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Abstract The dynamic triggering of earthquakes is well documented; however, the underlying physical
mechanisms remain obscure. Here we analyze the seismicity in northern Nagano, central Japan, following
the Tohoku-oki quake, until the occurrence 13 h later of an M,,6.2 local earthquake. We use waveform detection
techniques to identify 17 times more earthquakes than those in the Japan Meteorological Agency catalog.
The activation of seismicity in the epicentral region of the M,,6.2 event is weak and delayed, culminating
with the occurrence of the moderate shock preceded by two small foreshocks. The seismicity activation to
the south is shallower, abundant, and starts during the passage of Tohoku-oki surface waves of high dynamic
stresses. The early activation occurs in areas of relatively high near-surface fluid temperature, indicating that
the dynamic triggering is likely caused by excitation of geothermal crustal fluids. The M,,6.2 Northern Nagano
earthquake might have been delay-triggered by fluid migration from a deep source.

1. Introduction

The seismicity in many areas of central and northeastern Japan was activated following the M,,9.0 2011
Tohoku-oki earthquake [e.g., Hirose et al., 2011]. While most seismicity changes are consistent with the static
stress triggering hypothesis [e.g., Ishibe et al., 2011; Toda et al., 2011; Enescu et al., 2012], either dynamic
[Yukutake et al., 2011; Miyazawa, 2011] or fluid-related triggering [Terakawa et al., 2013] was invoked to
explain the characteristics of earthquake activation in some areas. However, one of the major problems in
assessing the role of various triggering factors is the relatively large earthquake catalog incompleteness in
the hours following the megathrust event [Lengliné et al., 2012; Kato et al., 2013]. The direct investigation
of high-pass filtered waveforms [Peng et al., 2006; Enescu et al., 2007] to detect missing events in the aftermath
of a large earthquake is essential for an unbiased interpretation of seismicity.

In this study we focus on the northern Nagano region, central Japan, where an M,,6.2 earthquake occurred
about 13 h after the Tohoku-oki event. The study area is located about 400 km east of the Tohoku-oki
epicentral region. By applying a Matched Filter Technique (MFT) [Peng and Zhao, 2009] to the waveform data
recorded at the permanent stations in the region, we are able to obtain a much more complete event history,
compared with the one catalogued by the Japan Meteorological Agency (JMA). Using this improved catalog,
we reveal distinct spatial seismicity activation patterns, which were otherwise impossible to decipher. We also
scrutinize continuous high-frequency seismograms recorded by a dense temporary regional network, to
detect small events in the very early part of the sequence. Our results bring detailed evidence on the essential
role of geothermal activity, as revealed by shallow-depth fluid temperature data, as well as crustal fluid
excitation to modulate seismicity activation.

2. Data and Method

We use continuous three-component seismic velocity recordings from 10 borehole stations (Figure 1) of the
Japanese High Sensitivity Seismograph Network (Hi-net), operated by the National Research Institute for
Earth Science and Disaster Prevention (NIED), in the northern Nagano region. All stations are recording at a
sampling rate of 100 Hz. Continuous waveforms are 13 h and 15 min long and start on 11 March 2011 at 14:46:00
local time (18 s before the Tohoku-oki main shock origin time) and end on 12 March 2011 at 4:01 local time
(about 2 min after the M,,6.2 Northern Nagano earthquake). We applied a two-way 10-30 Hz Butterworth
filter to the data to reduce the influence of the low-frequency coda wave of the Tohoku-oki main shock,
as well as that of aftershocks that occurred at remote distances from northern Nagano.
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Figure 1. Earthquake and station distributions in northern Nagano. The time span of earthquake data is January 2001 to
February 2013. The red and black circles indicate the relocated template events (M > 1.0) that occurred before and after
the 2011 Tohoku-oki earthquake, respectively; the gray circles show all the JMA events in a broader region. The blue squares
and inverted green triangles represent the Hi-net borehole and temporary surface stations, respectively. The yellow stars
show the northern Nagano earthquake and the 12 April 2011 M,,5.4 event to the south. The brown triangles show
volcanoes. The dotted rectangle delimits our study area. The inset shows the Japanese Islands and the epicenters of the
2011 Tohoku-oki and Northern Nagano earthquakes by red circle and yellow star, respectively. The light dashed lines
and thin solid lines show the prefecture borders and faults, respectively.

We use all 1278, M>1.0, events of the Hi-net catalogue that occurred between January 2001 and February 2013
in the study region (36.70-37.12°N, 138.44-138.74°E; Figure 1) as template events. To improve the accuracy
of the routine earthquake locations, the template earthquakes were relocated using a double-difference
approach [Zhang and Thurber, 2003] and a regional 3-D velocity model [Sekiguchi et al., 2013]. The earthquakes
become shallower by a few kilometers after relocation and more clustered in space. The RMS of the double-
difference time residual was reduced from 257 ms to 52 ms. Most events in the hypocentral region of the
Northern Nagano earthquake are deeper than 5 km, while those clustered about 10 km to the south (Figure 1)
locate in majority from 2 to 5km depth. We used 4 s long waveform windows for each template event,
recorded at each station component, starting 2 s before the S wave arrival time, and applied the same filtering
as for the continuous data. Only waveforms for which the signal-to-noise (measured as the average waveform
amplitude from —6 to —2's before the P wave arrival) ratio is larger than 5 were used for further processing.

We look for events in the continuous data that strongly resemble the template events (Figure S1 in the
supporting information). The correlation coefficient between the continuous waveforms and templates, at
each recording station (and for each of the three components), is calculated by shifting the template window
in increments of 0.01 s. The correlation coefficient value obtained at each time point is assigned to its origin
time by subtracting the S wave arrival time. Next, we stack the correlation coefficient values for all stations
and three components and compute the mean correlation coefficient value at each time point. We then
compute the Median Absolute Deviation (MAD) of the mean correlation coefficient trace for each template
event and use 9 times the MAD value as the detection threshold [Peng and Zhao, 2009]. The location of each
waveform-detected event was assigned to be the same as that of the corresponding template earthquake.
We end up with a catalogue of 139 events, compared with only 8 in the JMA catalogue, for the 13 h time
frame following the Tohoku-oki main shock.
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Figure 2. Seismicity distribution in the study region: (a) Map view showing the MFT-detected earthquakes, colored as
a function of time from the Tohoku-oki megathrust event; the 1 month relocated Hi-net aftershocks are shown in
gray. The diamonds represent the early events detected by inspecting the temporary seismic stations in the region.
The focal mechanisms of the 12 March 2011 Northern Nagano earthquake and 12 April 2011 event are also shown.
The nodal planes on which static stress changes are calculated are colored in red. The "North" and "South" indicate
the two regions referred in the text. (b-d) Time history of seismicity for the whole region in Figure 2a and for the
"North" and "South" areas, respectively. The stems shown in red in Figure 2b are JMA-catalogued earthquakes, while
the dotted line in Figure 2b represents an Omori-Utsu law fit to the data, as explained in the text. The dotted stems
in Figure 2c (with red small circle on top) show the events with locations determined by picking P and S wave arrivals
on the temporary and Hi-net seismograms. The solid red and blue lines show the cumulative number of events for
detections and JMA catalogue, respectively.

The magnitude of each MFT-detected event was estimated by comparing the waveform amplitudes of
detections and templates, assuming that a tenfold increase in amplitude corresponds to one unit increase in
magnitude. To minimize the underestimation of larger event magnitudes at high frequencies [e.g., Shearer,
2009, Figure 9.24], we use 5 Hz high-pass filtered waveforms for magnitude calibrations.

Since the start of earthquake activation is of primary interest for understanding the triggering mechanism,
we have scrutinized continuous waveforms recorded by a dense, regional seismograph network (Figure 1)
in the first ~30 min after Tohoku-oki earthquake. Although these stations are installed at the surface and
their recordings are relatively noisy, their proximity to the events that occurred in our study area helps
the detection of smaller earthquakes. Based on the identified P and S wave arrivals at both the regional
network and Hi-net stations, we have located 7 events that occurred from 130's to 590 s after the Tohoku-
oki earthquake, corresponding roughly with the time period of the main shock surface wave arrivals in
northern Nagano.

3. Results

Among the 139 MFT detections, only 13 were located in the aftershock area of the M,,6.2 earthquake (“North”
area), while the majority of the rest were located about 10 km to the south (“South” area) (Figure 2a). Since
the station coverage (Figure 1) is about the same for both regions, we are confident that the relatively intense
activation in the “South” is genuine.
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Figure 3. Earthquakes detected during the passage of surface waves
9 N J passad to the Tohoku-oki main shock and found

from the Tohoku-oki earthquake. (a) From top to bottom: low-frequency

seismograms (0.01-0.2 Hz) at the NZWH station (vertical, radial, and no evidence of local seismicity. The
transverse components) and high-frequency waveform (10-30 Hz) at earthquake activity starts immediately after
the temporary station 0077; locally triggered events are marked by the megathrust event and shows episodic

small red circles; discontinuous red lines indicate the time interval used

for zooming in Figure 3b. (b) Enlarged high-frequency seismogram

showing P and S wave arrivals from one of the triggered events. occurrence of a few larger events (M= 2.0)
(Figure 2d). There is a relative sparseness of

seismicity in the first ~2.5 h after the Tohoku-
oki earthquake: we attribute it to the difficulty of detecting events of M~1.0 due to the very “noisy” waveforms
immediately after the M9.0 event. The majority of detected earthquakes align along an E-W direction, likely
associated with a fault plane of similar strike. Both the strike and dip angles of the southern cluster are
consistent with one of the nodal planes of the M,,5.4 earthquake, which occurred about 1 month after the
M,,6.2 Nagano earthquake (Figure S3 in the supporting information). A few small earthquakes also occurred in
the southernmost part of our study area (Figure 2a).

activation, mainly associated with the

As previously mentioned, we have inspected the seismograms recorded by stations of a regional seismic
network (installed temporary in the region before the Tohoku-oki event) at early times after the megathrust.
Figure 3 shows an example of early event activation recorded in the southernmost area of our study region;
the high-pass filtered seismogram (Figure 3a, bottom) at “0077" station (Figure 1) reveals the occurrence
of nearby small earthquakes. The earliest event in this area that we were able to locate occurred 131 s after
the origin of the Tohoku-oki earthquake, during the passage of the main shock surface waves. Activation
at similar early times was also observed within the main “South” cluster (at station “0080"). The earliest event
located here occurred ~292 s after the megathrust event. The events located using arrival times observed
at both the temporary network and Hi-net stations are plotted as diamonds in Figure 2a. The magnitudes
are around 1.0; however, they have relatively large uncertainties. We did not observe similar early activation
in the “North,” despite the very good station coverage.
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Figure 4. Geothermal map of the study area, with seismicity superposed: be underestimated; nonetheless, they
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all over Japan. The superposed seismicity is the same as in Figure 2. . .
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Two main classes of models [Hill and Prejean, 2007] are used to explain the triggering by dynamic stresses:
(1) direct triggering by frictional failure and (2) triggering through excitation of crustal fluids. As documented
in the previous studies, fluids are active agents in geothermal and volcanic areas, which appear to be
particularly susceptible to dynamic triggering [Hill and Prejean, 2007]. To quantify the degree of geothermal
activity in our study region, we use fluid temperature (Figure 4) and flux data [Geological Survey of Japan,
2009] measured at the shallowest part of the crust (depth between 0 and 900 m).

As seen in Figure 4, the activated area close to stations "0077" and “1076" is characterized by high fluid
temperatures, indicating the presence of a geothermal field. We therefore interpret the dynamically triggered
shallow events located close to station "0077" as being caused by a sudden excitation of fluids due to the strong
shaking by the Tohoku-oki surface waves. In addition to the temperature data, we have extracted from the
same database the fluid flux values of our study region, measured as water flowing through the wells to the
surface. The largest such values (~3000 L/min) are observed at the well closest to station "0077," where the most
remarkable immediate seismicity activation has occurred (Figure 3 and Figure S4 in the supporting information).

The seismicity activation around station "0080" also started very early after the Tohoku-oki earthquake,
although it is only detectable after the passage of the largest-amplitude surface waves. This slight onset delay
and the likely weaker early earthquake activation (Figure S4 in the supporting information) may be due to
the fact that the area in and around the main "South" cluster is only mildly geothermal (Figure 4). However,
the relatively shallow fault-like structure that is revealed by the alignment of seismicity (Figure 2a and Figure S3
in the supporting information) may constitute a favorable permeable environment for geofluid circulation
and episodic seismic activity. The results of Kumazawa and Ogata [2013], who analyzed the JMA earthquake
catalog after the Tohoku-oki main shock, support the swarm-like behavior of seismicity in the "South."
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Although the geothermal data used in this study are measured at or close to the surface, there is evidence
supporting its relation to thermal properties of the deeper crust. Volcanoes Naeba and Torikabuto, in the
southern study region, were active during Quaternary period; such geologically recent volcanic structures are
usually warm enough to provide the necessary heat supply for the hot spring activity [e.g., Fukutomi, 1961].
We have also checked the geothermal gradient data in Japan, as measured in deep boreholes [Tanaka, 2004,
and references therein]; however, the measurements were too sparse for mapping purposes. Nevertheless, one
observation point located within the southern cluster shows a large geothermal gradient value (~150 K/km),
which supports a deeper origin of geothermal activities.

The dynamically initiated triggering of seismicity in the "South" due to crustal fluid excitation is supported
also by independent findings [Terakawa et al., 2013] based on the analysis of focal mechanism data in several
regions in northeast Japan, which suggest the fault-confined fluid pressure increase in this area, following
the Tohoku-oki earthquake. Specifically, Terakawa et al. [2013] report a median overpressure coefficient
increase of more than 6 times in the "South" Nagano region, following the Tohoku-oki earthquake, which is
the largest of all the areas they investigated.

As we have already pointed out, there is no evidence of early seismicity activation in the "North" region; both
the MFT analysis and direct examination of waveform data (Figure S4 in the supporting information) support
this result. One may question whether the seismicity in the "North" is causally related with the Tohoku-oki
earthquake. The strongest argument in favor of a triggering relationship is given by the pre-Tohoku seismicity
in the "North": there are no earthquakes of M>5.5 from 1 January 1923 (the beginning of the JMA catalogue)
to 12 March 2011 Nagano earthquake. It is therefore highly unlikely that the M,,6.2 event occurred by chance
just 13 h after the Tohoku-oki megathrust. In addition, there have been no recorded earthquakes by JMA in
the "North" since 2 March 2011. As shown in Figure 4, the northern area is characterized, in general, by lower
fluid temperatures than the "South." One “hotter” area can be seen close to the station “0252.” However, the
fluid flux values are relatively low here, and the seismogenic region is relatively deep (between 5 km and 10 km,
from the relocated seismicity), so this may explain the lack of dynamically triggered events.

We still need to understand what physical mechanism might have been responsible for the delayed activation
of seismicity in the "North," in particular the triggering of the M,,6.2 earthquake. Terakawa et al. [2013] showed
that the region surrounding the Northern Nagano epicenter may have experienced an increase in regional
ambient fluid pressure, caused by the flow of overpressurized fluid from a deep reservoir, following the Tohoku-
oki earthquake. A tomography study in the area [Sekiguchi et al., 2013] found evidence of a high v,/v; structure
just below the Northern Nagano hypocentral region, which has been interpreted as a fluid-like body at depth.
Such independent results support qualitatively a scenario involving fluid migration from a deeper source,
which upon arrival—with some delay—at seismogenic depths could have triggered earthquakes.

Although poorly constrained, the manually located earthquakes in the southernmost part of our study
region are shallower than ~5 km. The MFT-detected events in the "South" also have shallower average depths
compared to those in the "North" (Figure S5 in the supporting information). The relatively shallow seismogenic
areas might be closer to the failure stress threshold, likely due to the geothermal fluid-rich environment; as a
consequence, the seismicity activation is pronounced but unlikely to develop into a larger event. The situation
is opposite in the hypocentral area of the Northern Nagano earthquake.

Our dynamic stress changes have been estimated using only surface wave amplitudes; however, the orientation of
local faults relative to the incidence angle of the incoming surface wave, as well as their faulting mechanism,
influences as well the dynamic stresses [Hill, 2012]. It is thus possible that the fault structures in the "South" were
more favorably oriented for being dynamically triggered than those in the "North."

We have also calculated the static Coulomb failure stress change (ACFS) due to slip on the Tohoku-oki earthquake
fault plane [Yagi and Fukahata, 2011] on two receiver faults: the fault plane of the M,,6.2 Northern Nagano
earthquake in the "North" and that of the M,,5.4 earthquake in the "South;" by assuming these two fault planes as
representative for the seismicity in the two regions. The obtained ACFS values are of 0.02 MPa and 0.13 MPa,
respectively (see Text S1 of the supporting information for the details). The value obtained in the "North" is very
small (close to the static stress threshold of 0.01 MPa above which earthquake triggering is usually observed [Parsons
et al, 2008, and references therein]), and it is doubtful that could have induced an M,,6.2 earthquake. For the "South,’
the static stress changes are significant (~0.13 MPa) but still lower than the peak dynamic stresses (~0.4 MPa).
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We cannot exclude the contribution of static stress changes; however, the swarm-like characteristics of
seismicity in the "South" suggest that crustal fluids, excited by the dynamic stresses associated with the
Tohoku-oki surface waves, are the most important triggering factor.

5. Conclusions

We have analyzed the activation pattern of seismicity in the northern Nagano region, central Japan, following
the 2011 M9.0 Tohoku-oki earthquake. Our investigation period spans about 13 h, between the occurrence
times of the megathrust and a local M,,6.2 event. The matched filter analysis, applied using event templates and
continuous Hi-net waveform data, revealed 17 times more earthquakes than in the JMA catalog. We have also
scrutinized continuous waveforms recorded by a local network to identify small and early local events.

The results show distinctive seismicity activation patterns. The epicentral region of the M,,6.2 earthquake is
characterized by very sporadic activation during the 13 h span, with two small foreshocks within 1 h before
the moderate event. The seismicity about 10 km to the south, however, is shallower and shows a significantly
stronger and early activation.

The southern locations where seismicity was activated during the passage of surface waves from the megathrust
event are nearby a high fluid temperature and fluid flux geothermal hot spot. Other areas of early activation
in the south are mildly geothermal. These observations, together with the overall episodic character of
seismicity in the southern region, suggest geothermal fluid excitation as the underlying physical mechanism.
The seismogenic region of the M,,6.2 earthquake, on the other hand, is deeper on average compared with that
in the south and located in a region of relatively low near-surface fluid temperatures. We speculate that the
M,,6.2 Northern Nagano earthquake might have been triggered by fluid migration from a deep source.
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