Graphical Abstract

To create your abstract, type over the instructions in the template box below. Fonts or abstract dimensions should not be changed or altered.

Synthesis of a novel universal opioid receptor agonist with the 1,3,5-trioxazatriquinane skeleton and its pharmacologies

Leave this area blank for abstract info.

Shigeto Hirayama^a, Naohisa Wada^a, Naoya Kuroda^a, Takashi Iwai^a, Noriyuki Yamaotsu^a, Shuichi Hirono^a, Hideaki Fujii^a and Hiroshi Nagase^{b, *}

Bioorganic & Medicinal Chemistry Letters journal homepage: www.elsevier.com

Synthesis of a novel universal opioid receptor agonist with the 1,3,5trioxazatriquinane skeleton and its pharmacologies

Shigeto Hirayama^a, Naohisa Wada^a, Naoya Kuroda^a, Takashi Iwai^a, Noriyuki Yamaotsu^a, Shuichi Hirono^a, Hideaki Fujii^a and Hiroshi Nagase^{a,b, *}

^a School of Pharmacy, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108-8641, Japan ^b International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan

ARTICLE INFO

Article history:

Received Revised

Accepted Available online

Keywords:

Phenethylamine Universal agonist

Opioid

ABSTRACT

We designed and synthesized of 1,3,5-trioxazatriquinanes with o- or p-hydroxyphenyl rings as analogs of the κ opioid receptor agonist SYK-146 with m-hydroxyphenyl groups. Although almost all tested compounds did not bind to the opioid receptors, only **17b** with two ohydroxyphenyl rings showed moderate or potent binding affinities and exhibited agonistic activities for three opioid receptor types. Because the basicity of the nitrogen atom in the 1,3,5trioxazatriquinane structure was predicted to be very low due to the electron withdrawing effect of three oxygen atoms, **17b** was a novel non-morphinan and nonpeptidic opioid universal agonist lacking a basic nitrogen atom.

2009 Elsevier Ltd. All rights reserved.

The opioid receptors are categorized into three types (μ , δ , and κ) and each type displays its various pharmacological effects. The κ opioid receptor (KOR) agonists are believed to be applicable to analgesia, diuresis, treatment of drug dependence and uremic pruritus.¹ Since the discovery of the first nonpeptidic KOR agonist U-50,488 in the early 1980s,² KOR agonists have been intensively sought by many medicinal chemists and were revealed to exert undesirable side effects including sedation³ and psychotomimetic effects^{4, 5} at effective doses. The nonpeptidic KOR agonists have been classified into seven types: 1) benzomorphan derivatives including bremazocine, 2) morphinan derivatives including nalfurafine, 3) arylacetamide derivatives including U-50,488 and U-69,593, 4) diazabicyclononanone derivatives including HZ2, 5) bicyclic guanidine derivatives including TPI 614-1, 6) 7) benzodiazepine derivatives including tifluadom, and neoclerodane diterpene derivatives including salvinorin A.6 The KOR agonist nalfurafine hydrochloride (TRK- 820) was launched in Japan as an antipruritic for dialysis patients and this drug exhibited neither aversive nor addictive effects at effective doses.¹ Nalfurafine is characterized by the structural feature of a phenethylamine unit, a common structure observed in endogenous opioid peptides such as enkephalins, dynorphins, and β -endorphin. Recently, a diphenethylamine derivative HS665 was reported as a selective KOR agonist by Schmidhammer et al.7 We also reported that a 1,3,5-trioxazatriquinane derivative

SYK-146 (1) with m-hydroxyphenyl groups, which also included the phenethylamine moiety, was a selective KOR agonist and that (-)-SYK-146 exhibited its eutomer dose-dependent antinociceptive effects in the mouse acetic acid writhing test.8 The structure-activity relationship (SAR) investigation of SYK-146 derivatives with *m*-hydroxyphenyl groups suggested that the hydroxy groups on the phenyl rings would be the significant structural motif for exerting the KOR agonistic activity. Therefore, we planned to investigate the effect of the position of the hydroxy groups on the KOR agonistic activity. Herein, we report the synthesis of 1,3,5-trioxazatriquinane derivatives with o- or p-hydroxyphenyl groups and their in vitro pharmacological properties.

According to the previously reported method,⁸ we prepared 1,3,5-trioxazatriquinanes **13a-c** and **17a-d** with *o*-hydroxyphenyl groups. The synthesis of **13a-c** commenced with *o*-methoxyacetophenone (**2**). α -Hydroxyaldehyde **5** and its

Figure 1. Structure of SYK-146.

* Corresponding author. Tel.: +81-29-853-6437; e-mail: nagase.hiroshi.gt@u.tsukuba.ac.jp

This is an author version based on a template by Elsevier.

Scheme 1. Reagents and conditions; (a) TosMIC, K_2CO_3 , MeOH, rt; (b) 2 M HCl aq, THF, rt; (c) *p*-Methoxyphenyl magnesium bromide, THF, 0 °C to rt; (d) AcOH, H₂O, reflux; (e) NH₄Cl, AcONa, MeOH, reflux; (f) **5**, **7**, CSA, ClCH₂CH₂Cl, reflux; (g) **6**, **8**, CSA, CHCl₃, rt, 2 weeks, **11a**: 17%, **11b**: 19%, **11c**: 7% from **2**, **12a**: 7%, **12b**: 10%, **12c**: 8% from **3**; (h) 1-Propanethiol, *t*-BuOK, DMF, 130°C, **13a**: 71% from **11a**, **13b**: 71% from **11b**, **13c**: 55% from **11c**, **14a**: 73% from **12a**, **14b**: 73% from **12b**, **14c**: 67% from **12c**.

Scheme 2. Reagents and conditions; (a) glycolaldehyde dimer, CSA, CHCl₃, reflux 15a: 20%, 15b: 6%, 15c: 12%, 15d: 7% from 2, 16a: 16%, 16b: 13%, 16c: 14%, 16d: 5% from 4; (b) 1-propanethiol, *t*-BuOK, DMF, 130 °C, 17a: quant from 15a, 17b: quant from 15b, 17c: quant from 15c, 17d: quant from 15d, 18a: 87% from 16a, 18b: 91% from 16b, 18c: quant from 16c, 18d: 60% from 16d.

hemiacetal dimer 7 derived from 2 were treated with ammonium chloride and sodium acetate to give oxazoline 9. Oxazoline 9 reacted with the mixture of 5 and 7 in the presence of camphorsulfonic acid (CSA) to provide 11a-c (Scheme 1). An attempt to synthesize 6 and 8 with *p*-methoxyphenyl groups by the same synthetic method of 5 and 7 furnished a recovery of starting materials. Therefore, 6 and 8 were prepared by a reaction of pyruvic aldehyde dimethyl acetal (3) with *p*-methoxyphenylmagnesium bromide and subsequent hydrolysis of acetal 4. The resulting mixture of 6 and 8 was treated with ammonium chloride and sodium acetate in MeOH under reflux to afford oxazoline 10. Oxazoline 10 was treated with the mixture of 6 and 8 in the presence of CSA to provide 12a-c (Scheme 1). Derivatives 15a-d or 16a-d having two identical

aryl units were prepared by the acidic condensation of **9** or **10** with glycolaldehyde dimer, respectively (Scheme 2). The key intermediates of the synthesis of 1,3,5trioxazatriquinane derivatives **21a**, **b** and **22a**, **b** were the respective oxazolines **19** and **20**. Ketone **2** was treated with *p*-toluenesulfonylmethyl isocyanide (TosMIC) at rt in the presence of potassium carbonate, followed by hydrolysis with 2 M HCl, subsequent addition of hexamethyldisilazane (HMDS) for neutralization, and then treatment with ammonium chloride and sodium acetate in MeOH at rt to give oxazoline **19**. Oxazoline **20** was prepared from acetal **4** by sequential treatments similar to those of **19**. 1,3,5-Trioxazatriquinanes with a methoxyphenyl group **21a**, **b** or **22a**, **b** were prepared by the acidic condensation of **19** or **20** with glycolaldehyde dimer, respectively (Scheme 3).

Scheme 3. Reagents and conditions; (a) TosMIC, K₂CO₃, MeOH, rt; (b) 2 M HCl aq, MeOH, rt, then HMDS, glycolaldehyde dimer, NH₄Cl, AcONa, MeOH, rt; (c) *p*-Methoxyphenyl Grignard reagent, THF, 0 °C to rt; (d) AcOH, H₂O, reflux, then HMDS, glycolaldehyde dimer, NH₄Cl, AcONa, MeOH, rt; (e) glycolaldehyde dimer, CSA, CHCl₃, reflux, **21a**: 34%, **21b**: 20% from **2**, **22a**: 27%, **22b**: 16% from **3**; (f)1-propanethiol, *t*-BuOK, DMF, 130 °C, **23a**: 84% from **21a**, **23b**: 76% from **21b**, **24a**: 84% from **22b**.

$\begin{tabular}{ c c c c } \hline & & & & & \\ \hline & & & & \\ \hline \hline & & \\ \hline \hline & & \hline \hline \\ \hline \hline & & \hline \hline \\ \hline \hline & & \hline \hline \hline \\ \hline \hline & & \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline$	KOR ^d N.T. ^e
$\begin{tabular}{ c c c c c } \hline MOR^b & DOR^c \\ \hline MOR^b & DOR^c \\ \hline DAMGO & 0.83 & N.T.^c \\ \hline DPDPE & N.T.^c & 0.90 \\ \hline U-69,593 & > 1000 & > 1000 \\ \hline SYK-146 (1)^f & > 1000 & > 1000 \\ \hline 13a & > 1000 & > 1000 \\ \hline 13b & > 1000 & > 1000 \\ \hline 13b & > 1000 & > 1000 \\ \hline 13c & > 1000 & > 1000 \\ \hline 14a & > 1000 & > 1000 \\ \hline 14b & > 1000 & > 1000 \\ \hline 14c & > 1000 & > 1000 \\ \hline 17a & > 1000 & > 1000 \\ \hline \end{tabular}$	KOR ^d N.T. ^e
$\begin{array}{c ccccc} DAMGO & 0.83 & N.T.^{e} \\ DPDPE & N.T.^{e} & 0.90 \\ U-69,593 & > 1000 & > 1000 \\ SYK-146 (1)^{f} & > 1000 & > 1000 \\ 13a & > 1000 & > 1000 \\ 13b & > 1000 & > 1000 \\ 13c & > 1000 & > 1000 \\ 14a & > 1000 & > 1000 \\ 14b & > 1000 & > 1000 \\ 14c & > 1000 & > 1000 \\ 17a & > 1000 & > 1000 \\ \end{array}$	N.T. ^e
DPDPEN.T.° 0.90 U-69,593> 1000> 1000SYK-146 (1) ^f > 1000> 100013a> 1000> 100013b> 1000> 100013c> 1000> 100014a> 1000> 100014b> 1000> 100014c> 1000> 100017a> 1000> 1000	
U-69,593> 1000> 1000SYK-146 (1)f> 1000> 100013a> 1000> 100013b> 1000> 100013c> 1000> 100014a> 1000> 100014b> 1000> 100014c> 1000> 100017a> 1000> 1000	N.T. ^e
SYK-146 $(1)^{f}$ > 1000> 100013a> 1000> 100013b> 1000> 100013c> 1000> 100014a> 1000> 100014b> 1000> 100014c> 1000> 100017a> 1000> 1000	1.37
13a> 1000> 100013b> 1000> 100013c> 1000> 100014a> 1000> 100014b> 1000> 100014c> 1000> 100017a> 1000> 1000	6.09
13b> 1000> 100013c> 1000> 100014a> 1000> 100014b> 1000> 100014c> 1000> 100017a> 1000> 1000	> 1000
13c> 1000> 100014a> 1000> 100014b> 1000> 100014c> 1000> 100017a> 1000> 1000	> 1000
14a > 1000 > 1000 14b > 1000 > 1000 14c > 1000 > 1000 17a > 1000 > 1000	> 1000
14b > 1000 > 1000 14c > 1000 > 1000 17a > 1000 > 1000	> 1000
14c > 1000 > 1000 17a > 1000 > 1000	> 1000
17a > 1000 > 1000	> 1000
	> 1000
17b 20.5 88.8	9.17
17c > 1000 > 1000	> 1000
17d > 1000 > 1000	> 1000
18a > 1000 > 1000	> 1000
18b > 1000 > 1000	> 1000
18c > 1000 > 1000	> 1000
18d > 1000 > 1000	> 1000
23a > 1000 > 1000	> 1000
23b > 1000 > 1000	> 1000
24a > 1000 > 1000	> 1000
24b > 1000 > 1000	

Table 1. Binding affinities of 1,3,5-trioxazatriquinane derivatives for opioid receptors.^a

Table 2. Agonist activities of 1,3,5-trioxazatriquinane derivatives for opioid receptors.^a

	EC_{50} (E_{max})		
	MOR	DOR	KOR
DAMGO	7.57 nM (100%)	N.T. ^b	N.T. ^b
DPDPE	N.T. ^b	9.29 nM (100%)	N.T. ^b
U-69,593	N.T. ^b	N.T. ^b	8.03 nM (100%)
SYK-146 (1) ^d	N.D. °	N.D. ^c	97.5 nM (98.2%)
17b	57.6 nM	52.7 nM	9.95 nM
	(89.2%)	(73.6%)	(131%)

^a [35 S] GTP γ S binding assays were carried out in duplicate using human MOR, DOR, or KOR expressed CHO cells. DAMGO, DPDPE, or U-69,593 was used as the standard MOR, DOR, or KOR agonist, respectively.

^bN.T.: not tested

^cN.D.: not detected

^dRef. 8

The *O*-methyl groups of thus prepared 1,3,5-trioxazatriquinanes **11a-c**, **12a-c**, **15a-d**, **16a-d**, **21a**, **b** and **22a**, **b**⁹ were removed by a treatment with a potassium thiolate to afford the corresponding compounds **13a-c**, **14a-c**, **17a-d**, **18a-d**, **23a**, **b** and **24a**, **b**, respectively.

The binding affinities of the synthesized 1,3,5-trioxazatriquinanes for the opioid receptors were evaluated with competitive binding assays (Table 1). Assays were performed by a previously reported procedure.8 Although almost all tested compounds showed no binding affinities to the opioid receptors, 17b alone, with two ohydroxyphenyl groups, bound to the opioid receptors. This was observed in the series of 1,3,5tendency trioxazatriquinanes with m-hydroxyphenyl groups: mono or trisubstituted 1,3,5-trioxazatriquinane derivatives did not bind to the opioid receptors due to the absence of a pharmacophore unit (the second hydroxyphenyl group) or the steric hindrance of the third hydroxyphenyl group. Among the disubstituted 1,3,5-trioxazatriquinanes, only one of the derivatives demonstrated remarkable binding to the opioid receptors. Contrary to 1, which had a selective and strong binding affinity to the KOR, 17b with

^a Binding assays were carried out in duplicate (MOR and DOR: whole brain without cerebellum of mouse, KOR: cerebellum of guinea pig).

^b [³H]DAMGO was used.

° [3H]DPDPE was used.

^d [³H]U-69,593 was used.

^eN.T.: not tested

^fRef. 8

two o-hydroxyphenyl groups exhibited moderate binding affinities to the μ opioid receptor (MOR) and the δ opioid receptor (DOR) with K_i values of 20.5 and 88.8 nM, respectively. Furthermore, **17b** also strongly bound to the KOR with a K_i value of 9.17 nM. It is noteworthy that the configuration of 17b was different from that of 1. The functional activities of 17b were assessed by [35S] GTPyS binding assays with human opioid receptor-transfected CHO cells. Previously reported procedures⁸ were used. Compound 17b showed universal agonistic activities to the opioid receptors (Table 2). Although many ligands have been reported to bind nonselectively to the opioid receptor types,10 most of them were universal antagonists or agonist/ antagonists.¹¹ To the best of our knowledge, a few ligands have shown universal agonistic activities, for example etorphine, (-)ethylketocyclazocine.¹⁰ It is interesting that **17b** exhibited a more potent and efficacious agonistic activity for the KOR than did 1. Until the discovery of salvinorin A as a KOR agonist,12, 13 the basic nitrogen was believed to be the essential structural determinant for binding to the opioid receptor. The salvinorin A derivative herkinorin was reported to be an MOR agonist possessing no basic nitrogen atom.¹³⁻¹⁵ **17b** may also be an opioid agonist lacking the basic nitrogen because the basicity of the nitrogen in 1,3,5-trioxazatriquinanes was predicted to be low due to the electron withdrawing effect of the three oxygen atoms. Indeed, the pKa value of **17b** was calculated to be 3.42 by ADMET Predictor.^{16,17} **17b** was a potent KOR agonist comparable to salvinorin A (EC₅₀ value: 40 nM, E_{max}: 120%) and a more potent MOR agonist than herkinorin (EC₅₀ value: 500 nM, E_{max}: 130%).¹⁴ Future investigations of the binding mode of **17b** to the opioid receptor types would shed light on the role and necessity of the basic nitrogen in the opioid agonists. Our results also indicated that the substitution position of the hydroxyl group would remarkably affect the in vitro pharmacological profiles of 1,3,5-trioxazatriquinanes. We are now exploring the binding mode of 17b.

In summary, we have designed and synthesized the 1,3,5-trioxazatriquinane derivatives with o- or p-hydroxyphenyl groups. Among the synthesized compounds, **17b** exhibited moderate binding affinities to the MOR and the DOR, and strong binding affinity to the KOR. Furthermore, **17b** showed universal agonistic activities to the three opioid receptor types. These results suggest that **17b** is a novel non-morphinan and nonpeptidic opioid universal agonist lacking a basic nitrogen atom.

References and notes

 Fujii, H.; Hirayama, S.; Nagase, H. In *PHARMACOLOGY*; Gallelli, L., Ed.; Intech: Rijeka, 2012;, pp 81–98. and references cited therein.

- Piercey, M. F.; Lahti, R. A.; Schroeder, L. A.; Einspahr, F. J.; Barsuhn, C. Life Sci. 1982, 31, 1197.
- Endoh, T.; Matsubara, H.; Tajima, A.; Izumimoto, N.; Tajima, C.; Suzuki, T.; Saitoh, A.; Suzuki, T.; Narita, M.; Tseng, L.; Nagase, H. Life Sci. 1999, 65, 1685.
- 4. Mucha, R. F.; Herz, A. Psychopharmacology 1985, 86, 274.
- 5. Millan, M. J. Trends Pharmacol. Sci. 1990, 11, 70.
- 6. Yamaotsu, N.; Hirono, S. *Top. Curr. Chem.* **2011**, *299*. 277. and references cited therein.
- Spetea, M.; Berzetei-Gurske, I. P.; Guerrieri, E.; Schmidhammer, H. J. Med. Chem. 2012, 55, 10302.
- Hirayama, S.; Wada, N.; Nemoto, T.; Iwai, T.; Fujii, H.; Nagase, H. ACS Med. Chem. Lett. in press. DOI: 10.1021/ml5000542.
- The configurations of these compounds were determined by 2D-NMR experiments.
- Toll, L.; Berzetei-Gurske, I. P.; Polgar, W. E.; Brandt, S. R.; Adapa, I. D.; Rodriguez, L.; Schwartz, R. W.; Haggart, D.; O'Brien, A.; White, A.; Kennedy, J. M.; Craymer, K.; Frrington, L.; Auh, J. S. *NIDA Res. Monogr.* **1998**, *178*, 440.
- 11. The agonist/antagonist simultaneously showed agonistic activity for one opioid receptor type and antagonistic activities for the other two types or, conversely, agonistic activities for two receptor types and antagonistic activity toward for the remaining type.
- Roth, B. L.; Baner, K.; Westkaemper, R.; Siebert, D.; Rice, K. C.; Steinberg, S.; Ernsberger, P.; Rothman, R. B. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 11934.
- 13. Structures of salvinorin A and herkinorin.

- Harding, W. W.; Tidgewell, K.; Byrd, N.; Cobb, H.; Dersch, C. M.; Butelman, E. R.; Rothman, R. B.; Prisinzano, T. E. *J. Med. Chem.* 2005, 48, 4765.
- Tidgewell, K.; Harding, W. W.; Lozama, A.; Cobb, H.; Shah, K.; Kannan, P.; Dersch, C. M.; Parrish, D.; Deschamps, J. R.; Rothman, R. B.; Prisinzano, T. E. J. Nat. Prod. 2006, 69, 914.
- 16. We also calculated the *pK*a value of triethylamine to be 10.82. The *pK*a values were calculated by ADMET Predictor version 6.1.0001, Simulations Plus, Inc., Lancaster, CA, USA, 2012 (http://www.simulations-plus.com/).
- 17. This result suggested **1** was also the KOR agonist lacking a basic nitrogen atom.

Click here to remove instruction text...