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Abstract

The perceptual constancy of shape, including view invariance, is an amazing property of the
visual system. Cortical representation by the medial axis (MA) is an attractive candidate for
maintaining the constancy of a wide range of arbitrary shapes. Recent physiological studies
have reported that neurons in the primary visual cortex (V1) show a response to
two-dimensional (2D) MAs, and those in the inferior temporal cortex (IT) are selective to
three-dimensional (3D) MAs. However, little is known about the neural mechanisms
underlying the transformation of 2D to 3D MAs. As a first step toward investigating the
cortical mechanism, we have proposed as a hypothesis that a pair of monocular 2D MAs is
fused to generate a 3D MA. We examined the computational plausibility of the hypothesis;
specifically, whether an energy-based fusion model is capable of generating 3D MAs. We
generated blob-like, physiologically plausible 2D MAs, and used a standard energy model to
detect the disparity between a pair of 2D MAs. The model successfully generated 3D MAs for
a variety of objects that included typical shape characteristics. A reconstruction test showed
that the computed 3D MAs captured the essential structure of the objects with reasonable
accuracy and view invariance. These results indicate that the fusion of monocular blob-like
2D MAs is capable of generating a reasonable 3D MA within the framework of the energy

model.
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1 Introduction

Robust perception of the shape of objects is an amazing property of the visual system.
Although the view and size of an object on a retinal image change dramatically as we see the
object from different directions and distances, our visual system perceives a stable, invariant
shape for the object. The representation of shape in the visual cortex should play a crucial
role in realizing such invariance in shape perception. An object-centered representation that
describes shape as a spatial arrangement of parts has been supported widely by
psychological and physiological studies [1,2,3], as it has the ability to establish the
perceptual constancy of shape, including view and distance invariance. The medial axis (MA)
is considered suitable for a parts-based representation among theorists [4,5]. MA
representation encodes each part of the object with a medial line that is derived from the
local symmetry of the part. This representation, based on an object-centered coordinate, is
independent of view and capable of describing shape efficiently using two types of
parameters: the spatial arrangement and relative length of the axes corresponding to the
parts [4,6,7]. MA is an attractive candidate for the cortical representation of shape, as a
robust and efficient coding scheme [8].

Recently, Hung et al. showed that a number of neurons in the inferior temporal
cortex (IT) encode three-dimensional (3D) MA configurations, supporting the idea that the
MA plays a critical role in the representation of shape in the ventral pathway [9]. IT has been
reported to encode the 3D structure of shape [10,11], but little was known about the
representation scheme for 3D shapes. The selectivity for 3D MA configurations reported
recently in IT has provided crucial direct evidence to support MA coding for the cortical
representation of shape. A recent fMRI study has also reported the cortical representation of
MA structure in the ventral stream [12]. However, the computational processes that
constitute the 3D MA along the ventral pathway remain unknown. One of the keys to
understanding these processes lies in the lower cortex: cells in the primary visual cortex (V1)
show strong responses to the MA of a textured figure [13,14]. Computational studies have
shown that the MA response in V1 can be generated by simultaneous arrival of traveling
spikes that are initiated by nearby V1 cells [14], or from onset synchronization of

border-ownership (BO)-selective cells in V2 [15,16]. These computational studies have also
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reported that the generated MA encodes arbitrary two-dimensional (2D) shapes. These
studies note that the MAs were not like thin skeletons as previous studies have assumed,
but rather, the MAs were elongated blobs with spatial extent. This blob-like MA is expected
to be robust for 3D construction. Because the structure of skeletons is sensitive to the
direction of view (binocular difference) and noise in the contours, small changes in view and
contour dramatically alter the structure of skeleton-like MAs, leading to erroneous stereo
matching. However, blob-like MAs are expected to be insensitive to such changes [17].
Investigating the fusion of blob-like MAs rather than conventional skeleton-like MAs is
essential. The intermediate areas of the ventral visual pathway such as V4 are known to play
a crucial role in the binocular fusion of object shapes [18,19]. A certain translation function
that takes place along the ventral pathway may contribute to the construction of the 3D MA
observed in IT from the 2D MAs observed in V1.

We investigated the cortical mechanisms underlying the construction of 3D-shape
representation, by focusing on blob-like 2D MAs and their fusion along the ventral pathway.
Fusion of 2D MAs based on their disparity is a plausible candidate mechanism for filling the
gap between the 2D MA in the primary cortex and the 3D MA in the higher cortex. It is
conceivable that the 2D MAs resulting from the left and right retinal images are fused in an
intermediate-level area by a process based on disparities in the 2D MAs, thereby establishing
a 3D MA in IT. An alternative mechanism for the construction is that the MA responses in V1
are binocular with absolute disparity, and are thus “3D MA segments.” The 3D MA segments
in V1 would then be integrated along the visual pathway to establish a global 3D MA with
relative disparities in IT. Although a number of V1 cells are selective to the binocular
disparity of contours, it is not at all certain whether cells responding to MAs are selective for
the binocular disparity of the local MA. V1 cells could respond to the depth of contours, but
not necessarily to that of the MA. Specifically, the depths of both sides of an object as well
as its MA are generally different. This concept is illustrated by a cuboid with a different
depth for each side of the object; for example, the left side is nearer and the right side is
farther (see Figure 1A). Although the depths of these sides can be determined correctly, the
depth of the MA is inherently ambiguous; the MA could be located anywhere between the
two sides and there is no way to determine its depth from the depth of the sides. On the
other hand, in the former case involving 2D MAs, the local disparities between the 2D MAs

could be integrated without ambiguity (see Figure 1B). This idea appears to be consistent
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with the tuning of three-dimensional orientation in the macaque V4 [19]. In the present
study, we focused on the fusion of monocular 2D MAs that are formed in V1, and are fused
along the ventral pathway based on the disparities between the axes, to generate a 3D MA
inIT.

Physiological evidence for the generation process of a 3D MA has not been available.
As a first step toward investigating our hypothesis, we conducted computational studies to
determine whether the fusion of monocular, blob-like (physiologically plausible) 2D MAs is
capable of generating a 3D MA, and how accurately this method would work. Specifically, we
constructed a fusion model based on a standard energy model [20] that is thought to
capture the essential functions of physiological properties in early- to intermediate-level
visual areas. We examined whether the model is capable of generating a correct 3D MA, and
whether the computed 3D MA captures the essential structure that is sufficient for the
reconstruction of a 3D shape. Our simulation results showed that the model was capable of
generating 3D MAs for a variety of shapes including those of natural objects. The results also
showed that the reconstruction of 3D shapes based on the computed 3D MAs was successful,
with similar levels of accuracy for various shapes with different degrees of shape complexity,
which is one of the most remarkable features of the visual system. Furthermore, we tested
view invariance of the model in terms of the reconstruction error. Similar reconstruction
errors were observed for images from different views, suggesting that the representation of
a 3D MA from the fusion of 2D MAs has invariance to rotation. View invariance has been
reported in MA-selective cells in IT [9]. Our results indicate that the energy-based fusion of
monocular blob-like 2D MAs is capable of generating a 3D MA with robustness in terms of
shape complexity and view invariance. Therefore, the generation of a 3D MA from the fusion
of 2D MAs is a plausible candidate for the cortical mechanisms underlying the

representation of 3D shape.

2 The model

To investigate whether the fusion of physiologically plausible 2D MAs is capable of

generating a correct 3D MA, and whether the computed 3D MA captures the structure
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essential for the reconstruction of 3D shape, we constructed a computational model and
conducted simulations. An outline of the model is illustrated in Figure 1. The model is
composed of two stages: (i) the detection of monocular 2D MAs based on the distances from
surrounding contours, and (ii) the generation of a 3D MA from the disparities between the
two 2D MAs (Figure 1B). A unit in the first stage computes the distances between the unit
and the points on the contours surrounding the unit, and evaluates how much the unit is
similarly distant from the surrounding contours by taking pairwise differences between the
distances. Units with small differences (similar distances) tend to be located around local
symmetry axes, thus their locations are highly likely a part of the 2D MA. The second stage
fuses a pair of 2D MAs using a standard energy model to generate a 3D MA. Note that the
model includes neither the representation nor the reconstruction of a 3D object. We
conducted the reconstruction in the Results section solely for the evaluation of the

computed 3D MA.

2.1 The detection of 2D MA
A computational study by Hatori and Sakai has shown that onset synchronization of
BO-selective cells appears to generate V1 activities in response to 2D MAs [16,21].
BO-selective cells on the contour of a figure depolarize if the figure is located on their
preferred side [22]. The spikes from BO-selective cells, which are initiated at the same time
and travel at the same speed, reach the center of the figure at the same time. Temporal
integration of the traveling spikes would result in strong responses of cells located at the
center of the figure and along the axes of local symmetry, generating the V1 activity
corresponding to the MA. The magnitude of the activity depends on how much the cell is
similarly distant from the contours. Taking into account the essence of their idea, the
present model computes the possibility of being a 2D MA based on distances from the
surrounding contours. Although Hatori’s model was capable of processing multiple objects,
we limited our model to dealing with a single object for the sake of simplicity. We computed
an index that describes how much a cell is similarly distant from the contours. If the value of
the index exceeds a certain threshold, we consider it as an indication of the MA.

The input to the model was a pair of stereo images with a spatial resolution of 200 x
200 pixels (considered as 5 x 5 degrees of visual angle). To evaluate the similarity of

distances from nearby contours, we measured the distance, dist(p,q;), between a point



156

157

158
159

160

161
162

163

164
165

166

167
168
169
170
171
172
173

174

175
176
177
178

179

180
181

within a figure, p, and every point on the contour, g;:

dist(p,q) =lp—q; Il , Eq. 1

where ||.— .|| represents the Euclidean distance between the two points. The distances

between p and q; were measured for every 5° (Figure 1C):

q €Q, where Q = {q;|4q;pqi+1 = 5°} . Eq. 2

The equidistance index, E(p), is given by a mean of the pairwise differences in the distance
between p and g; :

E(p) = o { D2 2% sist(p,q) —dist®,a) } Eq. 3

where |Q| indicates the number of the elements of Q. To reproduce the nonlinearity of
neural responses, we introduced a sigmoidal function for s(.) :

_Xx
s =1- =% Eq. 4

1+e w

where a constant, w, controls the rate of sigmoidal decay. Throughout the simulations, we
set w to 6 so that the decay is 10% if the difference in distance is 18 pixels.

We computed the equidistance index for all points within a figure. A unit with a
higher index value is likely to be located around the local axes of symmetry. We consider
that units with an index value higher than or equal to a threshold, E;,es7014, COrrespond to
the MA. Therefore, an index to represent how much a unit is likely to be part of the MA is
given by the equidistance index with a threshold, Eipreshoia:

7 E ] lf E 2 E ,
MA_lndex(p) = {O(p) othe(f‘,?,ise threshold Eq. 5

We chose empirically Eipresnoiq=0.26. This value is crucial for the formation of MA.
Although this threshold could be fixed for all stimuli, we chose to fine-tune the value within
15% because details of the formation of 2D MAs are not the focus of our study. To avoid an

abrupt distribution of the MA, we introduced Gaussian smoothingto MA_index:
MA(p,, py) = (MA_index = Gauss)(p,,py) , Eq. 6

where (p, py) is the spatial position of a point p, and * and Gauss represent convolution

and a 2D Gaussian with o, = 0, = 2 pixels, respectively. The optimal size of the Gaussian
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could be different among objects depending on their spatial extent. However, our test
showed that the computed MAs were barely sensitive within the range of 3x G. As previously
noted, we define a 2D MA as a set of points that are located nearly equidistant from
surrounding contours. Therefore, our 2D MA is a fat region with spatial extent, which is
distinct from an engineering MA that is defined by skeletons. A 2D MA was computed for
each ocular image. A binocular pair of 2D MAs was used to generate a 3D MA as described in

the next section.

2.2 The detection of 3D MA

To obtain a 3D MA from a pair of monocular 2D MAs, we computed disparities between the
two axes. Figure 1D shows a diagram of the computation. We used a standard energy model
for binocular disparity [23]. We assumed that a fusion mechanism similar to the energy
model might take place along the ventral pathway probably in intermediate-level visual
areas. The model consists of a cascade of simple- and complex-type cells with half-wave
rectification. A pair of 2D MAs was used as input, and the disparities were determined as
described below.

A model complex cell consists of a pooling of four quadrature pairs of model simple
cells (Figure 1D (i)) with a particular binocular disparity. The response of a pair of simple cells,
01(x,y) was computed by the convolution of a monocular image (2D MA) and an oriented
Gabor function with a particular orientation, phase, and disparity. We summed up the
responses for the right and left images, and passed them through a half-wave rectification
step (Figure 1D (ii)):

sumsimple(x'y) , if Sumsimple(XIY) =0,

Eq. 7
0 , otherwise |, a

0'(x,y) ={

where

Sumsimple(x; y) = (nMAleft * Gaborleft)(x; y) + (nMAright * Gaborright) (X, y) Eqg. 8

nMAj;, and nMA,4,, represent a normalized 2D MA for the left and right images,
respectively. MA(x,y) of an image was normalized to its maximum value so that nMAy,
and nMA, g4, range between 0 and 1. Gaboryy and Gabor,,, represent the

oriented receptive field in V1 for the left and right images, respectively. A detailed
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description of Gabor,s; and Gabor,;gy; is given in Appendix A.

The response of a model complex cell, 0%(x,y), was given by the summation of

squared outputs of the four quadrature pairs of the model simple cells, 01'4’" (Figure 1D

(iii)):
0%(x,y) = ¥F, (01'¢i)2. Eq. 9

To establish orientation-invariant selectivity, we pooled three types of complex cells with
distinct optimal orientations (8 = 0, /6, m/3) by using a winner-take-all mechanism.
Although the three channels for orientation appear fewer than those in V1, we chose three
for the sake of simplicity. The response of the winner complex cell with disparity, 1, is

given by (Figure 1D (iv)):
Og'lpj(x, y) = max (oz'Zi(x, y)) ) Eq. 10

The model has 11 distinct disparity channels (j = 1-11), resulting in the range of disparity
between 0 and 10 pixels. The disparity of a location is given by a winner-take-all mechanism,
that is, the preferred disparity of a cell with the strongest response among the 11 disparity

channels is chosen as the disparity of the location (Figure 1D (v)):

disp(x,y) = argmax {Og'wj(x, y)} : Eqg. 11
¥j

We defined horizontal disparity as:

(disp * Gauss)(x,y),

disparity(x, y) = for (X, ylnMAright(x; y) > Nthreshold) ’
-1 , otherwise ,

Eq. 12

where Nipresnoia indicates the threshold for eliminating unnecessary smoothing. We set
N¢jresnoia t0 0.1, however, the results were similar when the threshold is less than or equal
to 0.3. Gauss(x,y) represents the Gaussian for smoothing with o, = o, = 3 pixels. The
optimal size (o) of the Gaussian could depend on the size of an object. However, our test
showed that the size of the Gaussian was relatively insensitive to the results; an enlargement

of 50% did not alter the results. The relation between the disparity of a location,
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disparity(x,y), and the depth of 3D MA, depth(x,y), is given by:

delta
disparity(x,y)/f

depth(x,y)? — ( + 2% fix) * depth(x,y) + fix? =0,

for disparity(x,y) >0 , Eq. 13

depth(x,y) =0, fordisparity(x,y) =0,
where f is the focal length (5 cm; 142 pixels) and delta is the distance between the two
eyes (8 cm; 227 pixels). fix is the distance between a fixation point and the frontal plane
including the eyes. The nearest point of an object was chosen as the fixation point, and its

depth was considered zero. The depth of 3D MA in the model is given by:

depth(x,
MAdepth(x; y) = pf(y) ’
for (x,y |disparity(x,y) > 0) , Eq. 14

where r represents the ratio between the size of the real object and its projection onto the
retina (image).

To evaluate the model, we reconstructed the shape from the computed 3D MA, as
described in the Results section. For the reconstruction, we needed the distances between
the MA and the surrounding contours as well as the location of the MA. Because the model
does not compute the distances, we preserved the distances between the 2D MA and the
contour of the object in the right image for the purpose of evaluation. This procedure
assures consistency and objectivity in the determination of the distances, and adequately

evaluates the location of the MA.

3 Results

We constructed a computational model that generates a 3D MA from the fusion of
physiologically plausible 2D MAs, based on a standard energy model [20] that is thought to
capture the essential functions of physiological properties in early- to intermediate-level
visual areas. We examined whether the model is capable of generating a correct 3D MA, and

whether the computed 3D MA is adequate for the reconstruction of a 3D shape. The model
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has two novel characteristics: (1) the 2D MA is defined as a set of points that are nearly
equidistant from surrounding contours, thus, our 2D MA has a spatial extent, unlike a
skeleton as defined in engineering; (2) we detected the binocular disparities between such
“fat” 2D MAs using an energy model. We performed the simulations of the model with a
variety of 3D objects that included distinct features of shape. Firstly, we present the results
of examples with elementary geometric features such as a capsule and a cuboid. Secondly,
we present the results for typical geometric features, such as a variation in thickness and a
bend, together with other complex features. We also present the results for pairs of real
images. For the evaluation of the computed MA, we reconstructed a 3D shape based on the
MA, and computed the reconstruction accuracy. To thoroughly test the reconstruction of the
3D shape, we examined the reconstruction error using three criteria: depth from the eyes,
3D shape (relative depth), and the shape of the 2D projection with respect to the eyes
(comparable with the retinal images). We also present the results for testing view invariance

of the computed MA.

3.1 The proposed 2D MA
Retinal images of an object can be noisy for various reasons, such that contours of an object
might be deformed. However, our visual system is capable of generating a stable percept of
the object’s shape. The representation of shape in the cortex appears to be robust with
respect to noise on the contour. In contrast, the skeletal representation that is used in
engineering is sensitive to noise on the contour. An example is given in Figure 2, which
shows MAs and their reconstruction, with and without noise. In Figure 2A, the top and
bottom panels show the rectangles without and with noise, respectively. Here, we
introduced two notches as contour noise. The two engineering MAs for the rectangles with
and without noise appear very different (correlation = 0.77), as shown in Figure 2B (left). The
change in the MA structure that is caused by slight noise often produces considerable
differences in MAs between the left and right images, which could be a major reason that
binocular fusion of the engineering MA is difficult. On the other hand, the physiological MA
appears to be stable with respect to noise, and produces a robust structure in the presence
of noise.

To demonstrate the insensitivity of a physiologically plausible MA with respect to

contour noise, we computed the MAs for the same two stimuli used above, with and
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without noise, and compared the two MAs. Figure 2C (left panels) shows the computed 2D
MAs. The MAs for the object with and without noise were very similar (correlation = 0.99),
indicating that the physiologically plausible MA produces a stable structure insensitive to
noise on the contour. To demonstrate the accuracy in the reproduction of the original image
from the physiologically plausible 2D MAs, we reconstructed the object shape from the
computed MA. The reconstruction was conducted by placing circles for all points on the MA,
with the radius of the circles equal to the distance to the nearby contour [16]. Figure 2C
(right) shows the reconstructed shape from the computed physiologically plausible MAs.
Although the reconstruction is not as ideal as that from the engineering MAs (the
reconstruction errors (see [16] eq.10) for the engineering MAs were 0.05 regardless of noise),
the rough shape appears to be reproduced (the errors were around 0.09). The result
suggests that the physiologically plausible 2D MA produces a stable structure that is capable

of representing an object's shape with robustness.

3.2 The generation of 3D MAs for elementary shapes

The computed 2D and 3D MAs for a capsule, the simplest shape for representation by a MA,
are shown in Figure 3. Input images for the left and right eyes are shown in Figure 3A. The
computed 2D MAs for each eye is shown in Figure 3B. We observe a rod-like MA elongated
along the major axis of the capsule. The 2D MA for the left eye appears slightly tilted
compared with that for the right eye, indicating that the top side (in 2D image) of the
capsule is farther than the bottom side. We set the fixation point (depth = 0) at the bottom
end of the major axis, such that the disparity increases toward the top side. The computed
3D MA is shown in Figure 3C. We observed a rod-like MA with its depth increasing toward
the top side, showing agreement with the shape of the capsule.

We computed 2D and 3D MAs for a cuboid, which is another elementary shape with
sharp corners (Figure 3D). The computed 2D MA for the cuboid is shown in Figure 3E.
Similarly to the capsule, the tilt of the 2D MAs (Figure 3E) is slightly different between the
left and right images (the left MA is more tilted). We set the fixation point (depth = 0) at the
nearest corner of the cuboid, such that the disparity increases toward the top side. The
computed 3D MA is shown in Figure 3F. We observe a vase-like MA with its depth increasing
toward the top side, showing agreement with the shape of the cuboid. These results show

that the model computed reasonable 3D MAs for elementary shapes with simple structure.

11



326

327
328
329
330
331
332
333
334
335
336
337
338
339
340

341

342

343
344
345
346
347
348
349
350
351
352
353
354

3.3 Evaluation by the reconstruction of 3D shape for elementary shapes
To evaluate the adequacy of the computed 3D MA, we reconstructed a 3D shape based on
the 3D MA, and computed how accurately the computed 3D MA is capable of reproducing a
3D shape in terms of its depth and shape. For the reconstruction, we needed the distances
between the MA and the surrounding surface, as well as the location of the MA. The model
focuses on the location of the MA, and it does not determine the distances to the surface.
For the 3D reconstruction, we used the Euclidean distance between the MA and the nearest
contour that is stored separately from the model, as described in the Model section. We
reconstructed the 3D shape by placing a number of overlapping spheres along the 3D MA.
The centers of the spheres were aligned with the MA, and the radii were set equal to the
distance to the nearby contour.

We evaluated quantitatively the accuracy of the reconstruction in terms of depth
and shape. The reconstruction error for depth was defined as the difference in the depth

maps between the original and the reconstruction:

2
Zx,y{D original(x'y) —Dreconstruct(*.y)}

2
z:X»}’Doriginal(x'y)

Errotaepen = , Eq. 15

for (X,y | Doriginal(xJ y) N Dreconstruct(x' y) * ¢) ’

where Doriginai (X, ¥) and Dyeconstruce (X, y) represent the depth map of the original and
reconstruction, respectively. The depth map indicates the distances of all points on the
object surface from the eye. This index computes the difference in depth for all points where
the original and the reconstruction overlap. To evaluate the reconstruction of shape, we
introduced an index, ETT07gpqpe, Which was defined by the normalization of Errorgep:, to
the maximum depth within each map. This normalization cancels out the absolute depth so
that shape (or relative depth) is evaluated. Note that ETrrorg,,,. estimates the shape of
the front side, not the overall 3D shape, because the model does not estimate the back side
of an object. These error indices become zero when the reconstruction is perfect (equal to
the original), and one when the reconstruction is twice as large as the original.

Figure 4 shows the reconstruction of the two elementary shapes, the capsule and

cuboid. The columnar shape and the rounded ends of the capsule were reconstructed

12
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smoothly (Figure 4A). Figure 4B shows the difference in depth from the viewing point. The
overall difference, ETT074epn, was 0.78. As we discuss later, the error appears to be caused
by the simplification of the energy model in which only one and three channels are provided
for spatial frequency and orientation, respectively. Figure 4C shows the difference in shape
(relative depth). The overall difference, ETro7spqpe, Was 0.16, indicating that the model
successfully reproduced the shape with rounded surfaces. Further evaluation of the errors is
discussed in the next section. Because the shape of the capsule is composed of a set of
spheres, it was expected that the reconstruction from overlapping spheres along the 3D MA
would reproduce the shape of the capsule with high accuracy. A cuboid with sharp corners
was expected to be difficult for the model. Figure 4D shows the reconstruction of a cuboid.
Although the reconstructed shape is somewhat rounded compared with the original cuboid,
we can still observe corners that are a crucial feature of a cuboid. Error,e,, for the
cuboid was 0.79, indicating a level of accuracy similar to the capsule. The reconstruction of
the surface was fairly successful with Errorspgpe 0f 0.52. These results indicate that the 3D
MA computed by the model is fairly capable of representing the shape of objects with

elementary shapes.

3.4 Evaluation of 3D MA for shapes with typical features

To investigate the accuracy of the model for the representation of 3D shape, we
performed simulations of the model with a variety of objects with distinct features. In this
section, we report in detail the results of three examples with typical features: (i) a shape
with varying thickness along its major axis, (ii) a shape with a curved axis, and (iii) a
combination of multiple features. Overall evaluation of the model for various shapes is
discussed in the next section.

Figure 5A shows the results of a vase whose radius varies along the major axis. The
reconstruction from the computed 3D MA shows the depth increasing along the major axis
from the center to both ends, indicating successful reproduction of the crucial features of
the vase. Errorgepen and ETTotsg,. were 0.57 and 0.62, respectively. The vase was
expected to be easy for the model, similarly to the capsule, because both surfaces are
rounded. However, the reconstruction errors were still larger than the cuboid that consists
of flat surfaces and sharp corners. This large error is attributable to the failure of the

reproduction along the top and bottom of the vase where surfaces splay out. This change is
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barely detected by the disparity in the contours of the vase (the boundary between the vase
and background) that extends horizontally at the top and bottom ends. Because the overall
surface (except for both the ends) was reproduced successfully, the results indicate that the
3D MA computed from the model is capable of representing a shape with varying thickness
along the axis.

Figure 5B shows the results for a golf club that contains a bent axis and a flat surface.
In both the reconstruction and in the computed 3D MA, we can observe a sharp bend at the
middle of the head of the club. The depth of the reconstruction increases from the bottom
end toward the top end, which is consistent with the structure of the original shape.
Errotyeptn and ETTovsg,. were 0.85 and 0.64, respectively, similar to the range for other
stimuli. The major cause of the error was the flatness of the club head. As discussed with the
cuboid, we reconstruct objects using spheres along the axis, so that the reconstruction of a
flat surface is difficult. These results indicate that the computed 3D MA is capable of
representing an object shape that contains a sharp bend along the major axis.

Figure 5C shows the results for a cow that has a complex structure. The head and
body of the cow appear to be reproduced smoothly and successfully. The values of
Errotyepen, and Errotsug,. were 0.62 and 0.68, respectively. The failure of the
reconstruction of the legs was a major source of the error. Because the present model has
only a single frequency, small parts are disregarded. The results show that the model is
capable of representing a complex structure with an error similar to that of simple structures,
which is consistent with the characteristics of the human visual system. This result supports
the robustness of the model in its representation of shape.

To examine the representation of shape from real images (not created by CG), we
conducted a simulation of the model using stereo photographs that may include a variety of
noise. A pair of convergent stereo images of a miniature duck was taken, as shown in Figure
6A, and used as an input stimulus. The fixation point was set at the center of the duck's
chest. Figure 6B-D shows the results of the simulation. The depth of the computed 3D MA,
as shown in Figure 6C, increases as it diverges from the center of the chest. Figure 6D shows
the reconstruction in which the shape of the head and body of the duck appear to be
reasonably reproduced. These results suggest that the model is capable of generating a

reasonable 3D MA from real images.
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3.5 Overall evaluation of the reconstruction error

We evaluated quantitatively the accuracy of the reconstruction in terms of depth and 3D
shape. The reconstruction error for depth, ETrorye,:n, represents how accurately the
absolute depth is reproduced by taking the difference between the depth maps of the
reconstruction and the original, and the error for shape, ETrorgqp., represents how
accurately 3D shape is reproduced by canceling out the absolute depth. We reconstructed
the 3D shape from the 3D MA for a variety of objects, in addition to those with typical
shapes as shown above. The eight input stimuli, the computed 3D MAs, and the
reconstructions of shape are shown in Figure 7. The ETroryeps, and ETrorgng,. for all
objects (including those shown in the previous sections) are shown in Table 1. The mean and
SD of the depth error were 0.69 and 0.13, respectively, indicating that the capability of the
model to represent 3D depth is relatively independent of the complexity of the shape and
structure of the object. The mean and SD of the shape error were 0.70 and 0.34, respectively.
It appears that low errors were observed for the objects whose surface is smoothly rounded
or relatively simple when viewed from the designated eye position. The duck showed the
worst error among these objects, because the width of its neck differed between the left
and right images so that the shape of their 2D MAs were very distinct; this discrepancy
caused the failure of binocular fusion leading to an inaccurate representation of depth in the
3D MA. These results indicate that the proposed model is capable of representing the rough
shape of various 3D objects. Given the limited number of frequency and orientation
channels (1 and 3 for frequency and orientation, respectively), the reproduction should be

considered surprisingly successful.

3.6 Evaluation by the reconstruction of 2D stimulus (frontal projection)

As an evaluation of the internal representation of the model, we examined the capability of
the model to reconstruct the original input stimulus from the computed 3D MA. We defined
the error in 2D projection, Error,p, as an index to indicate how accurately the model is
capable of reproducing the 2D shape:

|Soriginal_Sreconstruct

S 7

original

Error,, = Eq. 16

where S;riginai @nd Syeconstruce indicate the surface areas that are projected onto an eye
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(the 2D area seen from a viewing point) of the original and reconstruction, respectively. This
index is important in that it shows the capability of the model to reconstruct the original
stimulus from the internal representation of the model. The index becomes zero when the
reconstruction is perfect, and one when the reconstruction is twice as large as the original.
The errors of all objects are shown in Figure 8. The mean and SD of the error were 0.14 and
0.05, respectively. The error was less than 20% for most of the objects except the horse and
the elephant whose legs were too thin to be reproduced. We also calculated separately the
errors for the over- and underestimation of the areas (the positive and negative parts of the
index). The results are shown in white and black in the insets of Figure 8, and the values are
given in Table 2. The model appears to show overestimation where the contour of an object
is concave, and underestimation where the part is small. Because the shape is reconstructed
by superimposing spheres, concave regions tend to be masked by the spheres
(overestimated). Small parts are often missed because the present model consists of a single
spatial frequency channel. If multiple frequency channels were provided, the model would
be capable of detecting these small parts and avoid underestimation. Multiple frequency
channels would also be helpful in reducing the overestimation caused by concave surfaces.

These results support the capability of the model to represent object shape.

3.7 View invariance of the reconstruction

IT neurons that are selective for 3D MA showed view-invariant responses [9]. The human
visual system also shows view invariance in its perception of object shape, although the
reaction time often varies. It is expected that view invariance is an inherent characteristic of
the representation by the MA. Here, we evaluated whether our model reproduces view
invariance in the reconstruction error. We computed the 3D MA and the reconstruction
error for a series of images viewed from distinct directions. Specifically, we used the stimuli
of a cow viewed from its side, tail, and an in-between position. The input stimuli are shown
in Figure 9 (generated by rotating the cow shown in Figure 5C), together with the computed
3D MAs and the reconstructions. The head and body of the cow were reproduced in all views,
although mostly its thin legs were not. The error in depth, E7rorgepq,, for each view was
0.54 (Figure 9A), 0.40 (Figure 9B), and 0.62 (Figure 9C), respectively, and the mean of the
three was 0.52. The error in shape, ETT07spqpe, for each view was 0.56 (Figure 9A), 0.75

(Figure 9B), and 0.83 (Figure 9C), respectively, and the mean of the three was 0.71. Both
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errors in depth and surface show small variation: all views show errors that are within 10%
of the means. This result shows that the model is capable of reproducing shapes from a
variety of viewpoints with similar amounts of error. This view invariance is consistent with

the characteristics of IT neurons tuned to a 3D MA configuration, and also human vision.

4 Discussion

Numerous studies have suggested object-centered coordinates for the cortical
representation of shape [1,2,3]. Although theoretical studies have favored the advantages of
the MA representation for more than three decades, only a few physiological studies have
reported supportive results[13]. Recently, an electrophysiological study has provided direct
evidence that neurons in IT show selectivity for the 3D MA configuration [9]. However, the
mechanisms by which the 3D MA is constructed through the visual pathway have not been
clarified. The present study examined neural processes for the generation of a 3D MA. A
physiological study has reported that neurons in V1 respond to the medial region of a
textured figure[13]. Such a response in V1 could be produced by the synchronization of
BO-selective neurons in V2, and the 2D MA has been reported to be capable of coding object
shape [16]. We focused on the transformation of the 2D MA reported in V1 into the 3D MA
observed in IT. The latency of V1 cells that respond to the edges of an object range between
40 and 60 ms [13, 24], and that to 2D MA range between 90 and 110 ms [13, 24]. The onset
latency of IT cells is generally more than 90 ms [25] and the latency for 3D MA is considered
to be much longer than 90 ms. Given this time constraint, afferent connections appear to
play a crucial role in the transformation from 2D MAs to a 3D MA, probably in combination
with efferent connections. Therefore, the present study investigated the generation of a 3D
MA by the binocular fusion of 2D MAs. Note that the present model does not account for
these latencies. It is expected to further study the temporal properties of the representation
of 3D shape.

In the process of binocular fusion, it is crucial to determine whether the responses
of V1 cells to MA are monocular or binocular. If the MA is monocular, a retinal image of an

object is transformed into a monocular 2D MA by V1 cells, and then the fusion of a binocular
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pair of 2D MAs generates a 3D MA based on the disparity between the 2D MAs. On the other
hand, if the MA in V1 is binocular, a local segment of the 3D MA is produced from a
binocular pair of local contours of the object image, and the integration of the 3D MA
segments generates a global 3D MA in IT. Consider the case where a contour of one side of
an object is nearer than the fixation point, and that of the other side is farther. In the
monocular case, the disparity-selective cells fuse a pair of 2D MAs based on the disparity
between the axes to generate a 3D MA that represents correct depth. On the other hand, in
the binocular case, the fusion of a binocular pair of local contours would be extremely
difficult because the fusion requires V1 cell that is tuned to near on one side and far on the
other side, and that signals depth at the middle of the two. An alternative would consider
feedback from higher cortical areas to V1. Because disparity-selective cells in V1 detect local
disparity and the higher cortical regions are required to produce global depth, a higher
region such as V4 and IT would generate 3D contours and send feedback to generate local,
binocular 2D MAs in V1. Although feedback may play an important role, an assumption of
such complex pathways prevents the construction of a plausible computational model. In
the present study, we focused on the monocular case, and proposed the hypothesis that a
pair of 2D MAs that encode monocular projections of object shape is fused to generate a 3D
MA, as a first step toward understanding the transformation of MA from V1 to IT.

We defined the physiologically plausible 2D MA to mimic the activities of V1 cells
responding to 2D MA. The physiologically plausible 2D MA is capable of representing the
outline of an object with around 10% error. A major downside of MA representation in
general could be high sensitivity to noise on contours. In the real world, a retinal image of an
object often includes noise on contours for a variety of reasons. In fact, an engineering MA
that is defined by a set of axes (skeleton) often changes considerably in response to noise, so
that even the graph structure that represents the object shape varies. Given that the visual
system is able to perceive shape with stability and robustness in the presence of noise, the
engineering MA may not be a suitable candidate for cortical representation. In the present
study, we propose that the physiologically plausible MA overcomes this disadvantage. To
reproduce V1 responses to 2D MA, we defined the physiologically plausible MA as having an
equal distance between the point under examination and nearby contours. Specifically, we
computed the equality of the distances from the contours, and determined the region of the

MA by setting a threshold for equality. Because of this processing, the MA is defined by a set
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of points whose distances from the contours are similar, but not exactly equal, giving it
robustness with respect to noise on contours. Therefore, the physiologically plausible MA is
inherently more robust than the engineering MA, at the expense of accuracy. The
physiologically plausible MA appears meaningful in terms of its stability and robustness.

The present model uses a standard energy model [23] to determine the binocular
disparities of physiologically plausible 2D MAs. The disparity at each location along the axis is
detected by using a winner-take-all mechanism among disparity-selective cells, each of
which is tuned to a distinct disparity. For the sake of simplicity, the model has only a single
spatial frequency channel and three orientation channels. Therefore, the accuracy for
disparity detection is very limited, and much lower than that of the visual system. It should
be noted that a model with this simple structure is capable of generating a 3D MA whose
disparity varies reasonably according to the original shape, and reproduces the overall form
of the original object. These results support the plausibility of binocular fusion of
physiologically plausible MAs using the energy model.

We constructed the model for the generation of a 3D MA based on the binocular
fusion of physiologically plausible 2D MAs, and examined whether this model is suitable for
the representation of 3D shape. We computed a 3D MA from a number of objects, with a
variety of shape characteristics, including natural objects. The model was capable of
generating a reasonable 3D MA for a wide range of objects. We also reconstructed the 3D
shape of the test objects based on the computed 3D MA. The model showed excellent
reconstruction accuracy for somewhat rounded objects such as a capsule, and reasonable
accuracy for all other objects including those with sharp corners, flat surfaces, and complex
structures. Given the limited number of frequency and orientation channels, the
reproduction should be considered as surprisingly successful. Furthermore, the simulation
results showed view invariance in the reconstruction, which is consistent with the results of
physiological experiments [9]. These results show that a model based on the fusion of a
binocular pair of physiologically plausible 2D MAs generates a reasonable 3D MA with
robustness in representing the 3D structure independent of viewpoint, indicating the

plausibility of the model as a candidate for the cortical computation of 3D MA.
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Figure 1.

(A) An illustration showing that, in general, the depths of the sides and the MA of an object
could be different. In this example, the right and left sides of the cube are far and near,
respectively, with respect to the vertical dotted line. (B) The model comprises two distinct
stages: detection of monocular 2D MAs based on the distances from surrounding contours,
and generation of a 3D MA from the disparities between the two 2D MAs. (C) A 2D MA is
defined as a set of points (e.g., p) equidistant from nearby contours (g;, gi+1). (D) A detailed
illustration of the model. Activities of a pair of simple cells with a certain phase difference
(e.g., an in-phase pair for disparity=0) are summed (i), and pass through a half-squaring
computation (ii). A model complex cell pools four quadrature pairs of simple cells whose
preferred orientation is one of three orientations (0, 30, or 60°; iii). The responses of three
complex cells with a distinct preferred orientation are integrated by winner-take-all (iv).
There are eleven channels with distinct phase differences, corresponding to eleven distinct
disparities. The optimal disparity at each spatial position is chosen from the eleven distinct

disparities by winner-take-all (v).
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Figure 2.

(A) Stimuli used for the computation of 2D MAs, with and without noise on the contour
(bottom and top, respectively). (B) The engineering MAs (left) and their reconstructions
(right). Dotted lines indicate the object contour (shown for presentation purposes). The two
engineering MAs were different, with a correlation coefficient of 0.77. The reconstructed
images were accurate with reconstruction errors of 0.05 for both stimuli. (C) The biological
MAs (left) and their reconstructions (right), with (bottom) and without (top) contour noise.
The two biological MAs were similar with a high correlation coefficient of 0.99. Although the
reconstructions were less accurate (errors of 0.09) than those of engineering MAs,

reasonable shapes were achieved.
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689  Computation of 3D-MAs from binocular 2D-MAs (A-C for a capsule; D-F for a cuboid). (A, D)
690 Two input images for the left and right eyes. (B, E) The computed 2D MAs. White lines
691 indicate object contours for presentation purposes, and are not computed by the model.
692 (C, F) The 3D MA fused from the binocular 2D-MAs. The disparity computed by the model is
693  plotted in grey. White/dark gray represents a far/near disparity. (A-C) The fixation point
694 (depth = 0) was set at the bottom end of the major axis, so that the disparity increases
695 toward the top. The computed 3D-MA shows a smooth gradient for the disparity consistent
696  with the ground truth. (D-F) The fixation point was set at the nearest corner of the cuboid,
697  so that the disparity increases toward the top. The disparity in the 3D-MA is somewhat
698 complicated because of the sharp corners.

699
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Figure 4.

(A) Reconstructed shape of a capsule. The reconstruction was given by the superposition of
overlapping spheres onto the computed 3D MA. For details, see the model section. The x-y
axes represent the plane projected onto a camera. The z-axis and grey represent depth (a
larger value indicates farther away). (B) Evaluation of the difference in depth between the
original and the reconstruction of the capsule. The right panel shows the difference in grey
(between 0 and 1). The overall error for depth was 0.78. (C) Evaluation of the difference in
shape (relative depth) between the original and the reconstruction of the capsule. The error

for shape was 0.16. (D) Reconstructed shape of a cuboid.
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Figure 5.

Simulation results for the stimuli with typical features. The top row shows the binocular
stimuli for a vase (A), a golf club (B), and a cow (C). The second row shows the computed
2D-MAs. The third row shows the computed 3D MAs. Conventions are the same as in Figure
3. The bottom row shows the reconstructed shapes from the 3D MAs. Conventions are the
same as in Figure 4. The errors for depth were 0.57 (A), 0.85 (B), and 0.62 (C), and the errors
for shape were 0.62 (A), 0.64 (B), and 0.68 (C).
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Simulation results for real stereo images of a duck. Conventions are the same as in Figure 5.
(A) The images of the duck taken using a stereo camera with the fixation point set at the
center of the front of the body. (B) The computed 2D MAs. (C) The 3D MA obtained from the
binocular 2D-MAs. The computed depth increases as it departs from the center of the front
of the body. (D) The reconstructed shape from the 3D MA. The head and body of the duck

are visible.
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740  Simulation results for other stimuli such as a rabbit, a bear, a pot, a horse, a cat, a duck, an
741  elephant, and a stegosaurus. Conventions are the same as in Figure 5. The errors for
742  reconstruction are summarized in Table 1. All shapes were reasonably reconstructed,
743  including those with complex shapes.
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Figure 8.

Evaluation by the reconstruction of 2D images (surface area). The differences in the surface
areas between the original and reconstructed shapes (Error,p) are plotted. The surface area
was determined by projecting a 3D shape onto a camera. The solid line and dotted lines
indicate the mean and SD of the errors, respectively. The errors were less than 20% except
for the horse and elephant. The over- and under-estimation of the areas are shown in the
insets by white and black, respectively. Overestimation is often observed around concave

contours, whereas underestimation occurs around small parts.
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Figure 9.

View invariance of the reconstruction. Conventions are the same as in Figure 5. (A-C) The
simulation results for a cow viewed from three different directions. The top row shows the
stereo stimuli that were viewed from distinct points. The middle row shows the 3D MAs
computed from the binocular 2D MAs. The bottom row shows the reconstructed shapes
computed from their 3D MAs. The depth errors were 0.54 (A), 0.40 (B) and 0.62 (C). The
shape errors were 0.56 (A), 0.75 (B) and 0.83 (C). Both types of error in the reconstruction

show small variation, indicating that the model is capable of reproducing reasonable shapes

regardless of viewpoint.
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Table 1.

Reconstruction errors in depth and shape for all stimuli

Stimulus Depth error Shape error
Capsule 0.7771 0.1559
Cuboid 0.7879 0.5244

Vase 0.5822 0.6298
Club 0.8469 0.6408
Cow 0.6176 0.6803
Rabbit 0.5861 0.6577
Bear 0.7205 1.0237
Pot 0.7412 0.4924
Horse 0.7412 0.6748
Cat 0.6860 0.7660
Duck 0.6173 1.5153
Elephant 0.9318 1.0348
Stegosaurus 0.4262 0.4011
Mean 0.6891 0.7043
SD 0.1325 0.3368
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Table 2.

Reconstruction errors in 2D projection for all stimuli

Stimulus Erroryp Overestimated Underestimated
Capsule 0.1084 0.1084 0
Cuboid 0.0785 0.0703 0.0083

Vase 0.1986 0.1635 0.0351
Club 0.1341 0.1224 0.0117
Cow 0.1651 0.0700 0.0951
Rabbit 0.1260 0.1015 0.0245
Bear 0.1522 0.0713 0.0809
Pot 0.0806 0.0612 0.0194
Horse 0.2124 0.1347 0.0778
Cat 0.1136 0.0962 0.0174
Duck 0.1188 0.1066 0.0121
Elephant 0.2126 0.1101 0.1025
Stegosaurus 0.1507 0.0913 0.0594
Mean 0.1424 0.1006 0.0419
SD 0.0451 0.0291 0.0362
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Appendix A

Gabors, and Gabor,,,, represent the oriented receptive field of the model simple

cells for the left and right images, respectively:

(x = %) cos(0) — (y = yo)sin(®)) ¢i> ‘el

1
Gabor,eﬂem (x,y) = o cos (Zn

2 A
Eq. 17
Gaborrtghte'q) " (X, y)
1 (x — x) cos(8) — (y — ¥o)sin(6)) P
= §COS(2TE 3 + i+ xe”
Eq. 18

where

Oy ay

h= _ [{(x—xo) cos(6)—(y—yo) sin(@)}2 n {(x—xo) sin(6)+(y—y,) cos(@)}zl

where x, and y, represent the center of the Gabor filters, and 8, A, oy, and g, show
the orientation, wavelength and SDs of the Gabor filters, respectively. ¢; represents the
phase of the left receptive field, and 1; represents the ocular difference in phase. We set
A, 0, and o, to 20, 8 and 8 pixels, respectively, so as to mimic V1 cells (1 and oy(0;)
equal to 0.5 and 0.2 degree in visual angle, respectively). ¢; (i = 1-4) were setto 0, /2,
m and 3m/2. ¥; (j = 1-11) ranged between 0 and 2m in increments of m/11. The size
(spatial extent) of the Gabor filter was set to 40 x 40 pixels (1 x 1 degree) so as to be

consistent with that of the receptive field of V1 neurons [25].
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