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ABSTRACT. Let � be a complex number. We show that there is a �nite
subset F of the ring of the rational integers Z; such that F [�] = Z [�], if and
only if � is an algebraic number whose conjugates, over the �eld of the rationals,
are all of modulus one, or all of modulus greater than one. This completes the
answer to a question, on the numbers satisfying the height reducing property,
posed in [3].

1. Introduction

Following [1], we say that a complex number � satisfy the height reducing
property, in short HRP, if there is a �nite subset F of the ring of the rational
integers Z; such that each polynomial with coe¢ cients in Z; evaluated at �;

belongs to the family F [�] :=

8<:
nX
j=0

"j�
j j ("0; :::; "n) 2 Fn+1; n 2 N

9=; ; where
N is the set of non-negative rational integers. In this case, we have, by [3,
Theorem 1 (i)], that � is an algebraic number whose conjugates, over the �eld
of the rationals Q; are all of modulus one, or all of modulus greater than one
(such a number � is called an expanding number [2]). Theorem 1 (ii) of [3],
says also that � satis�es HRP, when it is a root of unity, or when it is an
expanding number. Hence, to obtain a characterization of numbers satisfying
HRP, it remains to consider the situation where the conjugates of the algebraic
number � belong to the unit circle, and are not roots of unity; this case has been
partially treated in [3, Theorem 2], when the greatest number of multiplicatively
independent conjugates of �; over Q; takes some optimal values.
Recall also, by [2, Theorem 1], that we may suppose that the set F; de�ned

above, is contained in the complex �eld C; without a¤ecting the de�nition of
the HRP; in other words, � satis�es HRP if and only if

9 F � C such that Z [�] = F [�] and Card(F ) <1: (1)
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Mathematics Subject Classi�cation (2010): 11R06, 12D10, 11R04
Key words and phrases: Height of polynomials, Special algebraic numbers,

Representations of algebraic numbers

1



By an algebraic approach, we obtain, in this note, that the converse of
Theorem 1 (i) of [3] is true, independently on the distribution, outside the open
unit disc, of the conjugates of � :

Theorem. Let � 2 C: Then, there is a �nite subset F of Z such that
F [�] = Z [�] ; if and only if � is an algebraic number whose conjugates, over
Q, are all of modulus one, or all of modulus greater than one.

The question to determine, for a number � satisfying the HRP, a correspond-
ing complex set F with minimal cardinality, has been also partially solved in
[2]. As mentioned in [3], the height reducing problem can be compared with
canonical number systems and �niteness property of beta-expansions, where the
set F has more speci�c shape (some related references may be found in [1, 2,
3, 5]). For example, a pair (�; F ) ; satisfying (1), is called a number (resp., a
canonical number) system of the ring Z [�] ; if 0 2 F and Card (F ) = jM�(0)j
(resp., if F = f0; 1; :::; jM�(0)j � 1g); where M� designates, throughout, the
minimal polynomial, over Q; of the algebraic number � (the coe¢ cients of M�

are supposed to be rational integers and their greatest common divisor is one).
Recall also that a result of Lagarias and Wang implies that an expanding integer
�; satis�es (1), with F = f0;�1; :::;�(jM�(0)j � 1)g [4].
To prove the relation (1), for some �xed pair (�; F ) ; it is, generally, shown

that there exists a positive constant c = c (�; F ) ; such that for each � 2 Z [�] ;
there is some " 2 F verifying

� � "
�

2 Z [�] and





��(� � "� )





 < c;
where k:k is the sup norm (for example) of the Q�vector space

K1 := Rr � Cs;

r (resp.; 2s) denotes the number of real (resp., of non-real) conjugates, over Q;
of the algebraic number �; and �1 is the standard Minkowski�s Q-linear map

�1 : Q (�)! K1;

which sends � to its conjugates, over Q; situated in fz 2 C j Im(z) � 0g (for
example): This allows us to obtain number systems, when � is an expanding
number, but not when j�j = 1 (see for instance [2, Section 2]). An alternative
solution to this problem is to add certain �nite completions, corresponding to
the divisors of the denominator of the fractional ideal (�); to enlarge the ring
K1 and the range of the corresponding embedding �1 : this is the key of
Lemma 3.1, which is the main result of this manuscript. This lemma is proved
in the last section, and we recall in the next one some related notions.

2. Some de�nitions and notations
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For each given prime p of the �eld K := Q (�) ; where � is a �xed algebraic
number, choose an absolute value j�jp in the following way. Let � 2 K be given.
If p j 1 (that is p is not �nite), then denote by �(p) the associated conjugate
of �; and set j�jp = j�(p)j; (resp., j�jp = j�(p)j2); when p is real (resp., is
non-real). For p being �nite, put j�jp = N(p)�vp(�); where N(�) is the norm
of a (fractional) ideal and vp(�) denotes the exponent of p in the prime ideal
decomposition of the principal ideal (�) : Write Kp for the completion of K w.
r. t. the absolute value j�jp and recall that this absolute value induces a metric
on Kp:
Let O be the ring of integers of K;

�O = a

b
(2)

with a; b coprime ideals in O;

S� = fp : p j 1 or p j bg ;

and de�ne

K� =
Y
p2S�

Kp = K1 �Kb ; with K1 =
Y
pj1

Kp and Kb =
Y
pjb

Kp :

Then, K1 = Rr � Cs; and the elements of Q (�) are embedded in K� �diago-
nally�by the canonical ring homomorphism

�� : Q (�)! K� ; � 7!
Y
p2S�

� ;

where K� is equipped with the product metric of the metrics induced by the
absolute values j�jp: Finally, notice that Q (�) acts multiplicatively on K� by
the relation

� � (zp)p2S� = (�zp)p2S� ;

where � 2 Q (�) :

3. Proof of the Theorem

To make clear the proof of the theorem let us �rst show three auxiliary
lemmas. The �rst one is the main tool in this proof.

Lemma 1. Let � be an algebraic number, with degree n; and without
conjugates, over Q; strictly inside the unit circle. Then, there is a set F � Z[�];
with cardinality at most 2n jM�(0)j ; and a constant c > 0 such that for each
� 2 Z [�] ; we can choose " 2 F; in a way that ��1(� � ") 2 Z [�] with����1(� � ")��

p
< maxfj�jp ; cg; (3)

for each p 2 S�:
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Proof. Let R be a complete set of coset representatives of the �nite ring
Z [�] =�Z [�] and let U be the collection of the 2n open orthants of K1 ' Rn;
where n = r + 2s: Since �1(�Z [�]) contains a lattice with rank n, of K1; for
each r 2 R and each U 2 U ; the set �Z [�] + r contains an element " = " (r; U)
with �1 (") 2 U: We de�ne the �nite set

F = f" (r; U) : r 2 R; U 2 Ug :

Now, �x � 2 Z[�] and pick " 2 F such that �1(") lies in the same closed
orthant as �1(�) and satis�es ��1(� � ") 2 Z[�]: It remains to prove that the
inequality (3) holds for each p 2 S�:
Assume �rst that p j b: Then, as j�jp > 1 holds by (2), we gain, setting

c";p = j"jp; that

j��1(� � ")jp < max fj�jp; j"jpg = max fj�jp; c";pg : (4)

Next, let p j 1 be real. Since �(p)"(p) � 0 by the choice of " and j�jp � 1 holds
by assumption, setting c";p = 2j"jp we have

j��1(� � ")jp � j� � "jp = j�(p) � "(p)j < max fj�jp; c";pg : (5)

Finally, let p j 1 be non-real and note that j�jp � 1 holds by assumption also
in this case. By the choice of ", the complex numbers �(p) and "(p) lie in the
same quadrant of C: As "(p) lies in the interior of this quadrant, there is � > 0
depending only on " and p such that j arg �(p) � arg "(p)j < �

2 � �. Using this
fact, by an easy geometric consideration we obtain

j��1(� � ")jp � j� � "jp = j�(p) � "(p)j2 < max fj�jp; c";pg (6)

for some c";p > 0 depending only on " and p. The inequality (3) now follows
from (4), (5) and (6) with c = max fc";p : " 2 F; p 2 S�g :

Lemma 2. ([6]) The ring �� (Z[�]) is a discrete subset of K�:

Proof. The result is a corollary of Lemmas 3.1 and 3.2 of [6], where it is
shown that �� (Z [�]) is a Delone set in K�:

Lemma 3. ([2]) If a pair (�; F ) satis�es the relation (1), then there is a
�nite subset F 0 of Z such that F 0 [�] = F [�] :

Proof. The result follows immediately, by [2, Theorem 1], where a upper
bound (depending only on � and F ) of Card(F 0); is given.

Proof of the theorem. The direct implication is a corollary of Theorem 1
in [2]. By iterating Lemma 1, we obtain the other implication, using Lemmas 2
and 3.
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