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Abstract

We propose a novel supercurrent generation mechanism in the cuprate. The supercurrent is

generated as a collection of the spin-vortex-induced loop currents created with the doped holes

at their centers. A quartet of the spin-vortices with width 4a (a is the lattice constant of the

CuO2 plane) is the stable unit of the spin-vortices, and an assembly of them create a network

channel for the supercurrent flow. A macroscopic supercurrent flows when they cover the whole

CuO2 plane. The Ginzburg-Landau macroscopic wave function formalism is also derived from the

present supercurrent generation mechanism.
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I. INTRODUCTION

More than a quarter of a century has passed since the high temperature superconductivity

was found in the hole doped cuprate [1]. As the origin of the high temperature supercon-

ductivity, the electron spin degree of freedom is expected to play an important role as is

manifested by the fact that the superconductivity occurs in the vicinity of the antiferro-

magnetic Mott insulating phase. In this respect, it is notable that the ‘hourglass-shaped

magnetic excitation spectrum’ indicates the presence of a peculiar spin texture in the cuprate

[2]. As the origin for it, the stripe model is a popular explanation [3]. However, another

possibility is the spin-vortex model [4–6]. In this model, the spin-vortices are created by

itinerant electrons in the CuO2 plane; the doped holes form small polarons by the strong

hole-lattice interaction at low temperatures and become the cores of the spin-vortices; the

holes are expected to provide a superexchange interaction between spins across them, and

stabilize the spin-vortices [7].

It has been shown that the spin-vortex model also explains other phenomena observed in

the cuprate such as 1) nonzero Kerr rotation in zero-magnetic field after exposed in a strong

magnetic field [8]; 2) the change of the sign of the Hall coefficient with temperature change

[9]; 3) the suppression of superconductivity in the x = 1/8 static-stripe ordered sample

[10]; 4) a large anomalous Nernst signal, including its sign-change with temperature change

[11, 12]; 5) the ‘Fermi-arc’ in the ARPES [13]; 6) the change of the Cu-O bond length by

doping [14, 15].

In the spin-vortex model, the appearance of a loop current called, the ‘spin-vortex-induced

loop current (SVILC)’ is predicted [4]. The size of the SVILC is in the order of the lattice

constant of the CuO2 plane, similar to the coherence length of the superconductivity. The

SVILC persists as long as the spin-vortex induces it persists; due to this stability, a single

SVILC is considered as a localized supercurrent of the coherence length size. A macroscopic

supercurrent is generated as a collection of them, and it explains the flux quantum ch/2e

[4–7].

In the cuprate, the relation between the appearance of the superconductivity and the

Cooper pair formation does not follow the BCS-Eliashberg theory; the superconducting

transition temperature Tc is determined by the fluctuation of the supercurrent vortex of the

coherence length size [16]. Although the Cooper pair formation is indicated by the ARPES
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spectrum in the nodal region [17], the ‘protagonist’ of the supercurrent generation may be the

supercurrent vortex of the coherence length size appeared in the estimate of Tc. The recent

atomic-scale STM study [18] indicates that the macroscopic superconductivity is realized

through the interconnection of unidirectional clusters of doped holes with width 4a, where

a is the lattice constant of the CuO2 plane. Then, the observed enhanced Nernst effect in

the pseudogap phase [11] may be attributed to the localized supercurrent in these clusters,

and the global superconductivity is realized by the interconnection of them. Actually, this

behavior is naturally explained by the supercurrent generation mechanism of the spin-vortex

model [4, 7]. In the present work, we propose a novel mechanism of the supercurrent

generation in the cuprate based on the spin-vortex model: the localized superconductivity

occurs due to the formation of a quartet of spin-vortices (we call it the ‘spin-vortex quartet’

(SVQ)), and the macroscopic supercurrent flow occurs when an assembly of the SVQs creates

a network that covers the whole CuO2 plane.

The organization of the present work is following: in Section II, the Hamiltonian we use

for the cuprate superconductivity is given. In Section III, a way to solve the Schrödinger

equation for the Hamiltonian given in Section II is presented by imposing the single-valued

requirement of wave functions in the presence of spin-vortices. In Section IV, calculations for

the supercurrent generated as a collection of SVILCs are performed, where a network of the

SVQs provide a channel for the supercurrent. In Section V, we derive the Ginzburg-Landau

type equation from the spin vortex theory. Lastly, we conclude the present work in Section

VI.

II. THE MODEL HAMILTONIAN FOR THE CUPRATE SUPERCONDUCTOR

AND THE APPEARANCE OF THE SPIN-TWISTING MOTION OF ITINERANT

ELECTRONS

Our model Hamiltonian for electrons in the CuO2 plane of the cuprate is given by

HCuO2 = −
∑
⟨i,j⟩1,σ

t(c†iσcjσ+c†jσciσ)+U
∑
j

c†j↑cj↑c
†
j↓cj↓ +Hh−l (1)

where i and j are sites in the two-dimensional square lattice in the CuO2 plane; the coppers

reside at the lattice points and the oxygens that exist between nearest neighbor coppers are

not explicitly taken into account; ⟨i, j⟩1 indicates the nearest neighbor pairs; c†jσ and cjσ are
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the creation and annihilation operators of electrons at the jth site with the z-axis projection

of electron spin σ, respectively. The term Hh−l is the hole lattice interaction.

We further simplify the problem by employing the extreme limit where the doped holes are

immobile at temperatures below Tc. This assumption will be justified since the experiment

[14] and theory [15] indicate that the holes form small polarons at low temperatures. Then,

the system is in the effectively half-filled situation (EHFS) where the number of electrons

and that of the accessible sites are equal. One might think that the current flow is impossible

in this situation since the value of U/t is large for the cuprate, thus, the half-filled insulating

state will be realized. However, the forced whole system motion generated by the single-

valued requirement of wave functions gives rise to the spin-vortex-induced loop currents

(SVILCs)[7]. We consider the supercurrent generation by these SVILCs in this work.

In the EHFS, Eq. (1) is rewritten as,

HEHFS = −
∑
⟨i,j⟩1,σ

t(c†iσcjσ+c†jσciσ)+U
∑
j

c†j↑cj↑c
†
j↓cj↓ (2)

where the sum i and j are taken over only the accessible sites of electrons, i.e., the sites

occupied by the holes are omitted. We adopt this convention for the site indices i,j, k, and

ℓ, below.

In addition to HEHFS we add the following spin exchange interaction between spins across

the hole occupied sites,

Hsv = J ′
∑
⟨i,j⟩h

Ŝi · Ŝj (3)

where Ŝj is the spin moment operator at the jth site given by

Ŝj =
1

2

∑
σ,σ′

c†jσσσσ′cjσ′ (4)

σ is the vector of Pauli matrices, ⟨i, j⟩h indicates the pairs across the hole occupied sites; it

includes also pairs of sites for which the sites i and j are in the right angle positions with

respect to the hole occupied site. The above interaction stabilizes the spin-vortices formed

around the doped holes, thus, this term is crucial for the spin-vortex model.

The value of J ′ is expected to be large in the cuprate due to the small polaron formation

around the doped hole: the molecular orbital cluster calculation result indicates that when

the small polaron is formed, the copper dx2−y2 and the surrounding four oxygen pσ orbitals
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form a molecular (or hybridized) orbital [15]. Then, the exchange parameter J ′ across the

hole occupied sites is calculated by treating the hole molecular orbital as the intermediate

level for the perturbation calculation [7, 19];

J ′ ≈ 4t4dh
(εh − εd)3

(5)

where the parameter tdh is the transfer integral between the spin-reside copper dx2−y2 orbital

and the hole orbital h at the hole-occupied site; εd and εh are the orbital energies of dx2−y2

and h, respectively. Since the hopping integral tdh is not so much different from that between

the copper dx2−y2 orbital and the nearby oxygen pσ orbital, and the energy difference εh−εd

is sufficiently small, J ′ is expected to be in the order of J , where J = 4t2/U . We use the

value of J ′ = 0.5J in the later calculation.

The spin-vortex is characterized by the topological winding number. Although the spin

configuration fluctuates temporarily and also quantum mechanically, the winding number is

expected to be robust since it is topological integer. The winding number of the spin-vortex

is calculated using the spin moment Sj = (Sx
j , S

y
j , S

z
j ); its components are expressed by the

azimuth angle ξ and polar angle ζ

Sx
j =

1

2
⟨c†j↑cj↓ + c†j↓cj↑⟩ = Sj cos ξj sin ζj

Sy
j = − i

2
⟨c†j↑cj↓ − c†j↓cj↑⟩ = Sj sin ξj sin ζj

Sz
j =

1

2
⟨c†j↑cj↑ − c†j↓cj↓⟩ = Sj cos ζj (6)

where the subscript j indicates the jth site in the lattice whose coordinate vector is rj; ⟨Ô⟩

denotes the expectation value of the operator Ô. We may take ζ = π/2 for all the sites

(actually, the numerical calculation in Section IV yields this value); then, the spins are lying

in the CuO2 plane, and the background antiferromagnetic spin is given by ξj = π(jx + jy),

where (jx, jy) is the x-y coordinates of the jth site taking the lattice constant a = 1. We

define ηj as

ηj = ξj − π(jx + jy) (7)

and separate the background antiferromagnetic contribution. The winding number of η for

loop Cℓ is defined as

wℓ[η] =
1

2π

Nℓ∑
i=1

(ηCℓ(i+1) − ηCℓ(i)) (8)

5



where Cℓ is a loop in the x-y plane. Nℓ is the total number of sites on the loop Cℓ, and Cℓ(i)

is the ith site on it with the periodic condition Cℓ(Nℓ + 1) = Cℓ(1). In Fig. 1b, spin-vortices

embedded in the antiferromagnic background given in Fig. 1a are depicted, where a center

of the spin-vortex with winding number +1 is denoted as ‘M’, and that of −1 as ‘A’. In

this figure, the CuO2 plane is approximated as a two-dimensional square lattice by only

retaining copper sites without explicitly taking into account the oxygens that exist between

the nearest coppers.

In the spin-vortex model, the spin-vortices are generated by itinerant electrons. In this

situation, the electrons move in the Hartree-Fock field that contains an effective magnetic

field of the exchange type created by the spin-vortices. Due to the effective magnetic field,

the electrons move with twisting their spin directions [7].

The effective magnetic field arises from the on-site Coulomb repulsion term in Eq. (1)

given by∑
j

Uc†j↑cj↑c
†
j↓cj↓ =

∑
j

U

(
n̂j

2
− 2

3
Ŝ2
j

)
≈ UN

2
− 2

3

∑
j

U
(
2Sj · Ŝj − S2

j

)
(9)

where n̂j is the number operator at the jth site given by

n̂j = c†j↑cj↑ + c†j↓cj↓ (10)

and N is the number of electrons. The effective magnetic field that acts on the spin of

electron appears if Sj ̸= 0. If the spin-vortices exist, circular change of the effective field

along loops in the coordinate space occurs. The electron motion then becomes the one with

twisting its spin direction.

The electronic basis functions that diagonalize Eq. (9) are given by

|−[rj]⟩ = e−i
χj
2

(
cos

ζj
2
e−i

ξj
2 c†j↓+sin

ζj
2
ei

ξj
2 c†j↑

)
|vac⟩

|+[rj]⟩ = e−i
χj
2

(
−sin

ζj
2
e−i

ξj
2 c†j↓+cos

ζj
2
ei

ξj
2 c†j↑

)
|vac⟩ (11)

where |vac⟩ denotes the vacuum state. The salient feature of the above basis functions is that

in contrast to the basis {c†j↑|vac⟩, c
†
j↓|vac⟩}, they are zero at the centers of the spin-vortices

to be consistent with the fact that the value of ξ is not defined there. Another notable point

is that angular variable χj of period 2π is added to make the basis functions single-valued

with respect to rj [7]. In other words, the above basis takes into account the singularities
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FIG. 1: Plots of the spin configuration and current pattern for the system with four holes in the

13× 13 two-dimensional square lattice. a, Spin configuration for the antiferromagnetic (AF) case.

‘X’ denote the position of a hole. b, Spin configuration with one spin-vortex quartet (SVQ). ‘M ’

and ‘A’ indicate the centers of the winding number +1 and −1 spin-vortices, respectively. c, The

minimal energy current distribution. ‘m’ and ‘a’ indicate the centers of the winding number +1

and −1 SVILCs, respectively. This state is higher in energy than the AF case by 1.39t if the term

in Eq. (3) is absent; however, lower by 0.21t if J ′ = 0.5J where J = 4t2/U,U = 8t is employed in

Eq. (3). d, The second minimal energy current distribution. This state is higher in energy than

c by 0.44t. e, The second minimal energy current distribution. This state is degenerate with the

state in d. f, The maximum energy current distribution. This state is higher in energy than c by

6.52t.

of the wave function arising from the spin-vortices. It is known that such singularities give

rise to a Berry phase [20] or an Aharonov-Bohm type effect by the gauge potential for the
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fictitious magnetic field,

Afic =
h̄c

2q
∇χ (12)

where q = −e [7]. The use of the basis {|−[rj]⟩, |+[rj]⟩}, instead of {c†j↑|vac⟩, c
†
j↓|vac⟩}, includes

the Berry phase effect due to the twisting spin motion of the electron in the presence of the

spin-vortices.

Let us explain the necessity of the phase factor e−i
χj
2 . If a spin-vortex exist, the phase shift

of ξ after a circular transportation along the loop Cℓ in the coordinate space is 2πwℓ[ξ] ̸= 0,

where wℓ[ξ] is the winding number of ξ calculated by replacing η in Eq. (8) with ξ. Then,

ξj exhibits the jump of value ξj → ξj + 2πwℓ[ξ] after the excursion along Cℓ, where the site

j is on Cℓ. If wℓ[ξ] is odd, the sign-change occurs for the phase factors e±i
ξj
2 as

e±i
ξj
2 → e±i

ξj+2πwℓ[ξ]

2 = −e±i
ξj
2 . (13)

The angular variable χ is so chosen that the phase factor e−i
χj
2 compensates this sign-change.

The condition for χ that makes |−[rj]⟩ and |+[rj]⟩ single-valued is

wℓ[ξ] + wℓ[χ] = even number for any loop Cℓ, (14)

where wℓ[χ] is the winding number of χ calculated by replacing η in Eq. (8) by χ. The

winding number of ξ, wℓ[ξ], in the above condition can be replaced by that of η, wℓ[η]. If

the above condition is satisfied, the phase change of ±ξj − χj is a multiple of 4π after the

circular transportation along Cℓ. Consequently, the eigenfunctions |+[rj]⟩ and |−[rj]⟩ become

single-valued.

The condition in Eq. (14) is not sufficient to specify χ; for example we may adopt χ = ξ

or χ = −ξ, or something else. The way to determine the angular variable χ will be explained

in the next section.

The crucial point to obtain states with the spin-vortex-induced loop current is to express

the single-particle wave function as

|γ⟩ =
∑
j

(
Dγ

j−|−[rj]⟩+Dγ
j+|+[rj]⟩

)
(15)

where Dγ
j− and Dγ

j+ are parameters obtained by the numerical evaluation of the wave func-

tion. This is a single-valued wave function for itinerant electrons with spin-twisting motion.
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III. SELF-CONSISTENT FIELD CALCULATION WITH INCLUDING THE

SINGLE-VALUEDNESS CONSTRAINT OF WAVE FUNCTIONS

We will describe the way we solved the Schrödinger equation given in Section II with

including the single-valuedness constraint of wave functions. The method described below

is actually an improved version presented in Ref. [7].

Let us consider the Hamiltonian HEHFS in Eq. (2). We use the following Hartree-Fock

Hamiltonian for it [21],

HHF
EHFS = −t

∑
⟨i,j⟩1,σ

(
c†iσcjσ + c†jσciσ

)
+ U

∑
j

[
(
nj

2
− Sz

j )c
†
j↑cj↑ + (

nj

2
+ Sz

j )c
†
j↓cj↓ − (Sx

j − iSy
j )c
†
j↑cj↓ − (Sx

j + iSy
j )c
†
j↓cj↑

]
(16)

where nj = ⟨n̂j⟩ is the number density of electrons at the jth site.

By self-consistently diagonalizingHHF
EHFS in Eq. (??), we obtain the following Hartree-Fock

orbitals;

|γ̃⟩ =
∑
j

[D̃γ
j↑c
†
j↑ + D̃γ

j↓c
†
j↓]|vac⟩, (17)

where D̃γ
j↑ and D̃γ

j↓ are numerical parameters obtained from the diagonalization. By con-

structing the Slater determinant with the occupied orbitals, the Hartree-Fock wave function

is obtained, and the self-consistent spin moment Sj = (Sx
j , S

y
j , S

z
j ) is calculated using Eq. (6).

From Sj, the angle ξj is obtained. The assignment of the value ξj from Sj is non-trivial since

ξj may be multi-valued. The multi-valuedness of ξ is detected by calculating its winding

number.

The winding number of ξ is calculated by using the angular variable η in Eq. (7). The

difference of η between nearest neighbor sites is taken in the range,

−π ≤ ηℓ − ηk < π. (18)

If η is multi-valued, ξ is multi-valued.

The multi-valuedness of η is detected if it is rebuilt from the values ηℓ−ηk. The rebuilding

proceeds as follows: first, we obtain the value for η1 in −π ≤ η1 < π; the step where value

of ηℓ is obtained from the already evaluated values of ηk is given by

ηℓ = ηk + (ηℓ − ηk), (19)
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where the sites ℓ and k are nearest neighbors connected by a bond, i.e., the line segment

that connects the ℓth and kth sites. From ηj, the value of ξj is obtained using the relation

in Eq. (7). This process is continued until values at all accessible sites are evaluated once

and only once. If η is multi-valued, jump of values of multiple of 2π exist across bonds that

are not used for the rebuilding.

In the coefficient D̃γ
jσ, the multi-valuedness arising from the phase factors e±i

ξj
2 may be

hidden if spin-vortices exist. This solution may correspond to the one using the basis in

Eq. (11) with χ = constant, which may violate the condition in Eq. (14). Then, {|γ̃⟩} may

not be single-valued.

We can construct the the single-valued basis {|γ⟩} from {|γ̃⟩} in the following way: first,

we introduce the following new basis to separate the multi-valued phase factors e±i
ξj
2 ;

d̃j↑ = ei
ξj
2 cj↑,

d̃j↓ = e−i
ξj
2 cj↓ (20)

Then, the Hartree-Fock Hamiltonian becomes

HHF
EHFS = −t

∑
⟨i,j⟩1

(
e

i
2
(ξi−ξj)d̃†i↑d̃j↑+e−

i
2
(ξi−ξj)d̃†i↓d̃j↓+h.c.

)
+ U

∑
j

[
(
nj

2
− Sz

j )d̃
†
j↑d̃j↑ + (

nj

2
+ Sz

j )d̃
†
j↓d̃j↓ − (Sx

j − iSy
j )e

iξj d̃†j↑d̃j↓

− (Sx
j + iSy

j )e
−iξj d̃†j↓d̃j↑

]
(21)

By self-consistently diagonalizing the above Hamiltonian, we again obtain the multi-

valued basis function;

|γ̃⟩ =
∑
j

[Dγ
j↑d̃
†
j↑ +Dγ

j↓d̃
†
j↓]|vac⟩

=
∑
j

[e−i
ξj
2 Dγ

j↑c
†
j↑ + ei

ξj
2 Dγ

j↓c
†
j↓]|vac⟩ (22)

The phase factors e±i
ξj
2 are separated, and single-valued coefficients Dγ

jσ’s are obtained.

By adding the phase factor introducing e−i
χ
2 , the single-valued wave functions are con-

structed as follows,

|γ⟩ =
∑
j

e−i
χj
2 [e−i

ξj
2 Dγ

j↑c
†
j↑+ei

ξj
2 Dγ

j↓c
†
j↓]|vac⟩ (23)
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where χ is an angular variable that satisfies the condition in Eq. (14).

Let us explain how χ is obtained. The angular variable χ is obtained by the condition

that ∇χ minimizes the total energy. For this purpose, we employ the following functional,

F [∇χ] = E[∇χ] +

Nloop∑
ℓ=1

λℓ

(∮
Cℓ

∇χ · dr− 2πwℓ

)
(24)

where E[∇χ] is the total energy depends on ∇χ. The second term in the right-hand side

is the term arising from the constraints; λℓ is the Lagrange multiplier, wℓ is the winding

number of χ along a loop Cℓ, and Nloop is the number of independent loops. Note that with

Nloop independent loops, any loop in the system can be constructed by the combination

of them. A set of values for wℓ specifies a particular current distribution; in other words,

by changing the values of wℓ for the independent loops, solutions with different current

distributions are obtained.

From the stationary condition of F [∇χ], the optimized ∇χ is given as the solution of

0 =
δF [∇χ]

δ∇χ
=

δE[∇χ]

δ∇χ
+

Nloop∑
ℓ=1

λℓ
δ

δ∇χ

∮
Cℓ

∇χ · dr (25)

with the constraints,∮
Cℓ

∇χ · dr− 2πwℓ = 0 for all independent loops Cℓ (26)

Since the current density is given in general by

j = −c
δE

δAem
(27)

where Aem is the electromagnetic vector potential, and adding the phase factor e−i
χj
2 in

Eq. (11) corresponds to introducing the vector potential Afic in Eq. (12), the current density

is expressed as

j = −c
δE

δAfic
= −2q

h̄

δE

δ∇χ
(28)

Then, from Eq. (25), the current density is given by

j =
2q

h̄

Nloop∑
ℓ=1

λℓ
δ

δ∇χ

∮
Cℓ

∇χ · dr (29)

This is the current density formula for the SVILCs. This is a stable current protected by

the topological integers, winding numbers. It will, however, fluctuate at temperatures above
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Tc since each loop current has the freedom in the direction of the flow, and this fluctuation

will explain the fluctuation of the vortex current of the coherence length size appeared in

the estimate of Tc by [16]. If the constraint is absent (λℓ = 0 for all ℓ), the current is zero,

indicating that it arises due to the single-valued requirement of the wave function.

As a function of ∇χ, the expectation value of the hopping term is calculated as

K[∇χ]=−t
∑
⟨k,j⟩1

N∑
γ=1

(
e

i
2
(χk−χj)e

i
2
(ξk−ξj)(Dγ

k↑)
∗Dγ

j↑+e
i
2
(χk−χj)e−

i
2
(ξk−ξj)((Dγ

k↓)
∗Dγ

j↓

)
+c.c. (30)

where the sum is taken over occupied orbitals |γ⟩.

Using the relation, δE[∇χ]
δ∇χ = δK[∇χ]

δ∇χ , the following equations for ∇χ and λℓ are obtained

from Eq. (25);

δK[∇χ]

δ∇χ
+

Nloop∑
ℓ=1

λℓ
δ

δ∇χ(x)

∮
Cℓ

∇χ · dr = 0 (31)

In the discrete lattice, Eqs. (31) and (26) become,

∂K

∂τk←j

+

Nloop∑
ℓ=1

λℓ
∂

∂τk←j

∑
k←j

τk←jL
ℓ
k←j=0 (32)∑

k←j

τk←jL
ℓ
k←j = 2πwℓ (33)

where Lℓ
k←j is defined by

Lℓ
k←j =


−1 if τk←j is in Cℓ with clockwise direction

1 if τk←j is in Cℓ with counterclockwise direction

0 if τk←j is not in Cℓ

(34)

and τk←j denotes the phase difference over bonds

τk←j = χk − χj (35)

We take the branch of χ so that the difference of χ between nearby sites is in the range,

−π ≤ χℓ − χk < π (36)

The equation (32) is calculated as

t sin
τk←j

2
Fk←j +

∑
ℓ

Lℓ
k←jλℓ = 0 (37)
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where

Fk←j =
N∑

γ=1

[
e

i
2
(ξk−ξi)(Dγ

k↑)
∗Dγ

j↑ + e−
i
2
(ξk−ξi)(Dγ

k↓)
∗Dγ

j↓

]
(38)

We must solve the system of equations composed of Eq. (37) and Eq. (33) for τk←j and

λℓ. After obtaining τk←j and λℓ, the current is calculated as

Jk←j =
2q

h̄

∑
ℓ

Lℓ
k←jλℓ (39)

from Eq. (29).

Values of τk←j are calculated in the following way; first we split τk←j as

τk←j = τ 0k←j + δτk←j (40)

where τ 0k←j is obtained by linearizing Eq. (37) as

τ 0k←j

t

2
Fk←j +

∑
ℓ

Lℓ
k←jλℓ = 0 (41)

Then, using Eqs. (33) and (41), we obtain the following system of linear equations;∑
ℓ′

M ℓ′

ℓ λℓ′ = 2πwℓ (42)

where

M ℓ′

ℓ = −
∑
k←j

2

tFk←j

Lℓ
k←jL

ℓ′

k←j

=


∑

k←j∈Cℓ∩Cℓ′
2(tFk←j)

−1 ℓ ̸= ℓ′

−
∑

k←j∈Cℓ
2(tFk←j)

−1 ℓ = ℓ′
(43)

λℓ’s are obtained from the equation in Eq. (42). After the calculation of λℓ’s, τ
0
k←j’s are

obtained from Eq. (41).

Next, we evaluate δτk←j; assuming that δτk←j is very small, Eq. (37) is written as

2 sin
τ 0k←j

2
+δτk←j cos

τ 0k←j

2
+ 2(tFk←j)

−1
∑
ℓ

Lℓ
k←jλℓ=0 (44)

The winding numbers calculated with δτk←j’s are zero; thus, Eq. (33) becomes∑
k←j

Lℓ
k←jδτk←j = 0 (45)
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Using Eqs. (44) and (45), we have

∑
ℓ′

N ℓ′

ℓ λℓ′ = −
∑

k←j∈Cℓ

Lℓ
k←j tan

τ 0k←j

2
(46)

for the equation for λℓ, where

N ℓ′

ℓ =
∑
k←j

(tFk←j)
−1 cos−1

τ 0k←j

2
Lℓ

k←jL
ℓ′

k←j

=

 −
∑

k←j∈Cℓ∩Cℓ′
(tFk←j cos

τ0k←j

2
)−1 ℓ ̸=ℓ′∑

k←j∈Cℓ
(tFk←j cos

τ0k←j

2
)−1 ℓ = ℓ′

(47)

After obtaining λℓ’s from Eq. (46), δτk←j’s are calculated using Eq. (44). Next, after updat-

ing τ 0k←j as the sum of the previous τ 0k←j and the obtained δτk←j, we solve Eq. (46); then,

new δτk←j’s are calculated again using Eq. (44); we repeat this cycle till δτk←j becomes

sufficiently small.

The calculation with the current feeding boundary condition is also possible [7]. In this

case, Eq. (32) is modified as

∂K

∂τk←j

+

Nloop∑
ℓ=1

λℓ
∂

∂τk←j

∑
k←j

τk←jL
ℓ
k←j+

Next
loop∑
ℓ=1

λext
ℓ

∂

∂τk←j

∑
k←j

τk←jL
ℓ
k←j=0 (48)

where the sum over N ext
loop external loops are included; each external loop is a loop that

includes a bond directly connecting two current feeding sites on the edges; this bond is not

a part of the lattice, but the rest of the bonds in the external loop are those of the lattice.

The resulting current is independent of the choice of the bonds in the lattice.

Using Eq. (39), λext
ℓ is related to the feeding current Jext

k←j as

Jext
k←j =

2q

h̄

∑
ℓ

Lℓ
k←jλ

ext
ℓ (49)

This will conserve the charge for the current feeding boundary condition where the current

flow-in at the kth site and flow-out from the jth site. This boundary condition may be

viewed as the situation where current flows in from the lead connected to the kth site, and

flows out to the lead connected to the jth site. The equation (49) is solved for λext
ℓ , and the

obtained λext
ℓ ’s are substituted in Eq. (48).

For the construction of basis {|γ⟩}, values of η and χ at each site have to be rebuilt from

the values ηℓ − ηk and χℓ − χk, respectively. The rebuilding of χ can be done in the similar
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manner as that of ξ. We have τk←j = χk − χj for all the bonds, thus, we rebuild χ from

them. First, we pick a value for the initial χ1 (say χ1 = 0); the step where value χℓ is derived

from the already evaluated value of χk is given by

χℓ = χk + (χℓ − χk) (50)

where the sites ℓ and k are connected by a bond in the path. This process is continued until

values at all accessible sites are evaluated once and only once. Using ξj and χj obtained

from the rebuilding, we obtain values of ξj − χj and ξj + χj.

Since the values of ξ and χ are path-dependent they have 2πn (n is an integer) jumps

between sites that are connected by bonds but not used during the rebuilding process de-

scribed above. Due to the condition in Eq. (14), the phase jumps for ξ±χ are 4πn (n is an

integer). Then, values of e−i
ξj+χj

2 and ei
ξj−χj

2 are path-independent because the 4πn jumps

are absorbed by ei2πn = 1. In this way, the single-valued wave functions {|γ⟩} are obtained.

Using occupied levels from {|γ⟩}, we can construct the Hartree-Fock total electronic wave

function. It has the following form

Φ(r(1), · · · , r(N)) = Φ0(r
(1), · · · , r(N))e−

i
2

∑N
α=1 χ(r

(α)) (51)

where r(j) is the coordinate of the jth electron. The phase factor e−
i
2

∑N
α=1 χ(r

(α)) arises

due to the factor e−i
χj
2 added in Eq. (23). Φ0 is a multi-valued currentless wave func-

tion; e−
i
2

∑N
α=1 χ(r

(α)) makes the total wave function single-valued by compensating the multi-

valuedness of Φ0, and generates the supercurrent.

IV. RESULTS

Now we present numerical results for supercurrent carrying states obtained by the method

described in the previous section. The parameters used are U = 8t [22] and J ′ = 0.5J or

J ′ = 0, where J = 4t2/U . We found that for the self-consistent solutions with the spin-

vortices given below, the resulting ζ is turned out to be always π/2; this means that the

spins are lying in the x-y plane when the spin-vortices are formed in the present model.

The contribution from Eq. (3) is included as its expectation value calculated using the

Hartree-Fock single determinant wave function.

The SVQ in the CuO2 plane of the cuprate embedded in the antiferromagnetic background

is depicted in Fig. 1b. In Fig. 1c-f, four current patterns arising from the single SVQ spin-
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a b

c d

e f g

i jh

FIG. 2: Plots of the spin configuration, current pattern, and density map of the single particle

orbital. a, Spin configuration. b, The minimal energy current distribution. c, Current distribution

with flow from (1,3) to (13,3). This state is higher in energy than b by 2.03t. d, Current distribution

with flow from (1,3) via (7,3), and (7,11) to (13,11). This state is higher in energy than b by 4.17t.

e-j, Density maps of the probability amplitude for first to sixth highest energy occupied single

particle orbitals. For the current in b, the energy decreasing order of the orbitals is e-j; for c,

e,f,h,i,g, and j; for d, f,g,i, e,j, and h.
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texture in Fig. 1b are shown. Different current patterns are obtained by choosing different

values of wℓ in Eq. (24); ‘m’ and ‘a’ indicate the centers of the SVILCs with wℓ = 1 and

wℓ = −1, respectively. The total energy of the single SVQ system in Fig. 1b is higher than

that of the antiferromagnetic case in Fig. 1a. The SVQ state becomes the ground state if

we include the superexchange interaction given in Eq. (3) with sufficiently large J ′. With

the value J ′ = 0.5J , where J = 4t2/U , the state with the spin-vortices becomes more stable

than the AF case by 0.21t. The lowest energy state is the one with the current pattern in

Fig. 1c. The current is practically zero for this minimal energy current pattern. A horizontal

current arises between rows of ‘a’ and ‘m’ in the current pattern in Fig. 1d; this state is

degenerate with the one with a vertical current in Fig. 1e. The state with a large current

in Fig. 1f has a significantly larger energy than the other current pattern state.

The self-consistent numerical calculations indicate that the SVQ is a stable unit. As

the hole doping is increased, the CuO2 plane will be covered by them. In Fig. 2a, a spin-

configuration with six SVQs is shown. The cluster of the localized holes observed in the

experiment [18] may be a collection of the SVQs such as this.

The current by the SVILCs flows through the channel generated by the SVQs. Ener-

getically favorable current patterns are those constructed with the horizontal current unit

depicted in Fig. 1d and its degenerate partner with the vertical current in Fig. 1e. Two

examples are shown in Fig. 2c-d. They are stable since the SVILCs are protected by their

topological integers. Due to this stability, they may be regarded as the local supercurrent.

When the network of the spin-vortices is extended and covers the whole CuO2 plane, the

macroscopic superconductivity will be realized.

As shown in the density maps of the probability amplitude of single-particle orbitals in

Fig. 2e-j, the states just below the Fermi energy have large probability density at the centers

of the SVQs. When electrons in those states are extracted, the SVQ will be destroyed. This

means that the extraction of the electrons near the Fermi level costs an extra energy. This

may explain the energy gap observed in the STM.

The results for the current feeding boundary condition are depicted in Fig. 3. This shows

that the present supercurrent transfers electric charge that enters into one end and exits

from another without a voltage difference.
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FIG. 3: Plots of current flows for the channel made by the spin configuration in Fig. 2a. The

current flow with current feeding boundary condition (red) is superimposed on the closed current

pattern (green). a, the current of 0.1et/h̄ flow-in at (1,3) and flow-out at (13,3). b, the current of

0.1et/h̄ flow-in at (1,3) and flow-out at (13,11).
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FIG. 4: Plots of current flow in Fig. 2a. The current flow calculated with Eq. (39)(green) is

superimposed on that calculated by Eq. (52) (red).

The current can be also calculated as the following expectation value

Jwave
k←j = i

qt

h̄
⟨
∑
σ

c†kσcjσ − c†jσckσ⟩. (52)

using the total wave function Φ(r(1), · · · , r(N)) in Eq. (51). In Fig. (4), the result is compared

with the one calculated using Eq. (39), showing that the two results are identical as they
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should be. The current is generated by the phase factor e−
i
2

∑N
α=1 χ(r

(α)).

V. GINZBURG-LANDAU EQUATION OF THE SPIN-VORTEX MODEL:

DERIVATION OF THE FLUX QUANTUM hc/2e BY THE SUPERCURRENT OF

SVILCS

In this section, we derive the equation corresponding to the Ginzburg-Landau equation

using the wave function in Eq. (51). It is also shown that the flux quantum hc/2e is obtained

for the supercurrent generated by the SVILCs.

In the following derivation, we assume that Φ0 part of the wave function Φ in Eq. (51)

is rigid in the sense that it is the ground state characterized only by the electron density

ρ calculated from Φ0. We further assume that ρ is time-independent; the time dependence

only exists in χ. Then, by treating χ and ρ as collective modes for the superconductivity, we

will show that the macroscopic equation corresponding to the Ginzburg-Landau equation at

T = 0 K is obtained.

Let us consider the following energy functional

E[Φ,Aem] = ⟨Φ|

{
N∑

α=1

1

2m

[
p(α) − q

c
Aem(r(α))

]2
+Hint

}
|Φ⟩

+
1

8π

∫
d3r(∇×Aem)2 (53)

where m is the effective mass of the electron, q = −e is the charge of the electron, Hint is

the Hamiltonian for interactions, Aem is the vector potential for electromagnetic field, and

the last term is the magnetic field energy. Actually, due to the large anisotropy, the effective

mass in the ab plane and c direction are different in the cuprate; however, for simplicity, we

use the same effective mass in the following.

By using the fact that the current density for Φ0 is zero, E[Φ,Aem] is expressed with ρ

and χ as

E[ρ, χ,Aem] = E0[ρ] +
1

2m

∫
d3rρ

(
h̄

2
∇χ+

q

c
Aem

)2

+
1

8π

∫
d3r(∇×Aem)2 (54)
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where E0[ρ] is the ground state energy functional for the electron density ρ given by

E0[ρ] = ⟨Φ0|

{
N∑

α=1

1

2m
(p(α))2 +Hint

}
|Φ0⟩ (55)

We regard E[ρ, χ,Aem] as the functional to be minimized to obtain the stable state. The

stationary condition of E[ρ, χ,Aem] with respect to the variation of Aem yields,

∇×Bem =
4πqρ

mc

(
h̄

2
∇χ+

q

c
Aem

)
(56)

where Bem = ∇ × Aem. This is one of Maxwell’s equations. It indicates that the electric

current density is given by

j =
qρ

m

(
h̄

2
∇χ+

q

c
Aem

)
(57)

This is the London equation [23].

The stationary condition of E[ρ, χ,Aem] with respect to the variation of χ yields,

∇ · j = 0 (58)

This shows that the optimized χ ensures the conservation of electric charge.

The equation (57) indicates that the appearance of χ gives rise to the vector potential

Afic given in Eq. (12), and the effective vector potential in the system becomes the following

sum

Aeff = Afic +Aem (59)

With the optimized ∇χ (equivalent to the optimized Afic), Aeff is gauge invariant: if we

employ a different vector potential of electromagnetismA′em = Aem+∇f , where f is a single-

valued function, the optimized fictitious vector potential is modified as A′fic = Afic−∇f ;

thus, the effective vector potential Aeff remains the same.

From Eqs. (56) and (57), the Meissner effect is explained. This means that the current

density is zero in the bulk. Actually, the current density in this case should be regarded as

an average over a coarse-grained region since microscopic loop currents given in Eq. (29),

such as shown in Fig. 1c, exist.

Let us consider a ring-shaped system and take a loop C that goes around the hole of

the ring through the bulk region where j = 0 in the above-mentioned sense. Then, from

Eq. (57), we have

0 =

∮
C

(
h̄

2
∇χ+

q

c
Aem

)
· dr (60)
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Thus, the flux through the loop C is given by∮
C

Aem · dr = −ch̄

2q

∮
C

∇χ · dr = ch̄

2e

∮
C

∇χ · dr = ch

2e
wC , (61)

where wC is the winding number of χ for the loop C. This shows that the magnetic flux is a

multiple of ch̄
2e
. Usually, 2e in the flux quantum is regarded as the evidence that the charge

carriers in superconductors are paired electrons. However, it is obtained without assuming

the presence of electron pairs here.

Let us show that the variables ρ and χ are canonical conjugate; for that purpose, we

consider the following Lagrangian

L = ⟨Φ|ih̄ ∂

∂t
−

{
N∑

α=1

1

2m

[
p(α) − q

c
Aem(r(α))

]2
+Hint

}
|Φ⟩ (62)

We only consider the case where χ is time-dependent but ρ is time-independent. Then, the

Lagrangian is calculated as

L =

∫
d3rh̄

χ̇

2
ρ− E0[ρ]−

1

2m

∫
d3rρ

(
h̄

2
∇χ+

q

c
Aem

)2

(63)

where Eq. (54) is used.

From Eq. (63), the canonical conjugate variable to χ, pχ, is obtained as

pχ =
δL

δχ̇
=

h̄

2
ρ (64)

The Hamiltonian is constructed from L as

H = E0[ρ] +
1

2m

∫
d3rρ

(
h̄

2
∇χ+

q

c
Aem

)2

(65)

Then, the Hamiltonian equations are given by

ρ̇ = −2

h̄

δH

δχ
= 0 (66)

χ̇ =
2

h̄

δH

δρ
(67)

Since ρ is assumed to be time-independent, the condition in Eq. (66) is obtained. It is shown

to yield the conservation of the charge given in Eq. (58) [5].

The commutation relation Eq. (64) and Hamilton’s equations Eqs. (66) and (67) indi-

cate that the present superconducting state may be regarded as a coherent state with the
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eigenvalue (ρ/2)1/2e−iχ for the operator (ρ̂/2)1/2e−iχ̂, where ρ̂ and χ̂ satisfy the following

commutation relation, [
χ̂(r),

1

2
ρ̂(r′)

]
= iδ3(r− r′) (68)

The energy functional in Eq. (54) can be regarded as the one for the single-valued macro-

scopic wave function ΨGL, given by

ΨGL = (ρ/2)1/2e−iχ (69)

where Eq. (54) is expressed as

E[ρ, χ,Aem] =
1

4m

∫
d3r

∣∣∣∣( h̄

i
∇− 2q

c
Aem

)
ΨGL

∣∣∣∣2 +G0[2|ΨGL|2]

+
1

8π

∫
d3r(∇×Aem)2 (70)

with

G0[ρ] = E0[ρ]−
∫

d3r
h̄2

8m

(∇ρ)2

ρ
(71)

This functional becomes the one corresponding to the Ginzburg-Landau functional if the

quadratic polynomial of ρ is used for G0[ρ]. The original Ginzburg-Landau functional is a

free energy functional. However, the one given above is an energy functional, thus, it is only

valid at T = 0 K.

A Schrödinger equation like equation is obtained from the functional in Eq. (70) with

the stationary condition for the variation with respect to Ψ∗GL. ΨGL should be solved as a

single-valued function of the coordinate. The mass and charge of the Hamiltonian for ΨGL

are 2m and 2q, respectively. The obtained equation is the one for particles with mass 2m

and charge 2q = −2e. ΨGL is single-valued just like the wave function for the Schrödinger

equation.

VI. CONCLUSION

The supercurrent generation in the cuprate superconductor will be markedly different

from that of the BCS superconductor. The spin-vortex model, combined with the atomic-

scale STM results suggests that the unit of the superconducting state in the cuprate is the

22



SVQ of width 4a. We expect they will appear in the pseudogap phase and make a network

channel of the supercurrent flow. The supercurrent will be a collection of the SVILCs that

flows through this network.

The total electronic wave function for the superconducting state is given by

Φ(r(1), · · · , r(N)) = Φ0(r
(1), · · · , r(N))e−

i
2

∑N
α=1 χ(r

(α)), where Φ0 is a multi-valued currentless

wave function and e−
i
2

∑N
α=1 χ(r

(α)) is the phase factor that makes Φ single-valued with respect

to the electron coordinates. The latter generates the forced whole system motion imposed

by the single-valued requirement of the wave function and generates the supercurrent. The

stable current flow that enters from one lead connected to the superconductor and exits into

another lead is realized by this whole system motion without a voltage difference between

the two leads; this corresponds to the supercurrent observed in the experiment.

We have also obtained the Ginzburg-Landau type equation using the above wave function

Φ, and shown that the flux quantum is ch/2e.

In order to verify the present new mechanism, the detection of the SVILCs is required. For

that purpose, we propose to measure the change of the local magnetic field by an irradiation

of strong electromagnetic field on a 4a width cluster of holes. If the irradiation causes

the transition that alters the current direction of the SVILCs, the change of the magnetic

field occurs. Our estimates for the single SVQ case using t = 130 meV are as follows: the

transition energy from the ground (Fig. 1c) to the degenerate first excited state (Fig. 1d, e)

is about 57 meV, and that to the second excited state (Fig. 1f) is about 850 meV; the change

of the local magnetic field by the transition to the second excited state is about 0.015 T at

1.2 nm above the center of the SVQ . In reality, the cluster of holes is composed of many

SVQs, thus, real values will be significantly different from the estimates. The details for the

alteration of the current direction of the SVILCs will be examined in our future work. A

possibility to use SVILCs as qubits of quantum computers will be also discussed.
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