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Abstract

We investigate properties of the N(nucleon)-Ω(Omega) interaction in lattice
QCD to seek for possible dibaryon states in the strangeness −3 channel. We
calculate the NΩ potential through the equal-time Nambu-Bethe-Salpeter
wave function in 2+1 flavor lattice QCD with the renormalization group
improved Iwasaki gauge action and the nonperturbatively O(a) improved
Wilson quark action at the lattice spacing a ≃ 0.12 fm on a (1.9 fm)3× 3.8 fm
lattice. The ud and s quark masses in our study correspond to mπ = 875(1)
MeV andmK = 916(1) MeV. At these parameter values, the central potential
in the S-wave with the spin 2 shows attractions at all distances. By solving
the Schrödinger equation with this potential, we find one bound state whose
binding energy is 18.9(5.0)(+12.1

−1.8 ) MeV, where the first error is the statistical
one, while the second represents the systematic error.
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1. Introduction

Possible existence of strange dibaryons is one of the long standing prob-
lems in hadron physics. Among others, the H dibaryon (uuddss) with
JP = 0+ and I(isospin)=0 [1], and the NΩ dibaryon (uudsss or uddsss)
with JP = 2+ and I=1/2 [2], are the most interesting candidates. Since the
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Pauli exclusion principle does not operate among quarks in these systems,
they can in principle be compact six-quark states unlike the deuteron [3, 4].

Experimentally, if the mass of the H dibaryon is close to 2mΛ = 2231
MeV, its strong-decay width is suppressed, so that it may appear as a sharp
resonance. Similarly, if the spin-2 NΩ dibaryon is a S-wave bound state of N
and Ω, the strong decays to octet-decuplet systems are prohibited kinemati-
cally 1 and those into octet-octet systems (e.g. ΛΞ) are suppressed dynami-
cally due to the D-wave nature. Therefore, the spin-2 NΩ dibaryon, if it is
a bound state or a sharp resonance, could be observed e.g. by relativistic
heavy-ion collisions at RHIC and LHC, or by the hadron beam experiments
at J-PARC and FAIR.

Although numerous attempts have been done to estimate the binding
energy of strange dibaryon states in QCD motivated models, results were
highly dependent on the model assumptions. Only recently, first principle
calculations based on lattice QCD became available for multi hadrons due
to the development of advanced techniques such as the Lüscher’s method [5]
and the HAL QCD method [6, 7, 8, 9, 10]. In particular, the H-dibaryon
from the point of view of baryon-baryon interactions was first studied by
3-flavor QCD simulations in [11], and a possible shallow bound state in the
flavor-SU(3) limit was suggested. Such a possibility was later explored and
confirmed by more extensive simulations with relatively heavy quark masses
in 2+1 flavor QCD [12] and in 3 flavor QCD [13, 14]. The fate of H in the
real world, however, is still uncertain [15, 14, 16] and needs to be investigated
further.

In this paper, by using (2+1)-flavor lattice QCD simulations with the
HAL QCD method (reviewed in [10]), we carry out an exploratory study of
the spin-2 NΩ dibaryon. Our strategy is to derive a potential between N and
Ω in the 5S2 channel2 (S-wave and spin-2) from the Nambu-Bethe-Salpeter
(NBS) wave function measured on the lattice. Although the potential itself is
not a direct physical observable, it is a useful tool to derive various physical
quantities such as the binding energy and the phase shift (see the review

1Note that the ordering of the thresholds in the octet-decuplet and decuplet-decuplet
systems with strangeness=−3 and charge=0 reads PΩ−(2611MeV) < ΛΞ0∗(2648MeV) <
Ξ0Σ0∗(2699MeV) < Ξ−Σ+∗(2705MeV) < Σ0Ξ0∗(2724MeV) ∼ Σ+Ξ−∗(2724MeV) <
Σ0∗Ξ0∗(2916MeV) < Σ+∗Ξ−∗(2918MeV).

2We use the standard notation 2S+1LJ in the continuous space to specify quantum
numbers.
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[10] for details). For relatively heavy u and d quark masses corresponding
to mπ = 875 MeV and mK = 916 MeV, we find that the NΩ system has
one bound state with the binding energy (BNΩ) of about 19 MeV with the
statistical error of 5 MeV. Since BNΩ obtained in quark models ranges from
negative value (resonance) to O(100) MeV (deeply bound state) [17, 18], our
exploratory investigations would give useful information to both theoretical
and experimental studies on the NΩ dibaryon.

2. Basic formulation

We define the NΩ potential at low-energies through the equal-time NBS
wave function φ(~r) which satisfies the Schrödinger-type equation at low en-
ergies,

−
1

2µ
∇2φ(~r) +

∫

U(~r, ~r′)φ(~r′)d3~r′ = Eφ(~r). (1)

Here µ = mNmΩ/(mN + mΩ) is the reduced mass of the NΩ system, and
E ≡ k2/(2µ) is the kinetic energy in the center-of-mass frame. It is important
to note that the nonlocal potential U(~r, ~r′) does not depend on k [8]. At low
energies, we expand the nonlocal potential in terms of the relative velocity
as[19] U(~r, ~r′) = VNΩ(~r, ~∇)δ(~r − ~r′).

The equal-time NBS wave function in the S-wave is obtained as

φ(r) =
1

24L3

∑

R∈O

∑

~x

P S
αβ,ℓ 〈0 |Nα(R [~r] + ~x, t)Ωβ,ℓ(~x, t)|NΩ;W 〉 , (2)

Nα(x) = εabc(u
a(x)Cγ5d

b(x))qcα(x), Ωβ,ℓ(x) = εabcs
a
β(x)(s

b(x)Cγls
c(x)),

where W =
√

k2 +m2
N +

√

k2 +m2
Ω is the total energy, α and β denote

Dirac indices, l is a spatial vector index of the gamma matrix γl, the color
indices are given by a, b, c , and C = γ4γ2 is the charge conjugation matrix.
Here N corresponds to a proton (neutron) for q = u(d). The summation
over R ∈ O is taken for all cubic-group elements to project out the S-wave
3. The summation over ~x is taken to project out the state with zero total-
momentum. We take local interpolating operators Nα(x) and Ωβ,ℓ(y) for
the nucleon and Ω: Although the potential depends on the choice of these

3Due to the periodic boundary condition, this projection cannot remove the higher
orbital components with L ≥ 4, which however are expected to be small at low energies.
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operators, observables do not depend on the choice [8]. Projection operators
(P S=2

αβ,ℓ ) are used to select the spin 2 state. It is important to note that the
NBS wave function at asymptotically large |~r| carries full information of the
phases of the S-matrix [20, 21, 22, 23].

On the lattice, the NBS wave function is extracted from the 4-point func-
tion as

FNΩ(~x− ~y, t− t0) =
〈

0
∣

∣

∣Nα(~x, t)Ωβ,ℓ(~y, t)JNΩ(t0)
∣

∣

∣ 0
〉

≃
∑

n

An 〈0 |Nα(~x, 0)Ωβ,ℓ(~y, 0)|NΩ;Wn〉 e
−Wn(t−t0), (3)

An =
〈

NΩ;Wn

∣

∣

∣JNΩ(t = 0)
∣

∣

∣ 0
〉

where JNΩ(t0) is a wall-source operator located at t0, and |NΩ;Wn〉 is an
eigenstate with an eigen-energy Wn. For t − t0 ≫ 1, FNΩ is dominated by
the lowest energy eigenstate.

In the present paper, we consider the single channel scattering in the S-
wave and consider the effective central potential obtained as a leading order

term of the velocity expansion: VC(r) =
1
2µ

∇2φ(r)
φ(r)

+ E. As shown in Ref. [9],
such a potential can be obtained most efficiently by the time-dependent HAL
QCD method, which does not require the difficult task to separate each
scattering state:

VC(r) ≃
1

2µ
∇2R(r, t)/R(r, t)−

∂

∂t
logR(r, t), (4)

where R(r, t) = FNΩ(r, t)/e
−(mN+mΩ)t with FNΩ(r, t) being obtained from

FNΩ(~r, t) by the S-wave projection. In the above equation, we have assumed

that relativistic corrections
(

∂2
t

mN,Ω

) (

∂t
mN,Ω

)n
with n ≥ 0 are small. (For the

NN system in the elastic region, such corrections have been shown to be
very small [9].)

3. Numerical results

We employ 700 gauge configurations generated by CP-PACS and JLQCD
Collaborations[24] with the renormalization group improved Iwasaki gauge
action and the nonperturbatively O(a) improved Wilson quark action[25] at
β = 1.83 (a ≃ 0.12 fm ) on the 163 × 32 lattice. The Dirichlet (periodic)
boundary condition is imposed for quarks in the temporal (spatial) direction.
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Figure 1: Effective mass of Ω as a function of t− t0. The solid line represents the central
value in the fit range t− t0 = 7−11, while the dashed lines show the statistical uncertainty
of the effective mass.

The wall source is used with the Coulomb gauge fixing, while the sink op-
erator is projected to the A+

1 representation of the cubic group, so that the
NBS wave function is dominated by the S-wave component. A number of
sources per configuration is 8. Statistical errors in this report are estimated
by the Jack-Knife method with a bin size of 100 configurations, though errors
do not change much as long as the bin size is larger than 10 configurations.
The hopping parameters in our calculation are (κud, κs) = (0.13760, 0.13710),
and the corresponding hadron masses obtained with 32 sources was given in
Table 4 (Set 1) of Ref. [10]: mN = 1806(3) MeV, mΛ = 1835(3) MeV and
mΞ = 1867(2) MeV. In addition, we use mΩ = 2105(5) MeV for our study,
calculated from 8 sources with the fitting range t−t0 = 7−11, whose effective
mass is shown in Fig.1.

The S-wave NΩ system with spin 2 can decay into the D-wave ΛΞ sys-
tem in the real world, though such coupling is expected to be suppressed
kinematically. On our lattice setup with relatively heavy quarks, such a D-
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Figure 2: The NBS wave function for NΩ in the 5S2 channel at t − t0 = 8. The wave
function is normalized to 1 at the maximum distance by multiplying an overall factor.
Only statistical errors are shown.

wave threshold is located at Wmin =
√

m2
Λ + p2min +

√

m2
Ξ + p2min ≃ 3920

MeV for pmin = 2π/L ≃ 645 MeV. This is slightly above mN + mΩ ≃
1806 + 2105 = 3911 MeV, so that we focus only on the NΩ channel in this
report. More sophisticated analysis using the coupled-channel HAL QCD
method [26, 27, 23, 28] is left for future studies.

Let us first show the NΩ NBS wave function in Fig. 2 as a function of
the relative distance r in the 5S2 channel at t− t0 = 8. The wave function is
normalized to 1 at the maximum distance by multiplying an overall factor,
which does not affect the potential and observables. The NBS wave func-
tion increases as the distance decreases, suggesting the attractive interaction
between N and Ω.

In Fig. 3, we show the NΩ effective central potential VC(r) in the 5S2

channel at t− t0 = 8; the first and the second terms in Eq. (4) are separately
shown by green square and blue triangle points, respectively, together with
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Figure 3: The effective central potential VC(r) (red circles) for NΩ in the 5S2 at t−t0 = 8,
together with its breakup, the first (green squares) and the second (blue triangles) terms
in Eq. (4). Only statistical errors are shown.

the total potential VC(r) shown by the red circle points. Note that the second
term in Eq. (4) is essential to extract potentials reliably from 4-pt functions
even in the presence of excited state contributions[9]. We find that VC(r) in
Fig. 3 is attractive at all distances as expected from the behavior of the NBS
wave function in Fig. 2.

Important observation emphasized in [9] is that the ground state satu-
ration (t ≫ t0) is not necessary in our formulation and one can extract the
non-local potential by using the information from finite t− t0 as long as the
inelastic threshold does not couple strongly. Furthermore, one can check the
validity of the velocity expansion by looking at the t-dependence of the re-
sultant local potentials. In Fig. 4, we compare VC(r) for t − t0 = 7 ∼ 9:
Since they are consistent with each other within the error bars for all r,
we conclude that the velocity expansion is working well for the low-energy
scattering between N and Ω.
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Figure 4: A comparison of the effective central potential VC(r) for NΩ in the 5S2 at
t− t0 = 7 (red circles), 8 (green squares) and 9 (blue triangles). For visibility, data are a
little shifted horizontally at each t− t0. Only statistical errors are shown.

4. Scattering phase shift and binding energy

In order to calculate the NΩ scattering phase shift from the potential
obtained in the previous section, we fit VC(r) with the Gaussian + (Yukawa)2

form adopted in our previous analysis of the H-dibaryon in lattice QCD[13]:

VC(r) = b1e
−b2r

2

+ b3(1− e−b4r
2

)n(e−b5r/r)2, (5)

where we take either n = 2 (the same form as [13]) or n = 1. Fitted results
for the potential at t − t0 = 8 are shown in Fig. 5 by a solid dark-green
(dotted blue) line for n = 1 (n = 2) with χ2/d.o.f. =0.95 (0.93).

Using the fitted potential VC(r), we solve the Schrödinger equation in the
infinite volume to calculate the NΩ scattering phase shift in the 5S2 channel.
Fig. 6 shows the scattering phase shift δ(E) extracted from the potential at
t− t0 = 8 with n = 1, as a function of the kinetic energy E = k2/(2µ) in the
center of mass frame. (The results for n = 2 gives negligible difference from
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Figure 5: Fit of the effective central potential VC(r) at t−t0 = 8 for n = 1 (solid dark-green
line) and for n = 2 (dotted blue line). only statistical errors are shown.

those for n = 1 compared to the statistical errors.) Note that systematic
errors associated with the leading order approximation V in the velocity
expansion for the non-local potential U may become more sizable at larger
kinetic energies.

The scattering phase shift becomes 180 degrees at E = 0 and rapidly
decreases as E increases, which implies the existence of a bound state in this
channel. We thus calculate the binding energy B, which is given in Table 1
at each t − t0 with n = 1 and 2, together with the scattering length a and
the effective range re, where the scattering length and the effective range are
defined from the scattering phase shift δ(E) as

k cot δ(E) =
1

a
+

re
2
k2 +O(k4). (6)

Since effective masses of both N and Ω show plateau for t − t0 ≥ 7,
the central value and statistical error of the observables are estimated from
the weighted average over 8 ≤ t − t0 ≤ 11 with n = 1. To estimate the
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Figure 6: Scattering phase shift δ as a function of the kinetic energy E = k2/(2µ) in the
center of mass frame, obtained from the potential with the n = 1 fit at t − t0 = 8. Only
statistical errors are shown.

systematic errors, we consider the observables obtained from the average
over 7 ≤ t − t0 ≤ 11 and over 9 ≤ t − t0 ≤ 11, as well as those from the
average over tmin ≤ t− t0 ≤ 11 (tmin = 7, 8, 9) with n = 2. Finally we obtain

BNΩ = 18.9(5.0)(+12.1
−1.8 ) MeV, (7)

aNΩ = −1.28(0.13)(+0.14
−0.15) fm, (8)

(re)NΩ = 0.499(0.026)(+0.029
−0.048) fm. (9)

Here the numbers in the first parenthesis correspond to the statistical error,
while those in the second parenthesis show the systematic errors obtained
by taking the largest difference between the central value and the other 5
values. Note that this systematic uncertainty is still sizable, in particular for
the binding energy.
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Table 1: The binding energy, the scattering length and the effective range obtained from
each potential at t− t0 with n = 1, 2.

n t− t0 B (MeV) a (fm) re (fm)
1 6 17.9 (2.8) -1.57 (0.10) 0.532 (0.018)

7 16.2 (3.6) -1.63 (0.15) 0.538 (0.023)
8 14.6 (5.8) -1.69 (0.26) 0.537 (0.035)
9 24.5 (11.5) -1.35 (0.28) 0.468 (0.049)
10 46.9 (20.7) -1.04 (0.20) 0.407 (0.075)
11 38.3 (31.4) -1.18 (0.35) 0.473 (0.142)

2 6 18.3 (3.0) -1.43 (0.15) 0.532 (0.022)
7 16.4 (3.9) -1.53 (0.19) 0.541 (0.031)
8 15.3 (6.0) -1.57 (0.23) 0.556 (0.044)
9 25.0 (11.7) -1.27 (0.29) 0.497 (0.059)
10 46.3 (20.7) -1.08 (0.17) 0.412 (0.082)
11 39.1 (31.4) -1.18 (0.33) 0.468 (0.135)

5. Summary and concluding remark

We study the NΩ interaction in the 5S2 channel through the equal-time
NBS wave function in (2+1)-flavor lattice QCD simulations on a (1.92fm)3×
3.84 fm lattice at the quark masses corresponding to mπ = 875(1) MeV and
mK = 916(1) MeV.

We extract the central potential from the NBS wave function for the 5S2

channel by using the time-dependent HAL QCD method. The result shows
attraction for all distances in this channel. We found that the attraction is
strong enough to produce one NΩ bound state in the spin-2 channel at our
quark mass. In our study we obtain BNΩ = 18.9(5.0)(+12.1

−1.8 ) MeV, aNΩ =
−1.28(0.13)(+0.14

−0.15) fm and (re)NΩ = 0.499(0.026)(+0.029
−0.048) fm.

Our present study may be considered as a starting point to answer the
long standing question about the existence of the NΩ bound state in the
spin-2 channel. We are currently studying the NΩ potential by using gauge
configurations at larger lattice volume with smaller quark masses generated
by PACS-CS collaboration[29]. In the near future, large volume simulations
at the physical quark masses using K-computer at RIKEN AICS [30] with
the coupled-channel HAL QCD method would make a final conclusion on the
fate of the NΩ bound state.
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