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Abstract
In the ensemble Kalman filter, covariance localization plays 

an essential role in treating sampling errors in the ensemble-based 
error covariance between distant locations. We may limit the 
influence of observations excessively, particularly when the 
model resolution is very high, since larger-scale structures than 
the localization scale are removed due to tight localization for the 
high-resolution model. To retain the larger-scale structures with 
a limited ensemble size, the dual-localization approach, which 
considers two separate localization scales simultaneously, has 
been proposed. The dual-localization method analyzes small-
scale and large-scale analysis increments separately using spatial 
smoothing and two localization scales. These are the control 
parameters of the dual-localization method, and this study aims to 
investigate the parameter sensitivities by performing a number of 
observing system simulation experiments using an intermediate 
AGCM known as the SPEEDY model. Two smoothing functions, 
the spherical harmonics spectral truncation and the Lanczos filter, 
are tested, and the results indicate no significant difference. Also, 
sensitivity to the two localization parameters is investigated, and 
the results show that the dual-localization approach outperforms 
traditional single localization with relatively wide choices of the 
two localization scales by about 400-km ranges. This suggests that 
we could avoid fine tuning of the two localization parameters.

(Citation: Kondo, K., T. Miyoshi, and H. L. Tanaka, 2013: 
Parameter sensitivities of the dual-localization approach in the 
local ensemble transform Kalman filter. SOLA, 9, 174−178, doi: 
10.2151/sola.2013-039.)

1. Introduction

Data assimilation generates accurate initial conditions by 
extracting the most information from both model forecasts and 
observations. Numerical weather prediction (NWP) is generally 
sensitive to the initial conditions, and it is essential to obtain better 
initial conditions using more advanced data assimilation methods. 
The ensemble Kalman filter (EnKF; Evensen 1994) is an advanced 
data assimilation method, and a number of research articles on 
EnKF have been published so far. Various EnKF approaches 
have been suggested, such as the Ensemble Adjustment Kalman 
Filter (EAKF, Anderson 2001), Serial Ensemble Square Root 
Filter (Whitaker and Hamill 2002), Ensemble Transform Kalman 
Filter (ETKF; Bishop et al. 2001), and Local Ensemble Kalman 
Filter (LEKF; Ott et al. 2004). Hunt et al. (2007) suggested the 
Local Ensemble Transform Kalman Filter (LETKF) by applying 
the ETKF algorithm to the LEKF. Miyoshi and Yamane (2007) 
applied the LETKF to the Earth Simulator global model known as 
the AFES (Atmospheric General Circulation Model for the Earth 

Simulator; Ohfuchi et al. 2004), and investigated its performance 
in detail. Recently, a growing number of LETKF studies have been 
published. Kondo and Tanaka (2009) applied the LETKF to the 
NICAM (Nonnydrostatic Icosahedral Atmospheric Model) which 
is particularly designed for global cloud-resolving simulations 
by directly calculating cloud physics in the global domain (Satoh 
et al. 2008). Kalnay and Yang (2010) proposed and tested the RIP 
(Running-In-Place) approach with the LETKF to accelerate the 
spin-up time. Miyoshi and Kunii (2012) applied the LETKF to the 
WRF (Weather Research and Forecasting; Skamarock et al. 2005) 
model.

When we apply EnKF to realistic meteorological problems, 
localization (Houtekamer and Mitchell 1998; Hamill et al. 2001) 
plays an essential role in dealing with spurious sampling errors due 
to a generally limited ensemble size. EnKF is generally unstable  
without localization mainly because of sampling errors between 
distant locations. Localization limits the impact of observations 
within a certain distance defined by a prescribed localization 
function. The localization function is usually a distance-dependent  
function that drops to zero at a certain distance, and the Gaspari 
and Cohn (1999)’s fifth-order polynomial function is a typical 
choice. The optimal localization scale depends on several factors 
including the model resolution and ensemble size; the localization 
scale becomes generally smaller for higher-resolution models. For 
example, Miyoshi et al. (2010) applied the 400-km localization 
scale for a T319/L40 (horizontal resolution up to 319 wave
numbers and 40 vertical levels) global model, and Miyoshi et al. 
(2007) applied the 500-km localization scale for the T159/L48 
AFES. By contrast, for the T30/L7 SPEEDY model (Molteni 
2003) the optimal localization scale is found to be 700 km (Kang, 
personal communication). In mesoscale model, Zhang et al. (2009) 
applied about 340-km, 120-km and 40-km localization scale for 
the WRF model whose corresponding horizontal resolutions are 
40.5 km, 13.5 km and 4.5 km, respectively. If we have a very 
high-resolution mesoscale model with a 1-km or even finer grid 
spacing, the localization scale would likely be limited up to 
O(10)-km. In fact, Yussouf and Stensrud (2010) applied an ap-
proximately 1.1-km localization scale (4-km radius of influence) 
with 1-km horizontal resolution model for radar data assimilation. 
In such cases, observations are used only in such limited distance, 
although at least some observations such as rawinsondes are ex-
pected to observe synoptic-scale weather with at least O(100)-km 
scale. Therefore, if we apply narrow localization up to O(10)-km 
for high resolution models, EnKF may not account for larger-scale 
errors even though the observations shall provide useful informa-
tion at O(100)-km scale.

Multi-scale consideration is essential to tackle these situations 
and to use precious observations more effectively. Buehner (2012) 
proposed a spatial and spectral covariance localization approach, 
which considers separate scales simultaneously. This way, we 
can account for larger-scale error covariances separately from 
smaller-scale error covariances. Larger-scale error covariances 
are expected to have larger-scale structure, which usually requires 
large-scale localization. This enables longer-distance impact from 
observations even if the model resolution is high. The separate 
consideration of higher-resolution error covariances allows simul-
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The larger-scale, low-resolution component dXl is computed 
from reduced-resolution forecast ensemble perturbations with a 
longer-range localization scale. dXl is composed of dXl−long and 
dXl−short. The subscript l represents low-resolution perturbations, 
followed by long (short) denoting a long-range (short-range) 
localization scale. dXl−long (Fig. 1b) is obtained from dX f

l with 
longer-range localization:

dXl−long = dX f
l P̃

a
l−long(HdX f

l)
T(r̃long ◦ R

−1)(yo − Hx̄ f)
               + dX f

l [(N − 1)P̃a
l−long]

1/2,	 (2)
where the localization scale of r̃long is longer than that of r̃short. 
Although dX f

l is obtained by applying a spatial low-pass filter (i.e., 
spatial smoothing) to dX f, x̄ f is not smoothed and is the same as 
that in (1). dXl−long includes a short-range structure dXl−short, which 
needs to be removed. dXl−short is obtained from dX f

l with smaller 
localization scale:

dXl−short = dX f
l P̃

a
l−short(HdX f

l)
T(r̃short ◦ R

−1)(yo − Hx̄ f)
                + dX f

l [(N − 1)P̃a
l−short]

1/2,	 (3)
where r̃short is the same as that in (1).

The resulting multi-scale increment dX is obtained form (1), 
(2) and (3) and is shown in Fig. 1c. dX is computed by

dX = dXh + dXl−long − dXl−short.	 (4)
dXh provides the short-range, small-scale structure, and dXl = 
dXl−long − dXl−short provides the long-range, large-scale structure. If 
the long and short localization scales are the same, the dual-local-
ization approach reduces to the single localization approach. Al-
though the dual-localization approach requires solving the LETKF 
analysis updates three times, usually that is not a large load since 
the major part of LETKF computations is usually in the ensemble 
forecasting part, which remains the same.

Miyoshi and Kondo (2013) obtained the smoothed ensemble 
perturbations dX f

l by applying the spectral truncation in the spher-
ical harmonics. In this study, we apply the Lanczos filter (Lanczos 
1956; Duchon 1979). The Lanczos filter has two parameters: 
resolution parameter n and critical frequency fc. In this study, n 
is chosen to be 10, and fc is selected from 1/5, 1/8 and 1/11. The 
Lanczos filter is applied to the longitude and latitude directions. 
Figure 2 shows the response functions of the Lanczos filter and 
Fourier transform. The curve of Fourier transform is an ideal 
response function with cut-off wave number 21. The three curves 
of Lanczos filters are the smoothed response function with tran-
sition bands. The smaller fc corresponds to more smoothing. The 
traditional single localization approach and the dual-localization  
approach are called “CTRL” and “DLOC”, respectively, and 
sometimes subscript F or L is added, corresponding to the Fourier 
transform (F) and Lanczos filter (L), respectively. Figure 3 illus-

taneous analysis of fine structure near the observations. Inspired 
by Buehner (2012), Miyoshi and Kondo (2013) proposed the 
dual-localization approach that considers two localization scales 
simultaneously. In the dual-localization method, longer-range 
analysis increments are analyzed by applying a spatial smoothing 
to the ensemble perturbations and using a larger localization scale, 
while simultaneously, shorter-range analysis increments are ana-
lyzed by using a smaller localization scale. Here, the smoothing 
function and two localization scales are the control parameters of 
the dual-localization approach. Miyoshi and Kondo (2013) did not 
investigate the parameter sensitivities, which are the focus of this 
study.

To make this paper self-contained, Section 2 provides a brief 
overview of the dual-localization approach. Section 3 describes 
the experimental design, and the results are presented in Section 4. 
Finally, conclusion is provided in Section 5. 

2. Dual-localization method

The essence of the dual-localization approach is to find the 
analysis increments as a sum of the small-scale and large-scale 
components. The full-resolution ensemble perturbations and the 
reduced-resolution ensemble perturbations obtained by smooth-
ing the full-resolution perturbations are combined with small-
scale and large-scale localizations, respectively. In this paper the 
method is derived based on the LETKF, but the same idea may 
be applied to other EnKF implementations in a straightforward 
manner.

The smaller-scale, high-resolution component dXh is obtained 
by the full-resolution forecast ensemble perturbations with a short-
range localization scale (Fig. 1 a, with 500-km localization). The 
subscript h represents using high-resolution perturbations. In the 
LETKF, dXh is given by

dXh = dX fP̃a(HdX f)T(r̃short ◦ R
−1)(yo − Hx̄ f) 

          + dX f[(N − 1)P̃a]1/2,	 (1)
where ◦ denotes the element-wise multiplication. Each column of 
the background ensemble perturbation matrix dX f is composed of 
the difference between each ensemble forecast and the ensemble 
mean x̄ f, and the ensemble size is N. P̃a, H, R and yo denote the 
analysis error covariance in ensemble space, the linear tangent 
matrix of the observation operator, observation error covariance 
matrix (assumed to be diagonal) and observation vector, respec-
tively. In the LETKF we apply observation localization r̃short to 
R−1 and weigh the observation error variances depending on the 
distance from the analyzed grid point (Hunt et al. 2007; Miyoshi 
and Yamane 2007; Greybush et al. 2011). 

Fig. 1. Analysis increments of zonal wind (m s−1) at the 4th model level (~500 hPa) from a single profile observation at the star point using the SPEEDY 
model using (a) full-resolution ensemble perturbations with 500-km localization, (b) smoothed ensemble perturbations with 1000-km localization (T21 
spectral truncation), and (c) dual localization with 500-km and 1000-km localization scales using T21 spectral truncation for spatial smoothing. These fig-
ures are adopted from Figs. 1b, 2b and 4 of Miyoshi and Kondo (2013).
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trates similar analysis increments as Fig. 1c, but with the Lanczos 
filter. If we choose a stronger smoothing parameter, dXl becomes 
smaller and smaller by cancelling out positive and negative values, 
and the analysis increments become similar to those with single 
500-km localization dXh (Figs. 1a and 3c). This study compares 
the analysis accuracy among different smoothing functions.

3. Experimental settings

In this study, twin experiments with a T30/L7 (horizontal res-
olution up to 30 wave numbers and 7 vertical levels) atmospheric 
general circulation model (AGCM) known as the SPEEDY model 
(Molteni 2003) are performed under the perfect model scenario. 
This type of experiments is also known as the OSSE (observing 
system simulation experiment). The horizontal resolution of the 
SPEEDY model is about 420 km (3.75 degrees in longitude), and 
the prognostic variables are zonal and meridional wind compo-
nents (U, V), temperature (T), specific humidity (Q) and surface 
pressure (Ps).

The experimental settings follow Miyoshi and Kondo 
(2013). Namely, the nature run starts at 0000 UTC 1 January 
1982, and the observations are generated by adding uncorrelated 
white random numbers to the nature run. The observation error 
standard deviations are 1.0 m s−1 for U and V, 1.0 K for T, 1.0 × 
10−3 kg kg−1 for Q and 1.0 hPa for Ps. The observations are taken 
every 6 hours at all 7 vertical levels at given horizontal stations 
of a radiosonde-like network, but the observations of specific 
humidity and surface pressure are taken from the bottom to the 
4th level and only at the surface, respectively. The assimilation 

cycle is every 6 hour, and the period of the experiments is from 
0000 UTC 1 January 1982 to 0000 UTC 1 February 1983. The 
ensemble size is fixed at 20, and the initial ensemble members are 
chosen from the nature run in January 1984. All experiments are 
performed with adaptive covariance inflation (Miyoshi 2011). The 
CTRL experiment employs the traditional LETKF with 700-km 
horizontal and 0.1 ln p vertical localization parameters. The other 
experiments employ the dual-localization approach (DLOC) with 
different choices of smoothing functions and localization param-
eters. DLOC_F uses the spectral truncation at 21 wavenumbers, 
and DLOC_L5 uses Lanczos filter with fc = 1/5, and similarly 
to DLOC_L8 and DLOC_L11. The localization parameters are 
chosen by 100-km increment from 300 km to 900 km for the 
short localization, and from 600 km to 1300 km for the long lo-
calization. By definition, the long localization parameter is always 
greater than the short localization parameter. 

4. Results

Figure 4 illustrates the results of the localization parameter 
survey for different choices of the smoothing functions. Figure 4 
indicates RMSE (Root Mean Square Error) of surface pressure, 
and the shaded area corresponds to the advantage of DLOC over 
CTRL. DLOC_F and DLOC_L5 are very similar (Figs. 4a, b), 
and the smallest RMSE values are almost identical. Figures 4b, 
c, d show the impact of the smoothing strength. As the degree of 
smoothing becomes stronger, the optimal localization parameters 
shifts to larger scales, and the shaded area becomes smaller. The 
smallest RMSE in Fig. 4c is almost the same as that of Fig. 4b, 
but Fig. 4d shows larger RMSE. Hereafter, DLOC_L5 is further 
investigated and is denoted simply as DLOC_L.

Figure 5 is similar to Fig. 4, but for zonal wind, temperature 
and specific humidity. DLOC_L outperforms CTRL with relatively 
wide choices of the two localization parameters by about 400-km 
range, that is, 400−900 km for the short localization parameter 
and 700−1100 km for the long localization parameter. Using the 
longer localization parameter greater than 1200 km causes filter 
divergence. U and Ps (Fig. 4b) show a little more sensitivity to the 
localization parameters than T and Q. The shapes of shaded area 
are similar except for Q. The positions of minimum RMSE differ 
among different variables. Figures 4 and 5 suggest that the best 
combination of short and long localization parameters be 600 km 
and 900 km. A similar localization parameter survey is performed 
for DLOC_F, and the optimal localization parameters are found to 
be 500 km and 900 km (not shown).

Figure 6 shows the horizontal power spectrums of the analysis 
error of zonal wind at the 4th model level (~500 hPa). Here, the 
optimal localization parameters are chosen. The analysis errors 
are computed from the difference between the nature run and 
analysis, and has the most power around the horizontal wave 

Fig. 2. Response functions of the Fourier transform (thin solid) and the 
Lanczos filters with fc = 1/5 (thick solid), 1/8 (dashed) and 1/11 (dash- 
dotted).

Fig. 3. Similar to Fig. 1c, but using the Lanczos filter with fc = (a) 1/5, (b) 1/8 and (c) 1/11.
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numbers 10 to 20. By applying the dual-localization approach, the 
analysis errors become much smaller in all wavenumbers, and the 
improvement was about 20%. There is no significant difference 
between DLOC_F and DLOC_L.

5. Conclusion

The dual-localization approach of Miyoshi and Kondo (2013) 
analyzes the high-resolution and low-resolution components of 
analysis increments separately, using two localization scales and 
spatial smoothing. The two localization scale parameters and the 
choice of the smoothing function are the tuning parameters of 
the dual-localization method. This study aims to investigate the 
parameter sensitivities. The results showed robust performance of 
the dual-localization approach. Namely, dual localization (DLOC) 
outperformed traditional single localization (CTRL) with a rel-
atively wide choices of the two localization scale parameters by 
about 400-km range. Also, two smoothing functions, the spectral 
truncation as in Miyoshi and Kondo (2013) and the Lanczos filter, 
gave essentially identical analysis performance if their smoothing 
strengths are similar. These findings are important in the sense that 
we may avoid a fine tuning of the parameters of dual localization. 
Since the Lanczos filter is simpler to implement and faster to 
compute, the Lanczos filter may be advantageous in implementing 
with higher-resolution regional models. Results also showed that 
the performance of the dual-localization approach strongly de-
pends on the smoothing strength. With stronger smoothing, larger 
localization parameters give better results, although the minimum 
RMSE becomes slightly larger with stronger smoothing. Testing 
the dual-localization approach with real observations and more 
realistic models remains a subject of future research.

Fig. 6. Horizontal power spectrum of the zonal wind analysis errors at the 
4th model level for CTRL (black), DLOC_F (red) and DLOC_L (blue).

Fig. 4. Analysis RMSEs of surface pressure (hPa) of dual localization with 
various localization scale parameters, averaged for a year from 0000 UTC 
1 February 1982 to 0000 UTC 1 February 1983, and using (a) T21 spectral 
truncation, (b) Lanczos filter with fc = 1/5, (c) fc = 1/8 and (d) fc = 1/11. 
The shaded areas indicate improvements of DLOC over CTRL whose 
RMSE is 0.586 hPa.

Fig. 5. Similar to Fig. 4b, but for (a) zonal wind (m s−1) at the 4th model level, (b) temperature (K) at the second model level and (c) specific humidity 
 (g kg−1) at the lowest model level. The RMSEs of CTRL are 0.900 m s−1, 0.366 K and 0.258 g kg−1, respectively.
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