ARTICLE TYPE

Multiply-Fused Porphyrins—Effects of Extended π -Conjugation on the Optical and Electrochemical Properties

Tomoya Ishizuka, $*^a$ Yuta Saegusa, a Yoshihito Shiota, b Kazuhisa Ohtake, a Kazunari Yoshizawa b and Takahiko Kojima $*^a$

s Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX DOI: 10.1039/b000000x

A novel quadruply-fused porphyrin has been synthesized with a facilely prepared precursor in a high yield. Detailed comparison of the physical properties for a series of fused porphyrins revealed remarkable effects of the ring fusion on lowering LUMO levels rather than HOMO levels.

 π -Conjugated organic molecules exhibiting long-wavelength absorption and high tendency to form intermolecular π - π stacking structures have attracted considerable attention due to interests 15 for the application to organic semiconductors and organic Tetraphenylporphyrin cells.1-3 photovoltaic $(TPP)^4$ representative of synthetic porphyrins,⁵ and the derivatives are promising candidates as functional dyes for the purpose mentioned above, because of the highly-extended π -conjugation, 20 facileness of the synthesis and of introduction of functional groups, and the robustness among the organic dyes.⁴ TPP, however, cannot form strong intermolecular π - π stacking with the porphyrin core due to the steric repulsion of the meso-phenyl groups, 6 and thus, it cannot be directly used to construct π - π 25 stacked one-dimensional molecular wires, which are very important to construct molecule-based optoelectronic materials.⁷

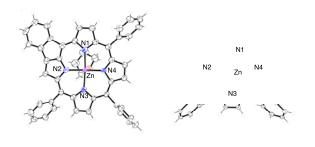
On the other hand, modification of porphyrins with introduction of fused rings on the periphery of the porphryin aromatic circuit have been intensively studied recently,⁸⁻¹⁴ because of the merits of the unique physical properties derived from the narrowed HOMO-LUMO gaps. The ring-fusion strategy has been successfully applied to obtain a chromophore showing an absorption band over 1,400 nm based on one porphyrin unit, ¹² and by increasing the number of porphyrin units fused, the ³⁵ longest absorption band can reach the infrared region. ¹³ In particular, meso- β -arene-fused derivatives ¹⁰⁻¹⁴ exhibit larger redshifts of the optical absorption bands and smaller HOMO-LUMO gaps, compared to β - β -arene fused derivatives. ⁹ However, the ring-fusing reactions reported so far are highly limited and the ⁴⁰ synthetic procedures for the precursors are time-consuming.

Herein, we report the facile and efficient procedure for the

Fig. 1 Structures of fused porphyrins 1-4.

Scheme. 1 Synthetic route of quadruply-fused porphyrin 4.

preparation of a quadruply ring-fused porphyrin (**4** in Fig. 1), in which the four *meso*-phenyl groups are covalently bonded to the β -carbons of the pyrrole rings at the *ortho*-positions. The precursor of the fused porphyrin, zinc(II) 2,3,12,13-tetrabromotetraphenyl-porphyrinate (ZnTPPBr₄), was easily prepared with two-step procedure from TPP¹⁵ and thus can be easily modified by changing tetraarylporphyrin precursors. In addition, the ring-fused porphyrins are highly planar with extended π -conjugation, showing strong π - π stacking tendency and physical properties based on the narrowed HOMO-LUMO gaps.


The ring-fusing reactions of ZnTPPBr4 were conducted by direct C-H activation in the presence of a Pd catalyst. 16 The key 60 factor of the reaction is the selection of the Pd catalyst. The usual molecular Pd catalysts, such as Pd(PPh3)4, did not afford the fully fused product 4, but the partially fused products, 1 and 2 (Table S1 in Electronic Supplementary Information (ESI)). 14c In sharp contrast, when Pd-nanoclusters derived from $[Pd(\eta^3-C_3H_5)Cl]_2$ 65 were employed as the catalyst (Scheme 1), 17 the quadruply fused 4 was obtained in 79% yield accompanying the triply fused 3 as a minor product in 11% yield. The isolation of 4 is very easily performed by virtue of the low solubility to organic solvents. The reaction mixture was filtered to remove the Pd catalyst and other 70 insoluble materials, and then the solvent of the filtrate was evaporated under vacuum. The residual solid was dissolved in THF and the remaining violet solid was filtered to give a redbrown filtrate. The solid obtained mainly included 4 and the recrystallization from THF-EtOH in the presence of 1 drop of 75 pyridine to increase the solubility gave 4 with a pyridine molecule as an axial ligand (4-py) in the pure form. In addition, the major component of the red-brown filtrate in THF was the triply fused 3 and further purification by preparative-scale thinlayer chromatography on silica gel followed by recrystallization 80 from THF/hexane gave violet crystals of 3. The singly-fused 1 and doubly-fused 218 were also obtained from the reactions under different conditions using Pd-nanoclusters derived from

Pd(OAc)₂ as catalysts (entry 2 in Table S1 in ESI).^{17, 19}

Characterization of the ring-fused porphyrins was performed by ¹H NMR spectroscopy, MALDI-TOF-MS spectrometry, elemental analysis¹⁹ and X-ray crystallography (vide infra). The ⁵ ¹H NMR spectrum of **4** in DMSO-d₆ displayed a simple signal pattern reflecting the symmetric structure and eight ¹H NMR signals including three signals due to a free pyridine molecule²⁰ were observed (Fig. S2 in ESI). Each signal of 4 was assigned on the basis of the ¹H-¹H COSY spectrum (Fig. S3 in ESI). The ¹H 10 NMR spectrum of 3 showed relatively complicated pattern due to the low-symmetric structure (Fig. S2b in ESI).

Recrystallization of 1-4 gave single crystals appropriate for Xray diffraction analysis.²¹ The ORTEP drawings of 1-THF, 2, 3, and 4-py are shown in Fig. 2. Compounds 1 and 4 took a THF 15 and a pyridine (py) molecule, respectively, from the recrystallization solvents as axial ligands on the central ZnII ions, whereas 2 and 3 did not have any axial ligand. As one of the characteristics of the ring-fused porphyrins in the crystal structures, the bond lengths between the central ZnII ion and the 20 nitrogen atoms of the pyrrole rings involved in the ring-fused structures were much shortened than those for the ZnII and the nitrogen atoms of non-fused pyrrole rings (Table S2 in ESI): For instance, in 4-py, the bond distance of Zn-N2 and Zn-N4 were found to be 1.894(2) Å and 1.900(2) Å, respectively, involving 25 the fused-ring nitrogens, whereas those of Zn-N1 and Zn-N3 were 2.196(5) Å and 2.126(5) Å, respectively, involving the nonfused pyrrole nitrogens. On the other hand, the Zn-N bond lengths in ZnTPP were almost identical.6 The difference in the Zn-N bond lengths observed for the fused and non-fused pyrroles 30 is probably caused by rigidity of the fused ring structure, which results in shrinkage of the N2···N4 distance and elongation of the N1···N3 distance. The rhombic deformation of the porphyrin core by the ring fusion is confirmed by the density-functionaltheory (DFT)-optimized structure of the free-base porphyrin of 4 35 (Fig. S4 in ESI), where the N1···N3 distance is 4.59 Å and the N2···N4 distance is 3.43 Å. Another feature found in the crystal structures of the fused porphyrins was the long bond lengths between the ipso-carbon (Cipso) of the fused phenyl groups and the *ortho*-carbon ($C_o(fus)$) of the same phenyl group in the ring-40 fused moieties (see Fig. 1). The C-C bond lengths of non-fused phenyl groups and the C-C bond lengths except the C_{ipso} - $C_o(fus)$ bond in the fused phenyl rings were almost equal to be ca. 1.39 Å, whereas the C_{ipso} - C_o (fus) bond lengths were ca. 1.44 Å in common to all the crystal structures of the fused porphyrins. The 45 elongation of the Cipso-Co(fus) bond by ca. 0.05 Å indicates that a single bond is localized between C_{ipso} and $C_o(fus)$, and thus the π conjugation circuit always avoids the Cipso-Co(fus) bond and the isolated aromaticity of the meso-phenyl groups is almost lost. Therefore, the larger aromatic circuits soaking into the fused 50 phenyl rings in the fused porphyrins are recognized in the crystal

The fused porphyrins obviously showed intermolecular π - π stacking structures in the crystal packing and the π - π stacking distances gradually shortened as the number of the fused rings 55 increased. The THF-ligated 1 formed π - π stacking dimers, in which the interplane distance of the two porphyrins was 3.46 Å (Fig. S5 in SI). On the other hand, compounds 2 and 3 having no axial ligands formed π -stacked one-dimensional (1D)

60 Fig. 2 Crystal Structures of 1-THF (a), 2 (b), 3 (c), and 4-py (d). The thermal ellipsoids are drawn with 50% probability.

supramolecular arrays in the crystals (Fig. S6 and Fig. S7 in ESI). Both the 1D arrays with 2 and with 3 exhibit two interplane 65 distances of 3.43 and 3.58 Å for 2, and of 3.28 and 3.36 Å for 3, respectively. Concerning the π - π stacking distances of the three crystal structures, the order is 1-THF (3.46 Å) > 2 (3.43 Å) > 3(3.28 Å). This order indicates that increasing the number of the fused rings enhances the planarity of the molecule and ₇₀ simultaneously increases the number of the π -electrons involved in the π -conjugation. Due to the axial pyridine ligand, **4**-py showed a doming distortion of the fully fused porphyrin ligand in the crystal structure and the porphyrin core did not exhibit any intermolecular π - π stacking (Fig. S8 in ESI).

To confirm the electronic effects of the ring-fusion on the porphyrin π -conjugation, we have measured the electronic absorption spectra and cyclic and differential-pulse voltammograms (CV and DPV) of the fused porphyrins (Table S3 in ESI). Due to the low solubility of 3 and 4, we employed 80 dimethylformamide (DMF) as the solvent for the absorption spectroscopy and electrochemical measurements. In the absorption spectra, both the Soret- and Q-like bands gradually red-shifted as increasing the number of the fused rings (Fig. 3). The lowest energy of the Q-like band was observed for 4, 85 reaching over 1,000 nm and the bathochromic shift was 420 nm relative to the longest Q-band of ZnTPP in DMF. In addition, the fused porphyrins absorb almost whole visible light and consequently, for example, the solution color of 4 in DMF is dark blue. All the fused porphyrins exhibited reversible first-oxidation 90 and first-reduction waves in DMF, and reversible or pseudoreversible second-oxidation and second-reduction waves (Fig. S9 in ESI). HOMO-LUMO gaps obtained from the first-oxidation and the first-reduction potentials become narrower with increasing the number of fused rings. It should be noted that the 95 lowering of the LUMO level by ring-fusion was more remarkable than the rise of the HOMO level: For instance, the difference of the first reduction potentials between 4 (-0.67 V) and ZnTPP (-1.36 V) was 0.69 V, whereas that of the first oxidation potentials of 4 (+0.65 V) and ZnTPP (+0.83 V) was 0.18 V (Table S4 in 100 ESI). To confirm the large effect of the ring-fusion on the LUMO level, we conducted DFT calculations on 4. As a result, it was indicated that the HOMO was delocalized mainly on the porphyrin core, whereas the LUMO was expanded to the ringfused moieties (Fig. S10 in ESI). Therefore, the energy level of

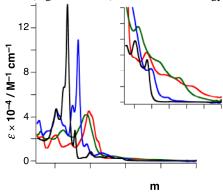


Fig 3. UV-Vis absorption spectra of fused porphyrins in DMF. 1 (black), 2 (blue), 3 (green), and 4 (red).

LUMO is strongly affected by the degree of ring-fusion, compared to that of HOMO.

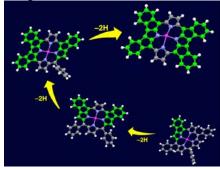
In summary, we have synthesized a novel quadruply-fused porphyrin with an facilely prepared precursor in a high yield. In 10 addition, we have isolated and fully characterized partly-ringfused porphyrin derivatives. The crystal structures revealed the extension of the π -conjugation circuits to the fused *meso*-phenyl groups by the bond lengths between the ipso-carbon and the ortho-carbon bonded to the β -pyrrole carbon. In the crystal 15 packing, the fused porphyrins exhibited strong intermolecular π - π stacking, reflecting the highly planar structures. The UV-Vis spectra and the electrochemical studies of the fused porphyrins indicate the narrowing of the HOMO-LUMO gaps by the extension of the ring-fusing reactions. The planar and π -extended 20 porphyrins developed here would be applicable to various optoelectronic materials on the basis of the highly red-shifted absorption bands covering the entire visible wavelength region and the strong tendency to form one-dimensional molecular wires with intermolecular π - π stacking.

We are grateful to Dr. S. Higashibayashi (Institute for Molecular Science, Japan) for his helpful suggestion. This work was supported by Grants-in-Aid (Nos. 20108010, 22750118, and 24245011) from Japan Society for the Promotion of Science (JSPS).

30 Notes and references

- ^a Department of Chemistry, Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Japan. Fax: (+)81-29-853-6503; E-mail: ishizuka@chem.tsukuba.ac.jp, kojima@chem.tsukuba.ac.jp
- 35 b Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
- † Electronic Supplementary Information (ESI) available: Complete experimental details of syntheses, compound characterization, summary for optical absorption and redox potentials, details for crystal structural 40 analyses, DFT-optimized structures and cyclic and differential-pulse voltammograms. CCDC-929175, -929176, -929177 and -929178 contain the supplementary crystallographic data. See DOI: 10.1039/b000000x/
- (a) J. Wu, W. Pisula and K. Müllen, Chem. Rev., 2007, 107, 718; (b) T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335, 813; (c) D. Görl, X. Zhang and F. Würthner, Angew. Chem. Int. Ed., 2012, **51**, 6328.
- (a) L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend and J. D. MacKenzie, Science, 2001, 293, 1119; (b) X. Feng,

- V. Marcon, W. Pisula, M. R. Hansen, J. Kirkpatrick, F. Grozema, D. Andrienko, K. Kremer and K. Müllen, Nat. Mater., 2009, 8, 421.
- Y. Yamamoto, T. Fukushima, Y. Suna, N. Ishii, A. Saeki, S. Seki, S. Tagawa, M. Taniguchi, T. Kawai and T. Aida, Science, 2006, 314,
- (a) The Porphyrin Handbook, ed. K. M. Kadish, K. M. Smith and R. Guilard, Academic Press, San Diego, 2000, Vol. 1; (b) M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos and E. M. N. Mhuircheartaigh, Adv. Mater., 2007, 19, 2737.
- (a) P. Rothemund, J. Am. Chem. Soc., 1936, 58, 625; (b) A. D. Adler, F. R. Longo, J. D. Finarelli, J. Goldmacher, J. Assour and L. Korsakoff, J. Org. Chem., 1967, 32, 476; (c) J. S. Lindsey, I. C. Schreiman, H. C. Hsu, P. C. Kearney and A. M. Marguerettaz, J. Org. Chem., 1987, 52, 827.
- M. P. Byrn, C. J. Curtis, Y. Hsiou, S. I. Khan, P. A. Sawin, S. K. Tendick, A. Terzis and C. E. Strouse, J. Am. Chem. Soc., 1993, 115,
- (a) S. Bhosale, A. L. Sisson, P. Talukdar, A. Fürstenberg, N. Banerji, E. Vauthey, G. Bollot, J. Mareda, C. Röger, F. Würthner, N. Sakai and S. Matile, Science, 2006, 313, 84; (b) Y. Matsuo, Y. Sato, T. Niinomi, I. Soga, H. Tanaka and E. Nakamura, J. Am. Chem. Soc., 2009, 131, 16048; (c) A. W. Hains, Z. Liang, M. A. Woodhouse and 70 B. A. Gregg, Chem. Rev., 2010, 110, 6689.
 - H. Mori, T. Tanaka and A. Osuka, J. Mater. Chem. C 2013, 1, 2500.
- (a) D. Myśliwiec, B. Donnio, P. J. Chmielewski, B. Heinrich and M. Stępień, J. Am. Chem. Soc., 2012, 134, 4822; (b) H. Boedigheimer, G. M. Ferrence and T. D. Lash, J. Org. Chem., 2010, 75, 2518; (c) L. Jiang, J. T. Engle, L. Sirk, C. S. Hartley, C. J. Ziegler and H. Wang, Org. Lett., 2011, 13, 3020.
- 10 (a) H. Aihara, L. Jaquinod, D. J. Nurco and K. M. Smith, Angew. Chem. Int. Ed., 2001, 40, 3439; (b) M. Nath, J. C. Huffman and J. M. Zaleski, J. Am. Chem. Soc., 2003, 125, 11484-11485; (c) L. J. K. Boerner, S. Mazumder, M. Pink, M.-H. Baik and J. M. Zaleski, Chem. Eur. J., 2011, 17, 14539.
- 11 (a) K. Kurotobi, K. S. Kim, S. B. Noh, D. Kim and A. Osuka, Angew. Chem. Int. Ed., 2006, 45, 3944; (b) H. S. Gill, M. Harmjanz, J. Santamaria, I. Finger and M. J. Scott, Angew. Chem. Int. Ed., 2004, 43, 485; (c) C. Maeda, T. Yoneda, N. Aratani, M.-C. Yoon, J. M. Lim, D. Kim, N. Yoshioka and A. Osuka, Angew. Chem. Int. Ed., 2011, 50, 5691; (d) S. Nakamura, S. Hiroto and H. Shinokubo, Chem. Sci., 2012, 3, 524.
- 90 12 (a) N. K. S. Davis, A. L. Thompson and H. L. Anderson, J. Am. Chem. Soc., 2011, 133, 30; (b) N. K. S. Davis, A. L. Thompson and H. L. Anderson, Org. Lett., 2010, 12, 2124; (c) A. N. Cammidge, P. J. Scaife, G. Berber and D. L. Hughes, Org. Lett., 2005, 7, 3413.
- 13 (a) A. Tsuda and A. Osuka, Science, 2001, 293, 79; (b) Y. Nakamura, N. Aratani, H. Shinokubo, A. Takagi, T. Kawai, T. Matsumoto, Z. S. Yoon, D. Y. Kim, T. K. Ahn, D. Kim, A. Muranaka, N. Kobayashi, and A. Osuka, J. Am. Chem. Soc., 2006, 128, 4119.
- 14 (a) S. Fox and R. W. Boyle, Chem. Commun., 2004, 1322; (b) D.-M. Shen, C. Liu and Q.-Y. Chen, Chem. Commun., 2005, 4982; (c) D.-M. Shen, C. Liu and Q.-Y. Chen, J. Org. Chem., 2006, 71, 6508; (d) S. Hayashi, Y. Matsubara, S. Eu, H. Hayashi, T. Umeyama, Y.
- Matano and H. Imahori, Chem. Lett., 2008, 37, 846; (e) T. D. Lash, B. E. Smith, M. J. Melquist and B. A. Godfrey, J. Org. Chem., 2011, 76, 5335.
- 105 15 P. K. Kumar, P. Bhyrappa and B. Varghese, Tetrahedron Lett., 2003, 44, 4849.
 - 16 B. D. Steinberg, E. A. Jackson, A. S. Filatov, A. Wakamiya, M. A. Petrukhina and L. T. Scott, J. Am. Chem. Soc. 2009, 131, 10537.
 - S. Higashibayashi and H. Sakurai, Chem. Lett., 2007, 36, 18.
- 110 18 The doubly-fused porphyrin contains three isomers; 7,22-&18,40fused, 2, 7,22-&17,34-fused, 2', and 7,22-&8,28-fused, 2" (Figure S1 in ESI). 2 was the major product and easily isolated by column chromatography (see ref. 14). In this manuscript, the properties of 2 were used as the representative for the doubly-fused porphyrins.
- 115 19 See ESI.


100

The pyridine molecule was originally ligated on the central Zn^{II} of 4 during the recrystallization. Judging from the chemical shifts

- observed, the pyridine molecule dissociates from the Zn^{II} upon
- dissolving in DMSO- d_6 .

 21 The crystal structure of **2** having THF as an axial ligand has been reported by Shen et al. (ref 14c).

⁵ Graphics for Table of Contents

A novel quadruply-fused porphyrin was synthesized with an facilely prepared precursor in a high yield.