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ABSTRACT  

 Vertebrates are equipped with so-called camera eyes, which provide them with image- 

forming vision. Vertebrate image-forming vision evolved independently from that of other animals  

and is regarded as a key innovation for enhancing predatory ability and ecological success.  

Evolutionary changes in the neural circuits, particularly the visual center, were central for the  

acquisition of image-forming vision. However, the evolutionary steps, from protochordates to jaw- 

less primitive vertebrates and then to jawed vertebrates, remain largely unknown. To bridge this gap,  

we present the detailed development of retinofugal projections in the lamprey, the neuroarchitecture  

in amphioxus, and the brain patterning in these animals. Both the lateral eye in larval lamprey and  

the frontal eye in amphioxus project to a light-detecting visual center in the caudal prosencephalic  

region marked by Pax6, which possibly represents the ancestral state of the chordate visual system.  

Our results indicate that the visual system of the larval lamprey represents an evolutionarily  

primitive state, forming a link from protochordates to vertebrates and providing a new perspective  

of brain evolution based on developmental mechanisms and neural functions. 
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A major question remaining to be answered in vertebrate evolution is how image-forming vision 

was established in a complicated eye from a simple, ocellus-like eye. Image-forming vision in 

vertebrates is thought to have evolved independently from arthropods and cephalopods and enabled 

their success as active predators (Lacalli, 2001).  

Basal chordates, amphioxus, have an ocellus-like ‘frontal eye’, but this appears to function 

only in photoreception and not in image-forming vision. Though amphioxus has multiple 

photoreceptors, not only the frontal eye but also Hesse ocelli, Joseph cells and lamella body and this 

indicates that multiple photoreceptors are probably appeared in chordate ancestors, it is considered 

homologous to the vertebrate paired eyes due to its topology, Pax6 expression and photoreceptor 

type (Lacalli, 2004). Recent molecular analyses gave further support for homology through the 

molecular fingerprinting of Rx, Gi and c-opsin in photoreceptor cells and Mitf and Pax2/5/8 in 

pigment cells (Vopalensky et al., 2012). Lacalli (1996) found the visual center by tracing 

innervation through electron microscopy and named it “tectum” as a homologous region to the 

vertebrate mesencephalon. However, the mesencephalon-specific marker gene Dmbx is not 

expressed in the nerve chord of amphioxus, suggesting that amphioxus lacks a mesencephalic 

region (Takahashi and Holland, 2004). Therefore, there is some disagreement on amphioxus 

neuroarchitecture and brain patterning, making the evolution of vision obscure. 

A key animal for resolving this issue is the lamprey, a basal vertebrate, because it 

possesses unique “dual visual development”. Adults have well-developed camera eyes, which can 

process well-focused color vision (Gustafsson et al., 2008). The retino-tectal projection of adult 

lampreys is topographically organized like that of gnathostomes (Jones et al., 2009). In contrast, in 

the larval stage, the eye is covered by thick, non-transparent skin, and the lens is immature, 

indicating that it is not an image-forming eye (Villar-Cheda et al., 2008). In this stage, their retina 

consists at least of opsin immunoreactive receptors and ganglion cells (Melendez-Ferro et al., 2002), 

and photoreceptors may contact directly ganglion cell dendrites (De Miguel et al., 1989). 
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As larvae grow, cells in the peripheral part of the retina actively proliferate until the  

metamorphic stage (Villar-Cheda et al., 2008), while most cells remain neuroblastic (Villar-Cerviño  

et al., 2006). The retino-tectal projection newly develops in larvae longer than 70–80 mm with  

topographical manner (De Miguel et al., 1990, Corinde-Petronio et al., 2011). During  

metamorphosis, neuroblasts differentiate into photoreceptor, bipolar, amacrine and horizontal cells  

in the peripheral retina, and the eyes become the ‘truly functional’, ‘camera-type’ eyes of adults  

(Villar-Cerviño et al., 2006; Villar-Cheda et al., 2008). These studies indicate that larval lampreys  

have a unique visual system, possibly indicating the primitive state of the vertebrate visual system,  

and provide key information on understanding the evolution of the vertebrate visual system.  

However, the early development of the optic nerve and its projection pattern remain unknown.  

Here we focused on the evolution of the vertebrate visual system, especially on its neural  

circuitry. We performed comparative examinations of the lamprey and amphioxus and, based on the  

results, propose an evolutionary scenario for the visual system in the chordate lineage.   
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MATERIALS AND METHODS 

Animals 

Adult lampreys (Lethenteron camtschaticum, synonym L. japonicum) were collected from the 

Shiribeshi-Toshibetsu River, Hokkaido, Japan. Mature eggs were expelled from females and 

fertilized in vitro by sperm. Adults were anesthetized in ethyl 3-aminobenzoate methanesulfonate 

(MS-222). Embryos were cultured at 16°C. Developmental stages were determined as described by 

Tahara (1988). 

Collection of larvae of Branchiostoma japonicum was done as described by Yasui et al. 

(1998) and of B. lanceolatum as described by Fuentes et al. (2007) 

Medaka (Oryzias latipes) eggs were incubated at 28°C and then used for neurolabeling 

experiments. 

 

Whole-mount immunostaining 

Whole-mount immunostaining of lampreys (L. camtschaticum) with anti-acetylated tubulin 

monoclonal antibody (Sigma, T6793, RRID: AB_477585) was performed according to Kuratani et al. 

(1997) with some minor modifications. Fixed embryos stored in methanol were washed in TBST 

containing 5% dimethylsulfoxide (TSTd). The embryos were then blocked with 5% nonfat dry milk 

in TSTd (TSTM). They were incubated with the primary antibody (diluted 1:1,000 in TSTM) for 2-

4 days at room temperature (RT). After washing with TSTd, samples were incubated with 

secondary antibody (horseradish peroxidase (HRP)-conjugated antibody (Sigma, A2554, RRID: 

AB_258008)) or fluorescence antibody (Invitrogen, Alexa fluor 555, A21424, RRID: AB_10566287) 

diluted 1:200 in TSTM. After a final wash in TSTd, embryos treated with HRP-conjugated antibody 

were incubated with the peroxidase substrate in TBST for 1 hour, reacted in TBST with the same 

concentration of DAB with 0.01% hydrogen peroxide, and examined through an optical microscope. 

The embryos treated with fluorescent secondary antibody were dehydrated and clarified in a 1:2 
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mixture of benzyl alcohol and benzyl benzoate (BABB) and then examined using a confocal laser 

microscope (LSM 510, Zeiss). 

Whole-mount immunostaining of amphioxus with anti-acetylated tubulin (Sigma, T6793, 

RRID: AB_477585), synaptotagmin (Sigma, S2177, RRID: AB_261464), anti-vesicular 

acetylcholine transporter (VAChT) (Sigma, V5387, RRID: AB_261875) and anti-serotonin (Sigma, 

S5545, RRID: AB_477522) antibodies was performed according to Kaji et al. (2001) with minor 

modifications. The primary and secondary antibodies were added together for the double 

immunostaining with anti-synaptotagmin and anti-acetylated tubulin. Stained specimens were 

examined using a confocal laser microscope (LSM510, Zeiss). 

 

Antibody Characterization 

Please see Table 1 for a list of all antibodies used. 

 The acetylated tublin antibody recognized a single band of 50 kDa m.w. on western blots 

of rat brain (manufacturer’s datasheet) and stained a pattern in lampreys and amphioxus that is 

identical with previous reports (Kuratani et al., 1997, Kaji et al., 2001 respectively). 

 The synaptotagmin antibody reacts specifically with synaptotagmin, derived from rat brain 

tissue (65 kDa) and the antibody may be used in immunoblotting of rat brain extract. Staining of 

synaptotagmin band is specifically inhibited with synaptotagmin peptide (rat, amino acids 1-16 with 

C-terminally added lysine) (manufacturer’s datasheet). Western blots of amphioxus 7days larvae (B. 

lanceolatum) showed a band at 65-70kDa, suggesting the antibody reacts with synaptotagmin in 

this tissue (Fig. 1). 

 The VAChT antibody reacts specifically with VAChT (∼70 kDa) (manufacturer’s datasheet). 

In immunoblotting VAChT appeared as a doublet band at 67-70 kDa and staining of the VAChT 

band by immunoblotting is specifically inhibited with the immunizing peptide (VAChT rat, amino 

acids 512-530 with N-terminally added lysine) (manufacturer’s datasheet). On western blots of 
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amophioxus larvae showed a band at 55-60kDa (Fig. 1). In addition, the cell distribution by 

immunostaining (see results) is identical with that of VAChT in situ hybridization reported 

previously (Candiani et al., 2012)  

The serotonin antiserum specifically stains enterochromaffin cells in formalin-fixed, 

paraffin-embedded sections of normal human appendix and serotonin-containing carcinoid tumors 

(manufacturer’s datasheet). In the central nervous system, the antiserum reacts with serotonin-

containing fibers in perfusion-fixed, free-floating sections of rat brain. Specific staining is inhibited 

by preincubation of diluted antiserum with 500 µM serotonin or 200 µg/ml serotonin-BSA 

(manufacturer’s datasheet). The staining pattern in and amphioxus that is identical with previous 

reports (Holland and Holland 1993). 

 

Neurolabeling 

To label the neurons, dextran conjugates (tetramethylrhodamine, 3,000 m. w., Invitrogen, D3308; 

Alexa Fluor 488, 10,000 m. w., Invitrogen, D22910) were injected into the right eyecup or the 

caudal rhombencephalon of lamprey embryos or larvae (L. camtschaticum) and medaka larvae 

according to the method described by Glover (1995). The one-color triple labeling was performed 

by the tetramethylrhodamine-dextran conjugates injection to right eyecup, right forebrain surface, 

and rhombencephalon at the same time. The two-color double labeling was performed by the 

sequential labeling of Alexa Fluor 488-dextran conjugates to the rhombencephalon and 

tetramethylrhodamine-dextran to the right eyecup with 30 minuites interval. The injected embryos 

were incubated at RT for 30 minutes to allow anterograde labeling of neuronal projections with 

dextran. Embryos were then washed with distilled water and fixed in 4% PFA/PBS. The fixed 

specimens were dehydrated and clarified with BABB. Labeled neurons were examined using a 

confocal laser microscope. 
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Isolation of cDNA clones of lamprey and amphioxus genes 

Pax6 lamprey homologs were isolated as described by Murakami et al. (2001). 

Pax6 amphioxus homologs were isolated by PCR using adult B. japonicum cDNA as a template. 

Primers for PCR were designed on the Pax6 sequences of B. floridae (AJ223440), which have been 

cloned previously (Glardon et al., 1998). These primer sequences are F: 5’-

ATTTCCCGCCTTCTGCAGGTCTCGAATGG-3’ and R: 5’-

GCCATATTGCCGGGTACGGAAAAGCTTGG-3’. 

We isolated a cloned sequence that was orthologous to BfPax6 (100% match by amino acid 

sequence), and it was submitted and assigned the DDBJ/EMBL/GenBank accession number 

AB915169. 

 

Whole-mount and section in situ hybridization 

Whole-mount in situ hybridization for lamprey larvae (L. camtschaticum) was performed according 

to Ogasawara et al. (2000) with minor modifications. Whole-mount in situ hybridization for 

amphioxus larvae was performed as described previously (Wada et al., 1999). 

Double staining by in situ hybridization and anti-acetylated tubulin immunostaining was 

performed following serial treatments. After post-fixation by the NBT/BCIP reaction of in situ 

hybridization, the samples were incubated at RT with 0.1 M glycine-HCl (pH 2.0) for 30 minutes to 

inactivate alkaline phosphatase. The specimens were then post-fixed with 4% PFA/PBS for 1 hour, 

washed with PBS and immunostained. The embryos were dehydrated and clarified with BABB and 

then examined using a confocal microscope. The in situ hybridization signals were examined by 

transmitted light microscopy and the immunostaining signal by specific laser microscopy. 
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RESULTS 

Early development of the lamprey optic nerve 

 Immunostaining of anti-acetylated tubulin was performed to examine the temporal profile 

of lamprey optic nerve development (see also Barreiro-Iglesias et al., 2008; Kuratani et al., 1998, 

1997). In stage 24 and stage 25 embryos, some neural fibers (for example, fasciculus retroflexus 

[FR], medial longitudinal fascicle [MLF], supraoptic tract [SOT], tract of the posterior commissure 

[TPC]. tract of the postoptic commissure [TPOC]) were observed, but there were no optic fibers 

(Fig. 2A, B). The eyecup (asterisk) and optic fibers (arrow) were first identified during late stage 25 

(stage 25.5; 14–15 days post-fertilization; Fig. 2C). The eyecups are located just on the ventral 

region of the ophthalmicus profundus ganglion (gV1), and the optic fibers are coursed anteriorly 

toward the chiasm (Ch). In stage 26, the eyecup and optic fibers were present, although it was 

difficult to distinguish them from the inner brain fibers (Fig. 2D). In stage 27, the optic nerve was 

formed of thin fibers, as noted using confocal microscopy (Fig. 2E). In stage 28, the relative 

position of the eyecup was shifted slightly. It was just ventral to gV1 at stage 27, but between gV1 

and the trigeminal ganglion (gV2,3) at stage 28 (Fig. 2F). The opticnerve is thicker compared with 

the previous stage. It is also notable that the dorsal region of the mesencephalon (Mes) has 

relatively low immunoreactivity to anti-acetylated tubulin, indicating that there are only a few fibers 

in this region.  

 

Neurolabeling of lamprey optic nerve projections 

We next examined the projection target of the optic nerve by rhodamine-dextran conjugate 

injection into lamprey embryos and larvae. The reagent was injected into the right eyecup, and the 

right optic nerve axons were traced anterogradely (Fig. 3A). The optic fibers could be labeled in 

embryos older than stage 25.5 (Fig. 3B). This result is consistent with that of the anti-acetylated 

tubulin immunostaining. As larvae grew, more fibers were labeled (Fig. 3C–F). The tract of 
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posterior commissure (TPC) was also observed as an artifact (Fig. 3B, C), because some tracer was 

taken directly by the brain surface. The optic nerve terminated contralaterally in the left dorsal 

region forebrain at all stages, and this region was rostral to the tectum, which is located just anterior 

to the midbrain-hindbrain boundary (MHB). Moreover, ipsilateral retinofugal fibers were not 

observed at any stage. 

We triple labeled the optic nerve, the MLF and the TPC to clarify the target position of the 

optic nerve projection in the brain. The TPC was situated along the dorsocaudal border of the 

diencephalon, and the nucleus of the MLF in the ventral region of the posterior commissure. The 

optic nerve projected to the region ventral to the TPC or nucleus of the MLF (Fig. 4A). This region 

corresponds to the ventral part of the pretectum. Furthermore, we performed two-color double 

labeling of the optic nerve and the MLF (Fig. 4B) and found optic nerve axons with varicosity (see 

inset of Fig. 4B) projecting to dendrites of MLF neurons, suggesting that at least a part of the optic 

fibers directly connects to MLF neurons. 

To verify the brain region receiving the optic projection, we compared nerve tract locations 

with the expression pattern of Pax6, a dorsal prosencephalon marker (Murakami et al., 2001). The 

Pax6 expression domain covered the TPC and the nucleus of the MLF situated in its ventral region 

(Fig. 4C). This result is highly consistent with a previous observation (Murakami et al., 2001). 

Because the region of the optic nerve projection overlapped with the ventral TPC and nucleus of the 

MLF, the optic nerve likely projects to a Pax6-positive prosencephalic region (P1; pretectum) , but 

not to the mesencephalic region. 

For comparison, we examined optic nerve innervation pattern in medaka as a 

representative species of gnathostomes by two-color double labeling of optic fibers (magenta) and 

medial longitudinal fascicle (green). (Fig. 4D). In medaka 10 dpf (days post fertilization) larvae, 

most of the optic fibers (ON) projected to the tectum, and any nMLF-projecting fibers (green) could 

not be observed in this experiment. These results are consistent with the previous research, which 
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studied retinotectal pathfinding in medaka (Yoda et al., 2004). 

 

Brain patterning and visual center in amphioxus larvae 

 We next examined brain patterning in amphioxus. Vopalensky et al. (2012) showed the 

homology between the amphioxus frontal eye and the vertebrate lateral eye by molecular 

fingerprintings. In addition, they showed innervation by the serotonergic neuron from the frontal 

eye to the tegmental neuropile, which they suggested is comparable to the vertebrate hypothalamus, 

although no clear evidence was provided for this homology. Thus, we traced the position of the 

visual center and examined its homology with the vertebrate neuroanatomical domain by comparing 

gene expression in this developmental stage. We performed immunostaining using several neural 

system-related proteins to determine the position of the visual center in amphioxus larvae.  

 In four gill slit (4gs) larvae, we found anti-serotonin (5-HT)-immunopositive cells located 

just on the ventral side of the frontal eye pigment (Fig. 5A). These cells were identified as R2 cells, 

as described previously (Holland and Holland, 1993; Lacalli, 1996; Vopalensky et al., 2012). 

Furthermore, there were anti-VAChT-immunoreactive neurons (Fig. 5B) in 4gs larvae. These 

cholinergic cells are located in the ventral neural nerve chord; thus, they are ventral component 

(VC) motor neurons (Bone, 1960; Lacalli, 2001; Lacalli and Kelly, 1999; Candiani et al., 2012). 

Most rostral cells had relatively large cell bodies. Based on position and cell morphology, these 

large neurons were likely those identified by Lacalli (1996) as giant cells of the primary motor 

center in the caudal cerebral vesicle. Between these two types of neurons, we found an anti-

synaptotagmin (syt) highly-immunoreactive region (Fig. 5C1). Topologically, this region is just 

rostral to the n2 nerve root (rN2, Fig. 5C2) and thought to correspond to the ‘tectum’(Lacalli, 1996) 

and its ventral neuropile, containing many synaptic connections. These results suggest that this 

region may process light information and control movements as a visual center (as at least one of 

the function of this region), receiving input from rostral sensory neurons and sending output to 
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caudal motor neurons (Fig. 5E).   

 We then performed double staining of Pax6 in situ hybridization with acetylated-tubulin  

immunostaining in one-gill slit (1gs) larvae. At this stage, Pax6 was expressed in the posterior  

cerebral vesicle (Fig. 5D1, see also Glardon et al., 1998). We found that this region coincides  

topologically with the rostral region of the n2 nerve root (rN2, Fig.5D2). This indicates that the  

presumptive visual center in amphioxus larvae is located in the Pax6 positive region, which may be  

homologous to the vertebrate prosencephalon as discussed below.   
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DISCUSSION 

The ‘primary’ optic nerve of lampreys 

Lampreys show ‘dual (or two-step) development’ of the eye and optic nerve. In embryonic 

or pre-ammocoete larvae (the ‘primary’ phase), the retina has an ocellus-like form (Melendez-Ferro 

et al., 2002). In this period, a small number of the optic nerve fibers is formed. In late ammocoete 

larvae (the ‘secondary’ phase), new optic fibers are formed again. After metamorphosis, adult 

lampreys have well-developed camera eyes. Thus, we can term the optic nerve formed in the 

embryonic period as the ‘primary’ optic tract and the one in the newly formed in late larvae as the 

‘secondary’ optic tract. 

Our experiments showed that the primary optic tract projects into the Pax6-positive neural 

region (Fig. 4). By comparing the expression of Pax6, Otx, Dlx1/6, Pax2/5/8 and neural tracts 

marked by anti-acetylated tubulin antibodies, Murakami et al. (2001) indicated that the lamprey 

prosencephalon can also be identified as a Pax6 and Otx-positive region and the mesencephalon as 

a Pax6-negative and Otx-positive region. Therefore, we concluded that the lamprey primary optic 

tract projects into the prosencephalic region but not the mesencephalic region. In the embryonic 

period, there are opsin-immunoreactive photoreceptor cells in the retina, which may process light 

information at this stage (Melendez-Ferro et al., 2002). As we found no other retinofugal fibers, we 

surmised that this neural tract is the only pathway transferring light information from the retina in 

early larvae (see also De Miguel et al., 1990). This retino-pretectal projection remains as a 

retinofugal pathway in adult lampreys (Jones et al. 2009). It is thought to function in escape 

swimming in response to sudden visual stimuli and in dorsal light response (Ullén et al., 1993, 

1997; Deliagina and Fagerstedt, 2000). Furthermore, retino-pretectal projection is conserved among 

gnathostomes. For example, the light reflex of the rat pupil is controlled by the contralateral 

pretectum (Trejo and Cicerone,1984). And the retino-pretectal projection is also found in hagfish 

(Kusunoki and Amemiya, 1983; Wicht and Northcutt, 1990) and blind cave fish (Voneida and 

Page 13 of 37

John Wiley & Sons

Journal of Comparative Neurology



 

 14 

Sligar, 1976), whose retino-tectal projection is mostly degenerate. Although no diencephalic  

projection was observed in the stage studied in our experiments (Fig. 4D), the adult medaka actually  

has a number of diencephalic visual centers, such as the pretectum (Deguchi et al., 2005). Also in  

the zebrafish (Burrill & Easter 1994), the presumptive retio-pretectal projection is observed shortly  

after the retino-tectal projection (52–54 hpf).  

Therefore, the retino-pretectal projection is evolutionarily conserved and probably an  

ancestral feature of vertebrates. There are fibers of the TPC and nucleus of the MLF in the  

pretectum region (Fig. 4). The TPC fibers integrate left-right information, and the MLF fibers send  

the signal into the spinal cord. This neuroarchitecture may represent the ancestral visual system.   

  

Visual center similarity in lampreys and amphioxus  

We showed the input/output architecture in the visual system of the amphioxus frontal eye,  

and that the presumptive visual center in amphioxus is located in the Pax6 expression domain (Fig.  

5). Therefore, this visual center occupies the same prosencephalic region to that of the region  

receiving the ‘primary’ optic projections in lamprey, though the segmental neural organization in  

amphioxus is unclear and detailed synaptic connections between row cells of the amphioxus frontal  

eye remains to be studied. Both regions are Pax6-positive, receiving visual input and sending output  

to the trunk, suggesting that this region functions as an integrative visual center (see also Fig. 6A).  

Thus, these regions share close morphological/functional similarity. In addition, Lacalli (2002)  

showed that the overall structure of the anterior cerebral vesicle change little during metamorphosis  

in amphioxus. This suggests that the visual center does not change during metamorphosis.   

Moreover, in the ascidian Ciona intestinalis, putative photoreceptor cells project their axon  

to other neurons in the posterior sensory vesicle (Imai and Meinertzhagen, 2007). Some cholinergic  

neural cell bodies are located in this region (Yoshida et al., 2004), which is CiPax6-positive at the  

mid-tailbud stage (Mazet et al., 2003). Therefore, the visual center of this species is also located in a  
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Pax6-positive region.  

On the other hand, there are some differences in the visual neuroarchitecture between 

lampreys and amphioxus. Serotonergic R2 cells in amphioxus are thought to be homologous to the 

retinal ganglion cells (RGCs) in vertebrates. But there is no 5-HT immunoreactive RGCs in 

lamprey before metamorphosis (Abalo e al., 2008). There is another 5-HT immuonoreactive cells in 

the photoreceptor organ in early lampreys, the pineal organ. Although this organ develops from 

Pax6-positive region, the relationship with R2 cells is also unclear. Moreover, the R2 cells projects 

ipsilateral (Vopalensky et al., 2012), though the retinal projection in early lamprey is contralateral, 

as is the often case in vertebrates. However, there are other types of neurons corresponding to the 

vertebrate retinal neurons, R3 and R4 cells, and especially, R4 cells are thought as possible 

homologues of RGCs (Lacalli 1996). R4 cells are not serotonergic, and have contralateral 

projections. They locate just caudal to the R2 cells and have backward-projecting axon like R2 cells. 

Therefore we do not dismiss a possibility that other cell types such as R4 cells also act as sensory 

neurons in the amphioxus frontal eye visual system, and RGCs are homologous to some of these 

cells rather than R2 cells.  

 

Evolution of vision in the chordate lineage 

 Based on our findings, we propose an evolutionary scenario for the visual system in 

chordates (Fig. 6A). The common ancestor of chordates had an ocellus-like eye(s), and the visual 

center was in the Pax6-positive region, where directional vision was processed. These characters 

are also conserved in tunicates. Moreover, they can be traced back to more ancestral lineages, 

because the serotonergic neurons found in the amphioxus frontal eye are thought to be homologous 

to the serotonergic apical organ neurons found in larval echinoderms (Lacalli et al., 1994).  

Larval hemichordates also have these serotonergic neurons in the apical organ (Miyamoto et al., 

2010; Nakajima et al., 2004; Nielsen and Hay-Schmidt, 2007). Furthermore, recent research 
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(Marlow et al., 2014) revealed that the origin of the apical organ can be traced back to the common 

ancestor of cnidarians and bilaterians. 

In the common ancestor of vertebrates, the Pax6-positive (i.e., prosencephalic) visual 

center remains one of the main visual center as larval lampreys. Larval lampreys also show some 

other ancestral states, such as the endostyle (Wright et al. 1980) and the absence of arcualia (Potter 

and Welsch 1992; Richardson et al. 2010). In addition, the mesencephalic retino-tectal projection 

was a newly formed ‘secondary’ optic tract in the mesencephalic region. This projection developed 

a topographical arrangement that enabled the ancestor to establish image-forming vision (Jones et 

al., 2009).  

 This scenario also inspires an idea that the evolution of image-forming vision is associated 

with the evolution of the mesencephalon. However, the emergence of the mesencephalon remains 

enigmatic. Figure 6B shows the gene regulatory network establishing the mesencephalic region in a 

vertebrate neural tube. Pani et al. (2012) proposed that the IsO organizer is conserved in the acorn 

worm. However, Holland et al. (2013) noted that the arrangement of IsO-related genes is reversed 

and that the organizer activity might not be directly related to the effects on A/P patterning. The 

Otx/Gbx boundary and Pax6 expression is present in amphioxus (underlined), suggesting the 

existence of the IsO and conserved A/P patterning in the amphioxus neural tube. As neither 

Pax2/5/8 nor En1/2 is expressed in the neural tube just anterior to the Otx/Gbx boundary, in 

addition to a lack of Dmbx expression, the amphioxus appears to lack a mesencephalic region. 

Rather, the expression profile of the patterning gene in the anterior neural tube is strikingly similar 

to that of the vertebrate prosencephalon. Our observations in this study are consistent with this idea 

because the amphioxus visual center, located in the posterior cerebral vesicle, is comparable to the 

prosencephalic ‘primary’ visual center found in larval lampreys.  
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FIGURE LEGENDS  

Figure 1  

Western blot analysis of synaptotagmin (syn) and vesicular acetylcholine transporter (VAChT) antibodies.  

Lane 1 and 2, stained with Syn. Lane 3 and 4, stained with VAChT. Lane 1 and 3, tissue extract  

from the mixture of amphioxus (B. lanceolatum) 7days larvae. Lane 2 and 4, tissue extract from the  

mixture of mouse cortex.  

  

Figure 2  

Whole-mount immunostaining with anti-acetylated tublin antibody in L. camtschaticum embryos  

and early larvae. Asterisks indicate the eyecup and arrows the optic nerve. A–D: Optical  

microphotographs of specimens stained by DAB in the craniofacial region. A: Stage 24. Axonal  

tracts, including the fasciculus retroflexus, medial longitudinal fascicle, supraoptic tract and the  

tract of the postoptic commissure. B: Stage 25. The tract of the posterior commissure is newly  

formed. C: Stage 25.5. The eyecup (asterisk) and optic nerve (arrow) have appeared. The eyecup  

region is magnified in the inset. D: Stage 26. The eyecup and optic nerve are still distinct. The  

magnified eyecup region is shown in the inset. E, F: Confocal microphotographs of specimens  

marked by fluorescent secondary antibodies in the head region. E: Stage 27. The optic nerve  

extends to the optic chiasm. The dorsal region of the mesencephalon was less immunoreactive. F:  

Stage 28. The relative position of the eyecup has changed slightly. Abbreviations: Ch, chiasm; FR,  

fasciculus retroflexus; Mes, mesencephalon; MLF, medial longitudinal fascicle; SOT, supraoptic  

tract; TPC, tract of the posterior commissure; TPOC, tract of the postoptic commissure. Scale bars  

= 100 µm.  

  

Figure 3   

Neurolabeling of lamprey (L. camtschaticum) optic nerve fibers. Asterisks indicate the left eyecup.  
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A: Overview of the labeled specimen at stage 27. Dextran was injected into the right eyecup  

(arrowhead), and it travelled through the chiasm, terminating in the left side of the brain. B–F:  

Neurolabeling in serial stages showing target regions. Arrows indicate optic fibers. B: Confocal  

microphotographs of the optic nerve projection region at stage 25.5. Some optic fibers are labeled  

(arrow). The tract of the posterior commissure is also labeled. C: Stage 26. More optic fibers are  

labeled than at stage 25.5. The tract of posterior commissure is also labeled. D–F: Stages 28–30.  

The number of optic nerves increases but terminates in the same region at all stages (dorsal region  

of the left eye). Abbreviations: Ch, chiasm; MHB, midbrain-hindbrain boundary; TPC, tract of the  

posterior commissure. Scale bars = 100 µm.  

.  

Figure 4   

Analysis of the optic nerve projection region in L. camtschaticum embryos and early larvae. A:  

Triple labeling of optic fibers, medial longitudinal fascicle and the tract of the posterior commissure  

in stage 27. B: Two-color double labeling of optic fibers (magenta) and medial longitudinal fascicle  

(green). The optic nerve projects to the dendrites of neurons of the nucleus of the medial  

longitudinal fascicle neurons. A magnified picture of optic fibers with varicosities (arrowheads) is  

shown in the inset. This picture was reconstructed from raw data before making the projection  

picture (B1). C: Double staining of anti-acetylated tubulin antibody immunostaining and Pax6 in  

situ hybridization. (C1) shows anti-acetylated tubulin, (C2) shows Pax6 expression by transmitted  

light and (C3) shows the merged microphotographs. The TPC is located in the caudal-most Pax6- 

positive region (arrow), and the nucleus of the medial longitudinal fascicle is located in its ventral  

region. D: Two-color double labeling of optic fibers (magenta) and medial longitudinal fascicle  

(green) in medaka. (D1) shows dorsal view of the brain region at 10dpf (days post fertilization).  

(D2) shows magnified left tectal region. Abbreviations: MHB, midbrain-hindbrain boundary;  

(n)MLF, (nucleus of) medial longitudinal fascicle; TPC, tract of the posterior commissure; tel,  
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telencephalon; ON, optic nerve fibers. Scale bars = 100 µm in (A), (C1), (D1), and (D2), 50 µm in 

(B1). 

 

Figure 5  

Neuroarchitecture and brain patterning of amphioxus larvae. A–C: Immunohistochemistry in B. 

lanceolatum four-gill slit (4gs) larvae. A: Immunostaining with anti-serotonin (5-HT) antibody. 

There are immunoreactive R2 photoreceptor cells just ventral to the frontal eye pigment observed 

by transmitted light (TR). B: Immunostaining with anti-VAChT antibody. Motor neurons in the 

ventral neural tube were immunoreactive (arrows), and most rostral cells were thought to be giant 

cells. C: Double staining with anti-synaptotagmin (syt, magenta) and anti-acetylated tubulin (ac-tub, 

green). (C1) shows synaptotagmin immunoreactivity and (C2) shows the merged microphotographs. 

The presumptive visual center (arrows) is relatively highly anti-synaptotagmin-immunoreactive, 

and this region is located just rostral to the root of the n2 nerve. D: Double staining with anti-

acetylated tubulin antibody immunostaining and Pax6 in situ hybridization in B. japonicum one-gill 

slit (1gs) larvae. (D1) shows Pax6 expression and (D2) shows the merged microphotographs. The 

caudal part of the cerebral vesicle is Pax6-positive (arrows), and this region corresponds to the 

presumptive visual center, located just rostral to the root of the n2 nerve. The arrow indicates the 

second nerve root. E: Schematic illustration of the neuroarchitecture and brain patterning of 

amphioxus larvae. Abbreviations: FEP, frontal eye pigment; GCs: giant cells; (r)N2, (root of) n2 

nerve; NP, neuropore; POP, preoral pit; R2Cs, row 2 cells. Scale bars = 50 µm. 

 

Figure 6  

Schematic illustration of the evolution of vertebrate image-forming vision. A: Hypothetical 

evolutionary scenario. The common ancestor of chordates had an ocellus-like eye(s), and the visual 

center was in the Pax6-positive region, which processes directional vision. In the common ancestor 
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of vertebrates, the Pax6-positive (i.e. prosencephalic; Pros) visual center remained the main visual 

center, since larval lampreys had the same type of visual system as protochordates. The 

mesencephalic (Mes) retino-tectal projection was newly formed as a ‘secondary’ optic tract. B:  

The gene regulatory network that establishes the mesencephalic region in the vertebrate neural tube. 

Genes with conserved expression in chordates are underlined (the Gbx gene is lost in tunicates and 

is dashed-underlined). Genes with conserved expression in tunicates and vertebrates are in bold. 
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Table 1. Table of Primary Antibodies Used 

 

Antigen 
Description of 

Immunogen 

Source, Host Species, 

Cat. #, Clone or Lot#, 

RRID 

Concentration Used 

Acetylated 

tublin 

α3 isoform of 

Strongylocentrotus 

purpuratus acetylated 

tublin, within four 

residues of Lys-40 of 

when this amino acid is 

acetylated 

Sigma, mouse monoclonal, 

Cat# T6793, 

RRID:AB_477585 

0.1ug/ul  

synaptotagmin 

KLH-conjugated, 

synthetic peptide 

corresponding to 

corresponding to the 

N-terminal of 

synaptotagmin I (SytI) of 

rat origin (amino acids 

1-16 with C-terminally  

added lysine) 

Sigma, rabbit polyclonal, 

Cat# S2177, 

RRID:AB_261464 

0.1ug/ul 

Vesicular 

acetylcholine 

transporter 

(VAChT) 

KLH-conjugated, 

synthetic peptide 

corresponding to 

C-terminal of the cloned 

rat VAChT (amino acids 

512-530 with 

N-terminally added 

lysine) 

Sigma, rabbit polyclonal, 

Cat# V5387 

RRID:AB_261875 

0.1ug/ul 

serotonin 

(5-HT) 

Rabbit serotonin 

creatinine sulfate 

complex conjugated to 

BSA 

Sigma, rabbit polyclonal, 

Cat# S5545, 

RRID:AB_477522 

0.1ug/ul  
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Figure 1  
Western blot analysis of synaptotagmin (syn) and vesicular acetylcholine transporter (VAChT) antibodies. 
Lane 1 and 2, stained with Syn. Lane 3and 4, stained with VAChT. Lane 1 and 3, tissue extract from the 

mixture of amphioxus (B. lanceolatum) 7days larvae. Lane 2 and 4, tissue extract from the mixture of 
mouse cortex.  

79x119mm (300 x 300 DPI)  
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Figure 2  
Whole-mount immunostaining with anti-acetylated tublin antibody in L. camtschaticum embryos and early 
larvae. Asterisks indicate the eyecupp and arrows the optic nerve. A–D: Optical microphotographs of 

specimens stained by DAB in the craniofacial region. A: Stage 24. Axonal tracts, including the fasciculus 
retroflexus, medial longitudinal fascicle, supraotic tract and the tract of the postoptic commissure. B: Stage 
25. The tract of the posterior commissure is newly formed. C: Stage 25.5. The eyecup (asterisk) and optic 
nerve (arrow) have appeared. The eyecup region is magnified in the inset. D: Stage 26. The eyecupand 

optic nerve are still distinct. The magnified eyecupregion is shown in the inset. E, F: Confocal 
microphotographs of specimens marked by fluorescent secondary antibodies in the head region. E: Stage 

27. The optic nerve extends to the optic chiasm. The dorsal region of the mesencephalon was less 
immunoreactive. F: Stage 28. The relative position of the eyecup has changed slightly. Abbreviations: Ch, 
chiasm; FR, fasciclus retroflexus; Mes, mesencephalon; MLF, medial longitudinal fascicle; SOT, supraotic 
tract; TPC, tract of the posterior commissure; TPOC, tract of the postoptic commissure. Scale bars = 100 
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Figure 3  
Neurolabeling of lamprey (L. camtschaticum) optic nerve neurons. Asterisks indicate the left eyecup. A: 

Overview of the labeled specimen at stage 27. Dextran was injected into the right eyecup (arrowhead), and 

it travelled through the chiasm, terminating in the left side of the brain. B–F: Neurolabeling in serial stages 
showing target regions. Arrows indicate optic fibers. B: Confocal microphotographs of the optic nerve 

projection region at stage 25.5. Some optic fibers are labeled (arrow). The tract of the posterior commissure 
is also labeled. C: Stage 26. More optic fibers are labeled than at stage 25.5. The tract of posterior 

commissure is also labeled. D–F: Stages 28–30. The number of optic nerves increases but terminates in the 
same region at all stages (dorsal region of the left eye). Abbreviations: Ch, chiasm; MHB, midbrain-

hindbrain boundary; TPC, tract of the posterior commissure. Scale bars = 100 µm.  
80x119mm (300 x 300 DPI)  
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Analysis of the optic nerve projection region in L. camtschaticum embryos and early larvae. A: Triple 
labeling of optic fibers, medial longitudinal fascicle and the tract of the posterior commissure in stage 27. B: 
Two-color double labeling of optic fibers (magenta) and medial longitudinal fascicle (green). The optic nerve 

projects to the dendrites of neurons of the nucleus of the medial longitudinal fascicle neurons. A magnified 
picture of optic fibers with varicosities (arrowheads) is shown in the inset. This picture was reconstructed 
from raw data before making the projection picture (B1). C: Double staining of anti-acetylated tubulin 

antibody immunostaining and Pax6 in situ hybridization. (C1) shows anti-acetylated tubulin, (C2) shows 
Pax6 expression by transmitted light and (C3) shows the merged microphotographs. The TPC is located in 
the caudal-most Pax6-positive region (arrow), and the nucleus of the medial longitudinal fascicle is located 
in its ventral region. D: Two-color double labeling of optic fibers (magenta) and medial longitudinal fascicle 
(green) in medaka. (D1) shows dorsal view of the brain region at 10dpf (days post fertilization). (D2) shows 
magnified left tectal region. Abbreviations: MHB, midbrain-hindbrain boundary; (n)MLF, (nucleus of) medial 

longitudinal fascicle; TPC, tract of the posterior commissure; tel, telencephalon; ON, optic nerve fibers. 
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Scale bars = 100 µm in (A), (C1), (D1), and (D2), 50 µm in (B1).  
80x156mm (300 x 300 DPI)  
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Neuroarchitecture and brain patterning of amphioxus larvae. A–C: Immunohistochemistry in B. lanceolatum 
four-gill slit (4gs) larvae. A: Immunostaining with anti-serotonin (5-HT) antibody. There are immunoreactive 

R2 photoreceptor cells just ventral to the frontal eye pigment observed by transmitted light (TR). B: 

Immunostaining with anti-VAChT antibody. Motor neurons in the ventral neural tube were immunoreactive 
(arrows), and most rostral cells were thought to be giant cells. C: Double staining with anti-synaptotagmin 
(syt, magenta) and anti-acetylated tubulin (ac-tub, green). (C1) shows synaptotagmin immunoreactivity 
and (C2) shows the merged microphotographs. The presumptive visual center (arrows) is relatively highly 
anti-synaptotagmin-immunoreactive, and this region is located just rostral to the root of the n2 nerve. D: 
Double staining with anti-acetylated tubulin antibody immunostaining and Pax6 in situ hybridization in B. 

japonicum one-gill slit (1gs) larvae. (D1) shows Pax6 expression and (D2) shows the merged 
microphotographs. The caudal part of the cerebral vesicle is Pax6-positive (arrows), and this region 

corresponds to the presumptive visual center, located just rostral to the root of the n2 nerve. The arrow 
indicates the second nerve root. E: Schematic illustration of the neuroarchitecture and brain patterning of 
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amphioxus larvae. Abbreviations: FEP, frontal eye pigment; GCs: giant cells; (r)N2, (root of) n2 nerve; NP, 
neuropore; POP, preoral pit; R2Cs, row 2 cells. Scale bars = 50 µm.  
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Schematic illustration of the evolution of vertebrate image-forming vision. A: Hypothetical evolutionary 
scenario. The common ancestor of chordates had an ocellus-like eye(s), and the visual center was in the 
Pax6-positive region, which processes directional vision. In the common ancestor of vertebrates, the Pax6-

positive (i.e. prosencephalic; Pros) visual center remained the main visual center, since larval lampreys had 
the same type of visual system as protochordates. The mesencephalic (Mes) retino-tectal projection was 

newly formed as a ‘secondary’ optic tract. B:  The gene regulatory network that establishes the 
mesencephalic region in the vertebrate neural tube. Genes with conserved expression in chordates are 

underlined (the Gbx gene is lost in tunicates and is dashed-underlined). Genes with conserved expression in 
tunicates and vertebrates are in bold.  

 
119x250mm (300 x 300 DPI)  

 

 

Page 38 of 37

John Wiley & Sons

Journal of Comparative Neurology



  

 

 

The common ancestor of chordates had an ocellus-like eye(s), and the visual center was in the Pax6-positive 
region, which processes directional vision. In the common ancestor of vertebrates, the Pax6-positive 

(prosencephalic) visual center remained the main visual center, since larval lampreys also have their visual 

center in the prosencephalon.  
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GRAPHICAL ABSTRACT 

 The common ancestor of chordates had an ocellus-like eye(s), and the visual center was in 

the Pax6-positive region, which processes directional vision. In the common ancestor of vertebrates, 

the Pax6-positive (prosencephalic) visual center remained the main visual center, since larval 

lampreys also have their visual center in the prosencephalon.  
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