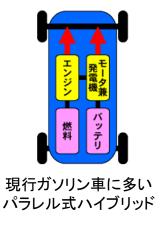
次世代自動車と水素エネルギーの活用

水素・燃料電池自動車の安全性に関する JARIの取組紹介

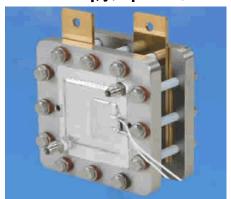
2015年1月25日(日)

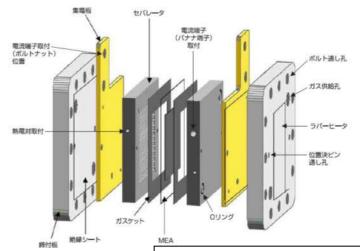
一般財団法人日本自動車研究所 FC·EV研究部 三石 洋之


水素 · 燃料電池自動車

洞爺湖サミットに集合した燃料電池自動車(2008年、水素内燃機関自動車を含む)

JHFCIホームページより




燃料電池自動車は電気自動車

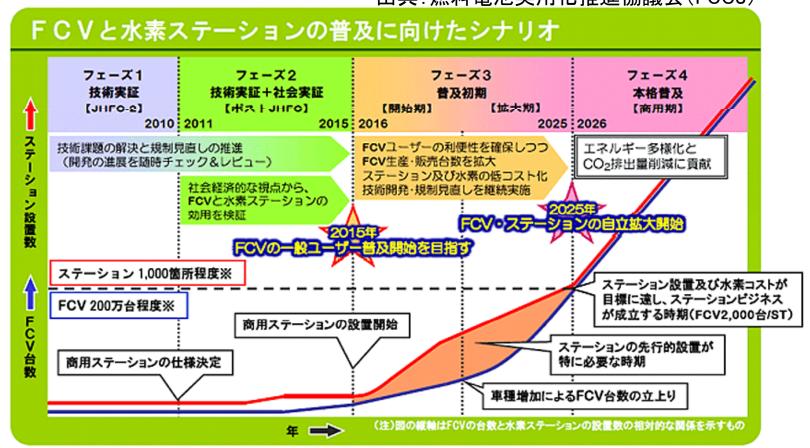
燃料電池とは?

JARI標準セル

燃料電池の種類

	固体高分子形 (PEFC)	りん酸形 (PAFC)	溶融炭酸塩形 (MCFC)	固体電解質形 (SOFC)		
原 料	都市ガス, LPG 等	都市ガス, LPG 等	都市ガス,LPG,石炭等	都市ガス, LPG 等		
作動気体	水素	水素	水素 水素, 一酸化炭素			
電解質	陽イオン交換膜	りん酸	炭酸リチウム 炭酸カリウム	安定化ジルコニア		
作動温度	常温~約90°C	約200°C	約650°C	約1000°C		
発電出力 発電効率 [LHV]	~50kW (35~40%)	~1000 kW (35~42%)	1~10万 kW (45~60%)	1~10万 kW (45~65%)		
開発状況	実用化	実用化	研究段階	研究段階		
用途と段階	家庭用、小型業務用、 自動車用、携帯用 導入普及段階	業務用、工業用 導入普及段階	工業用、分散電源用 実証段階 (1MWプラント開発)	工業用、分散電源用 試験研究段階 (数kWモジュール開発)		

日本ガス協会ホームページより


- ▶ 燃料電池は、水素と酸素を使用して発電する発電機
- 燃料電池自動車には固体高分子形燃料電池を使用

水素・燃料電池自動車の普及シナリオ

平成25 年6月14 日閣議決定:規制改革実施計画 「次世代自動車(燃料電池自動車など)の世界最速普及」

出典:燃料電池実用化推進協議会(FCCJ)

※前提条件:FCVユーザーのメリット(価格・利便性等)が確保されて、順調に普及が進んだ場合

水素供給インフラの先行整備

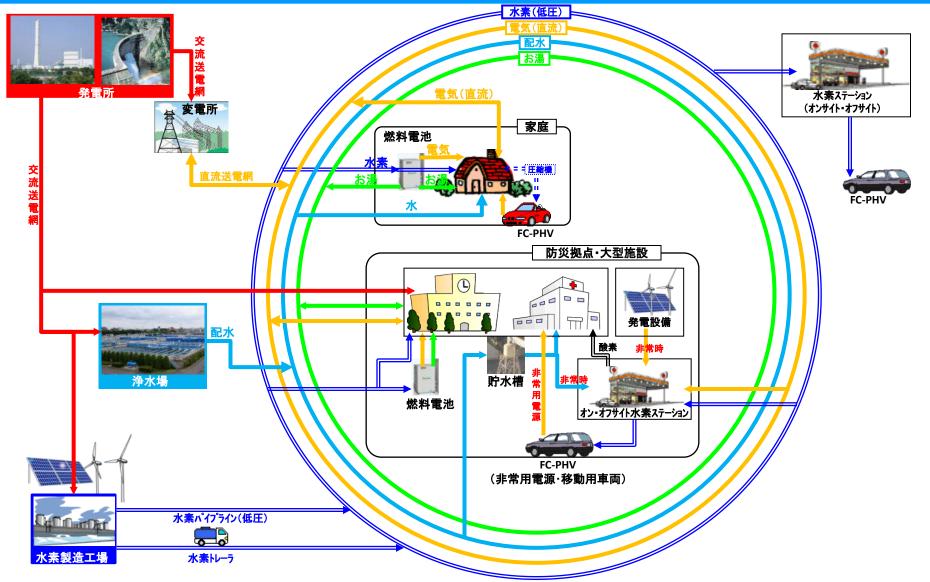
HySUT(水素供給・利用技術研究組合) 水素ステーション設置数:12ステーション

※ 導入以降、全国的なFCV導入拡大と水素供給インフラの整備に取組む

2015年度までに100箇所の水素ステーションを先行整備

(首都图:40箇所、中京地区:20箇所、関西地区:20箇所、九州地区:10箇所、都市間:10箇所程度)

(一社)次世代自動車振興センター補助金交付決定状況

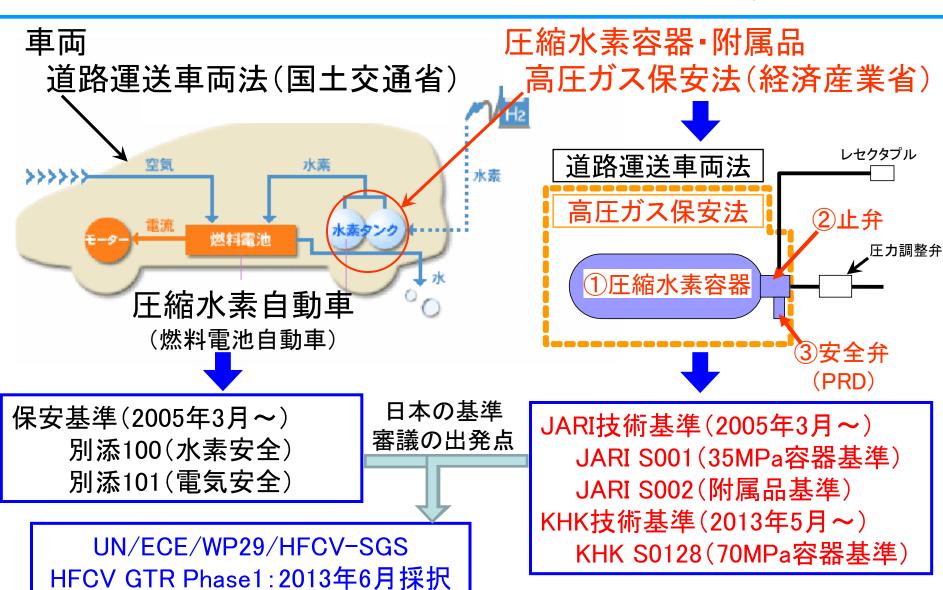

平成25年度:18ステーション

平成26年度: 24ステーション(H26.6.30 3次公募) 計42ステーション

水素を使用する低炭素・循環型社会

~災害にも強いまちづくり~

次世代自動車の安全に関するJARIの取り組み


(年度)

																<u>(年度)</u>
		1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
国 水素・燃料電池 自動車 リチウムイオン 素電池		WE-NET				事業 V基準型 ^{找容器基準}			水素社 FCVの 70MPa車	利便性	向上		国際	製造輸 ※基準調 に向けた	問和	水素利 用技術 ^(普及期)
ジェクト	リチウムイオン 蓄電池									単電	池・モジ	EAD事 ュール 価試験》	の標準	策定	〉ギー等	ネル 等共通 整備
基準策定スケジュール							*	FCV国	内規制	:		hase1 [!] EV	★ECI	: E R100	-02 ★ SS)審議	
委託試験•	水素·燃料電池 自動車														·	; ;
顾 ·研究	リチウムイオン 蓄電池															
Hy-SEF						★建設	開始	国家	プロジ:	ェクトで	の活	1	L	设備買 ▼委託	取 試験開	始

Hy-SEF: Hydrogen and Fuel Cell Vehicle Safety Evaluation Facility

水素・燃料電池自動車に関する規制

→GTR13

STCおよびHy-SEF

(Hy-SEF: <u>Hy</u>drogen and Fuel Cell Vehicle <u>Safety</u> <u>Evaluation</u> <u>Facility</u>)

Hy-SEF

高圧水素試験設備

液化水素試験設備

液圧試験設備

耐爆火災試験設備

~次世代自動車の安全に関する活動~

【水素安全】

自動車用水素容器の安全基準の確立 漏洩水素の拡散挙動の把握 水素の着火、燃焼特性の把握

【火災安全】

水素容器・車両の火災時の安全性確保 火災事故時の対応(消火、救援、避難・・・)

【衝突安全】

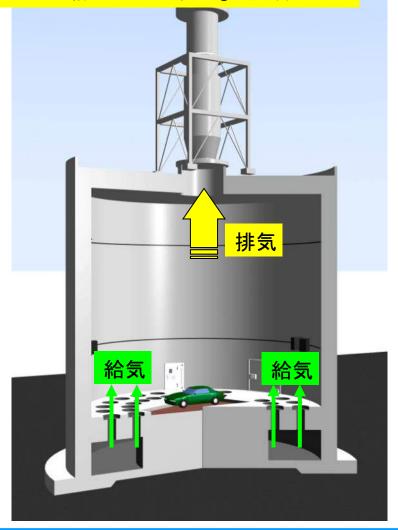
水素漏れ許容量の基準 容器・部品の耐衝撃性の確保

【電気安全】

リチウムイオン電池、感電保護、絶縁、冷却水の絶縁

耐爆火災試験設備

水素容器や電池の火炎暴露試験、車両の火災試験などを実施 内容積260L、充填圧力70MPaの水素容器が破裂しても安全な構造(TNT火薬50kgの耐爆設計)



形 状: 内径18m、高さ16m

壁面構造: 鉄筋コンクリート(厚さ1.2m)

内壁鉄板仕上げ

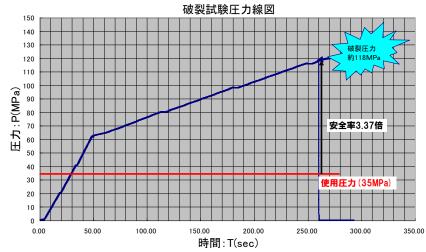
消音装置: -80dB



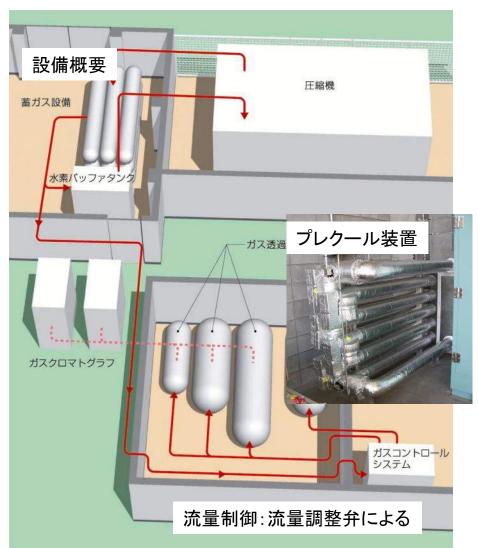
耐爆火災試験設備の活用

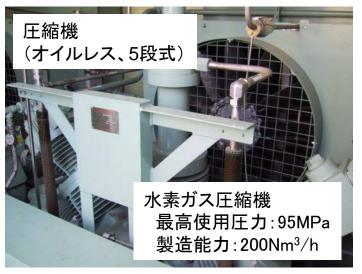
- 1. 車両火災時の安全性評価 放出水素火炎特性、安全な放出方法
- 2. 車両火災事故時の対応マニュアル 消火・救助・避難の方法
- 3. 漏洩水素の挙動解析 拡散、着火、燃焼特性の把握 事故防止の有効対策検討
- 4. 水素容器、Li-ion電池の安全性評価 エネルギー貯蔵システムの火災安全性評価

水圧試験設備(破裂試験、耐久試験)

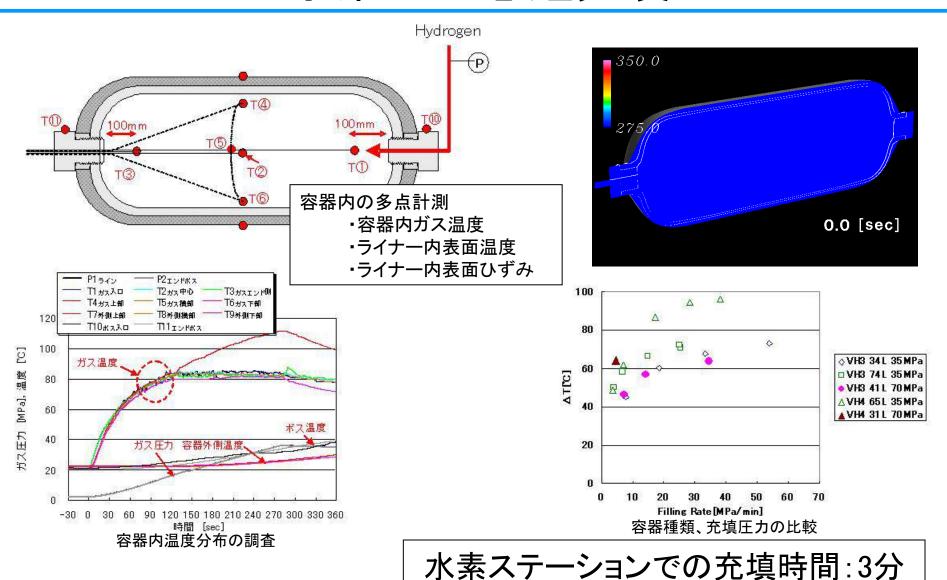


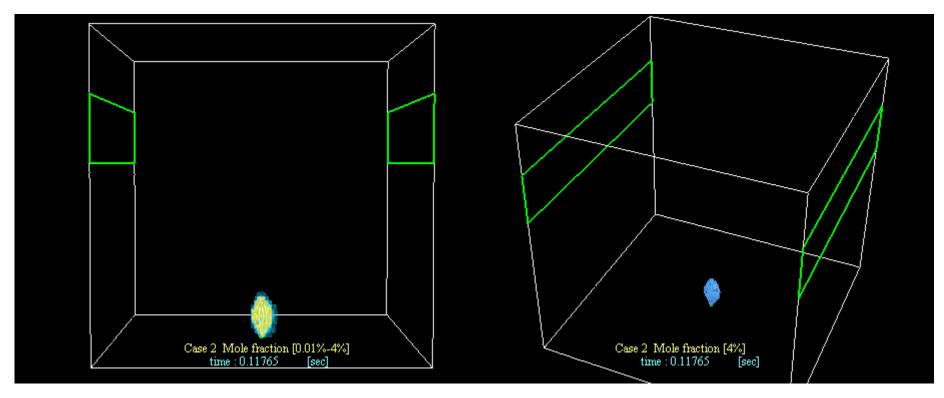
高圧容器の破裂試験(水圧試験装置)





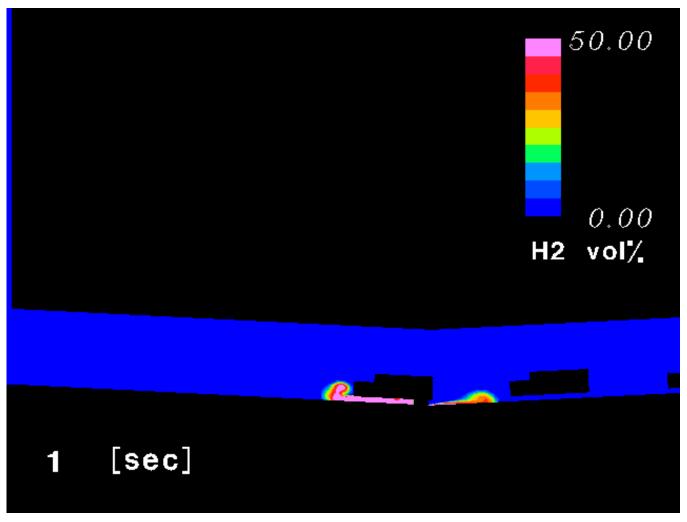
圧縮水素試験設備





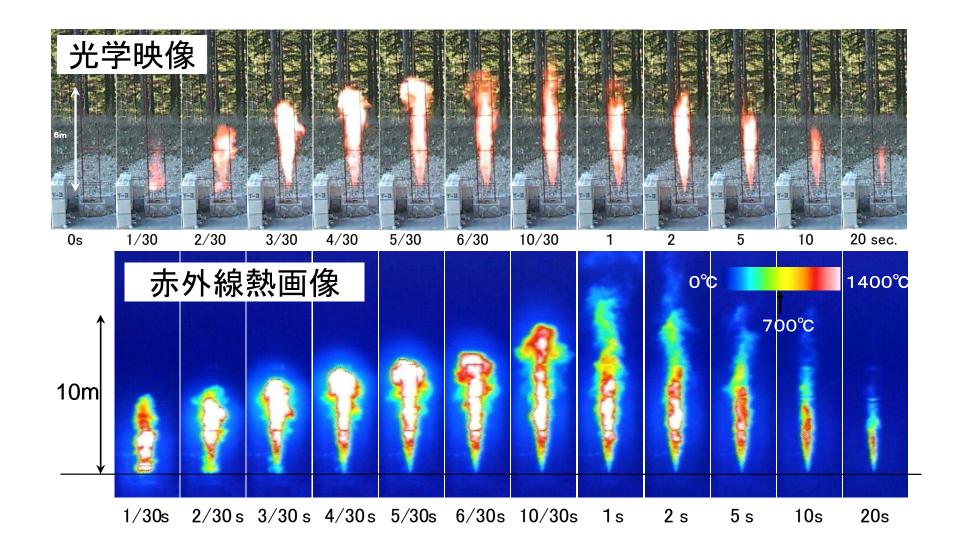
水素ガス急速充填

水素の実態 ~水素の拡散挙動~



10L/min. 濃度範囲: 0.01-4%

10L/min. 濃度範囲:4%



トンネル内での水素の漏洩・拡散挙動

漏洩水素量: 1分間で60m3の水素を放出(貯蔵容器内圧力: 35MPa →0MPa)

容器安全弁からの放出水素火炎(上方向)

車室内への水素漏洩・着火試験(濃度12%)

水素センサ指示値が12%, になるまで水素供給後、着火 (10L/min*15min=150L)

水素の実態 まとめ

- 水素は空気中で速やかに拡散し燃焼限界以下に希釈される
- 希薄な水素(<10%)はこれまで言われてきたほど危険ではない</p>
- 水素はガソリン・天然ガスと比べ、危険な燃料ではない

