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Chapter 1

General introduction

For floricultural plants, flower morphology, as well as color and fragrance, is one of the

most important traits determining the commercial value. Most major floricultural plants such

as chrysanthemum, carnation, and rose have larger and more ornamental flowers than the

corresponding wild ancestors. Although Dianthus caryophyllus L., one of the original

species of carnation, has a single flower that is 1–2 cm in diameter, modern carnation

cultivars have double flowers with up to 8 cm diameter. Flowers of these modern cultivars

are much more attractive to consumers than those of D. caryophyllus (Nishijima, 2007;

Nishijima, 2012). Furthermore, 50 years ago, Eustoma grandiflorum was a minor

floricultural plant, with single flowers of size like those of its wild ancestor; however, with

the development of double and larger flowers with diverse colors and patterns, it has

recently been converted into a major floricultural plant (Yashiro, 1994).

Breeding programs aimed at producing ornamental flower morphologies featuring double

and large flowers have been based mainly on mutation breeding and cross pollination.

However, the occurrence of desirable mutants is rare, and in general, mutant phenotypes are

weak or unstable, with long breeding periods required to yield fixed and stable phenotypes

(Nishijima, 2007). For example, more than a thousand years were required to obtain double

and large flowers comparable with those of modern carnation cultivars (Nishijima, 2012;

Takeda, 1996). In E. grandiflorum, in which breeding was initiated after the establishment of

modern breeding techniques including chemical- and radiation-induced mutations and

embryo culture, more than 40 years were required to produce double and large flowers

comparable with those of modern cultivars (Yashiro, 1994). Thus, it is important to develop
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an efficient breeding method that can shorten the breeding period required to improve flower

morphology. Such a breeding method would be useful for creating novel and attractive

flowers in minor floricultural plants in which the attractiveness of the flower is still weak. It

would be helpful to employ molecular techniques such as DNA markers and genetic

transformation. Recently, genetic analysis has made remarkable progress, and the analysis of

genomic information for floricultural plants such as chrysanthemum and carnation is ongoing

(Tanase et al., 2012; Wang et al., 2013). Furthermore, the production of transgenic

floricultural plants and the development of promoters for transgene expression have also

progressed (Chandler and Sanchez, 2012; Potenza et al., 2004; Shibata, 2008). To apply

those molecular tools to improve flower morphology, it is necessary to elucidate the

molecular mechanism responsible for ornamental flower morphologies.

Of the various ornamental flower morphologies, double flowers are produced by homeotic

conversion of the stamens and pistils to petals, induced by mutation of floral homeotic genes.

In general, dicot flowers consist of four organs: sepals, petals, stamens, and pistils. The

identities of these floral organs are determined by the expression patterns of three classes of

floral homeotic genes encoding transcription factors. The relationship between the

expression pattern and floral organ identity is well illustrated by the ABC model (Fig. 1;

Bowman et al., 1991; Coen and Meyerowitz, 1991; Rijpkema et al., 2007). In this model, the

expression of class A genes alone in whorl 1 forms sepals, combined expression of class A

and B genes in whorl 2 forms petals, expression of class B and C genes in whorl 3 forms

stamens, and expression of class C genes alone in whorl 4 forms pistils. Class A and C genes

repress the expression each other and accordingly are not simultaneously expressed in the

same whorl (Drews et al., 1991; Gustafson-Brown et al., 1994). In an Arabidopsis mutant of

the class C gene (AGAMOUS, AG), the stamens and pistils are converted to petals and new

flowers, respectively (Yanofsky et al., 1990). This conversion is caused by the loss of class
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C gene expression and the resulting extension of class A gene expression in whorls 3 and 4,

leading to petal induction via the combined expression of class A and B genes (Drews et al.,

1991). In Antirrhinum majus, two class C genes (PLENA, PLE; FARINELLI, FAR) have been

cloned, and loss of PLE function shows a phenotype in which both stamens and pistils are

converted to petaloid organs (Bradley et al., 1993). In the ple/far double mutant, the pistils

are completely converted to petals (Davies et al., 1999). In transgenic Arabidopsis,

overexpression of class B genes (APETALA3, AP3; PISTILLATA, PI) in all the whorls in the

ag mutant converts the sepals, stamens, and pistils into petals, resulting in a flower that

consists solely of petals (Krizek and Meyerowitz, 1996). The ABC model has been further

extended with D and E genes (Ferrario et al., 2004). In this model, ovules are regarded as

separate floral organs of whorl 5, and the expression of class D genes is responsible for

ovule formation. Class E genes express in whorls 2 to 5 and function as cofactors that are

responsible for the identity of these whorls (Fig. 1).

Cytokinins also play an important role in the regulation of flower morphology. In

Arabidopsis, the number of floral organs, such as petals, stamens, and pistils, is increased by

BA treatment of flower buds (Lindsay et al., 2006; Venglat and Sawhney, 1996). Such an

increase in the number of floral organs is promoted by cytokinin-mediated induction of gene

expression involved in meristematic activity and organ differentiation (Lindsay et al., 2006;

Rupp et al., 1999). In Petunia hybrida, cytokinin induces corolla enlargement via an increase

in cell number (Nishijima, 2012; Nishijima et al., 2006). Furthermore, some genes involved

in cytokinin biosynthesis and early signaling pathways are regulated by a Grandiflora gene,

which is responsible for the large-flowered phenotype in petunia (Ewart, 1984; Nishijima,

2012; Nishijima et al., 2011a, b).

The biosynthetic pathways of cytokinins and their related genes in higher plants have been

well documented (Summarized in Fig. 2; Frébort et al., 2011; Werner and Schmülling, 2009).
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The first step of cytokinin biosynthesis is production of nucleotide cytokinin through

isopentenylation of ATP and ADP, which is catalyzed by isopentenyltransferase (IPT) using

dimethylallyl diphosphate as substrate (Kakimoto, 2001; Takei et al., 2001). Biologically

active cytokinin nucleobases, N6-(Δ2-isopentenyl)adenine (iP) and tZ, are synthesized from

nucleotide cytokinins in a single step, which is catalyzed by cytokinin nucleoside

5′-monophosphate phosphoribohydrolase (LOG; Kurakawa et al., 2007). In another 

suggested pathway, cytokinin nucleobases are synthesized from cytokinin nucleotides by a

two-step reaction, i.e., comprising nucleotidation and nucleosidation (Auer, 2002; Chen and

Kristopeit, 1981) However, the responsible genes remain to be identified. These biologically

active cytokinins are degraded by cytokinin oxidase/dehydrogenase (CKX) through oxidative

isoprenoid side chain cleavage (Schmüllung et al., 2003) or by conjugation to sugar moieties

through glycosyltransferases (Hou et al., 2004). The early cytokinin signal transduction

pathway which consists of a two-component signaling system has also been clarified in

Arabidopsis (Summarized in Fig. 2; Mizuno, 2005; Müller, 2011). Binding of a biologically

active cytokinin to the cytokinin receptor, i.e., receptor histidine protein kinase, induces

His-Asp phosphorelay to histidine phosphotransfer proteins (HPt). The phosphorylated HPt

phosphorylates and activates type-B response regulators (RRs), which act as transcription

factors and induce target gene expression including type-A RRs. Type-A RRs act as a

repressor of cytokinin signaling by competing with phosphorylation of type-B RR which

causes a negative feedback loop to cytokinin signaling (Müller, 2011; Rashotte et al., 2003).

In torenia (Torenia fournieri L.), treatment with forchlorfenuron (CPPU), which inhibits

cytokinin degradation by inhibiting CKX activity (Bilyeu et al., 2001), induces several

different flower morphologies including increase in the number of petals and the

development of a paracorolla and serrated petal margins (Nishijima and Shima, 2006). These

changes in flower morphology are dependent on the floral stage at which CPPU is applied.
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When CPPU is applied at or before the sepal initiation stage (Stage 2), the number of the

petals increases. When CPPU is applied at the sepal development stage (Stage 3) and at the

petal, stamen, and pistil initiation stage (Stage 4), petal-like wide paracorollas are induced.

When CPPU is applied at the early corolla development stage (Stage 5), narrow paracorollas

are induced. When CPPU is applied at the middle corolla development stage (Stage 6) and at

the late corolla development stage (Stage 7), serrated petals are induced (Nishijima and

Shima, 2006). Because CPPU inhibits CKX activity as mentioned above, CPPU may induce a

specific spatial pattern of cytokinin accumulation in flower buds depending on the balance of

cytokinin biosynthesis and degradation. This spatial pattern of cytokinin accumulation may

be the cause of morphological changes in the flower. Of the floral morphologies induced by

CPPU treatment in torenia, the paracorolla is formed in only a few species including

Narcissus and Passiflora (Troll, 1957). Its unique and conspicuous appearance contributes to

the high ornamental value of these species.

Torenia, a Linderniaceae plant (Huxley et al., 1992; Rahmanzadeh et al., 2005), is a

summer annual widely used as a bedding and pot plant in Japan. Torenia is also an excellent

model floricultural plant according to the following reasons. Genome size is small as

approximately 171 Mbp (Kikuchi et al., 2006), which is comparable to that of Arabidopsis

(approximately 157 Mbp: Bennett et al., 2003). Whole genome analysis is currently ongoing

(Higashiyama, personal communication). Observation of flower morphology is easy because

of the moderate flower size, i.e., with 2–3 cm in diameter. In addition, torenia is easily

propagated by cutting and pollination. Life cycle is short, i.e., about 3 months from sowing

to production of mature seeds. Because of high transgenic efficiency (Aida, 2008),

transgenic torenia with extended flower longevity (Aida et al., 1998; Tanase et al., 2011),

modified flower color (Aida et al., 2000; Ono et al., 2006), and plant height (Niki et al.,

2006a) have already been produced. Furthermore, since torenia has little variation in flower
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morphology, improvement of flower morphology may have an impact on commercial value

of this species.

We conducted the following studies to elucidate the molecular mechanism responsible for

the ornamental flower morphologies induced by cytokinin. In Chapter 2, we describe an

investigation of the spatial and temporal distribution patterns of cytokinin signals in

CPPU-treated flower buds in terms of the particular flower morphologies induced. In

Chapter 3, we investigate the role of the expression patterns of floral homeotic genes in the

morphologies of CPPU-induced paracorolla. In Chapter 4, we describe the production of

transgenic torenia, based on the results in Chapters 2 and 3, to characterize the effects of

floral organ-specific promotion of cytokinin biosynthesis on flower morphology. Finally, we

discuss the applicability of this strategy to the production of ornamental flower

morphologies.
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Fig. 1. The ABCDE model determining floral organ identity. Former model, i.e.,
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belong to whorl 4.
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line) or GT (green line). CPPU inhibits CKX activity. ADP, adenosine

5′-diphosphate; AMP, adenosine 5′-monophosphate; ATP, adenosine 5′-triphosphate; 

DMAPP, dimethylallyl diphosphate; CKX, cytokinin oxidase/dehydrogenase; CPPU,

forchlorfenuron; DZ, dihydrozeatin; GT, glycosyltransferase; HK, receptor histidine

protein kinase; HPt, histidine phosphotransfer protein; iP,

N6-(Δ2-isopentenyl)adenine; iPR, iP riboside; iPRDP, iPR 5′-diphosphate; iPRMP, 
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iPR 5′-monophosphate; iPRTP, iPR 5′-triphosphate; IPT, isopentenyltransferase; 
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Be continued

phosphoribohydrolase; RR, response regulator; tZ, trans-zeatin; tZR, tZ riboside;

tZRDP, tZR 5′-diphosphate; tZRMP, tZR 5′-monophosphate; tZRTP, tZR 

5′-triphosphate. 
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Chapter 2

Role of localized cytokinin signal in flower bud in CPPU-induced

ornamental flower morphology

1. Introduction

CPPU is a synthetic cytokinin categorized in diphenylurea type (Mok and Mok, 2001).

CPPU is used as a plant growth regulator for the improvement of the growth and quality of

melon fruit (Ikeda et al., 1990; Hayata et al., 1990), induction of parthenocarpy in

watermelon (Hayata et al. 1991), reduction of puffiness in tomato (Kataoka et al., 1994), and

induction of parthenocarpy in Japanese wild grape (Koiwai et al., 2012). In torenia, CPPU

induces changes in flower morphologies depending on the floral stage at which CPPU is

applied. When CPPU is applied at Stage 3 and Stage 4, primordia of wide paracorollas are

initiated on basal part of young petal at late stage 4. When CPPU is applied at Stage 5,

primordia of narrow paracorollas are initiated on middle part of developing petal at late

Stage 6. When CPPU is applied at Stage 6 and Stage 7, serrated petals are induced at late

Stage 7 (Nishijima and Shima, 2006). CPPU inhibits CKX activity (Bilyeu et al., 2001),

which degrades endogenous cytokinins. Therefore, CPPU may induce localized high

cytokinin concentrations in flower buds, depending on the uneven distribution of cytokinin

biosynthetic activity, leading to morphological changes in flowers. Although it is difficult to

investigate distribution of cytokinin in small young flower buds, distribution of the cytokinin

signals can be determined by monitoring the expression of the cytokinin responsive genes.

Type-A RRs is a candidate gene used for such purpose. The expression of type-A RRs is

rapidly and strongly induced in response to cytokinin, and thus, the expression level reflects
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the extent of the cytokinin signals (Brandstatter and Kieber, 1998; D′Agostino et al., 2000; 

Nishijima et al., 2011b; Taniguchi et al., 1998). In addition, CKX expression is induced by

cytokinin, which functions as negative feedback regulation of cytokinin biosynthesis through

cytokinin degradation (Brugière et al., 2003; Kiba et al., 2005; Nishijima et al., 2011a).

Thus, the expression of type-A RRs and CKXs may be used as indices of cytokinin signals.

In contrast to CPPU treatment, BA treatment induces no morphological change in torenia

flower (Nishijima and Shima, 2006). CPPU activity is 10 times higher than BA in growth of

tobacco callus (Takahashi et al., 1978). Almost similar result has been shown in promotion

of corolla enlargement in petunia, in which CPPU activity is 30 times higher than BA

(Nishijima et al., 2006). However, in induction of morphological changes in torenia flower,

0.3μM CPPU is highly effective, while BA has no effect even at 1mM, the highest 

concentration tested (Nishijima and Shima, 2006). Therefore, CPPU activity is more than

3000 times higher than BA. This great difference in the activity indicates that CPPU and BA

has rather qualitatively-different mode of action to torenia flower.

In this chapter, we isolated type-A RR and CKX genes from torenia and selected ones

highly responsive to cytokinin. This is because the extent of the response to cytokinin differs

greatly among the members of the gene family (D′Agostino et al., 2000; Kiba et al., 2005). 

We investigated the spatial and temporal expression patterns of type-A RRs and CKXs in

CPPU-treated flower buds, and the relationship between the localization of cytokinin signals

and the induction of paracorollas and serrated petals are discussed.

2. Materials and Methods

2.1. Plant materials

Seeds of Torenia fournieri, ‘Dwarf White’ (Sakata Seed Co., Kanagawa, Japan), were
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germinated in horticultural soil (Metro-Mix 350; Sun Gro Horticulture Canada Ltd, British

Columbia, Canada), and the seedlings were transplanted to another horticultural soil

(Kureha-Engei-Baido; Kureha Chemical Industry Co., Ltd., Tokyo, Japan) in plastic pots and

then grown in an incubator kept at 25°C/20°C (day/night) under illumination from

fluorescent lamps of 180 μmol·m−2·s−1 PPFD (12 h light/12 h dark).

2.2. CPPU and BA treatment

The CPPU (Sigma-Aldrich Japan Co., Ltd., Tokyo, Japan) and BA (Wako Pure Chemical

Industries Ltd., Osaka, Japan) solution was prepared in 20% (v/v) acetone (Nishijima and

Shima, 2006). We applied 8 μL of 3 μM CPPU or 8 μL of 100 μM BA solutions to the apex 

of an inflorescence using micropipette. This concentration of CPPU is medial one within the

range of concentrations which effectively induce morphological changes in torenia flower

(Nishijima and Shima, 2006). BA concentration was set 30 times higher than CPPU referring

to the difference of their activities to enlargement of petunia flower (Nishijima et al., 2006).

To ensure the induction of the morphological changes, flower buds longer than 10 mm were

removed before the treatment.

2.3. cDNA cloning of type-A RR and CKX genes and phylogenetic analyses

Young flower buds of torenia were frozen in liquid nitrogen. After homogenizing the

sample with zirconia beads, total RNA was isolated using an RNeasy Plant Mini Kit (Qiagen

Sciences, Germantown, USA) and treated with RNase-Free DNase Set (Qiagen). cDNA was

synthesized using a CapFishing Full-length cDNA Premix Kit (Seegene, Seoul, Korea).

Degenerate primers of type-A RR and CKX genes were designed using highly conserved

regions of each gene, and partial cDNAs were amplified using the degenerate primers.

Degenerate primer sequences were listed in Table 1. Each PCR fragment was cloned into a
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pGEM-T Easy vector (Promega, Madison, WI, USA) and the nucleotide sequence was

analyzed with a BigDye Terminator v3.1 Cycle Sequencing Kit and an ABI PRISM 3100

Genetic Analyzer (Applied Biosystems, Foster City, WI, USA). Based on the sequences of

the PCR fragments, gene-specific primers were designed, and 5′ and 3′ RACE were 

performed using the CapFishing Full-length cDNA Premix Kit (Seegene). To isolate

full-length cDNAs for each gene, PCRs were performed with KOD Plus DNA polymerase

(TOYOBO, Osaka, Japan). Primer sequences used for isolation of full-length cDNAs were

listed in Table 2. The nucleotide sequence of each PCR fragment was analyzed as the same

procedure as described above and registered in the DNA Data Bank of Japan (DDBJ;

http://www.ddbj.nig.ac.jp). Accession numbers of the cloned cDNAs are listed in the legend

for Figs. 3 and 4.

For phylogenetic analyses, the full length of each amino acid sequence of type-A RR or

CKX was used, respectively. Predicted amino acid sequences of the cloned type-A RR or

CKX genes from torenia were compared with those of Arabidopsis by using CLUSTAL W

(http://clustalw.ddbj.nig.ac.jp/top-j.html). The phylogenetic trees were constructed using the

neighbor-joining method and were drawn with NJplot

(http://pbil.univ-lyon1.fr/software/njplot.html).

2.4. Quantitative real-time PCR analysis

Total RNA was isolated separately from the sepals, petals, stamens, and pistils of flower

buds after CPPU or BA treatment and those of non-treated controls using the same procedure

used for cDNA cloning. cDNA was synthesized using a Transcriptor First Strand cDNA

Synthesis Kit (Roche, Mannheim, Germany). Gene-specific primers for TfRR and TfCKX

genes and the actin gene (TfACT3; AB330989), which was used as an internal standard, were

designed for the 3′-terminal regions of the open reading frame and the 3′-untranslated 
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regions of each gene. Primer sequences and the lengths of PCR products used for

quantitative real-time PCR (qPCR) reactions were listed in Table 3. Expression of the genes

was quantified using SYBR Premix Ex Taq (Takara Bio, Shiga, Japan) and qPCR

(LightCycler; Roche). PCR reactions were performed with an initial denaturation step of 10 s

at 95°C, followed by 50 cycles of 5 s at 95°C, 10 s at 60°C, and 5–7 s at 72°C. Fluorescence

was measured at the end of the extension phase at 73°C for TfCKX1 and TfCKX2, at 74°C for

TfCKX3, at 75°C for TfRR2, at 76°C for TfRR1, at 77°C for TfACT3, and at 78°C for TfCKX4

and TfCKX5, to avoid detecting non-specific PCR products. The raw data were analyzed with

LightCycler software version 3.5 (Roche). The plasmids harboring full-length cDNA of TfRR

or TfCKX genes or a partial cDNA fragment of TfACT3 were used to obtain the standard

curves. The ratio of the expression of each gene to that of TfACT3 was calculated.

Expression analyses were conducted independently in triplicate.

2.5. In situ hybridization

Flower buds at 3 or 7 days after CPPU treatment and those of non-treated controls were

used for in situ hybridization. The flower buds were fixed in FAA (50% (v/v) ethanol, 10%

(v/v) formaldehyde, 5% (v/v) acetic acid) at 4°C, then dehydrated through a graded

2-methyl-2-propanol (2M2P) and ethanol series [0:30%, 0:50%, 10:50%, 20:50%, 35:50%,

50:40%, 75:25% (v/v)]. After replacement of ethanol with 2M2P, the tissues were embedded

in paraffin. The tissues were sectioned (8 μm thick) with a rotary microtome (RM2145; 

Leica, Nussloch, Germany). In situ hybridization was performed as described by Hirai et al.

(2007). The sections were dewaxed with xylene, and rehydrated through a graded ethanol

series [100%, 90%, 80%, 70%, 50% (v/v)]. After washing with PBS (0.1 M NaCl, 10 mM

NaH2PO4, 10 mM Na2HPO4, pH 7.4), the sections were treated with 1 μg·mL−1 proteinase K

(Roche) in TE (20 mM EDTA, 0.1 M Tris-HCl, pH 7.5) at 37°C for 30 min and the reaction



- 15 -

was stopped by washing with PBS containing 0.2% glycine. After washing with PBS, the

sections were acetylated in 0.1 M triethanolamine HCl (pH 8.0) and 0.25% acetic anhydride

for 20 min. After incubation with 1% Triton X-100 in PBS and further washing with PBS,

the sections were pre-hybridized at room temperature for 2 h in 150 μL hybridization buffer 

containing 50% formamide, 4× saline-sodium citrate (SSC), 1× Denhardt’s solution, 1

mg·mL−1 Escherichia coli tRNA, and 0.5 mg·mL−1 salmon sperm DNA, and then hybridized

with gene-specific digoxigenin (DIG)-labeled antisense or sense (control) RNA probes for

TfRR1 or TfCKX5. The RNA probes were prepared from PCR fragments with the T7 and SP6

promoter sequence of each gene with a DIG RNA Labeling Kit (Roche). The PCR fragments

were generated with the primers listed in Table 4. DIG-labeled RNAs were synthesized by

T7 (for sense probe) or SP6 (for anti-sense probe) RNA polymerases with a DIG RNA

Labeling Kit (Roche). After purification by ethanol precipitation, the RNAs were used as

probes. Hybridization was performed with each probe at a concentration of 800 ng·mL−1 in

hybridization buffer at 62°C overnight. After hybridization, the sections were washed in 0.2×

SSC at 65°C for 2 h, and then in NT buffer (0.15 M NaCl, 0.1 M Tris-HCl, pH 7.5) at room

temperature. After treatment with 1% blocking reagent (Roche) for 1 h, the sections were

incubated with diluted (1:500) anti-DIG-AP (Roche) for 1 h. Chemical staining was

performed with NBT/BCIP solution (Roche). Hybridization analyses were conducted

independently in triplicate using independent CPPU-treated flower buds.

3. Results

3.1. cDNA cloning and phylogenetic analyses of torenia type-A RR and CKX genes

Two type-A RR (TfRR1 and 2) and five CKX (TfCKX1, 2, 3, 4, and 5) genes were isolated

from torenia cDNA. The deduced amino acid sequences of the isolated genes were highly
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homologous to Arabidopsis type-A RRs (ARRs) and CKXs, respectively. In addition to the

conserved amino acid sequence of Asp and Lys that needs His-Asp phosphorelay (Fig. 3),

the short C-terminal sequence without a GARP domain suggested that TfRR1 and 2 are

type-A RRs (D′Agostino et al., 2000; Mizuno, 2005). In amino acid sequences of C-terminal 

region, TfRR1 had a characteristic Asp, Ser, and Thr rich sequences as those of ARR7 and

ARR15 (D′Agostino et al., 2000). All TfCKXs had a conserved FAD binding domain and 

cytokinin binding domain (Schmülling et al., 2003).

The phylogenetic analysis showed that TfRR1 belonged to the same clade as ARR5, 6, 7,

and 15 which are known to be induced by cytokinin and repressed specifically in the shoot

apex by WUSCHEL (D′Agostino et al., 2000; Leibfried et al., 2005), and TfRR2 belonged to

the same clade as ARR16 and 17 (Fig. 4A). Similarly, TfCKX1, 2, 3, 4, and 5 were

homologous to AtCKX6, AtCKX5, AtCKX7, AtCKX1, and AtCKX3, respectively (Fig. 4B).

3.2. Induction of TfRR and TfCKX genes in floral organs by CPPU treatment

The results of qPCR analyses showed low expression of TfRR1 in all floral organs of

non-treated flower buds; however, CPPU treatment increased the expression approximately

4-fold in the stamen and pistil, approximately 8-fold in the sepal, and approximately 10-fold

in the petal, respectively (Fig. 5A). In contrast, TfRR2 expression was very low and

induction of the expression by CPPU was unclear (Fig. 5A). Of all TfCKXs, TfCKX5 was

more highly expressed than the other TfCKXs in all floral organs of non-treated flower buds,

suggesting that TfCKX5 mainly functions in the flower of torenia (Fig. 5B). Furthermore, the

expression of TfCKX5 was clearly induced by CPPU treatment in all floral organs, whereas

no induction of TfCKX1, TfCKX2, or TfCKX4 was observed in any floral organ. Although

TfCKX3 was induced by CPPU in the sepal and petal, the expression was much lower than

that of TfCKX5 (Fig. 5B).
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3.3. Expression profiles of TfRR1 and TfCKX5 in CPPU or BA-treated flower buds

The expression of TfRR1 was induced from 1 day after CPPU treatment in all floral organs

(Fig. 6A). The expression was maintained at a high level until 5 days after the treatment, and

decreased 7 days after the treatment (Fig. 6A). Approximately the same expression pattern

was observed in TfCKX5; expression was induced from 12 h after the treatment in the petal,

1 day in the stamen and pistil, and 2 days in the sepal and was maintained at a high level

until 5 days and decreased 7 days after the treatment (Fig. 6B). In contrast, BA treatment

increased the expression of both TfRR1 and TfCKX5 1–3 h after the treatment only in the

sepal, and the level decreased to the same level observed in the control 6 h after the

treatment (Fig. 6A, B). The expression level of those genes in the petal, stamen, and pistil

was not changed by BA treatment (Fig. 6A, B).

3.4. Spatial pattern of TfRR1 and TfCKX5 expression in CPPU-treated flower buds

To clarify the distribution pattern of cytokinin signals when wide (Fig. 7A-k) and narrow

paracorollas (Fig. 7B-k) or serrated petal (Fig. 7C-k) are induced, expression of TfRR1 and

TfCKX5 in flower buds after CPPU treatment at the sepal development stage (Stage 3), the

early corolla development stage (Stage 5), and the middle corolla development stage (Stage

6) was analyzed.

The results of in situ hybridization showed that, in non-treated flower buds of Stage 3 and

4, weak signals of both TfRR1 and TfCKX5 were detected in the stamen and pistil primordia

(Fig. 7A-a, b, d, f, g, i). When CPPU was applied to flower buds at Stage 3, strong

expression of both TfRR1 and TfCKX5 was detected in the stamen and pistil primordia 3 days

after the treatment and the area of expression extended to the adaxial side of the sepals (Fig.

7A-c, h). In particular, TfCKX5 was strongly expressed in the abaxial side of the stamen
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primordia, which is the site of initiation of the wide paracorolla (Fig. 7A-h). At 7 days after

CPPU treatment, when the primordia of the wide paracorollas were initiated, strong

expression of both TfRR1 and TfCKX5 was observed not only in the stamen and pistil

primordia, but also in the primordia of the wide paracorollas (Fig. 7A-e, j).

Low expression of both TfRR1 and TfCKX5 was detected in the stamen and pistil

primordia at Stage 5 of non-treated flower buds, and the expression was limited to the anther

and ovule at Stage 7 (Fig. 7B-a, b, d, f, g, i). When CPPU was applied to flower buds at

Stage 5, both genes were strongly expressed in the stamen and pistil 3 days after the

treatment. TfRR1 was expressed in the entire petal, whereas TfCKX5 was strongly expressed

in the middle and basal parts of the petal; the middle part of the petal is the site of initiation

of the narrow paracorolla (Fig. 7B-c, h). In the flower buds 7 days after CPPU treatment,

strong expression of both TfRR1 and TfCKX5 was observed in the stamen and pistil;

however, expression was limited to the anthers and ovule, as observed in non-treated flower

buds (Fig. 7B-d, e, i, j). Furthermore, strong expression of both genes was observed in the

middle to the apical part of the petal, whereas the expression level was low in the basal part

of the petal (Fig. 7B-e, j).

When CPPU was applied to flower buds at Stage 6, both TfRR1 and TfCKX5 were strongly

expressed in the anther, pistil, and middle to apical part of the petal 3 days after the

treatment, whereas weak expression of both genes was detected in the anther and ovule of

non-treated flower buds (Fig. 7C-a, b, c, f, g, h). However, the expression of both genes in

CPPU-treated flower buds was very low at the basal part of both the petal and stamen (Fig.

7C-c, h). The site of high expression of both genes 7 days after CPPU treatment was limited

to the apical part of the petal, which corresponds to the limb of the opened flower (Fig. 7C-e,

j).
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4. Discussion

The expression of TfRR1 and TfCKX5 is markedly increased in all floral organs by CPPU

treatment, suggesting these genes function as indicators of cytokinin signals. Furthermore,

the expression profiles of TfRR1 and TfCKX5 in CPPU and BA-treated floral organs clearly

show that cytokinin signals are greatly increased by CPPU treatment and the high level

continues until 5 days after the treatment when the earliest CPPU-induced morphological

changes in flower buds were observed (Nishijima and Shima, 2006). It has been shown that

BA treatment caused no morphological change in torenia (Nishijima and Shima, 2006).

Those observations coincide with the results that cytokinin signals were not elevated by BA

treatment except in the sepal (Fig. 6A, B). Flower buds of torenia are completely enclosed

with the sepals after initiation of the stamen and pistil (Stage 4). The chemical solution was

not seemingly translocated into the other floral organs after being absorbed by the sepals;

thus, elevation of cytokinin signals by BA treatment may have been limited to the sepals

(Fig. 6A, B). In contrast, CPPU might have been translocated to other floral organs, and its

effects were long-lasting in flower buds (Fig. 6A, B). Different chemical structures between

BA and CPPU might cause the different extent of translocation and lasting (Mok and Mok,

2001). BA, which has an isoprenoid side chain, may markedly be degraded by CKX activity

elevated by BA treatment. In contrast, CPPU, a diphenylurea compound, is not degraded by

CKX (Bilyeu et al., 2001).

These results also indicate that cytokinin signals are elevated by CPPU treatment at the

paracorolla initiation site. When CPPU was applied to flower buds at Stage 3, cytokinin

signals were elevated on the abaxial side of the stamen primordia, which is the site of

initiation of the wide paracorolla, although high levels of cytokinin signals were also

observed in the petals (Figs. 7A-c, e, h, j and 8). When CPPU was applied to flower buds at
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Stage 5, cytokinin signals were elevated in the petal and stamen at first, and later the

elevated cytokinin signals were occurred in the middle part of the petal, which is the site of

initiation of the narrow paracorolla (Figs. 7B-c, e, h, j and 8). The wide paracorollas of

torenia are formed at the abaxial and lateral side of the stamen primordia (Nishijima and

Shima, 2006). The narrow paracorollas are also formed on the lateral side of the stamen;

however, the primordia of the narrow paracorollas are relatively separate from the stamen,

because they are formed on the border between the limb and tube of a rather developed petal.

Since the basal part of the stamen is fused with the tube in torenia, the basal part of the

narrow paracorolla may be fused with the petal tube. Thus, the narrow paracorolla is

seemingly formed just at the lateral side of the stamen, similar to the wide paracorolla,

concerning its fusion to the tube. CPPU elevated cytokinin signals at the abaxial side of the

basal part of the stamen when the wide paracorollas were induced, and at the middle and

basal part of the petal and basal part of the stamen when the narrow paracorollas were

induced (Figs. 7A, B and 8). These results suggest that the high level of cytokinin signals in

CPPU-treated flower buds is localized to the site where the stipule of the stamen, i.e., the

paracorolla, originates.

Localized auxin accumulation called ‘localized auxin maxima’ at the site of organ

formation acts as a trigger of the organogenic process (Benková et al., 2003; Reinhardt et al.,

2000). Cytokinins modulate the spatial distribution of auxin via regulation of auxin efflux,

and it is evident that spatial distribution of distinct endogenous cytokinin levels is necessary

to form localized auxin maxima (Pernisová et al., 2009), although the detailed relationship

between the distribution pattern of endogenous cytokinin and that of auxin maxima is still

unknown. In this experiment, CPPU caused localized strong cytokinin signals in flower buds

of torenia, which was not observed in untreated flower buds (Fig. 7). Thus, it is probable that

ectopic auxin maxima were formed by CPPU treatment, which triggered extra organ
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formation, i.e., the paracorolla formation.

In contrast to the spatial distribution of the high levels of cytokinin signals observed when

paracorolla was induced (Figs. 7A-c, h, 7B-c, h and 8), high levels of cytokinin signals were

limited to the middle to apical part of the petal when the serrated petal was induced by CPPU

(Figs. 7C-c, h, and 8). CPPU changes the arrangement of vascular bundles from an

intensively branched arrangement to a non-branched parallel one in the whole limb, which

causes the serrated petals (Nishijima and Shima, 2006). Therefore, the site of CPPU-induced

high levels of cytokinin signals, i.e., the whole limb, corresponds to the site of the

morphological changes causing the serrated petal, i.e., changes in the spatial arrangement of

vascular bundles (Figs. 7C and 8).

In summary, CPPU induces marked long-term elevation of cytokinin signals in flower

buds, inducing changes in flower morphology. Furthermore, localization of high levels of

cytokinin signals to the sites of morphological changes at specific floral stages induces

formation of the paracorolla and serrated petals. It may accordingly be possible to induce a

desired flower morphology by localizing cytokinins to a particular site in flower buds at an

appropriate floral stage. For example, a wide paracorolla is induced when cytokinin

accumulates at the abaxial side of stamen primordia at the sepal development stage, a narrow

paracorolla is induced when cytokinin accumulates in the region from the basal part of the

stamen to the middle of the petal during the early corolla development stage, and serrated

petals are induced when cytokinin accumulates in the limb at the middle corolla development

stage.
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Target gene Direction Primer sequence

TfRRs forward 5'-CAYGTIYTIGCIGTIGAYGA-3'

reverse 5'-YTSIGCICCYTCYTCIARRCA-3'

TfCKXs forward 5'-GTIKCIGCIMGIGGICAIGGICA-3'

forward 5'-TGGACIGAYTAYYTIYAYYTIACIGTIGG-3'

forward 5'-GGIGGIYTIGGICARTTYGGIRTIATHAC-3'

forward 5'-TGGGAIGTICCICAYCCITGGYTIAA-3'

forward 5'-CCIGTITCITGGACIGAYTAYTTRTA-3'

reverse 5'-TGICCIGGIGMIARIAKIGYYHKIGGRTC-3'

reverse 5'-TTIARCCAIGGRTGIGGIACITCCCA-3'

reverse 5'-GTDATIAYICCRAAYTGICCIARICCICC-3'

reverse 5'-TGICCIGGIGAYAAIAGIITYTTIGGRTCRAA-3'

Table 1. Primers used for isolation of cDNAs of TfRR and TfCKX genes.
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Target gene Direction Primer sequence

TfRR1 forward 5'-TTACCTCTCATCACTGTAACGCA-3'

reverse 5'-AATGAAACAACTGACTTGGAAATTC-3'

TfRR2 forward 5'-TACTATGATTCTGTAGGTTGGCGT-3'

reverse 5'-GCAGCGCACCTCAATTATAAG-3'

TfCKX1 forward 5'-TTCCCCTCCTCATCTTACACC-3'

reverse 5'-TTGCCATAAAGCGTCGAAAT-3'

TfCKX2 forward 5'-CACAAAATCACGCACTGACACA-3'

reverse 5'-CAGAATAATTAACAATTACCATTGCG-3'

TfCKX3 forward 5'-CTTTCCTTCCTACGGTCAAATC-3'

reverse 5'-TGAAGCAAAGGCAGGACTAAC-3'

TfCKX4 forward 5'-ACTTTCAAGAATCTCGACAGCA-3'

reverse 5'-AATTCGATAGTAAAAGCGCATA-3'

TfCKX5 forward 5'-ACCACACTAAAATCATACTCTCCTC-3'

reverse 5'-CCACTAATATTAAAAATGTAAACTCCAC-3'

Table 2. Primers used for isolation of full-length cDNAs of TfRR and TfCKX genes.
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Target gene Product

length

Direction Primer sequence

TfRR1 155 bp forward 5'-AGATTATTAGTTGTTCTCCTCTGT-3'

reverse 5'-CTTGGAAATTCAACCACATCA-3'

TfRR2 155 bp forward 5'-GCTGCAATGTTGAAGAACATG-3'

reverse 5'-CAGCGCACCTCAATTATAAG-3'

TfCKX1 124 bp forward 5'-CCCATATCAGTTTTGTGACACA-3'

reverse 5'-CATACTTACAGTTGTTGAGGAGGA-3'

TfCKX2 158 bp forward 5'-CCGTTGATTAATCCTAGTG-3'

reverse 5'-AGAGAGACAATCACGATACATC-3'

TfCKX3 169 bp forward 5'-TCAAGAAATTGGAAGAAGGCC-3'

reverse 5'-CCAATATATAATTCATTTCCCCACT-3'

TfCKX4 146 bp forward 5'-CCAAAGACTTGGAACAACAGTG-3'

reverse 5'-GATTGCTCTACATCTGAGAGACC-3'

TfCKX5 117 bp forward 5'-AGAAAGTTGAAGTTCGATCCCG-3'

reverse 5'-TTACATTCCACAGACCACAACTG-3'

TfACT3 145 bp forward 5'-TGCAGTAAAGTGTATTGTGGAAG-3'

reverse 5'-GGAACTATCTGGGTAGGATC-3'

Table 3. Primers used for qPCR analysis of TfRR and TfCKX genes.



Table 4. Primers used to synthesize probes for in situ hybridization analysis of TfRR1 and
Target gene Product

length

Direction Primer sequence

TfRR1 180 bp forward 5'-GAATAATACGACTCACTATAGGGTCAGAG

ATTTCGTTATCAAAGGC-3'

reverse 5'-TGCATTTAGGTGACACTATAGAAATGAAA

CAACTGACTTGGAAATTC-3'

TfCKX5 154 bp forward 5'-GAATAATACGACTCACTATAGGGCTGCTG

TTGTACCAGATGAAGAC-3'

reverse 5'-TGCATTTAGGTGACACTATAGAACCACTA

ATATTAAAAATGTAAACTCCAC-3'

TfCKX5 genes.
- 25 -

T7 and SP6 promoter sequences were underlined.
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Fig. 3. Amino acid sequence of receiver domain of torenia type-A response

regulator (RR) and the sequence homology with Arabidopsis type-A RR.

Asterisks represent conserved amino acid sequences in RRs for phosphorelay.

Accession numbers were as follows: torenia type-A RR genes, TfRR1,

AB740033; TfRR2, AB740034; Arabidopsis type-A RR genes, ARR3,

At1g59940; ARR4, At1g10470; ARR5, At3g48100; ARR6, At5g62920;

TfRR1 HVLAVDDSLVDRKVIEKLFKISSCKVTAVESGSRALQYLGL-----DGDL
TfRR2 HVLAVDDNLIDRTIVEKLLKNSSCKVTTVENGRRALEYLGL-------GD
ARR3 HVLAVDDSLVDRIVIERLLRITSCKVTAVDSGWRALEFLGL---------
ARR4 HVLAVDDSLVDRIVIERLLRITSCKVTAVDSGWRALEFLGL---------
ARR5 HVLAVDDSMVDRKFIERLLRVSSCKVTVVDSATRALQYLGL---------
ARR6 HVLAVDDSHVDRKFIERLLRVSSCKVTVVDSATRALQYLGL---------
ARR7 HVLAVDDSIVDRKVIERLLRISSCKVTTVESGTRALQYLGL---------
ARR8 HVLAVDDSLFDRKMIERLLQKSSCQVTTVDSGSKALEFLGL--RVDDNDP
ARR9 HVLAVDDSLFDRKLIERLLQKSSCQVTTVDSGSKALEFLGLRQSTDSNDP
ARR15 HVLAVDDSFVDRKVIERLLKISACKVTTVESGTRALQYLGL---------
ARR16 HVLAVDDNLIDRKLVERLLKISCCKVTTAENALRALEYLGL-------GD
ARR17 HVLAVDDNLIDRKLVERILKISSCKVTTAENGLRALEYLGL---------

TfRR1 NDANNSVGSYEGVKLNLIVTDYSMPGMTGFELLQKIKGSKALREIPVVVM
TfRR2 DQNISSDDNAAASKVNMIITDYCMPGMTGYELLKKIKESSVMKDVPVVIM
ARR3 DDDKAA-VEFDRLKVDLIITDYCMPGMTGYELLKKIKESTSFKEVPVVIM
ARR4 DNEKAS-AEFDRLKVDLIITDYCMPGMTGYELLKKIKESSNFREVPVVIM
ARR5 DGENNSSVGFEDLKINLIMTDYSMPGMTGYELLKKIKESSAFREIPVVIM
ARR6 DVEEKSV-GFEDLKVNLIMTDYSMPGMTGYELLKKIKESSAFREVPVVIM
ARR7 DGGKGAS-NLKDLKVNLIVTDYSMPGLSGYDLLKKIKESSAFREVPVVIM
ARR8 NALSTSPQIHQEVEINLIITDYCMPGMTGYDLLKKVKESAAFRSIPVVIM
ARR9 NAFSKAPVNHQVVEVNLIITDYCMPGMTGYDLLKKVKESSAFRDIPVVIM
ARR15 DGDNGSS-GLKDLKVNLIVTDYSMPGLTGYELLKKIKESSALREIPVVIM
ARR16 QNQHIDALTCNVMKVSLIITDYCMPGMTGFELLKKVKESSNLREVPVVIM
ARR17 GDPQQTDSLTNVMKVNLIITDYCMPGMTGFELLKKVKESSNLKEVPVVIL

TfRR1 SSENVLARIDRCLEEGAEEFLVKPVKLSDVKRLRD
TfRR2 SSENVPTRINKCLEEGAEMFMLKPLKHSDMKKLKC
ARR3 SSENVMTRIDRCLEEGAEDFLLKPVKLADVKRLRS
ARR4 SSENVLTRIDRCLEEGAQDFLLKPVKLADVKRLRS
ARR5 SSENILPRIDRCLEEGAEDFLLKPVKLADVKRLRD
ARR6 SSENILPRIDRCLEEGAEDFLLKPVKLSDVKRLRD
ARR7 SSENILPRIQECLKEGAEEFLLKPVKLADVKRIKQ
ARR8 SSENVPARISRCLEEGAEEFFLKPVKLADLTKLKP
ARR9 SSENVPARISRCLEEGAEEFFLKPVRLADLNKLKP
ARR15 SSENIQPRIEQCMIEGAEEFLLKPVKLADVKRLKE
ARR16 SSENIPTRINKCLASGAQMFMQKPLKLADVEKLKC
ARR17 SSENIPTRINKCLASGAQMFMQKPLKLSDVEKLKC

*

*

*
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Be continued

ARR7, At1g19050; ARR8, At2g41310; ARR9, At3g57040; ARR15, At1g74890;

ARR16, At2g40670; ARR17, At3g56380. Identical and homologous amino acid

was indicated by light blue and blue letters, respectively.
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Fig. 4. Phylogenetic tree of type-A RR and CKX in torenia and Arabidopsis. Bootstrap

values from 1000 replicates are indicated near the branching points. Accession numbers

of CKX genes were as follows: torenia CKX genes, TfCKX1, AB740035; TfCKX2,

AB740036; TfCKX3, AB740037; TfCKX4, AB740038; TfCKX5, AB740039;

Arabidopsis CKX genes, AtCKX1, At2g41510; AtCKX2, At2g19500; AtCKX3,

At5g56970; AtCKX4, At4g29740; AtCKX5, At1g75450; AtCKX6, At3g63440;

AtCKX7, At5g21482. Accession numbers of type-A RR genes were the same as
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described in legend of Fig. 3.
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Fig. 5. Quantitative real-time PCR analyses of TfRR and TfCKX in floral organs 2 days

after CPPU treatment. The expression levels of TfRRs (A) and TfCKXs (B) are shown

as values relative to that of TfACT3, which was used as an internal standard. Open and

gray columns indicate non-treated and CPPU-treated floral organs, respectively.
- 29 -

Vertical bars indicate SE (n = 3).
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Fig. 6. Quantitative real-time PCR analyses of TfRR1 and TfCKX5 in CPPU or

BA-treated floral organs. The expression levels of TfRR1 (A) and TfCKX5 (B) are

shown as values relative to that of TfACT3, which was used as an internal standard.

Open circles, closed circles, and gray squares indicate non-treated control, CPPU or
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BA-treated flower buds, respectively. Vertical bars indicate SE (n = 3).
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Be continued
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Fig. 7. In situ hybridization of TfRR1 and TfCKX5 in flower buds treated with CPPU.

CPPU treatment induces formation of a wide paracorolla in (A), a narrow paracorolla in

(B), and a serrated petal margin in (C). CPPU-treated flower buds were collected at 3 (c,

h) or 7 days (e, j) after the treatment, whereas non-treated flower buds were collected at

the corresponding stage (a, b, d, f, g, i). The representative data at each floral stage

inducing each flower morphology are shown. Panel k shows flower morphology induced

by CPPU treatment at each floral stage. Panel b, d, g, and i in (B) are the same as a, b, f,

and g in (C), respectively, because each shows the same stage of non-treated flower

buds. Floral stages were defined as described in Nishijima and Shima (2006): Stage 3,

development of sepals; Stage 4, initiation of sex organs and petals; Stage 5, early corolla

development; Stage 6, middle corolla development; Stage 7, late corolla development.
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Triangles represent the initiation site of paracorollas. Scale bars = 200 μm. 
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Chapter 3

Role of floral homeotic genes in the regulation of CPPU-induced

paracorolla morphology

1. Introduction

The paracorolla is a floral organ observed only in several species. Morphology of the

paracorolla has some variety, e.g., synpetalous infundibular one in Narcissus, acropetalous

one in A. majus, or acerose one in Passiflora. The decorative appearance of the paracorollas

contributes to the unique attractiveness of these species. Morphologically, the paracorolla

resembles the petals; however, it originates from the stipule of the stamen in Narcissus,

Asclepias, and A. majus, and from the receptacle in Passiflora (Troll, 1957; Yamaguchi et al.,

2010). In A. majus, the paracorolla belongs to whorl 3 as in the stamen because of its origin

from the stipule of the stamen. However, the anatomical characteristics of the paracorolla are

petaloid, and the expression of floral homeotic genes shows petal-like pattern (Yamaguchi et

al., 2010). Thus, paracorolla morphology is regulated by the expression patterns of floral

homeotic genes as in the other floral organs.

In CPPU-treated torenia, the paracorollas are formed on lateral sides of the stamen. This

arrangement is identical to that of leaf and leaf bases which develop into the stipules. Thus,

CPPU-induced paracorollas apparently originate from the stipule of the stamen as in A.

majus (Nishijima and Shima, 2006; Yamaguchi et al., 2010). The paracorollas have two

different morphologies depending on the floral stage at CPPU treatment, i.e., wide and

narrow paracorollas (Nishijima and Shima, 2006). The wide paracorollas are pigmented with

anthocyanin and morphologically resembles the petals. In contrast, the narrow paracorollas
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have a stamen-like, slender morphology. Some of the narrow paracorollas are unpigmented

like the filament of the stamens, while the others are pigmented like the petals. Thus, it

appears that floral homeotic genes are involved in the regulation of paracorolla morphology.

In this chapter, we anatomically analyzed the two types of torenia paracorolla in terms of

the identity as floral organs. Furthermore, we isolated and analyzed the expression patterns

of floral homeotic genes in CPPU-treated flower buds. Based on these results, the role of

floral homeotic genes in the regulation of paracorolla morphology is discussed.

2. Materials and Methods

2.1. Plant materials

Plant materials and growth conditions were the same as described in Chapter 2.2.1.

2.2. CPPU treatment

Preparation and treatment of CPPU were the same as described in Chapter 2.2.2. Flower

buds longer than 8 mm were removed before the treatment, because paracorolla formation is

not induced in developed flower buds.

2.3. Morphological analyses

Flowers with and without paracorollas were used for morphological analyses. The raw

flower was directly subjected to scanning electron microscopy (SEM; VE-7800, Keyence,

Osaka, Japan) to observe the surface structure.

For the anatomical analyses, the floral organs were fixed, dehydrated, and embedded in

paraffin as described in Chapter 2.2.5. Transverse sections (10 μm thick) of the 

paraffin-embedded tissues were prepared with a rotary microtome (Leica). The sections were
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dewaxed and rehydrated as described in Chapter 2.2.5. After staining with 0.5% (w/v)

toluidine blue, the tissues were observed by stereomicroscopy.

For observations of vascular bundles, fixed samples were immersed twice in 70% (v/v)

ethanol for 1 h, then incubated for 1 h in a chloral hydrate solution (chloral hydrate, 8 g;

glycerol, 1 mL; distilled water, 4 mL) to make the tissues transparent. The samples were then

subjected to dark-field stereomicroscopy.

2.4. cDNA cloning of floral homeotic genes and phylogenetic analysis

The methods for total RNA isolation from young flower buds using an RNeasy Plant Mini

Kit (Qiagen) and RNase-Free DNase Set (Qiagen), and cDNA synthesis using a CapFishing

Full-length cDNA Premix Kit (Seegene) were the same as described in Chapter 2.2.3.

Degenerate primers of the floral homeotic genes were designed using highly conserved

regions of each class of floral homeotic genes, and partial cDNAs were isolated using the

degenerate primers. Degenerate primer sequences were listed in Table 5. The nucleotide

sequence of each cDNA fragment was analyzed as same procedure as in Chapter 2.2.3. Based

on the sequences of the PCR fragments, gene-specific primers were designed and 5′ and 3′ 

RACE were performed, and full-length cDNAs for each gene were isolated as same

procedure as in Chapter 2.2.3. using the primers listed in Table 6. The nucleotide sequence

of each PCR fragment was analyzed and registered in DDBJ. Accession numbers are listed in

the legend for Fig. 11.

Phylogenetic analysis was performed using predicted amino acid sequences of the cloned

floral homeotic genes from torenia and those from other plants as the same procedure as

described in Chapter 2.2.3.

2.5. In situ hybridization
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Flower buds 7 days after CPPU treatment and those of controls not treated with CPPU

were used for in situ hybridization. The samples were fixed and embedded in paraffin, and

the tissues were sectioned (8 μm thick) as described in Chapter 2.2.5. In situ hybridization

was performed as described in Chapter 2.2.5, except the hybridization temperature and the

method of RNA probe preparation were modified.

Gene-specific DIG-labeled antisense or sense (control) RNA probes were prepared from

vectors harboring PCR fragments of each floral homeotic gene with the DIG RNA Labeling

Kit (Roche). The PCR fragments inserted into the pGEM-T Easy vector (Promega) were

generated with the primers listed in Table 7. The vectors were cut by Nae I and Spe I

restriction enzymes when used with T7 RNA polymerase or Nco I and Pvu II restriction

enzymes for SP6 RNA polymerase. DIG-labeled RNAs were synthesized by either of the

RNA polymerases with a DIG RNA Labeling Kit (Roche). After purification by ethanol

precipitation, the RNAs were used as probes. Hybridization was performed with each probe

at a concentration of 800 ng·mL−1 in hybridization buffer at 65°C overnight. Washing to

detection procedures after hybridization were the same as described in Chapter 2.2.5.

Hybridization analyses were conducted independently in triplicate using independent

CPPU-treated flower buds.

2.6. Quantitative real-time PCR analysis

The methods for total RNA isolation from the sepals, petals, paracorollas, stamens, and

pistils of flower buds with or without CPPU treatment using an RNeasy Plant Mini Kit

(Qiagen) and RNase-Free DNase Set (Qiagen), and cDNA synthesis using a CapFishing

Full-length cDNA Premix Kit (Seegene) were the same as described in Chapter 2.2.4.

Gene-specific primers for torenia floral homeotic genes were designed for the 3′-terminal 

regions of the open reading frame and the 3′-untranslated regions of each gene. Primer 
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sequences and the lengths of PCR products used for qPCR reactions were listed in Table 8.

As described in Chapter 2.2.4, TfACT3 was used as an internal standard. qPCR and data

analysis was performed as the same procedure as described in Chapter 2.2.4. Fluorescence

was measured at the end of the extension phase at 75°C for TfSQUA and TfFAR, at 76°C for

TfDEF, at 77°C for TfGLO and TfACT3, and at 79°C for TfPLE1, to avoid calculating

non-specific PCR products. The ratio of the expression of each floral homeotic gene to that

of TfACT3 was calculated. Expression analyses were conducted independently in triplicate.

3. Results

3.1. Morphological analyses of the paracorollas

Wide paracorollas were colored with anthocyanin and morphologically resembled the petal

(Fig. 9a, b). The narrow paracorollas had various morphologies, typically flat, a spoon-like

top with a cylindrical base, or a rod with two lobes (Fig. 9c–e). The narrow paracorollas with

two lobes at the tip morphologically resembled the two anthers developed at the tip of the

filament (Fig. 9e, f). The narrow paracorollas were either colored like the petal or colorless

like the stamen (Fig. 9a, c–e). Thus, the narrow paracorollas had either stamen-like or

petal-like morphological characteristics.

Observing the surface structure by SEM showed that conical cells were arranged on the

petal epidermis (Fig. 10a), whereas the epidermis of the filament of the stamen had slender

cells and a smooth surface (Fig. 10e). Conical cells were arranged on the epidermis of the

wide paracorollas as in the petal (Fig. 10b). In contrast, the epidermis of the narrow

paracorollas had either conical or slender cells (Fig. 10c, d). Within the category of the

narrow paracorollas, wider ones as shown in Fig. 9c tended to have conical epidermal cells,

while narrower ones as shown in Fig. 9d and 9e tended to have slender epidermal cells. This
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indicates that the epidermis of the narrow paracorollas is either petal- or filament-like.

Analyses of transverse sections of the floral organs showed that the parenchyma of the

petals had sparsely distributed round cells (Fig. 10f). In contrast, densely distributed slender

cells were observed in the parenchyma of the filament (Fig. 10i). In the wide paracorollas,

parenchyma with sparsely distributed round cells resembled that of the petal (Fig. 10g). In

the parenchyma of the narrow paracorollas, cells were distributed sparsely as in the petal;

however, the cells were slender like those of the filament (Fig. 10h). Within the category of

the narrow paracorollas, wider ones, as shown in Fig. 9c, tended to have parenchyma

morphologically resembling that of the wide paracorollas, while narrower ones, as shown in

Fig. 9d and 9e, tended to have parenchyma morphologically resembling that of the filament.

Furthermore, observation of vascular bundles showed that the petal had thin and

extensively branched vascular bundles (Fig. 10j). In contrast, thick and unbranched bundles

were observed in the filament (Fig. 10o). The wide paracorollas had extensively branched

vascular bundles like the petal (Fig. 10k), while thick and scarcely branched bundles were

observed in the narrow paracorollas (Fig. 10l). The narrow paracorollas with a stamen-like

morphology, such as the cylindrical paracorolla and the paracorolla with two lobes, had thick

and unbranched vascular bundles like the filament (Fig. 10m, n).

These results indicate that the wide paracorollas induced by CPPU treatment have the

same morphological and anatomical characteristics as in the petal (Figs. 9b and 10b, g, k),

whereas the narrow paracorollas have either petal-like or stamen-like characteristics (Figs.

9c–e and 10c, d, h, l–n).

3.2. cDNA cloning and phylogenetic analysis of floral homeotic genes from torenia

To investigate whether the petal- and stamen-like characteristics observed in the wide and

narrow paracorollas are controlled by floral homeotic genes, we isolated the floral homeotic
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genes from torenia. One class A gene, two class B genes, and two class C genes were

isolated from torenia cDNA. The results of a database search using the deduced amino acid

sequences suggested that all of the isolated genes had MADS and K domains, which are

highly conserved in MADS-box genes (Fig. 11). These torenia genes were classified into

predicted classes by phylogenetic analysis based on the deduced amino acid sequences of

MADS-box floral homeotic genes in other plant species (Fig. 12). Furthermore, the euAP1

motif and farnesylation motif, which are conserved in euAP1 class A genes (Litt and Irish,

2003), were contained at the C-terminal of TfSQUA (Fig. 11A). AG motif I and II, which are

conserved in class C genes (Kramer et al., 2004), were contained at the C-terminal of both

TfPLE1 and TfFAR (Fig. 11C). In class B genes, the PI motif in TfGLO and both the PI

motif-derived sequence and euAP3 motif in TfDEF, which are conserved in class B genes,

have been shown at the C-terminal of each gene (Sasaki et al., 2010; Fig. 11B); thus, these

genes probably function as floral homeotic genes. Since these genes have a high similarity to

those of A. majus, which like torenia belongs to the Lamiales, these genes were designated as

TfSQUA, TfDEF, TfGLO, TfPLE1, and TfFAR (Fig. 12).

3.3. Expression analyses of floral homeotic genes in CPPU-induced paracorollas

The results of in situ hybridization of floral homeotic genes at the initiation of the wide

paracorollas showed strong and clearly localized signals; however, at the initiation of the

narrow paracorollas, the signals detected were relatively weak and their localizations were to

some extent obvious (Fig. 13). In the primordia of the wide paracorollas, the class A gene,

TfSQUA, was highly expressed in the basal position (Fig. 13A). Class B genes, TfDEF and

TfGLO, were also highly expressed throughout the primordia (Fig. 13B). These expression

patterns were the same as those observed for the petal (Fig. 13A, B). Low expression of class

C genes TfPLE1 and TfFAR was detected at the margin of the primordia (Fig. 13C).
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However, in the primordia of the narrow paracorollas, TfSQUA and TfPLE1 showed low

expression only at the margin (Fig. 13A, C), while both TfDEF and TfGLO were expressed

throughout the primordia (Fig. 13B). No substantial expression of TfFAR was detected (Fig.

13C). The organs used for in situ hybridization were selected based on SEM images of

flower buds at the same developmental stages (Fig. 13D).

In the later stages of floral organ development, the results of qPCR analyses showed that,

in the wide paracorollas, TfSQUA, TfDEF, and TfGLO were highly expressed, as in the petal

(Fig. 14A, B), while TfPLE1 and TfFAR, which were highly expressed in the stamen and

pistil, had low expression, as in the sepal and petal (Fig. 14C). In the narrow paracorollas,

TfDEF and TfGLO were also highly expressed, as in the petal and the wide paracorollas (Fig.

14B); however, TfSQUA expression was low, as in the stamen (Fig. 14A). Expression of

TfPLE1 and TfFAR was also low, as in the sepal and petal (Fig. 14C).

4. Discussion

Of the CPPU-induced paracorolla, class A and B genes were mainly expressed in the

primordia of the wide paracorollas, suggesting petal-like expression patterns render wide

paracorolla petaloid organs (Figs. 13A–C and 15). In contrast, class B genes were mainly

expressed in the primordia of the narrow paracorollas (Fig. 13A–C). These expression

patterns became more distinct during the later stages of paracorolla development (Fig. 14).

That is, expression of both class A and C genes was low in the narrow paracorollas, as in the

stamen and the petal, respectively, while class B genes were highly expressed, as in the petal

and wide paracorolla (Fig. 14). This expression pattern may make the identity of the

paracorolla unstable, because it is neither a petal nor stamen expression pattern (Fig. 15).

Furthermore, this expression pattern may reflect the mixed petal and stamen morphological
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characteristics of the narrow paracorollas (Figs. 9c–e and 13A–C). Thus, these results

indicate that the expression patterns of floral homeotic genes at paracorolla primordia

initiation determine paracorolla morphology (Fig. 15).

Because CPPU accumulates endogenous cytokinin in plant tissue, high concentrations of

endogenous cytokinin induce paracorolla formation in torenia (Nishijima and Shima, 2006).

It is known that the expression of floral homeotic genes is regulated by cytokinin (Estruch et

al., 1993; Li et al., 2002). The effect of the elevated cytokinin level on the expression of

floral homeotic genes could not be investigated because the CPPU-untreated flower buds had

no paracorolla. However, it is unlikely that the elevated cytokinin level directly regulates the

expression patterns of floral homeotic genes observed for the wide and narrow paracorollas,

because CPPU treatment did not markedly change the expression of floral homeotic genes in

the other floral organs, i.e., the sepals, petals, stamens, and pistils (Figs. 13 and 14).

As described above, paracorollas induced by CPPU treatment in torenia probably originate

from the stipule of the stamen, like A. majus (Nishijima and Shima, 2006; Yamaguchi et al.,

2010); therefore, the paracorollas belong to the same whorl as the stamen. In A. majus, class

B and C genes are expressed in the anther, all of the class A, B, and C genes are expressed in

the filament, and class A and B genes are expressed in the petaloid paracorolla. This gradient

of expression pattern in the same whorl is critical for the paracorolla to develop into a

petaloid organ (Yamaguchi et al., 2010). It has also been reported that the expression pattern

of floral homeotic genes differs between the tube and limb of the petal in torenia (Niki et al.,

2006b); therefore, the different expression patterns of floral homeotic genes in the wide and

narrow paracorollas may have been caused by the site where they were formed. The wide

paracorollas were initiated at the basal end of the petal during the early developmental stage

(Fig. 13D). In this position, class A and B genes were expressed (Fig. 13A–C). The narrow

paracorollas were formed in the middle sections of more developed petals (Fig. 13D). Class
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B genes were mainly expressed at this site, while the expression of both class A and C genes

was low, as in the stamen and the petal, respectively (Fig. 13A–C). These expression

patterns persisted during subsequent flower development (Niki and Nishijima, 2008, Fig.

14). These data clearly suggest that the expression pattern of floral homeotic genes in

paracorollas is determined by the site where the paracorolla is formed.

In summary, these results suggest that the expression pattern of floral homeotic genes

determines paracorolla morphology, and the expression pattern in paracorollas is determined

by the site where the paracorolla is formed. Paracorolla morphology may thus be artificially

changed via changes in the expression of floral homeotic genes at the primordia initiation

site using mutagenesis or transgenic technologies.
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Target gene Direction Primer sequence

Class A genes forward 5'-ATGGGIAGRGGIARRGTISARYTRA-3'

reverse 5'-CATIAGRTTYTTYCTIGWICGDAT-3'

Class B genes forward 5'-ATGGCIMGWGGIAARATYCARATYAA-3'

reverse 5'-TCITCICCYTTYARRTGYCTIAG-3'

reverse 5'-TTYTTYYTRDWIGTITCRRTYTGRKT-3'

Class C genes forward 5'-ATGGGIMGIGGIAARATYGARATHAA-3'

reverse 5'-ARBAIYTCRTTYTTYTTIGMYCKDA-3'

reverse 5'-TCYCTYYTYTGCATRWRITCDAYYTC-3'

Table 5. Degenerate primers used for isolation of cDNAs of floral homeotic genes.
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Target gene Direction Primer sequence

TfSQUA forward 5'-CCATTTTTAGGGATAACATCT-3'

reverse 5'-CATAGGCATCTCATGTTCGAT-3'

TfDEF forward 5'-TCTCTATACCTCACCTCGAGAGT-3'

reverse 5'-AACAAAGCAACATTGCACC-3'

TfGLO forward 5'-TTCCTTGGAGGGGTTTCTAGT-3'

reverse 5'-GAAAACATGGGAACAAACTCGT-3'

TfPLE1 forward 5'-CTGCAACTCTCCTGTCCACAA-3'

reverse 5'-GAACAAAAGCCATGCAATGA-3'

TfFAR forward 5'-CTTTCTGCATCAACCATCCC-3'

reverse 5'-GTAAATAATTGTCCCTTGACTTC-3'

Table 6. Primers used for isolation of full-length cDNAs of floral homeotic genes.
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Target gene Product

length

Direction Primer sequence

TfSQUA 481 bp forward 5'-AACCAGCTCATACAGGATTCA-3'

reverse 5'-GCGTTGTTTTGTTGCATCT-3'

TfDEF 499 bp forward 5'-ACAGGAATCTGAAGAGGGA-3'

reverse 5'-GCCCTACGAAATTAGTAGTACC-3'

TfGLO 479 bp forward 5'-GCAGATTGAGCTCAGGCA-3'

reverse 5'-AAGGTTTTGGCTTAACGAGAG-3'

TfPLE1 498 bp forward 5'-GGAACTCAAGAACATGGAGTCA-3'

reverse 5'-ACAAGTACGAGGAGAAATTGAGG-3'

TfFAR 481 bp forward 5'-CATAACAAGAACATGCTCGGTG-3'

reverse 5'-GAACAAACATAATCAGCAGAGGATC-3'

Table 7. Primers used to synthesize probes for in situ hybridization analysis of floral

homeotic genes.
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Target gene Product

length

Direction Primer sequence

TfSQUA 151 bp forward 5'-GCTTTGCTGCATGATGATATA-3'

reverse 5'-GCGTTGTTTTGTTGCATCT-3'

TfDEF 103 bp forward 5'-GGTACTACTAATTTCGTAGGG-3'

reverse 5'-TAATATGGATCGAAATCATC-3'

TfGLO 111 bp forward 5'-CGAATCTTCAGGAACGTTTC-3'

reverse 5'-AAGGTTTTGGCTTAACGAGAG-3'

TfPLE1 172 bp forward 5'-CCTTTGGCTGTTAGGATG-3'

reverse 5'-GACACAGCCCGAGTCGATGAG-3'

TfFAR 129 bp forward 5'-ATGGGATCCTCTGCTGATTAT-3'

reverse 5'-TTCAAATTGAACAACACATGG-3'

Table 8. Primers used for qPCR analysis of floral homeotic genes.
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Fig. 9. Morphology of a CPPU-induced paracorolla compared with a petal and stamen.

The wide and colored paracorollas resembling the petal were grouped as ‘wide

paracorollas’, while the narrow paracorollas resembling the filament were grouped as

‘narrow paracorollas’. Samples are as follows: Petal (a); wide paracorolla (b); narrow

paracorolla (c, d, e); stamen (f). Petals and stamens were collected from flowers not
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treated with CPPU. Scale bars = 1 mm.
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Fig. 10. Microscopic analyses of CPPU-induced paracorollas. (upper row) Scanning

electron micrographs of the adaxial face; (middle row) Photomicrographs of transverse

sections; (lower row) Photo of vascular bundles. Samples are as follows: Petal (a, f, j);

the wide paracorolla (b, g, k); the narrow paracorolla (c, d, h, l, m, n); stamen (e, i, o).

Photo of c and g represents the narrow paracorolla of Fig. 9c, and photo of d and h

represents the narrow paracorolla of Fig. 9d and e. Petals and stamens were collected
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from flowers not treated with CPPU. Scale bars = 100 μm (a–i) and 1 mm (j–o). 



- 50 -

TfSQUA ISNELDLTLDSLYSCHLGCFAA
AmSQUA RRNELDLTLDSLYSCHLGCFAA
AP1 RRNDLELTLEPVYNCNLGCFAA

TfSQUA MGRGKVQLRRIENKINRQVTFSKRRGGLLKKAHEISVLCD
AmSQUA MGRGKVQLKRIENKINRQVTFSKRRGGLLKKAHELSVLCD
AP1 MGRGRVQLKRIENKINRQVTFSKRRAGLLKKAHEISVLCD

TfSQUA AEVALIVFSHKGKLFEY
AmSQUA AEVALIVFSNKGKLFEY
AP1 AEVALVVFSHKGKLFEY

(A) Class A genes

euAP1
motif

MADS domain

farnesylation
motif
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Be continued

TfDEF IALRYVPNHHHHHPSLHGGGGCGGSDLTTFALLE
AmDEF IALRLPTNHH------PTLHSGGGSDLTTFALLE
AP3 YALRFHQNHHHYYP-NHGLHAPSASDIITFHLLE
TfGLO -----------QMPFAFRVQPMQPNLQE
AmGLO -----------QMPFAFRVQPMQPNLQE
PI -----------DGQFGYRVQPIQPNLQE

TfDEF MARGKIQIKRIENQTNRQVTYSKRRNGLFKKAHELTVLCD
AmDEF MARGKIQIKRIENQTNRQVTYSKRRNGLFKKAHELSVLCD
AP3 MARGKIQIKRIENQTNRQVTYSKRRNGLFKKAHELTVLCD
TfGLO MGRGKIEIKRIENSSNRQVTYSKRRNGIMKKAKEISVLCD
AmGLO MGRGKIEIKRIENSSNRQVTYSKRRNGIMKKAKEISVLCD
PI MGRGKIEIKRIENANNRVVTFSKRRNGLVKKAKEITVLCD

TfDEF AKVSIIMISSTQKLHEY
AmDEF AKVSIIMISSTQKLHEY
AP3 ARVSIIMFSSSNKLHEY
TfGLO ARVSVIIFASSGKMQEY
AmGLO AHVSVIIFASSGKMHEF
PI AKVALIIFASNGKMIDY

(B) Class B genes

PI motif-derived
sequence

MADS domain

euAP3
motif

PI motif
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Be continued

Fig. 11. Alignment of amino acid sequences of floral homeotic genes in torenia, A.

majus, and Arabidopsis. (A) Class A, (B) class B, (C) class C genes. Accession

numbers were as follows: Class A genes; AmSQUA (Antirrhinum majus), X63701;

AP1 (Arabidopsis thaliana), Z16421; TfSQUA (Torenia fournieri), AB359949:

Class B genes; AmDEF (Antirrhinum majus), X52023; AmGLO (Antirrhinum

majus), X68831; AP3 (Arabidopsis thaliana), M86357; PI (Arabidopsis thaliana),

D30807; TfDEF (Torenia fournieri), AB359951; TfGLO (Torenia fournieri),

AB359952: Class C genes; AG (Arabidopsis thaliana), NM_118013; AmFAR

(Antirrhinum majus), AJ239057; AmPLE (Antirrhinum majus), S53900; TfFAR

(Torenia fournieri), AB359953; TfPLE1 (Torenia fournieri), AB359954.

TfPLE1 YDARNFMAMNLLDPTDQH---YSCQDQTPLRLV
TfFAR ARSGNYLQVNNLQQPTSTNNYPARHDQTSLHLV
AmPLE YDVRNFLPMNLMEPNQQQ---YSRHDQTALQLV
AmFAR FDARNYLQVNGLQPNND----YPRQDQLPLQLV
AG FDSRNYFQVAALQPNNHHYSSAGRQDQTALQLV

TfPLE1 M---DFPNDESESSRKNGRGKIEIKRIENTTNRQVTFCKR
TfFAR MEIQSDQSREISPQRKNGRGKIEIKRIENTTNRQVTFCKR
AmPLE M---EFPNQDSESLRKNGRGKIEIKRIENITNRQVTFCKR
AmFAR MASLSDQSTEVSPERKIGRGKIEIKRIENKTNQQVTFCKR
AG MAYQSELGGDSSPLRKSGRGKIEIKRIENTTNRQVTFCKR

TfPLE1 RNGLLKKAYELSVLCDA
TfFAR RNGLLKKAYELSVLCDA
AmPLE RNGLLKKAYELSVLCDA
AmFAR RNGLLKKAYELSVLCDA
AG RNGLLKKAYELSVLCDA

(C) Class C genes

AG
motif I

MADS domain

AG
motif II
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Be continued

Motifs conserved in each class of floral homeotic genes were boxed. Identical and

homologous amino acid was indicated by light blue and blue letters, respectively.
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Fig. 12. Phylogenetic tree of homeotic genes in torenia and other plant species. The

neighbor-joining tree was generated based on amino acid sequences using CLUSTAL

W, and was drawn with NJplot. Bootstrap values from 100 replicates are indicated near

the branching points. Accession numbers were the same as described in legend of Fig.

11 and follows: Class A genes; CAL (Arabidopsis thaliana), L36925; FUL

(Arabidopsis thaliana), U33473; NtAP1-1 (Nicotiana tabacum), AF009126; ZmAP1

(Zea mays), L46400: Class B genes; PhDEF (Petunia hybrida), DQ539416; PhGLO1

(Petunia hybrida), M91190; PhTM6 (Petunia hybrida), DQ539417; pMADS2 (Petunia

hybrida), X69947; ZmMADS29 (Zea mays), AJ292961; ZmSILKY1 (Zea mays),

AF181479: Class C genes; PhFBP6 (Petunia hybrida), X68675; pMADS3 (Petunia

hybrida), X72912; SHP1 (Arabidopsis thaliana), NM_001084842; ZAG1 (Zea mays),
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L18924; ZMM2 (Zea mays), AF112149.
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Fig. 13. In situ hybridization of homeotic genes in flower buds at paracorolla initiation.

Gene-specific antisense RNA probes of a class A gene (A), class B genes (B), and class

C genes (C) were used. Spatial distributions of floral organs at the paracorolla

initiation stage are shown by scanning electron micrographs (D). CPPU-treated flower

buds were collected at paracorolla initiation, while untreated buds were collected at the

corresponding stage. N1, untreated flower buds at the same stage as C1; C1,
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CPPU-treated flower buds at wide paracorolla initiation; N2, untreated flower buds at



Be continued
the same stage as C2; C2, CPPU-treated flower buds at narrow paracorolla initiation.

Triangles represent wide paracorollas (△) and narrow paracorollas (▲). Scale bars =
- 56 -

100 μm. Pe, Petal; St, Stamen.
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Fig. 14. Quantitative real-time PCR analyses of homeotic genes in CPPU-treated

floral organs. The relative expression levels of class A (A), class B (B), and

class C (C) genes are shown as values relative to that of TfACT3, which was used

N
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as an internal standard. Vertical bars indicate SE (n = 3).
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Fig. 15. Hypothetical role of floral homeotic genes in the identification of floral organs

and the regulation of paracorolla morphology. The darkness of the belts indicates the

extent of expression.
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Chapter 4

Improvement of flower morphology through localized promotion of

cytokinin biosynthesis in flower bud

1. Introduction

In Chapter 2, it was shown that the spatial distribution of elevated cytokinin signals

changes depends on the floral stage at CPPU application, which causes induction of specific

flower morphologies. In Chapter 3, it was further shown that the morphological differences

observed in CPPU-induced torenia paracorollas are regulated by the expression patterns of

floral homeotic genes at the site where the paracorolla is formed. It will thus be possible to

induce a desired flower morphology by the localization of cytokinins to a particular site of

flower buds at an appropriate floral stage. A wide paracorolla can be induced if cytokinin is

accumulated, at the sepal development stage, at the abaxial side of stamen primordia in

which class A and B floral homeotic genes are expressed. A narrow paracorolla can be

induced if cytokinin is accumulated in the region from the basal part of the stamen to the

middle of the petal, in which class B floral homeotic genes are expressed during the early

corolla development stage. Serrated petals can be induced when cytokinin is accumulated in

the limb of the petal at the middle corolla development stage.

For application of those hypothetical strategies to floricultural plants, it is difficult to

obtain a breeding line accumulating cytokinin in specific floral organs by conventional

breeding methods, including mutation breeding and cross pollination. CPPU treatment is also

difficult for practical use because the chemical must be precisely applied at a specific floral

stage to obtain the desired uniform flower morphology. The production of genetically
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modified plants expressing a cytokinin biosynthesis gene under the control of a floral

organ-specific promoter would accordingly be an effective tool.

The first step of cytokinin biosynthesis catalyzed by IPT is thought to be a rate-limiting

step in higher plants (Kakimoto, 2001; Takei et al., 2001). In Arabidopsis, nine genes

encoding IPT have been cloned, and transgenic plants overexpressing these genes show

elevated concentrations of endogenous cytokinins (Sakakibara et al., 2005). Furthermore, the

application of a promoter of floral homeotic genes would be useful for inducing transgenes

in a floral organ-specific manner. The floral homeotic genes APETALA1 (AP1) and

APETALA3 (AP3) are specifically expressed in whorls 1 and 2 and whorls 2 and 3,

respectively (Jack et al., 1992; Mandel et al., 1992). Therefore, transgenic plants expressing

IPT under the control of the promoters of these genes would specifically elevate cytokinin

concentration and cytokinin signals in the sepals and petals and in the petals and stamens,

respectively (Fig. 16).

In this chapter, we introduced Arabidopsis IPT (AtIPT4) into torenia under the control of

AP1 or AP3 promoters to clarify the effects of floral organ-specific promotion of cytokinin

biosynthesis on flower morphology. On the basis of the results, a strategy to produce

ornamental flower morphologies with genetic engineering is discussed.

2. Materials and Methods

2.1. Plant materials

Torenia fournieri, ‘Crown Violet’ (Takii Seed Co., Kyoto, Japan), was used for

transformation. Plant materials were aseptically maintained in a plant box supplemented with

1/2 Murashige and Skoog medium containing 3% sucrose (Aida et al., 2000).

For cloning of Arabidopsis genes, seeds of Arabidopsis thaliana were germinated and the
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seedlings were grown as described in Chapter 2.2.1, and then grown an incubator kept at

20°C under illumination from fluorescent lamps of 70 μmol·m−2·s−1 PPFD (16 h light/8 h

dark).

2.2. Plasmid construction and transformation of torenia

For cloning AtIPT4 in Arabidopsis thaliana (AB061402), the methods for total RNA

isolation from flower buds and young flowers (Miyawaki et al., 2004) using an RNeasy Plant

Mini Kit (Qiagen) and RNase-Free DNase Set (Qiagen), and cDNA synthesis using a

CapFishing Full-length cDNA Premix Kit (Seegene) were the same as described in Chapter

2.2.3. For cloning Arabidopsis AP1 (At1g69120) and AP3 (At3g54340) promoters, genomic

DNA was isolated from young Arabidopsis leaves using ISOPLANT II (Wako). The open

reading frame of AtIPT4 and the 5′-upstream region of Arabidopsis AP1 and AP3 were

amplified using PCR with KOD Plus DNA polymerase (TOYOBO) with the primers

including an Eco RI site listed in Table 9. All PCR fragments were digested using Eco RI,

subsequently the AtIPT4 fragment was ligated with the AP1 or AP3 fragment. The fragments

produced were amplified by PCR using the primers listed in Table 9. These fragments were

cloned into a pENTR/D-TOPO vector (Invitrogen, Carlsbad, CA, USA) and then transferred

into a destination vector pGWB1 (Fig. 16; Nakagawa et al., 2007), which was derived from

the plant transformation vector pBI101, using the Gateway LR clonase reaction (Invitrogen).

Transformation of torenia was performed as described by Aida and Shibata (1995, 2001).

Plant materials were vegetatively reproduced by herbaceous cuttings and grown at 25°C with

illumination from fluorescent lamps (85 μmol·m−2·s−1 PPFD; 16 h light/8 h dark cycle). The

vectors were introduced into torenia by Agrobacterium-mediated method. After selection

with kanamycin and hygromycin, transformants were planted in horticultural soil (Kureha) in

plastic pots and grown in a greenhouse under natural light at 25°C/20°C (day/night). Plants
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showing any changes in flower morphology were selected, and their T2 generations were

obtained by selfing; the plants were used for subsequent investigations. Seeds of transgenic

plants were germinated, planted and grown in the greenhouse as described in Chapter 2.2.1.

2.3. Morphological analysis of flower bud development

For observation of the morphological changes that occurred in the developing flower buds,

the flower buds at the sepal development stage (Stage 3), the stamen and pistil initiation

stage (Stage 4), the early corolla development stage (Stage 5), and the middle corolla

development stage (Stage 6) were fixed, dehydrated through a graded ethanol series, and

replaced with 2M2P as described in Chapter 2.2.5. The samples were freeze-dried in 2M2P,

and analyzed by SEM (Keyence).

2.4. Quantitative real-time PCR analysis

The methods for total RNA isolation from the sepals, petals, stamens, and pistils of the

flower buds at Stage 6 from transgenic and non-transgenic plants using an RNeasy Plant

Mini Kit (Qiagen) and RNase-Free DNase Set (Qiagen), and cDNA synthesis using a

CapFishing Full-length cDNA Premix Kit (Seegene) were the same as described in Chapter

2.2.4. Gene-specific primers for AtIPT4 were designed for the 3′-terminal regions of the 

open reading frame and the 3′-untranslated regions of the gene. Primer sequences and the 

lengths of the PCR products used for qPCR reactions of AtIPT4 were listed in Table 10. The

primers for TfRR1, TfCKX5, and TfACT3, as an internal standard, were the same as described

in Chapter 2.2.4. qPCR and data analysis was performed as the same procedure as described

in Chapter 2.2.4. Fluorescence was measured at the end of the extension phase at 76°C for

TfRR1, at 77°C for TfACT3, at 78°C for TfCKX5, and at 80°C for AtIPT4, to avoid

calculating non-specific PCR products. The ratio of the expression of each gene to that of
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TfACT3 was calculated. Expression analyses were conducted independently in triplicate.

2.5. Analysis of endogenous cytokinins

Endogenous cytokinins were extracted separately from the sepals, petals, stamens, and

pistils at the late corolla development stage (Stage 7) from transgenic and non-transgenic

plants. The methods used for cytokinin analysis were the same as those described by Dobrev

and Kaminek (2002) and Nishijima et al. (2011a). Each floral organ (0.2–0.6 gFW) was

homogenized in liquid nitrogen and extracted in ice-cold MeOH/water/formic acid (15/4/1,

v/v/v), which includes 1 ng of each internal standard, [2H6] iP, [2H5] tZ, [2H6] iP riboside

(iPR), and [2H5] tZ riboside (tZR) (OlChemim, Olomouc, Czech Republic). After overnight

extraction at −20°C, solids were separated using centrifugation. The extract was passed 

through a Sep-Pak tC18 cartridge (Waters, Milford, MA, USA) and evaporated to near

dryness. The residue was dissolved in 1 M formic acid and applied to an Oasis MCX column

(Waters). The column was sequentially eluted with MeOH, 0.35 M NH4OH, and 0.35 M

NH4OH in 60% (v/v) aqueous MeOH. The eluent with 0.35 M NH4OH in 60% (v/v) aqueous

MeOH comprising cytokinin nucleobases, cytokinin nucleosides, and cytokinin glucosides

was evaporated to dryness. The dried sample was then dissolved in 10% aqueous MeOH

containing 0.05% acetic acid and analyzed using a liquid chromatography–tandem mass

spectrometry system (LC/MS/MS, model 2695/TSQ7000; Waters/Thermo Fisher Scientific,

Waltham, MA, USA) coupled with positive ion electrospray ionization. Cytokinins were

separated using an ODS column (MD, 5 μm, 2.5 mm × 250 mm; Shiseido Fine Chemicals, 

Tokyo, Japan) at a flow rate of 0.2 mL·min−1 with gradients of solvents A (MeOH containing

0.05% acetic acid) and B (water containing 0.05% acetic acid) as follows: 0 min, 10% A +

90% B; 45 min, 80% A + 20% B; and 55 min, 100% A. The column temperature was 35°C.

Quantification was performed in selected ion recording mode. The ionization voltage was 4.7
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kV, the capillary temperature was 200°C, and the collision energy was −22 to −34 V 

depending on the cytokinin species. Data were analyzed using Xcaliber software (Thermo

Fisher Scientific). Endogenous cytokinins were quantified by the internal standard method

using the corresponding deuterated cytokinins. Quantification of endogenous cytokinins was

conducted independently and in triplicate.

3. Results

3.1. Changes of the flower morphology of transgenic torenia

Several morphological changes were induced in the flowers of both AP1::AtIPT4 and

AP3::AtIPT4 plants, and these traits were inherited. The number of petals in AP1::AtIPT4

plants was increased to 6–7 (Fig. 17b) from the characteristic 5 petals of the normal type

(NT) plants (Fig. 17a). The number of sepals was increased to 5–7 in AP1::AtIPT4 plants,

whereas the NT plants had 5 sepals. In contrast, the number of stamens and pistils remained

unchanged. In AP3::AtIPT4 plants, the number of petals increased to 5–6 (Fig. 17c, d),

although the increase was moderate compared with AP1::AtIPT4 plants (Fig. 17b). In

addition, remarkable petal expansion and serrated petal margins were observed in

AP3::AtIPT4 plants (Fig. 17c, d), but not in NT plants (Fig. 17a). Furthermore, extra floral

organs resembling petals were observed on the corolla (Fig. 17d). AP3::AtIPT4 plants had

4–5 stamens compared with the 4 stamens of NT plants, but the number of sepals and pistils

was unchanged.

In Stage 3 of floral development, both NT and AP3::AtIPT4 plants had 5 sepals (Fig. 18a,

o); however, AP1::AtIPT4 plants had more than 6 sepals (Fig. 18h). In the initiation stage of

the stamen and pistil (Stage 4), the receptacle was larger in both AP1::AtIPT4 and

AP3::AtIPT4 plants (Fig. 18i, p) compared with NT plants (Fig. 18b). Furthermore, the
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receptacle of AP3::AtIPT4 plants became markedly larger than those of NT and AP1::AtIPT4

plants at Stage 5 (Fig. 18c, j, q). In Stage 5 and early Stage 6, increase in the number of petal

primordia, was observed in AP1::AtIPT4 plants (Fig. 18c, d, g, j, k, n). The staminoid of

AP3::AtIPT4 plants was also larger than that of the NT and AP1::AtIPT4 plants (Fig. 18c, d,

j, k, q, r). In late Stage 6, primordia of the extra floral organs were initiated and corolla

expansion and serrated petal margins were observed in AP3::AtIPT4 plants (Fig. 18s). These

extra floral organs were formed on the abaxial and lateral sides of the basal part of the

stamen, which corresponded to the middle part of the petal (Fig. 18t, u).

3.2. Cytokinin biosynthesis and signal transduction in transgenic torenia

To clarify the relationship between those morphological changes of flowers in the

transgenic plants and distribution of cytokinin signals within flower buds, the expression

pattern of introduced gene in floral organs of the transgenic plants were analyzed. As

expected, the AtIPT4 transgene was mainly expressed in the sepals and petals of

AP1::AtIPT4 plants and in the petals and stamens of AP3::AtIPT4 plants (Fig. 19).

In NT plants, iP and iPR were not detected in the sepals and petals, while the stamens

contained high concentrations of iP (Fig. 20A, B). The concentrations of iP in the pistils and

iPR in the stamens and pistils were slight in NT plants (Fig. 20A, B). Both iP and iPR

accumulated in the sepals and petals in AP1::AtIPT4 plants; whereas changes in iP and iPR

concentrations in the stamens and pistils compared with those of NT plants were obscure

(Fig. 20A, B). On the other hand, both iP and iPR accumulated in the petals of AP3::AtIPT4

plants, but were undetected in the sepals; whereas changes in iP and iPR concentrations in

the stamens and pistils compared with those of NT plants were obscure (Fig. 20A, B). The

other cytokinin species quantified, tZ and tZR, were accumulated mainly in the stamen in NT

plants, although they were also detected in the other floral organs (Fig. 20C, D). The
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accumulations of tZ and tZR among the floral organs in AP1::AtIPT4 and AP3::AtIPT4 plants

showed mostly the same pattern as those of NT plants, except tZR was higher in the sepals of

AP1::AtIPT4 plants than those of NT plants (Fig. 20C, D).

Because the changes of cytokinin concentrations in the stamens of AP3::AtIPT4 plants

from those of NT plants were obscure, the expression of TfRR1 and TfCKX5, which reflects

the extent of cytokinin signals as described above was analyzed. The expression of TfRR1

and TfCKX5 was low or undetectable in all floral organs of NT plants (Fig. 21). In

AP1::AtIPT4 plants, the expression of TfRR1 and TfCKX5 in the sepals and petals was more

than 10-fold that in NT plants (Fig. 21). On the other hand, the expression of TfRR1 and

TfCKX5 was increased more than 10-fold in the petals and stamens of AP3::AtIPT4 compared

with NT plants (Fig. 21). These expression patterns among floral organs coincided with

those of introduced AtIPT4.

4. Discussion

The results described above indicate that enhanced cytokinin signals through the

accumulation of biologically active iP in the sepals and petals of AP1::AtIPT4 plants and in

the petals and stamens of AP3::AtIPT4 plants induced change of flower morphologies (Figs.

19, 20A, B and 21). On the other hand, the other biologically active cytokinin species tZ,

which showed same accumulation pattern with NT plants, does not apparently participate in

the morphological change (Figs. 20C, D).

However, why was the endogenous cytokinin concentration in the stamens of AP3::AtIPT4

plants not markedly different from that in NT plants (Fig. 20A, B)? The stamen would be the

organ synthesizing cytokinins because cytokinin is necessary for pollen development (Huang

et al., 2003; Sawhney and Shukla, 1994). The result that cytokinin concentration in the
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stamen in NT plants was higher than that of the other floral organs coincides with the fact.

At the same time, the development of the anther and pollen is inhibited by elevated cytokinin

concentrations in transgenic tobacco plants overexpressing IPT in an anther-specific manner

(Geng et al., 2002). Therefore, in the stamens of AP3::AtIPT4 torenia plants, intensive

expression of AtIPT4 possibly had an inhibitory effect on stamen development, which may

have raised a barrier in cytokinin biosynthesis.

In AP3::AtIPT4 plants of torenia, extra floral organs were induced and the morphology

resembled the narrow paracorollas induced by CPPU treatment (Niki et al., 2012; Nishijima

and Shima, 2006; Figs. 17d and 18u). Furthermore, the site and the floral stage in which the

extra floral organ initiation occurred coincided with those of the narrow paracorollas induced

by CPPU treatment and those of A. majus paracorolla (Fig. 18s, t). Those paracorollas were

probably originated from stipule of the stamen (Nishijima and Shima, 2006; Yamaguchi et

al., 2010). Therefore, the extra floral organs formed in AP3::AtIPT4 flowers may be

paracorollas originating from the stipule of the stamen.

In Arabidopsis, the number of sepals, petals, and stamens increases when AtIPT4 is

expressed under the control of AP1 promoter (Li et al., 2010). Some morphological changes,

such as the development of a small petal on top of the filament, a lobed petal, and the

formation of the filament and a small petal between the sepal and petal, are observed in

transgenic Arabidopsis overexpressing IPT in anther-specific manner (Geng et al., 2002).

Furthermore, IPT expression under the control of AP3 promoter leads to an increase in the

size of the corolla in petunia (Verdonk et al., 2008). However, there has been no research

analyzing the relationship between spatial distributions of elevated cytokinin signals and

flower morphologies using a same plant material in a same experimental condition. In this

study, the increase in petal number, corolla expansion, and the development of paracorollas

and serrated petal margins were induced by localized expression of AtIPT4 in the petals and
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stamens of torenia plants, whereas only the petal number increased when AtIPT4 was

expressed in the sepals and petals (Figs. 17 and 18). These results indicate that elevated

cytokinin signals in the stamen may be critical for corolla expansion, development of

paracorollas and serrated petal margins (Fig. 22).

In Arabidopsis, the increase in the number of floral organs in response to the application

of cytokinin has been caused by an enlarged floral meristem, and consequently by an

enlarged receptacle (Bartrina et al., 2011; Lindsay et al., 2006). In addition, an enlarged

receptacle is observed in Arabidopsis with AP1::AtIPT4 transgene (Li et al., 2010) and in

CPPU-treated torenia (Nishijima et al., 2007) accompanied with an increase in the number of

floral organs. Because the organ primordia tend to differentiate at constant intervals, the

number of organs increases when the receptacle is enlarged. In this study, receptacle

enlargement was observed at Stage 4 in both AP1::AtIPT4 and AP3::AtIPT4 torenia plants

(Fig. 18i, p). This suggests that elevated cytokinin signals in whorl 2 causes receptacle

enlargement, resulting in an increase in the number of petals (Fig. 22). However, only

AP3::AtIPT4 plants showed enhanced receptacle enlargement progressively in Stage 5 (Fig.

18q). The receptacle enlargement preferably occurred in whorl 3. When enhanced receptacle

enlargement continues to Stage 5, the distance between each stamen is increased markedly

(Fig. 22). Because the stipule of the stamen, which develops into paracorolla, is located at

the lateral sides of the stamen and included in whorl 3, sufficient space allowing paracorolla

primordia to be initiated may have been supplied. The same phenomenon is observed when

the paracorollas are induced by CPPU treatment (Nishijima and Shima, 2006). That is, the

paracorollas are generated synchronously with receptacle enlargement at Stage 5. In

Arabidopsis, receptacle enlargement by cytokinin is caused through coordinated regulation

of WUSCHEL (WUS) and CLAVATA (CLV) (Bartrina et al., 2011; Clark et al., 1993; Lindsay

et al., 2006). WUS, which maintains meristematic activity of shoot apical meristem (SAM),
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expresses at central zone in SAM. WUS expression is restricted in the central zone by CLV1

that promotes organ differentiation (Schoof et al., 2000). Cytokinin expands WUS expression

area and consequently meristem size through repression of CLV1 expression (Bartrina et al.,

2011; Lindsay et al., 2006). This regulation mechanism of SAM size is thought to function

also in floral meristem, which regulates receptacle size (Bartrina et al., 2011; Lindsay et al.,

2006). If, in the transgenic torenia, CLV expression was repressed on the site where

cytokinin signals were elevated, it is presumable that elevation of cytokinin signals in whorl

3 was more effective for receptacle enlargement than that in whorl 2. This is because whorl 3

is located more closely to the central zone of floral meristem than whorl 2. Meanwhile, it can

not be ruled out that the elevated cytokinin signals in whorl 3 of AP3::AtIPT4 torenia

induced the development of the stipule of the stamen independently of any receptacle

enlargement. This is because cytokinin promotes organ differentiation and development by

directly promoting meristematic activity of the organ (Dewitte et al., 1999; Mok and Mok,

2001; Pernisová et al., 2009).

The serrated petal margin is generated by changes in the arrangement of the vascular

bundle in the petal limb (Niki et al., 2013; Nishijima and Shima, 2006). In contrast, it was

demonstrated that elevated cytokinin signals in the stamen were critical for induction of a

serrated petal margin, as described above. A serrated petal margin is also induced in a

transgenic torenia in which the function of AGAMOUS (AG), a floral homeotic gene

expressed in whorls 3 and 4, is inhibited by a plant-specific transcriptional repression

domain (AG-SRDX, Narumi et al., 2008). This shows that a functional change in a gene

expressed in whorls 3 and 4 may affect the arrangement of the vascular bundle in whorl 2.

Thus, the elevated cytokinin signals in whorl 3, which inevitably alter gene expression

profile, might remotely affect the vascular bundle arrangement in the petal (Fig. 22).

Another possibility is that excess cytokinin biosynthesis causes the translocation of
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cytokinin into adjacent floral organs. In this experiment, developed flower buds (Stage 7), in

which each floral organ is located relatively distant, were used in the analyses of cytokinin

concentrations. Thus, the elevated cytokinin concentration caused by AtIPT4 did not

probably affect its concentration in adjacent floral organs, i.e., the stamens in AP1::AtIPT4

plants and the sepal and pistils in AP3::AtIPT4 plants, respectively (Fig. 20A, B). In younger

and smaller flower buds, however, cytokinin accumulated in whorl 3 might have been

translocated to closely adjacent whorl 2 and thereby affect the arrangement of the vascular

bundle in the petal, resulting in a serrated petal margin.
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Target gene Product

length

Direction Primer sequence

AtIPT4 970 bp forward 5'-CTCAGAATTCGACATGAAGTGT-3'

reverse 5'-CTAGTTAAGACTTAAAAATCT-3'

AP1 1729 bp forward 5'-TGTATCGTTTCAAAACTCAGG-3'

reverse 5'-TACTGAATTCGAACCAAACAAAAC-3'

AP3 1197 bp forward 5'-GACCAGATCAAGAGTGCGTG-3'

reverse 5'-GTTTGAATTCTTTGTTGAAG-3'

AP1::AtIPT4 2689 bp forward 5'-CACCTGTATCGTTTCAAAACTC-3'

reverse 5'-CTAGTTAAGACTTAAAAATCT-3'*

AP3::AtIPT4 2157 bp forward 5'-CACCGACCAGATCAAGAGTGC-3'

reverse 5'-CTAGTTAAGACTTAAAAATCT-3'*

Table 9. Primers used for transgene construction.

Sequences of Eco RI site were underlined.

*Same primer used for isolation of AtIPT4 gene.
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Target gene Product

length

Direction Primer sequence

AtIPT4 120 bp forward 5'-ACAGCATCGTTTCGAGAGG-3'

reverse 5'-GTGGCTCCTGACAATCTTCAC-3'

Table 10. Primers used for qPCR analysis of AtIPT4 gene.
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Fig. 16. Transgene construct for floral organ-specific expression of cytokinin

biosynthesis gene. (A) T-DNA region of introduced vector (pGWB1). Hygromycin

phosphotransferase (HPT) and neomycin phosphotransferase (NPT) II were used for

transformant selection. (B) Predicted effect of the transgene. Floral organs expected to

have elevated cytokinin production were colored with green in sepal, blue in petal,

and orange in stamen. AP1, APETALA1; AP3, APETALA3; AtIPT4, Arabidopsis

thaliana isopentenyltransferase4; LB, Left border; Pe, Petal; RB, Right border; Se,

Sepal; St, Stamen.
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Sp, Serrated petal; St, Stamen. Scale bars = 100 μm.
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Fig. 19. AtIPT4 expression in the floral organs of transgenic torenia. The

expression levels are shown as a value relative to that of TfACT3, which was
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used as an internal standard. Vertical bars represent ± SE (n = 3).
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Fig. 20. Concentration of endogenous cytokinins in the floral organs of normal type

(NT) and transgenic torenia. iP, isopentenyladenine; iPR, isopentenyladenine riboside;

tZ, trans-zeatin; tZR, trans-zeatin riboside. Vertical bars represent ± SE (n = 3).
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Fig. 21. Expression of TfRR1 and TfCKX5 in the floral organs of normal type

(NT) and transgenic torenia. The expression levels of TfRR1 (A) and TfCKX5 (B)

are shown as values relative to that of TfACT3, which was used as an internal
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standard. Vertical bars represent ± SE (n = 3).
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Fig. 22. Model accounting for the effect of localized elevation of cytokinin

signal in flower buds on flower morphology. AP1::AtIPT4 and AP3::AtIPT4

indicate the transgenic plants promoted floral organ specific cytokinin

biosynthesis described in Fig. 16. Whorls with elevated cytokinin levels are

colored with green in whorl 1, blue in whorl 2, and orange in whorl 3. Pc,

Paracorolla; Pe, Petal; Pi, Pistil; Se, Sepal; Sn, Staminoid; Sp, Serrated petal; St,
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Stamen.
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Chapter 5

General discussion

In this study, it was shown that spatial and temporal distribution patterns of cytokinin

signals in flower buds are important for inducing ornamental flower morphologies such as

paracorolla and serrated petal margin in torenia. Thus far, the results of morphological

changes by CPPU treatment (Chapters 2 and 3) and by genetic engineering (Chapter 4) have

been discussed individually. In Chapter 5, we will try, by elaborating on the results

described in Chapters 2 to 4, to identify more universal molecular mechanisms underlying

these ornamental flower morphologies. Based on the molecular mechanisms uncovered in

this study, we will also discuss future prospects for basic research and the development of

transgenic technology.

Of the ornamental flower morphologies induced in CPPU-treated torenia, it was discussed

in Chapter 2 that elevated cytokinin signals at the paracorolla initiation site, i.e., at the

abaxial side of the basal part of the stamen for wide paracorolla and at the middle part of the

petal for narrow paracorolla, is critical for paracorolla induction. In Chapter 4 it was

suggested that the paracorolla was induced in AP3::AtIPT4 torenia plants by marked

receptacle enlargement after differentiation of the stamen primordia. This induction occurs

because the receptacle enlargement remarkably increases the space between the stamens,

promoting the initiation of paracorolla primordia. On the basis of the discussion in each

chapter, it may be expected that receptacle enlargement is not induced by CPPU treatment

and that a spatial elevation of cytokinin signals at the paracorolla initiation site does not

occur in AP3::AtIPT4 torenia plants. However, the receptacle is enlarged when the

paracorollas are induced by CPPU treatment (Nishijima et al., 2007). In contrast, it is



- 81 -

unlikely that elevated cytokinin signals are spatially localized to the paracorolla initiation

site in AP3::AtIPT4 torenia plants. This is because AP3, like its ortholog TfDEF, is

expressed in the whole petal and stamen (Krizek and Meyerowitz, 1996; Fig. 13B in Chapter

3).

It accordingly hypothesized that paracorolla induction is promoted by two factors: (1)

receptacle enlargement after differentiation of the stamen primordia and (2) localization of

elevated cytokinin signals to the paracorolla initiation site in flower buds. This hypothesis is

supported by the finding that paracorolla induction by CPPU treatment is much more stable

and stronger than that in AP3::AtIPT4 torenia plants (Nishijima and Shima, 2006), given that

both receptacle enlargement and the precise localization of cytokinin signals to the

paracorolla initiation site occurred in CPPU-treated torenia, but only receptacle enlargement

occurred in AP3::AtIPT4 torenia plants (Fig. 23).

To test the above hypothesis, it is necessary to exploit an experimental system that

specifically induces receptacle enlargement, spatially elevated cytokinin signals at the

paracorolla initiation site, or both. As described in the discussion in Chapter 4, receptacle

enlargement is probably caused by enlargement of the floral meristem via the expression of

the genes (WUS and CLV) regulating meristematic activity (Bartrina et al., 2011; Lindsay et

al., 2006). Thus, the production of a transgenic plant overexpressing WUS or suppressing

CLV expression in floral meristem may serve to reveal the effect of receptacle enlargement

on paracorolla induction, exclusive of the effect of the localization of cytokinin signals to

the paracorolla initiation site. In contrast, promotion of IPT expression under the control of a

specific promoter at the paracorolla initiation site may be useful for revealing the effect of

localization of elevated cytokinin signals at the paracorolla initiation site in the absence of

receptacle enlargement. However, to date, appropriate promoters have not been developed

and further research is required.
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To date, the molecular mechanism responsible for the genetically induced paracorollas

seen in Narcissus, Passiflora, and other flowers has not been described. Based on the results

of this study, two strategies may be considered as clues to the mechanism. One is to

determine whether marked receptacle enlargement after differentiation of the stamen

primordia occurs, and the other is to determine whether cytokinin signals are spatially

elevated at the paracorolla initiation site in flower buds. If one or both events occur, the

same mechanism as that in torenia may function in the induction of paracorolla

differentiation and development. Only one study in A. majus has morphologically analyzed

paracorolla differentiation and development in detail (Yamaguchi et al., 2010), but the extent

of receptacle enlargement was not clearly different between cultivars with and without

paracorolla. Accordingly, we recommend that studies based on the above two strategies will

be performed in other plant species forming paracorollas.

As described in introduction in Chapter 3, morphologies of the genetically-induced

paracorollas vary depending on the plant species. Whether the expression pattern of floral

homeotic genes is involved in the regulation of the morphologies of genetically induced

paracorollas remains to be determined. In Chapter 3, we showed that the expression pattern

of floral homeotic genes determined by the site of paracorolla initiation is responsible for

paracorolla morphologies. It may accordingly be hypothesized that the paracorolla initiation

site, depending on the plant species, affects paracorolla morphology. In A. majus, the

paracorolla initiation site is on the abaxial and lateral side of the basal part of the stamen, as

is the case in the wide paracorolla of torenia; therefore, the expression of floral homeotic

genes dictates petal identity (Yamaguchi et al., 2010). Detailed morphological observations

of paracorolla initiation in other plants with genetically induced paracorollas have not yet

been made.

The serrated petal margin induced by CPPU treatment is caused by the rearrangement of
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vascular bundles in the limb of the petal (Nishijima and Shima, 2006). Given that CPPU

treatment enhances cytokinin signals in the limb as shown in Fig. 7C, we discussed in

Chapter 2 that serrated petal margins are induced by the elevation of cytokinin signals in the

limb. However, in Chapter 4, we discussed that elevated cytokinin signals in the stamen

induced serrated petal margins, given that the serrated petal margins were observed only in

AP3::AtIPT4 torenia plants and not in AP3::AtIPT4 plants. These assertions seem to

contradict each other; however, cytokinin signals were elevated not only in petals but also in

stamens after CPPU treatment, as shown in Fig. 6 in Chapter 2. In addition, cytokinin signals

were elevated both in petals and stamens in AP3::AtIPT4 torenia plants (Fig. 21, Chapter 4).

Therefore, it is assumed that elevated cytokinin signals in both the petals and stamens are

necessary to induce serrated petal margins (Fig. 24). With respect to this hypothesis, it has

already been shown in Chapter 4 that cytokinin signals elevated in petals, but not in stamens,

are unable to induce serrated petal margins in AP1::AtIPT4 torenia plants. Production of a

transgenic plant with elevated cytokinin signals in stamens, but not in petals, may allow

testing this hypothesis. Studies of Arabidopsis mutants have shown that cytokinin affects the

arrangement of vascular bundles in the stem and root (Cui et al., 2011; Pineau et al., 2005).

However, in floral organs, the molecular mechanism of cytokinin action on vascular bundle

arrangement remains to be determined.

In this study, floral organ-specific promotion of cytokinin biosynthesis was achieved by

the production of transgenic torenia with induced ornamental flower morphologies. Elevated

cytokinin signals in sepals and petals increased petal number in AP1::AtIPT4 plants, and

elevated cytokinin signals in petals and stamens induced corolla expansion, paracorollas, and

serrated petal margins in AP3::AtIPT4 plants. Of these morphological changes, corolla

expansion and serrated petal margins were stable phenotypes in AP3::AtIPT4 torenia plants.

Corolla enlargement is also promoted in petunia transformed with the Agrobacterium IPT
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gene under the control of the AP3 promoter (Verdonk et al., 2008). Thus, the induction of

corolla enlargement by promotion of cytokinin biosynthesis with the AP3 promoter may be a

universal phenomenon among plant species so that this strategy may be applied to other

horticultural plants. However, we do not yet know whether induction of serrated petal

margins by this strategy is a universal phenomenon.

The AP3::AtIPT4 torenia plant described in this study is the first example of paracorolla

induced by genetic engineering. Introduction of AP3::AtIPT4 into petunia also induced an

extra floral organ on the lateral side of the basal part of the stamen, presumably a paracorolla

based on the position of initiation (Nishijima, unpublished). These results suggest that

induction of the paracorolla by an AP3::AtIPT4 construct is a universal phenomenon among

plant species. Thus, a paracorolla may be induced in other floricultural plants by elevation of

cytokinin signals, particularly in petals and stamens. In AP3::AtIPT4 plants, only narrow

paracorollas were weakly induced. In contrast, CPPU treatment stably and strongly induces

both narrow and wide paracorollas (Niki et al., 2012; Nishijima and Shima, 2006),

suggesting that transgenic technology needs further development for practical application to

paracorolla induction. As described above, both receptacle enlargement and localization of

elevated cytokinin signals to the site of paracorolla initiation will be necessary for stable

paracorolla induction. Although receptacle enlargement was observed in AP3::AtIPT4 torenia

plants, precise localization of cytokinin signals to the site of paracorolla initiation was

impossible with the AP3::AtIPT4 construct, given that the AP3 promoter induces the

transgene in the entire area of whorls 2 and 3 throughout flower bud development (Krizek

and Meyerowitz, 1996). A promoter whose induction is more precisely localized to the site

of paracorolla initiation will be necessary.

Taking the above results and discussions together, effect of localized cytokinin signal to

the floral stage-dependent induction of ornamental flower is summarized in Fig. 25. When
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enhanced receptacle enlargement up to Stage 5 is combined with localized cytokinin signal

at the abaxial side of the basal part of the stamen at Stage 4, paracorolla primordia are

initiated at this site in Stage 4 to 5. These primordia develop into wide paracorollas because

class A and B floral homeotic genes are expressed at the site of paracorolla initiation. When

enhanced receptacle enlargement up to Stage 5 is combined with localized cytokinin signal

at middle part of the petal at Stage 5, paracorolla primordia are initiated at this site in Stage

6 to 7. These primordia develop into narrow paracorollas because class B floral homeotic

genes are expressed at the site of paracorolla initiation without substantial expression of

class A and C genes. Serrated petal margins are induced at Stage 6 to 7 by localized

cytokinin signals in sepals and petals.

To date, many transgenic floricultural plants have been developed with the aim of

producing carnations and roses with violet flowers (Chandler and Sanchez, 2012). However,

with respect to improvement of flower morphology, increasing petal number in cyclamen is

the only technology aimed at practical use (Terakawa et al., 2010), given that ornamental

flower morphologies in the form of double and large flowers have already been bred into

major floricultural plants by conventional breeding programs. Thus, application of the

transgenic technology employed in this study is likely to be targeted to the plants showing

little variation in flower morphology. For example, Gentiana, Gloriosa, Platycodon

grandiflorus as cut flower, Catharanthus roseus, Bougainvillea, Salvia, Mandevilla as

bedding and/or pot plant, and many other floricultural plants may be proper targets. However,

for practical use of transgenic plants, much expense is entailed in paying royalties on genetic

engineering tools and performing biosafety risk assessment. In minor floricultural plants, it

is difficult to pay these costs for genetic engineering unless sales will surely and

dramatically increase. Thus, future reduction of these costs is desirable. Biosafety risk

assessment requires much expense to investigate the extent of transgene flow to the wild
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relatives when these species can be crossed with the transgenic plants (Yoshikura, 2006).

Therefore, induction of male sterility will reduce the risk of pollen-mediated transgene flow

to the wild relatives, which may reduce the cost required for practical use of transgenic

plants. For this purpose, the use of anther-specific promoters fused to cytotoxic genes is a

useful method for inducing male sterility (Koltunow et al., 1990; Mariani et al., 1990; Xu et

al., 1995). On the other hand, royalties of genetic engineering tools could be reduced when

commercial production of transgenic plants increases. Basic patent of transgenic tools, e.g.,

Agrobacterium-mediated transformation, has been occupied by several major international

companies. Together with the fact that some of these basic patents have been proceedingly

expired, reduction of the royalties will be expected also by international competition of

research and development.
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Fig. 23. Dual-factor hypothesis on paracorolla induction in torenia. In this

hypothesis, both cytokinin signal precisely localized to the site of paracorolla

initiation and receptacle enlargement are necessary for stable and strong

paracorolla induction. The floral organs and whorls with high level of cytokinin

signal are indicated by gray. The darkness of shade gray area represents extent of

cytokinin signal. Paracorolla initiation sites are indicated by red circle. Pc,
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Paracorolla; Pe, Petal; Pi, Pistil; Se, Sepal; St, Stamen.
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Fig. 24. Hypothesis on induction of serrated petal margin in torenia. In this

hypothesis, cytokinin signal localized to both petal and stamen is necessary for

the induction of serrated petal margin. The floral organs with high level of

cytokinin signal are indicated by gray. Pe, Petal; Pi, Pistil; Se, Sepal; St, Stamen.
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Fig. 25. Mechanism responsible for floral stage-dependent induction of paracorollas

and serrated petal margins by elevated cytokinin signal. Illustrations shown in the top

row indicate normal type flower buds at the corresponding floral stage. The floral

organ with high level of cytokinin signal is indicated by dotted pattern. Expression

pattern of floral homeotic genes is indicated by coloring; class A alone (green), class

A and B (blue), class B alone (light blue), class B and C (pink), and class C alone

(orange). Pc, Paracorolla; Pe, Petal; Pi, Pistil; Se, Sepal; St, Stamen.
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Summary

For floricultural plants, flower morphology is one of the most important traits determining

attractiveness and commercial value. Improvement of flower morphology toward more

ornamental flowers is a major objective of breeding programs, but conventional breeding

programs can be time-consuming, and the development of efficient breeding methods is

desired. In recent studies, treatment with forchlorfenuron (CPPU), an inhibitor of the

cytokinin degradation enzyme cytokinin oxidase/dehydrogenase (CKX), induces several

ornamental flower morphologies in torenia (Torenia fournieri L.) depending on the floral

stage of CPPU treatment.

In this study, we aimed to elucidate the molecular mechanism responsible for

CPPU-induced ornamental flower morphologies in torenia. Furthermore, we employed floral

organ-specific promotion of cytokinin biosynthesis using transgenic technologies to produce

torenia with ornamental flower morphologies.

In the work described in Chapter 2, we investigated the temporal and spatial distributions

of cytokinin signals in CPPU-treated flower buds as indicated by type-A response regulator

(RR) and CKX gene expression. Quantitative real-time PCR analysis showed that the

expression of both TfRR1 and TfCKX5 was induced from 1 day after CPPU treatment in

sepals, petals, stamens, and pistils and maintained at a high level until 5 days after treatment

when the earliest morphological changes due to CPPU treatment were observed. In situ

hybridization analysis showed weak expression of both genes in stamens and pistils through

all floral stages of untreated flower buds. However, when CPPU was applied at the sepal

development stage, expression of both genes was strongly induced at the abaxial side of the

stamen primordia, which are sites of initiation of the wide paracorolla. When CPPU was

applied during the early stage of corolla development, high expression of these genes was
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observed in the stamen and in the basal and middle parts of the petal, which are the sites of

initiation of the narrow paracorolla. When CPPU was applied during the middle corolla

development stage, strong expression of these genes was detected in the middle to apical

parts of the petal, which is the site of changes in the distribution pattern of vascular bundles

and the resulting serrated margins.

In the work described in Chapter 3, we investigated the morphological properties and the

role of floral homeotic genes in the formation of two CPPU-induced types of paracorolla,

wide and narrow paracorolla. The morphology of epidermal cells and distribution pattern of

vascular bundles were the same in wide paracorolla as in petals; however, in the narrow

paracorolla, the morphology of epidermal cells was either petal-like or stamen-like, and the

distribution pattern of vascular bundles was stamen-like. In situ hybridization analysis of

floral homeotic genes showed that a class A gene, TfSQUA, and the class B genes, TfDEF

and TfGLO, were expressed in the broad region of the primordia of the wide paracorolla, as

in petals. Class C genes, TfPLE1 and TfFAR, were only expressed at margins of the

paracorolla primordia. However, in primordia of the narrow paracorolla, TfSQUA was

expressed only at the margin of the primordia, whereas the class B genes and one of the class

C genes (TfPLE1) were expressed in a broad region of the primordia, similar to the case of

the primordia of the wide paracorolla. Thus, this expression pattern in the narrow paracorolla

was intermediate between that of petals and stamens. Furthermore, these expression patterns

were similar to those at the paracorolla initiation sites.

In the work described in Chapter 4, we introduced AtIPT4 into torenia under the control of

the AP1 or AP3 promoter to characterize the relationship between organ-specific promotion

of cytokinin biosynthesis within flower buds and flower morphology. AP1::AtIPT4 plants

had an increased number of petals, whereas AP3::AtIPT4 plants had expanded corolla,

paracorolla, and serrated petal margins along with an increased number of petals. In
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AP3::AtIPT4 plants, marked receptacle enlargement was observed when flower buds were in

the early corolla development stage in which the paracorolla primordia differentiate. As

expected, AtIPT4 was expressed in the sepals and petals of AP1::AtIPT4 plants and in the

petals and stamens of AP3::AtIPT4 plants. Cytokinin signals as revealed by TfRR1 and

TfCKX5 expression were elevated in the floral organs in which the transgene was expressed.

The results described above suggest that the paracorolla and serrated petal margins are

induced by high localized levels of cytokinin signals at the site of those morphological

changes (Chapter 2). The expression patterns of floral homeotic genes at the early stage of

paracorolla development determine paracorolla morphology, and the expression pattern is

determined by the site within flower buds where the paracorolla is formed (Chapter 3).

Localized cytokinin signals in sepals and petals increase in the petal number and in petals

and stamens are necessary to induce corolla expansion and serrated petal margins (Chapters

4 and 5). Furthermore, both receptacle enlargement and localization of elevated cytokinin

signals to the paracorolla initiation site are necessary for stable induction of the paracorollas

(Chapter 5). These findings may aid in the development of efficient breeding methods for

improvement of flower morphology.
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