

RLECs were incubated in 10 mM EGTA (see Materials and Methods) for 1.5 

h before the 10-day culturing in the basal medium. As expected, EGTA 

treatment increased the ratio of the BrdU+ cells in the whole and in the edge 

(in the edge, 32.5 ± 4.5% in the control, n = 9, 47.9 ± 6.1% with EGTA, n = 9; 

Sheffe’s test following the Friedman test, p < 0.01; in the center, 9.1 ± 3.1% in 

the control, n = 9, 14.1 ± 3.2% with EGTA, n = 9; in the whole, 13.5 ± 3.2% in 

the control, n = 9, 21.4 ± 3.5% with EGTA, n = 9; Jonckheere-Terpstra test, p 

< 0.05, Figure 18A). In the center, however, the increase was not statistically 

significant, possibly because the cells in the center were more susceptible to 

this treatment and many of them left the RLEC (in the edge, 312 ± 31 cells in 

the control, n = 9, 257 ± 30 cells with EGTA, n = 9; Jonckheere-Terpstra test, 

p < 0.05; in the center, 1355 ± 168 cells in the control, n = 9, 969 ± 119 cells 

with EGTA, n = 9; Sheffe’s test following the Friedman test, p < 0.01; in the 

whole, 1667 ± 193 cells in the control, n = 9, 1226 ± 148 cells with EGTA, n = 

9; Sheffe’s test following the Friedman test, p < 0.01, Figure 18B). 

These results support the hypothesis that cell-to-cell contact, rather than 

cell-to-ECM contact, is involved in the inhibition of the cell-cycle entry of 

RPE cells. 

 



 28 

6. Discussion 

 

Because of the similarity of the behavior of the RPE cells in the initial 

process of human PVR and that of newt retinal regeneration, identification 

of the mechanisms underlying these processes is important for both the 

development of retinal disease treatment and establishment of regenerative 

therapy. RPE cells detach from each other, migrate, and start to proliferate 

after retinal injury in both humans and newts (Kim and Arroyo, 2002; Pastor, 

1998; Chiba and Mitashov, 2007). To date, however, how the mature 

mitotically inactive RPE cells enter the cell-cycle has not really been 

investigated, mainly because of the lack of a suitable experimental system. 

Therefore, in the current study, I developed an in vitro retinectomy and 

RLEC culture system by using adult Cynops pyrrhogaster newts and 

investigated the factors and signals involved in the proliferation of 

mitotically quiescent RPE cells.  

 

6.1. Factors that lead RPE cells into the cell-cycle 

   Under the RLEC culture condition, the RPE cells entered the cell-cycle 

between 5 and 10 days in culture, similar to the in vivo situation, and these 

cells are localized around the wound edge of the epithelium. These results 

provided insight into the existence of factors that lead RPE cells from around 

the wound into the cell-cycle. 

In the current study, I found that heparin promotes the cell-cycle entry of 

the RPE cells in the RLEC. As heparin is known to interact with various 
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molecules (Bradley and Brown, 1990; DiGabriele et al., 1998; Kan et al., 

1993; Li et al., 1974; Tumova et al., 2000; Yanon et al., 1991; Zhang et al., 

2007), I suspected that it may indirectly affect cell-cycle entry through 

modifications of diffusible factors. Here, I examined FGF2, Wnt, Shh, and 

thrombin as candidate factors and provided evidence suggesting that 

endogenous thrombin in RLEC culture may participate in the 

heparin-promoted cell-cycle entry of the RPE cells. 

 

< An omission > 

 

My current results imply that Wnt and Shh may also participate in the 

cell-cycle entry of the RPE cells with inhibitory and excitatory effects, 

respectively. The Wnt function was not affected by heparin, but the effect of 

Shh was disturbed by heparin. In the current study, I was unable to fully 

investigate the participation of endogenous Wnts in the RLEC culture 

because of limited genetic information, although expression of Wnt2b and 

Wnt5a were observed in the NR. My current data with KAAD revealed that 

Shh is not an endogenous factor in RLEC culture. In fact, in the newt eye, 

Shh is present in the NR, whereas its receptors, Ptch1 and Ptch2, are found 

in the RPE (Takabatake et al., 1997). 

Heparin is closely related in structure to heparan sulfate, which is 

present as a proteoglycan [i.e., heparan sulfate proteoglycan (HSPG)] on the 

cell surface and in the ECM; therefore, heparin-binding factors can also bind 

to HSPG (Tumova et al., 2000). It has been suggested that HSPG in the ECM 
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accumulates factors released by surrounding or remote cells in addition to 

cells in the blood and regulates their functions (Bernfield et al., 1999; 

Tumova et al., 2000; Zhang et al., 2007). In the current study, digestion of 

Bruch’s membrane by elastase treatment resulted in a significant decrease 

in the ratio of BrdU+ cells, suggesting the importance of the ECM for the 

cell-cycle entry of the RPE cells. To determine the roles of heparin-binding 

factors, including Wnt, Shh, and thrombin, in the first cell-cycle entry of the 

RPE cells, the dynamics of HSPG and the location of these molecules in the 

RLEC (containing Bruch’s membrane) should also be addressed. 

 

6.2. Factors that suppress the cell-cycle entry of the RPE cells 

The RPE cells inside the epithelium (i.e., cells surrounded by neighboring 

cells) hardly enter the cell-cycle even in the presence of a mixture of 

thrombin and serum. In contrast, in isolated cell culture, the cell-cycle entry 

of RPE cells is promoted by the presence of FBS (Susaki and Chiba, 2007). 

Contact inhibition may explain this difference in the competency of the RPE 

cells. 

Contact inhibition underlies wound healing and tissue repair; when a 

portion of the tissue is missing after a traumatic injury, the cells 

surrounding the wound start to proliferate, and as they occupy the wound, 

cell growth is terminated by inhibitory signals through cell-to-cell contact 

(Jacinto et al., 2001; Lanosa and Colombo, 2008). Similar phenomena are 

observed in culture. For example, in chick embryos, when isolated RPE cells 

are cultured in a dish, they attach onto the bottom of the dish and start to 
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proliferate, and as the cells become confluent, they leave the cell-cycle and 

take on epithelial morphology while growing pigmented microvilli (Cahn and 

Cahn, 1966). The cell-to-cell contact in the RPE may suppress the 

competence of the cells to respond to mitotic factors by cell-cycle entry, 

allowing them to maintain a differentiated state. Thus, loss of cell-to-cell 

contact may be a requisite for cell-cycle entry of the RPE cells. My 

cell-removal experiments support this hypothesis. 

Under the current culture conditions, the RPE kept its epithelial 

morphology for 10 days. In contrast, in the eye of a living animal, within ~2 h 

after removal of the NR, the RPE cells started to detach from neighboring 

cells and changed their morphology into a spherical shape, leaving Bruch’s 

membrane as single cells. A similar process, known as the 

epithelial-mesenchymal transition (EMT), is also an important step in PVR 

(Grisanti and Guidry, 1995; Lee et al., 2001; Liu et al., 2010; Pratt et al., 

2008; Tamiya et al., 2010). Therefore, the loss of epithelial characteristics 

may be a key event that liberates RPE cells from contact inhibition, allowing 

them to enter the cell-cycle in both retinal regeneration and PVR. Here, I 

demonstrated that EGTA treatment, which is known to disrupt cadherin 

ligation by chelating calcium (Tamiya et al., 2010), obviously increased the 

cell-cycle entry of the RPE cells. In a future study, the mechanisms of contact 

inhibition and EMT in newt RPE cells in comparison with those in mammals 

need to be addressed. 
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6.3. Conclusions  

In the current study, I developed an in vitro retinectomy and RLEC 

culture system in newts. Using this system, I demonstrated that thrombin 

and other heparin-susceptible factors may be involved in the cell-cycle entry 

of the RPE cells. Furthermore, I demonstrated that cell-to-cell contact could 

suppress the cell-cycle entry of the RPE cells. Because there has been no 

suitable experimental system to observe the initial process of phenotype 

change in RPE cells following retinal injury, limited information is available 

regarding the underlying mechanisms. In vitro retinectomy and RLEC 

culture may be an effective option to investigate these mechanisms. 

Furthermore, the identification of factors that participate in the cell-cycle 

entry of the RPE cells is a new finding in the fields of retinal regeneration 

and traumatic retinal diseases. Because these factors may participate in the 

induction of retinal regeneration in newts, they have to be analyzed in 

greater depth. In humans, no comparative information is available; therefore, 

this mechanism should be investigated by constructing a parallel 

experimental system with newts. It is interesting to determine whether the 

mechanism of cell-cycle entry of the RPE cells is common between newts and 

humans.  
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9. Figures and Legends 
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Figure 1. Structure of newt eyeball. 
(A) A section of adult Cynops phrrhogaster newt eye. Top: dorsal side. Red, RPE65 
immunoreactivity; Green, proliferating cell nuclear antigen (PCNA) 
immunoreactivity; Blue, DAPI nuclear staining. The arrowheads indicate retinal 
stem/progenitor cells in the ciliary marginal zone (CMZ). (B) A magnified view of 
the peripheral retina (dorsal side). (C) A magnified view of a central part of the RPE. 
The arrows indicate nuclei of the RPE cells. Parenthesis indicates the thickness of 
the RPE including the microvilli. Note that PCNA signal is never observed in the 
RPE in either the central or peripheral retina, but in the CMZ. This figure was 
reproduced from original data in Chiba et al., 2006 with modifications. 
ON: optic nerve, ONL: outer nuclear layer, INL: inner nuclear layer, GCL: ganglion 
cell layer. 
Scale bars in (A); 400 μm (B); 200 μm (C); 40 μm. 
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Figure 2. The Retinal Pigment Epithelium (RPE). 
Schematic diagram showing the RPE. Modified from strauss 2005. 
NR: neural retina. 
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Figure 3. Outline of in vitro retinectomy and retinectomy. 
Schematic showing the procedures of in vitro retinectomy (A) – (D) and in vivo 
retinectomy (E) – (G). (A) Enucleated eyeball is put on the filter membrane conea 
side up and soaked in PBS. (B) Eyeball is cut along the equator (eye-cup). (C) After 
10 min incubation in PBS, (D) neural retina is removed. This tissue, posterior half 
of the eyeball, was termed retina-less eye-cup (RLEC). (E) Dorsal half of the eyeball 
was cut open along the corneal-scleral junction. (F) The neural retina and the lens 
were carefully removed under infusion with saline solution. (G) The eye flap 
consisting of the iris and the cornea was placed back onto its original position. 
 
 
 
 



 49 

 
 
 
 
 

 
 
Figure 4. Morphology of RPE cells in a RLEC cultured in newt MEM. 
(A) A RLEC before culture. The arrow indicates a hole where the optic nerve exits. 
The amputated nerve remained. (B) Morphology of RPE cells after 10 days in vitro 
(DIV). Green, autofluorescence of the choroid. (C) (D) Distribution of BrdU+ RPE 
cells at 10 DIV. The arrows indicate non-specific staining of the remaining optic 
nerve (C) and BrdU+ cells (D). A region enclosed by the square is enlarged in panel 
(D). 
Scale bars in (B): 100 μm, (C): 500 μm, (D): 100 μm. 
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Figure 5. Wound-edge RPE cells enter the cell-cycle under RLEC condition. 
The ratio of BrdU+ RPE cells at 10 DIV. In a whole RPE sheet, 10.2 ± 1.2% (n = 49) 
of cells were BrdU+ (Whole). When the sheet was partitioned into a region 100 μm 
wide along the peripheral margin (Edge) and the rest (Center), the value of the 
Edge (25.0 ± 2.8%) was significantly higher than that (5.6 ± 0.9%) of the Center. 
**p < 0.01, Sheffe’s test following the Friedman test 
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Figure 6. Wound edge–dependent cell-cycle entry of retinal pigment epithelium 
(RPE) cells. 
(A) Schematic showing a procedure to make a half retina-less eye-cup (1/2 RLEC) 
which has a wound along a longitudinal axis in addition to one along the equator 
(see Methods). (B) Distribution pattern of BrdU+ nuclei in the 1/2 RLEC cultured in 
the newt MEM for 10 days. Dotted line shows the wound made along the 
longitudinal axis of the RLEC. The right-hand margin of the RPE is enlarged in 
panel (C). The arrowheads indicate BrdU+ nuclei were located around the wound 
edge along the longitudinal axis. 
Scale bars in (B): 200 μm, (C): 130 μm. 
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Figure 7. Regenerate neural retina from transplanted RPE-choroid tissue. 
A section of newt eyeball within transplanted RPE-choroid (40 days po) under 
bright-light (A) and fluorescence (B), (C). RPE-choroid tissue was enucleated from 
RLEC which had been cultured for 10 days and transplanted into retinectomized 
eyeball. Blue, DAPI nuclear staining. The arrowheads indicate the original RPE 
(red) and transplanted RPE (yellow). A region enclosed by the square is enlarged in 
panel (C). The dotted line is along with regenerate NR from transplanted RPE. The 
hooked red bar indicates thickness of regenerate NR. 
Scale bars in (A) and (B): 500 μm, (C): 100μm 
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Figure 8. Dose dependence effects of heparin on the cell-cycle entry of RPE cells. 
The ratio of BrdU+ cells in RPE was measured in RLEC cultured for 10 days in 80% 
L-15 (+BrdU) medium containing different concentrations (0, 0.75, 7.5 and 75 
μg/ml) of heparin ( n = 39 at 0 μg/ml, n = 11 at 0.75 μg/ml, n = 49 at 7.5 μg/ml, n = 13 
at 75 μg/ml). For definitions of Edge, Center, and Whole, see Figure 7. 
*p < 0.05 and **p < 0.01; for Mann–Whitney’s U-test, black asterisks; for the 
Jonckheere–Terpstra test, white asterisks. 
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Figure 9. Effects of heparin on kinetic changes of the cell-cycle entry of RPE cells. 
Changes in the ratio of BrdU+ cells in RPE during culture of the RLEC in either the 
basal medium (heparin-free, n = 2 at 5 DIV, n = 39 at 10 DIV) or the standard newt 
MEM (7.5 µg/ml heparin, n = 3 at 5 DIV, n = 49 at 10 DIV). For definitions of Edge, 
Center, and Whole, see Figure 7. 
*p < 0.05 and **p < 0.01; for Mann–Whitney’s U-test, black asterisks; for the 
Jonckheere–Terpstra test, white asterisks. 
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Figure 10. Participation of FGF2 in the cell-cycle entry of RPE cells. 
Changes in the ratio of BrdU+ cells in RPE during culture of the RLECs were 
examined in either newt MEM (heparin, n = 3 at 5 DIV, n = 49 at 10 DIV) or newt 
MEM to which 50 ng/ml FGF2 was added (heparin+ FGF2, n = 5 at 5 DIV, n = 42 at 
10 DIV). For definitions of Edge, Center, and Whole, see Figure 7. 
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Figure 11. Effects of an FGF receptor–specific tyrosine kinase inhibitor SU5402 on 
the cell-cycle entry of RPE cells. 
The ratio of BrdU+ cells in RPE was measured in the RLEC cultured for 10 days in 
either newt MEM containing 25 μM SU5402 and its solvent 0.25% DMSO (SU5402, 
n = 15), or newt MEM containing the solvent only (Mock, n = 21). For definitions of 
Edge, Center, and Whole, see Figure 7. 
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Figure 12. Participation of Wnt-mediated signaling pathways in the 
heparin-promoted cell-cycle entry of RPE cells. 
(A) Effect of Wnt signaling blocker Dkk-1. RLECs were cultured in either newt 
MEM (heparin, n = 15) or newt MEM to which 10 ng/ml Dkk-1 was added (heparin+ 
Dkk-1, n = 15). For definitions of Edge, Center, and Whole, see Figure 7. (B) 
Expression of Wnts in the eye-cup tissue. 
*p < 0.05, Jonckheere–Terpstra test. 
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Figure 13. Participation of Shh-mediated signaling pathways in the 
heparin-promoted cell-cycle entry of RPE cells. 
(A) Effects of a Shh signaling blocker KAAD. RLECs were cultured in newt MEM to 
which either 0.4% EtOH (heparin, n = 9) or 40 μM KAAD + 0.4% EtOH (heparin+ 
KAAD, n = 11) were added. (B) Effects of Shh. RLECs were cultured in either newt 
MEM (heparin, n = 49) or newt MEM to which 0.5 μg ⁄ ml Shh was added (heparin+ 
Shh, n = 23). (C) Effects of Shh in the absence of heparin. RLECs were cultured in 
basal medium to which either nothing (none, n = 39) or 0.5 μg ⁄ ml Shh was added 
(Shh, n = 6). 
 

(continued to next page) 
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(continued) 
 
 
 
(D) Effects of KAAD in the absence of heparin. RLECs were cultured in basal 
medium to which 0.4 % EtOH (None, n = 6) or 40 μM KAAD + 0.4% EtOH (KAAD, n 
= 6) were added. For definitions of Edge, Center, and Whole, see Figure 7. 
*p < 0.05, Jonckheere–Terpstra test 
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Figure 14. Participation of thrombin in the heparin-promoted cell-cycle entry of 
RPE cells. 
 
< Figure and legend are omitted > 
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Figure 15. Participation of fetal bovine serum (FBS) with thrombin on cell-cycle 
entry of RPE cells. 
 
< Figure and legend are omitted > 
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Figure 16. Effects of the removal of a small piece of the epithelium from the Center 
of the RPE. 
(A) Schematic showing the procedures of removal of a small piece of the epithelium 
from the Center of the RPE in the RLEC by a micropipette tip. Then the operated 
RLEC was cultured and BrdU+ nuclei in the RPE were visualized at 10 days in 
culture. 

(continued to next page) 
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(continued) 
 
 
 
(B) DAPI staining of nuclei. The area from which a piece of the epithelium had been 
removed was dark with a low density of nuclei when observed under a fluorescence 
microscope. (C) BrdU+ nuclei. (D) Merged image of (B) and (C). The area enclosed 
by a square is enlarged in panel (E). The arrowheads indicate sample BrdU+ nuclei. 
Scale bar in (A): 400 μm. 
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Figure 17. Participation of cell-to-extracellular-matrix (ECM) contact and in the 
cell-cycle entry of RPE cells. 
Effects of elastase, a protease that digests Bruch’s membrane efficiently, on the 
ratio of BrdU+ cells (A) and total cell number in the RPE (B). Retina-less eye-cups 
(RLECs) were incubated in either 80 % L-15 medium containing 0.1 % elastase/1 
mM Tris-HCl (Elastase, n = 13), or that containing 1 mM Tris-HCl only (Mock, n = 
13) for 1 h prior to the culture in the basal medium (see Methods). In these 
experiments, two eyeballs of the same animal were used for the test and control 
experiments. For definitions of Edge, Center and Whole, see Figure 7. 
*p < 0.05; Sheffe’s test following the Friedman test 
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Figure 18. Participation of cell-to-cell contact in the cell-cycle entry of RPE cells. 
Effects of EGTA, a calcium chelator that makes cell-to-cell contact looser, on the 
ratio of BrdU+ cells (A) and total cell number in the RPE (B). RLECs were 
incubated in either 10 mM EGTA solution (EGTA, n = 8) or a newt saline solution 
(Control, n = 8) for 1.5 h prior to the culture in the basal medium (see Methods). In 
these experiments, two eyeballs of the same animal were used for the test and 
control experiments. For definitions of Edge, Center and Whole, see Figure 7. 
*p < 0.05 and **p < 0.01; for the Sheffe’s test following the Friedman test, black 
asterisks; for the Jonckheere–Terpstra test, white asterisks. 
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Figure 19. Hypothesis of effect of thrombin. 
 
< Figure and legend are omitted > 
 
 


