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Chapter 1

Introduction

The goal of programming language research is to make it easier to write, read, maintain, reuse and verify programs
written in those languages. The key to achieve it is abstraction, a language mechanism to separate a specific feature from
programs, and thus reflect the semantic structure. In the literature, various abstraction mechanisms have been studied:
Dijkstra proposed structured programming and Liskov abstract data types, to name just a few.

Control abstraction is one of such abstractions, but to structure control mechanisms. For instance, we often need
non-local exits, namely, we want to return from multiple function calls immediately. One can implement non-local exits
using standard primitives, for instance, by attaching to all return values one-bit flag, which distinguishes non-local returns
from normal returns. Such an implementation is hard to read and write because we need to insert a small code to check
the flag at every point of the program which returns a value. Control abstraction helps; if the language has the exception
mechanism in C++, Java, Ruby and ML, we can localize the codes for non-local exits, and the above interleaving is not
needed.

We study control abstraction for continuations. A continuation is a notion in program execution, which means the rest
of a computation. Intuitively it corresponds to the control stack, onto which the remaining computations are pushed. Lan-
guage primitives to abstract continuations are called control operators, and a quite popular control operator is call/cc
in Scheme [29]. While a continuation represents the whole rest of a computation, we sometimes want to manipulate
only part of the rest of a computation, which is called a delimited continuation. In recent years, control operators for
delimited continuations (delimited-control operators, for short) have been studied intensively, and shift/reset [9]
and control/prompt [12] are such ones.

While many studies about delimited control are done in Call-by-Value calculi, in which programs are executed se-
quentially, we want to take advantages of delimited continuations in other evaluation strategies such as Call-by-Name and
parallel computations. It is natural that we want to abstract controls in programs running under such evaluation strategies.
However it is not so easy to define and use control abstraction mechanisms in Call-by-Name setting or parallel computa-
tion; one of the problems is that the meaning of (delimited) continuations is not obvious. In our research, we pursue to get
the advantages of control operators in these evaluation strategies by addressing their problems. In order to achieve that,
we will define several calculi in which delimited control operators are defined as their primitive features and discuss the
usefulness of them.

The merits of treating control operators as primitives in programming languages are as follows:

• We can define a rigorous semantics of delimited control operators,

• We can design a proper type system of delimited control operators, and

• We can expect the optimization done by a compiler.

There are other ways to use delimited control operators without having them as primitives. For example, they can be
presented as a library module, which is like “DelimCC library” of OCaml [31].

We can also propose control abstraction mechanisms as frameworks for specific domains such as making web ap-
plications [53]. Web applications are typical examples whose control structures are scattered around source programs
because, as HTTP is a stateless protocol, each interaction between a web application and its client is treated separately so
that codes disposing of these interactions are scattered around the web application. This problem forces programmer to
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divide a web application into a number of code fragments, thus making himself be concerned with the control flow all the
time; the control flow is not abstracted.

In this thesis, we discuss the semantic foundations of delimited-control operators under several evaluation orders. We
will mainly discuss two topics: the first one is how delimited control operators are given semantics and formally treated
in a Call-by-Name calculus, and the second is how they should behave as useful primitives in a parallel calculus.

The former consists of two themes: the one is about axiomatizing a Call-by-Name calculus with delimited control
operators, and the other is about how to extend our results obtained in it to a calculus with layered-delimited control
operators. We can extend an expressive power of a Call-by-Name calculus even more if we can introduce delimited
control operators in a Call-by-Name calculus. Furthermore, by the second research, we can use layered delimited-control
operators, which has more expressive power than delimited-control operators do, in Call-by-Name calculus.

The latter is about a calculus which has two features: delimited control operators and parallelizing operators. Given
a program, we often find its subprograms (or program points) able to be executed in parallel. However, it is not easy
to execute multiple subprograms in parallel if the program contains (delimited) control operators, as the semantics of
the latter is defined in terms of sequential computations. In our research, we propose a calculus in which programmers
can use delimited control operators and manipulate delimited continuations as in non-parallelized programs. Our key
design principle is that parallel computations should not affect the result of the computations even if programs contain
delimited-control operators, i.e., parallelization must be transparent. In this paper, we prove the transparency of our
calculus by extending Takahashi’s parallel reduction method, which was originally invented to prove confluence of the
lambda calculus [52]. Furthermore, we will propose an implementation of our transparent parallel semantics. While the
implementation is a proof of concept, we can show that our parallelization mechanism have a certain real speed up.

The rest of this paper is as follows. In Chapter 2, we will introduce several basic definitions and results in the literature.
Then we introduce our research about Call-by-Name calculus in Chapter 3 and Chapter 4. In Chapter 5, we will propose
a calculus with delimited control operators and parallelizing operators, and we will describe our implementation of the
parallel semantics in Chapter 6. Finally, we will conclude in Chapter 7.
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Chapter 2

Preliminary

2.1 Evaluation Strategy
Evaluation strategies determine the order of evaluations of arguments when function-application expressions are evaluated.
In this section, we will describe the differences of two evaluation strategies: Call-by-Value and Call-by-Name.

2.1.1 Call-by-Value and Call-by-Name
There are two most fundamental evaluation strategies. The first one, called Call-by-Value (CbV for short), is to evaluate
all the arguments of function-application expressions before the function bodies, and the second one, called Call-by-Name
(CbN for short), is to evaluate no arguments before the function bodies, but to evaluate them when their values are needed.

For example, let us consider the following program (print is a primitive function to show its arguments to a display,
and semicolon denotes sequential executions):

1 let f = fun x y -> x + 1
2
3 let g = fun v -> print v; v
4
5 f (g 10) (g 20)

In a CbV language, this program prints two integers: 10 and 20. In a CbN language, it prints 10 only. The reason is
that, in the CbN language, the arguments of the function-application expression f (g 10) (g 20) are not evaluated
when the expression is evaluated. Since the body of the function f needs the value of the first argument x before addition
expression is executed, the unevaluated expression (g 10) is evaluated. However, the second argument y is not used
through the evaluation of the function body so the expression (g 10) will never be evaluated.

Since CbN does not have to evaluate all the arguments of function-application expressions, CbN languages have some
advantages compared to CbV languages as follows:

• it is easier to write meta-level programs such as program translations than that in CbV languages,

• it is able to express infinite computations easily.

2.2 Control Operators and Continuations
Control operators are useful to abstract control in programs, and the continuation is one of the most important concepts
for abstracting controls.

Since we will discuss control operators continuously in this paper, we will introduce control operators and continua-
tions in this section: we will describe operators to manipulate continuations and what the continuations are by showing
several examples. Then, in Section 2.3, we will show an example of a CbV calculus including control operators with its
formal definitions.
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2.2.1 Continuations in CbV
The concept of continuations originally means that the rest of the computation, namely, a function-like object which,
given the value of the current subcomputation, returns the answer (the final value of the whole computation). Thus, a
continuation varies depending on which part of program is being executed.

For example, we have the following expression and let the addition with 10 and 100 be being executed:

((10 + 100) + 1000) + 10000

The current continuation can be represented as a function-like object, which gets the result of the current subcomputation
(10 + 100), and returns the answer of (v + 1000) + 10000 where v is the result of the current one.

Continuations will change as the computation goes on. After computing (10+100), the subcomputation (110+1000)
is being executed, and hence the current continuation is an object to return the answer of v′ +10000 where v′ is the result
of current subcomputation (namely, 1110).

We show another example, which creates a function and applies it to an integer value:

1 let f = fun x -> x + 10
2
3 let g = (f 100) + 1000

The above program works as follows: first it defines a variable f and binds a function to it. Then a variable g is defined
and bound to the result of the expression in the right-hand side. In this example, the continuation when the expression
(f 100) is being computed is (v + 1000) where v is the result of the current subcomputation.

2.2.2 Control Operators in CbV
A wide variety of control operators have been designed and implemented in many programming languages: goto operator
in C, exception handler in Java and ML, yield operator in Lua and so on.

In particular, control operators which manipulate continuations can be used to abstract the control structures. By
capturing, saving or restoring continuations, surprisingly many kinds of control structures may be expressed. A simple
example is the exception mechanism with the operators try and raise, which can be implemented using continuations
as follows:

(1) when a try operator is executed, the current continuation is captured and saved in a global storage,

(2) during the execution of the body of the try operator, if a raise operator is executed, the execution aborts, namely,
the current continuation is discarded, and the saved continuation (corresponding to the try operator) is restored
from the global storage, and

(3) during the execution of the body of the try operator, if a raise operator is not executed, the stored continuation
is discarded.

Also coroutines can be implemented by using continuations as follows:

(1) when a coroutine is started (i.e., another process is called first time), the current continuation is saved, and

(2) when a process suspends and another process is called, the current continuation is saved, and instead the saved
continuation is restored and used as the current continuation.

An overview of control operators in the literature are shown in Table 2.1. While the similar concepts were realized in
the literature, the ones who made clear the concept of continuation were Strachey and Wadsworth [49] in their studies on
denotational semantics.

Control operators were developed before the discoveries of continuations. Landin proposed J operator [34] to control
the stack of an abstract machine in 1965, and Reynolds proposed the escape operator [44] in 1972. The escape operator
works in the same way as call/cc which is one of the most popular control operators in Scheme.

In 1980’s and 90’s, several researchers noticed that it is more useful to delimit the continuation. Here, “delimit” means
we only extract a certain part of a continuation where the part is specified by some primitives.
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Authors Implementations
J operator Landin [34] J (Algol)

Exception - catch/throw (Lisp),
exception (C++, ML et al.)

First-class continuation Steele and Sussman [48] call/cc(Scheme)
First-class delimited
continuation

Felleisen [12], Danvy and Filinski [9] shift/reset (OCaml/de-
limcc, Racket, Scala)

Table 2.1: Control Operators

Call-by-Value Calculus Call-by-Name Calculus Parallel Calculus

call/cc Felleisen [13] and many others
derivation from λµ calculus :
Parigot [42] , Moreau [38], Komiya

and Yuasa [33]
control/prompt a calculus : Felleisen [12] - -

shift/reset
a calculus : Danvy and Filin-
ski [9], and many others

a calculus : Biernacki [6],
axiomatization : This Thesis

This Thesis

layered-shift/reset
a calculus : Danvy and Fil-
inski [9], axiomatization :
Kameyama [25]

This Thesis -

Table 2.2: Calculi with Control Operator

In this manner, Felleisen proposed control/prompt operators [12] in 1989, and Danvy and Filinski proposed
shift/reset operators [9] in 1990. These operators are called “delimited-control operators” and the continuations
captured by control and shift are called “delimited continuations”.

Since then, many kinds of delimited-control operators are proposed; Hieb and Dybvig proposed the spawn operator
[24] which can be used in a concurrent setting with tree-structured processes, Gunter et al. defined the cupto operator [20]
which generalizes the behavior of delimiters, and Dyvbig et al. presented the multi-prompt delimited-control operator.
[11].

Though we have many choices which operator(s) we use in this research, we decided to study shift/reset because
of the important properties of the operators which will mention later. The semantics of control operators have been studied
in various evaluation strategies. Examples of such research are shown in Table 2.2, and our contributions are also written
in it.

In terms of axiomatization, we study a CbN calculus with the delimited-control operator and propose its equational
axioms for the first time. Furthermore, we study layered-shift/reset in a CbN calculus and its axiomatization is also
our original work. The details of equational axiomatization will be shown in Chapter 3, and, in Chapter 4, we will show
how to connect the calculus with layered-shift/reset to existing results in other research.

From the point of semantics, our main targets are a CbN calculus with layered-shift/reset and a calculus which
has both delimited-control operator shift/reset and parallel operator future. The former makes it possible for us
to write programs with multiple effects, which we show in detail in Chapter 4. By using the latter calculus, we can write
effectful programs whose sub-programs can be executed in parallel. In Chapter 5, we will propose the calculus with its
rigorous semantics, and present comparisons between our parallel semantics and other ones.

In the next subsection, we will explain delimited continuations and delimited-control operators. In this research,
shift/reset are main tools so we will explain them.

2.3 Shift/Reset in Call-by-Value Calculus
shift/reset are the delimited-control operators proposed by Danvy and Filinski. The operator shift is for capturing
the delimited continuations, and the operator reset is for delimiting the extent of the continuations.

In our research, we mainly focus shift/reset operators because of as follows:

(1) delimited-control operators are more expressive compared to the non-delimited-control operators such as call/cc,

(2) a rigid semantics through a CPS translation is given for shift/reset, and
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(3) shift/reset can express all monadic effects [15].

In this section, we show a calculus with shift/reset and call it λcbvs/r. Before we show the formal semantics of
λcbvs/r, we will describe the behavior of shift/reset intuitively by showing some examples.

2.3.1 Small Example
In this subsection, we use OCaml-like syntax to write example programs. They may not run directly in OCaml, and one
needs an implementation of shift/reset, such as the DelimCC library [31].

In the following, let S be the shift operator and 〈−〉 be the reset operator. And means one-step reduction and
 ∗ is the reflexive, transitive closure of .

First we will show a simple arithmetic example.

e = 1 + 〈10 + Sk.(100 + k (k 1000))〉
 1 + 〈100 + k (k 1000)〉 where k = λv.〈10 + v〉
 1 + 〈100 + k 〈10 + 1000〉〉
 1 + 〈100 + k 〈1010〉〉
 1 + 〈100 + k 1010〉
 ∗ 1 + 〈100 + 1020〉
 ∗ 1121

An expression e is defined in the first line and computation starts from this. At the first step, shift captures the
continuation up to reset. In this time, the continuation is 10+�where�means the place to put the result of computation
being executed now. The captured continuation is removed from the expression and it is preserved as a function-like
object. An important point is that the continuation contains reset in the body of the object. In the third line, the
continuation was applied so the expression (k 1000) turns into an expression 〈10+1000〉, then turns 〈1010〉. The reset
operator around the value is not significant so it is simply removed at the next step, in the 5th line. Also the expression
k 1010 turns into the value 1020, and finally we get the result 1121 in the last line.

2.3.1.1 List Append

The following example is an append function for lists, which uses shift/reset. (This example was taken from the
literature [8, 4]). In this program, shift represents the shift operator and shift k -> e means that shift
captures the continuation up to the nearest reset and binds it to the variable k, then runs the expression e. Also reset
represents the reset operator and reset e means the expression surrounded by reset.

1 let rec append’ lst = match lst with
2 | [] -> shift k -> k
3 | x :: xs -> x :: (append’ xs)
4
5 let append lst1 lst2 =
6 let append1 = reset (append’ lst1) in
7 append1 lst2

The function append’ gets one argument lst, which is a list, and examines its structure. If lst is empty, shift-
expression is executed, and the delimited continuation (up to the nearest reset) is captured and bound to the variable k.
The return value in this case is the value of k, namely, the delimited continuation. Otherwise, the argument is decomposed
into a head and a tail, and then the function is recursively called on the tail of the list, and returns the cons of the head
of the list with the result of the recursive call. So the second case is the same as the ordinary implementation of the
append function except that append’ gets only one argument rather than two. The trick happens when lst is empty.
In the ordinary append function, it returns the second argument as its result when the first argument is empty, while this
append’ function returns the current delimited continuation, which serves as a function-like object whose input is the
(missing) second argument, and output is the appended list.

Let us see more concretely what is happening here. We take

reset (append’ [1; 2; 3])
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as an example 1, which runs as follows:

reset (append [1; 2; 3])

 reset (1 :: (append [2; 3]))

 reset (1 :: (2 :: (append [3])))

 reset (1 :: (2 :: (3 :: (append []))))

 reset (1 :: (2 :: (3 :: (shift k -> k))))

At this point, shift operator captures the continuation as a function as follows: fun v -> reset (1 :: (2
:: (3 :: v))).

 reset (1 :: (2 :: (3 :: (shift k -> k))))

 reset (fun v -> reset (1 :: (2 :: (3 :: v))))

 fun v -> reset (1 :: (2 :: (3 :: v)))

The function append gets two lists to append one to another. The first argument, lst1, is passed to the function
append’ with reset. The result, a function above, is bound to the variable append1 and applied to the second value
lst2.

For example, the expression append [1; 2; 3] [10; 20; 30] works as follows: first it computes the ex-
pression reset (append’ [1; 2; 3]) and gets a function (as above). Then it applies the function to the list [10;
20; 30]. As a result of that, it gets a value [1; 2; 3; 10; 20; 30].

2.3.1.2 Non-deterministic Choice

We can implement non-deterministic computation by using shift/reset. We first implement two functions fail and
flip in order to make the main procedure more readable.

1 let fail () = shift k -> ()
2
3 let flip () = shift k -> k true; k false

The function fail simply executes the shift-term, and returns the value () which is a meaningless value. When the
shift-term in the function flip is executed, a delimited continuation is captured and bound to the variable k. Then,
flip uses the captured continuation twice; in k true and k false.

As a substantial example of these delimited-control operators, we show an implementation of a tree-traversal function.
Here, the function is prime represents a predicate to judge whether the argument is prime, and returns a boolean value
true if the argument is a prime number, and false otherwise. Also print elm is a primitive function to print the
argument to the screen.

1 type t = Leaf of int | Node of t * t
2
3 let rec trav tree pred proc = match tree with
4 | Leaf n ->
5 if pred n then proc n
6 else fail ()
7 | Node (t1, t2) ->
8 if flip () then trav t1 pred proc
9 else trav t2 pred proc

10
11 let tree =
12 Node (Node (Leaf 12, Leaf 23),
13 Node (Leaf 36,
14 Node (Leaf 45, Leaf 53)))
15
16 let pred = fun n -> is_prime n
17
18 let proc = fun n -> print_elm n
19
20 reset (trav tree pred proc)

1the notion vb[1; 2; 3] represents a list which contains three elements
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In the first line, a type for binary trees is defined. This type consists of two kinds of values distinguished from each other
by the tags Leaf and Node. The value with Leaf has an integer value and Node has two values whose type is t. An
example value of type t is defined between 11th line to 14th line in the above program.

The function trav gets three arguments:

• tree is a value as a type t,

• pred is a predicate function which gets an integer value and judges whether the value is acceptable or not, and

• proc is a task function which is applied to the tree (precisely, the value contained in the tree value) when pred
tree returns true.

When the function trav gets these kinds of arguments, it first examines the structure of the argument tree, and

• if the value tree has the tag Leaf, the integer value contained in that is bound to the variable n, and apply the
function pred to the n. Then,

– if the application expression pred n returns the value true, it applies proc to the n, and returns the result
of application,

– otherwise, the application expression fail () will be executed, or

• if the tree has the tag Node, the two other values contained in it are bound to the variable t1 and t2 respectively,
then the if-expression following the matching-expression is executed.

The if expression in the 9th and 10th lines are the most important part of this program. As we described above, flip
captures the delimited continuation and applies it to two values, true and false which means that this if expression
will run twice with the values true and false.

To show the behavior of the flip, we will explain several steps of the evaluation of the expression as follows. In the
following program, we will use the variables tree, pred and proc which are defined at the line 11, 16, 18 in the above
program.

reset (trav tree pred proc)

 reset (if flip () then trav t1 pred proc else trav t2 pred proc)

where

t1 = Node (Leaf 12, Leaf 23)

t2 = Node (Node (Leaf 36, Node (Leaf 45, Leaf 53)))

 reset (k true; k false)

where

k = fun v -> reset (if v then trav t1 pred proc else trav t2 pred proc)

Then, the subexpression k true of the last line runs as follows:

k true

 reset (if true then trav t1 pred proc else trav t2 pred proc)

 reset (trav t1 pred proc)

= reset (trav (Node (Leaf 12, Leaf 23)) pred proc)

 reset (if flip () then trav (Leaf 12) pred proc

else trav (Leaf 23) pred proc)

 reset (k’ true; k’ false)

where

k’ = fun v -> reset (if v then trav (Leaf 12) pred proc

else trav (Leaf 23) pred proc)
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v
def
= x | λx.e value

e
def
= v | e1 e2 | Sk.e | 〈e〉 expression

E
def
= � | E e | v E | 〈E〉 evaluation context

F
def
= � | F e | v F pure-evaluation context

Figure 2.1: Syntax of λcbvs/r

E[(λx.e) v] E[e{x := v}] βv

E[〈v〉] E[v] rvv
E[〈F [Sk.e]〉] E[〈e{k := λv.〈F [v]〉}〉] rsv

Figure 2.2: Reduction rules of λcbvs/r

The application-expression k’ true in the last expression above is executed to

reset (if (pred (Leaf 12)) then proc () else fail ())

Then, since 12 is not a prime number, pred 12 returns false so fail () will be executed. When the function fail
is invoked, shift captures the current delimited continuation, namely, the if-expression in the body of the k’, and
discards the current delimited continuation. Then k’ false will be evaluated; pred 23 returns true, proc 23 is
evaluated, and the integer 23 is printed on the screen.

In summary, flip works as follows:

(1) shift captures the if expression surrounding the flip expression,

(2) the captured continuation is applied to a value true, and

(3) the captured continuation is also applied to the other value false.

By this way, we can write programs which select appropriate values non-deterministically. In other words, non-deterministic
programs using the flip function can select appropriate values automatically if we do not write choosing (or traversing)
code.

2.3.2 Operational Semantics
In this section, we will define the operational semantics for the calculus λcbvs/r. The syntax and reduction rules of λcbvs/r are
shown in Figure 2.1 and Figure 2.2, respectively.

In Figure 2.1, the syntax of λcbvs/r is defined. It says that there are two kinds of values, x and λx.e, and we use a meta
variable v for them. Also there are four kinds of expressions. One of them is a value, and the rest consists of a function
application, a shift-expression and a reset-expression. Though we use some additional expression such as list operations
and an if-expression in the later subsection but we omit them in the above definition.

The metavariables E and F define evaluation contexts used to define the evaluation order of the function application
and the rules of shift/reset. The definition of evaluation contexts E and F represent that, when an application-
expression is evaluated, first the left-hand side of the application-expression (i.e., the applied unction) is evaluated, and
then the right-hand side expression (i.e., the argument) is evaluated. This behavior is defined in Figure 2.2. The difference
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of the E and F is whether reset is included in the context. By writing an expression E[〈F [Sk.e]〉], we can specify this
reset as the nearest reset from this shift.

In Figure 2.2, we show the behavior of the expression defined in Figure 2.1. The first line is a β reduction as usual, and
e{x := v} is a capture-avoiding substitution. The second line is a rule for removing a meaningless occurrence of reset.
The last rule defines how the shift operator works. When shift works with pure-evaluation context F , it reifies the
continuation as a function λv.〈F [v]〉 with a fresh variable v. Then it substitutes the continuation for the variable k.

This direct definition of the semantics of λcbvs/r is simple and clear as to what is defined. Since there are alternative
ways to define the semantics of λcbvs/r, we will explain the one of the alternatives in the next subsection.

2.3.3 CPS Semantics
A CPS translation is a global program translation from a program to a program in a specific form, namely, in continuation-
passing style (CPS). A CPS translation was first proposed by Plotkin [43] which has the following characteristic features:

(1) All CPS functions explicitly pass continuations as their argument, and

(2) All function calls in CPS programs are tail calls.

(3) All intermediate results in CPS programs are explicitly named.

For example, let us consider the following program which computes the factorial of is argument:

1 let rec fact n =
2 if n = 0 then 1
3 else n * (fact (n - 1))

This program is not in CPS because (1) it does not call fact as a tail call, and (2) the continuation of each (recursive)
expression is implicitly: it is not passed as an explicit expression and not applied explicitly.

We can convert the above program into CPS as follows:

1 let rec fact_n n k =
2 if n = 0 then k 1
3 else fact_n (n - 1) (fun v -> k (n * v))

This program differs from the above fact in two points:

(1) it takes two arguments, and

(2) it calls fact n at the end of its body.

The first is because it gets one more argument which represents a continuation. The second is clear if we compare the two
programs; instead of multiplication with n and the result of fact (n - 1), fact n calls itself.

In CPS, we can explicitly find continuations. It makes it possible for us to manipulate continuations in any point and
to modify it as we want. Although it is often difficult to write programs in CPS, we can get any programs in CPS by CPS
translating them.

In the literature [43], a CPS translation for λ calculus was defined as in Figure 2.3. The above definition converts an
arbitrary expression in λ-calculus into its CPS. By CPS translating a program, we can make explicit the evaluation order
in the program, and thus making its meaning clearer. For example, the meaning of the application is as follows:

(1) it gets (captures) its continuation (κ),

(2) evaluates its function part e1 with a continuation which

(a) gets the result of the evaluation of e1 and binds it to the variable f ,

(b) evaluates its argument part e2 with the continuation which

i. gets the result of the evaluation of e2 and binds it to the variable a,
ii. applies the f to a and κ.
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[[x]]
def
= λκ.κ x

[[λx.e]]
def
= λκ.κ (λx.[[e]])

[[e1 e2]]
def
= λκ.[[e1]] (λf.[[e2]] (λa.f a κ))

Figure 2.3: CPS translation for call-by-value λ calculus

Given an ordinary program, we can make its continuation explicit, by translating it into CPS, which allows us to
precisely define the meaning of control operators. For instance, the (non-delimited) control operator call/cc can be
define by CPS translation as follows:

[[call/cc k.e]]
def
= λκ.let k = λv.λκ′.κ v in [[e]] κ

This definition means that call/cc first gets the continuation (κ) and binds the function to the variable k, and then
it evaluates the expression e without aborting its the continuation. The bound continuation is a function which gets
two values, a value v and a continuation κ′, and it aborts κ′ (which denotes the continuation of when an application of
this continuation function was applied), and applies κ to its argument v (which denotes the continuation of when this
continuation function was defined).

As control operators are used to manipulate continuations, CPS is an appropriate tool to define control operators
because all continuations are defined and passed explicitly at arbitrary points of a program.

In the same manner, we can define the semantics of shift/reset by the CPS translation.

[[〈e〉]] def= λκ.κ ([[e]] (λv.v))

[[Sk.e]] def= λκ.let k = λv.λκ′.κ′ (κ v) in [[e]] (λv.v)

The translation of 〈e〉 reveals the behavior of reset: first [[e]] is evaluated by being applied to an empty continuation
(λv.v), then the result of the application is thrown to the current continuation (κ). This corresponds to the meaning of
reset defined in the previous subsection, namely, reset delimits the extent of a continuation captured by shift.

The definition of Sk.e is similar to that of call/cc k.e but there are two differences:

(1) like call/cc, shift captures a continuation, turns it to a function, and binds it to the variable k. Unlike
call/cc, the function created by shift is not abortive in the sense that, when the function is applied to an
argument, the current continuation is not discarded.

(2) the expression [[e]] will be evaluated with an empty continuation (λv.v), not κ.

We have so far defined two semantics of λcbvs/r, one is defined directly and the other is defined through a CPS translation.
One advantage of the latter is that the latter gives stronger equivalence (weaker as a binary relation) over open terms so that
it can be used to justify many compiler optimizations directly [18]. To introduce equivalence relation using the former
semantics, we must switch to contextual equivalence, which is even stronger than the CPS semantics, but is significantly
harder to reason about.

However, the semantics based on CPS translations has some weak points such as

• need to translation; one must translate programs into CPS in order to obtain each meaning of programs, hence we
cannot reason about programs,

• change of the surface; through CPS translation, programs change their surfaces, which makes it difficult to rewrite,
refact or replace parts of the program.
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ρ, x : τ ;α ` x : τ ;α
var

ρ, x : σ;α ` e : τ ;β
ρ; δ ` λx.e : (σ/α→ τ/β); δ

fun

ρ; δ ` e1 : (σ/α→ τ/ε);β ρ; ε ` e2 : σ; δ

ρ;α ` e1 e2 : τ ;β
app

ρ;σ ` e : σ; τ
ρ;α ` 〈e〉 : τ ;α reset

ρ, k : (τ/δ → α/δ);σ ` e : σ;β
ρ;α ` Sk.e : τ ;β shift

Figure 2.4: Type system of λcbvs/r

2.3.4 Types
We will introduce a type systems for λcbvs/r in this subsection. Although there are several kinds of type systems, we will
explain one of the type systems which was proposed by Danvy and Filinski, who proposed shift/reset. The type
system is in Figure 2.4.

Unlike an usual type system for simply-typed λ calculus, each typing rule has a form as follows:

ρ;α ` e : τ ;β

These type judgements can be read as follows:

assume that an expression e has a type τ . If it is evaluated in a context C which has a type τ → α, the
resulting type of the evaluation of the expression C[e] becomes β.

The reason that the type system for λcbvs/r must concern about the type of a context is that shift can change it. In the
literature, the resulting type of the evaluation of C[e] is called “answer type” so we call the type like that.

The var rule in the figure can be understood as follows:

assume that there is type information x : τ in the type environment ρ. Then the variable x has a type τ
and when x is evaluated in a context C whose type is τ → α (i.e., the answer type of the context is α), the
resulting answer type of the expression C[x] is α.

We note that the same type variable α appears in the both side of the judgement. This is because that a value must not
change the answer type when it is evaluated in arbitrary contexts.

To understand the fun rule, we have to consider the answer types of the function body. Since some expression may
change the answer type, a function may change the answer type when it is applied to an argument. Thus, we can understand
the typing rule for a function expression as follows:

assume that when a type information x : σ is in the type environment ρ, and then an expression e has a type
τ . And the expression e changes the answer type from α to β.

Then the function λx.e has a type (σ/α→ τ/β), and the answer type of the function expression must not be
changed (i.e., both are δ).

As we explained above, the answer type must not change after the evaluation of a value.
A type of a function-application expression can be read as above. If we ignore the answer type, we can read this typing

rule is as usual function-application rule, and the answer types in the rule mean that

(1) if the evaluation of e1 changes the answer types, the resulting answer type (β) will be the final answer type of the
application expression,

(2) if the evaluation of e1 does not change the answer type and the evaluation of e2 changes it, the resulting answer
type (δ) will be the final answer type of the application expression, and
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(3) if both the evaluation of e1 and e2 do not change the answer type, the answer type of the function body (ε) will be
the final answer type of the application expression.

We note that these typing rules can be derived from the definition of CPS translations. For example, when the variable
x has a type τ , the CPS translated expression [[x]] has a type (τ → α) → α in which α represents an arbitrary type, and
τ → α is a type of the continuation. The type α just corresponds to the answer type, namely, a type of the returning value
of a context. By CPS translating an expression, we can find the continuation, and the continuation is just the context: a
type of a continuation corresponds to that of a context.
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Chapter 3

Equational Axiomatization of Call-by-Name
Delimited Control

We will explain our study about a Call-by-Name calculus containing shift/reset [27] in this chapter.

3.1 Introduction
Delimited continuation (or delimited control) has been proved useful in many applications from partial evaluation and
Continuation Passing Style (CPS) transformation to representation of arbitrary monads to mobile computation. The
traditional, unlimited continuation represents the whole rest of the computation (as the object captured by Scheme’s
call/cc), but the delimited continuation represents part of the rest of the computation.

While many works in the literature studied delimited control in call-by-value [9, 12], several recent work studied it in
call-by-name. Herbelin and Ghilezan [23] related the study on classical logic with the study on delimited continuations,
and proposed a call-by-name calculus for it. Kiselyov [30] proposed a call-by-name calculus with delimited-control
operators and used it in linguistic analysis. Biernacka and Biernacki [6] introduced a type system for call-by-name
delimited-control, which is similar to the type system for call-by-value delimited-control by Danvy and Filinski [8], and
proved its strong normalization property.

In this chapter, we investigate the call-by-name calculi with delimited-control operators. Specifically, we identify the
semantics of such a calculus through a CPS translation, and give a set of simple equations in direct style, which is sound
and complete with respect to this semantics.

We think such an axiomatization is useful and worth studying. Given a set of reductions, one can compute every
program (closed term), however, one cannot optimize open terms using reductions only. For instance, in a call-by-value
calculus, (λx.x) (y z) is equal to y z in any contexts, but (λx.x) (y z) cannot be reduced using the call-by-value
reductions. On the contrary, they are equal after CPS translation. Appel [1] demonstrated a way to compiler construction
through CPS translation, and Flanagan et al. [18] showed that, all possible optimizations after CPS-translating source
terms may be done before CPS-translating them, if we adopt a sufficiently strong set of equations as axioms. The axioms
must be sound in the sense that all reductions are respected (if e1 reduces to e2, they must be equal by the axioms), and
must be complete in the sense that all possible optimizations for CPS terms can be done for direct-style terms.

In this chapter, we choose the control operators shiftand resetamong many delimited-control operators pro-
posed in the literature. One of the most important merits of them is that they have a simple, functional CPS translation.
Kameyama and Hasegawa [26] axiomatized the call-by-value calculus with shift and reset, namely, they identified the
equational theory which coincides the CPS semantics for shift and reset. The axioms are simple enough to be used as
optimizations, and can be used to reason about programs with shift and reset without converting the programs into CPS.
In this paper we will carry out the same program for the call-by-name calculi.

Unlike the call-by-value calculi with delimited-control operators, there are a few choices about the semantics of the
call-by-name calculi:

• Whether the calculus admits η-equality or not: full η-equality is usually assumed for call-by-name calculi, but it
turns every term into a function (a value), and, therefore, interferes with the control operator reset (reset for a value
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e ::= c | x | λx.e | e1 e2 | Sk.e | k ←↩ e | 〈e〉 term
E ::= � | Ee | 〈E〉 | k ←↩ E ev. ctxt.
F ::= � | Fe pure ev. ctxt.

Figure 3.1: Syntax of the Source Language

does nothing). Hence, we need to restrict either of the two (at least), and we decided to abandon η-equality, since
our intended operational semantics does not admit it.

In Section 3.8, we will mention yet another calculus which admits full η-equality but the use of reset is restricted.

• The semantics of the target calculus after the CPS translation: the standard CPS translation for delimited-control op-
erators translates source terms into non-CPS terms, namely, arguments of function applications are not necessarily
values, and therefore, their meaning depends on the semantics of the target calculus.

We choose the call-by-value semantics for the target calculus, because it matches the intended operational behavior
of control operators.

To avoid the complicated equality theory having both call-by-name βη-equality and call-by-value βη-equality, we
will translate the target terms once more by a CPS translation, following Danvy and Filinski [8].

It should be noted that, a naive adaptation of Kameyama and Hasegawa’s completeness proof for the call-by-value
calculus did not work for the call-by-name calculus. To overcome the difficulty, we need to refine the source calculus
(before CPS translation) as well as the target calculus (after CPS translation) precisely. The key observations are that
(1) the delimited continuations are linear in the call-by-name setting, and (2) we need to distinguish shift-bound variables
from the ordinary, lambda-bound variables. As for (1), we note that the relationship between linearity and CPS translations
was studied by Filinski as “linear continuation” [14], and by Berdine et al. as “linearly used continuations” [5], and, in
this paper we need both kinds of linearity. As for (2), we adopt the formulation by Biernacka and Biernacki which has a
special construct for the application of shift-bound variables to terms.

In this chapter, we give sound and complete axiomatization for the type-free and typed call-by-name calculi with
delimited-control operators, and their relationship with axiomatization for the call-by-value calculus.

The rest of this chapter is organized as follows: in Section 3.2 we introduce the call-by-name calculus with delimited-
control operators shift and reset. In Section 3.3 we give a CPS translation by Biernacka and Biernacki, and then a sound
and complete axiomatization for the semantics in Section 3.4. The completeness proof is given in Section 3.5, and Section
3.6 discusses these results in typed setting. Section 3.7 discusses the use of linearity in our proofs, and Section 3.8 briefly
mentions yet another CPS translation which respects η-equality. Section 3.9 gives concluding remarks.

3.2 Type-free Calculus
The calculus we study in this chapter is λs/r, a call-by-name lambda calculus with delimited-control operators shiftand
reset. The call-by-value version of these control operators was proposed by Danvy and Filinski [9, 10], and has been
used to represent backtracking and various search, let-insertion in partial evaluation, various monads, type safe direct-style
implementation of “printf”, and others.

This section gives a type-free formulation of λs/r. Its type system will be explained later.

3.2.1 Syntax
In this subsection we give the syntax of terms and related expressions. First, we assume that there are two disjoint sets
of variables, one for ordinary variables (denoted by x, y, z, · · · ) and the other for shift-bound variables (denoted by k). x
is (eventually) bound by lambda and a term is substituted for x, while k is (eventually) bound by shift, and a delimited
context (delimited continuation) is substituted for k.

Fig. 3.1 gives the syntax of λs/r. c is a constant. When we consider a typed calculus, we restrict c be a constant of
basic types such as integer. An ordinary variable x is a term, while a shift-bound variable itself is not a term. The term
λx.e and e1e2 are abstraction and application as usual. The term Sk.e is a shift-term, in which k is a bound variable. The
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(λx.e1) e2  e1{x := e2}
〈F [Sk.e]〉 〈e{k ⇐ F}〉

〈v〉 v for v = c, λx.e

Figure 3.2: Reduction Rules

term k ←↩ e is a throw-term that applies the (delimited) continuation k to a term e. The variable k in k ←↩ e is free. The
term 〈e〉 is a reset-term.

Although the distinction between ordinary (lambda-bound) variables and continuation variables appears in the work
of Parigot [42], it was Biernacka and Biernacki [6] who have made a clear distinction between lambda-bound variables
and shift-bound variables in the context of call-by-name delimited control. They have also introduced the notation k ←↩ e.

We identify α-equivalent terms. FV(e) denotes the set of free (ordinary and shift-bound) variables in e, and e1{x :=
e2} represents the result of capture-avoiding substitution of e2 for x in e1. E represents an arbitrary evaluation context
in call-by-name. F is a pure evaluation context, or a delimited evaluation context, which does not have resets around the
hole�. In other words, a pure evaluation context is delimited by a reset, and is exactly a delimited continuation. A general
evaluation context is a continuation outside of a reset, namely, a metacontinuation. E[e] (or F [e]) denotes the term after
the hole-filling operation of a term e for a hole in E (or F ). Hole-filling of another evaluation context E1[E2] is defined
similarly.

Remarks. Let us briefly argue the design of the source calculus here, namely, if the distinction between shift-bound
and lambda-bound variables is necessary or not.

If we are only concerned with the operational behavior of closed terms, there is no need to distinguish them. In this
case, the expression k ←↩ e can be represented by (k e).

However, this distinction is necessary for this chapter, since we are concerned with equality theories for open terms: to
obtain complete axiomatization, we need an axiom which is valid for shift-bound variables but not valid for lambda-bound
variables.

We remark that Biernacka and Biernacki introduced this distinction for a different purpose: to develop a type system
for the calculus, which represents the so called answer-type polymorphism without making use of polymorphism [4]. The
details may be found in [6].

In summary, two distinct classes of variables are necessary in the call-by-name calculi for delimited continuations.
This is a sharp contrast with the call-by-value case, for which the above-mentioned distinction is not necessary [26].

3.2.2 Reduction Rules
To understand the operational behavior of shift and reset, we give the reduction rules of λs/r in Fig. 3.2.

The reduction rules are essentially the same as those in Biernacka and Biernacki, but we have slightly changed them
in the following point: their calculus has an expression F ←↩ e for a pure evaluation context F and an expression e. It is
the result of substituting F for k in k ←↩ e (here we assume that k does not appear in e freely). On the other hand, our
calculus does not have such an expression, and such a substitution is realized by a meta-operation {k ⇐ F}.

The substitution {k ⇐ F} is defined as follows:

c{k ⇐ F} def
= c

x{k ⇐ F} def
= x

(λx.e){k ⇐ F} def
= λx.(e{k ⇐ F})

where x 6∈ FV(F )

(e1 e2){k ⇐ F} def
= (e1{k ⇐ F}) (e2{k ⇐ F})

(Sk′.e){k ⇐ F} def
= Sk′.(e{k ⇐ F})

where k′ 6∈ {k} ∪ FV(F )

(k ←↩ e){k ⇐ F} def
= 〈F [e{k ⇐ F}]〉
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(k′ ←↩ e){k ⇐ F} def
= k′ ←↩ (e{k ⇐ F})

where k′ 6∈ {k} ∪ FV(F )

〈e〉{k ⇐ F} def
= 〈e{k ⇐ F}〉

Let us look at the reduction rules in detail. The first reduction in Fig. 3.2 is the standard, call-by-name β-reduction.
In the second reduction rule, the evaluation context up to the nearest delimiter (reset) is F , and it is captured and

substituted for k using the substitution {k ⇐ F}. The key case in this substitution is (k ←↩ e){k ⇐ F}, which is defined
to be 〈F [e{k ⇐ F}]〉. This means that, by the substitution {k ⇐ F}, a functional object λx.〈F [x]〉 is substituted for k,
if we identify k ←↩ e′ with (k e′). Hence, the second reduction 〈F [Sk.e]〉 〈e{k ⇐ F}〉 may be understood as

〈F [Sk.e]〉 〈e{k := λx.〈F [x]〉}〉

This is the same reduction rule as the one in the literature [26].
The third rule means: when a value is delimited by reset, then the delimiter is simply discarded. It may be strange to

have the notion of values in the call-by-name calculus, but this rule naturally reflects the abstract-machine semantics for
shift and reset in call-by-name1. Note that, a variable x is not a value in λs/r, so 〈x〉 does not reduce to x.

In Section 3.4, we will need to extend the above substitution to the form {k ⇐ (k′ ←↩ F )}, namely, we need to extend
the substituted context F to the form k′ ←↩ F , which is not a pure evaluation context. The definition of the extended
substitution remains the same except that F in the above definition may be in the form k′ ←↩ F ′. For example, the key
case is:

(k ←↩ e){k ⇐ (k′ ←↩ F )} def
= 〈k′ ←↩ (F [e{k ⇐ (k′ ←↩ F )}])〉

We remark that reset in the right-hand side of this definition is not necessary as 〈k′ ←↩ e′〉 = k′ ←↩ e′ can be proved by
our axioms introduced later.

3.3 Semantics based on CPS Translation

3.3.1 CPS Semantics
A CPS translation is a syntax-directed translation from a source calculus (λs/r in this chapter) to a target calculus. It is a
useful theoretical tool to give a precise semantics to a calculus with control operators, and may be used as an intermediate
language for compilers, since we can perform various kinds of optimizations on the target terms of a CPS translation.
Using the axioms in this chapter, one can perform the optimizations on the source terms.

The following three semantics are often studied for computational calculi:

• Reduction semantics: e1 = e2 if and only if they are equal up to the equality induced by the reduction rules.2

• CPS semantics. e1 = e2 if and only if they are translated to the same term by a CPS translation.

• Observational equivalence. e1 = e2 if and only if, for any context C such that C[e1] and C[e2] are closed, C[e1]
and C[e2] both terminate, or both do not terminate under (a certain notion of) the operational semantics.

Under reasonable assumptions, the strength of the three semantics increases in the order above, namely, if two
programs are equal in the reduction semantics (CPS semantics, resp.), they are equal in the CPS semantics (obser-
vational equivalence, resp.). The converse direction does not, in general, hold. For instance, (λx.xx)(λx.xx) and
(λx.xxx)(λx.xxx) are equal under the observational equivalence, but they are not CPS-translated to equal terms for
any standard CPS translations.

Although CPS semantics is weaker than observational equivalence, it is in many cases sufficient for reasoning about
programs, as shown by literature (for instance, [1]). Indeed we often prefer CPS semantics than observational equivalence,
since the latter is fragile in language extensions; under observational equivalence, two equal terms may not be equal after
a new construct is added to the calculus, as we may be able to distinguish these terms using the new construct. On the
contrary, CPS semantics is robust in the sense that, two equal terms remain equal even after a new construct is added,
since their images of a CPS translation do not (usually) change.

1This semantics is attributed to Olivier Danvy in the literature [23].
2The equality is the reflexive, transitive, and congruent closure of the reduction rules.
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[[c]]1
def
= λκ.κc

[[x]]1
def
= λκ.xκ

[[λx.e]]1
def
= λκ.κ(λx.[[e]]1)

[[e1e2]]1
def
= λκ.[[e1]]1(λm.m[[e2]]1κ)

[[Sk.e]]1
def
= λκ.([[e]]1{k := κ})θ1

[[k ←↩ e]]1
def
= λκ.κ([[e]]1k)

[[〈e〉]]1
def
= λκ.κ([[e]]1θ1)

θ1
def
= λm.m

Figure 3.3: 1CPS Translation

3.3.2 1CPS Translation
Our task is to precisely determine the CPS translation we use, and we choose a CPS translation based on Plotkin’s one, as
we will argue below.

For call-by-name calculi, there are two choices for CPS translations: Plotkin’s [43] and Streicher and Reus’ [50].
The latter respects full η-equality (η-equal terms are translated to equal terms), while the former does not. Using full
η-equality, we can infer that the control operator resetbecomes totally useless:

〈e〉 =η 〈λx.ex〉 λx.ex =η e

Without the reset operator, our calculus does not make sense. Consequently, we use a CPS translation based on Plotkin’s.
We will revisit this choice in Section 3.8.

Fig. 3.3 gives the CPS translation for the calculus λs/r where we assume that the variables κ andm are fresh. The CPS
translation is essentially due to Biernacka and Biernacki, which is based on Plotkin’s call-by-name CPS translation, and
is extended to the calculus with shift and reset. The translation [[ ]]1 maps a term in λs/r to a term in the type-free lambda
calculus. We call it 1CPS translation. For terms without control operators, this CPS translation is identical to Plotkin’s
one. Unlike the call-by-value one, a variable x is translated to λκ.xκ. This reflects the fact that a variable in the call-by-
name calculus λs/r is not a value, but represents a computation, so its CPS counterpart should receive a continuation κ.
We will assume that the target calculus of the CPS translation admits η-equality for the continuation variable κ, hence
[[x]]1 could be defined as x.

The translation for a reset-term 〈e〉 is identical to that in the call-by-value setting [9]. It is also not difficult to
understand the translation of a shift-term Sk.e. It captures the current continuation κ, binds it to the shift-bound variable
k, and then installs the identity continuation θ1. The translation of a throw-term k ←↩ e is to install the continuation k,
compute e, and then re-activates the continuation κ by applying κ to the result of e. The translation of a reset-term is
to save the current (delimited) continuation κ, and install the identity continuation θ1 (which corresponds to an empty
evaluation context) as the current continuation.

3.3.3 Semantics of CPS terms
Our purpose is to axiomatize the CPS semantics, and in order to do so, we need to precisely define the semantics of the
target calculus. In the presence of delimited-control operators in the source calculus λs/r, the image of 1CPS translation
is not strictly in CPS. Namely, the arguments in function applications may not be values. For instance, the image of a
reset-term contains a subterm κ([[e]]1θ1), in which κ is applied to a non-value term [[e]]1θ1, thus the evaluation of this term
is dependent on the evaluation strategy. If we evaluate it in call-by-value, [[e]]1θ1 is computed first, and κ is applied to its
result. If we evaluate it in call-by-name, [[e]]1θ1 is not computed now, and κ is applied to the unevaluated subterm [[e]]1θ1.

As for this choice, we again follow Biernacka and Biernacki who have chosen the call-by-value semantics for the
target calculus. Rather than introducing the call-by-value semantics into the target calculus directly (such as Moggi’s
computational lambda calculus [36]), we translate the CPS terms once again [9], by the call-by-value CPS translation.
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[[x]]2
def
= x

[[c]]2
def
= λκ.κc

[[λx.e]]2
def
= λκ.κ(λx.[[e]]2)

[[e1 e2]]2
def
= λκ.[[e1]]2(λm.m[[e2]]2κ)

[[Sk.e]]2
def
= λκ.([[e]]2{k := κ})θ2

[[k ←↩ e]]2
def
= λκ.λγ.[[e]]2k(κ⊕ γ)

[[〈e〉]]2
def
= λκ.λγ.[[e]]2θ2(κ⊕ γ)

θ2
def
= λm.λγ.γm

(κ⊕ γ) def
= λm.κmγ

Figure 3.4: 2CPS Translation

The successive CPS translations may be represented by a single CPS translation, which we call a 2CPS translation.
The images of the 2CPS translation are terms in CPS, and we no longer have to be worried about different semantics.

3.3.4 2CPS Translation
Fig. 3.4 defines the 2CPS translation for λs/r, which introduces two continuation variables κ and γ. These variables as
well as m are assumed to be fresh. If we decompose the 2CPS translation into two CPS translations, κ is introduced by
the first (call-by-name) CPS translation, and γ is introduced by the second (call-by-value) CPS translation.

The definition of the 2CPS translation looks like that of the 1CPS translation. The trick is that we η-reduce the
results of 2CPS translation whenever possible. For instance, [[x]]2 should be λκ.λγ.xκγ, however, since we will introduce

η-equality for the variable γ, it is equal to λκ.xκ, so we define it as [[x]]2
def
= λκ.xκ (which is in turn equal to x by

η-reduction for κ). Since the images of the 1CPS translation of the throw-term k ←↩ e and the reset-term 〈e〉 contain
non-CPS forms, their images of the 2CPS translations must use the second continuation variable γ.

We also note that the identity continuation θ1 (= λm.m) becomes θ2 (= λm.λγ.γm), and that (κ ⊕ γ) (which is
simply an abbreviation for λm.κmγ) corresponds to the push-operation for the stack of meta-continuations in the abstract
machine semantics. (See [6] for details.)

In the following, we simply write [[e]] for [[e]]2, since we do not use the 1CPS translation.

3.3.5 Analysis of Target Calculus
In order to define the CPS semantics, we shall precisely define the semantics of the target calculus of the 2CPS translation.

By inspecting the images of the translation, we can easily show that terms in the target calculus are generated by the
following grammar:

T ::= x | λκ.P | V T V ::= c | m | λx.T
P ::= KV | TK | λγ.A K ::= κ | λm.P
A ::= GV | PG G ::= γ | λm.A

The target calculus has six sorts: T is the image of expressions in λs/r. P is a pre-term and A is an answer. V is the
image of values (constant or abstraction). K is the image of pure evaluation contexts (delimited context). G is the image
of (general) evaluation contexts. Variables belong to some specific sorts: x is a variable for T , m for V , κ for K, and γ
for G.

It is important to note that βη-reductions in the target calculus preserve the sorts, which is easily proved.
For a term in the target calculus t1 and t2, we write `CPS t1 = t2 if they are proved equal using the following equations

and the standard equality rules (reflexivity, symmetry, transitivity, and substitution):
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• β-equality for x: (λx.T1) T2 = T1{x := T2}.

• βη-equality for m: (λm.P )V = P{m := V }, λm.Km = K (where m 6∈ FV(K)), (λm.A)V = A{m := V },
and λm.Gm = G (where m 6∈ FV(G)).

• βη-equality for κ: (λκ.P )K = P{κ := K} and λκ.Tκ = T (where κ 6∈ FV(T )).

• βη-equality for γ: (λγ.A)G = A{γ := G} and λγ.Pγ = P (where γ 6∈ FV(P )).

Note that we have excluded η-equality for x, namely, λx.V x = V is not allowed in general. This choice reflects the
fact that the source calculus λs/r does not allow η-equality as we argued before.

3.3.6 Properties of 2CPS Translation
In this subsection we show several useful properties of the 2CPS translation.

We first define |F | for a pure evaluation context F . The purpose of | | is to CPS-translate a pure evaluation context F ,
and it is defined as follows:

|�| def= λκ.κ

|F e| def= λκ.|F | (λm.m[[e]]κ)

Now we can state the following lemma which is useful in the soundness proof.

Lemma 3.1. We have the following properties for the 2CPS translation.

(1) `CPS [[F [e]]] = λκ.[[e]](|F |κ) where κ 6∈ FV(e).

(2) `CPS [[e{x := e′}]] = [[e]]{x := [[e′]]}.

(3) `CPS [[e{k ⇐ F}]] = [[e]]{k := |F | θ2}.

(4) `CPS [[e{k ⇐ (k′ ←↩ F )}]] = [[e]]{k := |F | k′}.

Proof. (1) The equation is proved by induction on F . When F = �, it is trivial. When F = F1 e1, we can prove it as
follows:

[[F [e]]] ≡ [[F1[e] e1]]

≡ λκ.[[F1[e]]] (λm.m[[e1]]κ)

= λκ.(λκ′.[[e]](|F1|κ′)) (λm.m[[e1]]κ) by I.H.
= λκ.[[e]](|F1|(λm.m[[e1]]κ))

= λκ.[[e]](|F1e1| κ)

From the second line to the third, we used induction hypothesis on F1.
(2) The equation is easily proved by induction on e.
(3) The equation is proved by induction on e. The only interesting case is e ≡ k ←↩ e1, and we can prove the case as

follows:

[[(k ←↩ e1){k ⇐ F}]]
≡ [[〈F [e1{k ⇐ F}]〉]]
≡ λκ.λγ.[[F [e1{k ⇐ F}]]]θ2(κ⊕ γ)
= λκ.λγ.[[e1{k ⇐ F}]](|F | θ2)(κ⊕ γ) by (1)
= λκ.λγ.[[e1]]{k := |F | θ2}(|F | θ2)(κ⊕ γ) by I.H.
= (λκ.λγ.[[e1]]k(κ⊕ γ)){k := |F | θ2}
≡ [[(k ←↩ e1)]]{k := |F | θ2}
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(λx.e1) e2 = e1{x := e2} β

〈F [Sk.e]〉 = 〈e{k ⇐ F}〉 reset-shift
k′ ←↩ (F [Sk.e]) = 〈e{k ⇐ (k′ ←↩ F )}〉 throw-shift

〈v〉 = v for v = c, λx.e reset-value
Sk.(k ←↩ e) = e where k 6∈ FV(e) shift-elim

Sk.〈e〉 = Sk.e shift-reset

Figure 3.5: Axioms for λs/r (call-by-name)

(4) This case is proved in the same way as (3). Here we show the case e ≡ k ←↩ e1.

[[(k ←↩ e1){k ⇐ (k′ ←↩ F )}]]
≡ [[k′ ←↩ F [e1{k ⇐ (k′ ←↩ F )}]]]
≡ λκ.λγ.[[F [e1{k ⇐ (k′ ←↩ F )}]]]k′(κ⊕ γ)
= λκ.λγ.[[e1{k ⇐ (k′ ←↩ F )}]](|F | k′)(κ⊕ γ) by (1)
= λκ.λγ.[[e1]]{k := |F | k′}(|F | k′)(κ⊕ γ) by I.H.
= (λκ.λγ.[[e1]]k(κ⊕ γ)){k := |F | k′}
≡ [[k ←↩ e1]]{k := |F | k′}

3.4 Axiomatizing the Semantics
In this section, we provide a set of axioms for λs/r, and show that it is sound with respect to the CPS semantics. Its
completeness will be proved in the next section.

3.4.1 Axioms
Fig. 3.5 gives our axioms for λs/r. We write `cbn

s/r e1 = e2 if we can prove the equation using these axioms and the
standard inference rules for equality.

For the purpose of comparison, Fig. 3.6 gives the axioms for the call-by-value calculus λcbvs/r by Kameyama and
Hasegawa [26]. Although their calculus does not have the throw expression k ←↩ e, we introduce it for the purpose of
comparison. Their axioms are slightly modified accordingly. Note that the definitions for a value v and the pure evaluation
context F for the call-by-value calculus are different from those for λs/r.

We will explain the axioms in Fig. 3.5 by comparing them to those in Fig. 3.6.

• The call-by-name calculus λs/r has a single strong axiom for β, while the call-by-value one λcbvs/r has three weaker
axioms βv , βΩ, and reset-lift. The former subsumes the latter.

• No axiom for η-equality exists in λs/r, while λcbvs/r has the call-by-value version of η-equality as ηv .

• The axioms shift-elim and shift-reset are contained in both calculi.

• Two axioms reset-shift and reset-value are contained in both calculi, but their actual meanings differ between the
calculi, since the definitions of F and v differ.

• The axiom throw-shift is contained in both calculi.

For the call-by-value calculus, this is only because k ←↩ e is a special form. If we do not distinguish shift-bound
and lambda-bound variables, then k ←↩ e may be represented by (k e), and the axiom throw-shift is subsumed by
reset-shift (note that (k F ) is an evaluation context in λcbvs/r if k is a variable).

25



(λx.e1) v = e1{x := v} βv

λx.v x = v where x 6∈ FV(v) ηv

(λx.F [x])e = F [e] where x 6∈ FV(F ) βΩ

〈F [Sk.e]〉 = 〈e{k ⇐ F}〉 reset-shift
k′ ←↩ (F [Sk.e]) = 〈e{k ⇐ (k′ ←↩ F )}〉 throw-shift

〈v〉 = v reset-value
Sk.(k ←↩ e) = e where k 6∈ FV(e) shift-elim

Sk.〈e〉 = Sk.e shift-reset
〈(λx.e1)〈e2〉〉 = (λx.〈e1〉)〈e2〉 reset-lift

where v and F are defined as follows:

v ::= c | x | λx.e
F ::= � | F e | v F

Figure 3.6: Axioms for λcbvs/r (call-by-value)

On the contrary, the axiom throw-shift is necessary for the call-by-name calculus, and it seems difficult to formulate
this axiom without distinguishing shift-bound variables from lambda-bound variables. Without such a distinction,
throw-shift would become unsound.

We believe that our axioms for the call-by-name calculus are simple enough to be used for reasoning about open
programs, and that the similarity of the axioms for the two calculi is an evidence that our axioms are natural and stable.

We emphasize that establishing this kind of axioms is not trivial even after getting to know the axiomatization for the
call-by-value case, since the CPS translation of the shift term in call-by-name is not quite the same as that in call-by-value.

It is easy to prove that the reduction semantics is subsumed by our axioms.

Theorem 3.1. Let e1 and e2 be expressions in λs/r. If e1  e2 by one of the reduction rules in Fig. 3.2, then `cbn
s/r e1 = e2

is derivable.

Proof. The three reductions, respectively, are subsumed by the axioms β, reset-shift, and reset-value, respectively.

The rest of this chapter is devoted to establish that the axioms in Fig. 3.5 are sound and complete with respect to the
CPS semantics induced by the 2CPS translation.

3.4.2 Soundness of Axioms
Soundness of the axioms means that equal terms in the source calculus λs/r are CPS-translated to equal terms. Soundness
may be thought as a sort of correctness for a CPS translation.

Theorem 3.2 (Soundness). Let e1 and e2 be terms in λs/r. If `cbn
s/r e1 = e2 is derivable, then `CPS [[e1]] = [[e2]] is derivable.

Proof. It suffices to prove the theorem when e1 = e2 is obtained by one of the axioms. We list the proofs of all the cases,
since they are instructive to know the details of the CPS translation.

(β)

[[(λx.e1) e2]] ≡ λκ.[[λx.e1]] (λm.m [[e2]] κ)

= λκ.(λκ′.κ′ (λx.[[e1]])) (λm.m [[e2]] κ)

= λκ.(λx.[[e1]]) [[e2]] κ

= λκ.[[e1]]{x := [[e2]]} κ
= [[e1]]{x := [[e2]]}
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= [[e1{x := e2}]] by Lemma 3.1 (2)

(reset-shift)

[[〈F [Sk.e]〉]]
≡ λκ.λγ.[[F [Sk.e]]] θ2 (κ⊕ γ)
= λκ.λγ.[[Sk.e]] (|F | θ2) (κ⊕ γ) by Lemma 3.1 (1)
≡ λκ.λγ.((λκ′.[[e]]{k := κ′}) θ2)(|F | θ2) (κ⊕ γ)
= λκ.λγ.([[e]]{k := |F | θ2}) θ2 (κ⊕ γ)
= λκ.λγ.[[e{k ⇐ F}]] θ2 (κ⊕ γ) by Lemma 3.1 (3)
≡ [[〈e{k ⇐ F}〉]]

(throw-shift, k′ 6= k)

[[k′ ←↩ (F [Sk.e])]]
≡ λκ.λγ.[[F [Sk.e]]] k′ (κ⊕ γ)
= λκ.λγ.[[Sk.e]](|F | k′) (κ⊕ γ) by Lemma 3.1 (1)
≡ λκ.λγ.(λκ′.[[e]]{k := κ′}θ2)(|F | k′) (κ⊕ γ)
= λκ.λγ.([[e]]{k := |F | k′}) θ2 (κ⊕ γ)
= λκ.λγ.[[e{k ⇐ (k′ ←↩ F )}]] θ2 (κ⊕ γ) by Lemma 3.1 (4)
≡ [[〈e{k ⇐ (k′ ←↩ F )}〉]]

(reset-value) We define v∗ for a value v by:

c∗
def
= c

(λx.e)∗
def
= λx.[[e]]

Then we can prove:

[[〈v〉]] ≡ λκ.λγ.(λκ′.κ′v∗) θ2 (κ⊕ γ)
= λκ.λγ.θ2 v

∗ (κ⊕ γ)
= λκ.λγ.(κ⊕ γ) v∗

= λκ.λγ.κ v∗ γ

= λκ.κ v∗

≡ [[v]]

(shift-elim, k 6∈ FV(e))

[[Sk.(k ←↩ e)]] ≡ λκ.([[k ←↩ e]]{k := κ}) θ2
= λκ.(λκ′.λγ.[[e]] k (κ′ ⊕ γ)){k := κ}) θ2
= λκ.λγ.[[e]] κ (θ2 ⊕ γ)
= λκ.λγ.[[e]] κ γ

= [[e]]

(shift-reset)

[[Sk.〈e〉]] = λκ.([[〈e〉]]{k := κ}) θ2
= λκ.(λκ′.λγ.[[e]] θ2 (κ′ ⊕ γ)){k := κ}) θ2
= λκ.λγ.([[e]] θ2 (θ2 ⊕ γ)){k := κ}
= λκ.λγ.([[e]] θ2 γ){k := κ}
= [[Sk.e]]
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3.5 Completeness
Completeness is the converse of soundness: if the images of the CPS translation of two terms are equal in the target
calculus, then they are equal in the source calculus. Completeness ensures that all equational reasoning for CPS terms can
be done in the source calculus.

Theorem 3.3 (Completeness). Let e1 and e2 be (type-free) terms in λs/r. If `CPS [[e1]] = [[e2]] is derivable, then `cbn
s/r e1 =

e2 is derivable.

Let us give an overview of the proof of completeness.
We will basically follow the general recipe by Sabry and Felleisen [45] as follows:

(1) Analyze the structure of target terms of CPS translation, and define a grammar for it, which should be closed under
the reductions in the target calculus.

(2) Define a translation from the target to the source calculus, and prove that it is an inverse of the CPS translation.

(3) Prove that equality in the target calculus is preserved by the inverse translation.

However, we encountered a problem when the grammar in Section 3.3.5 is used for this purpose; we could not define
a suitable image of the inverse function for the variable m (the variable for the V -sort) with the desired property. Let
us explain this in more detail. In the completeness proof, we will need the property 〈v◦〉 = v◦ for any term v of the
V -sort where v◦ is the image of v by the inverse function. As a special case, we need 〈m◦〉 = m◦. However, if m◦ is a
variable in λs/r, this property does hold in general. (Note that a variable in λs/r represents an arbitrary expression, and
not necessarily a value, thus 〈x〉 = x does not hold in general.) In addition, no other choice for m◦ seems to exist as m
is a variable.

We can overcome this difficulty by investigating the target calculus more carefully. The variable m in the target
calculus is not used in an arbitrary way, but is used linearly. Linearity of the variable m reflects the fact that a delimited
continuation (a pure evaluation context) in the call-by-name calculus is linear in its hole: F ::= � | F e. 3

Since m is linear, we do not have to keep the name of m through the inverse function, and we may discard it. The
same technique was used by Kameyama and Hasegawa’s axiomatization of shift and reset in call-by-value, where the
metacontinuation variable γ is linear, and thus can be discarded by the inverse function. Here, we discard not only the
name of γ, but also the name of m.

In the following proof, we do not directly formulate linear lambda calculus as the target calculus. Instead, we refine
the grammar to reflect the linearity of the variablem. Therefore we do not explicitly mention the linearity in the proof, but
it is embedded in the grammar of the target calculus, and the definition of the inverse translation from the target calculus.
The point here is that this simple trick is sufficient to avoid the problem above.

3.5.1 Refined Grammar and Inverse Function
We give a refined grammar for the target calculus as:

T ::= x | λκ.P | V T term
P ::= KV | TK | λγ.A preterm
A ::= GV | PG answer
V ::= c | λx.T value
K ::= κ | λm.m T K | λm.λγ.γ m continuation
G ::= γ | λm.K m G metacontinuation

The difference from the previous grammar is that we no longer regard m as a member of the V -sort. Instead, the K- and
G-sorts contain a few more terms using m, and m is a linear variable.

The equality of the target calculus remains the same, however, since η-redex form does not exist in the terms generated
by the new grammar, it is discarded. In summary, the equality of the terms generated by the new grammar is induced by
β-equality for the variables x and m, and βη-equality for the variables κ and γ.

3This linearity has been already mentioned in the literature, for instance, in Herbelin and Ghilezan [23].
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x◦
def
= x (λκ.P )

◦ def
= Sκ.P ◦

(V T )
◦ def
= V ◦ T ◦

(KV )
◦ def
= K◦[V ◦] (TK)

◦ def
= K◦[T ◦]

(λγ.A)
◦ def
= A◦

(PG)
◦ def
= G◦[〈P ◦〉] (GV )

◦ def
= G◦[V ◦]

c◦
def
= c (λx.T )

◦ def
= λx.T ◦

κ◦
def
= κ←↩ � (λm.m T K)

◦ def
= K◦[� T ◦]

(λm.λγ.γ m)
◦ def
= �

γ◦
def
= � (λm.K m G)

◦ def
= G◦[〈K◦�〉]

Figure 3.7: Inverse Function

In the following, we use T, P,A, V,K and G not only for the names of sorts, but also for meta-variables of the
corresponding sorts, for instance, T is used as a meta-variable for terms of the T -sort.

We can easily prove the following lemma for the refined grammar.

Lemma 3.2.

• If e is a λs/r-term, then [[e]] belongs to the T -sort.

• Each of the above sorts is closed under β-reduction for x and m, and βη-reduction for κ and γ.

We then define an inverse function ( )
◦ from the target calculus to source calculus in Fig. 3.7. By the inverse function,

a term in the T , P , A, or V -sort is mapped to a term in λs/r, a term in the K or G-sort to an evaluation context.
Note that reset is introduced in (PV )

◦ and (λm.K m G)
◦, and the names of the variables m and γ are discarded

through the inverse, since these variables are linear.
We prove that the above “inverse” function is actually a (left) inverse of the 2CPS translation.

Lemma 3.3 (Inverse). Let e be an expression in λs/r. We have `cbn
s/r [[e]]

◦
= e.

Proof. This lemma can be proved by a straightforward induction on e. Let us show a few interesting cases.
For e = 〈e′〉, we have:

[[e]]
◦
= (λκ.λγ.[[e′]]θ2(κ⊕ γ))

◦

= Sκ.(λm.κ m γ)
◦
[〈θ2◦[[[e′]]

◦
]〉]

= Sκ.κ←↩ 〈[[e′]]◦〉 = 〈[[e′]]◦〉 = 〈e′〉

For e = Sk.e′, we have:

[[e]]
◦
= (λκ.([[e′]]{k := κ})θ2)

◦

= (λk.[[e′]]θ2)
◦

= Sk.θ2◦[[[e′]]
◦
] = Sk.e′

3.5.2 Properties of Inverse Function
We present several technical properties about substitution and the inverse.

Lemma 3.4. Substitutions for x, κ, and γ commute with the inverse function in the following sense.
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(1) `cbn
s/r (t{x := T1})◦ = t◦{x := T1

◦} is derivable if t is a T -, P -, A-, V -, K-, or G-term.

(2) Let φ be {κ := K1} and ψ be {κ⇐ K1
◦}. Then we have:

• `cbn
s/r (tφ)

◦
= t◦ψ if t is a T - or V -term.

• `cbn
s/r 〈(tφ)◦〉 = 〈t◦ψ〉 if t is a P - or A-term.

• `cbn
s/r 〈(Kφ)◦[e]〉 = 〈(K◦ψ)[e]〉 for any term e in λs/r.

• `cbn
s/r (Gφ)

◦
[〈e〉] = (G◦ψ)[〈e〉] for any term e in λs/r.

(3) `cbn
s/r 〈(A{γ := G1})◦〉 = 〈G1

◦[〈A◦〉]〉.

(4) `cbn
s/r (G{γ := G1})◦[〈e〉] = G1

◦[〈G◦[〈e〉]〉] for any term e in λs/r.

Proof. This lemma can be proved by simultaneous induction on each term. Note that (Pφ)◦ = P ◦ψ does not hold in
general, but it suffices to prove 〈(Pφ)◦〉 = 〈P ◦ψ〉 to make the induction go through, since P always appears immediately
under reset. Similarly for K, we only have to consider the form 〈K◦[e]〉. We also make use of the fact that γ does not
appear free in T , P , V or K.

Here, we prove a few interesting cases.
(Case K ≡ κ for 〈(Kφ)◦[e]〉 = 〈(K◦ψ)[e]〉)

We may assume that κ 6∈ FV(e). The left-hand side is 〈K1
◦[e]〉, and the right-hand side is 〈(κ◦ψ)[e]〉, which is equal

to 〈(κ←↩ e){κ⇐ K1
◦}〉. Then we have:

`cbn
s/r 〈(κ←↩ e){κ⇐ K1

◦}〉 = 〈〈K1
◦[e]〉〉 = 〈K1

◦[e]〉

(Case G ≡ λm.KmG2 for (4))
The left-hand side of (4) is (G2{γ := G1})◦[〈K◦[〈e〉]〉], which is equal to G1

◦[〈G2
◦[〈K◦[〈e〉]〉]〉] by induction

hypothesis, which is equal to the right-hand side.

Lemma 3.5 (Inverse preserves reduction). Suppose `CPS t1 = t2 is derivable for target terms t1 and t2, then we have:

• `cbn
s/r t1

◦ = t2
◦ if t1 and t2 are T - or V -terms.

• `cbn
s/r 〈t1◦〉 = 〈t2◦〉 if t1 and t2 are P - or A-terms.

• `cbn
s/r 〈t1◦[e]〉 = 〈t2◦[e]〉 if t1 and t2 are K-terms and e is a term in λs/r.

• `cbn
s/r t1

◦[〈e〉] = t2
◦[〈e〉] if t1 and t2 are G-terms and e is a term in λs/r.

Proof. It suffices to prove the lemma when t2 is obtained from t1 by β or η reduction.
There are six β-redexes, and two η-redexes. For each reduction t1  t2, it is not difficult to prove `cbn

s/r t1
◦ = t2

◦.
The most interesting case is β-reduction for κ, namely, the case `cbn

s/r 〈((λκ.P )K)
◦〉 = 〈(P{κ := K})◦〉. We have:

〈((λκ.P )K)
◦〉 = 〈K◦[Sκ.P ◦]〉

and
〈(P{κ := K})◦〉 = 〈P ◦{κ⇐ K◦}〉

by Lemma 3.4. By inspecting the definition of K◦, it is either a pure evaluation context, or the form κ′ ←↩ F for some κ′

and F . In the former case, we use the axiom reset-shift to prove:

`cbn
s/r 〈K◦[Sκ.P ◦]〉 = 〈P ◦{κ⇐ K◦}〉

while in the latter case, we use the axiom throw-shift to prove the same equation. Hence we are done.
The other cases can be proved easily.

It should be emphasized that the proof of this theorem actually needs the axiom throw-shift.

Therem 3.3. Let e and e′ be terms in λs/r. Suppose `CPS [[e]] = [[e′]] is derivable. Since [[e]] and [[e′]] are T-terms, we have
`cbn

s/r [[e]]
◦
= [[e′]]

◦ by Lemma 3.5, and then `cbn
s/r e = e′ by Lemma 3.3.
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Γ ∪ {x : (α | σ | β)} | α ` x : σ | β
var

(c is a constant of base type b)
Γ | α ` c : b | α const

Γ, x : (α | σ | β) | α′ ` e : σ′ | β′

Γ | γ ` λx.e : (α | σ | β)→ (α′ | σ′ | β′) | γ fun

Γ | β′ ` e0 : (α | σ | β)→ (α′ | σ′ | β′) | γ Γ | α ` e1 : σ | β
Γ | α′ ` e0e1 : σ′ | γ

app

Γ | α ` e : α | β
Γ | γ ` 〈e〉 : β | γ reset

Γ ∪ {k : σ B τ} | α ` e : α | β
Γ | τ ` Sk.e : σ | β shift

Γ | τ ` e : σ | β
Γ ∪ {k : σ B τ} | α ` k ←↩ e : β | α throw

Figure 3.8: Type System

3.6 Typed Calculus
We have so far studied the type-free calculus only, and a natural question is whether our axioms work for typed calculus.
In this section we give a positive answer to it.

3.6.1 Type System
We define a type system for our call-by-name calculus with delimited control. The type system defined in this section is
essentially the same as the type system by Biernacka and Biernacki modulo the following modifications.

• Our syntax does not have an expression F ←↩ e for a pure evaluation context F and an expression e, so the
corresponding typing rule is not contained.

• As a consequence, we do not need typing rules for delimited contexts and metacontexts, so they are omitted.

• We use a slightly different notation for function types. This is only notational difference: we write (α | σ | β) →
(α′ | σ′ | β′) for their type σα,β

α′ →β′ σ′.

A type (denoted by α, β, σ, τ, · · · ) is either a basic type b (such as integer and boolean), or a function type (α | τ |
β) → (α′ | τ ′ | β′). The function type may be understood as the type of a function whose argument has the type τ with
an effect of type α to β, and whose return type is τ ′ with an effect of type α′ to β′. Here, “an effect of type α to β” is a
computational effect invoked by a shift-expression, which changes the answer type of the current continuation from α to
β. See [4] for the detailed discussion on the answer-type modification. If there is no effect by a shift-expression, then α
and β are the same type (which can be an arbitrary type [57].)

We also define a context-type σ B τ where σ and τ are types. A context-type is used for typing a delimited continua-
tion, or a pure evaluation context.

A typing context Γ is a (possibly empty) set consisting of x : (α | τ | β) and k : σ B τ . The former intuitively means
that an ordinary variable x has type τ with an effect of type α to β, while the latter represents the type of a delimited
continuation corresponding to k. Since a delimited continuation is always a pure function, we do not have to consider its
effects, so the type of k needs only two subtypes. A judgement takes the form Γ | α ` e : τ | β where Γ is a typing
context, α, τ, β are types, and e is an expression.

Fig. 3.8 gives the type system.
As Biernacka and Biernacki proved, the reduction rules in Fig. 3.2 enjoy the subject reduction property under this type

system.
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3.6.2 Typed CPS Translation
For the purpose of this chapter, namely, axiomatization, we define a CPS translation for the typed calculus. Not sur-
prisingly, we use the same CPS translation, the 2CPS translation in Fig. 3.4 for expressions in the typed calculus. The
remaining task is to define the CPS translation of types and typing contexts.

For a simple type4 A, we define ¬A as A→⊥ where ⊥ is an arbitrary fixed type.
The CPS translation of a type is defined by b∗ def

= b and

((α | τ | β)→ (α′ | τ ′ | β′))∗

def
= ((τ∗ → ¬¬α∗)→ ¬¬β∗)→ ((τ ′∗ → ¬¬α′∗)→ ¬¬β′∗)

The definition above needs several occurrences of double negation ¬¬ since we use 2CPS translation.
Finally, we define the CPS translation of a typing context as:

(x : (α | τ | β))∗ def
= x : (τ∗ → ¬¬α∗)→ ¬¬β∗

(k : σ B τ)∗ def
= k : σ∗ → ¬¬τ∗

Theorem 3.4. If Γ | α ` e : τ | β is derivable, then Γ∗ ` [[e]] : (τ∗ → ¬¬α∗) → ¬¬β∗ is derivable in the simply typed
lambda calculus.

Proof. The theorem can be proved by induction on the derivation of Γ | α ` e : τ | β.

3.6.3 Axiomatization
We now axiomatize the CPS semantics for the typed calculus. Perhaps surprisingly, exactly the same axioms in Fig. 3.5
work for the typed calculus.

Theorem 3.5 (Soundness and Completeness). Let e1 and e2 be typed terms in λs/r, then `cbn
s/r e1 = e2 if and only if

`CPS [[e1]] = [[e2]].

Proof. Since the proof is mostly the same as the type-free case, we only show an overview of the proof.

• We first establish that, if the term in the left-hand side of each axiom is typable, then the term in its right-hand side
is typable and has the same typing judgement.

• We must check that all intermediate terms used in the completeness proof preserve the typing judgement.

• We must also check that the inverse translation preserves typing, and also, if e is typable in the source calculus, [[e]]◦

has the same typing judgement.

• Finally, we must check that the reductions in the target calculus are mapped to typable equations in the source
calculus.

We must check a lot of things, but each check can be done straightforwardly.

3.7 Discussion on the use of linearity
We briefly discuss the use of linearity in the target of a CPS translation, which plays a significant role in our proof.

A (rough) type structure of the image of the 2CPS translation can be given as:

Term = Cont→1 MetaCont→2 Answer

Cont = Value→3 MetaCont→4 Answer

MetaCont = Value→5 Answer

where the indices 1, 2, . . . , 5 are for reference, and we have omitted to write the definition of type Value. As we have
seen, some function types can be refined to linear function types:

4A simple type means a type in the simply typed lambda calculus.
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[[c]]
SR
2 = λκ.κc

[[x]]
SR
2 = x

[[λx.e]]
SR
2 = λ(x, κ).[[e]]

SR
2 κ

[[e1 e2]]
SR
2 = λκ.[[e1]]

SR
2 ([[e2]]

SR
2 , κ)

[[Sk.e]]SR
2 = λκ.([[e]]

SR
2 {k := κ})θ2

[[k ←↩ e]]SR
2 = λκ.λγ.[[e]]

SR
2 k(κ⊕ γ)

[[〈e〉]]SR
2 = λκ.λγ.[[e]]

SR
2 θ2(κ⊕ γ)

Figure 3.9: SR-style 2CPS Translation

• →2 and→4 can be made linear function space(, which corresponds to the metacontinuation variable γ. In the
terminology of Berdine et al. [5], it is a linearly used continuation.

• →3 and→5 can be made linear function space(, which corresponds to the variable m. This linearity reflects the
fact that evaluation contexts are linear, and is specific to the call-by-name calculus. This is related to what Filinski
called linear continuations [14].

In our proof, we have used both linearity, hence→i for i = 2, 3, 4, 5 is linear function space. The remaining (non-
linear) function space→1 corresponds to the non-linear uses of delimited continuations, which are useful for representing,
e.g., backtracking. Berdine et al. [5] proposed to restrict this function space to be linear, and claimed that it is a “stylized”
use of control.

3.8 Revisiting η-equality
We have argued the interaction between reset and full η-equality, and concluded that we should give up full η-equality,
because it is unsound with respect to the intended operational semantics.

However, there can be a typed calculus which admits full η-equality if the use of reset is limited. More precisely, if
we restrict the type of reset-terms to be basic types (no function types are allowed as the return type of any delimited
continuation captured by shift), we can formulate a calculus in which η-equality is sound.

To develop the semantics of such a calculus, we extend Streicher and Reus’ CPS translation [50]. Fig. 3.9 gives a
2CPS translation for λs/r as an extension of Streicher and Reus’ CPS translation.

The target calculus of this CPS translation is the simply typed lambda calculus augmented with pairing, denoted by
(t1, t2). Pairs are decomposed by an abstraction λ(x, y).t with the additional equality (λ(x, y).t0) (t1, t2) = t0{x :=
t1}{y := t2}, and λ(x, y).e(x, y) = e for x, y 6∈ FV(e). It should be noted the CPS translation preserves η-equality as:

[[λx.ex]]
SR
2 =β λ(x, k).[[e]]

SR
2 (x, k) =pair [[e]]

SR
2

where =pair means the equality induced by the two equations for pairs.
Using the CPS translation in Fig. 3.9, we can develop yet another type system for λs/r. The type system obtained

through Streicher and Reus’ CPS translation is different from the one obtained by Biernacka and Biernacki CPS transla-
tion.

We could axiomatize such a calculus in a similar way to this chapter. Unfortunately, the result is not really illuminating;
the obtained axioms are the same axioms as those given in this chapter with η-equality (λx.ex = e for x 6∈ FV(e)) being
added. Note that a reset-term 〈e〉 is restricted to be of basic types, and therefore 〈λx.e〉 is not well-typed in this calculus.

We did not develop this calculus in this chapter, because we do not know any practical meaning of such a calculus.

3.9 Concluding Remarks
In this chapter we have investigated the CPS semantics of the call-by-name calculi with delimited-control operators. We
have obtained a sound and complete axiomatization for the calculus in the sense that:
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`cbn
s/r e1 = e2 if and only if `CPS [[e1]] = [[e2]].

Since η-equality interferes with reset, our axioms for the source calculus do not contain η-equality. We have proved
that the same axioms work for type-free and typed cases, where the type system is (essentially) given by Biernacka and
Biernacki.

Our theoretical tool was the 2CPS translation, which mixes a call-by-name translation with a call-by-value one. For
the completeness proof, we need to use linearity of evaluation contexts in a non-trivial way. Also we have formulated the
source calculus carefully so that lambda-bound variables and shift-bound variables must be treated differently.

We also briefly mentioned yet another typed calculus for the call-by-name shift and reset. In this calculus, η-equality
is admitted with no restriction, but the type of a reset-term 〈e〉 is restricted to a basic type.

Although we do not claim that the calculus proposed by Biernacka and Biernacki (or our calculus as its small variant)
is the right one for call-by-name delimited control, we believe our results can be basis for further study on call-by-name
delimited-control.

Relation with Other Works. In this chapter, we have concentrated on the delimited-control operators shiftand
resetin the style of Danvy and Filinski and of Biernacka and Biernacki, and have not considered the relationship with
others.

Herbelin and Ghilezan proposed a call-by-name calculus with control operators and connected it with classical logic
[23]. They have obtained the calculus from the call-by-value calculus with delimited-control operators, but the counterpart
of the reset-operator behaves quite differently from those presented in this chapter. In their call-by-value calculus, 〈M〉 is
represented by µt̂p.[t̂p]M where t̂p is a variable for the top-level continuation. However, in their call-by-name calculus,
this term reduces to M , so its behavior is quite different from the usual behavior of reset. Consequently, it is difficult to
relate their calculus with other calculi. Their calculus is also different from the calculus in Section 3.8, since, in the latter
calculus 〈e〉 = e does not hold if e has a basic type.

As an application of a call-by-name calculus with delimited control, Kiselyov proposed to use it in linguistic analysis
[30]. His calculus has an explicit representation of evaluation contexts, and therefore it is similar to Biernacka and
Biernacki’s formulation. He has not given a CPS translation for his calculus, so we do not know if we can axiomatize his
calculus as in this chapter.

Future work. There are a number of future works, and let us list only a few of them. (1) To investigate other delimited-
control operators such as Felleisen’s “control” and “prompt” in call-by-name, and if possible axiomatizing them. (2) To
relate the call-by-name calculi with the call-by-value one in the sense of duality, and also with classical logic. (3) To relate
our calculus with logic-based calculi such as Herbelin and Ghilezan’s, and give the logical account to reset.
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Chapter 4

A Call-by-Name CPS Hierarchy

We will explain our study about a CPS hierarchy [54] in this chapter.

4.1 Introduction
Translating terms into Continuation Passing Style (CPS) is a key to define and understand control operators such as
first-class continuations (Scheme’s call/cc). By iterating the CPS translation, Danvy and Filinski [9] have obtained a
hierarchy for CPS translations, and found a series of control operators indexed by natural numbers. Among the series,
the first one corresponds to the delimited-control operators shift and reset, which allows to capture a delimited
continuation, part of the rest of computation. In the last two decades, these control operators have found many applications
such as partial evaluation [35], CPS translations [9], mobile computing [51], and dependently typed programming such
as type-safe printf [3].

The second and the rest of the series correspond to the higher-level versions of shift and reset, similar to layered
monads [16], and are useful when we combine two or more computational effects in a single program [7]. Although the
hierarchical (layered) control operators are less expressive than the arbitrarily nested control operators [32], the former
can express many interesting programs, and also the existence of the purely functional CPS transform for the former is
beneficial for studying its semantics and foundational issues.

While the above mentioned work has been done for call-by-value calculi, several authors have recently studied
delimited-control operators in the call-by-name calculi. Herbelin and Ghilezan [23] and Saurin [47] studied variants of
Parigot’s λµ-calculus and interpreted their computational meaning by call-by-name delimited-control operators. Kiselyov
[30] proposed a call-by-name calculus with delimited-control operators and used it in linguistic analysis. Biernacka and
Biernacki [6] studied both call-by-value and call-by-name calculi for delimited-control operators in a uniform way. In the
previous section (our previous work of this section), we gave a complete equational axiomatization for the call-by-name
calculi with delimited-control operators.

In this Chapter, we introduce the call-by-name variant of the CPS hierarchy, in which we can find a series of delimited-
control operators. The key tool we use is Hatcliff and Danvy’s factorization of a CPS translation [22], which connects
Plotkin’s call-by-name and call-by-value CPS translations by a thunk translation. They have shown that all Plotkin’s
criteria for correctness can be established for the thunk translation. We use their methodology in a slightly different way:
rather than defining the call-by-name CPS hierarchy independently from the call-by-value one and connect the two by the
thunk translation, we use the thunk translation to define, or derive, the call-by-name CPS hierarchy from the call-by-value
one. The effectiveness of our method is supported by the fact that Biernacka and Biernacki’s call-by-name calculus for
shift and reset [6] can be obtained by simply taking the first level of our hierarchy. Note that the thunk translation
is much less complicated than the CPS translation for delimited-control operators, and we can obtain the CPS hierarchy
rather smoothly.

The contribution of this Chapter is summarized as follows: (1) we extend Hatcliff and Danvy’s thunk translation to the
calculi with delimited-control operators, (2) we introduce a typed call-by-name CPS hierarchy, and (3) we obtain several
properties of the hierarchy by the connection made by the thunk translation.

The rest of this Chapter is organized as follows. Section 4.2 gives informal explanation for the background of this
work. Section 4.3 formally introduces the call-by-name calculus in a CPS hierarchy and a thunk translation. In Section
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(term in Λ) e ::= c | x | λx.e | ee
(term in Λfd) e ::= · · · | force(e) | delay(e)
(cbn-value) v ::= c | λx.e
(cbv-value) v ::= c | x | λx.e
(β) (λx.e1)e2  e1{x := e2}
(βv) (λx.e1)v  e1{x := v}
(fd) force(delay(e)) e

Figure 4.1: Syntax and Reduction Rules of the Basic Calculus

4.4, we derive a type system for our calculus and prove basic properties. Section 4.5 gives an equational theory for our
calculus. Section 4.6 compares our work to others and state concluding remarks.

4.2 Preliminaries

4.2.1 Delimited-Control Operators and a CPS Hierarchy
As we mentioned in the subsection 2.3.1, explicit manipulation of continuations allows various programming styles.

However, we cannot mix two or more uses of shift and reset in one program if they do not have names to
distinguish one from the other. To avoid unwanted interference between different uses of control operators, we attach
natural numbers to each control operator as their indices. As the second and third examples show, shift chooses the
nearest reset as the one with the same index as shift.

The above explanation is not completely precise: the index is not merely a name. Rather, they are linearly ordered
(hence a natural number is used). In the fourth example, shift indexed by 1 chooses the nearest reset as the one
indexed by 2, rather than the one by 1. In general, a higher-level reset delimits the continuation captured by a lower-
level shift. Put differently, a lower-level shift cannot escape from a higher-level reset, thus control operators are
layered or hierarchical.

4.2.2 The Thunk Translation
The thunk translation introduces a “thunk” (a lambda closure) to freeze a computation, and can be regarded as a translation
from a call-by-name calculus to a call-by-value calculus. Hatcliff and Danvy [22] showed that Plotkin’s call-by-name CPS
translation can be factored into the thunk translation and Plotkin’s call-by-value CPS translation, and that all Plotkin’s
correctness criteria [43] can be derived using this factorization. In this subsection, we briefly review their results to the
extent that is necessary for this Chapter.

Fig. 4.1 gives the source and target calculi where c is a constant and v is a value in call-by-value. Λ denotes the set
of terms defined in this figure. The reductions (β) and (βv), resp., are the call-by-name and call-by-value β-reductions,
resp. Bound and free variables are defined in the standard way, and we identify α-equivalent terms. The term e1{x := e2}
denotes the result of capture-avoiding substitution.

The thunk translation gives a simulation of the call-by-name calculus in the call-by-value calculus in terms of the
following two functions: (1) delay for creating a suspended computation as a value (thunk), and (2) force for re-
invoking the suspended computation. For a term e, the term delay(e) is a value, and force(delay(e)) reduces to e.
Although we can express delay(e) by λx.e, and force(e) by ex, for a fresh variable x, it is convenient to distinguish
thunks from the ordinary lambda abstractions. Λfd denotes the set of terms with delay and force.

The thunk translation is a syntactic translation from Λ to Λfd defined in Fig. 4.2. It is easy to see that a one-step
β-reduction in the source calculus one-to-one corresponds, by the thunk translation, to a one-step β-reduction in the target
calculus modulo the (fd) reduction. Also, since all the arguments of functions in Λfd are values, the reductions (β) and
(βv) coincide on Λfd.

Theorem 4.1 (Simulation [Hatcliff and Danvy]). Let e1 and e2 be terms in Λ. We have that e1 reduces to e2 by the (β)
reduction if and only if T [[e1]] reduces to T [[e2]] by the (βv) reduction followed by the (fd) reductions. Moreover, (βv) may
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T [[c]] def= c T [[λx.e]] def= λx.T [[e]]

T [[x]] def= force(x) T [[e1e2]]
def
= T [[e1]] (delay(T [[e2]]))

Figure 4.2: Thunk Translation

Cn[[c]] def= λκ.κc Cv[[c]] def= λκ.κc

Cn[[x]] def= λκ.xκ Cv[[x]] def= λκ.κx

Cn[[λx.e]] def= λκ.κ(λx.Cn[[e]]) Cv[[λx.e]] def= λκ.κ(λx.Cv[[e]])

Cn[[e1 e2]]
def
= λκ.Cn[[e1]](λm.mCn[[e2]]κ) Cv[[e1 e2]]

def
= λκ.Cv[[e1]](λm.Cv[[e2]](λm′.mm′κ))

Cv[[force(e)]] def= λκ.Cv[[e]](λm.mκ)

Cv[[delay(e)]] def= λκ.κCv[[e]]

Figure 4.3: Call-by-Name (left) and Call-by-Value (right) CPS Translations

be replaced by (β) in the above sentence.

We consider equality over terms induced by a set of reduction rules r1, · · · , rn, which is defined as the least congru-
ence relation that subsumes r1, · · · , rn. We write (r1, · · · , rn) ` e1 = e2 if e1 = e2 holds under the equality induced by
r1, · · · , rn. For instance, (β) ` e1 = e2 means that e1 and e2 are equal under β equality.

Fig. 4.3 defines the call-by-value and call-by-name CPS transformations due to Plotkin [43], where the variables κ,
m, and m′ are fresh.

The CPS translations in Fig. 4.3 are standard except the cases for delay and force. The terms force(e) and
delay(e) are intuitively understood as e x and λx.e for a fresh variable x. Then Cv[[force(e)]] is understood as
Cv[[ex]] = λκ.Cv[[e]](λm.Cv[[x]](λn.m n k)), which reduces to λκ.Cv[[e]](λm.m x k)). We also understand Cv[[delay(e)]]
as Cv[[λx.e]], which reduces to λκ.κ(λx.Cv[[e]]). Since x is useless, we omit it in both terms, and obtain the translation in
Fig. 4.3.

Hatcliff and Danvy proved the following key theorem.

Theorem 4.2 (Factorization [Hatcliff and Danvy]). For any term e in Λ, we have (β) ` Cn[[e]] = Cv[[T [[e]]]].

Note that η-equality (and η-reduction) is not preserved by the thunk translation: we have

T [[λx. y x]] = λx.force(y) (delay(force(x)))

and
T [[y]] = force(y)

. In order to equate these terms, we need delay(force(x)) = x and λx.force(y)x = force(y), and the latter
subsumes full η-equality, but it is not admissible in the target of the thunk translation (a call-by-value calculus).

4.3 The Calculi: Syntax and Reduction Rules
We introduce the calculi λns/r for a call-by-name CPS hierarchy where n is a natural number which denotes an upper
bound of indices (or levels). In other words, the indices of shift and reset must be equal to or less than n. We fix this
n throughout this Chapter.

We assume that there are two disjoint sets of variables, one for ordinary variables (ranged over by x, y, z, · · · ) and
the other for continuation variables (ranged over by k). An ordinary variable is bound by lambda, and a term may be
substituted for it, while a continuation variable is bound by shift, and a delimited continuation may be substituted for
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(Λsr) e ::= c | x | λx.e | ee | Sik.e | 〈e〉i | k ←↩i e where 1 ≤ i ≤ n
(Λsr,fd) e ::= · · · | force(e) | delay(e)

Figure 4.4: Terms with Delimited-Control Operators

(cbv-value) v ::= c | x | λx.e | delay(e)
(cbv-context) Ei ::= � | Eie | vEi | force(Ei) | 〈Ei〉h where h < i

(βv) (λx.e)v  e{x := v}
(fd) force(delay(e)) e

(rvv) 〈v〉i  v

(rsv) 〈Ei[Sik.e]〉j  〈e{k ⇐i 〈Ei〉i}〉j where i ≤ j

Figure 4.5: Call-by-Value Reductions

it. We also assume that each continuation variable k is (implicitly) annotated by a level i (for 1 ≤ i ≤ n), and that Sik.e
and k ←↩i e are terms only when the (implicit) level of k is i.

Fig. 4.4 defines the syntax of the calculi with delimited-control operators where c is a basic constant. The term Sik.e
is a shift-term of level i, in which k is bound. The term 〈e〉i is a reset-term of level i. The term k ←↩i e is a
throw-term of level i which applies k to the term e. Note that the continuation variable k is free in k ←↩i e.

Following Biernacka and Biernacki [6], we explicitly distinguish lambda-bound (ordinary) variables from shift-
bound (continuation) variables. This distinction is important to get simpler definitions, and is necessary to give an axiom-
atization for call-by-name calculus as in the previous chapter.

We identify α-equivalent terms. FV(e) and FCV(e), resp., denote the set of free ordinary variables and the set of free
continuation variables, resp., in e, and e1{x := e2} represents the result of capture-avoiding substitution of e2 for x in
e1. Ei is an evaluation context which does not have a level-i or higher reset enclosing the hole E1 is a pure evaluation
context, or a delimited continuation, which does not have reset around the hole. We write E instead of Ei if the index
does not matter. E[e] denotes the term after the hole-filling operation of a term e for a hole in E. Hole-filling of an
evaluation context E1[E2] is defined similarly.

Fig. 4.5 gives the reduction rules for the call-by-value calculi, which are essentially due to Biernacka and Biernacki
[6] with the following difference. While their calculus reifies an evaluation context Ei, and substitute it for a continuation
variable k (thus k ←↩i e becomes Ei ←↩i e′), our calculus uses structural substitution {k ⇐i E

i} defined in Fig. 4.6.
The thunk translation is naturally extended to this calculus as in Fig. 4.7.
Fig. 4.8 defines the reduction rules of the call-by-name calculus. The reduction (β) is standard. The reduction (rvn)

(meaning “reset-value”) eliminates a reset if its body is a value. The only interesting reduction is (rsn) (meaning
“reset-shift”) for a level-i shift-term. By this reduction, shift captures a level-i (delimited) evaluation context Ei,
and substitutes it for k. The corresponding reset for this shift is the nearest one which has the level i or higher,
because Ei does not have such a reset that encloses the hole.

The reduction rules in both calculi are extended to arbitrary contexts as e1  e2 implies C[e1]  C[e2] for any
context C. We write (r1, · · · , ri) ` e1  e2 if e1 reduces to e2 by these reductions. We also write ∗ for zero or more
step reductions.

We can show that the notions of the reductions in call-by-name/call-by-value calculi correspond to each other via the
thunk translation.

Theorem 4.3 (Simulation). Let e1 and e2 be terms in Λsr. Then we have (β, rvn, rsn) ` e1  ∗ e2 if and only if
(β, fd, rvv, rsv) ` T [[e1]] ∗ T [[e2]].

Proof . From call-by-name to call-by-value, the proof is straightforward.
For the inverse direction, we only have to consider the image of the thunk translation, namely, for any application

e1e2, the term e2 has the form delay(e3), which is a value. Then it is not difficult to prove the inverse direction.
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c{k ⇐i E}
def
= c

x{k ⇐i E}
def
= x

(λx.e){k ⇐i E}
def
= λx.(e{k ⇐i E}) where x 6∈ FV(E)

(e1 e2){k ⇐i E}
def
= (e1{k ⇐i E}) (e2{k ⇐i E})

(Spk′.e){k ⇐i E}
def
= Spk′.(e{k ⇐i E}) where k′ 6∈ {k} ∪ FCV(E)

(k ←↩i e){k ⇐i E}
def
= E[e{k ⇐i E}]

(k′ ←↩p e){k ⇐i E}
def
= k′ ←↩p (e{k ⇐i E}) where k′ 6= k

〈e〉p{k ⇐i E}
def
= 〈e{k ⇐i E}〉p

Figure 4.6: Substitution for Continuation Variables

T [[e]] def= · · · for e = c, x, λx.e, e1e2 T [[〈e〉i]]
def
= 〈T [[e]]〉i

T [[Sik.e]]
def
= Sik.T [[e]] T [[k ←↩i e]]

def
= k ←↩i T [[e]]

Figure 4.7: Thunk Translation

4.4 Type System
The thunk translation is not only useful to investigate the operational aspect, but can be also used to design a type system.
As a concrete instance, we design a type system for the call-by-name calculus with delimited-control operators from the
one for the call-by-value calculus. In this process, we do not have to consult with the CPS translation. Although the
hierarchical control operators are complicated, and in particular, a CPS translation for them is hard to understand, we can
give the type system quite smoothly thanks to Hatcliff and Danvy’s factorization.

Biernacka and Biernacki [6] proposed a call-by-name typed calculus with the level-1 shift and reset. While they
developed the calculus and its properties independently from the call-by-value counterpart, they can be derived from the
call-by-value counterpart using the thunk translation. In this section, we show that it is possible for the calculus of an
arbitrarily higher level.

4.4.1 Type System for Call-by-Value CPS Hierarchy
We review a monomorphic type system for the call-by-value calculus with hierarchical delimited-control operators.

Murthy [39] was the first to give a type system for this calculus, which was derived from the CPS translation. The
basic idea of his type system is that the typing judgment of a term e should carry the same information as its CPS image
Cv[[e]]. For instance, if n = 1, namely, we have only one level, the CPS image of a term takes the form λκ1.λκ2.· · ·, which
suggests the type of the CPS image is (σ → (τ → ∗)→ ∗)→ (ρ→ ∗)→ ∗. Here we assume that the images of the CPS
translation are in (strictly) continuation-passing style, so the (final) answer type is polymorphic [57, 58], and we write it
as an anonymous type ∗. In this CPS type, σ is the type corresponding to the source term, τ and ρ are so called answer
types of level 1. Murthy further assumed that, the answer types do not change, which means that τ and ρ in the above
type must be the same. This assumption greatly simplifies the type system, and we only need n answer types for any term
if the maximum level is n.

Answer types may be regarded as computational effects, and therefore we need to modify a function type σ → τ to an
effectful function type Funcbv[σ → τ/α], whose inhabitants are functions from σ to τ that works under the answer types
α. Here α is a sequence of types α1, α2, · · · , αn.

Let us formally define the type system. The syntax of types is given by:

(type) σ, τ, α ::= b | Susp[σ/α] | Funcbv[σ → τ/α]
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(cbn-value) v ::= c | λx.e
(cbn-context) Ei ::= � | Eie | 〈Ei〉h where h < i

(β) (λx.e1)e2  e1{x := e2}
(rvn) 〈v〉i  v

(rsn) 〈Ei[Sik.e]〉j  〈e{k ⇐i 〈Ei〉i}〉j where i ≤ j

Figure 4.8: Call-by-Name Reductions

Γ, x : σ `cbv x : σ | α
var

(c is a constant of basic type b)
Γ `cbv c : b | α

const

Γ, x : σ `cbv e : τ | α
Γ `cbv λx.e : Funcbv[σ → τ/α] | β

fun

Γ `cbv e0 : Funcbv[σ → τ/α] | α Γ `cbv e1 : σ | α
Γ `cbv e0e1 : τ | α

app

Γ `cbv e : σ | σ, · · · , σ, αi+1, · · · , αn

Γ `cbv 〈e〉i : σ | α
reset

Γ, k : Funcbv[σ → τ/α] `cbv e : τ | τ, · · · , τ, αi+1, · · · , αn

Γ `cbv Sik.e : σ | β1, · · · , βi−1, τ, αi+1, · · · , αn
shift

Γ, k : Funcbv[τ → σ/σ, · · · , σ, αi+1, · · · , αn] `cbv e : τ | σ, · · · , σ, αi+1, · · · , αn

Γ `cbv k ←↩i e : σ | α
throw

Γ `cbv e : Susp[σ/α] | α
Γ `cbv force(e) : σ | α

force
Γ `cbv e : σ | α

Γ `cbv delay(e) : Susp[σ/α] | β
delay

Figure 4.9: Type System for the Call-by-Value Calculus (First Version)

where b is a metavariable for basic types such as integer and boolean. The type Susp[σ/α] is the one for suspended
computation generated by delay. The type Funcbv[σ → τ/α] is an effectful function type. A typing context Γ is a
(possibly empty) sequence consisting of the form x : τ for a lambda-bound variable x, or k : Funcbv[σ → τ/α] for a
continuation variable k. A judgment takes the form Γ `cbv e : τ | α where Γ is a typing context, τ is a type, α is a
sequence of types, and e is a term. The length of the sequence α must be n.

Fig. 4.9 gives the type system for the call-by-value calculus.
The types for a variable, a constant, lambda, and application are standard if we take into account the answer types.

The typing rule for reset means that, for a level-i reset, the answer type of the body e must be the same as the type
of e itself. This reflects the hierarchical nature of this calculus: as a lower-level shift cannot escape from a higher-level
reset, whenever there is a level-i reset, the answer types of lower levels must be identical. After the level-i reset,
the answer types of these levels can be arbitrary types, so the types α1, · · · , αi can be chosen arbitrarily in the typing
judgment of 〈e〉i. The typing rule for the shift-term can be understood by noting the facts that Sik.e has the same
denotation as Sik.〈e〉i, and a level-i shift-term captures a delimited continuation whose type is roughly a function
from some type to the level-i answer type. As for the typing rule for throw, it is instructive to know k ←↩i e may be
represented by 〈k e〉i if we forget the distinction between lambda-bound and shift-bound variables. The typing rules
for force and delay can be understood by the following intuition: force(e) is ex and delay(e) is λx.e for a fresh
variable x.
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Γ, k : Conti[σ → τ/αi+1, · · · , αn] `cbv e : τ | τ, · · · , τ, αi+1, · · · , αn

Γ `cbv Sik.e : σ | β1, · · · , βi−1, τ, αi+1, · · · , αn
shift

Γ, k : Conti[τ → σ/αi+1, · · · , αn] `cbv e : τ | σ, · · · , σ, αi+1, · · · , αn

Γ `cbv k ←↩i e : σ | α
throw

Other typing rules are the same as Fig. 4.9.

Figure 4.10: Type System for the Call-by-Value Calculus (Second Version)

4.4.2 Refining the Type System
We can refine the type system to the one in Fig. 4.10 where a continuation variable k has a distinguished continuation
type Conti[σ → τ/αi+1, · · · , αn] (for 1 ≤ i ≤ n), and σ, τ, αi+1, · · · , αn are types.

The continuation variable is treated differently from the ordinary functions, and also its type does not have the in-
formation of answer types of level ≤ i, which means that it is polymorphic over these answer types. The answer type
polymorphism of continuations have been studied by several authors [57, 4, 6] for the level-1 (single level) delimited-
control operators, and here we use it in higher levels.

Theorem 4.4 (Type Soundness). (1) If Γ `cbv e1 : τ | α is derivable, and e1  ∗ e2, then Γ `cbv e2 : τ | α is derivable.
(2) If `cbv 〈e1〉n : τ | α is derivable, then there exists a term e2 such that 〈e1〉n  e2. Moreover, if e2 is not a value, it
must be 〈e′2〉n for some term e′2.

The second part (progress) takes an unusual form since the term 〈e1〉n has an outermost reset of the maximum level
n. Having such a reset is necessary, since a term with “free shift” (such as S1k.e) can be a closed and typable term, but it
is not a value.

The first part of this theorem is essentially due to Murthy [39], and the proof of the second part is standard.

4.4.3 Type System for Call-by-Name CPS Hierarchy
We now derive a type system for the call-by-name calculus from the one for call-by-value calculus. Our design principle
is to have the property: a term e is typable in the former if and only if its translation T [[e]] is typable in the latter.

First, we consider the case T [[x]] = force(x) which can be typed (and is only typed) in the call-by-value calculus as:

Γ, x : Susp[σ/α] `cbv x : Susp[σ/α] | α
Γ, x : Susp[σ/α] `cbv force(x) : σ | α

Hence, in the call-by-name calculus we should have the following typing rule:

Γ, x : Susp[σ/α] `cbn x : σ | α

For notational reasons, we will write (σ | α) for Susp[σ/α] in typing contexts. The change in the type of a variable
affects the function type: the call-by-value type Funcbv[Susp[σ/α] → τ/β] will be written as the call-by-name type
Funcbn[(σ/α)→ (τ/β)], and the typing rule for (fun) is changed accordingly.

For the case T [[e0 e1]] = T [[e0]](delay(T [[e1]])), we have:

Γ `cbv T [[e0]] : Funcbv[σ → τ/α] | α
Γ `cbv T [[e1]] : ρ | β

Γ `cbv delay(T [[e1]]) : σ | α
Γ `cbv T [[e0]](delay(T [[e1]])) : τ | α

where σ = Susp[ρ/β]. Hence we should have the following rule:

Γ `cbn e0 : Funcbv[Susp[ρ/β]→ τ/α] | α Γ `cbn e1 : ρ | β
Γ `cbn e0 e1 : τ | α
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Γ, x : (σ | α) `cbn x : σ | α
var

Γ, (x : σ | α) `cbn e : τ | β
Γ `cbn λx.e : Funcbn[(σ/α)→ (τ/β)] | γ

fun

Γ `cbn e0 : Funcbn[(σ/α)→ (τ/β)] | β Γ `cbn e1 : σ | α
Γ `cbn e0e1 : τ | β

app

The typing rules for const, shift, reset and throw are the same as those in Fig. 4.10.

Figure 4.11: Type System for Call-by-Name Calculus

These changes are all what we need to do for the call-by-name type system. In particular, since the thunk translation is
homomorphic for control operators, no essential changes are necessary in the typing rules for them.

To summarize, the types are defined by:

(type) σ, τ, α, β ::= b | Funcbn[(σ/α)→ (τ/β)]

(cont-type) φ ::= Conti[σ → τ/αi+1, · · · , αn]

A typing context Γ is a finite sequence of the form x : (σ | α) or k : Conti[σ → τ/αi+1, · · · , αn]. A judgment in this
type system takes the form of Γ `cbn e : σ | α, and the call-by-name type system is given in Fig. 4.11.

Typability is preserved by the thunk translation. To state this property formally, we define the thunk-translation for
types, typing contexts, and judgment as follows (the following definitions extend to sequences naturally):

T [[b]] def= b

T [[Funcbn[(σ/α)→ (τ/β)]]]
def
= Funcbv[Susp[T [[σ]]/T [[α]]]→ T [[τ ]]/T [[β]]]

T [[x : (σ | α)]] def= x : Susp[T [[σ]]/T [[α]]]

T [[k : Conti[σ → τ/αi+1, · · · , αn]]]
def
= k : Conti[T [[σ]]→ T [[τ ]]/T [[αi+1, · · · , αn]]]

Then we can prove the following theorem easily.

Theorem 4.5 (Thunk Translation Preserves Typability). We have that Γ `cbn e : τ | α is derivable if and only if
T [[Γ]] `cbv T [[e]] : T [[τ ]] | T [[α]] is derivable.

Combining the above theorem with the property of the call-by-value CPS translation, we obtain that the call-by-name
CPS translation preserves typability.

Subject reduction property can be also derived easily.

Theorem 4.6 (Subject Reduction). If Γ `cbn e1 : τ | α is derivable, and e1  ∗ e2, then Γ `cbn e2 : τ | α is derivable.

Proof . Suppose Γ `cbn e1 : τ | α is derivable, and e1  ∗ e2 in the call-by-name calculus. By Theorem 4.3, we have
T [[e1]]  ∗ T [[e2]]. By the subject property of the call-by-value calculus and Theorem 4.5, we have T [[Γ]] `cbv T [[e2]] :
T [[τ ]] | T [[α]]. Again by Theorem 4.5, we have Γ `cbn e2 : τ | α.

We also have the progress property for the call-by-name calculus.

Theorem 4.7 (Progress). If `cbn 〈e1〉n : τ | α is derivable, there exists a term e2 such that 〈e1〉n  e2. Moreover, if e2
is not a value, it must be 〈e′2〉n for some term e′2.

Proofs of these theorems are straightforward and omitted.
We have derived a type system for the call-by-name CPS hierarchy. Note that, by taking n = 1, we can reproduce

Biernacka and Biernacki’s call-by-name type system [6] modulo notational difference. A merit of our approach is that we
do not have to directly consult the iterated CPS translation.
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(λx.e1) e2 = e1{x := e2} (β)

〈Ei[Sik.e]〉j = 〈e{k ⇐ 〈Ei〉i}〉j where i ≤ j (rsn)

k′ ←↩j (Ei[Sik.e]) = 〈e{k ⇐ (k′ ←↩j Ei)}〉j where i ≤ j and k 6= k′ (ts)
〈v〉i = v (rvn)

Sik.(k ←↩i 〈e〉i−1) = 〈e〉i−1 where k 6∈ FCV(e) (se)
Sik.〈e〉i = Sik.e (sr)

Figure 4.12: Equational Theory for the Call-by-Name Calculus

4.5 Equational Theory
This section studies an equational theory for the call-by-name CPS hierarchy in the typed setting. Sabry and Felleisen [45]
first established equational axiomatization of the calculus with control operators for first-class (unlimited) continuations.
Regarding delimited-control operators, Kameyama and Hasegawa [26] and Kameyama [25], resp., axiomatized level-1
and higher-level, resp, shift and reset in the call-by-value calculi. For reference, Fig. 3.6 in the appendix lists the
latter axiomatization.

We obtain an equational theory for the call-by-name calculus in the same spirit as the previous sections: we formulate
them as a back image of the thunk translation and the call-by-value counterpart. The result is given in Fig. 4.12.

The call-by-name axioms (Fig. 4.12) and the call-by-value axioms (Fig. 3.6) have several differences. It should also
be noted that, even if the axioms rsv and rsn have the same form, they have different meaning as the definitions of the
evaluation contexts differ from each other.

We write `cbn e1 = e2 if the equation is derivable using the equations in Fig. 4.12. Similarly we write `cbv e1 = e2
for the equations in Fig. 3.6. It is easy to prove that the reduction semantics is subsumed by these our equations.

Theorem 4.8. If (β, rvn, rsn) ` e1  ∗ e2, then `cbn e1 = e2 is derivable.

We can also prove that the call-by-name equations are sound with respect to the thunk translation, and hence the
call-by-name CPS translation.

Theorem 4.9 (Soundness). If `cbn e1 = e2, then `cbv T [[e1]] = T [[e2]].

This theorem can be proved by simple calculations for each equation. It immediately implies soundness of call-by-
name equations with respect to the call-by-name CPS translation in the appendix.

Corollary 1. If `cbn e1 = e2, then (β, η) ` Cn[[e1]] = Cn[[e2]].

Finally, an interesting question is whether the equations are complete with respect to the thunk translation. Unfor-
tunately, we have not succeeded in directly proving completeness using the thunk translation, since we cannot define
the inverse of the thunk translation which preserves equality1. However, we can use our previous results to connect the
call-by-name and call-by-value theories for the first level:

Theorem 4.10 (Correspondence in the First Level). Suppose the maximum level n is 1, and e1, e2 ∈ Λsr. Then we have
`cbn e1 = e2 if and only if `cbv T [[e1]] = T [[e2]].

Proof . Theorem 4.9 states soundness (the only-if direction). For completeness (the if direction), suppose `cbv T [[e1]] =
T [[e2]]. By the soundness of the call-by-value equational theory, we have (β, η) ` Cv[[T [[e1]]]] = Cv[[T [[e2]]]], and hence
(β, η) ` Cn[[e1]] = Cn[[e2]]. By the completeness of the call-by-name equations for the first-level showed in the previous
chapter [27], we have `cbn e1 = e2.

1Note that ηv is admissible in the call-by-value calculus, while η-equality is not admissible in the call-by-name calculus.
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4.6 Concluding Remarks
We have introduced the CPS hierarchy in call-by-name. Based on the thunk translation and factorization, we have derived
a calculus and a type system, and proved several interesting properties of our system. The simplicity of the thunk trans-
lation makes it easy to treat a complex machinery such as the CPS hierarchy, and we do not have to directly consult the
iterated CPS translations for most of the time.

This work builds on Danvy and Filinski’s CPS Hierarchy, and is related to recent works on call-by-name delimited
continuations. Among all, Saurin [46] proposed “Stream Hierarchy” as a call-by-name CPS Hierarchy, and developed
a very interesting theory for this calculus, as it combines λµ-calculus in logic and streams in functional programming.
He used a quite different CPS translation than ours, namely, η-equality is admissible in his theory, and thus his delimiter
(reset) behaves quite differently from ours. Our theory does not admit η-equality since it badly interacts not only with
the CPS translation, but also with the semantics of reset, since if we have full η-equality, we can convert every term to
a value, which makes reset meaningless.2

As future work, we hope to relate the call-by-name calculi with the call-by-value one in the sense of duality, and also
with classical logic.

2Using η-equality, we can derive 〈e〉i = 〈λy.ey〉i = λy.ey = e.
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Chapter 5

The Semantics of Future with Delimited
Control

We will explain our study about a calculus containing a parallelization operator [56] in this chapter.

5.1 Introduction
It is an important but a difficult problem how we parallelize programs using (delimited) control operators. As multi-
core/many-core processors emerged as the mainstream hardware technology in recent years, the desire for parallel execu-
tion of existing programs are growing. When one wants to run programs with control operators in a parallel environment,
he or she immediately encounters several problems: (1) what does a continuation mean when there are more than one
thread, (2) how to manipulate a continuation in parallel environment, and (3) whether the notion agrees with the one in
sequential execution. The original notion of continuations (and hence the meaning of control operators) assumes that
a program is executed sequentially, and if we run a program with control operators in parallel without any restriction,
the result of the computation varies from time to time, resulting in a non-deterministic computation. We think this is a
undesirable situation, as we want to build testable, maintainable, and verifiable programs that will eventually lead to a
dependable software.

Katz and Weise [28] and Moreau [37] proposed languages which contain both call/cc and future. The operator
future was originally introduced in MultiLisp [21]. future operator is a language primitive for explicit parallelism.
It takes one argument, and if the expression (future e) is executed, it immediately returns a dummy value to the
surrounding expression, and the two computations (the computation for e and the surrounding one) are run in parallel.
When the latter needs the actual value of (future e), it is suspended until the computation of e is finished. In this way,
future introduces parallelism into a certain program point determined by the programmer.

Katz and Weise showed how to implement such future in Scheme (which means that the base language has
call/cc) but they showed nothing about the property of control operators in the parallel environment. On the other
hand, an important goal of Moreau’s research is that future is transparent: for any programs containing futures, the
program obtained by removing all futures form it has the same meaning as the given one. Moreau [38] defined a
calculus with call/cc and future and proved the transparency of future.

Although he achieved his goal with a mathematically rigid proof of transparency, his calculus has a problem from the
viewpoint of programming language designs: parallelism is severely destroyed whenever call/cc is executed.

It is because the control operator call/cc captures the entire rest of a computation, and to preserve the sequential
semantics of call/cc, the other parts of a program must not be executed once call/cc is called. In other words, he
succeeded in designing a transparent calculus with call/cc and future, but we cannot actually run a program with
control operators in parallel. As our aim is to have true parallelism for control operators, we must conclude that Moreau’s
calculus is not very useful for our purpose.

In this research, we propose a parallel calculus with delimited-control operators: this calculus has future and
shift/reset. For this calculus, we will define a rigorous semantics based on two abstract machines, one is for
sequential semantics and the other is for parallel one, then we will prove the transparency of future by showing that
the two abstract machines must have same semantics. Using shift/reset instead of call/cc has two advantages.
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First, shift/reset can express more elaborate computational effects than that of call/cc. Second, programs can
have more parallelism than ones with call/cc because reset decides the extent of a continuation, which means that
programmers can delimit the extent of computational effects caused by shift (i.e., capturing the continuation).

As we said above, we proved the transparency rigorously. Our proving method is based on Takahashi’s parallel
reduction [52]. By using this method, we can construct clearer proof of the transparency than Moreau’s in the sense that
we can omit the troublesome discussion about the number of the reduction steps.

We will propose a semantics for our calculus λftsr in Section 5.3, which maximizes the possibility of parallel com-
putations, while relating transparency of future. There are several alternative semantics for our calculus, and we will
argue them with brief comparison with ours.

(1) The first way is to remove shift/reset by a program translation. By CPS translating a program with shift/reset
[10], we can eliminate all occurrences of shift/reset from the program, and then the resulting program with
future (which does not contain control operators) can be executed in parallel.

A problem in this approach is that, a CPS translation turns a program into a fully sequentialized one, which means
that it removes the chances of parallelism in the source program. In particular, the expression (future e) is
sequentialized, against our purpose.

(2) The second way is to macro-define shift/reset in terms of call/cc and a mutable cell [15]. This is possible
in Moreau’s calculus [38], since it has both call/cc and mutable cells.

A problem in this approach is that both shift and reset are defined with call/cc. As we described above,
call/cc always sequentializes its execution of a program even if it is executed in parallel, which means that our
goal (using shift/reset in truly parallel environment) cannot be achieved in this approach.

(3) The third alternative semantics is to restrict the syntax of terms so that, for each subterm (future M), M must
be in the form 〈M ′〉. This restriction makes sense theoretically, since the proof of transparency becomes trivial,
as shift cannot capture a (delimited) continuation across the boundary of processes. However, as it severely
restricts the possible occurrences of future to be immediately above a reset, it has a negative impact on the
degree of parallelization; in particular, we cannot parallelize a program without control effects at all. We note that
the current implementation of Racket follows this restriction.

(4) The last alternative semantics we discuss here is to allow pruning of some processes; for a term 〈flet (p M) S〉,
if M is free from computational effects other than termination, and S does not contain p free, we can reduce it to S,
discarding the process for computing M . While this strategy would give a better performance than ours, it is hard
to implement in our setting, since freedom of any effects (purity) is not easily computable. One would be able to
design a type and effect system to determine purity, while dynamic recomputation of effects severely penalizes the
run-time performance.

There are other studies about future as follows:

• Niehren et al. presented calculi which have future and mutable cells [41, 40]. But they do not focus on the
transparency: their goal is to show the expressive power of future. In fact, we can write a program using
futures that may return different values for execution.

• Komiya and Yuasa proposed an implementation of call/cc in a parallel-computation environment.

The rest of this chapter consists as follows: in the next section, we will show examples and describe intuitive meaning
of future. In the section 5.3, we will define a calculus and two abstract machines to define the semantics of our calculus.
Then, in the section 5.4, we will prove the transparency of future.

5.2 Examples
In this section, we will show a simple example for future and explain its behavior intuitively. After that, we will
show other examples such as A-normal form translation and tree search. The last two examples will show why we need
transparency for the future operator.
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5.2.1 future

future is an operator which executes two expressions in parallel; the one is an argument of future and the other is
the surrounding expression (i.e., the evaluation context) of the expression (future e). In this example, we use a notation
e1 | e2 as a parallel execution of two expressions e1 and e2. Also we will assume that common expressions such as
addition and let-expression can be used.

(let ((x (future (+ 1 10)))) (+ 100 1000 x)) (5.1)
 (let ((x p)) (+ 100 1000 x)) | p = (+ 1 10) (5.2)
 (+ 1100 p) | p = 11 (5.3)
 (+ 1100 11) 1111 (5.4)

When the expression (future (+ 1 10)) is evaluated in the line (5.1), future splits the expression into two
expressions running in parallel. The one is (+ 1 10) which is the argument of the future operator and the other
is (let ((x �)) (+ 100 1000 x)) which is the evaluation context of the (future e). The latter cannot begin to be
evaluated without some value within the hole (�) so it uses a special value p to fill its hole. As the result, two expressions
are evaluated simultaneously as in the line (5.2). An important point is that a special variable p is not just a dummy value
but a communication tool of the two expressions: when the expression (+ 1 10) is finished and returns a value 11 as in the
line (5.3), variable p sends the value to the other expression. The other expression in the expression (5.3) is (+ 1100 p)
so it just needs the actual value of p. Then the special value p becomes to be a value 11 which means that the expression
(+ 1100 p) becomes (+ 1100 11) as in the last line.

5.2.2 A-Normal Form Translation
In this subsection, we will show a program for A-normal form translation. A-normal form translation is a kind of program
translations: it gets a program and returns the program translated in A-normal form. The A-normal form is a form
which contains no nested function-application expressions. In other words, all subexpressions are named and totally
sequentialized to reflect its control flow. For example, A-normal form of an expression

(f (g x))

is as follows:

(let ((m1 (g x))) (let ((m2 ((f m1)))) m2))

There are two new variables m1 and m2 in the latter program and nested function-application expression (g x) is moved
to the outside of the other application.

Asai [2] showed that an A-normal form translation can be defined by using shift/reset. In this subsection, our
programs will be written in Scheme syntax and we will use quasi-quote mechanisms in the programs.

1 (define (a exp)
2 (cond [(symbol? exp) exp] ; for variable
3 [(eq? (car exp) ’lambda) ; for lambda abstraction
4 (let ((var (car (car (cdr exp))))
5 (body (car (cdr (cdr exp)))))
6 ‘(lambda (,var) ,(reset (a body))))]
7 [else ; for application
8 (shift k
9 (let ((m (gensym ’m)) (n (gensym ’n)))

10 ‘(let ((,m ,(a (car exp)))
11 (,n ,(a (car (cdr exp)))))
12 ,(k ‘(,m ,n)))))]))

The function a gets a lambda expression exp as a quoted list, and returns translated lambda-abstraction expression 1.
The translation is constructed with three parts.

(1) When the exp is a variable, it just returns the exp.
1For the sake of the ease, we assume that the let-expression is evaluated definitely up-to-down order
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(2) When the exp is a lambda abstraction, it translates the body of the abstraction and returns the translated function.
In this case, reset is put on the outside of the translation. The reason will be described below.

(3) When the exp is an application (e1 e2), the essential behavior of the translation is simple: (1) it generates
two fresh variables m1 and n1, (2) it translates two expressions e1 and e2 respectively (and call them a1, a2
respectively), and (3) returns the resulting expression (let ((m1 a1) (n1 a2)) (m1 n1)).

However, if (f (g x)) is translated by only the way, its result will be like (let ((m1 f) (n1 (let ((m2
g) (n2 x)) (m2 n2)))) (m1 n1)), which is not in A-normal form. shift put on the translation of
application is needed to resolve this problem. We will show how the expression is translated with shift below.

We show the steps of this translation which starts from the form (reset (a ’(f (g x)))). Here we assume
that f, g and x are variables and the translation will start with outer-most reset. As the term (f (g x)) is an
application, the first step results in the term as follows:

(reset (shift k ‘(let ((m1 ,(a ’f)) (n1 ,(a ’(g x))))
,(k ‘(m1 n1)))))

Then shift is executed. (As the continuation captured by shift is an empty one, we omit its application in the
following program.)

(reset ‘(let ((m1 ,(a ’f)) (n1 ,(a ’(g x)))) (m1 n1)))

Two translations (a ’f) and (a ’(g x)) are executed respectively.

(reset ‘(let ((m1 f)
(n1 ,(shift k1 ‘(let ((m2 g) (n2 x))

,(k1 ‘(m2 n2)))) ))
(m1 n1)))

Note that, in the above, ‘(let ((m1 f) (n1 ...)) (m1 n1)) is the quoted expression but the expression with
back-quote is unquoted so the expression ‘(let ((m2 g)) ...) will be executed. Then shift will capture the
continuation and bind it to the variable k1.

Finally, the k1 is applied to the quoted expression ‘(m2 n2).

(reset ‘(let ((m2 g) (n2 x))
(let ((m1 f) (n1 (m2 n2))) (m1 n1))))

The final result is the expression removed the quasi-quote and reset. 2

5.2.2.1 Parallelizing A-Normal Form Translation

We will consider how we parallelize the A-normal form translation program. The first naive idea is translating two
expressions in parallel when an application expression (e1 e2) is translated. By this way, however, if e1 is in the form
(e11 e12), it immediately aborts the other translation process executing (a e2) because of shift in the part of
application-expression translation.

To avoid this problem, we parallelize the part of the lambda-abstraction translation. As in the definition of the function
a, the translation of the lambda-abstraction expression encloses the call of the function a by reset, so even if the
translation of the function body calls shift, it does not affect other translation processes running in parallel outside of
reset.

1 (define (a exp)
2 (cond [...] ; same as in sequential
3 [(eq? (car exp) ’lambda) ; for lambda abstraction
4 (let ((var (car (car (cdr exp))))
5 (body (car (cdr (cdr exp)))))
6 ‘(lambda (,var) ,(future (reset (a body)))))]
7 [...] ; same as in sequential
8 ))

2In this example, we assume that variables are also expressions, which means that if the argument of this translation function is just a variable, it is
also named. While this is not equal to the original definition of A-normal form translation, there are no any essential differences between them.
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The only difference from the original definition is that the translation of the lambda-abstraction expression calls the
function awithin future operator, which means that, for example, if we translate an expression such as ((lambda(x)
e1) e2), the two translation for e1 and e2 is executed in parallel.

An important point is that this kind of parallelization is difficult in Moreau’s calculus because the extent of a contin-
uation captured by call/cc cannot be delimited. In other words, as shift cannot affect over the nearest reset, if
other processes are in the out of reset, they are not affected by shift.

To make the above description be clearer, we will introduce an idea which we make the translation function be runnable
in parallel by using call/cc and a mutable cell.

As we described in previous section, we can define control operators which is the same as shift/reset with
call/cc and a mutable cell [15], and we call them SFT and RST. Hence, by the two control operators, we can write
A-normal form translation function with them on the face of it.

A problem of this way is that these pseudo shift/reset need a mutable cell in order to manage the outside of
reset (RST) 3.

To show the problem, we will show an example of translation processes by a parallelized A-normal form translation
function defined with SFT/RST. An intermediate result of the translation can be represented as follows:

(RST ‘(let ((m1 (lambda (x) ,(future (RST (a e1))))))
(let ((m2 (lambda (y) ,(future (RST (a e2))))))
(m1 m2))))

Then future in the first line makes a new process which translates e1, and also the other future makes another
process which translates e2. While the two new processes are running in parallel, the latter process cannot access the
mutable cell shared with the two process if the former process is running yet.

This means that the latter process cannot continue its translation while the former one is running and continuing to
translate.

That is the reason why we cannot parallelize the A-normal form translation function in Moreau’s calculus.

5.2.3 Binary search
We will introduce another example which traverses a tree, searches a target element and does something to the target. The
example program is as follows:

1 (define (search tree pred proc)
2 (cond [(null? tree) ’()]
3 [(pred tree) (proc tree)]
4 [else (begin (future (search (cadr tree) pred proc))
5 (search (caddr tree) pred proc))]))

The function search gets three arguments: a binary tree tree, a predicate pred and a procedure proc. The argument
pred gets one argument and returns a boolean value. The argument proc is a function which is applied to a tree’s
element when the application of pred to the element returns true. The argument is a binary tree which is in the form
’(data left right): data is an arbitrary value and left and right are binary trees respectively. We used
Scheme’s primitive functions such as cadr and caddr, which get a list and return a second and third element of the list
respectively. In the third line, this function examine the value of (pred tree); if the value is true then it applies
proc to the tree, and otherwise it searches the both child trees recursively.

This program is parallelized in the fourth line by enclosing the search of the left tree by future.
One of the simplest procedure which will be applied to the found target is a function printing the element (on the

screen). Using shift/reset, we can define more useful procedures than such a simple one which we can control the
behavior of the search function without rewriting the function directly.

(define (proc tr)
(shift k (cons tr k)))

3Here we assume the implementation of SFT/RST which is in Gasbichler’s literature [19]
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M ::= x | a | f | (λx.M) | (M1 M2) | 〈M〉 | (Sk.M) | (futureM)

a ::= 0 | 1 | 2 · · ·
f ::= make | set! | deref
x ::= x | y | z | k | v · · ·

Figure 5.1: Syntax of λftsr

When this function gets an argument tr, it captures the delimited continuation and immediately returns a pair of values
which contains the found (passed to this function) target tr and the captured continuation k.

The continuation bound to the variable k is just a continuation of the search so, for example, if the value contained in
the returned value is not appropriate, we can search another target arbitrarily.

An interesting discussion is caused by this kind of behavior of shift; how does the processes contained in the
continuation captured by shift behave? Readers may think that it is not realistic to halt or freeze other processes by the
result of the behavior of control operators. We will show one of the answers to resolve the artificiality.

5.3 An Operational Semantics based on Abstract Machines
In this section, we will define our calculus λftsr with its syntax and the semantics. The semantics will be defined by two
abstract machines, which we call AM-PFSR and AM-FSR respectively. The former processes future as a paralleliza-
tion operator, and the latter does not processes it, which means the abstract machine AM-FSR ignores all futures in
programs.

5.3.1 Syntax
The syntax of λftsr is defined in Figure 5.1. We will express the operator shift as S and the operator reset as 〈−〉.
A term M consists of shift, reset and future along with common features such as variables, abstractions and
applications. The functional constants make, ref and set! are used to generate, to read and to write mutable cells
respectively. In the definition of terms, (λx.M) binds a free variable x in the term M , and also (Sk.M) binds a free
variable k in the term M . The bound and free variables are defined as usual, and we identify α-equivalent terms.

5.3.2 States of AM-PFSR
The definitions of states, contexts and stores of AM-PFSR are defined in Figure 5.2. We omit the definitions same as the
ones in Figure 5.1.

A state S is defined as a pair of a store (θ) and a term (M ). A constructor flet is a key term of our calculus, which
appears when a term (futureM) is evaluated to denote a parallel execution.

There are new kinds of variables, p and b, in Figure 5.2. p is a communication variable which is generated when a
term (futureM) is evaluated, and b is a box variable which is a reference cell, i.e., a mutable variable.

In the following, we ignore the difference between (ordinary) variables and the above variables unless we present any
kinds of notions.

There are four kinds of contexts:

• C is an arbitrary contexts,

• E is a (general) evaluation contexts,

• F is a pure-evaluation contexts, and

• G is a truly pure-evaluation contexts.
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State

S ::= [〈θ, M〉]
M ::= V | (M1 M2) | 〈M〉 | (Sk.M)

| (futureM) | 〈flet (p M) S〉
V ::= c | x | b | p | (λx.M) | (set! V ) c ::= a | f | void
b ::= b | b1 | b2 · · · p ::= p | p1 | p2 · · ·
A ::= c | box | procedure | error

Context

C ::= � | (λx.C) | (C M) | (M C) | 〈C〉 | (Sk.C) | (future C)
| 〈flet (p C) S〉 | 〈flet (p M) [〈θ, C〉]〉

E ::= G | E[F ]

F ::= 〈G〉 | 〈flet (p G) S〉
G ::= � | (GM) | (V G)

Store

θ ::= {b1 7→ V1, · · · , bn 7→ Vn} (each bi are unique variables)

Figure 5.2: States, Contexts and Store of AM-PFSR

C[M ] stands for a hole-filling term, which is constructed by replacing the � in the context C by the term M . The
differences between E and F is whether the context can contain reset or not. An evaluation context E can contain an
arbitrary number of resets but a pure-evaluation contexts F can only have outer-most reset. A truly pure-evaluation
context G cannot contain any reset.

A store θ is an environment of box variables: it is a set which consists of pairs, and the pair consists of a box variable
and a value. We also define the domain of a state as follows:

Dom({b1 7→ V1, · · · , bn 7→ Vn}) = {b1, · · · , bn}

Free communication variables are bound in the state S of a term 〈flet (p M) S〉. Free box variables are bound in
the state [〈θ, M〉] when b ∈ Dom(θ). If p and b are not bound, we call them free. Two terms, contexts, stores and states
are identified when the two have no differences except differences of the names of the variables in the ones.

We call a term program if the term is in the form 〈M〉 andM does not contain any free variables without box variables.
We represent a programs by another meta variable P . Also we call a state program state if the term of the state is a program
P , and [〈θ, M〉] has no free variables.

5.3.3 Transition Rules of AM-PFSR
In this subsection, we will show the transition rules of AM-PFSR in two figures, Figure 5.3 and Figure 5.4: the former
contains the rules for sequential transitions and the latter contains the ones for parallel transitions.

In Figure 5.3 (and also in Figure 5.4), we assume that the term contained in the state is a program because several
rules cannot be applied to a state whose term has no reset.

(app) is rule for a function-application expression. M{x := V } means an usual, capture-avoiding substitution.
(rv) is a rule to remove reset if a term is in the form 〈V 〉. (rs) is a rule to capture the delimited-continuation F

which is the continuation up to the nearest reset. The continuation becomes a function (λv.F [v]) and it is bound to the
variable k.

Box variables are generated by a rule (make). We assume that the name of a box variable is unique, which means the
name of a generated variable must not be in the domain of the state. The value bound to a box variable is read by the rule
(deref ) and written by the rule (set).
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[〈θ, E[((λx.M) V )]〉]→ [〈θ, E[M{x := V }]〉] (app)

[〈θ, E[〈V 〉]〉]→ [〈θ, E[V ]〉] (rv)

[〈θ, E[F [(Sk.M)]]〉]→ [〈θ, E[〈M{k := (λv.F [v])}〉]〉] (v fresh) (rs)

[〈θ, E[(make V )]〉]→ [〈θ ∪ {b 7→ V }, E[b]〉] (b fresh) (make)

[〈θ ∪ {b 7→ V1}, E[((set! b) V )]〉]→ [〈θ ∪ {b 7→ V }, E[void]〉] (set)

[〈θ ∪ {b 7→ V }, E[(deref b)]〉]→ [〈θ ∪ {b 7→ V }, E[V ]〉] (deref)

Figure 5.3: Sequential Transition Rules

[〈θ, E[F [(futureM)]]〉]→ [〈θ, E[〈flet (p M) [〈∅, F [p]〉]〉]〉] (p fresh) (fork)

[〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉]→ [〈θ ∪ (θ1{p := V }), E[M1{p := V }]〉] (join)

(when Dom(θ) ∩ Dom(θ1) = ∅)
[〈θ, C[〈flet (p M) S〉]〉]→ [〈θ, C[〈flet (p M) S′〉]〉] if S → S′ (spec)

[〈θ ∪ {b 7→ V }, M〉]→ [〈θ ∪ {b 7→ V ′}, M〉] (where [〈∅, V 〉]→ [〈∅, V ′〉]) (store)

Figure 5.4: Parallel Transition Rules

We will define transition rules for parallel computation in Figure 5.4.
(fork) is a rule to process future as a parallelization operator. When a state S transits to another state S′ by this rule,

the state S′ has a term containing a constructor flet. (We call a term in the form 〈flet (p M) S〉 flet-term.) Roughly
speaking, a flet-term 〈flet (p M) S〉 denotes that the termM and the state S is running in parallel. M can be a target of
a transition because, for an arbitrary evaluation contexts E, the context E[〈flet (p �) S〉] is also an evaluation context.
And, S can transit to another states by the rule (spec), which we will describe below.

(join) works to merge two states. This rule can be applied only if a state has a flet-term like 〈flet (p V ) S〉. When
a state [〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉] transits to another state by (join) rule, the merged state is as follows:

• the store is θ ∪ (θ1{p := V }) which is a union of the two stores. (Here, we assume that the names of box variables
in the both stores are renamed to avoid name collision automatically.),

• the term is E[M1{p := V }] which means that the evaluation context E surrounding the flet-term is filled by the
term M1 which the child state had held, and M1 is substituted V for the variables p.

The rule (spec) is one of the most important, essential rules of our calculus. By this rule, an arbitrary inner state can
transit to another state. An important point of this transition is that there are no needs that the context surrounding the
state is an evaluation context, which means that, for example, even if a term 〈flet (p M) S〉 is in a body of a function,
S can transit to another state S′. We note that such cases that a flet-term is in a body of a function is only caused when
shift captures a context surrounded by flet.

The rule (store) causes a transition of the value in a store. In our calculus, a value can transit only when it contains a
flet-term (as described above) and only by the rule (spec).

In the following, we call transitions by the rules (spec) and (store) speculative transitions, and the other transitions
mandatory transitions. The word speculative means that the transition may not need to obtain the final result of its
transition sequence.

We represent that a state [〈θ, M〉] is stuck when M is not a value and there are no rules which can be applied to the
state.

In particular, we define that a state is stuck about mandatory transition or mandatory stuck for short when there
are no mandatory transition rules which can be applied to the state.
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We will show an example of transitions in AM-PFSR. In this example, (let ((x e1)) e2) equals to ((λx.e2) e1). Let
the initial state S0 be [〈∅, 〈M〉〉] where M is

(let ((x (make 0))) (let ((y (future ((set! x) 10))))

(let ((z ((set! x) 20))) (deref x))))

This example will show the behaviors of processes which are trying to access to the same box variable.

S0 →[〈{b1 7→ 0}, 〈(let ((x b1)) (let ((y (future ((set! x) 10))))

(let ((z ((set! x) 20))) (deref x))))〉〉] (make)

→[〈{b1 7→ 0}, 〈(let ((y (future ((set! b1) 10))))

(let ((z ((set! b1) 20))) (deref b1)))〉〉] (app)

→[〈{b1 7→ 0}, 〈flet (p ((set! b1) 10))

[〈∅, 〈(let ((y p)) (let ((z ((set! b1) 20))) (deref b1)))〉〉]〉〉] (fork)

→[〈{b1 7→ 0}, 〈flet (p ((set! b1) 10))

[〈∅, 〈(let ((z ((set! b1) 20))) (deref b1))〉〉]〉〉] (spec)

In the above, the last transition is caused for the term in the flet so the applied rule is (spec). In the last state, while a
term ((set! b1) 20) is in the inner state, the term ((set! b1) 10) is definitely the next target of transition because the
store in the inner state does not have the mutable cell b1 but the outer store has that.

→[〈{b1 7→ 10}, 〈flet (p void)
[〈∅, 〈(let ((z ((set! b1) 20))) (deref b1))〉〉]〉〉] (set)

→[〈{b1 7→ 10}, 〈(let ((z ((set! b1) 20))) (deref b1))〉〉] (join)

→[〈{b1 7→ 20}, 〈(let ((z void)) (deref b1))〉〉] (set)

→[〈{b1 7→ 20}, 〈(deref b1)〉〉] (app)

→[〈{b1 7→ 20}, 〈20〉〉]→ [〈{b1 7→ 20}, 20〉] (deref), (rv)

We designed the transition rules in Figure 5.3 and Figure 5.4 to be transparent. Actually, the rules work correctly as
showed in the above example which shows that if there are more than one states and they tries to access the same box
variable simultaneously, the result is equal to the one of a program obtained by removing all futures from the original
one.

In AM-PFSR, the following property is satisfied.

Lemma 5.1. For any term M of AM-PFSR, exactly one of the following clauses holds:

(1) M = V ,

(2) M = E[(V1 V2)] (where V1 is not set!),

(3) M = E[〈V 〉],

(4) M = E[(Sk.M1)],

(5) M = E[(futureM1)],

(6) M = E[〈flet (p V ) S〉].

Moreover, the decomposition is unique, namely, the evaluation context E in the cases (2) - (6) is uniquely determined. �

Proof . Proof by induction on the structure of M . In each case, the uniqueness of decomposition of its evaluation context
will also be shown.

M ≡ (M1 M2)
By I.H., M1 and M2 are in one of the form (1) to (6).
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M1 is in the form (1)
Let M1 be V1. In this case, we need more case analysis on M2.

M2 is in the form (1)
Let M2 be V2. If M1 is set!, M is in the form (1). If M1 is another value (one of (λx.M3), a, b, p,
void, make, deref or (set! V3)), M is in the form (2). In the latter, the evaluation context is � which
means that the uniqueness of evaluation context is recognized.

M2 is in one of the form (2) to (6)
Let M2 be E[R] where R is in one of the following: (V1 V2), 〈V1〉, (Sk.M3), (future M3) or
〈flet (p V1) S〉. Then we can write M = (V1 E[R]). Here (V1 E) is also an evaluation context
so M can be put as E′[R] where E′ = (V1 E). R is an arbitrary one of the above forms so we can say
M is in the form (2) to (6). Moreover, we can find that E′ is unique because E is unique by I.H..

M1 is in one of the form (2) to (6)
We can prove as in the case above. Let M1 be E[R], then we can write M = (E[R] M2). (E M2) is an
evaluation context so M can be put as E′[R] where E = (E M2). Then we can find that M is in one of the
form (2) to (6), and E′ is unique.

M ≡ 〈M1〉
By I.H., M1 is in one of the form (1) to (6).

M1 is in the form (1)
In this case, M is clearly in the form (3).

M1 is in one of the form (2) to (6)
M1 can be put as E[R] (where R is defined as in the first case). The context 〈E〉 is also an evaluation context
so we can find that the term M is in one of the form of (2) to (6). Moreover, uniqueness of 〈E〉 is also clear.

M ≡ (Sk.M1)
In this case, M is clearly in the form (4). The evaluation context is a hole (�) so it is also clearly unique.

M ≡ (futureM1)
In this case, M is clearly in the form (5). The evaluation context is a hole (�) so it is also clearly unique.

M ≡ 〈flet (p M1) S〉
By I.H., M1 is in one of the form (1) to (6).

M1 is in the form (1)
In this case, M is in the form (6), and its evaluation context is unique (�).

M1 is in one of the form (2) to (6)
By I.H., we can put M1 as E[R] with some E and R (R is defined in the case of M ≡ (M1 M2)) so
M ≡ 〈flet (p E[R]) S〉. The context 〈flet (p E) S〉 is an evaluation context and it is unique (because E
is unique). From the definition of R, we can find M is in one of the form (2) to (6).

�

Lemma 5.1 shows that if a term M is not a value, it can be decomposed to a pair of a unique evaluation context and
a redex. However, if a term is in one of the form (2) to (6), it does not equal to the fact that the term can be a target of
a transition. For instance, a term (p V ) is in the form (2) but it cannot be a target of (app) transition until some value is
substituted for the communication variable p.

By the fact that an arbitrary term can be decomposed uniquely, we can find that there is at most one transition rule
which can be applied to a state.

5.3.4 Evaluation Function of AM-PFSR
In Figure 5.5, we define three functions:

• Unload is the unloading function from a value to an answer,

• evalp is the evaluation function of AM-PFSR which get a term and return an answer, and
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Unload : V→ A

Unload(c) = c Unload((λx.M)) = procedure
Unload(b) = box Unload((set! V )) = procedure
Unload(p) = error Unload(x) = error

evalp : P→ Power(A ∪ {⊥})

evalp(P ) = {Unload(V ) | [〈∅, P 〉]→∗ [〈θ, V 〉]}

∪

{
{error} if there are any mandatory stucktransition sequences starting from [〈∅, P 〉]
{} otherwise

∪


{⊥} there are any infinite transition sequences starting from [〈∅, P 〉]

containing infinitely many mandatory transitions
{} otherwise

evals : P→ Power(A ∪ {⊥})

evals(P ) =


{Unload(V ) | [〈∅, P 〉]→∗ [〈θ, V 〉]}
{error} if it is a stucktransition sequence
{⊥} if it is an infinitely transition sequence starting from [〈∅, P 〉]

Figure 5.5: Evaluation Functions

• evals is the evaluation function of AM-FSR. (We will describe this function in the next subsection.)

In Figure 5.5 and the following, we assume that P, V and A denote the set of programs, values and answers respec-
tively.

The function Unload translate a value V to an answer A. In this translation, it removes some details, for example, if
it gets a function (λx.M), it always returns a symbol procedure.

evalp is a function which gets a program P and returns a set which is a subset of A∪{error}∪ {⊥}. Here→∗ means
a reflective and transitive closure of→. The resulting set of a program P is defined as follows: it begins transitions from
an initial state [〈∅, P 〉] and

• when the state becomes a state like [〈θ, V 〉], the resulting set contains the answer Unload(V ),

• when this transition sequence becomes mandatory stuck, error will be contained in the resulting set, and

• when this transition sequence becomes an infinitely sequence and it contains infinitely many mandatory transitions,
the resulting set contains ⊥. Here, ⊥ represents an infinite computation.

While the resulting set may contain several answers, the set must contain only an answer, which will be proved in the next
section.

An important fact is that ⊥ is obtained only when the transition sequence contains infinitely many mandatory tran-
sitions. This is because a state whose term is a value can cause infinitely many speculative transitions in AM-PFSR.
This kind of infinite sequence should not be assumed an actual infinite transition sequence. For example, let Ω be
((λx.(x x)) (λx.(x x))), a state [〈θ, (λx.〈flet (p 0) [〈θ′, Ω〉]〉)〉] can cause infinitely many speculative transitions.

5.3.5 The Definition of AM-FSR
In this subsection, we will define an abstract machine AM-FSR which compute a program completely sequentially. The
terms, states and values of AM-FSR are defined almost same as the ones of AM-PFSR respectively. The only difference
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is that communication variables (p) and flet-terms does not exist in AM-FSR.
The context C also does not contains flet-terms. The other contexts (evaluation contexts) E, F and G are defined as

follows:

E ::= � | (E M) | (V E) | 〈E〉 | (future E)

F ::= 〈G〉
G ::= � | (GM) | (V G) | (future G)

AM-FSR has all transition rules in Figure 5.3 and a new rule (fid) defined as follows:

[〈θ, E[(future V )]〉]→ [〈θ, E[V ]〉] (fid)

AM-FSR does not have rules in Figure 5.4.
The differences between AM-PFSR and AM-FSR appear when they evaluate a term like E[F [(future M)]]. In

AM-PFSR, it begins parallel computation; generates a new communication variable p, generates a new state contains
a term F [p] and the term turns into a flet-term. On the other hand, in AM-FSR, it begins the evaluation of a term M
(because it assumes (future �) is a kind of evaluation context in AM-FSR), and, when the term M becomes a value V ,
it removes future and begins the evaluation ofE[F [V ]]. This means that futures do not have any effects in AM-FSR.

For the sequential machine AM-FSR, we can show the following property same as the one in AM-PFSR.

Lemma 5.2. For any term M of AM-FSR, exactly one of the following clauses holds:

(1) M ≡ V ,

(2) M ≡ E[(V1 V2)] (where V1 is not set!),

(3) M ≡ E[〈V 〉],

(4) M ≡ E[(Sk.M1)],

(5) M ≡ E[(future V )].

Moreover, the decomposition is unique, namely, the evaluation context E in the cases (2) - (6) is uniquely determined. �

Proof . Lemma 5.2 can be proved in the same way as Lemma 5.1: by induction on the structure of M .

M ≡ V
In this case, M is clearly in the case (1).

M ≡ (M1 M2)
By I.H., M1 and M2 is in one of the form (1) to (5).

M1 is in the form (1)
Let M1 be a value V1. In this case, we must analyze on the form of M2.

M2 is in the form (1)
When M1 is in one of the form (λx.M3)，a，x, b, p，void，make，deref，(set! V3), M is in the
form (2). When M1 is set!, M is in the form (1). In both cases, the evaluation context is � so the
uniqueness of the evaluation context is held.

M2 is in one of the form (2) to (5)
By I.H., we can put M2 as E[R] where R is any one of (V21 V22), 〈V2〉, (Sk.M3) or (future V2), then
we can put M as (V1 E[R]). As R must be in one of the form (2) to (5) and the context (V1 E) is an
evaluation context, M is in one of the form (2) to (5). And, by the fact that E is unique, we can find that
(V1 E) is also unique.

M1 is in the form (2) to (5)
We can put M1 as E[R] (R is defined as also in the previous clause) so M can be put as (E[R]M2). As R
must be in one of the form (2) to (5) and the context (E M2) is an evaluation context, M is in one of the form
(2) to (5). And E is unique so (V1 E) is also unique.
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M ≡ 〈M1〉
By I.H., M1 is in the form (1) to (5).

M1 is in the form (1)
In this case, M is in the form (3).

M1 is in one of the form (2) to (5)
We can proof this case same as the case that M is in the form (M1 M2). As we can put M1 as E[R] by I.H.
and R is in one of the form (2) to (5), M is also in the form same as the one of R. The uniqueness of the
evaluation context 〈E〉 is also found by the fact that E is unique.

M ≡ (Sk.M1)
In this case, M is in the form (4).

M ≡ (futureM1)
This case is proved same as the case that M is 〈M1〉.

M1 is in the form (1)
M is clearly in the case (5).

M1 is in one of the form (2) to (5)
As M1 can be put as E[R] that R is in one of the form (2) to (5), M = (future E[R]) is in the same case
of R. The uniqueness of the evaluation context is also clear.

�

By the above, we have the following theorem.

Theorem 5.1. In AM-FSR, for any state S0, there exists at most one state S1 such that S0 → S1.

Proof . It can be shown easily by Lemma 5.2 and the definition of the transition rules of AM-FSR.

The evaluation function evals is defined in Figure 5.5, and we can immediately find that the returned result of evals is
a set containing only one answer.

5.4 Transparency of future
The goal of this section is to prove the transparency of future stated as follows:

Theorem 5.2 (transparency). For an arbitrary program P , we have evalp(P ) = evals(P ). �

This theorem says that

the meaning for arbitrary programs in AM-PFSR is deterministic, and the semantics of AM-PFSR is equal to
that of AM-FSR.

We have to prove three theorems before proving the main theorem. First is that a resulting set of AM-FSR is always
included in that of AM-PFSR. Second is confluence of the transitions of AM-PFSR, which means that if an arbitrary state
of AM-PFSR S1 can transit to two different states S2 and S3, there is a state S4 to which S2 and S3 can transit. The last
is the uniqueness of the results of AM-PFSR, which means the resulting set of evalp(P ) always contains only an answer.

5.4.1 Relationship between Sequential and Parallel Transition
In this subsection, we will prove the inclusion of the results of AM-FSR to that of AM-PFSR by showing theirs simulation.

Theorem 5.3. For any program P , we have evals(P ) ⊆ evalp(P ). �
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To prove the above, we define new notations. In this subsection, we will write (−)s for an arbitrary element of AM-
FSR and (−)p for that of AM-PFSR. For example,Es means an evaluation context define in AM-FSR, andCp is a context
defined in AM-PFSR. We note that we cannot say Es always can be Ep because Es may contain an evaluation context
(future �) while (future �) is not that in AM-PFSR

We will call an evaluation context which is surrounding by reset at its outermost a program-evaluation context.
We will define a binary relation Xs ∼ Y s where Xs is one of state, term, store or context. This relation is define

mutually inductively with the relations F s ≈f C
p and Es ≈e C

s.

Def 5.1 (Xs ∼ Y p). Let Xs and Y p be a term or a context, then

(d = �, x, b, c)
d ∼ d

Xs ∼ Y p

(λx.Xs) ∼ (λx.Y p)

Xs
1 ∼ Y p

1 Xs
2 ∼ Y p

2

(Xs
1 X

s
2) ∼ (Y p

1 Y p
2 )

F s ≈f C
p Xs ∼ Y p

F s[Xs] ∼ Cp[Y p]
(∗) Xs ∼ Y p

(Sk.Xs) ∼ (Sk.Y p)
Xs ∼ Y p

(future Xs) ∼ (future Y p)

The rule (*) is essential one in the proofs in this subsection. As described latter, when Ms ∼ Mp, 〈Ms〉 ∼ 〈Mp〉
because we have 〈�〉 ≈f 〈�〉. Therefore, for any term Ms in AM-FSR, we have that Ms ∼Ms.

Def 5.2 (Xs ∼ Y p). Let Xs be a state or a store, then

θs ∼ θp Ms ∼Mp

[〈θs, Ms〉] ∼ [〈θp, Mp〉]
V s
i ∼ V p

i (for i = 1, · · · , n)
{b1 7→ V s

1 , · · · , bn 7→ V s
n } ∼ {b1 7→ V p

1 , · · · , bn 7→ V p
n }

Next we will define a binary relation ≈f . In this definition, we will use another definition of F s:

F s ::= 〈�〉 | F s[(�Ms)] | F s[(V s �)] | F s[(future �)]

The reason is that, for several lemmas, this make their proof easy. It is easy to show that the two definitions are the same.

Def 5.3 (F s ≈f C
p).

〈�〉 ≈f 〈�〉
F s ≈f C

p

F s[(future �)] ≈f 〈flet (p �) [〈∅, Cp[p]〉]〉 (p fresh)

F s ≈f C
p Ms ∼Mp

F s[(�Ms)] ≈f C
p[(�Mp)]

F s ≈f C
p V s ∼ V p

F s[(V s �)] ≈f C
p[(V p �)]

Def 5.4 (Es ≈e C
p).

Gs ∼ Cp

Gs ≈e C
p

Es ≈e C
p
1 F s ≈f C

p
2

Es[F s] ≈e C
p
1 [C

p
2 ]

An intuitive meaning of F s ≈f C
p is that we can obtain Cp by applying the (fork) rule to all futures in F s. For

example, when F s ≡ 〈((future ((future �) x)) y)〉, we have F s ≈f 〈flet (p2 �) 〈flet (p1 (p2 x)) 〈(p1 y)〉〉〉.
An important point is that F s ∼ Cp does not always imply that Cp is an pure evaluation context F p since we have

〈(future �)〉 ∼ 〈(future �)〉. In our definition of AM-PFSR, 〈(future �)〉 is not a pure evaluation context. If we
have F s ≈f C

p, it implies that Cp is a pure evaluation context of AM-PFSR. This will be shown in Lemma 5.3.

Lemma 5.3. We have the following properties about ∼ and ≈f .

(1) If V s ∼ Y p then Y p is a value of AM-PFSR,

(2) If Ms ∼ Y p then Y p is a term of AM-PFSR,

(3) If Cs ∼ Y p then Y p is a context of AM-PFSR,

(4) If Ss ∼ Y p then Y p is a state of AM-PFSR,
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(5) If θs ∼ Y p then Y p is a store of AM-PFSR,

(6) If F s ≈f C
p then Cp is a pure evaluation context of AM-PFSR,

(7) If Es ≈e C
p and Es is a program-evaluation context then Cp is an evaluation context of AM-PFSR. �

Proof . We prove the clauses (1) to (7) by simultaneous induction on the derivations for the relations ∼, ≈f and ≈e.

(1) By the case analysis on the last rule used in the derivation of V s ∼ Y p.

V s ≡ c, x, b and Y p ≡ V s

Clearly Y p is a value of AM-PFSR.

V s ≡ (λx.Ms
1 ), Y p ≡ (λx.Y p

1 ), Ms
1 ∼ Y p

1

By I.H. on (2), Y p
1 is a term of AM-PFSR, which implies that Y p is a value of AM-PFSR.

V s ≡ (set! V s
2 ), Y p ≡ (Y p

1 Y p
2 ), set! ∼ Y p

1 and V s
2 ∼ Y p

2

From the definition of ∼, Y p
1 is set!, and by I.H. on (1), Y p

2 is a value of AM-PFSR, hence Y p is a value in
AM-PFSR.

(2) By the case analysis on the last rule used in the derivation of Ms ∼ Y p.

Ms is a value of AM-FSR
In these cases, Y p is also a value of AM-PFSR which is proved in the clause (1) above, and a value is a kind
of terms, hence Y p is a term of AM-PFSR.

Ms ≡ (Ms
1 M

s
2 ), Y p ≡ (Y p

1 Y p
2 ), Ms

1 ∼ Y p
1 and Ms

2 ∼ Y p
2

By I.H. on (2), Y p
1 and Y p

2 are terms of AM-PFSR. Then, by the definition of terms of AM-PFSR, Y p is a term
of AM-PFSR.

Ms ≡ F s[Ms
1 ], Y p ≡ Cp[Y p

1 ], F s ≈f C
p and Ms

1 ∼ Y p
1

By I.H. on (2), Y p
1 is a term of AM-PFSR, and by I.H. on (6), Cp is a pure evaluation context of AM-PFSR.

Then Y p is a term of AM-PFSR.

Ms ≡ (Sk.Ms
1 ), Y p ≡ (Sk.Y p

1 ) and Ms
1 ∼ Y p

1

By I.H. on (2), Y p
1 is a term of AM-PFSR. Then, by the definition of terms, Y p is a term of AM-PFSR.

Ms ≡ (futureMs
1 ), Y p ≡ (future Y p

1 ), Ms
1 ∼ Y p

1

By I.H. on (2), Y p
1 is a term of AM-PFSR. Then, by the definition of terms, Y p is a term of AM-PFSR.

(3) By the case analysis on the last rule used in the derivation of Cs ∼ Y p.

Cs ≡ � and Y p ≡ Cs

Clearly Y p is a context (a hole �) of AM-PFSR.

Cs ≡ (λx.Cs
1), Y p ≡ (λx.Y p

1 ) and Cs
1 ∼ Y p

1

By I.H. on (3), Y p is a context of AM-PFSR. Then (λx.Y p
1 ) is also a context of AM-PFSR.

Cs ≡ (Cs
1 M

s
2 ), Y p ≡ (Y p

1 Y p
2 ), Cs

1 ∼ Y p
1 and Ms

2 ∼ Y p
2

By I.H. on (3), Y p
1 is a context of AM-PFSR, and by I.H. on (2), Y p

2 is a term of AM-PFSR. Then, by the
definition of contexts, Y p is also a context of AM-PFSR.

Cs ≡ (Ms
1 C

s
2), Y p ≡ (Y p

1 Y p
2 ), Ms

1 ∼ Y p
1 and Cs

2 ∼ Y p
2

By I.H. on (2), Y p
1 is a term of AM-PFSR, and by I.H. on (3), Y p

2 is a context of AM-PFSR. Then, by the
definition of contexts, Y p is also a context of AM-PFSR.

Cs ≡ F s
1 [C

s
2 ], Y p ≡ Y p

1 [Y
p
2 ], F s

1 ≈f Y
p
1 and Cs

2 ∼ Y p
2

By I.H. on (6), Y p
1 is a pure evaluation context of AM-PFSR, and by I.H. on (3), Y p

2 is a context of AM-PFSR.
Then, by the definition of contexts, Y p is also a context of AM-PFSR.

Cs ≡ (Sk.Cs
1), Y p ≡ (Sk.Y p

1 ) and Cs
1 ∼ Y p

1

By I.H. on (3), Y p
1 is a context of AM-PFSR. Then, by the definition of contexts, Y p is also a context of

AM-PFSR.
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Cs ≡ (future Cs
1), Y p ≡ (future Y p

1 ) and Cs
1 ∼ Y p

1

By I.H. on (3), Y p
1 is a context of AM-PFSR. Then, by definition of contexts, Y p is also a context of AM-PFSR.

(4) Let Ss be [〈θs, Ms〉]. Then there exist Y p
1 and Y p

2 such that Y p ≡ [〈Y p
1 , Y

p
2 〉], θs ∼ Y p and Ms ∼ Y p

2 . By I.H. on
(4), Y p

1 is a store of AM-PFSR and by I.H. on (2), Y p
2 is a term of AM-PFSR. By the definition of states of AM-PFSR,

Y p is a state of AM-PFSR.

(5) Let θs be {(b1, V s
1 ), ..., (bn, V

s
n )}. By θs ∼ θp, there exists Y p

i (1 ≤ i ≤ n) such that θp ≡ {(b1, Y p
1 ), ..., (bn, Y

p
n )}.

Then, by θs ∼ θp, V s
i ∼ Y p

i By I.H. on (1), each Y p
i is a value of AM-PFSR. By the definition of the store of

AM-PFSR, we have θp is a store of AM-PFSR.

(6) By the case analysis on the last rule used in the derivation of F s ≈f Y
p.

F s ≡ 〈�〉, Y p ≡ 〈�〉
Clearly Y p is a pure evaluation context of AM-PFSR.

F s ≡ F s
1 (�Ms

2 ), Cp ≡ Y p
1 (� Y

p
2 ), F s

1 ≈f Y
p
1 , Ms

2 ∼ Y p
2

By I.H. on (6), Y p
1 is a pure evaluation context, and by I.H. on (2), Y p

2 is a term of AM-PFSR. Then Cp is a
pure evaluation context of AM-PFSR.

F s ≡ F s
1 (V

s
2 �), Cp ≡ Y p

1 (Y
p
2 �), F s

1 ≈f Y
p
1 , V s

2 ∼ Y p
2

By I.H. on (6), Y p
1 is a pure evaluation context, and by I.H. on (1), Y p

2 is a value of AM-PFSR. Then Cp is a
pure evaluation context of AM-PFSR.

F s ≡ F s
1 (future �), Cp ≡ 〈flet (p �) [〈∅, Y p

1 [p]〉]〉, F s
1 ≈f Y

p
1 and p is fresh

By I.H. on (6), Y p
1 is a pure evaluation context. Then Cp is a pure evaluation context of AM-PFSR.

(7) By the assumption that Es is a program-evaluation context, the last rule used to derive Es ≈e C
p is the second

one of the definition of ≈e. Therefore, there exist a program-evaluation context Es
1 and F s

1 such that Es ≡ Es
1 [F

s
1 ].

Then, by the fact that Es ≈e E
s, there exist Cp

1 and Cp
2 such that Cp ≡ Cp

1 [C
p
2 ], E

s
1 ≈e C

p
1 and F s

1 ≈f C
p
2 . By

I.H. on (7), Cp
1 is an evaluation context and, by I.H. on (6), Cp

2 is a pure evaluation context, which implies that Cp

is an evaluation context. �

Lemma 5.4. (1) If Xs ∼ Y p and V s ∼ V p then Xs{x := V s} ∼ Y p{x := V p}.

(2) If F s ≈f C
p and V s ∼ V p then F s{x := V s} ≈f C

p{x := V p}.

(3) We assume that Xs denotes one of terms or contexts. If Cs ∼ Cp and Xs ∼ Xp then Cs[Xs] ∼ Cp[Xp].

(4) If F s ≈f C
p then F s ∼ Cp.

(5) If Es is a program-evaluation context and Es ≈e C
p then Es ∼ Cp. �

Proof . (1) Proof by induction on the structure of Xs.

Xs ≡ c, b,�
We will show only the case of Xs = c. The left-hand side is Xs{x := V s} = c. By the assumption, Y p = c,
and then Y p{x := V p} = c. Other cases can be shown in the same manner.

Xs ≡ x
x{x := V s} equals to V s. By the assumption, Y p equals to x. Then Y p{x := V p} equals to V p.

Xs ≡ y, y 6= x
By the definition of substitution, y{x := V s} equals to y. By the assumption, Y p equals to y. Then Y p{x :=
V p} equals to V p.

Xs ≡ (λx.Xs
1)

By the definition of substitution, (λx.Xs
1){x := V s} = (λx.Xs

1). And also, by definition of ∼, there exists
Y p
1 such that Y p ≡ (λx.Y p

1 ) and Xs
1 ∼ Y p

1 . Since Y p{x := V p} = (λx.Y p
1 ), we have Xs{x := V s} ∼

Y p{x := V p}.
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Xs ≡ (λy.Xs
1), y 6= x

We can assume that y is not free in V s. By the definition of substitution, Xs{x := V s} = (λy.Xs
1){x :=

V s} = (λy.Xs
1{x := V s}). By the assumption, there exists Y p

1 such that Y p ≡ (λy.Y p
1 ) and Xs

1 ∼ Y p
1 .

Since we have the fact that Xs
1 ∼ Y p

1 and V s ∼ V p, Xs
1{x := V s} ∼ Y p

1 {x := V p} by I.H.. Therefore, by
the definition of ∼, we have Xs{x := V s} ∼ Y p{x := V p}.

Xs ≡ (Xs
1 X

s
2)

By the definition of substitution, Xs{x := V s} = (Xs
1{x := V s} Xs

2{x := V s}). By the assumption, there
exist Y p

1 and Y p
2 such that Y p ≡ (Y p

1 Y p
2 ), X

s
1 ∼ Y p

1 and Xs
2 ∼ Y p

2 . Also, by the assumption, we have
Xs

1{x := V s} ∼ Y p
1 {x := V p} and Xs

2{x := V s} ∼ Y p
2 {x := V p}. By the definition of ∼, we have

(Xs
1{x := V s} Xs

2{x := V s}) ∼ (Y p
1 {x := V p} Y p

2 {x := V p}).
Xs ≡ 〈Xs

1〉
By the definition of ∼, there exist F s, Cp, Xs

1 and Y p
1 such that Xs ≡ F s[Xs

1 ], Y
p ≡ Cp[Y p

1 ], F
s ≈f C

p

and Xs
1 ∼ Y p

1 . By the definition of substitution,

Xs{x := V s} ≡ F s[Xs
1 ]{x := V s} = F s{x := V s}[Xs

1{x := V s}]

and
Y p{x := V p} ≡ Cp[Y s

1 ]{x := V p} = Cp{x := V p}[Xp
1{x := V p}]

By I.H. of (2), F s{x := V s} ≈f C
p{x := V p}, and by I.H. of (1), Xs

1{x := V s} ≈f X
p
1{x := V p}. Then,

by the definition of ∼,

F s{x := V s}[Xs
1{x := V s}] ≈f C

p{x := V p}[Xp
1{x := V p}]

Xs ≡ (Sk.Xs
1), k = x

By the definition of substitution, (Sk.Xs
1){x := V s} = (Sk.Xs

1). By the definition of ∼, there exists Y p
1 such

that Y p ≡ (Sk.Y p
1 ) and Xs

1 ∼ Y p
1 . Since Y p{x := V p} = (Sk.x)Y p

1 , we have (Sk.Xs
1){x := V s} ∼

(Sk.Y p){x := V p}.
Xs ≡ (Sk.Xs

1), k 6= x
We can assume that y is not free in V s. By the definition of substitution, Xs{x := V s} = (Sk.Xs

1){x :=
V s} = (Sk.Xs

1{x := V s}). By the assumption, there exists Y p
1 such that Y p ≡ (Sk.Y p

1 ) and Xs
1 ∼ Y p

1 .
Since we have that Xs

1 ∼ Y p
1 and V s ∼ V p, we have Xs

1{x := V s} ∼ Y p
1 {x := V p} by I.H.. Therefore, by

definition of ∼, we have (Sk.Xs
1){x := V s} ∼ (Sk.Y p

1 ){x := V p}.
Xs ≡ (future Xs

1)
By the definition of substitution, (future Xs

1){x := V s} = (future Xs
1{x := V s}). By the definition of

∼, there exists Y p
1 such that Y p ≡ (future Y p

1 ) and Xs
1 ∼ Y p

1 . By I.H., Xs
1{x := V s} = Y p

1 {x := V p}.
By the definition of ∼, we have (future Xs

1{x := V s}) ∼ (future Y p
1 {x := V p}).

(2) By induction on the structure of F s. Since this proof is almost the same as above, we show only the case F s ≡
F s
1 [(future �)].

By the assumption, there exists Cp
1 such that Cp ≡ 〈flet (p �) [〈∅, Cp

1 [p]〉]〉 and F s
1 ≈f C

p
1 (p is fresh). We have

F s{x := V s} ≡ F s
1 {x := V s}[(future �)]

and
Cp{x := V p} ≡ 〈flet (p �) [〈∅, Cp

1{x := V p}[p]〉]〉

By I.H., we have F s
1 {x := V s} ≈f C

p
1{x := V p}, which implies F s ≈f C

p.

(3) Proof by induction on the structure of C.

Cs ≡ �
By the definition of ∼, Cp = �. Then we have Cs[Xs] = Xs ∼ Xp = Cp[Xp].

Cs ≡ (λx.Cs
1)

By the definition of ∼, there exists some Cp
1 such that Cp ≡ (λx.Cp

1 ) and Cs
1 ∼ Cp

1 . By I.H., we have
Cs

1 [X
s] ∼ Cp

1 [X
p]. Then, by the definition of ∼, (λx.Cs

1 [X
s]) ∼ (λx.Cp

1 [X
p]).
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Cs ≡ (Cs
1 M

s
1 )

By the definition of ∼, there exists some Cp
1 and Mp

1 such that Cp ≡ (Cp
1 M

p
1 ), C

s
1 ∼ Cp

1 and Ms
1 ∼Mp

1 . By
I.H., we have Cs

1 [X
s] ∼ Cp

1 [X
p]. Then, by the definition of ∼, (Cs

1 [X
s]Ms

1 ) ∼ (Cp
1 [X

p]Mp
1 ).

Cs ≡ (Ms
1 C

s
1)

By the definition of ∼, there exists some Mp
1 and Cp

1 such that Cp ≡ (Mp
1 C

p
1 ), M

s
1 ∼Mp

1 and Cs
1 ∼ Cp

1 . By
I.H., we have Cs

1 [X
s] ∼ Cp

1 [X
p]. Then, by the definition of ∼, (Ms

1 C
s
1 [X

s]) ∼ (Mp
1 C

p
1 [X

p]).

Cs ≡ 〈Cs
1〉

By the definition of ∼, there exists some F s
1 , Cs

1 , Cp
1 and Cp

2 such that Cs ≡ F s
1 [C

s
1 ], C

p ≡ Cp
1 [C

p
2 ],

F s
1 ≈f C

p
1 and Cs

1 ∼ Cp
2 . By I.H., we have Cs

1 [X
s] ∼ Cp

2 [X
p]. Then, by the definition of ∼, F s

1 [C
s
1 [X

s]] ∼
Cp

1 [C
p
2 [X

p]].

Cs ≡ (Sk.Cs
1)

By the definition of ∼, there exists some Cp
1 such that Cp ≡ (Sk.Cp

1 ) and Cs
1 ∼ Cp

1 . By I.H., we have
Cs

1 [X
s] ∼ Cp

1 [X
p]. Then, by the definition of ∼, (Sk.Cs

1 [X
s]) ∼ (Sk.Cp

1 [X
p]).

Cs ≡ (future Cs
1)

By the definition of ∼, there exists some Cp
1 such that Cp ≡ (future Cp

1 ) and Cs
1 ∼ Cp

1 . By I.H., we have
Cs

1 [X
s] ∼ Cp

1 [X
p]. Then, by the definition of ∼, (future Cs

1 [X
s]) ∼ (future Cp

1 [X
p]).

(4) We have F s ≈f C
p by the assumption. Then, if we assume Ms ≡ Mp ≡ �, we can derive F s ∼ Cp immediately

by the rule (*) which was defined in the definition of binary relation ∼.

(5) We will show by the induction on the structure of Es. Since we have that Es is a program-evaluation context by the
hypothesis, we only have to show the case that Es ≡ Es

1 [F
s].

Es ≡ Es
1 [F

s]

By the definition of ∼, there exist some Cs
1 and Cs

2 such that Cp ≡ Cp
1 [C

p
2 ], E

s
1 ≈e C

p
1 and F s ≈f C

p
2 . By

I.H., Es
1 ∼ Cp

1 . By the clause (3) of this lemma, we also have F s ∼ Cs
2 . By the clause (2) of this lemma, we

have Es ≡ Es
1 [F

s] ∼ Cp
1 [C

p
2 ] ≡ Cp. �

In the following lemma ant its proof, an extended term (an e-term for short) is either term or a context.

Lemma 5.5 (Decomposition). (1) Let Xs be an e-term and Es be a program-evaluation context. If Es[〈Xs〉] ∼ Y p

then there exist a context Cp and an e-term Zp such that Y p ≡ Cp[〈Zp〉], Es ∼ Cp and Xs ∼ Zp.

(2) Let Ms be a value or a term in the form of (V s
1 V s

2 ). If F s[Ms] ∼ Np then there exist a pure evaluation context
F p and a term Mp such that Np ≡ F p[Mp], F s ∼ F p and Ms ∼Mp.

(3) Let Xs be an e-term. If Gs[Xs] ∼ Y p then there exist a context Cp and an e-term Zp such that Y p ≡ Cp[Zp],
Gs ∼ Cp and Xs ∼ Zp. �

Proof . (1) By induction on the program-evaluation contextEs where we use the alternative definition: Es ::= F s | F s[Es].

Es ≡ F s

By F s[〈Xs〉] ∼ Y p and the definition of ∼, there exist a pure evaluation context F s
1 , a context Gs

2, a context
Cp

1 and an e-term Y p
1 such that F s ≡ F s

1 [G
s
2], Y

p ≡ Cp
1 [Y

p
1 ], F

s
1 ≈f C

p
1 and Gs

2[〈Xs〉] ∼ Y p
1 .

From Gs
2[〈Xs〉] ∼ Y p

1 and I.H. on (3), there exist a context Cp
2 and an e-term Y p

2 such that Y p
1 ≡ Cp

2 [Y
p
2 ],

Gs
2 ∼ Cp

2 and 〈Xs〉 ∼ Y p
2 .

From F s
1 ≈f C

p
1 and Gs

2 ∼ Cp
2 , we have F s

1 [G
s
2] ∼ Cp

1 [C
p
2 ] using the rule (*), which means Es ∼ Cp

1 [C
p
2 ].

From 〈Xs〉 ∼ Y p
2 , there exists an e-term Zp such that Xs ∼ Zp and Y p

2 ≡ 〈Zp〉.
Putting Cp ≡ Cp

1 [C
p
2 ], we have Es ≈f C

p, Xs ∼ Zp and Y p ≡ Cp[〈Zp〉].
Es ≡ F s

1 [E
s
1 ]

By the same argument as the previous case, there exist a contextCp
0 and an e-term Y p

1 such that Y p ≡ Cp
0 [Y

p
1 ],

F s
1 ∼ Cp

0 and Es
1 [〈Xs〉] ∼ Y p

1 .
By I.H., there exist a context Cp

1 and an e-term Zp such that Y p
1 ≡ C

p
1 [〈Zp〉], Es

1 ∼ Cp
1 and Xs ∼ Zp.

Putting Cp ≡ Cp
0 [C

p
1 ], this case is proved.
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(2) By induction on the pure evaluation context F s where we use the following alternative definition:

F s ::= 〈�〉 | F s[(�Ms)] | F s[(V s �)] | F s[(future �)].

We shall prove the case when Ms ≡ (V s
1 V

s
2 ) only. By the definition of ∼, either one of the three cases holds.

Np ≡ F p[Mp], F s ≈f F
p and Ms ∼Mp

We immediately have the conclusion.

Np ≡ F p
1 [M

p
1 ], F s[(V s

1 �)] ≈f F
p
1 and V s

2 ∼Mp
1

We can prove, by induction on F s, that there exists a pure evaluation context F p and a term Mp
2 such that

F p
1 ≡ F p[(Mp

2 �)], F s ≈f F
p and V s

1 ∼Mp
2 . We put Mp ≡ (Mp

2 M
p
1 ), then F p and Mp satisfy the desired

properties.

Np ≡ F p
1 [M

p
1 ], F s[(� V s

2 )] ≈f F
p
1 and V s

1 ∼Mp
1

This case is proved similarly to the above case.

(3) By the induction on the structure of Gs.

Gs ≡ �
By the assumption, we immediately find that Cp ≡ � and Zp ≡ Y p.

Gs ≡ (Gs
1 M

s
1 )

Gs[Xs] ≡ (Gs
1[X

s] Ms) ∼ Y p. By the definition of ∼, there exist an e-term Zp
1 and a term Zp

2 such that
Y p ≡ (Zp

1 Z
p
2 ), G

s
1[X

s] ∼ Zp
1 and Ms ∼ Zp

2 . Then, by I.H., there exist a context Cp
1 and an e-term Zp

3 such
that Zp

1 ≡ C
p
1 [Z

p
3 ], G

s
1 ∼ Cp

1 and Xs ∼ Zp
3 . Putting Cp ≡ (Cp

1 Z
p
2 ) and Zp ≡ Zp

3 , we are done.

Gs ≡ (V s
1 G

s
1)

Gs[Xs] ≡ (V s
1 Gs

1[M
s]) ∼ Y p. By the definition of ∼, there exist a term Zp

1 and an e-term Zp
2 such that

Y p ≡ (Zp
1 Z

p
2 ), V

s
1 ∼ Zp

1 and Gs
1[X

s] ∼ Zp
2 . Then, by I.H., there exist a context Cp

1 and an e-term Zp
3 such

that Zp
2 ≡ C

p
1 [Z

p
3 ], G

s
1 ∼ Cp

1 and Xs ∼ Zp
3 . Putting Cp ≡ (Zp

1 C
p
1 ) and Zp ≡ Zp

3 , we are done.

Gs ≡ (future Gs
1)

Gs[Xs] ≡ (future Gs
1[X

s]) ∼ Y p. By the definition of ∼, there exist an e-term Zp
1 such that Y p ≡

(future Zp
1 ) and Gs

1[X
s] ∼ Zp

1 . Then, by I.H., there exist a context Cp
1 and an e-term Zp

2 such that
Zp
1 ≡ C

p
1 [Z

p
2 ], G

s
1 ∼ Cp

1 and Xs ∼ Zp
2 . Putting Cp ≡ (future Cp

1 ) and Zp ≡ Zp
2 , we are done. �

Here, we will define a new binary relation→∗
f which denotes transitions of contexts.

Def 5.5. For any context Cp
i (i = 1, 2) of AM-PFSR, we define Cp

1 →∗
f C

p
2 if and only if, for any term Mp, any store θp

and any evaluation context Ep, letrdθpE@[Cp
1 [M

p]]→∗ [〈θp, Ep[Cp
2 [M

p]]〉] by applying only the fork rule to the state.

The next lemma (Lemma 5.6) is a key of this subsection.

Lemma 5.6. (1) If F s ≈f F
p and Gs ∼ Cp, then there exists some F p

1 such that F s[Gs] ≈f F
p
1 and F p[Cp]→∗

f F
p
1 .

(2) If F s ∼ Cp then there exists some F p such that F s ≈f F
p and Cp →∗

f F
p.

(3) Let Es be a program-evaluation context. If Es ∼ Cp then there exists some Ep such that Es ≈e E
p and Cp →∗

f

Ep. �

Proof . (1) We first give an alternative inductive definition to a truly pure evaluation context Gs as follows:

Gs ::= � | Gs[(�Ms)] | Gs[(V s� ]) | Gs[(future �)].

The equivalence of the original and alternative definitions can be shown easily.

Gs ≡ �
By the assumption � ∼ Cp, we have Cp ≡ �. Then, F s[Gs] ≡ F s ≈f F

p ≡ F p[Cp], and we only have to
let F p

1 ≡ F p.
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Gs ≡ Gs
1[(future �)]

By Lemma 5.5 (3), there exists some Cp
1 such that Cp ≡ Cp

1 [(future �)]. By I.H., there exists F p
2

such that F s[Gs
1] ≈f F p

2 and F p[Cp
1 ] →∗

f F p
2 . If F p

1 ≡ 〈flet (p �) [〈∅, F p
2 [p]〉]〉, we have F s[Gs] ≡

F s[Gs
1[(future �)]] ≈f F

p
2 by the definition of ≈f . Then, we have the following sequence of transition:

F p[Cp] ≡ F p[Cp
1 [(future �)]]→∗

f F
p
1 [(future �)]

→f 〈flet (p �) [〈∅, F p
1 [p]〉]〉 ≡ F

p
2 .

Gs ≡ Gs
1[(�Ms)]

By Lemma 5.5 (3), there exist some Cp
1 and Mp such that Cp ≡ Cp

1 [(� Mp)], Gs
1 ∼ Cp

1 and Ms ∼ Mp.
By I.H., there exists F p

2 such that F s[Gs
1] ≈f F p

2 and F p[Cp
1 ] →∗

f F p
2 . If F p

1 ≡ F p
2 [(� Mp)], F s[Gs] ≡

F s[Gs
1[(�Ms)]] ≈f F

p
1 by the definition of ≈f . Then we have the following sequence of transitions:

F p[Cp] ≡ F p[Cp
1 [(�Mp)]]→∗

f F
p
2 [(�Mp)] ≡ F p

1 .

Gs ≡ Gs
1[(V

s �)]
By Lemma 5.5 (3), there exist some Cp

1 and V p such that Cp ≡ Cp
1 [(V

p �)], Gs
1 ∼ Cp

1 and V s ∼ V p. By
I.H., there exists F p

2 such that F s[Gs
1] ≈f F p

2 and F p[Cp
1 ] →∗

f F p
2 . If F p

1 ≡ F p
2 [(V

p �)], then F s[Gs] ≡
F s[Gs

1[(V
s �)]] ≈f F

p
1 by the definition of ≈f . Then we have the following sequence of transitions:

F p[Cp] ≡ F p[Cp
1 [(V

p �)]]→∗
f F

p
2 [(V

p �)] ≡ F p
1 .

(2) Since the rule which is used to derive F s ∼ Cp is the rule (*), there exist some F s
1 , Gs, F p

1 , Cp
1 such that

F s ≡ F s[Gs], Cp ≡ F p
1 [C

p
1 ], F

s
1 ≈f F

p
1 and Gs ∼ Cp

2 . Then, by the above lemma, we have some F p such that
F s
1 [G

s
1] ≈f F

p and F p
1 [C

p
1 ]→∗

f F
p.

(3) We use the alternative inductive definition for program-evaluation contexts asEs ::= F s | Es[F s]. Then we prove
this case by induction on the structure of program-evaluation context.

Es ≡ F s

Since Es ≡ F s ∼ Cp, there exists some F p such that F s ≈f F
p and Cp →∗

f F
p by (2).

Es ≡ Es
1 [F

s]

By Lemma 5.5, there exist some Cp
1 and Cp

2 such that Cp ≡ Cp
1 [C

p
2 ], E

s
1 ∼ Cp

1 and F s ∼ Cp
2 . By the

fact that Es
1 ∼ Cp

1 and I.H., there exists some Ep
1 such that Es

1 ≈e E
p
1 and Cp

1 →∗
f Ep

1 . Further, by the
fact that F s ∼ Cp

2 and (2), there exists some F p
1 such that F s ≈f F p

1 and Cp
2 →∗

f F p
1 . Here, Es can

be put as Ep
1 [F

p
1 ]. Then, by the definition of ≈e, Es ≡ Es

1 [F
s] ≈e Ep

1 [F
p
1 ] ≡ Ep. Also we have that

Cp ≡ Cp
1 [C

p
2 ]→∗

f E
p
1 [C

p
2 ]→∗

f E
p
1 [F

p
1 ] ≡ Ep. �

Theorem 5.4 (Simulation). Let Ss
1 be a program state. If Ss

1 ∼ Sp
1 and Ss

1 → Ss
2 , there exists Sp

2 such that Ss
2 ∼ Sp

2 and
Sp
1 →∗ Sp

2 . Moreover, the sequence Sp
1 →∗ Sp

2 contains one or more mandatory transitions. �
Proof . By case analysis on the transition rule applied to Ss

1 → Ss
2 .

(app)
By the assumption, Ss

1 ≡ [〈θs, Es[((λx.Ms) V s)]〉] and Ss
2 ≡ [〈θs, Es[Ms{x := V s}]〉]. By Lemma 5.5, there

exist θp, Cp,Mp, V p such that Sp
1 ≡ [〈θp, Cp[((λx.Mp) V p)]〉]，θs ∼ θp, Es ∼ Cp, Ms ∼ Mp and V s ∼

V p. By Lemma 5.6, there exists Ep such that Es ≈e E
p and Cp →∗

f Ep. Since Ep is an evaluation context,
[〈θp, Ep[((λx.Mp) V p)]〉] → [〈θp, Ep[Mp{x := V p}]〉] by (app). If Sp

2 ≡ [〈θp, Ep[Mp{x := V p}]〉], we have
Sp
1 →∗ Sp

2 , which contains a mandatory transition. And, by Lemma 5.4, [〈θs, Es[Ms{x := V s}]〉] ∼ Sp
2 .

(rv)
By the assumption, Ss

1 ≡ [〈θs, Es[〈V s〉]〉] and Ss
2 ≡ [〈θs, Es[V s]〉]. By the fact that Ss

1 ∼ Sp
1 , there exist some

θp and Np such that Sp
1 ≡ [〈θp, Np〉], θs ∼ θp and Es[〈V s〉] ∼ Np. By Lemma 5.5 and Es[〈V s〉] ∼ Np, there

exist some Cp and V p such that Sp
1 ≡ [〈θp, Cp[〈V p〉]〉], Es ∼ Cp and V s ∼ V p. By Lemma 5.6, there exist some

Ep such that Es ≈e E
p and Cp →∗

f Ep. By the definition of →∗
f , we have Sp

1 →∗ [〈θp, Ep[〈V p〉]〉]. Since Ep

is an evaluation context, [〈θp, Ep[〈V p〉]〉] → [〈θp, Ep[V p]〉]. Then, by the fact that Sp
2 is assumed to [〈θp, Ep[V p]〉],

we have that Sp
1 →∗ Sp

2 and this sequence contains a mandatory transition. Furthermore, by the definition of ∼,
Ss
2 ∼ Sp

2 .
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(rs)
By the assumption, Ss

1 ≡ [〈θs, Es[F s[(Sk.Ms)]]〉] and Ss
2 ≡ [〈θs, Es[Ms{k := (λv.F s[v])}]〉]. By the definition

of ∼ and Lemma 5.5, there exist some θp, Cp
1 , Cp

2 , Mp such that Sp
1 ≡ [〈θp, Cp

1 [C
p
2 [(Sk.Mp)]]〉], Es ∼ Cp

1 ,
F s ∼ Cp

2 and Ms ∼ Mp. By Lemma 5.6, there exist Ep and F p such that Es ≈e E
p, Cp

1 →∗
f E

p, F s ≈f F
p

and Cp
2 →∗

f F
p. By the definition of→∗

f , Sp
1 →∗ [〈θp, Ep[F p[(Sk.Mp)]]〉]. If Sp

2 is assumed to [〈θp, Ep[Mp{k :=

(λv.F p[v])}]〉], [〈θp, Ep[F p[(Sk.Mp)]]〉] → Sp
2 . And this shows that the transition sequence Sp

1 →∗ Sp
2 contains a

mandatory transition.

(fid)
By the assumption, Ss

1 ≡ [〈θs, Es[(future V s)]〉] and Ss
2 ≡ [〈θs, Es[V s]〉]. Since Ss

1 is a program state, Es is a
program-evaluation context and we can put it as Es ≡ Es

1 [F
s] with some Es

1 and F s. Then there exist some θp,
Cp

1 , Cp
2 and V p such that Sp

1 ≡ [〈θp, Cp
1 [C

p
2 [V

p]]〉], θs ∼ θp, Es
1 ∼ Cp

1 , F s[(future �)] ∼ Cp
2 and V s ∼ V p.

By Lemma 5.6, there exists some Ep
1 such that Es

1 ≈e E
p
1 and Cp

1 →∗
f E

p
1 . Here, we will divide this case into two

cases based on the derivation of the relation F s[(future �)] ∼ Cp
2 . Namely, we have two subcases depending

on whether F s[(future �)] ≈f C
p
2 .

F s[(future �)] ≈f C
p
2

By the definition of ≈f , there exists F p such that Cp
2 ≡ 〈flet (p �) F p[p]〉 (where p is a fresh communi-

cation variable) and F s ≈f F
p. If we assume that Sp

2 is [〈θp, Ep
1 [F

p[V p]]〉], Ss
2 ∼ Sp

2 . Further, we have the
following:

Sp
1 ≡ [〈θp, Cp

1 [〈flet (p V p) F p[p]〉]〉]
→∗ [〈θp, Ep

1 [〈flet (p V p) F p[p]〉]〉]
→ [〈θp, Ep

1 [F
p[V p]]〉] ≡ Sp

2

the other case
In this case, we can put F s ≡ F s

1 [G
s] and Cp

2 ≡ F p[Cp
3 ] with some F s

1 , Gs, F p and Cp
3 such that F s

1 ≈f F
p,

Gs[(future �)] ∼ Cp
3 . By applying Lemma 5.5 to Gs[(future �)] ∼ Cp

3 , there exists Cp
4 such that

Cp
3 ≡ Cp

r [(future �)] and Gs ∼ Cp
4 . And also, by applying Lemma 5.6 (1) to F s

1 ≈f F
p and Gs ∼ Cp

4 ,
there exists F p

2 that F s
1 [G

s] ≈f F p
2 and F p[Cp

4 ] →∗
f F p

2 . By letting Sp
2 be [〈θp, Ep

1 [F
p
2 [V

p]]〉], we have
Ss
2 ∼ Sp

2 , then we have the following:

Sp
1 ≡ [〈θp, Cp

1 [F
p[Cp

4 [(future V
p)]]]〉]→∗ [〈θp, Ep

1 [F
p[Cp

4 [(future V
p)]]]〉]

→∗ [〈θp, Ep
1 [F

p
2 [(future V

p)]]〉]→ [〈θp, Ep
1 [〈flet (p V p) [〈∅, F p

2 [p]〉]〉]〉]
→ [〈θp, Ep

1 [F
p
2 [V

p]]〉] ≡ Sp
2

The transitions contain a mandatory transition (fork).

(make)
By the assumption, Ss

1 ≡ [〈θs, Es[(make V s)]〉] and Ss
2 ≡ [〈θs ∪ {b 7→ V s}, Es[b]〉] where b is a fresh variable.

By Lemma 5.5, there exist some θp, Cp and V p such that Sp
1 ≡ [〈θp, Cp[(make V p)]〉], θs ∼ θp, Es ∼ Cp and

V s ∼ V p. By Lemma 5.6, there exists some Ep such that Es ≈e E
p and Cp →∗

f E
p. By the definition of →∗

f ,
Sp
1 → [〈θp, Ep[(make V p)]〉]. SinceEp is an evaluation context, [〈θp, Ep[(make V p)]〉]→ [〈θp∪{b 7→ V p}, Ep[b]〉].

Here, we have θs ∪ {b 7→ V s} ∼ θp ∪ {b 7→ V p} because of the facts that θs ∼ θp and V s ∼ V p. Since Sp
2 can be

assumed to the right-hand side of the last transition, we have Sp
1 →∗ Sp

2 and Ss
2 ∼ Sp

2 .

(set)
By the assumption, Ss

1 ≡ [〈θs∪{b 7→ V s
1 }, Es[((set! b) V s)]〉], Ss

2 ≡ [〈θs∪{b 7→ V s}, Es[void]〉]. By Lemma 5.5,
there exist θp, V p

1 ,Cp and V p such that Sp
1 ≡ [〈θp∪{b 7→ V p

1 }, Cp[((set! b) V p)]〉], θs ∼ θp, V s
1 ∼ V p

1 ,Es ∼ Cp

and V s ∼ V p. By Lemma 5.6, there exists some Ep such that Es ≈e E
p and Cp →∗

f E
p. Since Sp

2 can be assumed
that [〈θp ∪ {b 7→ V p}, Ep[void]〉], we have that Ss

2 ∼ Sp
2 and the following transitions:

Sp
1 ≡ [〈θp ∪ {b 7→ V p

1 }, Cp[((set! b) V p)]〉]
→∗ [〈θp ∪ {b 7→ V p

1 }, Ep[((set! b) V p)]〉]
→ [〈θp ∪ {b 7→ V p}, Ep[void]〉] ≡ Sp

2
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(deref )
By the assumption, Ss

1 ≡ [〈θs ∪ {b 7→ V s}, Es[(deref b)]〉], Ss
2 ≡ [〈θs ∪ {b 7→ V s}, Es[V s]〉]. By Lemma 5.5,

there exist θp, Cp and V p such that Sp
1 ≡ [〈θp ∪ {b 7→ V p}, Cp[(deref b)]〉], θs ∼ θp, Es ∼ Cp and V s ∼ V p.

By Lemma 5.6, there exists some Ep such that Es ≈e Ep and Cp →∗
f Ep. Since Sp

2 can be assumed that
[〈θp ∪ {b 7→ V p}, Ep[V p]〉], we have that Ss

2 ∼ Sp
2 and the following transitions:

Sp
1 ≡ [〈θp ∪ {b 7→ V p}, Cp[(deref b)]〉]
→∗ [〈θp ∪ {b 7→ V p}, Ep[(deref b)]〉]
→ [〈θp ∪ {b 7→ V p}, Ep[V p]〉] ≡ Sp

2

�

At the end of this subsection, we will prove the theorem 5.3.

Proof . Let P be an arbitrary program of AM-FSR.

evals(P ) 6= {⊥}, {error}
In the AM-FSR, we have [〈∅, P 〉] →∗ [〈θs, V s〉]. By Theorem 5.4, there exist some θp and V p such that [〈∅, P 〉] →∗

[〈θp, V p〉] and V s ∼ V p. Since V s ∼ V p derives the fact that Unload(V s) = Unload(V p), we have evals(P ) ⊆
evalp(P ).

evals(P ) = {error}
Since [〈∅, P 〉]→∗ Ss

1 , the state Ss
1 is a stuck state. By Theorem 5.4, there exists some Sp

1 such that [〈∅, P 〉]→∗ Sp
1

and Ss
1 ∼ Sp

1 . By the fact that the program state Ss
1 is stuck and Lemma 5.2, there exist some θs, Es, V s

1 and
V s
2 such that Ss

1 ≡ [〈θs, Es[(V s
1 V s

2 )]〉]. By Ss
1 ∼ Sp

1 and Lemma 5.5, there exist θp, Cp, V p
1 and V p

2 such that
Sp
1 ≡ [〈θp, Cp[(V p

1 V p
2 )]〉], θs ∼ θp, Es ∼ Cp, V s

1 ∼ V p
1 and V s

2 ∼ V p
2 . By Lemma 5.6, there exists some Ep such

that Cp →∗
f E

p. Let Sp
2 be [〈θp, Ep[(V p

1 V p
2 )]〉], then Sp

1 →∗ Sp
2 .

We will prove that Sp
2 is a stuck state, by the case analysis on the cause that Ss

1 is a stuck state. We prove only
the case when V s

1 is a constant value other than make, set! or deref. By V s
1 ∼ V p

1 , V p
1 is the same constant,

and by Lemma 5.1, there exist no transitions starting with Sp
2 , and consequently Sp

2 is a stuck state. Other cases
can be shown in a similar way. Finally, we have evals(P ) = {error} ⊆ evalp(P ).

evals(P ) = {⊥}
There exists an infinite transition sequence starting with [〈∅, P 〉] in AM-FSR. By Theorem 5.4, there exists an infinite
transition sequence in AM-PFSR which starts with [〈∅, P 〉] and contains infinitely many mandatory transitions. Then
evals(P ) ⊆ evalp(P ). �

5.4.2 Confluence of Transitions in AM-PFSR
The confluence of transitions is a key property to prove the transparency of our calculus, which is stated as follows:

Theorem 5.5 (Confluence). For any states S1, S2 and S3 in AM-PFSR, if S1 →∗ S2 and S1 →∗ S3 then there exists
some state S4 such that S2 →∗ S4 and S3 →∗ S4. �

In order to prove Theorem 5.5, we will extend the parallel reduction method. The original parallel reduction is
proposed by Takahashi, and we extend the parallel reduction to our parallel transition, and S1 ⇒ S2 denotes our notion
of the parallel transition. Also we will define a maximum parallel transition (−)∗.

Then we will prove a so called diamond property for the extended parallel reductions and maximum parallel reduc-
tions. In the following, we will simply call our extended parallel transition parallel transition.

Intuitively, S1 ⇒ S2 means that if the state S1 has some redexes, namely, subterms which can be reduced, we can
obtain S2 by reducing zero or more redexes simultaneously. For example, let M1 be ((λx.x) 3) and M2 be ((λx.x) 5),
and S1, S2 and S3 are as follows.

S1 = [〈∅, 〈flet (p M1) [〈∅, 〈flet (q M2) [〈∅, 〈(+ p q)〉〉]〉〉]〉〉]
S2 = [〈∅, 〈flet (p 3) [〈∅, 〈flet (q 5) [〈∅, 〈(+ p q)〉〉]〉〉]〉〉]
S3 = [〈∅, (+ 3 5)〉]
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At this time, we have that S1 ⇒ S2 and S2 ⇒ S3.
In the parallel transition S2 ⇒ S3, the two flet-terms are reduced simultaneously, namely, M1 and M2 are reduced

in the same step. We note that we cannot reduce arbitrary redexes using our definitions; a subterm R of flet-terms can
be reduced only if the whole term can be decomposed into the form E[R]. For example, we cannot have the following
transition:

[〈∅, (+M1 M2)〉]⇒ [〈∅, (+ 3 5)〉]

5.4.2.1 The Definition of Parallel Transitions

In this subsection, we will define three binary relations; parallel transition⇒ and its auxiliary transition⇒r and⇒s. ⇒
is defined on states in AM-PFSR, ⇒r is defined on specific terms in AM-PFSR, and ⇒s is define on terms, evaluation
contexts and stores in AM-PFSR.

Def 5.6 (⇒ : Parallel transition rules for states).

R⇒r R
′ E ⇒s E

′ θ ⇒s θ
′

[〈θ, E[R]〉]⇒ [〈θ′, E′[R′]〉]
(Redex)

V ⇒s V
′ E ⇒s E

′ θ ⇒s θ
′ (b fresh)

[〈θ, E[(make V )]〉]⇒ [〈θ′ ∪ {b 7→ V ′}, E′[b]〉]
(Make)

V ⇒s V
′ E ⇒s E

′ θ ⇒s θ
′

[〈θ ∪ {b 7→ V1}, E[((set! b) V )]〉]⇒ [〈θ′ ∪ {b 7→ V ′}, E′[void]〉]
(Set)

V ⇒s V
′ E ⇒s E

′ θ ⇒s θ
′

[〈θ ∪ {b 7→ V }, E[(deref b)]〉]⇒ [〈θ′ ∪ {b 7→ V ′}, E′[V ′]〉]
(Deref)

θ ⇒s θ
′ E ⇒s E

′ V ⇒s V
′ [〈θ1, M1〉]⇒ [〈θ2, M2〉] Dom(θ′) ∩ Dom(θ2) = ∅

[〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉]⇒ [〈θ′ ∪ (θ2{p := V ′}), E′[M2{p := V ′}]〉]
(Join)

M ⇒s M
′ θ ⇒s θ

′

[〈θ, M〉]⇒ [〈θ′, M ′〉]
(Spec)

Def 5.7 (⇒r : Auxiliary parallel transition rules for specific terms).

M ⇒s M
′ V ⇒s V

′

((λx.M) V )⇒r M
′{x := V ′}

(App)

M ⇒s M
′ F ⇒s F

′ (v fresh)
F [(Sk.M)]⇒r 〈M ′{k := (λv.F ′[v])}〉

(RtSt)
V ⇒s V

′

〈V 〉 ⇒r V
′ (RtVl)

M ⇒s M
′ F ⇒s F

′ (p fresh)
F [(futureM)]⇒r 〈flet (p M ′) [〈∅, F ′[p]〉]〉

(Fork)

Def 5.8 (⇒s : Auxiliary parallel transition rules for terms, evaluation contexts).

v = x, c, b, p,�
v ⇒s v

(S-Val)
M ⇒s M

′

(λx.M)⇒s (λx.M
′)

(S-Lam)

M1 ⇒s M
′
1 M2 ⇒s M

′
2

(M1 M2)⇒s (M
′
1 M

′
2)

(S-App)
M ⇒s M

′

〈M〉 ⇒s 〈M ′〉
(S-Rt)

M ⇒s M
′

(Sk.M)⇒s (Sk.M ′)
(S-St)

M ⇒s M
′

(futureM)⇒s (futureM ′)
(S-Ft)

M ⇒s M
′ S ⇒ S′

〈flet (p M) S〉 ⇒s 〈flet (p M ′) S′〉
(S-Flet)
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The binary relation ⇒s is overloaded for terms and evaluation contexts; when the left-hand side is a term, so is the
right-hand side, and ⇒s becomes a binary relation over terms. When the left-hand side is an evaluation context (in
particular, it contains one hole), so is the right-hand side, and it becomes a binary relation over evaluation contexts. While
the definition allows other expressions (such as the one with two holes), we will not use (and be concerned with) such
cases.

Note that the binary relation ⇒s allows actual transitions occurring in flet-terms only, as indicated by the second
assumption S ⇒ S′ of the rule (S-Flet).

Def 5.9 (⇒s : Auxiliary parallel transition rules for stores).

Vi ⇒s V
′
i (1 ≤ i ≤ n)

{b1 7→ V1, · · · , bn 7→ Vn} ⇒s {b1 7→ V ′
1 , · · · , bn 7→ V ′

n}
(S-Store)

If [〈θ, M〉]⇒ [〈θ′, M ′〉] and the last rule which is used to derive the relation is other than (Spec), the transition is called
mandatory and otherwise called speculative.

5.4.2.2 The Definition of Maximum Parallel Transitions

In this subsection, we will define three functions: a maximum parallel transition (−)? on states of AM-PFSR, an auxiliary
parallel transition (−)# on terms, evaluation contexts and stores of AM-PFSR, and another auxiliary parallel transition
(−)◦ on specific terms of AM-PFSR.

Wile several states or terms can be matched to one or more clauses in the definition of maximum parallel transition,
we define that the upper clause is chosen preferentially.

Def 5.10 ((−)? : Maximum parallel reduction for states).

[〈θ, E[R]〉]? = [〈θ#, E#[R◦]〉] (if R◦ is defined for the R)

[〈θ, E[(make V )]〉]? = [〈θ# ∪ {b 7→ V #}, E#[b]〉] (where b fresh)

[〈θ ∪ {b 7→ V1}, E[((set! b) V )]〉]? = [〈θ# ∪ {b 7→ V #}, E#[void]〉]
[〈θ ∪ {b 7→ V }, E[(deref b)]〉]? = [〈θ# ∪ {b 7→ V #}, E#[V #]〉]

[〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉]? = [〈θ# ∪ (θ2{p := V #}), E#[M2{p := V #}]〉]
[〈θ2, M2〉] = [〈θ1, M1〉]? and Dom(θ#) ∩ Dom(θ2) = ∅

[〈θ, M〉]? = [〈θ#, M#〉] (otherwise)

We note that we used (−)? for the inner state at the definition of flet term.

Def 5.11 ((−)◦ : Auxiliary parallel transition for specific terms).

((λx.M) V )
◦
=M#{x := V #}

〈V 〉◦ = V #

F [(Sk.M)]
◦
= 〈M#{k := (λv.F#[v])}〉 (v fresh)

F [(futureM)]
◦
= 〈flet (p M#) [〈∅, F#[p]〉]〉 (p fresh)

Def 5.12 ((−)# : Auxiliary parallel transition for terms and evaluation context).

v# = v (v = x, c, b, p,�の時)

(λx.M)
#
= (λx.M#)

(M N)
#
= (M# N#)

〈M〉# = 〈M#〉

(Sk.M)
#
= (Sk.M#)

〈flet (p M) S〉# = 〈flet (p M#) S?〉

(futureM)
#
= (futureM#)
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Def 5.13 ((−)# : Auxiliary transition for stores).

{b1 7→ V1, · · · , bn 7→ Vn}# = {b1 7→ V1
#, · · · , bn 7→ Vn

#}

M# only affects to flet terms like the (original) (spec) transition. We note that (−)# for a flet term uses S? for
the inner state other than S#.

5.4.2.3 The proof of Confluence

The key lemma to prove the confluence is Lemma 5.11. To prove that, we have to prove other auxiliary lemmas.
First we will show the key lemma.

Lemma 5.7. We assume that [〈θ1, M1〉]⇒ [〈θ2, M2〉], then we have the following.

(1) If E1 ⇒s E2, [〈θ1, E1[M1]〉]⇒ [〈θ2, E2[M2]〉].

(2) Let x denote both (usual) variables and communication variables. If V1 ⇒s V2, [〈θ1{x := V1}, M1{x := V1}〉]⇒
[〈θ2{x := V2}, M2{x := V2}〉].

(3) If θ′1 ⇒s θ
′
2 and Dom(θ2) ∩ Dom(θ′2) = ∅, [〈θ1 ∪ θ′1, M1〉]⇒ [〈θ2 ∪ θ′2, M2〉].

�

To prove Lemma 5.7 (1), we need the following Lemma 5.8.

Lemma 5.8. We assume that [〈θ1, M1〉]⇒ [〈θ2, M2〉]. Then we have the following.

(1) If N1 ⇒s N2, [〈θ1, (M1 N1)〉]⇒ [〈θ2, (M2 N2)〉].

(2) If V1 ⇒s V2, [〈θ1, (V1 M1)〉]⇒ [〈θ2, (V2 M2)〉].

(3) [〈θ1, 〈M1〉〉]⇒ [〈θ2, 〈M2〉〉].

(4) If S1 ⇒ S2, [〈θ1, 〈flet (p M1) S1〉〉]⇒ [〈θ2, 〈flet (p M2) S2〉〉].

�

Proof . For all sub lemmas, we will prove by case analysis on the rule which derive the [〈θ1, M1〉]⇒ [〈θ2, M2〉].

(1) In the following, we will denote the [〈θ1, M1〉] as S1, and [〈θ2, M2〉] as S2.

(App)
By the assumption, M1 ≡ E1[((λx.M

′
1) V1)] and M2 ≡ E2[M

′
2{x := V2}] where E1 ⇒s E2, M ′

1 ⇒s

M ′
2 and V1 ⇒s V2. By the assumption and the definition of ⇒s for the evaluation contexts, we have that

(E1 N1)⇒s (E2 N2). Then, by the definition of⇒, we have the following.

[〈θ1, (M1 N1)〉] ≡ [〈θ1, (E1[((λx.M
′
1) V1)] N1)〉]⇒ [〈θ2, (E2[M

′
2{x := V2}] N2)〉] ≡ [〈θ2, (M2 N2)〉]

(RtVl)
By the assumption, M1 ≡ E1[〈V1〉] and M2 ≡ E2[V2] where E1 ⇒s E2 and V1 ⇒s V2. By the assumption
and the definition of⇒s for the evaluation contexts, we have that (E1 N1) ⇒s (E2 N2). Then, by definition
of⇒, we have the following.

[〈θ1, (M1 N1)〉] ≡ [〈θ1, (E1[〈V1〉] N1)〉]⇒ [〈θ2, (E2[V2] N2)〉] ≡ [〈θ2, (M2 N2)〉]

(RtSt)
By the assumption, M1 ≡ E1[F1[(Sk.M ′

1)]] and M2 ≡ E2[〈M ′
2{k := (λv.F2[v])}〉] where E1 ⇒s E2,

F1 ⇒s F2 and M ′
1 ⇒s M

′
2. By the assumption and the definition of⇒s for the evaluation contexts, we have

that (E1 N1)⇒s (E2 N2). Then, by the definition of⇒, we have the following.

[〈θ1, (M1 N1)〉] ≡ [〈θ1, (E1[F1[(Sk.M ′
1)]] N1)〉]⇒ [〈θ2, (E2[〈M ′

2{k := (λv.F2[v])}〉] N2)〉] ≡ [〈θ2, (M2 N2)〉]
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(Make)
By the assumption, S1 ≡ [〈θ1, E1[(make V1)]〉] and S2 ≡ [〈θ′2 ∪ {b 7→ V2}, E2[b]〉] where θ1 ⇒s θ′2,
E1 ⇒s E2, V1 ⇒s V2 and b is a fresh box variable. By the assumption and the definition of ⇒s for the
evaluation contexts, we have that (E1 N1)⇒s (E2 N2). Then, by the definition of⇒, we have the following.

[〈θ1, (M1 N1)〉] ≡ [〈θ1, (E1[(make V1)] N1)〉]⇒ [〈θ2 ∪ {b 7→ V2}, (E2[b] N2)〉] ≡ [〈θ2, (M2 N2)〉]

(Set)
By the assumption, S1 ≡ [〈θ′1 ∪ {b 7→ V ′

1}, E1[((set! b) V1)]〉] and S2 ≡ [〈θ′2 ∪ {b 7→ V2}, E2[void]〉] where
θ′1 ⇒s θ

′
2, E1 ⇒s E2 and V1 ⇒s V2. By the assumption and the definition of⇒s for the evaluation contexts,

we have that (E1 N1)⇒s (E2 N2). Then, by definition of⇒, we have the following.

[〈θ1, (M1 N1)〉] ≡ [〈θ′1 ∪ {b 7→ V ′
1}, (E1[((set! b) V1)] N1)〉]

⇒ [〈θ′2 ∪ {b 7→ V2}, (E2[void] N2)〉] ≡ [〈θ2, (M2 N2)〉]

(Deref )
By the assumption, S1 ≡ [〈θ′1 ∪ {b 7→ V1}, E1[(deref b)]〉] and S2 ≡ [〈θ′2 ∪ {b 7→ V2}, E2[V2]〉] where
θ′1 ⇒s θ

′
2, E1 ⇒s E2 and V1 ⇒s V2. By the assumption and the definition of⇒s for the evaluation contexts,

we have that (E1 N1)⇒s (E2 N2). Then, by the definition of⇒, we have the following.

[〈θ1, (M1 N1)〉] ≡ [〈θ′1 ∪ {b 7→ V1}, (E1[(deref b)] N1)〉]
⇒ [〈θ′2 ∪ {b 7→ V2}, (E2[V2] N2)〉] ≡ [〈θ2, (M2 N2)〉]

(Fork)
By the assumption, M1 ≡ E1[F1[(future M ′

1)]] and M2 ≡ E2[〈flet (p M ′
2) [〈∅, F2[p]〉]〉] where E1 ⇒s

E2, F1 ⇒s F2 and M ′
1 ⇒s M

′
2. By the assumption and the definition of⇒s for the evaluation contexts, we

have that (E1 N1)⇒s (E2 N2). Then, by the definition of⇒, we have the following.

[〈θ1, (M1 N1)〉] ≡ [〈θ1, (E1[F1[(futureM
′
1)]] N1)〉]

⇒ [〈θ2, (E2[〈flet (p M ′
2) [〈∅, F2[p]〉]〉] N2)〉] ≡ [〈θ2, (M2 N2)〉]

(Join)
By the assumption, S1 ≡ [〈θ1, E1[〈flet (p V1) [〈θ′1, M ′

1〉]〉]〉] and S2 ≡ [〈θ2 ∪ (θ′2{p := V2}), E2[M
′
2{p :=

V2}]〉] where E1 ⇒s E2, V1 ⇒s V2, [〈θ′1, M ′
1〉]⇒ [〈θ′2, M ′

2〉] and Dom(θ1) ∩ Dom(θ′1) = ∅. By the assumption
and the definition of ⇒s for the evaluation contexts, we have that (E1 N1) ⇒s (E2 N2). Then, by the
definition of⇒, we have the following.

[〈θ1, (M1 N1)〉] ≡ [〈θ1, (E1[〈flet (p V1) [〈θ′1, M ′
1〉]〉] N1)〉]

⇒ [〈θ2 ∪ (θ′2{p := V2}), (E2[M
′
2{p := V2}] N2)〉] ≡ [〈θ2, (M2 N2)〉]

(Spec)
Here we have θ1 ⇒s θ2 and M1 ⇒s M2. By the assumption and the definition of ⇒s for the evaluation
contexts, we have that (E1 N1)⇒s (E2 N2).

[〈θ1, (M1 N1)〉]⇒ [〈θ2, (M2 N2)〉]

(2) Since we can prove this sublemma almost same as the above, we omit this proof.

(3) The proof of this sublemma is also same as the (1) so we omit.

(4) flet context can be an evaluation context. Then this sublemma can be proved almost same as the (1).

�

Proof (Lemma 5.7 (1)). We prove Lemma 5.7 (1) by the induction on the structure of E1. We use the other definition of
E such as E ::= � | (E M) | (V E) | 〈E〉 | 〈flet (p E) S〉 in order to simplify this proof. As we described in the
previous section, the two definitions are same and it can be shown easily.
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E1 ≡ �
By the definition of⇒, we have E2 ≡ �. Then we immediately obtain the following.

[〈θ1, E1[M1]〉] ≡ [〈θ1, M1〉]
⇒ [〈θ2, M2〉] (by the assumption)

≡ [〈θ2, E2[M2]〉]

E1 ≡ (E M)

By the assumption E1 ⇒ E2, there exist some E′ and M ′ such that E2 ≡ (E′ M ′), E ⇒s E
′ and M ⇒s M

′. By
I.H., [〈θ1, E[M1]〉]⇒ [〈θ2, E′[M2]〉]. Therefore, by Lemma 5.8 (1), we have the following.

[〈θ1, E1[M1]〉] ≡ [〈θ1, (E[M1]M)〉]
⇒ [〈θ2, (E′[M2]M

′)〉]
≡ [〈θ2, E2[M2]〉]

E1 ≡ (V E)

By the assumption E1 ⇒ E2, there exist some E′ and V ′ such that E2 ≡ (V ′ E′), E ⇒s E
′ and V ⇒s V

′. By
I.H., [〈θ1, E[M1]〉]⇒ [〈θ2, E′[M2]〉]. Therefore, by Lemma 5.8 (2), we have the following.

[〈θ1, E1[M1]〉] ≡ [〈θ1, (V E[M1])〉]
⇒ [〈θ2, (V ′ E′[M2])〉]
≡ [〈θ2, E2[M2]〉]

E1 ≡ 〈E〉
By the assumption E1 ⇒ E2, there exists some E′ such that E2 ≡ 〈E′〉 and E ⇒s E

′. By I.H., [〈θ1, E[M1]〉] ⇒
[〈θ2, E′[M2]〉]. Therefore, by Lemma 5.8 (3), we have the following.

[〈θ1, E1[M1]〉] ≡ [〈θ1, 〈E[M1]〉〉]
⇒ [〈θ2, 〈E′[M2]〉〉]
≡ [〈θ2, E2[M2]〉]

E1 ≡ 〈flet (p E) S〉
By the assumptionE1 ⇒ E2, there exist someE′ and S′ such thatE2 ≡ 〈flet (p E′) S′〉,E ⇒s E

′ and S ⇒ S′.
By I.H., [〈θ1, E[M1]〉]⇒ [〈θ2, E′[M2]〉]. Therefore, by Lemma 5.8 (4), we have the following.

[〈θ1, E1[M1]〉] ≡ [〈θ1, 〈flet (p E[M1]) S〉〉]
⇒ [〈θ2, 〈flet (p E′[M2]) S

′〉〉]
≡ [〈θ2, E2[M2]〉]

�

Next we will prove Lemma 5.7. We can prove it by simultaneous induction with following Lemma 5.9.

Lemma 5.9. When V1 ⇒s V2, we have

(1) if M1 ⇒s M2 then M1{x := V1} ⇒s M2{x := V2},

(2) if E1 ⇒s E2 then E1{x := V1} ⇒s E2{x := V2},

(3) if θ1 ⇒s θ2 then θ1{x := V1} ⇒s θ2{x := V2}.

�

Proof (Lemma 5.7 (2) and Lemma 5.9). As we described above, we prove four lemmas simultaneously.
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Lemma 5.7 (2)
We will analyze on the rule which derived the relation [〈θ1, M1〉]⇒ [〈θ2, M2〉].

(App)
By the assumption, we have that [〈θ1, M1〉] ≡ [〈θ1, E[((λy.M) V )]〉] and [〈θ2, M2〉] ≡ [〈θ2, E′[M ′{y := V ′}]〉]
where θ1 ⇒s θ2, E ⇒s E

′, M ⇒s M
′ and V ⇒s V

′. And [〈θ1, M1〉]{x := V1} ≡ [〈θ1{x := V1}, E{x :=
V1}[((λy.M){x := V1} V {x := V1})]〉]. Then, we will divide this case into two cases: whether the variable
y is equal to x or not.

y = x
By the definition of substitution, (λy.M){x := V1} ≡ (λy.M). By I.H. of Lemma 5.9, θ1{x := V1} ⇒s

θ2{x := V2}, E{x := V1} ⇒s E
′{x := V2} and V {x := V1} ⇒s V

′{x := V2}. Then we have the
following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1, E[((λy.M) V )]〉]{x := V1}
≡ [〈θ1{x := V1}, E{x := V1}[((λy.M) V {x := V1})]〉]
⇒ [〈θ2{x := V2}, E{x := V2}[M ′{y := V ′{x := V2}}]〉]
≡ [〈θ2, M ′{y := V ′}〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

y 6= x
By I.H. of Lemma 5.9, θ1{x := V1} ⇒s θ2{x := V2}, E{x := V1} ⇒s E

′{x := V2}, M{x := V1} ⇒s

M ′{x := V2} and V {x := V1} ⇒s V
′{x := V2}. Then we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1, E[((λy.M) V )]〉]{x := V1}
≡ [〈θ1{x := V1}, E{x := V1}[((λy.M{x := V1}) V {x := V1})]〉]
⇒ [〈θ2{x := V2}, E{x := V2}[(M ′{x := V2}){y := V ′{x := V2}}]〉]
≡ [〈θ2, M ′{y := V ′}〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

(RtVl)
By the assumption, we have that [〈θ1, M1〉] ≡ [〈θ1, E[〈V 〉]〉] and [〈θ2, M2〉] ≡ [〈θ1, E[V ]〉] where θ1 ⇒s θ2,
E ⇒s E

′, and V ⇒s V
′. And [〈θ1, M1〉]{x := V1} ≡ [〈θ1{x := V1}, E{x := V1}[〈V {x := V1}〉]〉]. By I.H.

of Lemma 5.9, θ1{x := V1} ⇒s θ2{x := V2}, E{x := V1} ⇒s E
′{x := V2} and V {x := V1} ⇒s V

′{x :=
V2}. Then we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1, E[〈V 〉]〉]{x := V1}
≡ [〈θ1{x := V1}, E{x := V1}[〈V {x := V1}〉]〉]
⇒ [〈θ2{x := V2}, E{x := V2}[V {x := V2}]〉]
≡ [〈θ2, M ′〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

(RtSt)
By the assumption, we have that [〈θ1, M1〉] ≡ [〈θ1, E[F [(Sk.M)]]〉] and [〈θ2, M2〉] ≡ [〈θ2, E′[〈M ′{k :=
(λv.F ′[v])}〉]〉] where θ1 ⇒s θ2, E ⇒s E

′, F ⇒s F
′ and M ⇒s M

′. And [〈θ1, M1〉]{x := V1} ≡ [〈θ1{x :=
V1}, E{x := V1}[F{x := V1}[(Sk.M){x := V1}]]〉]. Then, we will divide this case into two cases: whether
the variable k is equal to x or not.

k = x
By the definition of substitution, (Sk.M){x := V1} ≡ (Sk.M). By I.H. of Lemma 5.9, θ1{x := V1} ⇒s

θ2{x := V2}, E{x := V1} ⇒s E
′{x := V2}, F{x := V1} ⇒s F

′{x := V2} and M{x := V1} ⇒s

M ′{x := V2}. Then we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1, E[F [(Sk.M)]]〉]{x := V1}
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≡ [〈θ1{x := V1}, E{x := V1}[F{x := V1}[(Sk.M)]]〉]
⇒ [〈θ2{x := V2}, E{x := V2}[〈M ′{k := (λv.F ′{x := V2}[v])}〉]〉]
≡ [〈θ2, E′[〈M ′{k := (λv.F ′[v])}〉]〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

k 6= x
By the definition of substitution, (Sk.M){x := V1} ≡ (Sk.M{x := V1}). By I.H. of Lemma 5.9,
θ1{x := V1} ⇒s θ2{x := V2}, E{x := V1} ⇒s E

′{x := V2}, F{x := V1} ⇒s F
′{x := V2},

M{x := V1} ⇒s M
′{x := V2} and V {x := V1} ⇒s V

′{x := V2}. Then we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1, E[F [(Sk.M)]]〉]{x := V1}
≡ [〈θ1{x := V1}, E{x := V1}[F{x := V1}[(Sk.M{x := V1})]]〉]
⇒ [〈θ2{x := V2}, E{x := V2}[〈(M ′{x := V2}){k := (λv.F ′{x := V2}[v])}〉]〉]
≡ [〈θ2, E′[〈M ′{k := (λv.F ′{x := V2}[v])}〉]〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

(Make)
By the assumption, we have that [〈θ1, M1〉] ≡ [〈θ1, E[(make V )]〉] and [〈θ2, M2〉] ≡ [〈θ2 ∪ {b 7→ V ′}, E′[b]〉]
where θ1 ⇒s θ2, E ⇒s E

′, and V ⇒s V
′ and b is a fresh fresh box variable. And [〈θ1, M1〉]{x := V1} ≡

[〈θ1{x := V1}, E{x := V1}[(make V {x := V1})]〉]. By I.H. of Lemma 5.9, θ1{x := V1} ⇒s θ2{x := V2},
E{x := V1} ⇒s E

′{x := V2} and V {x := V1} ⇒s V
′{x := V2}. Then we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1, E[(make V )]〉]{x := V1}
≡ [〈θ1{x := V1}, E{x := V1}[(make V {x := V1})]〉]
⇒ [〈θ2{x := V2} ∪ {b 7→ (V ′{x := V2})}, E{x := V2}[b]〉]
≡ [〈θ2 ∪ {b 7→ V ′}, E′[b]〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

(Set)
By the assumption, we have that [〈θ1, M1〉] ≡ [〈θ′1∪{b 7→W}, E[((set! b) V )]〉] and [〈θ2, M2〉] ≡ [〈θ′2∪{b 7→
V ′}, E′[void]〉] where W is a value and θ′1 ⇒s θ

′
2, E ⇒s E

′ and V ⇒s V
′. And [〈θ1, M1〉]{x := V1} ≡

[〈θ′1{x := V1} ∪ {b 7→ W{x := V1}}, E{x := V1}[((set! b) V {x := V1})]〉]. By I.H. of Lemma 5.9,
θ′1{x := V1} ⇒s θ

′
2{x := V2}, E{x := V1} ⇒s E

′{x := V2} and V {x := V1} ⇒s V
′{x := V2}. We

note that we do not have care about the value W since it is removed after the transition. Then we have the
following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ′1 ∪ {b 7→W}, E[((set! b) V )]〉]{x := V1}
≡ [〈θ′1{x := V1} ∪ {b 7→W{x := V1}}, E{x := V1}[((set! b) V {x := V1})]〉]
⇒ [〈θ′2{x := V2} ∪ {b 7→ (V ′{x := V2})}, E{x := V2}[void]〉]
≡ [〈θ′2 ∪ {b 7→ V ′}, E′[void]〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

(Deref )
By the assumption, we have that [〈θ1, M1〉] ≡ [〈θ′1 ∪ {b 7→ V }, E[(deref b)]〉] and [〈θ2, M2〉] ≡ [〈θ′2 ∪ {b 7→
V ′}, E′[V ′]〉] where θ′1 ⇒s θ

′
2, E ⇒s E

′ and V ⇒s V
′. And [〈θ1, M1〉]{x := V1} ≡ [〈θ′1{x := V1} ∪

{b 7→ V {x := V1}}, E{x := V1}[(deref b)]〉]. By I.H. of Lemma 5.9, θ′1{x := V1} ⇒s θ
′
2{x := V2},

E{x := V1} ⇒s E
′{x := V2} and V {x := V1} ⇒s V

′{x := V2}. Then we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ′1 ∪ {b 7→ V }, E[(deref b)]〉]{x := V1}
≡ [〈θ′1{x := V1} ∪ {b 7→ V {x := V1}}, E{x := V1}[(deref b)]〉]
⇒ [〈θ′2{x := V2} ∪ {b 7→ (V ′{x := V2})}, E{x := V2}[V ′{x := V2}]〉]
≡ [〈θ′2 ∪ {b 7→ V ′}, E′[V ′]〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}
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(Fork)
By the assumption, we have that [〈θ1, M1〉] ≡ [〈θ1, E[(futureM)]〉] and [〈θ2, M2〉] ≡ [〈θ2, E′[〈flet (p M ′) [〈∅, F ′[p]〉]〉]〉]
where θ1 ⇒s θ2, E ⇒s E

′, F ⇒s F
′, M ⇒s M

′. And [〈θ1, M1〉]{x := V1} ≡ [〈θ1{x := V1}, E{x :=
V1}[F{x := V1}[(future M{x := V1})]]〉]. By I.H. of Lemma 5.9, θ1{x := V1} ⇒s θ2{x := V2},
E{x := V1} ⇒s E

′{x := V2}, F{x := V1} ⇒s F
′{x := V2} and M{x := V1} ⇒s M

′{x := V2}. Then
we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1, E[F [(futureM)]]〉]{x := V1}
≡ [〈θ1{x := V1}, E{x := V1}[F{x := V1}[(futureM{x := V1})]]〉]
⇒ [〈θ2{x := V2}, E{x := V2}[〈flet (p M ′{x := V2}) [〈∅, F ′{x := V2}[p]〉]〉]〉]
≡ [〈θ2, E′[〈flet (p M ′) [〈∅, F ′[p]〉]〉]〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

(Join)
By the assumption, we have that [〈θ1, M1〉] ≡ [〈θ1, E[〈flet (p V ) [〈θ, M〉]〉]〉] and [〈θ2, M2〉] ≡ [〈θ′1 ∪
(θ′{p := V ′}), E′[M ′{x := V ′}]〉] where θ1 ⇒s θ

′
1, E ⇒s E

′, V ⇒s V
′ and [〈θ, M〉] ⇒ [〈θ′, M ′〉]. And

[〈θ1, M1〉]{x := V1} ≡ [〈θ1{x := V1}, E{x := V1}[〈flet (p V {x := V1}) [〈θ, M〉]{x := V1}〉]〉]. By I.H. of
this lemma, [〈θ, M〉]{x := V1} ⇒ [〈θ′, M ′〉]{x := V1}, and by I.H. of Lemma 5.9, θ1{x := V1} ⇒s θ

′
1{x :=

V2}, E{x := V1} ⇒s E
′{x := V2} and V {x := V1} ⇒s V

′{x := V2}. Then we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1, E[〈flet (p V ) [〈θ, M〉]〉]〉]{x := V1}
≡ [〈θ1{x := V1}, E{x := V1}[〈flet (p V {x := V1}) [〈θ, M〉]{x := V1}〉]〉]
⇒ [〈θ′1{x := V2} ∪ ((θ′{x := V2}){p := V ′{x := V2}}),

E{x := V2}[(M ′{x := V2}){p := V ′{x := V2}}]〉]
≡ [〈θ′1 ∪ (θ′{p := V ′}), E′[M ′{p := V ′}]〉]{x := V2}
≡ [〈θ2, M2〉]{x := V2}

(Spec)
By the assumption, we have that θ1 ⇒s θ2 andM1 ⇒s M2. By I.H. of Lemma 5.9, θ1{x := V1} ⇒s θ

′
1{x :=

V2} and M{x := V1} ⇒s M
′{x := V2}. Then we have the following.

[〈θ1, M1〉]{x := V1} ≡ [〈θ1{x := V1}, M1{x := V1}〉]
⇒ [〈θ2{x := V2}, M2{x := V2}〉]
≡ [〈θ2, M2〉]{x := V2}

Lemma 5.9 (1)
We will prove by case analysis on the rule which derived the relation M1 ⇒s M2.

(S-Val)
The case that M1 is a constant value and box variable is trivial. Then we will only consider the case that M1

is a variable, and we denote the variable y. (We note that the case that M1 is a communication variable can
be proved almost same as that of the variable.) We must divide that case if y is equal to x or not.

y = x
We have the following.

M1{x := V1} ≡ x{x := V1}
≡ V1
⇒s V2

M2{x := V2} is V2 so we have M1{x := V1} ⇒s M2{x := V2}.
y 6= x

We have the following.

M1{x := V1} ≡ y{x := V1}
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≡ y
≡ y{x := V2}
≡M2{x := V2}

(S-Lam)
By the assumption, we have M1 ≡ (λy.M) and M2 ≡ (λy.M ′) where M ⇒s M

′. Then we divide this case
into two sub cases: whether y equals to x or not.

y = x
By the definition of substitution, (λy.M){x := V1} ≡ (λy.M). Then we have the following.

M1{x := V1} ≡ (λx.M){x := V1}
≡ (λx.M)

⇒s (λx.M
′)

≡ (λx.M ′){x := V2}
≡M2{x := V2}

y 6= x
By I.H. of this lemma, M{x := V1} ⇒s M

′{x := V2}. Then we have the following.

M1{x := V1} ≡ (λy.M){x := V1}
≡ (λy.M{x := V1})
⇒s (λy.M

′{x := V2})
≡ (λy.M ′){x := V2}
≡M2{x := V2}

(S-App)
By the assumption, we have M1 ≡ (N1 N2) and M2 ≡ (N ′

1 N
′
2) where N1 ⇒s N

′
1 and N2 ⇒s N

′
2. By I.H.

of this lemma, N1{x := V1} ⇒s N
′
1{x := V2} and N2{x := V1} ⇒s N

′
2{x := V2}. Then we have the

following.

M1{x := V1} ≡ (N1 N2){x := V1}
≡ (N1{x := V1} N2{x := V1})
⇒s (N

′
1{x := V2} N ′

2{x := V2})
≡ (N ′

1 N
′
2){x := V2}

≡M2{x := V2}

(S-Rt)
By the assumption, we have M1 ≡ 〈M〉 and M2 ≡ 〈M ′〉 where M ⇒s M

′. By I.H. of this lemma, M{x :=
V1} ⇒s M

′{x := V2}. Then we have the following.

M1{x := V1} ≡ 〈M〉{x := V1}
≡ 〈M{x := V1}〉
⇒s 〈M ′{x := V2}〉
≡ 〈M ′〉{x := V2}
≡M2{x := V2}

(S-St)
By the assumption, we have M1 ≡ (Sk.M) and M2 ≡ (Sk.M ′) where M ⇒s M

′. Then we divide this case
into two cases: whether k is equal to x or not.
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k = x
By the definition of substitution, (Sk.M){x := V1} ≡ (Sk.M). Then we have the following.

M1{x := V1} ≡ (Sk.M){x := V1}
≡ (Sk.M)

⇒s (Sk.M ′)

≡ (Sk.M ′){x := V2}
≡M2{x := V2}

k 6= x
By I.H. of this lemma, M{x := V1} ⇒s M

′{x := V2}. Then we have the following.

M1{x := V1} ≡ (Sk.M){x := V1}
≡ (Sk.M{x := V1})
⇒s (Sk.M ′{x := V2})
≡ (Sk.M ′){x := V2}
≡M2{x := V2}

(S-Ft)
By the assumption, we have M1 ≡ (future M) and M2 ≡ (future M ′) where M ⇒s M

′. By I.H. of
this lemma, M{x := V1} ⇒s M

′{x := V2}. Then we have the following.

M1{x := V1} ≡ (futureM){x := V1}
≡ (futureM{x := V1})
⇒s (futureM

′{x := V2})
≡ (futureM ′){x := V2}
≡M2{x := V2}

(S-Flet)
By the assumption, we have M1 ≡ 〈flet (p M) S〉 and M2 ≡ 〈flet (p M ′) S′〉 where M ⇒s M

′ and
S ⇒ S′. Then we divide this case into two sub cases: whether p is equal to x or not.

p = x
By the definition of substitution, 〈flet (p M) S〉{x := V1} ≡ 〈flet (p M{x := V1}) S〉. Then we
have the following.

M1{x := V1} ≡ 〈flet (p M) S〉{x := V1}
≡ 〈flet (p M{x := V1}) S〉
⇒s 〈flet (p M ′{x := V2}) S′〉
≡ 〈flet (p M ′) S′〉{x := V2}
≡M2{x := V2}

p 6= x
By I.H. of this lemma, M{x := V1} ⇒s M

′{x := V2} and by I.H. of Lemma 5.7 (2), S{x := V1} ⇒
S′{x := V2}. Then we have the following.

M1{x := V1} ≡ 〈flet (p M) S〉{x := V1}
≡ 〈flet (p M{x := V1}) S{x := V1}〉
⇒s 〈flet (p M ′{x := V2}) S′{x := V2}〉
≡ 〈flet (p M ′) S′〉{x := V2}
≡M2{x := V2}
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Lemma 5.9 (2)
Since this can be proved almost same as the above one, we omit this proof.

Lemma 5.9 (3)
Let θ1 be {b1 7→ W1, · · · , bn 7→ Wn} and θ2 be {b1 7→ W ′

1, · · · , bn 7→ W ′
n} where each Wi is a value and

Wi ⇒s W
′
i (1 ≤ i ≤ n). Then we have that θ1{x := V1} ≡ {b1 7→ W1{x := V1}, · · · , bn 7→ Wn{x := V1}}. By

I.H. of Lemma 5.9 (1), we have Wi{x := V1} ⇒s W
′
i{x := V2} for each i. Then we have the following.

θ1{x := V1} ≡ {b1 7→W1, · · · , bn 7→Wn}{x := V1}
≡ {b1 7→W1{x := V1}, · · · , bn 7→Wn{x := V1}}
⇒s {b1 7→W ′

1{x := V2}, · · · , bn 7→W ′
n{x := V2}}

≡ {b1 7→W ′
1, · · · , bn 7→W ′

n}{x := V2}
≡M2{x := V2}

�

We have to prove the next Lemma 5.10 in order to prove Lemma 5.7 (3).

Lemma 5.10. If θ1 ⇒s θ
′
1 and θ2⇒s θ

′
2 then θ1 ∪ θ2 ⇒s θ

′
1 ∪ θ′2. �

Proof . Let θ2 be {b2,1 7→ V2,1, · · · , b2,n 7→ V2,n} and θ′2 be {b2,1 7→ V ′
2,1, · · · , b2,n 7→ V ′

2,n}. Then, by the definition of
⇒s, we have

θ1 ∪ {b2,1 7→ V2,1, · · · , b2,n 7→ V2,n} ⇒s θ
′
1 ∪ {b2,1 7→ V ′

2,1, · · · , b2,n 7→ V ′
2,n}

�

Proof (Lemma 5.7 (3)). We will prove this Lemma 5.7 (3) by induction: proof by case analysis on the rule which is
applied to derive the relation of [〈θ1, M1〉]⇒ [〈θ2, M2〉].

(App)
By the assumption, we have [〈θ1, M1〉] ≡ [〈θ1, E[((λx.M) V )]〉] and [〈θ2, M2〉] ≡ [〈θ2, E′[M ′{x := V ′}]〉] where
θ1 ⇒s θ2, E ⇒s E

′, M ⇒s M
′ and V ⇒s V

′. By Lemma 5.10, θ1 ∪ θ′1 ⇒s θ2 ∪ θ′2. Then we have the following.

[〈θ1 ∪ θ′1, M1〉] ≡ [〈θ1 ∪ θ′1, E[((λx.M) V )]〉]
⇒ [〈θ2 ∪ θ′2, E′[M ′{x := V ′}]〉]
≡ [〈θ2 ∪ θ′2, M2〉]

(RtVl)
By the assumption, we have [〈θ1, M1〉] ≡ [〈θ1, E[〈V 〉]〉] and [〈θ2, M2〉] ≡ [〈θ2, E′[V ′]〉] where θ1 ⇒s θ2, E ⇒s E

′

and V ⇒s V
′. By Lemma 5.10, θ1 ∪ θ′1 ⇒s θ2 ∪ θ′2. Then we have the following.

[〈θ1 ∪ θ′1, M1〉] ≡ [〈θ1 ∪ θ′1, E[〈V 〉]〉]
⇒ [〈θ2 ∪ θ′2, E′[V ′]〉]
≡ [〈θ2 ∪ θ′2, M2〉]

(RtSt)
By the assumption, we have [〈θ1, M1〉] ≡ [〈θ1, E[F [(Sk.M)]]〉] and [〈θ2, M2〉] ≡ [〈θ2, E′[〈M ′{k := (λv.F ′[v])}〉]〉]
where θ1 ⇒s θ2, E ⇒s E

′, F ⇒s F
′ and M ⇒s M

′. By Lemma 5.10, θ1 ∪ θ′1 ⇒s θ2 ∪ θ′2. Then we have the
following.

[〈θ1 ∪ θ′1, M1〉] ≡ [〈θ1 ∪ θ′1, E[F [(Sk.M)]]〉]
⇒ [〈θ2 ∪ θ′2, E′[〈M ′{k := (λv.F ′[v])}〉]〉]
≡ [〈θ2 ∪ θ′2, M2〉]
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(Make)
By the assumption, we have [〈θ1, M1〉] ≡ [〈θ1, E[(make V )]〉] and [〈θ2, M2〉] ≡ [〈θ3 ∪ {b 7→ V ′}, E′[b]〉] where
θ1 ⇒s θ3, E ⇒s E

′, V ⇒s V
′ and b is a fresh box variable. By Lemma 5.10, θ1 ∪ θ′1 ⇒s θ3 ∪ θ′2. Then we have

the following.

[〈θ1 ∪ θ′1, M1〉] ≡ [〈θ1 ∪ θ′1, E[(make V )]〉]
⇒ [〈θ2 ∪ θ′2 ∪ {b 7→ V ′}, E′[b]〉]
≡ [〈θ2 ∪ θ′2, M2〉]

(Set)
By the assumption, we have [〈θ1, M1〉] ≡ [〈θ3 ∪ {b 7→ W}, E[((set! b) V )]〉] and [〈θ2, M2〉] ≡ [〈θ4 ∪ {b 7→
V ′}, E′[void]〉] where θ3 ⇒s θ4, E ⇒s E

′ and V ⇒s V
′. By Lemma 5.10, θ3 ∪ θ′1 ⇒s θ4 ∪ θ′2. Then we have the

following.

[〈θ1 ∪ θ′1, M1〉] ≡ [〈θ3 ∪ {b 7→W} ∪ θ′1, E[((set! b) V )]〉]
⇒ [〈θ4 ∪ {b 7→ V ′} ∪ θ′2, E′[void]〉]
≡ [〈θ2 ∪ θ′2, M2〉]

(Deref)
By the assumption, we have [〈θ1, M1〉] ≡ [〈θ3∪{b 7→ V }, E[(deref b)]〉] and [〈θ2, M2〉] ≡ [〈θ4∪{b 7→ V ′}, E′[V ′]〉]
where θ3 ⇒s θ4, E ⇒s E

′ and V ⇒s V
′. By Lemma 5.10, θ3 ∪ θ′1 ⇒s θ4 ∪ θ′2. Then we have the following.

[〈θ1 ∪ θ′1, M1〉] ≡ [〈θ3 ∪ {b 7→ V } ∪ θ′1, E[(deref b)]〉]
⇒ [〈θ4 ∪ {b 7→ V ′} ∪ θ′2, E′[V ′]〉]
≡ [〈θ2 ∪ θ′2, M2〉]

(Fork)
By the assumption, we have [〈θ1, M1〉] ≡ [〈θ1, E[F [(futureM)]]〉] and [〈θ2, M2〉] ≡ [〈θ2, E′[〈flet (p M ′) [〈∅, F ′[p]〉]〉]〉]
where θ1 ⇒s θ2, E ⇒s E

′, F ⇒s F
′ and M ⇒s M

′. By Lemma 5.10, θ1 ∪ θ′1 ⇒s θ1 ∪ θ′2. Then we have the
following.

[〈θ1 ∪ θ′1, M1〉] ≡ [〈θ1 ∪ θ′1, E[F [(futureM)]]〉]
⇒ [〈θ2 ∪ θ′2, E′[〈flet (p M ′) [〈∅, F ′[p]〉]〉]〉]
≡ [〈θ2 ∪ θ′2, M2〉]

(Join)
By the assumption, we have [〈θ1, M1〉] ≡ [〈θ1, E[〈flet (p V ) [〈θ, M〉]〉]〉] and [〈θ2, M2〉] ≡ [〈θ2 ∪ (θ′{p :=
V ′}), E′[M ′{p := V ′}]〉] where θ1 ⇒s θ2, E ⇒s E

′, V ⇒s V
′ and [〈θ, M〉] ⇒ [〈θ′, M ′〉]. By Lemma 5.10,

θ1 ∪ θ′1 ⇒s θ2 ∪ θ′2. Then we have the following.

[〈θ1 ∪ θ′1, M1〉] ≡ [〈θ1 ∪ θ′1, E[〈flet (p V ) [〈θ, M〉]〉]〉]
⇒ θ2 ∪ (θ′{p := V ′}) ∪ θ′2E′[M ′{p := V ′}]
≡ [〈θ2 ∪ θ′2, M2〉]

(Spec)
By the assumption, θ1 ⇒s θ2 and M1 ⇒s M2. By Lemma 5.10, θ1 ∪ θ′1 ⇒s θ2 ∪ θ′2. Then we have the following.

[〈θ1 ∪ θ′1, M1〉]⇒ θ2 ∪ θ′2M2

�
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From here, we will show and prove the key, Lemma 5.11, to prove our confluence. Before we show the auxiliary
lemmas to prove Lemma 5.11, we will show Lemma 5.11.

Lemma 5.11. We have the following properties about states Si, stores θi, terms Mi and evaluation contexts Ei (where
i = 1, 2). In the following, we will use a metavariable Xi to denote one of a store, a term or an evaluation context.

(0) S1 ⇒ S1,

(0’) X1 ⇒s X1,

(1) if S1 → S2 then S1 ⇒ S2,

(2) if S1 ⇒ S2 then S1 →∗ S2,

(2’) if θ1 ⇒s θ2 and E1 ⇒s E2，M1 ⇒s M2 then [〈θ1, E1[M1]〉]→∗ [〈θ2, E2[M2]〉],

(3) S1 ⇒ S1
?,

(3’) X1 ⇒s X1
#,

(4) if S1 ⇒ S2 then S2 ⇒ S1
?,

(4’) if X1 ⇒s X2 then X2 ⇒s X1
#,

(5) if S1 ⇒ S2 is a mandatory other than (Join) transition then S2 ⇒ S1
? is a speculative transition,

(5’) if S1 ⇒ S2 is a speculative transition and S1 ⇒ S1
? is a mandatory one then S2 ⇒ S1

? is a mandatory transition.
�

�

First, we will show Lemma 5.11 (0) and (0’).

Proof (Lemma 5.11 (0), (0’)). Proof by simultaneous induction on the structure of S1 or X1.

Lemma 5.11 (0)
Let S1 be [〈θ, M〉]. By I.H. of (0’), we have θ ⇒s θ and M ⇒s M . Then by the rule (Spec), we have S1 ⇒ S2.

Lemma 5.11 (0’)
By case analysis on the structure of X1. Since the case that X1 is a store can be proved easily and the case that X1

is an evaluation context can be proved almost same as the case that X1 is a term, we will prove only the case that
X1 is a term.

X1 ≡ x, b, p, c
These cases are trivial so we omit this case.

X1 ≡ (λx.M)
By I.H., M ⇒s M . Then, by the rule (S-Lam), (λx.M)⇒s (λx.M).

X1 ≡ (M1 M2)
By I.H., M1 ⇒s M1 and M2 ⇒s M2. Then, by the rule (S-App), (M1 M2)⇒s (M1 M2).

X1 ≡ 〈M〉
By I.H., M ⇒s M . Then, by the rule (S-Rt), 〈M〉 ⇒s 〈M〉.

X1 ≡ (Sk.M)
By I.H., M ⇒s M . Then, by the rule (S-St), (Sk.M)⇒s (Sk.M).

X1 ≡ (futureM)
By I.H., M ⇒s M . Then, by the rule (S-Ft), (futureM)⇒s (futureM).

X1 ≡ 〈flet (p M) S〉
By I.H., M ⇒s M , and by I.H. of the (0), S ⇒ S. Then, by the rule (S-Flet), 〈flet (p M) S〉 ⇒s

〈flet (p M) S〉.
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�

Lemma 5.12. If M1 ⇒s M2 and E1 ⇒s E2 then E1[M1]⇒s E2[M2]. �

Proof . Prove by induction on the structure of E. We will use the other definition of E here (defined in the previous
section).

E1 ≡ �
E1[M1] ≡M1 and E2[M2] ≡M2. Then E1[M1] ≡M1 ⇒s M2 ≡ E2[M2].

E1 ≡ (E M)

By the definition of⇒s, there exist some E′ and M ′ such that E2 ≡ (E′ M ′), E ⇒s E
′ and M ⇒s M

′. By I.H.,
E[M1]⇒s E

′[M2]. Then, by the definition of the rule (S-App), (E[M1]M)⇒s (E
′[M2]M

′).

E1 ≡ (V E)

By the definition of⇒s, there exist some E′ and V ′ such that E2 ≡ (V ′ E′), E ⇒s E
′ and V ⇒s V

′. By I.H.,
E[M1]⇒s E

′[M2]. Then, by the definition of the rule (S-App), (V E[M1])⇒s (V
′ E′[M2]).

E1 ≡ 〈E〉
By the definition of ⇒s, there exists some E′ such that E2 ≡ 〈E′〉 and E ⇒s E

′. By I.H., E[M1] ⇒s E
′[M2].

Then, by the definition of the rule (S-Rt), 〈E[M1]〉 ⇒s 〈E′[M2]〉.

E1 ≡ 〈flet (p E) S〉
By the definition of ⇒s, there exist some E′ and S′ such that E2 ≡ 〈E′〉, E ⇒s E′ and S ⇒ S′. By I.H.,
E[M1]⇒s E

′[M2]. Then, by the definition of the rule (S-Flet), 〈flet (p E[M1]) S〉 ⇒s 〈flet (p E′[M2]) S
′〉.

�

Lemma 5.13. If S1 ⇒ S2 then C[〈flet (p M) S1〉]⇒s C[〈flet (p M) S2〉]. �

Proof . Proof by induction on the structure of C.

C ≡ �
By the rule (S-Flet), it is clear 〈flet (p M) S1〉 ⇒s 〈flet (p M) S2〉.

C ≡ (λx.C1)
By I.H.,C1[〈flet (p M) S1〉]⇒s C1[〈flet (p M) S2〉]. Then, by the rule (S-Lam), (λx.C1[〈flet (p M) S1〉])⇒s

(λx.C1[〈flet (p M) S2〉]).

C ≡ (C1 M1)
By I.H., C1[〈flet (p M) S1〉] ⇒s C1[〈flet (p M) S2〉]. By Lemma 5.11 (0’), M1 ⇒s M1. Then, by the rule
(S-App), (C1[〈flet (p M) S1〉]M1)⇒s (λx.C1[〈flet (p M) S2〉]).

C ≡ (M1 C1)
By I.H., C1[〈flet (p M) S1〉] ⇒s C1[〈flet (p M) S2〉]. By Lemma 5.11 (0’), M1 ⇒s M1. Then, by the rule
(S-App), (M1 C1[〈flet (p M) S1〉])⇒s (M1 C1[〈flet (p M) S2〉]).

C ≡ 〈C1〉
By I.H., C1[〈flet (p M) S1〉]⇒s C1[〈flet (p M) S2〉]. Then, by the rule (S-Rt), 〈C1[〈flet (p M) S1〉]〉 ⇒s

〈C1[〈flet (p M) S2〉]〉.

C ≡ (Sk.C1)
By I.H.,C1[〈flet (p M) S1〉]⇒s C1[〈flet (p M) S2〉]. Then, by the rule (S-St), (Sk.C1[〈flet (p M) S1〉])⇒s

(Sk.C1[〈flet (p M) S2〉]).

C ≡ (future C1)
By I.H.,C1[〈flet (p M) S1〉]⇒s C1[〈flet (p M) S2〉]. Then, by the rule (S-Ft), (future C1[〈flet (p M) S1〉])⇒s

(future C1[〈flet (p M) S2〉]).

C ≡ 〈flet (p C1) S〉
By I.H.,C1[〈flet (p M) S1〉]⇒s C1[〈flet (p M) S2〉]. Then, by the rule (S-Flet), (future C1[〈flet (p M) S1〉])⇒s

(future C1[〈flet (p M) S2〉]).
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C ≡ 〈flet (p M1) [〈θ, C1〉]〉
By I.H., C1[〈flet (p M) S1〉]⇒s C1[〈flet (p M) S2〉]. By the definition of⇒, [〈θ, C1[〈flet (p M) S1〉]〉]⇒
[〈θ, C1[〈flet (p M) S2〉]〉]. Then, by the rule (S-Flet), 〈flet (p M1) [〈θ, C1[〈flet (p M) S1〉]〉]〉 ⇒
〈flet (p M1) [〈θ, C1[〈flet (p M) S2〉]〉]〉.

�
By the above two lemmas, we can prove Lemma 5.11 (1).

Proof (Lemma 5.11 (1)). Proof by induction and we will show that by case analysis on the rule which is used to derived
the relation S1 → S2.

(app)
By the assumption, we have S1 ≡ [〈θ, E[((λx.M) V )]〉] and S2 ≡ [〈θ, E[M{x := V }]〉]. By Lemma 5.11 (0’),
θ ⇒s θ, E ⇒s E, M ⇒s M and V ⇒s V . Then, by the rule (App), [〈θ, E[((λx.M) V )]〉]⇒ [〈θ, E[M{x := V }]〉].

(rv)
By the assumption, we have S1 ≡ [〈θ, E[〈V 〉]〉] and S2 ≡ [〈θ, E[V ]〉]. By Lemma 5.11 (0’), θ ⇒s θ, E ⇒s E and
V ⇒s V . Then, by the rule (RtVl), [〈θ, E[〈V 〉]〉]⇒ [〈θ, E[V ]〉].

(rs)
By the assumption, we have S1 ≡ [〈θ, E[F [(Sk.M)]]〉] and S2 ≡ [〈θ, E[〈M{k := (λv.F [v])}〉]〉]. By Lemma 5.11
(0’), θ ⇒s θ, E ⇒s E, F ⇒s F and M ⇒s M . Then, by the rule (RtSt), [〈θ, E[F [(Sk.M)]]〉]⇒ [〈θ, E[〈M{k :=
(λv.F [v])}〉]〉].

(make)
By the assumption, we have S1 ≡ [〈θ, E[(make V )]〉] and S2 ≡ [〈θ ∪ {b 7→ V }, E[b]〉] where b is a fresh box
variable. By Lemma 5.11 (0’), θ ⇒s θ, E ⇒s E and V ⇒s V . Then, by the rule (Make), [〈θ, E[(make V )]〉] ⇒
[〈θ ∪ {b 7→ V }, E[b]〉].

(set)
By the assumption, we have S1 ≡ [〈θ ∪ {b 7→ V1}, E[((set! b) V )]〉] and S2 ≡ [〈θ ∪ {b 7→ V }, E[void]〉]. By
Lemma 5.11 (0’), θ ⇒s θ, E ⇒s E and V ⇒s V . Then, by the rule (Set), [〈θ ∪ {b 7→ V1}, E[((set! b) V )]〉]⇒
[〈θ ∪ {b 7→ V }, E[void]〉].

(deref )
By the assumption, we have S1 ≡ [〈θ ∪ {b 7→ V }, E[(deref b)]〉] and S2 ≡ [〈θ ∪ {b 7→ V }, E[V ]〉]. By Lemma
5.11 (0’), θ ⇒s θ, E ⇒s E and V ⇒s V . Then, by the rule (Deref), [〈θ ∪ {b 7→ V }, E[(deref b)]〉]⇒ [〈θ ∪ {b 7→
V }, E[V ]〉].

(fork)
By the assumption, we have S1 ≡ [〈θ, E[F [(future M)]]〉] and S2 ≡ [〈θ, E[〈flet (p M) [〈∅, F [p]〉]〉]〉] where p
is a fresh communication variable. By Lemma 5.11 (0’), θ ⇒s θ, E ⇒s E, F ⇒s F and M ⇒s M . Then, by the
rule (Fork), [〈θ, E[F [(futureM)]]〉]⇒ [〈θ, E[〈flet (p M) [〈∅, F [p]〉]〉]〉].

(join)
By the assumption, we have S1 ≡ [〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉] and S2 ≡ [〈θ∪(θ1{p := V }), E[M1{p := V }]〉].
By Lemma 5.11 (0’), θ ⇒s θ, E ⇒s E, and by Lemma 5.11 (0), [〈θ1, M1〉]⇒ [〈θ1, M1〉]. Then, by the rule (Join),
[〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉]⇒ [〈θ ∪ (θ1{p := V }), E[M1{p := V }]〉].

(spec)
By the assumption, we have S1 ≡ [〈θ, C[〈flet (p M) [〈θ1, M1〉]〉]〉] and S2 ≡ [〈θ, C[〈flet (p M) [〈θ2, M2〉]〉]〉]
where [〈θ1, M1〉]⇒ [〈θ2, M2〉]. By Lemma 5.11 (0’), θ ⇒s θ and by Lemma 5.13, C[〈flet (p M) [〈θ1, M1〉]〉]⇒s

C[〈flet (p M) [〈θ2, M2〉]〉]. Then, by the rule (Spec), [〈θ, C[〈flet (p M) [〈θ1, M1〉]〉]〉]⇒ [〈θ, C[〈flet (p M) [〈θ2, M2〉]〉]〉].

(store)
Let θ be θ′∪{b 7→ V }. Then, by the assumption, we have S1 ≡ [〈θ′∪{b 7→ V }, M〉] and S2 ≡ [〈θ′∪{b 7→ V ′}, M〉]
where [〈∅, V 〉]→ [〈∅, V ′〉]. By Lemma 5.11 (0’), we have θ′ ⇒s θ

′ andM ⇒s M . By I.H., [〈∅, V 〉]⇒ [〈∅, V ′〉]. Since
V is a value, we can find that [〈∅, V 〉]⇒ [〈∅, V ′〉] is a speculative transition, which means that V ⇒s V

′. Therefore,
we have that θ′ ∪ {b 7→ V } ⇒s θ

′ ∪ {b 7→ V ′} by the rule (S-Store). Then we have [〈θ′ ∪ {b 7→ V }, M〉] ⇒
[〈θ′ ∪ {b 7→ V ′}, M〉].
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In order to prove Lemma 5.11 (2) and (2’), we need the next lemma, Lemma 5.14. We can prove the Lemma 5.11 (2)
by simultaneous induction with the next lemma 5.14, and the Lemma 5.11 (2’) can be immediately derived from them.

Lemma 5.14. (1) If θ1 ⇒s θ2 then [〈θ1, M〉]→∗ [〈θ2, M〉] for arbitrary M .

(2) If M1 ⇒s M2 then [〈θ, C[M1]〉]→∗ [〈θ, C[M2]〉] for arbitrary θ and C.

(3) If E1 ⇒s E2 then [〈θ, E1[M ]〉]→∗ [〈θ, E2[M ]〉] for arbitrary θ and M .

Proof . Proof by simultaneous induction with the three lemmas.

Lemma 5.11 (2)
Proof by induction, and we will show the proof by case analysis on the rule which is used to derive the relation
S1 ⇒ S2.

(App)
By the assumption, S1 ≡ [〈θ1, E1[((λx.M1) V1)]〉] and S2 ≡ [〈θ2, E2[M2{x := V2}]〉] where θ1 ⇒s θ2,
E1 ⇒s E2, M1 ⇒s M2 and V1 ⇒s V2. Then, by I.H. of Lemma 5.14 (1), [〈θ1, M〉]→∗ [〈θ2, M〉] for arbitrary
M . Also, by I.H. of Lemma 5.14 (2), [〈θ, E1[((λx.M1) V1)]〉]→∗ [〈θ, E2[((λx.M2) V2)]〉] for any θ. Then we
have the following.

S1 ≡ [〈θ1, E1[((λx.M1) V1)]〉]
→∗ [〈θ2, E1[((λx.M1) V1)]〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2, E2[((λx.M2) V2)]〉] by I.H. of Lemma 5.14 (2)

→ [〈θ2, E2[M2{x := V2}]〉] by rule (app)

≡ S2

(RtVl)
By the assumption, S1 ≡ [〈θ1, E1[〈V1〉]〉] and S2 ≡ [〈θ2, E2[V2]〉] where θ1 ⇒s θ2, E1 ⇒s E2 and V1 ⇒s V2.
Then, by I.H. of Lemma 5.14 (1), [〈θ1, M〉] →∗ [〈θ2, M〉] for any M . Also, by I.H. of Lemma 5.14 (2),
[〈θ, E1[〈V1〉]〉]→∗ [〈θ, E2[〈V2〉]〉] for arbitrary θ. Then we have the following.

S1 ≡ [〈θ1, E1[〈V1〉]〉]
→∗ [〈θ2, E1[〈V1〉]〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2, E2[〈V2〉]〉] by I.H. of Lemma 5.14 (2)

→ [〈θ2, E2[V2]〉] by rule (rv)

≡ S2

(RtSt)
By the assumption, S1 ≡ [〈θ1, E1[F1[(Sk.M1)]]〉] and S2 ≡ [〈θ2, E2[〈M2{k := (λv.F2[v])}〉]〉] where θ1 ⇒s

θ2, E1 ⇒s E2, F1 ⇒s F2 and M1 ⇒s M2. Then, by I.H. of Lemma 5.14 (1), [〈θ1, M〉]→∗ [〈θ2, M〉] for any
M . Also, by I.H. of Lemma 5.14 (2), [〈θ, E1[F [(Sk.M1)]]〉]→∗ [〈θ, E2[F2[(Sk.M2)]]〉] for arbitrary θ. Then
we have the following.

S1 ≡ [〈θ1, E1[F1[(Sk.M1)]]〉]
→∗ [〈θ2, E1[F1[(Sk.M1)]]〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2, E2[F2[(Sk.M2)]]〉] by I.H. of Lemma 5.14 (2)

→ [〈θ2, E2[〈M2{k := (λv.F2[v])}〉]〉] by rule (rs)

≡ S2

(Make)
By the assumption, S1 ≡ [〈θ1, E1[(make V1)]〉] and S2 ≡ [〈θ2 ∪ {b 7→ V2}, E2[b]〉] where θ1 ⇒s θ2,
E1 ⇒s E2, V1 ⇒s V2 and b is a fresh box variable. Then, by I.H. of Lemma 5.14 (1), [〈θ1, M〉]→∗ [〈θ2, M〉]
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for any M . Also, by I.H. of Lemma 5.14 (2), [〈θ, E1[(make V1)]〉] →∗ [〈θ, E2[(make V2)]〉] for any θ. Then
we have the following.

S1 ≡ [〈θ1, E1[(make V1)]〉]
→∗ [〈θ2, E1[(make V1)]〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2, E2[(make V2)]〉] by I.H. of Lemma 5.14 (2)

→ [〈θ2 ∪ {b 7→ V2}, E2[void]〉] by rule (make)

≡ S2

(Set)
By the assumption, S1 ≡ [〈θ1 ∪ {b 7→ V }, E1[((set! b) V1)]〉] and S2 ≡ [〈θ2 ∪ {b 7→ V2}, E2[void]〉] where
θ1 ⇒s θ2, E1 ⇒s E2, V1 ⇒s V2. Then, by I.H. of Lemma 5.14 (1), [〈θ1 ∪ {b 7→ V }, M〉] →∗ [〈θ2 ∪ {b 7→
V }, M〉] for any M . Also, by I.H. of Lemma 5.14 (2), [〈θ, E1[((set! b) V1)]〉] →∗ [〈θ, E2[((set! b) V2)]〉]
for arbitrary θ. Then we have the following.

S1 ≡ [〈θ1 ∪ {b 7→ V }, E1[((set! b) V1)]〉]
→∗ [〈θ2 ∪ {b 7→ V }, E1[((set! b) V1)]〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2 ∪ {b 7→ V }, E2[((set! b) V2)]〉] by I.H. of Lemma 5.14 (2)

→ [〈θ2 ∪ {b 7→ V2}, E2[void]〉] by rule (set)

≡ S2

(Deref )
By the assumption, S1 ≡ [〈θ1 ∪{b 7→ V1}, E1[(deref b)]〉] and S2 ≡ [〈θ2 ∪{b 7→ V2}, E2[V2]〉] where θ1 ⇒s

θ2, E1 ⇒s E2, V1 ⇒s V2. Then, by I.H. of Lemma 5.14 (1), [〈θ1 ∪ {b 7→ V1}, M〉]→∗ [〈θ2 ∪ {b 7→ V2}, M〉]
for arbitraryM . Also, by I.H. of Lemma 5.14 (2), [〈θ, E1[(deref b)]〉]→∗ [〈θ, E2[(deref b)]〉] for arbitrary
θ. Then we have the following.

S1 ≡ [〈θ1 ∪ {b 7→ V1}, E1[(deref b)]〉]
→∗ [〈θ2 ∪ {b 7→ V2}, E1[(deref b)]〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2 ∪ {b 7→ V2}, E2[(deref b)]〉] by I.H. of Lemma 5.14 (2)

→ [〈θ2 ∪ {b 7→ V2}, E2[V2]〉] by rule (deref)

≡ S2

(Fork)
By the assumption, S1 ≡ [〈θ1, E1[F1[(futureM1)]]〉] and S2 ≡ [〈θ2, E2[〈flet (p M2) [〈∅, F2[p]〉]〉]〉] where
θ1 ⇒s θ2, E1 ⇒s E2, F1 ⇒s F2 and M1 ⇒s M2. Then, by I.H. of Lemma 5.14 (1), [〈θ1, M〉]→∗ [〈θ2, M〉]
for any M . Also, by I.H. of Lemma 5.14 (2), [〈θ, E1[F1[(future M1)]]〉] →∗ [〈θ, E2[F2[(future M2)]]〉]
for arbitrary θ. Then we have the following.

S1 ≡ [〈θ1, E1[F1[(futureM1)]]〉]
→∗ [〈θ2, E1[F1[(futureM1)]]〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2, E2[F2[(futureM2)]]〉] by I.H. of Lemma 5.14 (2)

→ [〈θ2, E2[〈flet (p M2) [〈∅, F2[p]〉]〉]〉] by rule (fork)

≡ S2

(Join)
By the assumption, S1 ≡ [〈θ1, E1[〈flet (p V1) [〈θ, M〉]〉]〉] and S2 ≡ [〈θ2 ∪ θ′{p := V2}, E2[M

′{p := V1}]〉]
where θ1 ⇒s θ2, E1 ⇒s E2, V1 ⇒s V2 and [〈θ, M〉] ⇒ [〈θ′, M ′〉]. Then, by I.H. of Lemma 5.14 (1),
[〈θ1, M〉] →∗ [〈θ2, M〉] for any M . Also, by I.H. of Lemma 5.14 (2), [〈θ, E1[〈flet (p V1) [〈θ, M〉]〉]〉] →∗

[〈θ, E2[〈flet (p V2) [〈θ, M〉]〉]〉] for arbitrary θ. Furthermore, by I.H. of this lemma, [〈θ, M〉] →∗ [〈θ′, M ′〉].
Then we have the following.

S1 ≡ [〈θ1, E1[〈flet (p V1) [〈θ, M〉]〉]〉]
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→∗ [〈θ2, E1[〈flet (p V1) [〈θ, M〉]〉]〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2, E2[〈flet (p V2) [〈θ, M〉]〉]〉] by I.H. of Lemma 5.14 (2)

→∗ [〈θ2, E2[〈flet (p V2) [〈θ′, M ′〉]〉]〉] by the rule (spec)

→ [〈θ2 ∪ θ′{p := V2}, E2[M
′{p := V1}]〉] by rule (join)

≡ S2

(Spec)
By the assumption, S1 ≡ [〈θ1, M1〉] and S2 ≡ [〈θ2, M2〉] where θ1 ⇒s θ2 and M1 ⇒s M2. Then, we have the
following.

S1 ≡ [〈θ1, M1〉]
→∗ [〈θ2, M1〉] by I.H. of Lemma 5.14 (1)

→∗ [〈θ2, M2〉] by I.H. of Lemma 5.14 (2)

≡ S2

Lemma 5.14 (1)
Let θ1 be {b1 7→ V1, · · · , bn 7→ Vn}. By the assumption, θ2 ≡ {b1 7→ V ′

1 , · · · , bn 7→ V ′
n} where Vi ⇒s V

′
i

(1 ≤ i ≤ n). By I.H. of Lemma 5.14 (2), [〈∅, Vi〉] →∗ [〈∅, V ′
i 〉] for each Vi. Then, by applying the rule (store), we

have the following.

[〈θ1, M〉] ≡ [〈{b1 7→ V1, · · · , bn 7→ Vn}, M〉]
→∗ [〈{b1 7→ V ′

1 , · · · , bn 7→ Vn}, M〉]
· · ·
→∗ [〈{b1 7→ V ′

1 , · · · , bn 7→ V ′
n}, M〉]

≡ [〈θ2, M〉]

Lemma 5.14 (2)
Proof by induction on the structure of M1. We note that C denotes an arbitrary context, which may be a context
that is not an evaluation context.

M1 ≡ c, x, b, p
In this case, since M2 is equivalent of M1, it is clear that [〈θ, C[M1]〉]→0 [〈θ, C[M2]〉].

M1 ≡ (λx.M)

By the assumption, M2 ≡ (λx.M ′) where M ⇒s M ′. Then, by I.H., we have [〈θ, C[(λx.M)]〉] →∗

[〈θ, C[(λx.M ′)]〉].
M1 ≡ (N1 N2)

By the assumption,M2 ≡ (N ′
1N

′
2) whereN1 ⇒s N

′
1 andN2 ⇒s N

′
2. Then, by I.H., we have [〈θ, C[(N1N2)]〉]→∗

[〈θ, C[(N ′
1 N2)]〉]→∗ [〈θ, C[(N ′

1 N
′
2)]〉].

M1 ≡ 〈M〉
By the assumption, M2 ≡ 〈M ′〉 where M ⇒s M

′. Then, by I.H., we have [〈θ, C[〈M〉]〉]→∗ [〈θ, C[〈M ′〉]〉].
M1 ≡ (Sk.M)

By the assumption, M2 ≡ (Sk.M ′) where M ⇒s M ′. Then, by I.H., we have [〈θ, C[(Sk.M)]〉] →∗

[〈θ, C[(Sk.M ′)]〉].
M1 ≡ (futureM)

By the assumption, M2 ≡ (future M ′) where M ⇒s M
′. Then, by I.H., we have [〈θ, C[(Sk.M)]〉] →∗

[〈θ, C[(Sk.M ′)]〉].
M1 ≡ 〈flet (p M) S〉

By the assumption, M2 ≡ 〈flet (p M ′) S′〉 where M ⇒s M
′ and S ⇒ S′. By I.H. of Lemma 5.11

(2), S1 →∗ S2. Then, by I.H., we have [〈θ, C[〈flet (p M) S〉]〉] →∗ [〈θ, C[〈flet (p M ′) S〉]〉] →∗

[〈θ, C[〈flet (p M ′) S′〉]〉].
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From here, we will show the proofs of Lemma 5.11 (3), (3’), (4), (4’), (5) and (5’).

Proof (Lemma 5.11 (3),(3’)).

Lemma 5.11 (3)
Proof by induction on the structure of S1.

S1 ≡ [〈θ, E[((λx.M) V )]〉]
By the assumption, S1

? ≡ [〈θ#, E#[M#{x := V #}]〉]. By I.H. of Lemma 5.11 (3’), θ ⇒s θ
#, E ⇒s E

#,
M ⇒s M

# and V ⇒s V
#. Then, by the rule (App), we have

[〈θ, E[((λx.M) V )]〉]⇒ [〈θ#, E#[M#{x := V #}]〉]

S1 ≡ [〈θ, E[〈V 〉]〉]
By the assumption, S1

? ≡ [〈θ#, E#[V #]〉]. By I.H. of Lemma 5.11 (3’), θ ⇒s θ
#, E ⇒s E

# and V ⇒s V
#.

Then, by the (RtVl), we have
[〈θ, E[〈V 〉]〉]⇒ [〈θ#, E#[V #]〉]

S1 ≡ [〈θ, E[F [(Sk.M)]]〉]
By the assumption, S1

? ≡ [〈θ#, E#[F#[M#]]〉]. By I.H. of Lemma 5.11 (3’), θ ⇒s θ#, E ⇒s E#,
F ⇒s F

# and V ⇒s V
#. Then, by the (RtSt), we have

[〈θ, E[F [(Sk.M)]]〉]⇒ [〈θ#, E#[F#[M#]]〉]

S1 ≡ [〈θ, E[(make V )]〉]
By the assumption, S1

? ≡ [〈θ# ∪ {b 7→ V #}, E#[b]〉] where b is a fresh box variable. By I.H. of Lemma 5.11
(3’), θ ⇒s θ

#, E ⇒s E
# and V ⇒s V

#. Then, by the (Make), we have

[〈θ, E[(make V )]〉]⇒ [〈θ# ∪ {b 7→ V #}, E#[b]〉]

S1 ≡ [〈θ ∪ {b 7→ V1}, E[((set! V ) ])〉]
By the assumption, S1

? ≡ [〈θ# ∪ {b 7→ V #}, E#[void]〉]. By I.H. of Lemma 5.11 (3’), θ ⇒s θ
#, E ⇒s E

#

and V ⇒s V
#. Then, by the (Set), we have

[〈θ ∪ {b 7→ V1}, E[((set! V ) ])〉]⇒ [〈θ# ∪ {b 7→ V #}, E#[void]〉]

S1 ≡ [〈θ ∪ {b 7→ V }, E[(deref b)]〉]
By the assumption, S1

? ≡ [〈θ# ∪ {b 7→ V #}, E#[V #]〉]. By I.H. of Lemma 5.11 (3’), θ ⇒s θ
#, E ⇒s E

#

and V ⇒s V
#. Then, by the (Deref), we have

[〈θ ∪ {b 7→ V }, E[(deref b)]〉]⇒ [〈θ# ∪ {b 7→ V #}, E#[V #]〉]

S1 ≡ [〈θ, E[F [(futureM)]]〉]
By the assumption, S1

? ≡ [〈θ#, E#[〈flet (p M#) [〈∅, F#[p]〉]〉]〉] where p is a fresh communication
variable. By I.H. of Lemma 5.11 (3’), θ ⇒s θ

#, E ⇒s E
#, F ⇒s F

# and M ⇒s M
#. Then, by the (Fork),

we have
[〈θ ∪ {b 7→ V }, E[(deref b)]〉]⇒ [〈θ# ∪ {b 7→ V #}, E#[V #]〉]

S1 ≡ [〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉]
By the assumption, S1

? ≡ [〈θ# ∪ (θ2#{p := V #}), E#[M#{p := V #}]〉] where [〈θ2, M2〉] ≡ [〈θ1, M1〉]?. By
I.H. of Lemma 5.11 (3’), θ ⇒s θ

#, E ⇒s E
# and M ⇒s M

#. Also by I.H. of this lemma, [〈θ1, M1〉] ⇒
[〈θ1, M1〉]? ≡ [〈θ2, M2〉]. Then, by the (Fork), we have

[〈θ ∪ {b 7→ V }, E[(deref b)]〉]⇒ [〈θ# ∪ {b 7→ V #}, E#[V #]〉]
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otherwise
In this case, S1 ≡ [〈θ, M〉] and S1

? ≡ [〈θ#, M#〉]. By I.H. of Lemma 5.11 (3’), θ ⇒s θ
# and M ⇒s M

#.
Then, by the (Spec), we have

[〈θ, M〉]⇒ [〈θ#, M#〉]

Lemma 5.11 (3’)
We note that the proof for evaluation contexts is almost same as that for terms so we will prove them simultaneously.

X is a term or an evaluation context
Proof by induction. In this proof, the meta-variable M denotes a term or an evaluation context.

X ≡ c, x, b, p,�
These cases are trivial.

X ≡ (λx.M)

By the assumption, X# ≡ (λx.M#). By I.H. of this lemma, M ⇒s M
#. Then, by the rule (S-Lam), we

have (λx.M)⇒s (λx.M
#).

X ≡ (M1 M2)

By the assumption, X# ≡ (M1
# M2

#). By I.H. of this lemma, M1 ⇒s M1
# and M2 ⇒s M2

#. Then,
by the rule (S-App), we have (M1 M2)⇒s (M1

# M2
#).

X ≡ 〈M〉
By the assumption, X# ≡ 〈M#〉. By I.H. of this lemma, M ⇒s M

#. Then, by the rule (S-Rt), we have
〈M〉 ⇒s 〈M#〉.

X ≡ (Sk.M)

By the assumption, X# ≡ (Sk.M#). By I.H. of this lemma, M ⇒s M
#. Then, by the rule (S-St), we

have (Sk.M)⇒s (Sk.M#).
X ≡ (futureM)

By the assumption, X# ≡ (futureM#). By I.H. of this lemma, M ⇒s M
#. Then, by the rule (S-Ft),

we have (futureM)⇒s (futureM#).
X ≡ 〈flet (p M) S〉

By the assumption,X# ≡ 〈flet (p M#) S?〉. By I.H. of this lemma,M ⇒s M
# and by I.H. of Lemma

5.11 (3), S ⇒ S?. Then, by the rule (S-Flet), we have 〈flet (p M) S〉 ⇒s 〈flet (p M#) S?〉.
X is a store

Let X be {b1 7→ V1, · · · , bn 7→ Vn}. By I.H. of this lemma, Vi ⇒s Vi
# for each i. Then, by the rule (S-Store),

we have {b1 7→ V1, · · · , bn 7→ Vn} ⇒s {b1 7→ V1
#, · · · , bn 7→ Vn

#}.

Proof (Lemma 5.11 (4) and (4’)). We will prove the two lemmas by simultaneous induction.

Lemma 5.11 (4)
We will prove the two by induction on the size of the derivation of the relation⇒ and⇒s. We will divide the proof
by the last rule used to derive the relation S1 ⇒ S2.

(App)
By the assumption, S1 ≡ [〈θ, E[((λx.M) V )]〉] and S2 ≡ [〈θ′, E′[M ′{x := V ′}]〉] where θ ⇒s θ

′, E ⇒s E
′,

M ⇒s M
′ and V ⇒s V

′. By I.H. of Lemma 5.11 (4’), θ′ ⇒s θ
#, E′ ⇒s E

#, M ′ ⇒s M
# and V ′ ⇒s V

#.
Since M ′{x := V ′} ⇒s M

#{x := V #} by Lemma 5.9, E′[M ′{x := V ′}] ⇒s E
#[M#{x := V #}] by

Lemma 5.7. Then we have S2 ⇒ [〈θ#, E#[M#{x := V #}]〉] ≡ S1
?.

(RtVl)
By the assumption, S1 ≡ [〈θ, E[〈V 〉]〉] and S2 ≡ [〈θ′, E′[V ′]〉] where θ ⇒s θ

′, E ⇒s E
′ and V ⇒s V

′.
By I.H. of Lemma 5.11 (4’), θ′ ⇒s θ#, E′ ⇒s E#, M ′ ⇒s M# and V ′ ⇒s V #. By Lemma 5.7,
E′[V ′]⇒s E

#[V #]. Then we have S2 ⇒ [〈θ#, E#[V #]〉] ≡ S1
?.

(RtSt)
By the assumption, S1 ≡ [〈θ, E[F [(Sk.M)]]〉] and S2 ≡ [〈θ′, E′[〈M ′{k := (λv.F ′[v])}〉]〉] where θ ⇒s θ

′,
E ⇒s E

′, F ⇒s F
′ and M ⇒s M

′. By I.H. of (4’), θ′ ⇒s θ
#, E′ ⇒s E

#, F ′ ⇒s F
# and M ′ ⇒s M

#.
Then, by the fact that S1

? ≡ [〈θ#, E#[〈M#{k := (λv.F#[v])}〉]〉] and Lemma 5.7, S2 ⇒ S1
#.
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(Make)
By the assumption, S1 ≡ [〈θ, E[(make V )]〉] and S2 ≡ [〈θ′ ∪ {b 7→ V ′}, E′[b]〉] where θ ⇒s θ

′, E ⇒s E
′

and V ⇒s V
′ and b is a fresh box variable. By I.H. of (4’), θ′ ⇒s θ

#, E′ ⇒s E
# and V ′ ⇒s V

#. Then, by
Lemma 5.7, we have the following.

S2 ≡ [〈θ′ ∪ {b 7→ V ′}, E′[b]〉]⇒ [〈θ# ∪ {b 7→ V #}, E#[b]〉] ≡ S1
?

(Set)
By the assumption, S1 ≡ [〈θ ∪ {b 7→ V1}, E[((set! b) V )]〉] and S2 ≡ [〈θ′ ∪ {b 7→ V ′}, E′[void]〉] where
θ ⇒s θ

′, E ⇒s E
′ and V ⇒s V

′. By I.H. of (4’), θ′ ⇒s θ
#, E′ ⇒s E

# and V ′ ⇒s V
#. Then, by Lemma

5.7, we have the following.

S2 ≡ [〈θ′ ∪ {b 7→ V ′}, E′[void]〉]⇒ [〈θ# ∪ {b 7→ V #}, E#[void]〉] ≡ S1
?

(Deref )
By the assumption, S1 ≡ [〈θ ∪ {b 7→ V }, E[(deref b)]〉] and S2 ≡ [〈θ′ ∪ {b 7→ V ′}, E′[V ′]〉] where θ ⇒s θ

′,
E ⇒s E

′ and V ⇒s V
′. By I.H. of (4’), θ′ ⇒s θ

#, E′ ⇒s E
# and V ′ ⇒s V

#. Then, by Lemma 5.7, we
have the following.

S2 ≡ [〈θ′ ∪ {b 7→ V ′}, E′[V ′]〉]⇒ [〈θ# ∪ {b 7→ V #}, E#[V #]〉] ≡ S1
?

(Fork)
By the assumption, S1 ≡ [〈θ, E[F [(future M)]]〉] and S2 ≡ [〈θ′, E′[〈flet (p M ′) [〈∅, F ′[p]〉]〉]〉] where
θ ⇒s θ

′, E ⇒s E
′, F ⇒s F

′ and M ⇒s M
′. By I.H. of (4’), θ′ ⇒s θ

#, E′ ⇒s E
#, F ′ ⇒s F

# and
V ′ ⇒s V

#. Then, by Lemma 5.7, we have the following.

S2 ≡ [〈θ, E[F [(futureM)]]〉]⇒ [〈θ#, E#[〈flet (p M#) [〈∅, F#[p]〉]〉]〉] ≡ S1
?

(Join)
By the assumption, S1 = [〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉] and S2 = [〈θ′ ∪ θ2{p := V ′}, E′[M2{p := V ′}]〉]
where θ ⇒s θ

′, E ⇒s E
′, V ⇒s V

′ and [〈θ1, M1〉] ⇒ [〈θ2, M2〉]. By I.H. of this lemma, [〈θ2, M2〉] ⇒
[〈θ1, M1〉]? and we will denote [〈θ1, M1〉]? as [〈θ3, M3〉]. Also, by I.H. of (4’), θ′ ⇒s θ

#, E′ ⇒s E
# and

V ′ ⇒s V
#. Then, by Lemma 5.7 (3), [〈θ2{p := V ′}, M2{p := V ′}〉] ⇒ [〈θ3{p := V #}, M3{p := V #}〉].

Also by Lemma 5.7 (4) and (1), [〈θ′∪θ2{p := V ′}, E′[M2{p := V ′}]〉]⇒ [〈θ#∪θ3{p := V #}, E#[M3{p :=
V #}]〉].

(Spec)
By case analysis on the structure of S1.

S1 ≡ [〈θ, E[((λx.M) V )]〉]
By the fact that S1 ⇒ S2 is speculative, S2 ≡ [〈θ, E[((λx.M) V )]〉] where θ ⇒s θ

′,E ⇒s E
′,M ⇒s M

′

and V ⇒s V
′. Then, as the case (App), we have S2 ⇒ S1

?.
S1 ≡ [〈θ, E[〈V 〉]〉]

By the fact that S1 ⇒ S2 is speculative, S2 ≡ [〈θ′, E′[〈V ′〉]〉] where θ ⇒s θ
′, E ⇒s E

′, V ⇒s V
′. Then,

as the case (RtVl), we have S2 ⇒ S1
?.

S1 ≡ [〈θ, E[F [(Sk.M)]]〉]
By the fact that S1 ⇒ S2 is speculative, S2 ≡ [〈θ′, E′[F ′[(Sk.M ′)]]〉] where θ ⇒s θ′, E ⇒s E′,
F ⇒s F

′ and M ⇒s M
′. Then, as the case (RtSt), we have S2 ⇒ S1

?.
S1 ≡ [〈θ, E[(make V )]〉]

By the fact that S1 ⇒ S2 is speculative, S2 ≡ [〈θ′, E′[(make V ′)]〉] where θ ⇒s θ
′, E ⇒s E

′ and
V ⇒s V

′. Then, as the case (Make), we have S2 ⇒ S1
?.

S1 ≡ [〈θ ∪ {b 7→ V1}, E[((set! b) V )]〉]
By the fact that S1 ⇒ S2 is speculative, S2 ≡ [〈θ′ ∪ {b 7→ V ′

1}, E′[((set! b) V ′)]〉] where θ ⇒s θ
′,

E ⇒s E
′ and V ⇒s V

′. Then, as the case (Set), we have S2 ⇒ S1
?.

S1 ≡ [〈θ ∪ {b 7→ V }, E[(deref b)]〉]
By the fact that S1 ⇒ S2 is speculative, S2 ≡ [〈θ′ ∪ {b 7→ V }, E[(deref b)]〉] where θ ⇒s θ

′, E ⇒s E
′

and V ⇒s V
′. Then, as the case (Deref), we have S2 ⇒ S1

?.
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S1 ≡ [〈θ, E[F [(futureM)]]〉]
By the fact that S1 ⇒ S2 is speculative, S2 ≡ [〈θ′, E′[F ′[(future M ′)]]〉] where θ ⇒s θ

′, E ⇒s E
′,

F ⇒s F
′ and M ⇒s M

′. Then, as the case (Fork), we have S2 ⇒ S1
?.

S1 ≡ [〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉]
By the fact that S1 ⇒ S2 is speculative, S2 ≡ [〈θ′, E′[〈flet (p V ′) [〈θ2, M2〉]〉]〉] where θ ⇒s θ

′,
E ⇒s E

′,⇒s V
′ and [〈θ1, M1〉]⇒ [〈θ2, M2〉]. Then, as the case (Fork), we have S2 ⇒ S1

?.
otherwise

By the definition of⇒, S1 ≡ [〈θ, M〉] and S2 ≡ [〈θ′, M ′〉] where θ ⇒s θ
′ and M ⇒s M

′. By I.H. of (4’),
θ′ ⇒s θ

# and M ′ ⇒s M
#. Then, S2 ⇒ [〈θ#, M#〉] ≡ S1

?.

Lemma 5.11 (4’)
We prove that X1 is a term only because the case that X1 is a context can be proved in a similar way, and the case
that X1 is a store can be shown from the case that X1 is a term.

We will show the case analysis on the structure of X1, namely, a term.

X1 ≡ x, c, b, p
X1

# is just that so X1 = X2 = X1
#.

X1 ≡ (λx.M1)

From X1 ⇒s X2, X2 ≡ (λx.M ′
1) where M1 ⇒s M

′
1. By I.H., M ′

1 ⇒s M1
#, which implies (λx.M ′

1) ⇒s

(λx.M1
#).

X1 ≡ (M1 M2)

From X1 ⇒s X2, X2 ≡ (M ′
1 M

′
2) where M1 ⇒s M ′

1 and M2 ⇒s M ′
2. By I.H., M ′

1 ⇒s M1
# and

M ′
2 ⇒s M2

#, which implies (M ′
1 M

′
2)⇒s (M1

# M2
#).

X1 ≡ 〈M1〉
From X1 ⇒s X2, X2 ≡ 〈M ′

1〉 where M1 ⇒s M
′
1. By I.H., M ′

1 ⇒s M1
#, which implies 〈M ′

1〉 ⇒s 〈M1
#〉.

X1 ≡ (Sk.M1)

From X1 ⇒s X2, X2 ≡ (Sk.M ′
1) where M1 ⇒s M

′
1. By I.H., M ′

1 ⇒s M1
#, which implies (Sk.M ′

1) ⇒s

(Sk.M1
#).

X1 ≡ (futureM1)

From X1 ⇒s X2, X2 ≡ (future M ′
1) where M1 ⇒s M ′

1. By I.H., M ′
1 ⇒s M1

#, which implies
(futureM ′

1)⇒s (futureM1
#).

�
Proof (Lemma 5.11 (5), (5’)). These can be proved by revising the proof of (4) and (4’) precisely so we show several
cases of (5) and (5’) only.

Lemma 5.11 (5)

(App)
By the assumption, S1 ≡ [〈θ, E[((λx.M) V )]〉] and S2 ≡ [〈θ′, E′[M ′{x := V ′}]〉] where θ ⇒s θ

′, E ⇒s E
′,

M ⇒s M
′ and V ⇒s V

′, and S2 ⇒ S1
? ≡ [〈θ#, E#[M#{x := V #}]〉]. By this fact, we can find that

S2 ⇒ S1
? is speculative because this parallel transition is by (Spec).

(Spec)
By the assumption, S1 ≡ [〈θ, E[F [(future M)]]〉] and S2 ≡ [〈θ′, E′[〈flet (p M ′) [〈∅, F ′[p]〉]〉]〉] where
θ ⇒s θ

′, E ⇒s E
′, F ⇒s F

′ and M ⇒s M
′, and

S2 ≡ [〈θ, E[F [(futureM)]]〉]⇒ [〈θ#, E#[〈flet (p M#) [〈∅, F#[p]〉]〉]〉] ≡ S1
?.

Also the above case, the transition S2 ⇒ S1
? is speculative because the transition is by (Spec).

Lemma 5.11 (5’)
The cases that S1 ⇒ S2 is speculative and S1 ⇒ S1

? is mandatory correspond to the ones which are shown in the
case (Spec) in the proof of (4).
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S1 ⇒ S2 is (Spec) and S1 ⇒ S1
? is (App)

We can put that S1 ≡ [〈θ, E[((λx.M) V )]〉] and S2 ≡ [〈θ′, E′[((λx.M ′) V ′)]〉] where θ ⇒s θ
′, E ⇒s E

′,
M ⇒s M

′ and V ⇒s V
′, and S1

? ≡ [〈θ#, E#[M#{x := V #}]〉]. Then, it is clear that the transition
S2 ⇒ S1

? is by (App).

S1 ⇒ S2 is (Spec) and S1 ⇒ S1
? is (Fork)

We can put that S1 ≡ [〈θ, E[F [(future M)]]〉] and S2 ≡ [〈θ′, E′[F ′[(future M ′)]]〉] where θ ⇒s θ
′,

E ⇒s E
′, F ⇒s F

′ and M ⇒s M
′, and S1

? ≡ [〈θ#, E#[〈flet (p M#) [〈∅, F#[p]〉]〉]〉]. Then, it is clear
that the transition S2 ⇒ S1

? is by (Fork).

�

Finally, we will prove Theorem 5.5.

Proof (Lemma 5.5). If we assume that S1 →∗ S2 and S1 →∗ S3, we have that S1 ⇒∗ S2 and S1 ⇒∗ S3 by Lemma
5.11 (1). Let k be the max number of the length of these transition sequence. Then, if we assume that S4 is a state which
can be obtained by applying the maximum-parallel transition (−)? for k times, we have S2 ⇒∗ S4 and S3 ⇒∗ S4 by
Lemma 5.11. Therefore, by Lemma 5.11 (2), we can find that→ is confluent. �

5.4.3 Uniqueness of Transitions in AM-PFSR
In this subsection, we will show the following theorem for the final step to prove the theorem 5.2.

Theorem 5.6. If A1, A2 ∈ evalp(P ), A1 = A2 �

To prove Theorem 5.6, we will have to prove several lemmas.

Lemma 5.15. For AM-PFSR, we have the following properties.

(1) If S1 → S2 is speculative and S2 → S3 is mandatory transition, there exists a transition sequence S1 →∗ S3

whose first transition is mandatory.

(2) If there is an infinite transition sequence which starts from S1 and contains infinite mandatory transitions, there
exists a transition sequence which consists of mandatory transitions only.

(3) There is no transition sequence which consists of (join) transition only.

�

We will re-define a relation→spec like the relation which is defined in the previous subsection.

Def 5.14. (1) M →spec M
′ if and only if [〈θ, M〉]→ [〈θ, M ′〉] for an arbitrary θ by (spec),

(2) E →spec E
′ if and only if [〈θ, E[M ]〉]→ [〈θ, E′[M ]〉] for an arbitrary θ and M by (spec),

(3) θ →spec θ
′ if and only if [〈θ, M〉]→ [〈θ′, M〉] for an arbitrary M by (store).

Then, we will represent the reflexive and transitive closure of→spec as→∗
spec.

Lemma 5.16. (1) If V →spec V
′, C[M{x := V }]→∗

spec C[M{x := V ′}] for an arbitrary C,

(2) If M →spec M
′, M{x := V } →spec M

′{x := V },

(3) If E →spec E
′, E{x := V } →spec E

′{x := V },

(4) If V →spec V
′, θ{x := V } →∗

spec θ{x := V ′}.

Proof . (1) Proof by induction on the structure of M .

M ≡ c, b
These are trivial.

M ≡ y(x 6= y) or M ≡ p(x 6= p)
Since M{x := V } ≡M , this case is also trivial.
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M ≡ y(x = y) or M ≡ p(x = p)

Since M{x := V } ≡ V and M{x := V ′} ≡ V ′, we have C[M{x := V }] ≡ C[V ] →spec C[V
′] ≡

C[M{x := V ′}].
M ≡ (λy.M1)(y 6= x)

Since M{x := V } ≡ (λy.M1{x := V }) and M{x := V ′} ≡ (λy.M1{x := V ′}), we have the following:

C[M{x := V }] ≡ C[(λy.M1{x := V })]
→∗

spec C[(λy.M1{x := V ′})] by I.H.

≡ C[(λy.M1){x := V ′}]
≡ C[M{x := V ′}]

M ≡ (λy.M1)(y = x)

Since M{x := V } ≡ (λy.M1) ≡M and M{x := V ′} ≡ (λy.M1) ≡M , this case is also trivial.

M ≡ (M1 M2)

Since M{x := V } ≡ (M1{x := V }M2{x := V }) and M{x := V ′} ≡ (M1{x := V ′}M2{x := V ′}), we
have the following:

C[M{x := V }] ≡ C[(M1{x := V }M2{x := V })]
→∗

spec C[(M1{x := V ′}M2{x := V })] by I.H.

→∗
spec C[(M1{x := V ′}M2{x := V ′})] by I.H.

≡ C[(M1 M2){x := V ′}]
≡ C[M{x := V ′}]

M ≡ 〈M1〉
Since M{x := V } ≡ 〈M1{x := V }〉 and M{x := V ′} ≡ 〈M1{x := V ′}〉, we have the following:

C[M{x := V }] ≡ C[〈M1{x := V }〉]
→∗

spec C[〈M1{x := V ′}〉] by I.H.

≡ C[〈M1〉{x := V ′}]
≡ C[M{x := V ′}]

M ≡ (Sk.M1)(k 6= x)

Since M{x := V } ≡ (Sk.M1{x := V }) and M{x := V ′} ≡ (Sk.M1{x := V ′}), we have the following:

C[M{x := V }] ≡ C[(Sk.M1{x := V })]
→∗

spec C[(Sk.M1{x := V ′})] by I.H.

≡ C[(Sk.M1){x := V ′}]
≡ C[M{x := V ′}]

M ≡ (Sk.M1)(k = x)

Since M{x := V } ≡ (Sk.M1) ≡M and M{x := V ′} ≡ (Sk.M1) ≡M , this case is also trivial.

M ≡ (futureM1)

Since M{x := V } ≡ (future M1{x := V }) and M{x := V ′} ≡ (future M1{x := V ′}), we have the
following:

C[M{x := V }] ≡ C[(futureM1{x := V })]
→∗

spec C[(futureM1{x := V ′})] by I.H.

≡ C[(futureM1){x := V ′}]
≡ C[M{x := V ′}]
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M ≡ 〈flet (p M1) [〈θ, M2〉]〉, (x 6= p)
Since M{x := V } ≡ 〈flet (p M1{x := V }) [〈θ{x := V }, M2{x := V }〉]〉 and M{x := V } ≡
〈flet (p M1{x := V ′}) [〈θ{x := V ′}, M2{x := V ′}〉]〉, we have the following:

C[M{x := V }] ≡ C[〈flet (p M1{x := V }) [〈θ{x := V }, M2{x := V }〉]〉]
→∗

spec C[〈flet (p M1{x := V ′}) [〈θ{x := V }, M2{x := V }〉]〉] by I.H.

→∗
spec C[〈flet (p M1{x := V ′}) [〈θ{x := V ′}, M2{x := V }〉]〉] by I.H. of (4)

→∗
spec C[〈flet (p M1{x := V ′}) [〈θ{x := V ′}, M2{x := V ′}〉]〉] by I.H.

≡ C[〈flet (p M1) [〈θ, M2〉]〉{x := V ′}]
≡ C[M{x := V ′}]

M ≡ 〈flet (p M1) [〈θ, M2〉]〉, (x = p)
Since M{x := V } ≡ 〈flet (p M1{x := V }) [〈θ, M2〉]〉 and M{x := V } ≡ 〈flet (p M1{x :=
V ′}) [〈θ, M2〉]〉, we have the following.

C[M{x := V }] ≡ C[〈flet (p M1{x := V }) [〈θ{x := V }, M2{x := V }〉]〉]
→∗

spec C[〈flet (p M1{x := V ′}) [〈θ{x := V }, M2{x := V }〉]〉] by I.H.

≡ C[〈flet (p M1) [〈θ, M2〉]〉{x := V ′}]
≡ C[M{x := V ′}]

(2) This can be proved almost same as the above one.

(3) This is also same as the above.

(4) Let θ be {b1 7→ V1, · · · , bn 7→ Vn}. Since θ{x := V } ≡ {b1 7→ V1{x := V }, · · · , bn 7→ Vn{x := V }}, we have
the following.

θ{x := V } ≡ {b1 7→ V1{x := V }, · · · , bn 7→ Vn{x := V }}
→∗

spec {b1 7→ V1{x := V ′}, · · · , bn 7→ Vn{x := V }} by I.H. of (1)

· · ·
→∗

spec {b1 7→ V1{x := V ′}, · · · , bn 7→ Vn{x := V ′}} by I.H. of (1)

≡ θ{x := V ′}

�

Proof (Lemma 5.15(1)). If a transition S1 → S2 is speculative and S2 → S3 is mandatory, we can apply the mandatory
transition rule to S1. So we will analyze the all cases of S2 → S3.

(app)
S2 ≡ [〈θ, E[((λx.M) V )]〉] and S3 ≡ [〈θ, E[M{x := V }]〉]. Since S1 is in the same form S2 and the transition
S1 → S2 is speculative, there are four possibilities of the target of the transition: θ′ →f θ, E′ →f E, M ′ →f M
or V ′ →f V where X ′ is a part of S1 corresponding to the part of S2.

θ′ →f θ
′

Since S1 ≡ [〈θ′, E[((λx.M) V )]〉], we have the following sequence.

S1 ≡ [〈θ′, E[((λx.M) V )]〉]
→ [〈θ′, E[M{x := V }]〉] (app)

→ [〈θ, E[M{x := V }]〉] (store)

→ S3

91



E′ →f E

Since S1 ≡ [〈θ, E′[((λx.M) V )]〉], we have the following sequence.

S1 ≡ [〈θ, E′[((λx.M) V )]〉]
→ [〈θ, E′[M{x := V }]〉] (app)

→ [〈θ, E[M{x := V }]〉] (spec)

→ S3

M ′ →f M

Since S1 ≡ [〈θ, E[((λx.M ′) V )]〉], we have the following sequence.

S1 ≡ [〈θ, E[((λx.M ′) V )]〉]
→ [〈θ, E[M ′{x := V }]〉] (app)

→ [〈θ, E[M{x := V }]〉] (spec) with the lemma 5.16 (2)

→ S3

V ′ →f V

Since S1 ≡ [〈θ, E[((λx.M) V ′)]〉], we have the following sequence.

S1 ≡ [〈θ, E[((λx.M) V ′)]〉]
→ [〈θ, E[M{x := V ′}]〉] (app)

→∗ [〈θ, E[M{x := V }]〉] (spec) with the lemma 5.16 (1)

→ S3

(rv)
This case is almost clear because we can show this case as the (app) case.

(rs)
S2 ≡ [〈θ, E[F [(Sk.M)]]〉] and S3 ≡ [〈θ, E[〈M{k := (λv.F [v])}〉]〉]. Since S1 is in the same form S2 and the
transition S1 → S2 is speculative, there are four possibilities of the target of the transition: θ′ →f θ, E′ →f E,
F ′ →f F or M ′ →f M where each X ′ is a part of S1 corresponding to the part of S2.

θ′ →f θ
′

Since S1 ≡ [〈θ′, E[F [(Sk.M)]]〉], we have the following sequence.

S1 ≡ [〈θ′, E[F [(Sk.M)]]〉]
→ [〈θ′, E[〈M{k := (λv.F [v])}〉]〉] (rs)

→ [〈θ, E[〈M{k := (λv.F [v])}〉]〉] (store)

→ S3

E′ →f E

Since S1 ≡ [〈θ, E′[F [(Sk.M)]]〉], we have the following sequence.

S1 ≡ [〈θ, E′[F [(Sk.M)]]〉]
→ [〈θ, E′[〈M{k := (λv.F [v])}〉]〉] (rs)

→ [〈θ, E[〈M{k := (λv.F [v])}〉]〉] (spec)

→ S3

F ′ →f F

Since S1 ≡ [〈θ, E[F ′[(Sk.M)]]〉], we have the following sequence.

S1 ≡ [〈θ, E[F ′[(Sk.M)]]〉]
→ [〈θ, E[〈M{k := (λv.F ′[v])}〉]〉] (rs)

→∗ [〈θ, E[〈M{k := (λv.F [v])}〉]〉] (spec) with the lemma 5.16 (1)

→ S3
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M ′ →f M

Since S1 ≡ [〈θ, E[F [(Sk.M ′)]]〉], we have the following sequence.

S1 ≡ [〈θ, E[F [(Sk.M ′)]]〉]
→ [〈θ, E[〈M ′{k := (λv.F [v])}〉]〉] (rs)

→ [〈θ, E[〈M{k := (λv.F [v])}〉]〉] (spec) with the lemma 5.16 (2)

→ S3

(make)
S2 ≡ [〈θ, E[(make V )]〉] and S3 ≡ [〈θ ∪ {b 7→ V }, E[b]〉] where b is fresh. Since S1 is in the same form of S2 and
the transition S1 → S2 is speculative, there are four possibilities of the target of the transition: θ′ →f θ, E′ →f E
or V ′ →f V where each X ′ is a part of S1 corresponding to the part of S2.

θ′ →f θ
′

Since S1 ≡ [〈θ′, E[(make V )]〉], we have the following sequence.

S1 ≡ [〈θ′, E[(make V )]〉]
→ [〈θ′ ∪ {b 7→ V }, E[b]〉] (make)

→ [〈θ ∪ {b 7→ V }, E[b]〉] (store)

→ S3

E′ →f E

Since S1 ≡ [〈θ, E′[(make V )]〉], we have the following sequence.

S1 ≡ [〈θ, E′[(make V )]〉]
→ [〈θ ∪ {b 7→ V }, E′[b]〉] (make)

→ [〈θ ∪ {b 7→ V }, E[b]〉] (store)

→ S3

V ′ →f V

Since S1 ≡ [〈θ, E[(make V ′)]〉], we have the following sequence.

S1 ≡ [〈θ, E[(make V ′)]〉]
→ [〈θ ∪ {b 7→ V ′}, E[b]〉] (make)

→ [〈θ ∪ {b 7→ V }, E[b]〉] (store)

→ S3

(set) and (deref )
These two cases can be shown almost same as the (make) case.

(fork)
S2 ≡ [〈θ, E[F [(future M)]]〉] and S3 ≡ [〈θ, E[〈flet (p M) [〈∅, F [p]〉]〉]〉] where p is a fresh communication
variable. Since S1 has the same form of S2 and the transition S1 → S2 is speculative, there are four possibilities
of the target of the transition: θ′ →f θ, E′ →f E, F ′ →f F or M ′ →f M where each X ′ is a part of S1

corresponding to the part of S2. All the cases can be shown as the case (app)

(join)
S2 ≡ [〈θ, E[〈flet (p V ) [〈θ, θ1〉]M1〉]〉] and S3 ≡ [〈θ ∪ (θ1{p := V }), E[M1{p := V }]〉]. Since S1 has the same
form of S2 and the transition S1 → S2 is speculative, there are four possibilities of the target of the transition:
θ′ →f θ, E′ →f E, V ′ →f V or [〈θ2, M2〉] → [〈θ1, M1〉] where each X ′ is a part of S1 corresponding to the part
of S2. Since the case θ′ →f θ and E′ →f E can be shown as the above cases, we will show the rest two cases.
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V ′ →f V

By Lemma 5.16 (4), θ1{p := V ′} →f θ1{p := V }, and by Lemma 5.16 (1),M1{p := V ′} →f M1{p := V }.
Then, we have the following sequence.

S1 ≡ [〈θ, E[〈flet (p V ′) [〈θ, θ1〉]M1〉]〉]
→ [〈θ ∪ (θ1{p := V ′}), E[M1{p := V ′}]〉] (join)

→∗ [〈θ ∪ (θ1{p := V }), E[M1{p := V ′}]〉] (spec) with the lemma 5.16 (4)

→∗ [〈θ ∪ (θ1{p := V }), E[M1{p := V }]〉] (spec) with the lemma 5.16 (1)

≡ S3

[〈θ2, M2〉]→ [〈θ1, M1〉]
In this case, we will use the property such that if S → S′ then S{p := V } → S{p := V }, which can be
shown easily by the induction. Then, we have the following sequence.

S1 ≡ [〈θ, E[〈flet (p V ) [〈θ, θ2〉]M2〉]〉]
→ [〈θ ∪ (θ2{p := V }), E[M2{p := V }]〉]
→ [〈θ ∪ (θ1{p := V }), E[M1{p := V }]〉]
≡ S2

�

Proof (Lemma 5.15(2)). Assume that there is an infinite transition sequence starting with S1 and its first mandatory
transition is Sk+1 → Sk+2. (Namely, its first k transitions are speculative)

By applying the clause (1) of Lemma 5.15 to the sequence k times, we obtain a finite transition sequence S1 →∗ Sk+2,
whose first transition is mandatory. By appending the suffix of the given infinite sequence starting with Sk+2 to the
obtained one, we get an infinite sequence from S1 whose first transition is mandatory.

By repeating this process n times, we get, for each n, an infinite sequence from S1 whose first n transitions are
mandatory. Moreover, the n-th infinite sequence and the n+1-st one share the first n+1 states and the first n transitions
all of which are mandatory.

Let Si
j be the j-th state of the i-th infinite sequence (for i, j ≥ 1), and we put Ti ≡ Si

i for i ≤ 1. Then we have T1 ≡ S1

and Ti → Ti+1 is a mandatory transition, and therefore we have obtained the desired infinite transition sequence. �

Next, we will define a new relation |X| and prove Lemma 5.17 in order to show Lemma 5.15 (3).

Def 5.15. We will define a natural number |X| as follows. (In the following, we define |M | and |C| simultaneously so we
assume that meta variable M denotes terms or contexts.)

|v| def
= 0 v = c, x, p, b,�

|(λx.M)| def
= 0

|(M1 M2)|
def
= |M1|+ |M2|

|〈M〉| def
= |M |

|(Sk.M)| def
= |M |

|(futureM)| def
= |M |

|〈flet (pi M) S〉| def
= |M |+ |S|+ 1

|[〈θ, M〉]| def
= |M |

Lemma 5.17. (1) |E[M ]| = |E|+ |M |

(2) |M{pi := V }| = |M |

Proof . (1) Proof by induction on the structure of E.
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E ≡ �
This case is trivial so we omit.

E ≡ (E1 M1)
We have the following.

|E[M ]| ≡ |(E1[M ]M1)|
= |E1[M ]|+ |M1| by definition

= |E1|+ |M |+ |M1| by I.H.

= |(E1 M1)|+ |M |
= |E|+ |M |

E ≡ (V E1)
We have the following.

|E[M ]| ≡ |(V E1[M ])|
= |V |+ |E1[M ]| by definition

= |V |+ |E1|+ |M | by I.H.

= |(V E1)|+ |M |
= |E|+ |M |

E ≡ 〈E1〉
We have the following.

|E[M ]| ≡ |〈E1[M ]〉|
= |E1[M ]| by definition

= |E1|+ |M | by I.H.

= |〈E1〉|+ |M |
= |E|+ |M |

E ≡ 〈flet (pi E1) S〉
We have the following.

|E[M ]| ≡ |〈flet (pi E1[M ]) S〉|
= |E1[M ]|+ |S|+ 1 by definition

= |E1|+ |M |+ |S|+ 1 by I.H.

= |〈flet (pi E1) S〉|+ |M |
= |E|+ |M |

(2) Proof by induction on the structure of M .

M ≡ x, c, p, b, (λx.M)
This case is trivial because M{p := V } must become a value.

M ≡ (M1 M2)
We have the following.

|M{p := V }| ≡ |(M1 M2){p := V }|
= |(M1{p := V }M2{p := V })|
= |M1{p := V }|+ |M2{p := V }| by def

= |M1|+ |M2| by I.H.

≡ |(M1 M2)|
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M ≡ 〈M1〉
We have the following.

|M{p := V }| ≡ |〈M1〉{p := V }|
= |〈M1{p := V }〉|
= |M1{p := V }| by def

= |M1| by I.H.

≡ |〈M1〉|

M ≡ (Sk.M1)
We have the following.

|M{p := V }| ≡ |(Sk.M1){p := V }|
= |(Sk.M1{p := V })|
= |M1{p := V }| by def

= |M1| by I.H.

≡ |(Sk.M1)|

M ≡ (futureM1)
We have the following.

|M{p := V }| ≡ |(futureM1){p := V }|
= |(futureM1{p := V })|
= |M1{p := V }| by def

= |M1| by I.H.

≡ |(futureM1)|

M ≡ 〈flet (p M1) [〈θ2, M2〉]〉
We have the following.

|M{p := V }| ≡ |〈flet (p M1) [〈θ2, M2〉]〉{p := V }|
= |〈flet (p M1{p := V }) [〈θ2{p := V }, M2{p := V }〉]〉|
= |M1{p := V }|+ |[〈θ2{p := V }, M2{p := V }〉]|+ 1 by def

= |M1{p := V }|+ |M2{p := V }|+ 1

= |M1|+ |M2|+ 1 by I.H.

and
|M | ≡ |M1|M2

By the above, we have |M{p := V }| = |M |.

Proof (Lemma 5.15(3)). We will show that when S1 → S2 is the (join) transition, the two states always have the relation
|S1| > |S2|. We assume that S1 ≡ [〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉] and S2 ≡ [〈θ ∪ (θ1{p := V }), E[M1{p := V }]〉],
then we have the followings.

|S1| ≡ |[〈θ, E[〈flet (p V ) [〈θ1, M1〉]〉]〉]|
= |E[〈flet (p V ) [〈θ1, M1〉]〉]| by def

= |E|+ |〈flet (p V ) [〈θ1, M1〉]〉| by the lemma 5.17 (1)

= |E|+ |V |+ |[〈θ, M1〉]|+ 1 by def

= |E|+ |V |+ |M1|+ 1 by def

= |E|+ |M1|+ 1 since |V | is always zero
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and

|S2| ≡ [〈θ ∪ (θ1{p := V }), E[M1{p := V }]〉]
= |E[M1{p := V }]| by def

= |E|+ |M1{p := V }| by the lemma 5.17 (1)

= |E|+ |M1| by the lemma 5.17 (2)

Since |X is a natural number, there is no infinite transition sequence consisting of the (join) transition only. �

Lemma 5.18. Suppose that there is an infinite transition sequence which starts with S1 and contains infinitely many
mandatory transitions. If S1 → S′

1, there is a transition sequence S′
1 → S′

2 → · · · which contains infinitely many
mandatory transitions. �

Proof . Assume that S1 → S′
1, and there is an infinite transition sequence which starts from S1 and contains an infinitely

many mandatory transitions.
By Lemma 5.15 (2), there is an infinite transition sequence S1 → S2 → S3 → · · · which contains only mandatory

transitions. By Lemma 5.15 (3), the transition sequence cannot contain infinitely many consecutive (join) transitions, and
therefore infinitely many mandatory transitions other than the (join) transition must be contained in it.

Here, by Lemma 5.11 (1) and (4), there is an infinite transition sequence S1
? ⇒ S2

? ⇒ S3
? ⇒ · · · , and we have

that Si+1 ⇒ Si
? for any i ≥ 1.

Let i be a natural number such that Si → Si+1 be the first transition in the sequence which is not the (join) transition
(i.e., S1 → S2 → · · · → Si are all (join) transitions). By Lemma 5.11 (5), Si+1 ⇒ Si

? is a speculative transition.
By the fact that Si+1 → Si+2 is a mandatory transition, Si+1 ⇒ Si+1

# is also a mandatory transition. Therefore, by
the lemma 5.11 (5’), we have that the transition Si

? ⇒ Si+1
? is a mandatory transition.

We can apply the same reasoning to the infinite transition sequence starting with Si+1 to show that Si+1
? ⇒ Si+2

? ⇒
· · · has a mandatory transition. Since S1 → S2 → S3 ⇒ · · · contains infinitely many mandatory transitions other that
(join), by iterating the above process, we can show that S1

? ⇒ mxpS2 ⇒ mxpS3 · · · must contain infinitely many
mandatory transitions.

Finally, by the fact S′
1 ⇒ S1

? and Lemma 5.11 (2), there is an infinite transition sequence which starts from S′
1 and

contains infinitely many mandatory transitions. �

Finally, we will show the target theorem of this subsection.

Proof (Theorem 5.6). We assume A1, A2 ∈ evalp(P ), then there are six cases we must consider.

A1 \A2 proper answer ⊥ error
proper answer Case 1 Case 2 Case 3

⊥ Case 2 Case 4 Case 5
error Case 3 Case 5 Case 6

Table 5.1: Combination of Answers

Case 1 is that both A1 and A2 are proper answer (i.e., both are not ⊥ and error). Case 2 is that one of the answers is
a ⊥ and the other is a proper answer. Case 3 is that one of the answers is a error and the other is a proper answer. Case
4 and 6 are that the answers are both ⊥ or error. And Case 5 is that one of the answers is a ⊥ and the other is error.

Case 1
By Lemma 5.5 (confluence), A1 = A2.

Case 2
We assume that A1 is a proper answer and A2 is ⊥. By the assumption, there is an infinite transition sequence
[〈∅, P 〉] ≡ S1 → S2 → · · · which contains infinitely many mandatory transitions, and also there is a transition
sequence S1 = S′

1 → S′
2 → · · · → S′

n+1 = [〈θ, V 〉] where Unload(V ) = A1. We will derive the contradiction of
this case by the induction on the length of the latter transition sequence n.

n = 0
By Lemma 5.1, S1 = S′

1 = [〈∅, V 〉]. Then, there is no mandatory transition form S1 so it is inconsistent.
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n > 0
By Lemma 5.18, there are some infinite transition sequences like S′

2 → · · · which contains infinitely many
mandatory transitions. Since the length of the transition S′

2 →∗ S′
n+1 = [〈θ, V 〉] is n − 1, we can find that it

is inconsistent by I.H. of this lemma.

Case 3
By the assumption, there are two transition sequences: the one starts from S0 and reaches to a stuck state S1,
and the other starts from S0 and reaches to a state S2 ≡ [〈θ, V 〉]. By Lemma 5.5, there is a state S3 such that
S1 →∗ S3 and S2 →∗ S3. Since S1 is a stuck state, S3 is also a stuck state but this derives the contradiction
to the fact that S2 →∗ S3.

Case 4 and 6
In this case, A1 and A2 is trivially equal.

Case 5
We can show that this case is contradict by the same proof of Case 2.

�

5.4.4 Proof of Theorem 5.2
By the above lemmas and theorems, we can prove Theorem 5.2.

Proof (Theorem 5.2). By Theorem 5.1, evals(P ) is a set which only contains an answer A ∈ A. And, by Lemma 5.1
and Theorem 5.6, evalp(P ) can be denoted as {A′} (i.e., it is a set which contains only an answer A′). Since we have
{a} ⊆ {A′} by Lemma 5.3, A = A′. �

5.4.5 Comparison with Other works
Flanagan and Felleisen [17] proposed a calculus which contains future but not any control operators, and showed
confluence of future in their calculus. Moreau [37, 38] extended their proof technique of confluence and proved
confluence of the calculus which have both future and call/cc. Moreau’s work is not a straightforward extension of
Flanagan and Felleisen’s one, because of a technical problem explained below.

To illustrate the problem, let us assume that S1 → S2 and S1 → S3 hold for the following states S1, S2 and S3
4:

S1 = [〈θ, 〈flet (p (call/cc (λk.M))) [〈∅, N〉]〉〉]
S2 = [〈θ, 〈flet (p (call/cc (λk.M))) [〈∅, N ′〉]〉〉] (where [〈∅, N〉]→ [〈∅, N ′〉])
S3 = [〈θ, 〈flet (p M{k := K}) [〈∅, N〉]〉〉] (where K = (λv.(abort 〈flet (p v) [〈∅, N〉]〉)))

Here, the control operator call/cc is used, whose behavior can be defined as follows 5:

[〈θ, E[(call/cc (λk.M))]〉]→ [〈θ, E[M{k := (λv.(abort E[v]))}]〉]
[〈θ, E[(abort V )]〉]→ [〈θ, V 〉]

In his calculus, an expression in the body of an abstraction cannot be reduced so S2 and S3 cannot transit to the same
state. To resolve this problem, Moreau introduced a new binary relation ∼→n which, roughly speaking, means as follows:

When the captured continuation in M1 can be reduced to their counter-part of M2 by the n step reductions,
then M1

∼→n M2.

Although this relation is not transitive, it is not a problem in Moreau’s work (see below for the reason), and by regrading
this relation as an Equivalence relation, he was able to show confluence of his calculus.

Unfortunately, we cannot apply his method to our calculus. While continuations captured by call/cc cannot be
composed (i.e., when a captured continuation is applied, the continuation at that time is discarded), continuations captured
by shift can be composed. This fact implies that we need to compose the binary relation ∼→n to itself, but since it is

4Here, we modified Moreau’s notion to our style.
5The definitions are written in our style.
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not transitive, the composed relation is not ∼→n, and we get stuck. This means that we cannot prove confluence of our
calculus using Moreau’s method.

Instead, we devised a new “proof-method”. By analyzing the above problem, we noticed that we should change the
definition of the transitions so that a flet-term may be reduced in any contexts, in particular, under binders. Surprisingly,
we can apply Takahashi’s parallel reduction method to our calculus and prove confluence under the new definition of the
transition for flet-terms. As a consequence, we can avoid the complicated reasoning about the number of transition steps,
which made our proof much clearer.

In summary, we have changed the definition of the calculus, rather than creating a new proof method, which works
very well in our setting.

5.5 Conclusion of this chapter
In this chapter, we have proposed a new calculus which has both parallelization operator future and delimited-control
operator shift/reset. And we have shown the semantical transparency of the future by defining two abstract
machines and proving the equivalence of the two machines.
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Chapter 6

An Implementation of λftsr

We will explain our study about an implementation of the parallel calculus under the AM-PFSR [55].

6.1 Goal and Overview
This chapter explains an implementation of the language λftsr under the parallel semantics given by AM-PFSR. It is a
proof-of-concept implementation in the sense that we do not aim for processing practical, large-scale applications using
our implementation. Instead, we want to show, by concrete examples, the feasibility and usability of our themes: we
maintain the transparency of the semantics, and at the same time, we get a sufficient level of parallelism.

We designed a compiler as a translator from the calculus λftsr to an existing language which has support for true
parallelism. Using an existing language as the target of the compilation, we can obtain the effect of parallelization
mechanism with minimal cost.

Our compiler (translator) is CPS-translation based, and we chose Erlang as the target language. In the next section,
we describe the translation in detail.

6.2 Overview of The Compiler
Since the primitive shift, reset and future do not exist in Erlang, we have to translate them away through the
compilation.

The reasons that we chose Erlang as the target language are as follows:

Erlang is a functional language
Since Erlang is a functional programming language, it can treat functions as values: functions can be arguments
of functions, which are so called higher-order functions. By CPS translations, the continuations are represented as
functions and are passed as explicit arguments in each function call. Therefore, we need higher-order functions in
the target language.

Erlang can execute programs in truly parallel
Erlang supports parallel executions of programs. This means that, if we have hardware supports for true paral-
lelism, then Erlang programs can be executed in parallel. Furthermore, Erlang’s parallelization process is similar
to our future parallelization: the computation passed to the spawn primitive in Erlang runs in parallel with the
computation which generated the new computation.

Others

Erlang is adopts Call-by-Value strategy
The evaluation strategy of Erlang is Call-by-Value. Our language under the parallel semantics given by AM-
PFSR is also Call-by-Value so it is not too difficult to map computations to target computations.
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Erlang is relatively purely functional
Since Erlang is purely functional with the exception of process computations, we only have to care about
parallelization mechanisms in generate (compiled) programs in terms of side effects. We believe that this fact
makes our implementation be safer than the one with effectful target languages.

The idea of translation is to use a CPS translation. Since the semantics of shift/reset are not different to the
original ones and the translation of shift/reset is proposed by Danvy and Filinski, we use their translation as it is.

The translation of future is a challenge of this implementation. In our semantics, a termE[F [(futureM)]] works
as follows (in the following sequences, we ignore stores):

(1) a communication variable p is generated,

(2) a new process which executes F [p] is generated and its computation starts,

(3) the original process starts the computation M ,

(4) when the term M becomes a value V , the resulting term N of the computation of F [p] is collected, and the original
process begins the computation of E[N{p := V }].

By reflecting the behavior of future described above, the translation of future is given as follows:

[[(futureM)]]
def
= λvκγ.let p = genComVar () in

let () = genProcess(λ().κ p) in

[[M ]] v (λv′γ′.(getResult p) v γ′) γ

To focus on the essence, we have shown a simplified definition above, and will mention a real, more complicated
translation later in this section. The three primitives functions genComVar, genProcess and getResult are as
follows:

genComVar
This primitive function generates a unique communication variable, which is a kind of communication channel used
to pass the result of a computation κ p.

genProcess
This primitive function generates a new process to execute a computation. The generating process and the generated
process can execute each computation in parallel.

getResult
This primitive function gets the result of the computation κ p through the communication variable p.

The actual implementation is more complicated than the above one, because we have to care about the following
issues:

• When shift captures the continuation containing other processes (such cases occur when a term likeF [(future G(Sk.M))]
is evaluated), the substitution of the captured continuation to the variables increase the number of contained pro-
cesses. In our implementation, we devised a mechanism to manage this kind of terms: we do not make copies
of processes. Instead, we execute the continuation only, namely, the surrounding evaluation context of processes
which does not contain processes themselves but contains pointers of the processes.

• In the defined semantics, we can operate mutable cells so each CPS-translated functions must pass the store like
its continuations. Furthermore, we have to implement a mechanism to prevent the simultaneous access by several
processes to the same mutable variable. In our real implementation, each process has own store and can access
mutable variables only if the variables are contained in the store. The computation of the process is blocked when
a process tries to access a mutable variable which is not contained in its store.
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6.3 Implementation Issues
The source language is based on λftsr defined in the previous chapter: the syntax is like Scheme, and the semantics is
based on AM-PFSR. The language is a functional programming language (i.e., functions are higher-order) and it has
shift/reset and future. To enhance the usability of the calculus, we add other basic primitives such as arithmetic
operations, conditional expressions and recursive functions.

The compiler (translator) is written in OCaml. It parses a source program and makes its abstract syntax tree (AST),
then it translate the AST into the target AST. The target AST is output as an Erlang program. We note that the translations
of almost all expressions other than future are based on general 2-CPS translation.

6.4 Running Examples
In this section, we will show some running examples.

6.4.1 Fibonacci Functions
First, we will show the impact of our future by using the Fibonacci functions. We will show two programs the first of
which is the sequential program (future is not used) and the second is its parallelized version.

1 (define (fib n)
2 (if (= n 1) 1
3 (if (= n 2) 1
4 (+ (fib (- n 1)) (fib (- n 2))))))
5
6 (define N 30)
7
8 (let* ((x1 (fib N))
9 (x2 (fib N))

10 (x3 (fib N))
11 (x4 (fib N)))
12 (+ (+ x1 x2) (+ x3 x4)))

These programs simply compute Fibonacci numbers four times. In the following programs, the four Fibonacci com-
putations are parallelized by future.

1 (define (fib n)
2 (if (= n 1) 1
3 (if (= n 2) 1
4 (+ (fib (- n 1)) (fib (- n 2))))))
5
6 (define N 30)
7
8 (let* ((x1 (future (fib N)))
9 (x2 (future (fib N)))

10 (x3 (future (fib N)))
11 (x4 (future (fib N))))
12 (+ (+ x1 x2) (+ x3 x4)))

The result of execution times of these programs are shown in Table 6.1.

number of cores 1 2 3 4
Sequential 14.58 14.48 14.71 14.41

Parallel 14.95 10.09 8.74 8.33

Table 6.1: Execution Times of Fibonacci

The first line of Table 6.1 shows the number of used CPS cores, and the second and third lines show the results of the
sequential program and parallel one respectively.

As we can see the table, the parallelized programs run faster than the sequential one, which means that our future
has a certain speed up by parallelization.
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6.4.2 N-Queen
In this section, we will show N-queen programs to show that we can use shift/reset and future simultaneously.
First we will show the complete program, which is not parallelized.

1 ;; Backtrack mechanism
2 (define fail (lambda (v) (shift (k) 0)))
3
4 (define succeed
5 (lambda (board)
6 (begin (print board)
7 (fail 0))))
8
9 (define pchoose

10 (lambda (lst)
11 (shift (k)
12 (letrec
13 ((loop
14 (lambda (lst)
15 (if (is_null lst)
16 (fail 0)
17 (begin (k (car lst))
18 (loop (cdr lst)))))))
19 (loop lst)))))
20
21 ;; Main part of N-Queen program
22 (define max 10)
23
24 (define make_lst
25 (lambda (n)
26 (letrec ((loop (lambda (i)
27 (if (> i n) ’()
28 (cons i (loop (+ i 1)))))))
29 (loop 1))))
30
31 (define next_board
32 (lambda (board)
33 (let ((next (pchoose (make_lst max))))
34 (append board (list next)))))
35
36 (define is_vert
37 (lambda (board)
38 (letrec ((loop (lambda (xs)
39 (if (is_null (cdr xs)) #f
40 (if (memq (car xs) (cdr xs)) #t
41 (loop (cdr xs)))))))
42 (loop board))))
43
44 (define make_strict_board
45 (lambda (board)
46 (letrec ((loop (lambda (xs)
47 (if (is_null xs) ’()
48 (cons (cons (length xs) (car xs))
49 (loop (cdr xs)))))))
50 (reverse (loop (reverse board))))))
51
52 (define is_skew_pair
53 (lambda (p1 p2)
54 (= (abs (- (car p1) (car p2))) (abs (- (cdr p1) (cdr p2))))))
55
56 (define is_skew_strict
57 (lambda (sbd)
58 (letrec ((loop (lambda (hd tl)
59 (if (is_null tl) #f
60 (if (is_skew_pair hd (car tl)) #t
61 (loop hd (cdr tl)))))))
62 (if (is_null sbd) #f
63 (loop (car sbd) (cdr sbd))))))
64
65 (define is_skew
66 (lambda (board)
67 (is_skew_strict (reverse (make_strict_board board)))))
68
69 (define is_correct
70 (lambda (board)
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71 (not (or (is_vert board) (is_skew board)))))
72
73 (define is_finished
74 (lambda (board)
75 (= (length board) max)))
76
77 (define (search board)
78 (if (is_finished board)
79 (succeed board)
80 (let ((board2 (next_board board)))
81 (if (is_correct board2)
82 (search board2)
83 (fail 0)))))
84
85 (reset (search ’()))

The above program shows the complete N-Queen program which can be compiled by our compiler. Here, the number
of Queen N is defined as 10.

This programs uses shift/reset to implement a backtrack mechanism, which are defined as fail, succeed
and choose functions in the program.

The behavior of the function choose is essentially the same as the flip function in Chapter 2. It gets a list as its
argument and captures the continuation, then it recursively applies the continuation to the element of the argument list.

Next we will show the parallel version of the program.

1 (define pchoose
2 (lambda (lst lc)
3 (shift (k)
4 (letrec
5 ((loop
6 (lambda (lst)
7 (if (is_null lst)
8 (fail 0)
9 (begin (future (k (car lst)))

10 (loop (cdr lst)))))))
11 (loop lst)))))

The above programs shows only the difference of the two programs. The difference is in the choose function (for
readability, we renamed the choose function as pchoose). The third line from the the bottom of the program is a
parallelized point: the application of the continuation to the list element is run in parallel with the other applications of
the other elements of the list.

While this is the one of the simplest parallelization examples of this N-Queen program, this parallelization cannot
work well. This way of parallelization generates a lot of processes, which causes hard load to the hardware. Furthermore,
since each process has too small computation, we cannot obtain the effect of the parallelization.

To address this problem, we write the parallelized choose function as follows.

1 (define depth 1)
2
3 (define pchoose
4 (lambda (lst)
5 (shift (k)
6 (let ((lc (length lst)))
7 (letrec
8 ((loop
9 (lambda (lst)

10 (if (is_null lst)
11 (fail 0)
12 (begin (if (<= lc depth)
13 (future (k (car lst)))
14 (k (car lst)))
15 (loop (cdr lst)))))))
16 (loop lst))))))

This program shows the revised version of parallel choose function. In this implementation, future is invoked
when the program tries to define the first line of the board, i.e., the program generated only N processes.

The results are shown in Table 6.2.
As in the table, the execution times are decreased in the third line.
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number of cores 1 2 3 4
Sequential 19.42 18.85 18.79 18.65

Parallel 23.03 13.77 11.00 9.79

Table 6.2: Execution Times of N-Queen

6.5 Conclusion
We have implemented the parallel semantics defined by AM-PFSR, which lets us execute programs with true parallelism.
Since this implementation is a proof-of-concept one, the impact of parallelizations is not so drastic. The parallelization
by future, however, has shown a certain speed up in our experiments.

We have succeeded to parallelize a certain kinds of program, which were impossible to be executed in parallel if they
were written with call/cc. We, therefore, believe that our thesis that shift/reset is useful in parallel languages
has been substantiated.
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Chapter 7

Conclusion

Control abstractions are an important abstraction for building large and complex programs. In this thesis, we study
delimited-control operators which we think are a better tool theoretically and practically than ordinary (undelimited)
control operators such as call/cc. We have studied the semantic foundation of lambda calculi with delimited-control
operators shift and reset, in particular, direct-style equational axiomatization of the CPS semantics and determinism
in the presence of parallel primitives. We believe that these are important steps to obtain powerful control operators in
future main-stream programming languages.

In Chapter 3, we have successfully shown a sound and complete axiomatization in the equational form for the CbN
calculus with shift/reset. Our axioms make it possible for us to verify programs with shift/reset directly in
direct style. In Chapter 4, we have extended the calculus with layered-shift/reset and connected it with the CbV
variant in term of the thunk translation. This connection has a fruitful consequence which allows us to prove several
important properties, and thus we did not have to re-prove the same properties.

In Chapter 5, we have designed a calculus with shift/reset and a parallel primitives future, and studied its
properties. This calculus is practically interesting because one can express various controlful programs and execute them
in the parallel computing environment very easily. It is also theoretically interesting since the result of a program in
this calculus is the same as that of a program after removing all the occurrences of future, namely, the calculus has a
deterministic semantics. An implication of this result is that control abstraction and parallel computation can coexist in
our calculus.

Finally, we have implemented the parallel semantics in terms of a program translation into Erlang programs, and done
several experiments for concrete programs. The results of these experiments are encouraging; we have obtained a certain
speed-up in a truly parallel computing environment.

The future challenges of our researches are as follows:

Application to more controlful programs
We selected shift/reset to abstract controls since it was proved that they can express all monadic effects.
However, as we described in Chapter 4, there are programs which have more comprehensive control structures,
for example, a program which has both a backtrack and an exception. In those cases, we must use more expressive
control operators such as multi-prompt shift/reset.

From parallel computation to concurrent one
For some applications, one may need concurrent execution rather than parallel ones. Then, shift/reset may
not be useful because the extent of continuations captured by shift is always decided by reset, which may
affect other processes running in parallel. Then, we should consider other control operators for concurrent calculus
such as spawn [24].
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