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Unified Composition Mechanism for Abstraction

Units Based on Pluggable Methods

Yasushi Kuno1,a)

Abstract: In today’s object-oriented programming languages, abstraction units (such as classes, traits, as-
pects) are modified through various composition mechanisms; inheritance, parameter type binding and advice
weaving (for aspects) are representative ones. However, those composition mechanisms are all the same in
that they compose objects which implement desirable protocols. Having multiple composition mechanisms
defeats design orthogonally of a language, and raises (miss-) selection problems. In this paper, we propose a
programming language with a unified composition mechanism. In this mechanism, methods are individually
copied and combined according to dedicated domain-specific language description executed at compile time,
in a type-safe manner. In this language, type names and non-local variable names within a method are
converted to parameters when the method was “unplugged” from its original context. Those parameters can
be rebound to actual types and variables when the method is “plugged” to another context. This mecha-
nism can be used to implement large part of existing composition mechanism listed above, and also some
completely new ones.

Keywords: abstraction entity, composition mechanism, pluggable methods, strong types

1. Introduction

In today’s procedural (imperative) programming lan-

guages, object-orientation (O-O) is one of major trends. In

O-O, provision of abstract data types (ADTs) is an impor-

tant functionality, in which (1) data (instance variables) and

operations against them (methods) are grouped together to

form a unit (an object), and (2) data are accessible only

through accompanying methods, encapsulating objects’ in-

ternals from client code.

In this paper, we use the term “abstraction unit” to rep-

resent description unit for an object instead of the common

term “class,” because we are excluding common functional-

ities seen in most class-based languages from the core of our

language.

Programming languages’ ADT functionality provides fol-

lowing merits in software development:

• Decrease dependencies among inside and outside of an

abstraction unit, so they can be developed in parallel.

• Well-defined group of functionalities can be packaged

as an abstraction unit and incorporated into the library,

which enhances code reuse and development efficiency.

To enjoy those merits, an abstraction unit, once complete,

should be incorporated “as is” into the client environment;

any internal modifications should not be needed. Otherwise,

internals of the abstraction unit and client environment will

become interdependent and the merit noted above will van-

ish in the air.
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In practice, the needs of the clients are much varied; there

are many cases in which some customization to the existing

abstraction units are necessary. In those occasions, instead

of direct modification of the unit’s internals, attaching some

“correction” from outside will be more desirable, because we

can refrain from breaking existing units and keep the merits

of code reuse.

Such “correction” might be considered as a kind of unit,

although it might not provide complete functionalities by its

own. Then, customization can be regarded as a process of

composing multiple (abstraction-) units.

Well-known composition mechanisms seen in today’s O-O

languages include inheritance, parameterization and AOP

(Aspect-Oriented Programming). Historically, inheritance

is the oldest, and parameterization and AOP arrived later

to compensate weak points of the classic (inheritance-only)

O-O languages.

However, having multiple composition mechanisms in sin-

gle language will make the language complex, and poses

problems of which mechanism to use in which case.

Therefore, in this paper we investigate unified framework

of inheritance, parameterization and AOP for statically

typed programming languages. As compile-time (static)

composition is pursued, we exclude dynamic condition seen

in some AOP languages (such as “cflowbelow” in AspectJ)

from consideration.

Contents of this paper is as follows: In section 2, we fo-

cus on major composition mechanisms, namely inheritance,

parameterization and AOP, and analyze their core function-

alities. In section 3, we discuss paths toward unification of

those functionalities, and describe our proposal. In section
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4, experimental programming language named “o3,” with

unified composition mechanism is presented. In section 5,

we describe related works and compare our proposal against

them, and finally in section 6, discussion and conclusion is

presented.

2. Major Composition Mechanisms

2.1 Inheritance

In this section, we use the term “class” for abstraction

unit, in order to make description simple. Inheritance is

a functionality in which new class (subclass, child class) is

defined upon existing class (superclass, parent class), with

description of differences (extensions). Inheritance is the

oldest of class composition mechanism; Simula, Smalltalk,

C++, Java and many other O-O languages include inheri-

tance.

Although details of inheritance mechanism differs among

languages, common functionalities are as follows:

• Subclasses can add instance variables to the set defined

in the superclass.

• Subclasses can add new method to the set defined in

the superclass.

• Subclasses can replace implementation of methods de-

fined in the superclass (or append / prepend additional

code to existing method bodies in some languages).

Those functionalities allow definition of new classes by de-

scribing minimal difference against their superclasses; such

style is called “differential programming.”

On the other hand, differential programming is criticized

for increasing interdependencies among class and thus main-

tenance difficulty. A solution for such criticism is preparing

more general (abstract) differences as another class (called

“mixins” or “traits”), and composing those classes with ex-

isting (parent) classes by means of multiple inheritance (in-

heriting from two or more parent classes).

In most of statically typed O-O languages, a class without

parameter corresponds to a type. In such languages, a type

corresponding to a child class (say C) becomes the subtype

of its parents’ type (say P ), meaning that objects of type C

can be used in place of type P object (including assignment

to a variable). In this paper, we use notation C ≤ P to

indicate subtype=supertype relations.

Subtyping allows a variable of type P to hold any of

its subtype instances, and method invocation dispatches to

whichever method code associated with current object held

in the variable. This mechanism is called “dynamic dis-

patch” or “polymorphism” and is the source of large flexi-

bilities seen in O-O languages.

On the other hand, there are criticism for such “binding”

of implementation description (differential programming)

and type compatibilities (subtype relations), and some lan-

guages try to separate these two aspects. Interface in Java

languages is a representative one.

2.2 Parameterization

The term “parameter” is sometime used as “arguments”

to individual operations (methods or procedures). How-

ever in this paper, the term “parameterization” stands for

language functionality in which abstraction units can have

(compile-time) parameters. Languages such as Java or Scala

limits each parameter to a type, while other languages

(C++, CLU[11]) also allows built-in type value (such as an

integer) as a parameter.

In statically typed languages without parameterization,

programmers are occasionally forced to write duplicate ab-

straction units (or stand-alone procedures) identical except

for their operations’ argument / return value types. It is

natural desire to abstract out those difference as parame-

ters and use a single definition for them.

Stated from a different viewpoint, the goal of parameteri-

zation is to abstract out type names that need not be bound

to specific (concrete) types within an abstraction unit as pa-

rameters, so that more abstract and reusable description for

an abstraction unit can be obtained.

A typical use of parameterization is for container abstrac-

tion units such as arrays. In an array type, content-type

object is only stored within it and later extracted without

any operation invocation, thus there are no constraints cast

upon its parameter type.

However, some abstraction units might have constraints

over their parameters. For example, in an ordered list,

content-type objects should be comparable each other. Ex-

pression of those constraints has various form, depending on

the languages:

• Operations’ signatures are explicitly declared for each

parameter — CLU.

• Interface or class hierarchy position are specified for

each parameter — Java, Scala.

• Simply compile the whole unit after embedding param-

eter values, and OK when no error is encountered —

C++.

• Module-like facility that specify constraints for param-

eters — proposed C++ concepts.[7]

In some languages, actual type for parameters are used to

switch between distinct implementations for the abstraction

unit (such as template specialization for C++). In languages

which allow built-in type (e.g. integer) values as parameters,

complex code construction through recursive parameter ex-

pansions are possible. C++ template metaprogramming is

an representative one.[5]

Abstraction units with parameter defines a type when all

of their parameters are specified. Therefore, an abstraction

unit with parameter(s) defines a type generator. Rules of

type inclusion relation (covariance / contravariance / non-

variance) among such parameterized types differ among lan-

guages. For example in Scala[12], type parameter definitions

are annotated with variance specifications, and variance of

the resulting types are deduced from them (examining usage
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of parameter types within their bodies).
Although Scala has type parameters (as noted above), in-

heritance can be used to realize same effect. Specifically, a
class can include abstract type definition, and the type can
be overridden with concrete type in its subclass, as in the
following:

abstract class AbsCell {

type T

val init: T

private var value: T = init

def get: T = value

def set(x: T):unit = { value = x }

}

...

val cell = new AbsCell {

type T = int; val init = 1

}

However, having multiple ways to do one thing in a lan-

guage is against the principle of orthogonally; presence of

such freedom is a matter of controversy.

2.3 AOP

AOP (Aspect Oriented Programming) means ways to pro-

vide functionalities (or “concerns”) which are “crosscutting”

to the structure provided by O-O class hierarchy. The term

“aspect” is used to denote such crosscutting functionality

defined separately from traditional classes.

The tasks such as thread synchronization, log recording,

or redrawing of the screen are often cited as representatives

of crosscutting concerns (difficult to fit with O-O hierarchy)

and suitable to be implemented as aspects.

Major AOP languages or language mechanism include:

AspectJ[8], SOP (Subject Oriented Programming[13]),

Composition Filter[1], and Demeter/Adaptive Program-

ming[10].

Functionalities provided by them can be summarized as:

(1) specifying places on program execution paths (position

on the code and time range in concern), (2) actions need

be executed on those points, and optionally (3) additional

variables and methods necessary to implement the actions.

Therefore, an aspect consists of descriptions on (1) through

(3) associated with a crosscutting concern.

Code positions noted above are often specified as entry

/ exit point of some method (both on caller / callee site),

and method names (sometime specified through pattern) are

frequently used to indicate which method is of concern. Ad-

ditionally, some AOP systems provide dynamic (execution-

time) conditions as when to invoke actions. As described

previously, we exclude such dynamic conditions in this pa-

per.

3. Unified Composition Mechanism

3.1 Preparation Toward Unified Mechanism

In this section, we discuss the policy toward our unified

composition mechanism. As a prerequisite, we note that

our mechanism is supposed to replace existing composition

mechanisms (such as inheritance), and we would like to cover

functionalities of existing composition mechanisms as much

as possible. Therefore, we start from listing up what op-

erations are performed to abstraction units with existing

composition mechanism.

In case of inheritance, we reformulate the situation as

composing parent unit and child unit to define new (inher-

ited) unit. Within this framework, what inheritance does

can be summarized as follows:

• Instance variables set of new unit is union of parent

unit’s set and child unit’s set.

• Methods set of new unit is union of parent unit’s set

and child unit’s set.

• In case of methods whose name appear both in parent’s

set and child’s set, the method in child’s set overrides

one in parent’s set.

• The type associated with the new unit is a subtype of

the type associated with the parent unit.

In case of type parameterization, its functionalities are

summarized as follows:

• Some of the names (representing types or values) which

are referenced within the unit’s body are declared as

parameters, and specifying concrete types or values to

them (instantiation) result in working unit with associ-

ated type.

• Interface (set of method signature) of a unit might de-

pend on its type parameter in several ways, e.g. simply

substituting parameter name with concrete types, or in-

cluding set of method signatures from parameter types.

• Position of the resulting type associated with instanti-

ated unit can be independent of its type parameters, or

might depend on some of its type parameters in covari-

ant / contravariant ways.

Finally, AOP functionalities are summarized as follows:

• Aspect-like unit includes description on where to and

how to modify the target (modified) unit.

• In case of “where,” method entry and method exit

(both at caller and callee site) are representative.

• In case of “how to,” specifying actions (groups of code)

in the form of another method is the usual way.

• In some case, target (modified) unit is supplied with

additional instance variables or method definitions (in-

tertype declarations).

3.2 Basic Idea for Unification

From the above discussions, we saw that each of the ex-

isting composition mechanisms has both (1) operation on

its associated type and (2) operation on its body (imple-

mentation). Our proposal in this paper is to incorporate

DSL (domain specific languages) which describe above op-

erations (1) and (2). The DSL description runs on behalf of

the compiler and resulting (generated) units are processed

by the compiler.
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X = cluster[t:any]

var k:int

p = proc(v:t)

end

end

k := k + 1

a[0] := k

var a:array[t]

cluster X

un-
plug

p = proc(v:t)

[t:any, var k:int

var a:array[int]]

metacluster Yre-
plug

var k:int

p = proc(v:int)

end

k := k + 1

a[0] := k

var a:array[int]

Fig. 1 Unplugging and plugging of a method

Our language will have traditional units, some include

method signature only (as in Java interfaces) and some in-

clude method with associated body (as in Java classes); they

are called base-level units. Other (meta-level) units includes

DSL descriptions; DSL operations accept base-level lan-

guage constructs (units, types, method signatures, method

bodies) as passive data and builds new units based on them.

In the following, we describe our idea on both (1) and (2),

respectively.

Operations Over Types

In this paper, based on the principles of abstract data

types, we define a type as “a set of method signatures,”

where a method signature constitutes of method name, a

list of types corresponding to its parameters, and its return

value type (if one exist). Further, we assume that types

has a supertype-subtype relation among them (thus form

a type hierarchy). As the result, a type has the following

operations:

(a) Define set of signatures corresponding to that type.

(b) Specify position of that type in the type hierarchy.

As for (a), we assume that a type has no signature as-

sociated when it is declared first, and there are DSL op-

erations which selectively add existing signatures (obtained

from other types), with modifications if necessary.

As for (b), we provide DSL operation which add new

supertype-subtype relations to current type set. When

those relations are arbitrary added, incompatible supertype-

subtype pair might be formed (e.g. a subtype do not have

operation signatures included in its supertype). Such sit-

uations are checked after DSL execution has finished and

treated as compile-time errors (as the DSL is executed dur-

ing compilation).

Operations Over Implementations

An abstraction unit contains a set of instance variable def-

initions and a set of method definition, and can create an

instance (object). When a method associated with its origi-

nating abstraction unit is invoked, the body of the method is

executed (that is, statements in the body is executed with

necessary expression evaluation); instance variables of the

program ::= ( interface | cluster | metadef ). . .
interface ::= idn = interface [ param ] annot. . .

procdcl. . . end

cluster ::= idn = cluster [ param ] annot. . .

vardef. . . procdef. . . end

annot ::= @idn [ [ ( idn | string | integer ) . . . ] ]
param ::= [ ( idn : type ). . . ]

type ::= idn [ [ type, . . . ] ]
prochdr ::= proc ( ( idn : type ). . . ) [ : type ]
procdcl ::= idn = prochdr end

procdef ::= idn = prochdr stat. . . end

vardef ::= var idn : type [ := expr ]
stat ::= vardef | assign | astore | rstore | simpcall

| return [ expr ] | whilest | ifst

whilest ::= while expr do stat. . . end

ifst ::= if expr then stat . . . [ elif expr then stat . . . ] . . .
else stat. . . end

assign ::= idn := expr

astore ::= idn [ expr ] := expr

rstore ::= idn . idn := expr

expr ::= simcall | uop expr | expr bop expr | ( expr )

uop ::= + | - | !

bop ::= = | != | > | >= | < | <= | + | - | * | / | %

| && | ||

simpcall ::= ( primary | simpcall ) ! idn( expr, . . . )

| $type$ idn ( expr, . . . )

primary ::= idn | integer | string | true | false | nil

| primary [ expr ] | primary . idn

. . . — 0 or more repetiotion
, . . . — comma-separated list

[ ... ] — optional

Fig. 2 Summarized syntax of o3 language

(There are ; at the end of every statement, which are optional.)

object are accessed during the execution process.

In majority of existing O-O and AOP languages, modi-

fications of existing code are performed through swapping

by or appending / prepending of new code in the form of

a method as a whole. Therefore, we decided to follow the

same course and not to modify code inside a method; DSL

operations act upon implementation in the following way

(Figure 1):

(c) Extract a method as a whole from existing abstrac-

tion unit, and insert into the target (new) abstraction

unit. There are choices of either replacing the existing

method, or appending / prepending new method body

to the existing method.

From the above description, it follows that each method

belonging to an abstraction unit can be “unplugged” from

the original context, and “replugged” to the new context.

Conceptually, at the point of unplugging, references to the

surrounding (instance-) variables and (parameter-) types are

automatically converted to (variable- and type-) parame-

ters, and those parameters are rebound when the body is

replugged.

Therefore, parameter mechanism is built into our proposal

language as one of the base functionalities, and inheritance

or aspects are implemented with those functionalities. Such

choice seems natural, because many abstract computational

models (such as lambda calculus) include name substitution

as primitive operation.
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4. o3: An Experimental O-O Language

4.1 Design Guidelines And Program Structure

We have designed and developed a “concept-of-proof” O-

O language named o3, in order to evaluate feasibility and

effectiveness of the proposal described in the previous sec-

tions. Design guidelines of the language is as follows:

• Portions not directly related to the proposal should be

similar to other “common” O-O languages.

• Portions not directly related to the proposal should be

simple, as much as possible.

• Portions related to the proposal should clearly be sep-

arated from other part of the language.

A simplified syntax of o3 is shown in Figure 2. A pro-

gram consists of one or more modules; a module is one of

four kinds: interface, cluster (corresponds to class in other

languages), metaprocedure, and metacluster.

An interface defines a type (set of method signatures),

and a cluster defines a type and its implementation (set of

instance variables along with set of method definitions). We

use the term “cluster” in place of “class” because our clus-

ter do not provide an inheritance facility; inheritance and

other composition functionalities are provided through our

proposal composition mechanism described below.

As noted earlier, we state type parameter as basic mech-

anism in our language. Therefore, both an interface and

a cluster may have type parameter(s). A metaprocedure

should have one or more type parameter(s) to act upon. As

for metaclusters, meaning of presence / absence of type pa-

rameters is same as for clusters; a metacluster with type

parameters define multiple types and their corresponding

implementations according to the parameters.

Both metaprocedures and metaclusters contain type /

cluster construction DSL (simply “DSL” for short); their

syntax and functionalities are explained below. Note that

execution of DSL occurs at compile-time.

4.2 Baselevel part of o3 language

In this section, we describe baselevel part (O-O with-

out inheritance) of o3 language. In o3, method invoca-

tions are denoted with the form “obj!method(· · ·)” or

“$type$method(· · ·).” The former corresponds to ordi-

nary invocation with dynamic dispatching, and the latter

to “static” invocation directly specifying typenames, which

are used to create instances (in o3, method named “create”

is handled specially and used to create new instances).

We list builtin interface / cluster in Figure 3. any is an

interface, and is used as the supertype for all types in o3.

bool, int and string are Boolean, integer and string val-

ues respectively; they are designated as builtin because they

have literal forms, and bool is exclusively used for if / while

conditions. array defines array types; it is designated as

builtin for providing basic container object. array has an

single type parameter to specify values stored the array.

any = interface end

bool = cluster

equal = proc(self:bool, x:bool):bool end

not = proc(self:bool):bool end

print = proc(self:bool) end

end

int = cluster

equal = proc(self:int, x:int):bool end

lt = proc(self:int, x:int):bool end

gt = proc(self:int, x:int):bool end

le = proc(self:int, x:int):bool end

ge = proc(self:int, x:int):bool end

minus = proc(self:int):int end

plus = proc(self:int):int end

add = proc(self:int, x:int):int end

sub = proc(self:int, x:int):int end

mul = proc(self:int, x:int):int end

div = proc(self:int, x:int):int end

mod = proc(self:int, x:int):int end

print = proc(self:int) end

end

string = cluster

equal = proc(self:string, x:string):bool end

lt = proc(self:string, x:string):bool end

gt = proc(self:string, x:string):bool end

le = proc(self:string, x:string):bool end

ge = proc(self:string, x:string):bool end

add = proc(self:string, x:string):string end

size = proc(self:string):int end

print = proc(self:string) end

end

array = cluster[elt:any]

create = proc():array[elt] end

size = proc(self:array[elt]):int end

push = proc(self:array[elt], x:elt) end

store = proc(self:array[elt], i:int, x:elt) end

fetch = proc(self:array[elt], i:int):elt end

end

Fig. 3 Interfaces for o3’s builtin clusters

stack = cluster[elt:any]

var arr:array[elt] := $array[elt]$create()

var ptr:int := 0

create = proc():stack[elt] return self end

push = proc(self:stack[elt], x:elt)

if arr!size() > ptr then

arr[ptr] := x; ptr := ptr + 1

else

arr!add(x); ptr := ptr + 1

end

end

pop = proc(self:stack[elt]):elt

if ptr >= 0 then ptr := ptr - 1 end

return arr[ptr]

end

isempty = proc(self:stack[elt]):bool

return ptr <= 0

end

end

test = cluster

main = proc()

var st:stack[int] := $stack[int]$create()

st!push(1); st!push(2); st!push(3)

st!pop()!print(); st!pop()!print()

end

end
Fig. 4 A sample program in o3 (stack ADT)

Type hierarchy of o3 is shown in the Figure 5. Every type

T is a (direct or indirect) subtype of any (T ≤ any). This

policy is chosen because we need to define type parameters

that accept arbitrary types. All other supertype-subtype
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any

bool int

A B

L1

G?

L0

Fig. 5 Type hierarchy of o3

metadef ::= idn = ( metaproc | metacluster )
[ param ] annot. . . mstat. . . end

mstat ::= mcall | mfor | mif

mfor ::= for idn: mexp do mstat. . . end

mif ::= if mexp then mstat . . . [ elif mexp

then mstat . . . ] . . . else mstat. . . end

mexp ::= mcall | type | $type$idn | string

mcall ::= mexp!idn[ mexp. . . ]

Fig. 6 Summarized syntax of o3’s metalevel DSL

Table 1 Metalevel objects and their DSL API (summary)

type
add proctype[proc] Add proc’s signature to target
add proctypes[type] Add type’s all procs’ signatures to

target
add super[type] Add type as target’s supertype
proctypes[] Retuns target’s set of proc
cluster
add procdef[proc] Add proc’s body to target
add procdefs[cluster] Add cluster’s all procbodies to

target
procdefs[] Retuns target’s set of proc with

body
proc
add body after[proc] Append proc’s body to target
add body before[proc] Prepend proc’s body to target
name matches[string] Test if proc’s name matches pat

relations are explicitly defined through DSL operations.

As multiple supertypes can be designated for a type

(through DSL operations), the relation ≤ forms a semiorder,

and any becomes the maximum element. Therefore, for any

types A and B, there always exist common upper bound

type and their least elements (which may or may not be

unique). On the other hand, for a pair of types A and B,

their common lower bound may or may not exist; that de-

pends on the cases.

In Figure 4, we show a simple o3 program. The code de-

fines a stack ADT, then main create a stack object, pushes

several values on it, popes some and prints. As explained

above, create is handled specially in o3 — variable named

self is automatically defined and holds newly created in-

stance before execution of the method body.

4.3 Metalevel part of o3 language

As described earlier, metaprocedures and metaclusters in-

clude DSL descriptions, in the same syntax. Their differ-

ence is that metaclusters construct cluster definition, while

metaprocedures are called from metaclusters with associated

parameter(s) to execute series of DSL operations. Therefore,

the objective of metaprocedures is to factor out common

DSL operations with meaningful names, providing measure

for structuring and abstraction.

As shown in figure 6, DSL code consists of metastate-

ments. A simple metastatement has similar syntax as o3

baselevel method invocation, whose API is summarized in

Table 1.

When a method is unplugged from existing cluster, in-

stance variables and type parameters referred by the method

body is automatically converted to variable / type param-

eters associated with the body (currently o3 does not have

syntax to specify variable parameters directly). Thereafter,

when the method is replugged to the other cluster being con-

structed, variable parameters are rebound to the instance

variables of that cluster (new instance variables are auto-

matically added if no such instance variable exist). There-

fore, if one tries to replug multiple method with conflicting

instance variables, an error is signaled. *1

Major metaobjects are types (set of method signatures

with associated supertype set), clusters (same as types,

plus method bodies) and methods (signature with optional

body). There also is “method set” objects to handle groups

of methods at once.

Additionally, string object (to specify method names and

patterns) and Boolean object (to specify conditions for if

metastatements) is also provided. Types of those metaob-

jects are dynamically checked at DSL execution stage, which

is a part of the compilation stage.

There also are two compound metastatements, namely if

and for. If is used to conditionally execute part of the oper-

ations. For metastatement is used to iterate over elements

of a set.

4.4 Example: inheritance and logging aspect

In this section, we present an example with inheritance

and logging aspect defined as metaprocedures (figure 7).

The cluster accum defines an object that accumulate inte-

ger values. The cluster defines methods create (for creat-

ing an object), inc (for incrementing value) and get (for

reading current value). Then, we want to define extended

cluster which has additional method reset, which clears

the value inside. In preparation, we defined a cluster named

exaccumimple which includes implementation for the exten-

sion.

Actual inheritance operation is performed with a

metaprocedure named extends, which receives three

type parameters target, parent and child and copies

methods defined in parent and child to target. In the

metaprocedure body, parent is added to the set of target’s

supertypes first. Then, set of methods defined in parent

is copied to target, and then set of methods defined in

child is copied likewise. As no selection or modification is

required here, coping is done all at once (as set operations).

Alternatively, for statement could be used to enumerate

*1 Alternatively, we could provide renaming facility or simply
treating those variables as distinct ones; such design choices
are for future investigations.
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accum = cluster

var value:int

create = proc():accum value := 0; return self end

inc = proc(self:accum, n:int) value := value + n end

get = proc(self:accum):int return value end

end

exaccumimpl = cluster

var value:int

reset = proc(self:accum) value := 0 end

end

extends = metaproc[target:any, parent:any, child:any]

target!add_super[parent]

target!add_proctypes[parent]

target!add_proctypes[child]

target!add_procdefs[parent]

target!add_procdefs[chlid]

end

countimpl = cluster

var count:int := 0

create = proc():countimpl return self end

countup = proc(self:countimpl) count := count + 1 end

getcount = proc(self:countimpl):int return count end

end

addcount = metaproc[target: any]

$target$create!add_body_after[$countimpl$create]

target!add_proctype[$countimpl$getcount]

target!add_procdef[$countimpl$getcount]

for p: target!procdefs[] do

if p!name_matches["^(inc|reset)"] then

p!add_body_after[$countimpl$countup]

end

end

end

exaccum = metacluster

selftype!extends[accum, exaccumimpl]

selftype!addcount[]

end

Fig. 7 A sample with DSL code (inheritance and logging)

each method one by one (with selection or modification

when necessary).

Next, we would like to count occurrence of modification

operation (add and reset) invocations. This time, record-

ing action is defined in another cluster countimpl. With

its help, metaprocedure addcounter is used to modify the

target cluster. First, the metaprocedure appends the body

of $countimpl$create (which initialize count value) to the

method create. Then, the metaprocedure copies signature

and implementation of getcount (which obtains the count

value). Finally, the metaprocedure enumerates all methods

of the target cluster one by one, and for modification opera-

tions (distinguished by the method names in this example),

the body of countup method is appended.

Actual extension object is defined by the metacluster

exaccum; the metaprocedures extends and addcount are in-

voked from within its body. Within a metacluster, identifier

“selftype” represents the type and cluster being defined

by that metacluster.

4.5 Constraints applied at DSL execution

As shown above, our DSL allows flexible construction /

modification of subtype relations, method signatures con-

signagure

<

definition

<<

metacluster X

replaced with X

p = proc( T1, T2, ... Tn ): Tr

p = proc( U1, U2, ... Un ): Ur

Fig. 8 Signatures and compatibility of methods

tained in a type and method definitions associated with a

cluster. However, as noted before, when there remains any

inconsistency among resulting metaobjects, DSL runtime er-

ror (compile-time error for o3 compiler) is signaled. Actual

processing and conditions need be satisfied are as follows:

• There should be no cycles in supertype-subtype graph.

• When a signature is added to a cluster, when the type

of its first parameter is a supertype of the cluster’s type,

the type of first parameter is substituted by the cluster’s

type. *2

• When multiple method signatures with same method

name are added to a cluster, the number of arguments

and return value should match among them. Also, in

the cases where substitution described above does not

apply, the type of each argument becomes the minimal

element of common upper bound of types for the cor-

responding argument of the signatures, and the type of

return value becomes the maximal element of common

lower bound of types for the return value of the signa-

tures. When such minimal / maximal element is not

uniquely determined, an error is signaled.

• When multiple method implementations with same

method name are added to a cluster, the one added

last survives (overwriting).

• When a method implementation is added to a clus-

ter, method signatures with same name should already

be associated with the cluster, and the implementation

should be compatible with them. “Compatible” in this

case means that each of the implementation、s argu-

ment type should be a supertype of corresponding sig-

nature’s type, and the implementation’s return type (if

any) should be a subtype of signature、s return type

(Figure 8). *3

• When before or after methods are added to a primary

method, the number of arguments for methods being

added should be less or equal to the number of argu-

ments for the primary method, and existing argument’s

types should satisfy conditions described above. (Non-)

*2 The reason for such substitution is that the first parameter
plays the role of receiver, over which dynamic dispatch is done.
The choice of not applying such substitution is also provided
through another metaobject API calls.

*3 We are planning to supplement DSL API with functionality to
insert conversion code when those compatibility constraints.
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Table 2 The size of o3 implementation

#. of lines

SableCC grammer 255
Java code 2400

existence of return values are arbitrary (return value is

ignored). *4

5. o3 Implementation

We use SableCC[6] compiler-compiler for lexical / syntax

analysis, along with its syntax tree construction / traversal

facilities. Other portions of the compiler are written in Java;

we show the code sizes in Table 2.

In the semantic analysis phase, information from inter-

faces and clusters are gathered in the type table, along with

their syntax tree for method bodies. As for metaprocedures

and metaclusters, DSL syntax trees are stored in the same

type table, and then interpreted execution of metacluster

DSLs are performed. During the DSL execution for a meta-

cluster, empty type data structure is first created and then

modified according to DSL description, and resulting struc-

ture is type- and semantic-checked at the final stage. Finally,

code generation is performed for both baselevel clusters and

metaclusters (Figure 9). Current compiler is an experimen-

tal one and do not support separate compilation.

The compiler generates code in plain C language, and af-

ter the code is compiled by a C compiler, the code can be

executed. Every object has a method table pointer as the

first component, and instance variables part (dependent on

the object’s type) follows. A method table stores pointer to

method vector, and a method vector points to bundle of code

pointers (C language function pointer). In case of a method

with primary portion only, its method vector contains a sin-

gle code pointer, and when before / after code are added,

corresponding method vector stores list of code pointer in ex-

ecution order. The number of before / after methods (code

pointers) are stored in the corresponding method table en-

try.

Implementations for the builtin clusters are described as

special (system-only) annotation, and C language code for

them are generated and prepended to the C language output

prior to the code generation for actual program. For storage

management, we just use conservative GC[3].

6. Related Works

Although there are many research on inheritance, type pa-

rameters (generics) and AOP, unification of these language

mechanisms is not much investigated.

As described before, Scala[12] allows inheritance to func-

tion as type parameterization through overriding abstract

type member(s) of parent classes on their subclasses. How-

ever, Scala language design do have type parameterization

by itself and does not intend to unify it with inheritance.

*4 We are planning to supplement DSL API with functionality
in which after methods can accept the return value form the
primary (or previous after) method, process it, and return sub-
stitute value.

source

ordinary
part

DSL
part

tree

C
lang
output

type table

check&
copy

modify-
cation

inter-
 preted
exec.

Fig. 9 The structure of o3 compiler

Additionally, inheritance itself is a much complex and

(too-) powerful language mechanism; aim of our research

is to decompose inheritance into more primitive functional-

ities.

Bergmans et. al.[2] are proposing a language which unify

inheritance and AOP with execution-time (dynamic) prop-

erty deduction. However, their proposed framework does not

consider static typing, and incur much overhead on method

dispatch due to dynamic computation; we are aiming for

more static and efficient mechanism with compile-time type

checking, which we believe is important for building robust

systems.

Controlling method dispatch and inheritance operation

can also be performed through metaobject protocols (MOP);

[9] and [4] are representatives ones. However, MOP is based

on inheritance as a basic mechanism, and controlling code

are injected by subclassing existing meta-objects and over-

riding some of the meta-methods (such as meta-method in-

vocation); they are not aiming at replacing inheritance with

set of more primitive operations.

7. Discussion and Conclusion

In this paper, we have proposed a programming language

with an unified composition mechanism, with which inheri-

tance, type parameterization, AOP and similar mechanism

can be constructed.

In our proposal, parameter substitution is built into the

language core, and compositions are performed through ex-

tracting and combining signatures and method implementa-

tions from existing abstraction units. To make such oper-

ations possible, our language possess dedicated meta-level

DSL (in addition to ordinary — base-level — language

core). Our compiler executes DSL description at compile

time (with an interpreter built into the compiler), through

which composition operations are actually performed.

To asses practicality and problems of the above scheme,

we have designed and implemented an experimental object-

oriented programming language “o3” as a test bed. First

experiences from this language is that such language can

actually be built, and can be used a lot like ordinary (exist-

ing) O-O languages.

However, simple declaration such as “extends

superclassname” in existing O-O languages have to

8
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be replaced with somewhat more lengthy code at the using

sites, inheritance implementation codes set aside. Major

complication is that implementation of additional parts

(additional methods or overriding methods) have to be de-

scribed separately from the metacluster which corresponds

to “subclass” unit. If those two portions could be described

as a single unit, the language will look much similar to

existing O-O language (with respect to inheritance usage).

We could write AOP-like functionalities (excluding con-

trols with dynamic properties) without much difficulty.

However, injection specifications (“pointcuts” in AspectJ

terms) are currently limited to pattern matching with re-

spect to method names. More general and flexible design

would be to add annotations to methods and use them for

injection specification. When adding annotation at source-

code level is undesirable, DSL API could be enhanced with

additional functionalities that examine abstraction units

and method signatures/implementations and attach appro-

priate annotations.

Current DSL API choices are minimal because we have

proposed small proof-of-concept implementation. We are

going to investigate more powerful API and their semantics

so that various useful language mechanisms could be built

using them, in type-safe manner.

This work was supported by JSPS KAKENHI

Grant Numbers 25330076.
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