NPC Natural Product Communications

Sesinoside, a New Iridoid Glucoside from Sesame (*Sesamum indicum*) Seedlings

Ryo Takase, Tsuyoshi Hasegawa, Kosumi Yamada, Koji Hasegawa and Hideyuki Shigemori*

Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan

shigemori.hideyuk.fn@u.tsukuba.ac.jp

Received: September 3rd, 2014; Accepted: September 19th, 2014

A new iridoid glucoside, sesinoside (1), was isolated from the seedlings of *Sesamum indicum*. The structure of 1 was elucidated by spectroscopic analyses and by methanolysis of 1, which produced the known compounds, phlorigidosides C (2) and (6*Z*)-foliamenthic acid methyl ester (3). This is the first report of an iridoid glucoside with 3.

Keywords: Sesinosede, Iridoid glucosedes, Sesamum indicum, Seedling, Photostress.

Iridoids are secondary metabolites of terrestrial and marine flora and fauna and are found in a large number of plant families, usually as glucosides. Currently, a thousand or more iridoid compounds have been reported [1]. They have a great variety of bioactivity, for example, antibacterial [2], antiviral [3], antiprotozoal [4], anticancer [5], anti-inflammatory [6], and melanogenesis inhibitory [7]. In addition, there is a report that drought stress increases iridoid glucoside biosynthesis in the roots of *Scrophularia ningpoensis* seedlings [8]. In this paper, we report the new iridoid glucoside, sesinoside (1), isolated from the illuminated seedlings of sesame (*Sesamum indicum*).

Sesinoside (1) was obtained as an amorphous powder. The molecular formula of 1 was established as C₂₇H₃₈O₁₃ by highresolution electrospray ionization mass spectrometry (HRESI-MS, m/z 593.2217 [M + Na]⁺, Δ +0.7 mmu). The IR spectrum exhibited absorption bands at 3398 cm⁻¹ for the hydroxyl group, and 1705 cm⁻¹ and 1635 cm⁻¹ for α , β -unsaturated ester groups. The ¹³C NMR spectrum (Table 1) of 1 indicated the presence of 27 carbons, which were assigned to two ester carbonyl carbons at $\delta_{\rm C}$ 170.2 and 169.7; six olefinic carbons at δ_C 154.4, 144.5, 139.5, 129.8, 127.4, and 108.6; nine oxygenated methine carbons at $\delta_{\rm C}$ 100.7, 96.9, 81.8, 79.6, 78.7, 75.8, 72.7, 63.8, and 63.5; two oxygenated methylene carbons at δ_C 63.9 and 59.7; a methoxy carbon at δ_C 52.7; two methine carbons at $\delta_{\rm C}$ 45.0 and 35.8; two methylene carbons at $\delta_{\rm C}$ 32.4 and 29.2; and three methyl carbons at δ_C 24.3, 18.6, and 13.3. The ¹H NMR spectrum of **1** showed three olefinic protons at $\delta_{\rm H}$ 7.52, 6.89, and 5.46; eight oxygenated methine protons at $\delta_{\rm H}$ 5.48, 5.21, 4.85, 3.47, 3.45, 3.39, 3.30, and 3.26; two oxygenated methylene protons at $\delta_{\rm H}$ 4.13 and 3.98/3.65; a methoxy proton at $\delta_{\rm H}$ 3.62; two methine protons at $\delta_{\rm H}$ 3.02 and 2.42; two methylene protons at $\delta_{\rm H}$ 2.38 and 2.29; and three methyl protons at $\delta_{\rm H}$ 1.90, 1.82, and 1.61.

The ¹H-¹H COSY data of **1** implied connectivities of H-1/H-9/H-5/H-6/H-7; H-1'/ H-2'/ H-3'/ H-4'/ H-5'/ H-6'; H-3"/ H-4"/ H-5" and H-7"/H-8" (Figure 2). The HMBC spectrum (Figure 2) showed the correlations of H-1/C-1'; H-3/C-1, C-4 and C-11; H-5/C-3, C-4 and C-11; H-6/H-1"; H-7/C-10; H-9/C-10; H-10/C-8 and C-9; H-12/C-11; H-3"/C-1", C-2" and C-9"; H-7"/C-5" and C-10"; H-9"/C-1" and C-2"; and H-10"/C-5" and C-6". According to the molecular formula of **1**, there were nine degrees of unsaturation. Two carbonyl

Sesinoside (1)Phlorigidoside C (2)Foliamenthic acid methyl ester (3)Figure 1: Structures of sesinoside (1), phlorigidoside C (2) and foliamenthic acid
methyl ester (3)

Table 1: ¹³C and ¹H NMR data of sesinoside (1) and phlorigidoside C (2) in CD₃OD^a.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1				2			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		¹³ C, δ _C		¹ H, δ _H (mult, J in Hz)		¹³ C, δ _C		¹ H, δ _H (mult, J in Hz)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	96.9ª	CH	5.48 ^a	d (9.7)	97.3ª	CH	5.31ª	d (9.7)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	154.4	CH	7.52	br s	155.0	CH	7.59	br s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	108.6	С			109.4	С		
	5	35.8	CH	3.02	dd (8.3,7.4)	39.3	CH	2.71	td (7.9,1.2)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	81.1	CH	5.21	dd (8.3,1.2)	80.3	CH	4.04	dd (7.9,1.2)
	7	63.8	CH		br s	65.7	CH		br s
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	63.5	С			63.9	С		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	45.0	CH	2.42	dd (9.7,7.4)	46.0	CH	2.45	dd (9.7,7.6)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	18.6	CH_3	1.61	S	18.8	CH_3	1.58	s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	169.7	С			171.7	С		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	52.7	CH_3	3.62	S	53.1	CH_3	3.78	s
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1'	100.7	CH	4.85	dd (7.9)	100.7	CH	4.83	d (7.9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2'	75.8	CH	3.30	dd (9.3,7.9)	75.7	CH	3.30	dd (9.3,7.9)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3'	78.7	CH	3.45	dd (9.3,9.0)	78.7	CH	3.26	dd (9.3,9.0)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4'	72.7	CH	3.26	t (9.0)	72.6	CH	3.45	t (9.0)
	5'	79.6	CH	3.39	m	79.6	CH	3.39	m
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6'	63.9	CH_2	3.98	dd (11.9,2.1)	63.9	CH_2	3.97	dd (11.9,2.1) dd
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				3.65	dd (11.9,7.2)			3.65	(11.9,7.0)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1"	170.2	С						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2"	129.8	С						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3"	144.5	CH	6.89	tq (7.4,1.5)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4"	29.2	CH_2	2.38	t (7.4)				
	5"	32.4	CH_2	2.29	t (7.4)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6"	139.5	С						
8" 59.7 CH ₂ 4.13 d (6.8) 9" 13.3 CH ₃ 1.90 br s 10" 24.3 CH ₃ 1.82 s	7"	127.4	CH	5.46	t (6.8)				
9" 13.3 CH ₃ 1.90 br s 10" 24.3 CH ₃ 1.82 s	8"	59.7	CH_2	4.13	d (6.8)				
10" 24.3 CH ₃ 1.82 s	9"	13.3	CH_3	1.90	br s				
	10"	24.3	CH ₃	1.82	s				

^aδ in ppm.

groups, three olefins, an iridoid skeleton, and one β -glucose unit accounted for eight of those. The remaining degree of unsaturation was assumed to be due to an epoxide ring formed between C-7 and C-8, as inferred from the ¹³C NMR data (δ_C 63.8 and 63.5). Therefore, the constitution of **1** was deduced. The relative structure of **1** was deduced from a nuclear Overhauser enhancement spectroscopy (NOESY) spectrum of **1**. The representative correlations are shown in Figure 2. In the NOESY spectrum, the correlations of H-5"/H-8" and H-7"/H-10" were observed. Thus, the configuration of the C-6"/C-7" double bond was denoted as Z. The correlations of H-1/H-10, H-6/H-7, and H-7/H-10 suggested that the relative structure of sesinoside (1) was as in Figure 1.

To determine the configuration of **1**, a methanolysis reaction was applied to **1** (Figure 3). Sodium methoxide solution was added to a solution of **1** in anhydrous methanol at room temperature under N₂ for 6 h. Then, phlorigidoside C (**2**) and foliamenthic acid methyl ester (**3**) were derived in 34% and 46% yield, respectively. The ¹H and ¹³C NMR spectroscopic (Table) and ESI-MS data of **2** were identical with those of phlorigidoside C [9].

Figure 2: 2D NMR correlations of 1.

Figure 3: Methanolysis reaction of 1 [(i) NaOMe, MeOH, rt, 6 h, 34% (2), 46% (3)]

Experimental

General experimental procedure: Optical rotations, JASCO DIP-370 spectrometer; UV, HITACHI U-2000A spectrometer; IR, JASCO FT/IR-300 spectrometer; NMR, BRUKER Avance 500 spectrometer; ESI-MS, WATERS SYNAPT G2 mass spectrometer.

Plant materials: Sesame seeds were purchased from Fukutane K. K. (Fukui, Japan). Seeds were spread evenly on moist vermiculite in trays and incubated at 25°C in the dark for 3-4 days. The seedlings (hypocotyls length, *ca.* $3\sim4$ cm) were then illuminated by white light (30-50 µmol m⁻² s⁻¹; FL 20SS/ W/ 18; Panasonic Electric Works Co., Osaka, Japan) for 7 days. After a week, they were harvested, collected, and frozen at -80°C until use.

Extraction and isolation: All parts of the illuminated seedlings (73 g FW) were homogenized in acetone (250 mL×2). The homogenate was filtered and allowed to dry *in vacuo* at 40°C. The residue (0.95 g) was subjected to ODS CC (φ 1.1 × 30 cm) with a MeOH/H₂O (2:8/4:6/6:4/8:2/10:0) stepwise gradient and EtOAc, and separated into 5 fractions (SIA1-5). SIA4 (58.3 mg) was purified by reversed-

References

- (a) Dinda B, Debnath S, Banik R. (2011) Naturally occurring iridoids and secoiridoids. An updated review, part 4. *Chemical and Pharmaceutical Bulletin*, 59, 803-833; (b) Modaressi M, Delazar A, Nazemiyeh H, Fathi-Azad F, Smith E, Rahman MM, Gibbons S, Nahar L, Sarker SD. (2009) Antibacterial iridoid glucosides from *Eremostachys laciniata*. *Phytotherapy Research*, 23, 99-103.
- [3] Geng CA, Jiang ZY, Ma YB, Luo J, Zhang XM, Wang HL, Shen Y, Zuo AX, Zhou J, Chen JJ. (**2009**) Swerilactones A and B, anti-HBV new lactones from a traditional Chinese herb: *Swertia mileensis* as a treatment for viral hepatitis. *Organic Letters*, **11**, 4120-4123.
- (a) Jonville MC, Capel M, Frédérich M, Angenot L, Dive G, Faure R, Azas N, Ollivier E. (2008) Fagraldehyde, a secoiridoid isolated from *Fagraea fragrans. Journal of Natural Products*, 71, 2038-2040; (b) Lin S, Shen Y, Li HL, Yang XW, Chen T, Lu LH, Huang ZS, Liu RH, Xu XK, Zhang WD, Wang H. (2009) Acylated iridoids with cytotoxicity from *Valeriana jatamansi. Journal of Natural Products*, 72, 650-655.
- [6] Ahmad I, Chen S, Peng Y, Chen S, Xu L. (2008) Lipoxygenase inhibiting and antioxidant iridoids from *Buddleja crispa*. Journal of Enzyme Inhibition and Medicinal Chemistry, 23, 140-143.
- [7] Akihisa T, Seino KI, Kaneko E, Watanabe K, Tochizawa S, Fukatsu M, Banno N, Metori K, Kimura Y. (**2010**) Melanogenesis inhibitory activities of iridoid-, hemiterpene-, and fatty acid-glycosides from the fruits of *Morinda citrifolia* (Noni). *Journal of Oleo Science*, **59**, 49-57.
- [8] Wang DH, Du F, Liu HY, Liang, ZS. (2010) Drought stress increases iridoid glycosides biosynthesis in the roots of Scrophularia ningpoensis seedlings. Journal of Medicinal Plants Research, 4, 2691-2699.
- [9] Takeda Y, Matsumura H, Masuda T, Honda G, Otsuka H, Takaishi Y, Sezik E, Yesilada E. (**2000**) Phlorigidosides A-C, iridoid glucosides from *Phlomis rigida*. *Phytochemistry*, **53**, 931-935.

phase HPLC (TSK-gel ODS-80Ts, TOSOH, ϕ 7.8 × 300 mm, flow rate 2.0 mL/min, 30% MeCN isocratic) to yield sesinosede (1, 5.6 mg).

Methanolvolysis reaction of sesinosede: Sodium methoxide solution (0.5 N, 0.1 mL) was added to a solution of sesinoside (1, 5.0 mg, 8.8×10^{-6} mol) in anhydrous methanol (0.5 mL) and the mixture was stirred at room temperature under N₂ for 6 h. After 6 h, HCl (1 N, 0.12 mL) was added to stop the reaction. The reaction mixture was partition with EtOAc (10 mL) and H₂O (10 mL). The EtOAc layer was dried with MgSO₄, and both layers were evaporated. Water layer was purified by reversed-phase HPLC (TSK-gel ODS-80Ts, TOSOH, f 7.8 × 300 mm, flow rate 2.0 mL/min, MeCN:H₂O, 1:9 (0 min) \rightarrow 2:8 (30 min)) to afford phlorigidoside C (2, 1.2 mg) in 34% yield. The EtOAc layer was purified by reversed-phase HPLC [TSK-gel ODS-80Ts, TOSOH, ϕ 7.8 × 300 mm, flow rate 2.0 mL/min, MeCN:H₂O, 1:9 (0 min) \rightarrow 5:5 (30 min)] to afford (6Z)-foliamenthic acid methyl ester (3, 0.8 mg) in 46% yield.

Sesinoside (1)

Amorphous powder. $[\alpha]_{D}^{25}:-65.6 \ (c \ 1.00, CH_3OH).$ IR (KBr): 3398, 1705, 1635 cm⁻¹. UV λ_{max} (MeOH) nm (log ε): 230 (4.10). ¹H (500 MHz) and ¹³C NMR (125 MHz): Table 1. ESI-MS (positive ion): m/z 593 [M + Na⁺]. HRESI-MS: m/z 593.2217 [M + Na⁺] calcd for C₂₇H₃₈O₁₃Na: 593.2210.

Phlorigidoside C (2)

¹H (500 MHz) and ¹³C NMR (125 MHz): Table 1. ESI-MS (positive ion): m/z 427 [M + Na⁺]. HRESI-MS: m/z 427.1226 [M + Na⁺] calcd for C₁₇H₂₄O₁₁Na: 427.1216.

(6Z)-Foliamenthic acid methyl ester (3)

¹H NMR (500 MHz, CD₃OD): $\delta_{\rm H}$ 6.79 (1H, tq, *J*=7.4 and 1.5 Hz, H-3), 5.45, (1H, t, *J*=6.5 Hz, H-7), 4.10, (2H, dd, *J*=6.5 and 1.0 Hz, H-8), 3.76, (3H, s, OMe), 2.37, (2H, td, *J*=7.5 and 7.4 Hz, H-4), 2.26, (2H, t, *J*=7.5 Hz, H-5), 1.87, (3H, br s, H-9), 1.80(3H, s, H-10) ESI-MS (positive ion): *m*/*z* 221 [M + Na⁺]. HRESI-MS: *m*/*z* 221.1156 [M + Na⁺] calcd for C₁₁H₁₈O₅Na: 221.1154.

Acknowledgments – This study was partially supported by a Grant-in-Aid for Scientific Research on Innovative Areas 'Chemical Biology of Natural Products' (Grant No. 24102509) from the Ministry of Education, Culture, Sports, Science and Technology, Japan.