
Self-Organization on Social Media: Endo-Exo Bursts and
Baseline Fluctuations
Mizuki Oka1*, Yasuhiro Hashimoto1, Takashi Ikegami2

1Department of Computer Science, University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan, 2Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku,

Tokyo, Japan

Abstract

A salient dynamic property of social media is bursting behavior. In this paper, we study bursting behavior in terms of the
temporal relation between a preceding baseline fluctuation and the successive burst response using a frequency time series
of 3,000 keywords on Twitter. We found that there is a fluctuation threshold up to which the burst size increases as the
fluctuation increases and that above the threshold, there appears a variety of burst sizes. We call this threshold the critical
threshold. Investigating this threshold in relation to endogenous bursts and exogenous bursts based on peak ratio and
burst size reveals that the bursts below this threshold are endogenously caused and above this threshold, exogenous bursts
emerge. Analysis of the 3,000 keywords shows that all the nouns have both endogenous and exogenous origins of bursts
and that each keyword has a critical threshold in the baseline fluctuation value to distinguish between the two. Having
a threshold for an input value for activating the system implies that Twitter is an excitable medium. These findings are useful
for characterizing how excitable a keyword is on Twitter and could be used, for example, to predict the response to
particular information on social media.
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Introduction

Social media, such as Facebook, Twitter, and Google Plus, have

established their role as information-sharing tools, both personally

and commercially [1]. With the introduction of these new forms of

social media, one can observe how people respond to specific

information on the web. Indeed, social media have been widely

used as platforms to study the emergence of patterns of collective

attention [1–4]. When information receives collective attention,

the information appears as a burst, an increase in the number of

appearances about the information for a certain period of time.

For example, if we take the number of tweets that contain the

keyword earthquake as depicted in Figure 1, the bursts in the

keyword time series show a strong correlation with the occurrences

of earthquakes. This is because when there is an earthquake,

people tend to tweet about it using the keyword earthquake. These

bursts occur aperiodically in accordance with the timing of

earthquakes. Another example of bursts is observed as daily or

weekly cycles in the keyword time series, such as school, as

depicted in Figure 1. We observe such daily periodic bursts

because people attend school every day on weekdays and like to

tweet about it. These kinds of periodic cycles have also been widely

studied on social media and include individual-level diurnal and

seasonal mood rhythms, which have been identified in cultures

across the globe and are consistent with the effects of sleep and

circadian rhythm [5,6]. As these examples show, by aggregating

the time series of keywords on social media, such as Twitter, we

can extract patterns that exhibit underlying natural phenomena to

human behavior. There is also a keyword, such as practice, which

shows only a few bursts but continuous fluctuations in the number

of tweets, as shown in Figure 1.

Several studies have looked into the underlying mechanism that

generates various bursting behaviors to reveal insights into

people’s collective behavior. For example, Conover et al.

examined the temporal evolution of digital communication activity

relating to the American anti-capitalist movement (i.e., Occupy

Wall Street) using Twitter [7]. The results indicated that the

movement tended to elicit participation from a set of highly

interconnected users with pre-existing interests in similar topics,

such as domestic politics and foreign social movements. Some

researchers also found early indicators on user-generated content

of social media before large changes in events, such as movie box

office success [8] or stock markets [9,10]. Preis et al. found patterns

that may be interpreted as early warning signs of stock market

moves by analyzing changes in Google query volumes for search

terms related to finance [9]. Similarly, Moat et al. investigated

whether data generated through Internet usage contains traces of

attempts to gather information before trading decisions are taken.

They present evidence in line with the intriguing suggestion that

changes in page views of financially related Wikipedia pages may

have contained early signs of stock market moves [10].

Other studies have looked more closely into the types of burst.

For example, Crane and Sornette analyzed a property of a burst in

terms of endogenous and exogenous bursts [11]. Exogenous bursts
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are caused by external influences, such as earthquakes or

appearances in the mass media. Endogenous bursts are caused

as a result of word-of-mouth interactions in a social network.

Crane and Sornette found that whether a burst is exogenous or

endogenous can be found by looking at the peak ratio of the burst;

when the peak ratio is small, then the burst is endogenous,

otherwise exogenous. Lehmann et al. applied their findings to

a large-scale record of tweets, specifically hash-tagged tweets, and

used endogenous and exogenous bursts to demonstrate that tweets

can be clustered into four classes [3].

In this study, we are interested in the temporal as well as the

internal structure that defines the origins of bursts. We first

attempt to characterize a burst in relation to its temporal structure

by investigating the relationship between a burst and fluctuation in

the prior nonbursting period. We then investigate how the

fluctuation plays a role in organizing endogenous or exogenous

bursts. The fluctuation period is the period in which there is no

outstanding increase in the keyword’s popularity, which we refer

to as the baseline period. For any keyword time series on Twitter,

the baseline period is continuously fluctuating and burst sizes

range from small to large. We hypothesize that as the baseline

fluctuation increases, the burst size becomes larger. This kind of

relationship is a generic application of fluctuation response in

statistical physics [12] in which a system’s response size to an

external stimulus has a linear relation with the size of the

fluctuation. That is, the larger the fluctuation, the larger the

response size. In general, the fluctuation-response relation holds in

a thermal equilibrium system but is phenomenologically extended

to many nonequilibrium open systems from physics [12] to biology

[13,14] and economics [15]. We regard the size of burst as the

strength of response on Twitter and the fluctuation in the number

of occurrences of the keyword as the internal state of Twitter and

show how endogenous and exogenous bursts are related to the

level of fluctuation. Our findings reveal the emergence of various

fluctuation-response relationships and the critical threshold in

Figure 1. Examples of time series practice(練習), school(学校), and earthquake(地震). The original time series are depicted with black lines,
and the detected bursts are depicted with red bars with the height indicating the burst level.
doi:10.1371/journal.pone.0109293.g001

Figure 2. Number of tweets and unique users per 10-minute interval. Sudden spikes in frequency indicate the impact of continuous posting
of tweets by bots. The number of unique users mitigates the bot effect in the time series.
doi:10.1371/journal.pone.0109293.g002
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fluctuation size that divides endogenous and exogenous origins of

burst.

Methods

Data
We collected tweets (in Japanese) over a 2-year period beginning

July 2011, using the streaming APIs with the sampling method

available for Twitter developers site. Streaming API collects at

most 1% of all tweets produced on Twitter at a given time

according to the documentation available at https://dev.twitter.

com. We then applied morphological analysis using MeCab

software, which is state-of-the-art software for Japanese morpho-

logical analysis, available at https://code.google.com/p/mecab/.

The collected data had many automated tweets posted by

programs called bots, which resulted in peculiar statistics in the

data. To mitigate the bot effect, we used the number of unique

users to count the frequency of the keywords rather than the

number of tweets (Figure 2). The basic statistics of the data are

shown in Table 1. We chose the 3,000 most popular keywords

from 1,550,770 distinct keywords and created a time series for

each keyword by counting the number of unique users in 10-

minute time intervals. We then smoothed each time series using

a Gaussian kernel with a standard deviation of 30 minutes. This

smoothing is applied to smooth out zero entries in the time series

and ease handling of the data. The resulting time series is

essentially equivalent to 1-hour time aggregation of the time series.

We made the data available in terms of tweets IDs as well as each

tweet IDs for each keyword of 3,000 keywords at http://dencity.

jp/all_ids.zip, and http://dencity.jp/3000.tgz, accordingly

Detection of bursts and fluctuations
We symbolize a time series as a sequence of pairs of a baseline

fluctuation period (Ai) and a following burst period (Bi). That is,

a time series is translated into a sequence A1,B1,A2,B2, . . . ,An,Bn.

Baseline and burst periods are determined by using the

Kleinberg’s burst detection algorithm [16].

The Kleinberg algorithm assumes the Poisson process for

tweets; successive tweets occur independently following exponen-

tial distribution f (x)~le{
�lx, where l is the overall mean

frequency and x is the interval of the successive tweets. �l is

defined by N=T , where N is the total number of tweets over the

time series and T is the total time length of the time series.

We calculate the ‘‘burst level’’ at each time t in a time series,

denoted as i(t) (which takes integers). The burst level can be

updated over time when the local mean frequency at time t,

denoted as lt, exceeds a given threshold; if lt exceeds ls
1, then the

burst level i(t) becomes 1, and if it exceeds ls2, then the burst level

i(t) becomes 2, and so on. We set s~2, so that the burst level

increases by one when the frequency is twice as large as before.

This way of changing the burst level may end up having a very

large number of burst detections, including the noisy ones that

have too short a duration. To mitigate this, another parameter c
has been introduced in the algorithm. This controls the cost of

changing the burst level between successive time points. In this

study, we set c equals 1. (For a more detailed explanation on the

burst detection algorithm, see [16].) Given this setting, we define

a ‘‘burst period’’ as the time period having the burst level larger

than 0 (i.e., i(t)w0), otherwise, this is a ‘‘baseline period’’.

Using this algorithm, we labeled each period in a time series as

either a baseline fluctuation period or a burst period for the 3,000

keyword time series. Figure 1 shows examples of time series and

their detected bursts for the keywords earthquake, school, and

practice. The original time series is depicted with black lines, and

the detected bursts are depicted with red bars with the height

indicating the burst level. We define the fluctuation by the

standard deviation of the baseline frequency for each keyword k,

denoted as

sk(Ai)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

X
n2t{(

1

N

X
nt)

2

r
,

where nt denotes the frequency at time t and Ai is the ith baseline

period in a time series. We also spotted a time point when the

Table 1. General statistics for the dataset.

total number of tweets 297,792,366

total number of users 12,677,098

total number of keywords 1,550,770

- used by more than two users 623,218

- used by more than 10 users 276,867

total number of tweets in the top 3000 keywords 162,358,768

total number of users in the top 3000 keywords 12,037,771

doi:10.1371/journal.pone.0109293.t001

Figure 3. Overall burst size versus peak-size ratio for the 3,000
keywords. Each keyword plot can be well-fitted by the power law
distribution ax{b, where (0vbv1) and b is bounded at 1.
doi:10.1371/journal.pone.0109293.g003
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frequency was the highest during the burst period; we called this

point the peak of the burst and denote it as P(Bi), where Bi is the

ith burst period in a time series. We define the burst size, S(Bi), as
an integration of all the frequencies in the burst period.

Classification of endogenous and exogenous bursts
We identify each keyword’s bursts as endogenous or exogenous

by extending Crane and Sornette’s work in [11]. When the peak

ratio becomes larger than a certain value, it is defined as

exogenous bursts; otherwise, the burst is defined as endogenous.

Crane and Sornette analyzed the property of a single burst;

however, here we statistically analyzed a series of bursts and

classified them as one of two distinct types. Namely, we considered

not only the peak ratio but also the respective burst sizes to classify

endogenous and exogenous bursts. More concretely, we measured

each burst’s peak-size ratio P(Bi)=S(Bi) against its scaled burst

size S(Bi)=E(Ai).

Exogenous bursts form a pulse-like shape with the peak ratio

P(Bi)=S(Bi) becoming close to 1. Plotting all the exogenous bursts

detected in a time series would result in a relatively constant high

peak ratio, and they appear close to a constant value. Endogenous

bursts do not form a pulse-like shape but a more flattened

triangular shape. If we plot all the endogenous bursts in a time

series, they appear closer to the ax{b line. In sum, we can

characterize endogenous and exogenous bursts as

1)A small size burst tends to be the endogenous origin.

2)A large size burst tends to be the exogenous origin.

3)A small peak ratio tends to be the endogenous origin.

4)A large peak ratio tends to be the exogenous origin.

Namely, 1) and 3) above are endogenous origin bursts and 2)

and 4) are exogenous origin bursts. On a two-dimensional plane,

we find the exogenous points in the first quadrant and the

endogenous ones in the third quadrant.

The exogenous and endogenous bursts could be separated by

the individually best fitted line as y~ax{b and each keyword has

a different b. However, if we separate points by the individually

fitted line, we are implicitly separating bursts with almost equal

ratio of endogenous and exogenous bursts. This is counterintuitive

to our understanding that the endogenous and exogenous ratio

should be different depending on the keyword. Therefore, we look

for the common line of the slope, or b, to classify endogenous and

exogenous bursts. So the question is how to set a parameter b for

all the time series to distinguish between them. For this, we plot the

scaled burst size (x-axis) versus the peak-size ratio (y-axis) for all

3,000 keywords overlaying on top of each other, as shown in

Figure 3. The 3,000 keywords are bounded between x{1 and

a constant value, and they can be well fitted by the power law

distribution, which is ax{b where (0vbv1). Notice that the slope

{1 is the lowest exponent out of the whole-fitted lines. This means

that all the endogenous bursts are bounded at b~1; thus, we set b
to be 1 and use it as a global separating line. If a burst is below

y~ax{1 (or a diagonal line y~a{x on a logarithmic scale), we

regard the burst endogenous, otherwise exogenous. With Crane

and Sornette’s method, the peak ratio to distinguish between the

Figure 4. Histogram of fitted b for a6 x2b of all 3,000 keywords (Left) and plot of b with respect to word rank.
doi:10.1371/journal.pone.0109293.g004

Table 2. The top 10 largest and smallest b keywords.

Top 10 largest b Top 10 smallest b

food (食) seismic intensity (震度)

adult (成人) earthquake (地震)

real (ほんと) morning (朝)

laugh (笑) Pretty Cure ( )

gold (金) luck (運)

thing (もの) health (健康)

friend (友達) money luck (金運)

day (日) fortune (運勢)

phone (phone) snack ( )

line (line) Ibaraki (茨城)

doi:10.1371/journal.pone.0109293.t002
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two types of bursts is determined arbitrarily and is usually set

empirically. Our proposed method does not require such

a predefined threshold but rather is automatically set appropriately

for each keyword while still respecting the peak-ratio criterion.

Representative Keywords
Using this classification method, we automatically labeled all the

bursts in each time series as endogenous or exogenous. If we plot

all the fitted b with respect to the keyword rank (ranked according

to the total frequency), it shows a tendency that higher ranked

keywords have larger b values and lower ranked keywords have

lower b, as shown in Figure 4. This indicates that higher ranked

keywords tend to be more endogenous than exogenous and lower

ranked keywords tend to be more exogenous than endogenous.

Indeed, Table 2 lists the keywords of the 10 highest b, which show

daily frequently used keywords, such as food, laugh, person, and so

on. On the other hand, the 10 lowest b show more externally

driven keywords, such as seismic intensity and earthquake.

We show a few representative plots taking from different b
values. Figure 5 shows three plots of the keywords practice(練習),

school(学校), and earthquake(地震) with b~0:85, 0:56, 0:12,
respectively, from more endogenous to more exogenous keywords.

Figure 5. Burst size versus peak-size ratio. The peak-size ratio is either inversely proportional to the burst size or becomes constant. P(Bi) is the
burst peak height, S(Bi) is the burst size and E(Ai) is the mean frequency in the baseline period. The burst size versus the peak-size ratios for practice
(練習) (Left), school(学校) (Middle), and earthquake(地震) (Right). The exogenous (in red) and endogenous (in blue) are identified by fitting the points
with the equation y~a{x (on a logarithmic scale) and labeling a point below the fitted line as endogenous and otherwise exogenous.
doi:10.1371/journal.pone.0109293.g005

Figure 6. Baseline fluctuation, s(Ai)=E(Ai) and peak burst size, P(Bi)=E(Ai) for the keywords practice(練習), school(学校), and
earthquake(地震). Points are in blue for endogenous and in red for exogenous according to the detection identified in the burst size versus peak-
size ratio. (Left) practice: the response size has a positive correlation to the amplitude of the baseline fluctuation that immediately precedes it.
(Middle) school: has a positive correlation between the response size and the amplitude of the baseline fluctuation immediately preceding it to
a certain threshold and has relatively large responses beyond the threshold. (Right) earthquake: Abrupt responses ranging from small to large at
a specific threshold; most importantly, all responses are concentrated around the threshold.
doi:10.1371/journal.pone.0109293.g006
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The endogenous bursts are shown in blue and exogenous bursts in

red. As seen in these examples, most of the keywords have both

endogenous and exogenous bursts, and the ratio of these types of

bursts differs depending on the keywords.

Results

Fluctuation-response relation and threshold
We plot the temporal relation between a baseline fluctuation

and a burst for each keyword by plotting each transition from Ai

to Bi for n number of pairs. As illustrative examples, Figure 6

shows the plots for the keywords for practice, school, and

earthquake. They are also shown in blue or red, corresponding

to endogenous and exogenous, respectively.

The keyword practice shows a case where the response size (i.e.,

the maximum size, or the peak P(Bi) of the burst period Bi) is

correlated with the amplitude of the immediately preceding

baseline fluctuation s(Ai). The keyword school shows a case in

which there is a point up to which the fluctuation gradually

amplifies in correlation with the burst size and the fluctuation-

burst relation then changes qualitatively and causes large bursts.

We call this the critical threshold. Below this critical threshold, the

burst response has a positive correlation with the preceding

baseline fluctuation. Above the critical threshold, the size of the

response becomes independent from the fluctuation size. Some-

times, these keywords have occasional bursts due to events that

break periodicities. Taking the example of school, some periodi-

cities originate in the circadian rhythm. Sometimes this periodicity

breaks and the fluctuation increases, causing the bursts that follow

to also be larger (see Figure 7). These periodicity-broken phases

correspond to major school breaks, such as spring, summer, and

winter holidays. A disruption in repetitive everyday life triggers

a large burst. The keyword earthquake shows a case where the

fluctuation-independent bursts range from small to large and

merge at or above the critical threshold.

Endogenous and exogenous bursts
Having classified the exogenous and endogenous bursts, we

further investigate the relationship between the occurrence of

bursts and the preceding baseline fluctuations. Namely, we

examine the emergence of the critical threshold in the fluctua-

tion-response relation in terms of endogenous and exogenous

bursts. Our hypothesis is that the critical threshold emerges as

a result of the two types of bursts so that they are separated at the

threshold. That is, we consider a burst as endogenous if its

corresponding baseline fluctuation is smaller than the threshold.

We consider a burst as exogenous if its corresponding baseline

fluctuation is larger than the threshold. We test this hypothesis by

drawing a receiver operation characteristic (ROC) curve with

a false positive rate on the x-axis and a true positive rate on the y-

axis. A false positive is a misclassification of the burst, i.e., an

endogenous burst detected as exogenous, whereas a true positive is

a correct classification of the burst, i.e., an endogenous burst

detected as endogenous. The false positive and true positive rates

change according to the threshold. The ROC curve shows how

well bursts can be classified correctly by changing the threshold.

The closer the curve gets to the upper left corner, the better the

classification is.

We computed an ROC curve for each keyword, counting the

total 3,000 ROC curves, and plotted the result in Figure 8. Each

ROC curve is plotted in gray, and the average curve is plotted in

black. The area under the curve (AUC) can be computed to

evaluate the how well the threshold can classify (The AUC

becomes 0:5 when random classification is done with ROC curve

on the diagonal line). The AUC of the average ROC curve is

0:8545 in our results. This is an indication that the critical

threshold emerges as a result of endogenous and exogenous bursts

and that this threshold can be used to separate the two. At the

same time, the endogenous and exogenous causes are not always

distinguishable. Exogenous bursts are followed by retweets, and

endogenous bursts are implicitly affected by real world events.

Henceforth, these two causes are intermingled, which is reflected

in the continuous spectrum of the fluctuation-response curve,

especially with many lower rank keywords. An analysis of ROC

validates this hypothesis.

Figure 7. Breaks of the periodicities for the keyword school originating in the circadian rhythm causing the following bursts to be
larger.
doi:10.1371/journal.pone.0109293.g007

Figure 8. ROC curves for all 3,000 keywords. Each ROC curve is
plotted in gray, and the average curve is plotted in black. The AUC of
the average ROC curve is 0:8545. The ROC curves for practice(練習),
school(学校), and earthquake(地震) are shown in green, red and blue,
respectively. The threshold is ranged for each keyword to compute false
positive rates and true positive rates.
doi:10.1371/journal.pone.0109293.g008
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Burst size distributions
Another way to look into the origins of bursts is to compute the

burst size distribution. We examined the organization of the

distribution to study the origins of thresholds. Figure 9 shows the

cumulative size distributions of bursts for the keywords practice (練

習), school (学校), and earthquake (地震). The figure plots the

distributions using the automatically classified endogenous and

exogenous origins of bursts as in Figure 5. For all the distributions

shown here, the endogenous bursts mostly have smaller sized

bursts compared to the exogenous bursts. Together with the

findings shown in Figure 5, we can say that exogenous bursts have

large-sized pulse-like bursts and endogenous bursts have small-

sized flattened bursts. The gap in the burst sizes between the two

types becomes larger from practice to school to earthquake. This

also means that when b (the fitted value to ax{b described in the

section Classification of endogenous and exogenous bursts) is

smaller (e.g., earthquake), then the distinction between endoge-

nous and exogenous bursts is clearer; however, when it is larger (e.

g., practice), then this distinction becomes more arbitrary. Indeed,

we say that the bursts in practice are mostly the endogenous ones

since all the endogenous bursts are bounded at b~1 and the b of

practice is close to 1.

It is interesting to note that the distributions of bursts tend to

show power law behaviors. When we fit both the endogenous and

exogenous distributions with the power law distribution, the total

of 434 of the endogenous burst’s distribution and 1,240 of the

exogenous burst’s distribution satisfy the coefficient of determina-

tion R2w0:96. We removed keywords that have less than 5 points

in the distributions. This shows that exogenous bursts tend to show

power law behaviors more than endogenous bursts. The

histograms of the fitted exponents for endogenous bursts (in blue)

and exogenous bursts (in red) are shown in Figure 10. We notice

that all the exponents of the endogenous bursts are less than {1,
so that the expected value of the burst size is bounded as their bare

exponents are less than {2. Whereas half of the exogenous bursts

have their exponents larger than {1, so that the expected value of

burst size diverges. This tells us that the exogenous bursts size is

not predictable and is consistent with our fluctuation-response

relation described above; the various sizes of exogenous bursts start

to emerge at and above a critical threshold.

The power law behaviors are common to other human behavior

statistics [17,18]. This means that the nature of bursts is scale free.

A mechanism of organizing a single burst has shown that the

underlying mechanism is modeled with a simple epidemic

propagation model [19]. If Twitter can be approximated by an

epidemic growth model, the size distribution of bursts would

follow a power law behavior, as suggested in [18], known as a self-

organized critical state. Or it can be explained as common of

human ‘‘queuing’’ behavior [17]. A detailed analysis of the scale-

free nature in Twitter bursts remains as a future study.

Discussion

Our findings suggest that the fluctuation threshold separates two

natures of endogenous and exogenous bursts, but the classification

based on the peak-ratio and burst-size plot as shown here is not

perfect. Some bursts appear as a mix of endogenous and

exogenous bursts, and they are not separable by a single

fluctuation value. This is reflected in the ROC curve analysis.

Moreover, when most of the bursts are around a curve of the

exponent {1 on the peak-ratio and burst-size plot, all of them

may correspond to endogenous bursts. Nonetheless, in our

Figure 9. Cumulative size distributions of the endogenous and exogenous origins of bursts for the keywords practice(練習), school
(学校), and earthquake(地震). The endogenous bursts mostly have smaller size bursts compared to the exogenous bursts. The gaps in the burst
sizes between the two types increase from practice to school to earthquake, which also indicates that the distinction between the two types
becomes clearer. The distributions of exogenous bursts tend to show power law behaviors common to other human behavior statistics [17,18].
doi:10.1371/journal.pone.0109293.g009

Figure 10. Histogram of bursts’ exponents. The plotted are the
bursts that satisfy the coefficient of determination R2w0:96 of
endogenous (434 keywords) and exogenous bursts (1,240 keywords)
fitted to the power law when removing keywords whose distributions
have less than 5 points.
doi:10.1371/journal.pone.0109293.g010
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classification they are classified into exogenous and endogenous by

the exponent of {1, and this remains as a limitation of our

method. The mix of the two types of bursts may be reflecting

essential human behaviors.

It should also be noted that the observation of the fluctuation

response (or burst) relationship does not imply that any fluctuation

actually ‘‘causes’’ bursts. Our results show that most of the large

bursts happen only at or beyond a critical fluctuation value and

that they are mostly exogenous bursts. This implies that when the

baseline fluctuation is larger, the system can amplify external

influences into larger bursts. On the other hand, when the baseline

fluctuation is smaller, the size of the bursts is relative to the

fluctuation size and they are mostly endogenous bursts.

As an interpretation of the present results, we argue that

a fluctuation and burst relationship reflects a shared feeling on

Twitter when people become sensitive to certain information.

Probably a shift of threshold has occurred when people become

sensitive to a topic. A popular topic may lower the threshold and

get it ready for reacting with a subtle trigger. In the previous study

of the Twitter time series, we demonstrated that everyday

keywords (the higher ranked keywords) tend to become in-

formation sources to the lower ranked words, which we named

default mode states of Twitter. Our findings here enforce the view

of the default mode state in Twitter [20].

Conclusions

We studied endogenous and exogenous origins of bursts and

their temporal relationship between a baseline fluctuation and the

subsequent response as a burst. Results suggest that Twitter does

not simply have a sensor that responds to stimuli from the outside

but it also has a sensor that responds to internal dynamics.

Responses to external stimuli emerge as exogenous bursts, while

those to internal dynamics emerge as endogenous bursts. Almost

all the keywords exhibit both exogenous and endogenous bursts,

and the difference in the response can be characterized by the

relationship between the baseline fluctuation and the burst sizes.

An endogenous response increases along with a baseline fluctu-

ation, while an exogenous response does not show such

a correlation but shows unpredictable behavior irrespective of

a baseline fluctuation. A fluctuation threshold that separates these

two types of bursts emerges as the critical threshold. At or above

the threshold, the response becomes unpredictable, showing a wide

range of burst sizes as a result of external influences. The threshold

has different values for different keywords and is self-organized,

indicating that the different keywords have different sensitivity to

the corresponding impact in the real or virtual world. Possible

applications based on these findings are numerous. One can use

Twitter, for example, as a sensor system for predicting future

bursts of each keyword.
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8. Mestyàn M, Yasseri T, Kert sz J (2013) Early prediction of movie box office

success based on wikipedia activity big data. PLoS ONE 8(8): e71226.
9. Preis T, Moat HS, Stanley HE (2013) Quantifying trading behavior in financial

markets using google trends. SCIENTIFIC REPORTS 3: 1684.

10. Moat HS, Curme C, Avakian A, Kenett DY, Stanley HE (2013) Quantifying
wikipedia usage patterns before stock market moves. SCIENTIFIC REPORTS

3: 1801.

11. Crane R, Sornette D (2008) Robust dynamic classes revealed by measuring the

response function of a social system. Proc Natl Acad Sci USA 105(45): 15649–
15653.

12. Reichl LE (1998) A Modern Course in Statistical Physics. J. Wiley and Sons,

New York 2nd ed.
13. Oosawa F (1975) Effect of field fluctuation on a macromolecular system. J Theor

Biol 52: 175–186.
14. Sato K, Ito Y, Yomo T, Kaneko K (2003) On the relation between fluctuation

and response in biological systems. Proc Natl Acad Sci USA 100(24): 14086–

14090.
15. Ruelle D (2004) Conversations on nonequilibrium physics with an extraterres-

trial. Physics Today 57(5): 48–53.
16. Kleinberg J (2002) Bursty and hierarchical structure in streams. In: Proc. of the

8th ACM SIGKDD international conference on Knowledge discovery and data
mining. pp. 91–101.

17. Vzquez A, Gama Oliveira J, Dezs Z, Goh KI, Kondor I, et al. (2006) Modeling

bursts and heavy tails in human dynamics. Physical Review E 73: 036127.
18. Bak P, Tang C, Wiesenfeld K (1987) Self-organized criticality: an explanation of

1/f noise. Physical Review Letters 59: 381–374.
19. Sornette D, Deschatres F, Gilbert T, Ageon Y (2004) Endogenous versus

exogenous shocks in complex networks: an empirical test using book sale

ranking. Physical Review Letters 93: 228701.
20. Oka M, Ikegami T (2013) Exploring default mode and information flow on the

web. PLoS ONE 8(4): e60398.

Self-Organization on Social Media

PLOS ONE | www.plosone.org 8 October 2014 | Volume 9 | Issue 10 | e109293


